Science.gov

Sample records for diverse point mutations

  1. Mitochondrial DNA exhibits resistance to induced point and deletion mutations

    PubMed Central

    Valente, William J.; Ericson, Nolan G.; Long, Alexandra S.; White, Paul A.; Marchetti, Francesco; Bielas, Jason H.

    2016-01-01

    The accumulation of somatic mitochondrial DNA (mtDNA) mutations contributes to the pathogenesis of human disease. Currently, mitochondrial mutations are largely considered results of inaccurate processing of its heavily damaged genome. However, mainly from a lack of methods to monitor mtDNA mutations with sufficient sensitivity and accuracy, a link between mtDNA damage and mutation has not been established. To test the hypothesis that mtDNA-damaging agents induce mtDNA mutations, we exposed MutaTMMouse mice to benzo[a]pyrene (B[a]P) or N-ethyl-N-nitrosourea (ENU), daily for 28 consecutive days, and quantified mtDNA point and deletion mutations in bone marrow and liver using our newly developed Digital Random Mutation Capture (dRMC) and Digital Deletion Detection (3D) assays. Surprisingly, our results demonstrate mutagen treatment did not increase mitochondrial point or deletion mutation frequencies, despite evidence both compounds increase nuclear DNA mutations and demonstrated B[a]P adduct formation in mtDNA. These findings contradict models of mtDNA mutagenesis that assert the elevated rate of mtDNA mutation stems from damage sensitivity and abridged repair capacity. Rather, our results demonstrate induced mtDNA damage does not readily convert into mutation. These findings suggest robust mitochondrial damage responses repress induced mutations after mutagen exposure. PMID:27550180

  2. The point mutation process in proteins

    NASA Technical Reports Server (NTRS)

    Schwartz, R. M.; Dayhoff, M. O.

    1978-01-01

    An optimized scoring matrix for residue-by-residue comparisons of distantly related protein sequences has been developed. The scoring matrix is based on observed exchanges and mutabilities of amino acids in 1572 closely related sequences derived from a cross-section of protein groups. Very few superimposed or parallel mutations are included in the data. The scoring matrix is most useful for demonstrating the relatedness of proteins between 65 and 85% different.

  3. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F.

    1996-10-01

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments generated by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  4. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F.

    1996-12-31

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  5. Effect of mtDNA point mutations on cellular bioenergetics.

    PubMed

    Szczepanowska, Joanna; Malinska, Dominika; Wieckowski, Mariusz R; Duszynski, Jerzy

    2012-10-01

    This overview discusses the results of research on the effects of most frequent mtDNA point mutations on cellular bioenergetics. Thirteen proteins coded by mtDNA are crucial for oxidative phosphorylation, 11 of them constitute key components of the respiratory chain complexes I, III and IV and 2 of mitochondrial ATP synthase. Moreover, pathogenic point mutations in mitochondrial tRNAs and rRNAs generate abnormal synthesis of the mtDNA coded proteins. Thus, pathogenic point mutations in mtDNA usually disturb the level of key parameter of the oxidative phosphorylation, i.e. the electric potential on the inner mitochondrial membrane (Δψ), and in a consequence calcium signalling and mitochondrial dynamics in the cell. Mitochondrial generation of reactive oxygen species is also modified in the mutated cells. The results obtained with cultured cells and describing biochemical consequences of mtDNA point mutations are full of contradictions. Still they help elucidate the biochemical basis of pathologies and provide a valuable tool for finding remedies in the future. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). PMID:22406627

  6. Predicting folding free energy changes upon single point mutations

    PubMed Central

    Zhang, Zhe; Wang, Lin; Gao, Yang; Zhang, Jie; Zhenirovskyy, Maxim; Alexov, Emil

    2012-01-01

    Motivation: The folding free energy is an important characteristic of proteins stability and is directly related to protein's wild-type function. The changes of protein's stability due to naturally occurring mutations, missense mutations, are typically causing diseases. Single point mutations made in vitro are frequently used to assess the contribution of given amino acid to the stability of the protein. In both cases, it is desirable to predict the change of the folding free energy upon single point mutations in order to either provide insights of the molecular mechanism of the change or to design new experimental studies. Results: We report an approach that predicts the free energy change upon single point mutation by utilizing the 3D structure of the wild-type protein. It is based on variation of the molecular mechanics Generalized Born (MMGB) method, scaled with optimized parameters (sMMGB) and utilizing specific model of unfolded state. The corresponding mutations are built in silico and the predictions are tested against large dataset of 1109 mutations with experimentally measured changes of the folding free energy. Benchmarking resulted in root mean square deviation = 1.78 kcal/mol and slope of the linear regression fit between the experimental data and the calculations was 1.04. The sMMGB is compared with other leading methods of predicting folding free energy changes upon single mutations and results discussed with respect to various parameters. Availability: All the pdb files we used in this article can be downloaded from http://compbio.clemson.edu/downloadDir/mentaldisorders/sMMGB_pdb.rar Contact: ealexov@clemson.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22238268

  7. Point mutation instability (PIN) mutator phenotype as model for true back mutations seen in hereditary tyrosinemia type 1 - a hypothesis.

    PubMed

    van Dyk, Etresia; Pretorius, Pieter J

    2012-05-01

    Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disorder affecting fumarylacetoacetate hydrolase (FAH), the last enzyme in the tyrosine catabolism pathway. The liver mosaicism observed in HT1 patients is due to the reversion to the wild type of one allele of the original point mutation in fah. It is generally accepted that these reversions are true back mutations; however, the mechanism is still unresolved. Previous reports excluded intragenic recombination, mitotic recombination, or homologous recombination with a pseudogene as possible mechanisms of mutation reversion in HT1. Sequence analysis did not reveal DNA motifs, tandem repeats or other sequence peculiarities that may be involved in mutation reversion. We propose the hypothesis that a point mutation instability mutator (PIN) phenotype brought about by the sustained stress environment created by the accumulating metabolites in the cell is the driver of the true back mutations in HT1. The metabolites accumulating in HT1 create a sustained stress environment by activating the extracellular signal-regulated kinase (ERK) and AKT survival pathways, inducing aberrant mitosis and development of death resistant cells, depleting glutathione, and impairing DNA ligase IV and possibly DNA polymerases δ and ε. This continual production of proliferative and stress-related survival signals in the cellular environment coupled with the mutagenicity of FAA, may instigate a mutator phenotype and could end in tumorigenesis and/or mutation reversion. The establishment of a PIN-mutator phenotype therefore not only seems to be a possible mechanism underlying the true back mutations, but also contributes to explaining the clinical heterogeneity seen in hereditary tyrosinemia type 1.

  8. Nucleotide sequence determines the accelerated rate of point mutations.

    PubMed

    Kini, R Manjunatha; Chinnasamy, Arunkumar

    2010-09-01

    Although the theory of evolution was put forth about 150 years ago our understanding of how molecules drive evolution remains poor. It is well-established that proteins evolve at different rates, essentially based on their functional role and three-dimensional structure. However, the highly variable rates of evolution of different proteins - especially the rapidly evolving ones - within a single organism are poorly understood. Using examples of genes for fast-evolving toxins and human hereditary diseases, we show for the first time that specific nucleotide sequences appear to determine point mutation rates. Based on mutation rates, we have classified triplets (not just codons) into stable, unstable and intermediate groups. Toxin genes contain a relatively higher percentage of unstable triplets in their exons compared to introns, whereas non-toxin genes contain a higher percentage of unstable triplets in their introns. Thus the distribution of stable and unstable triplets is correlated with and may explain the accelerated evolution of point mutations in toxins. Similarly, at the genomic level, lower organisms with genes that evolve faster contain a higher percentage of unstable triplets compared to higher organisms. These findings show that mutation rates of proteins, and hence of the organisms, are DNA sequence-dependent and thus provide a proximate mechanism of evolution at the molecular level. PMID:20362603

  9. Repository of mutations from Oman: The entry point to a national mutation database

    PubMed Central

    Rajab, Anna; Hamza, Nishath; Al Harasi, Salma; Al Lawati, Fatma; Gibbons, Una; Al Alawi, Intesar; Kobus, Karoline; Hassan, Suha; Mahir, Ghariba; Al Salmi, Qasim; Mons, Barend; Robinson, Peter

    2015-01-01

    The Sultanate of Oman is a rapidly developing Muslim country with well-organized government-funded health care services, and expanding medical genetic facilities. The preservation of tribal structures within the Omani population coupled with geographical isolation has produced unique patterns of rare mutations. In order to provide diagnosticians and researchers with access to an up-to-date resource that will assist them in their daily practice we collated and analyzed all of the Mendelian disease-associated mutations identified in the Omani population. By the 1 st of August 2015, the dataset contained 300 mutations detected in over 150 different genes. More than half of the data collected reflect novel genetic variations that were first described in the Omani population, and most disorders with known mutations are inherited in an autosomal recessive fashion. A number of novel Mendelian disease genes have been discovered in Omani nationals, and the corresponding mutations are included here. The current study provides a comprehensive resource of the mutations in the Omani population published in scientific literature or reported through service provision that will be useful for genetic care in Oman and will be a starting point for variation databases as next-generation sequencing technologies are introduced into genetic medicine in Oman. PMID:26594346

  10. Repository of mutations from Oman: The entry point to a national mutation database.

    PubMed

    Rajab, Anna; Hamza, Nishath; Al Harasi, Salma; Al Lawati, Fatma; Gibbons, Una; Al Alawi, Intesar; Kobus, Karoline; Hassan, Suha; Mahir, Ghariba; Al Salmi, Qasim; Mons, Barend; Robinson, Peter

    2015-01-01

    The Sultanate of Oman is a rapidly developing Muslim country with well-organized government-funded health care services, and expanding medical genetic facilities. The preservation of tribal structures within the Omani population coupled with geographical isolation has produced unique patterns of rare mutations. In order to provide diagnosticians and researchers with access to an up-to-date resource that will assist them in their daily practice we collated and analyzed all of the Mendelian disease-associated mutations identified in the Omani population. By the 1 (st) of August 2015, the dataset contained 300 mutations detected in over 150 different genes. More than half of the data collected reflect novel genetic variations that were first described in the Omani population, and most disorders with known mutations are inherited in an autosomal recessive fashion. A number of novel Mendelian disease genes have been discovered in Omani nationals, and the corresponding mutations are included here. The current study provides a comprehensive resource of the mutations in the Omani population published in scientific literature or reported through service provision that will be useful for genetic care in Oman and will be a starting point for variation databases as next-generation sequencing technologies are introduced into genetic medicine in Oman. PMID:26594346

  11. VACTERL with the mitochondrial NP 3243 point mutation

    SciTech Connect

    Damian, M.S.; Dorndorf, W.; Schachenmayr, W.; Seibel, P.; Reichmann, H.

    1996-04-24

    The VACTERL association of vertebral, anal, cardiovascular, tracheo-esophageal, renal, and limb defects is one of the more common congenital disorders with limb deficiency arising during blastogenesis. The cause is probably heterogeneous; a molecular basis has not been defined. We report on a family in which a female infant with VACTERL was born in 1977 and died at age 1 month due to renal failure. Because her mother and sister later developed classical mitochondrial cytopathy associated with the A-G point mutation at nucleotide position (np) 3243 of mitochondrial (mt) DNA, we performed a molecular analysis of mt DNA in preserved kidney tissue from the VACTERL case. We discovered 100% mutant mt DNA in multicystic and 32% mutant mt DNA in normal kidney tissue. Mild deficiency of complex I respiratory chain enzyme activity was found in the mother`s muscle biopsy. Other maternal relatives were healthy but had low levels of mutant mt DNA in blood. This is the first report to provide a precise molecular basis for a case of VACTERL. The differing tissue pathology depending on the percentage of mutant mt DNA suggests a causal connection between the mutation and symptoms. VACTERL, and this type of multicystic renal dysplasia, are new phenotypes for the np 3243 point mutation. The possibility of a mitochondrial disorder should be born in mind and also that VACTERL may occur as a first manifestation of a mutation that has been present for generations. This would have major implications for patient management and for genetic counselling regarding both the risk of recurrence and risk of other mitochondrial syndromes in affected families. 19 refs., 3 figs., 1 tab.

  12. Multiple cryptic splice sites can be activated by IDS point mutations generating misspliced transcripts.

    PubMed

    Lualdi, Susanna; Pittis, Maria G; Regis, Stefano; Parini, Rossella; Allegri, Anna E; Furlan, Francesca; Bembi, Bruno; Filocamo, Mirella

    2006-08-01

    Mutations in the gene encoding the enzyme iduronate-2-sulfatase (IDS) were reported as the cause of the X-linked recessive lysosomal disease, mucopolysaccharidosis II (MPS II). Amongst the different mutations, it emerges that nearly 10% are nucleotide substitutions causing splicing mutations. We now report the molecular characterisation of three MPS II patients with multiple aberrant transcripts due to three different point mutations. The c.418+1G>C that occurred in the invariant splice-site motif, produced only aberrantly spliced transcripts. Whilst the mutations affecting variant motifs (c.419G>T) or coding regions (c.245C>T) led to aberrantly spliced transcripts in addition to correctly spliced transcripts with the respective predicted missense mutation, p.G140V or p.A82V. A combination of experimental tests and computational approaches were used to understand the molecular basis underlying the altered transcription patterns. In addition, by using real-time reverse transcriptase polymerase chain reaction, the reduction of mRNA amount in two patients observed was likely due to nonsense-mediated mRNA decay pathway. Overall, our results further emphasised the importance of cloning and sequencing independent transcripts to reveal less abundant, aberrant products, which often could not be detected by direct sequencing. Moreover, the different splicing patterns observed in the three patients as a consequence of point mutations show how sensitive the balance is between constitutive and cryptic splice sites in the IDS gene. The generation of such diverse transcripts, together with their level of expression, could contribute to the profound phenotypic variability reported in MPS II.

  13. Stabilization of G protein-coupled receptors by point mutations

    PubMed Central

    Heydenreich, Franziska M.; Vuckovic, Ziva; Matkovic, Milos; Veprintsev, Dmitry B.

    2015-01-01

    G protein-coupled receptors (GPCRs) are flexible integral membrane proteins involved in transmembrane signaling. Their involvement in many physiological processes makes them interesting targets for drug development. Determination of the structure of these receptors will help to design more specific drugs, however, their structural characterization has so far been hampered by the low expression and their inherent instability in detergents which made protein engineering indispensable for structural and biophysical characterization. Several approaches to stabilize the receptors in a particular conformation have led to breakthroughs in GPCR structure determination. These include truncations of the flexible regions, stabilization by antibodies and nanobodies, fusion partners, high affinity and covalently bound ligands as well as conformational stabilization by mutagenesis. In this review we focus on stabilization of GPCRs by insertion of point mutations, which lead to increased conformational and thermal stability as well as improved expression levels. We summarize existing mutagenesis strategies with different coverage of GPCR sequence space and depth of information, design and transferability of mutations and the molecular basis for stabilization. We also discuss whether mutations alter the structure and pharmacological properties of GPCRs. PMID:25941489

  14. EPHA2 MUTATIONS CONTRIBUTE TO CONGENITAL CATARACT THROUGH DIVERSE MECHANISMS

    PubMed Central

    Dave, Alpana; Martin, Sarah; Kumar, Raman; Craig, Jamie E.; Burdon, Kathryn P.

    2016-01-01

    Purpose Congenital cataract is a leading cause of childhood blindness. Mutations in the EPHA2 gene are one of the causes of inherited congenital cataract. The EPHA2 gene encodes a membrane-bound tyrosine kinase receptor and is highly expressed in epithelial cells, including in the ocular lens. Signaling through the EPHA2 receptor plays a pivotal role in epithelial cell homeostasis. The aim of this study was to determine the effect of congenital cataract causing mutations in the EPHA2 gene on the encoded protein in epithelial cells. Methods The effect of five disease-causing mutations, p.P584L (c.1751C>T), p.T940I (c.2819C>T), p.D942fsXC71 (c.2826–9G>A), p.A959T (c.2875G>A), and p.V972GfsX39 (c.2915_2916delTG), on localization of the protein was examined in two in vitro epithelial cell culture systems: Madin-Darby Canine Kidney (MDCK) and human colorectal adenocarcinoma (Caco-2) epithelial cells. Myc-tagged mutant constructs were generated by polymerase chain reaction (PCR)-based mutagenesis. The Myc-tagged wild-type construct was used as a control. The Myc-tagged wild-type and mutant proteins were ectopically expressed and detected by immunofluorescence labeling. Results Two of the mutations, p.T940I and p.D942fsXC71, located within the cytoplasmic sterile-α-motif (SAM) domain of EPHA2, led to mis-localization of the protein to the perinuclear space and co-localization with the cis-golgi apparatus, indicating sub-organellar/cellular retention of the mutant proteins. The mutant proteins carrying the remaining three mutations, similar to the wild-type EPHA2, localized to the cell membrane. Conclusions Mis-localization of two of the mutant proteins in epithelial cells suggests that some disease-causing mutations in EPHA2 likely affect lens epithelial cell homeostasis and contribute to cataract. This study suggests that mutations in EPHA2 contribute to congenital cataract through diverse mechanisms. PMID:26900323

  15. Schema theory for genetic programming with one-point crossover and point mutation.

    PubMed

    Poli, R; Langdon, W B

    1998-01-01

    We review the main results obtained in the theory of schemata in genetic programming (GP), emphasizing their strengths and weaknesses. Then we propose a new, simpler definition of the concept of schema for GP, which is closer to the original concept of schema in genetic algorithms (GAs). Along with a new form of crossover, one-point crossover, and point mutation, this concept of schema has been used to derive an improved schema theorem for GP that describes the propagation of schemata from one generation to the next. We discuss this result and show that our schema theorem is the natural counterpart for GP of the schema theorem for GAs, to which it asymptotically converges.

  16. A point mutation and a RNA processing mutation in a carbamyl phosphate synthetase I (CPSI) deficient patient

    SciTech Connect

    Hall, L.; Summer, M.; Sierra-Rivera, E.; Freeman, M.

    1994-09-01

    Deficiency of carbamyl phosphate synthetase I (CPSID) results in a life-threatening disease due to hyperammonemia. A better understanding of the molecular basis of CPSID was achieved by studying the genetic defects in a CPSID patient. CPSI message was analyzed from hepatic tissue through Northern blot analysis, reverse transcription of liver mRNA followed by polymerase chain reaction amplification (RT-PCR), dideoxy fingerprinting, and direct DNA sequencing. Northern blot analysis of the patient revealed a diminished amount of normal sized CPSI message and multiple other bands not detected in controls. Analysis of the amplified coding region revealed a single point mutation leading to an asparagine to lysine substitution at codon 715. The patient`s cDNA was homozygous and genomic DNA heterozygous for the point mutation which was not found in ten unrelated CPSID patients. The point mutation causes a change from a highly-conserved neutral amino acid to a polar basic residue within a nucleotide/bicarbonate binding domain which points to its importance in normal CPSI function. The other allele which was absent in RT-PCR fragements presumably leads to the multi-form poly-A message detected by Northern blot analysis and allows the point mutation to become the dominant expressed allele. These mutations represent the second reported molecular defect in CPSI and the first to involve a mutation in a functional domain and in RNA processing.

  17. Polar body mutation load analysis in a patient with A3243G tRNALeu(UUR) point mutation.

    PubMed

    Vandewoestyne, Mado; Heindryckx, Björn; Lepez, Trees; Van Coster, Rudy; Gerris, Jan; De Sutter, Petra; Deforce, Dieter

    2011-07-01

    Diseases associated with point mutations in the mitochondrial DNA (mtDNA) are maternally inherited. We evaluated whether pre-implantation genetic diagnosis, based on polar body mutation load detection could be used to distinguish healthy from affected oocytes. Restriction Fragment Length Polymorphism (RFLP) analysis was used and validated, to determine A3243G tRNA(Leu(UUR)) mutation load in metaphase II oocytes and their respective first polar bodies. The results of this study show for the first time that the mutation load measured in the polar bodies correlates well with the mutation load in the respective oocytes. Therefore, human polar body analysis can be used as diagnostic tool to prevent transmission of mitochondrial disorders.

  18. Single Quantum Dot Analysis Enables Multiplexed Point Mutation Detection by Gap Ligase Chain Reaction

    PubMed Central

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2014-01-01

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and tedious assay processes. In this report, we propose an assay technology which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single molecule coincidence detection and superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. PMID:23239594

  19. HMG CoA lyase deficiency: identification of five causal point mutations in codons 41 and 42, including a frequent Saudi Arabian mutation, R41Q.

    PubMed

    Mitchell, G A; Ozand, P T; Robert, M F; Ashmarina, L; Roberts, J; Gibson, K M; Wanders, R J; Wang, S; Chevalier, I; Plöchl, E; Miziorko, H

    1998-02-01

    The hereditary deficiency of 3-hydroxy-3-methylglutaryl (HMG) CoA lyase (HL; OMIM 246450 [http://www3.ncbi.nlm.nih. gov:80/htbin-post/Omim/dispmim?246450]) results in episodes of hypoketotic hypoglycemia and coma and is reported to be frequent and clinically severe in Saudi Arabia. We found genetic diversity among nine Saudi HL-deficient probands: six were homozygous for the missense mutation R41Q, and two were homozygous for the frameshift mutation F305fs(-2). In 32 non-Saudi HL-deficient probands, we found three R41Q alleles and also discovered four other deleterious point mutations in codons 41 and 42: R41X, D42E, D42G, and D42H. In purified mutant recombinant HL, all four missense mutations in codons 41 and 42 cause a marked decrease in HL activity. We developed a screening procedure for HL missense mutations that yields residual activity at levels comparable to those obtained using purified HL peptides. Codons 41 and 42 are important for normal HL catalysis and account for a disproportionate 21 (26%) of 82 of mutant alleles in our group of HL-deficient probands.

  20. The frequency of point mutations in mitochondrial DNA is elevated in the Alzheimer's brain.

    PubMed

    Chang, S W; Zhang, D; Chung, H D; Zassenhaus, H P

    2000-06-24

    Using a PCR-based strategy, we found that point mutation frequencies in mitochondrial DNA (mtDNA) were 2- to 3-fold higher in the parietal gyrus, hippocampus, and cerebellum from subjects with Alzheimer's disease (AD) compared to normal controls. In contrast, levels of a commonly studied deletion mutation, mtDNA(4977), were not elevated in AD. The frequency of point mutations did not vary significantly among the three brain areas, whereas the frequency of mtDNA(4977) was 15- to 25-fold lower in the cerebellum in comparison to the cortex; this regional variation was seen in both the normal and Alzheimer's brain. In blood mtDNA, point mutation frequencies were not elevated in AD patients. The elevated frequency of point mutations in all three brain regions is consistent with the idea that increased oxidant stress is associated with AD.

  1. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes

    PubMed Central

    Walter, MJ; Shen, D; Shao, J; Ding, L; White, BS; Kandoth, C; Miller, CA; Niu, B; McLellan, MD; Dees, ND; Fulton, R; Elliot, K; Heath, S; Grillot, M; Westervelt, P; Link, DC; DiPersio, JF; Mardis, E; Ley, TJ; Wilson, RK; Graubert, TA

    2013-01-01

    Recent studies suggest that most cases of myelodysplastic syndrome (MDS) are clonally heterogeneous, with a founding clone and multiple subclones. It is not known whether specific gene mutations typically occur in founding clones or subclones. We screened a panel of 94 candidate genes in a cohort of 157 patients with MDS or secondary acute myeloid leukemia (sAML). This included 150 cases with samples obtained at MDS diagnosis and 15 cases with samples obtained at sAML transformation (8 were also analyzed at the MDS stage). We performed whole-genome sequencing (WGS) to define the clonal architecture in eight sAML genomes and identified the range of variant allele frequencies (VAFs) for founding clone mutations. At least one mutation or cytogenetic abnormality was detected in 83% of the 150 MDS patients and 17 genes were significantly mutated (false discovery rate ≤0.05). Individual genes and patient samples displayed a wide range of VAFs for recurrently mutated genes, indicating that no single gene is exclusively mutated in the founding clone. The VAFs of recurrently mutated genes did not fully recapitulate the clonal architecture defined by WGS, suggesting that comprehensive sequencing may be required to accurately assess the clonal status of recurrently mutated genes in MDS. PMID:23443460

  2. PoPMuSiC, rationally designing point mutations in protein structures.

    PubMed

    Kwasigroch, J M; Gilis, D; Dehouck, Y; Rooman, M

    2002-12-01

    PoPMuSiC is an efficient tool for rational computer-aided design of single-site mutations in proteins and peptides. Two types of queries can be submitted. The first option allows to estimate the changes in folding free energy for specific point mutations given by the user. In the second option, all possible point mutations in a given protein or protein region are performed and the most stabilizing or destabilizing mutations, or the neutral mutations with respect to thermodynamic stability, are selected. For each sequence position or secondary structure the deviation from the most stable sequence is moreover evaluated, which helps to identify the most suitable sites for the introduction of mutations.

  3. Mu Opioid Receptor Gene: New Point Mutations in Opioid Addicts

    PubMed Central

    Dinarvand, Amin; Goodarzi, Ali; Vousooghi, Nasim; Hashemi, Mehrdad; Dinarvand, Rasoul; Ostadzadeh, Fahimeh; Khoshzaban, Ahad; Zarrindast, Mohammad-Reza

    2014-01-01

    Introduction Association between single-nucleotide polymorphisms (SNPs) in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction. Methods 79 opioid-dependent subjects (55 males, 24 females) and 134 non-addict or control individuals (74 males, 60 females) participated in the study. Genomic DNA was extracted from volunteers’ peripheral blood and exon 3 of the mu opioid receptor gene was amplified by polymerase chain reaction (PCR) whose products were then sequenced. Results Three different heterozygote polymorphisms were observed in 3 male individuals: 759T > C and 877G > A mutations were found in 2 control volunteers and 1043G > C substitution was observed in an opioid-addicted subject. Association between genotype and opioid addiction for each mutation was not statistically significant. Discussion It seems that the sample size used in our study is not enough to confirm or reject any association between 759T > C, 877G > A and 1043G > C substitutions in exon 3 of the mu opioid receptor gene and opioid addiction susceptibility in Iranian population. PMID:25436079

  4. Identification of and Molecular Basis for SIRT6 Loss-of-Function Point Mutations in Cancer.

    PubMed

    Kugel, Sita; Feldman, Jessica L; Klein, Mark A; Silberman, Dafne M; Sebastián, Carlos; Mermel, Craig; Dobersch, Stephanie; Clark, Abbe R; Getz, Gad; Denu, John M; Mostoslavsky, Raul

    2015-10-20

    Chromatin factors have emerged as the most frequently dysregulated family of proteins in cancer. We have previously identified the histone deacetylase SIRT6 as a key tumor suppressor, yet whether point mutations are selected for in cancer remains unclear. In this manuscript, we characterized naturally occurring patient-derived SIRT6 mutations. Strikingly, all the mutations significantly affected either stability or catalytic activity of SIRT6, indicating that these mutations were selected for in these tumors. Further, the mutant proteins failed to rescue sirt6 knockout (SIRT6 KO) cells, as measured by the levels of histone acetylation at glycolytic genes and their inability to rescue the tumorigenic potential of these cells. Notably, the main activity affected in the mutants was histone deacetylation rather than demyristoylation, pointing to the former as the main tumor-suppressive function for SIRT6. Our results identified cancer-associated point mutations in SIRT6, cementing its function as a tumor suppressor in human cancer.

  5. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses

    PubMed Central

    Faith, Daniel P.

    2015-01-01

    The phylogenetic diversity measure, (‘PD’), measures the relative feature diversity of different subsets of taxa from a phylogeny. At the level of feature diversity, PD supports the broad goal of biodiversity conservation to maintain living variation and option values. PD calculations at the level of lineages and features include those integrating probabilities of extinction, providing estimates of expected PD. This approach has known advantages over the evolutionarily distinct and globally endangered (EDGE) methods. Expected PD methods also have limitations. An alternative notion of expected diversity, expected functional trait diversity, relies on an alternative non-phylogenetic model and allows inferences of diversity at the level of functional traits. Expected PD also faces challenges in helping to address phylogenetic tipping points and worst-case PD losses. Expected PD may not choose conservation options that best avoid worst-case losses of long branches from the tree of life. We can expand the range of useful calculations based on expected PD, including methods for identifying phylogenetic key biodiversity areas. PMID:25561672

  6. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information.

    PubMed

    Mallik, Saurav; Das, Smita; Kundu, Sudip

    2016-01-01

    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively.

  7. Clinical features of MELAS and its relation with A3243G gene point mutation.

    PubMed

    Zhang, Jin; Guo, Junhong; Fang, Wanghui; Jun, Qili; Shi, Kaili

    2015-01-01

    Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) mostly occur in children. The point mutation A3243G of mitochondrial DNA (mtDNA) may work as a specific bio-marker for mitochondrial disorders. The related clinical features, however, may vary among individuals. This study therefore investigated the relation between MELAS clinical features and point mutation A3243G of mtDNA, in an attempt to provide further evidences for genetic diagnosis of MELAS. Children with MELAS-like syndromes were tested for both blood lactate level and point mutation A3243G of mtDNA. Further family study was performed by mtDNA mutation screening at the same loci for those who had positive gene mutation at A3243G loci. Those who were negative for A3243G point mutation were examined by muscle biopsy and genetic screening. Both clinical and genetic features were analyzed. In all 40 cases with positive A3243G mutation, 36 children fitted clinical diagnosis of MELAS. In other 484 cases with negative mutation, only 8 children were clinically diagnosed with MELAS. Blood lactate levels in both groups were all elevated (P>0.05). In a further genetic screening of 28 families, 10 biological mothers and 8 siblings of MELAS children had positive A3243G point mutations but without any clinical symptoms. Certain difference existed in the clinical manifestations between children who were positive and negative for A3243G mutation of mtDNA but without statistical significance. MELAS showed maternal inheritance under most circumstances.

  8. A single point mutation enhances hydroxynitrile synthesis by halohydrin dehalogenase.

    PubMed

    Schallmey, Marcus; Jekel, Peter; Tang, Lixia; Majerić Elenkov, Maja; Höffken, Hans Wolfgang; Hauer, Bernhard; Janssen, Dick B

    2015-03-01

    The cyanide-mediated ring opening of epoxides catalyzed by halohydrin dehalogenases yields β-hydroxynitriles that are of high interest for synthetic chemistry. The best studied halohydrin dehalogenase to date is the enzyme from Agrobacterium radiobacter, but this enzyme (HheC) exhibits only low cyanolysis activities. Sequence comparison between a pair of related halohydrin dehalogenases from Corynebacterium and Mycobacterium suggested that substitution of a threonine that interacts with the active site might be responsible for the higher cyanolytic activity of the former enzyme. Here we report that a variant of HheC in which this substitution (T134A) is adopted displays an up to 11-fold higher activity in cyanide-mediated epoxide ring-opening. The mutation causes removal of the hydrogen bond between residue 134 and the side chain O of the active site serine 132, which donates a hydrogen bond to the substrate oxygen. The mutation also increases dehalogenase rates with various substrates. Structural analysis revealed that the anion-binding site of the mutant enzyme remained unaltered, showing that the enhanced activity is due to altered interactions with the substrate oxygen rather than changes in the nucleophile binding site.

  9. Point Mutations Effects on Charge Transport Properties of the Tumor-Suppressor Gene p53

    NASA Astrophysics Data System (ADS)

    Roemer, Rudolf A.; Shih, Chi-Tin; Roche, Stephan

    2008-03-01

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective tight-binding models which simulate hole propagation along the DNA, a statistical analysis of mutation-induced charge transfer modifications is performed. In contrast to non-cancerous mutations, mutation hotspots tend to result in significantly weaker changes of transmission properties. This suggests that charge transport could play a significant role for DNA-repairing deficiency yielding carcinogenesis.

  10. Structural Analysis of Single-Point Mutations Given an RNA Sequence: A Case Study with RNAMute

    NASA Astrophysics Data System (ADS)

    Churkin, Alexander; Barash, Danny

    2006-12-01

    We introduce here for the first time the RNAMute package, a pattern-recognition-based utility to perform mutational analysis and detect vulnerable spots within an RNA sequence that affect structure. Mutations in these spots may lead to a structural change that directly relates to a change in functionality. Previously, the concept was tried on RNA genetic control elements called "riboswitches" and other known RNA switches, without an organized utility that analyzes all single-point mutations and can be further expanded. The RNAMute package allows a comprehensive categorization, given an RNA sequence that has functional relevance, by exploring the patterns of all single-point mutants. For illustration, we apply the RNAMute package on an RNA transcript for which individual point mutations were shown experimentally to inactivate spectinomycin resistance in Escherichia coli. Functional analysis of mutations on this case study was performed experimentally by creating a library of point mutations using PCR and screening to locate those mutations. With the availability of RNAMute, preanalysis can be performed computationally before conducting an experiment.

  11. One-Step Ligation on RNA Amplification for the Detection of Point Mutations.

    PubMed

    Zhang, Lei; Wang, Jingjing; Coetzer, Mia; Angione, Stephanie; Kantor, Rami; Tripathi, Anubhav

    2015-11-01

    The detection of point mutations is required in the diagnosis of many human diseases. The conformal specificity of DNA ligases was elegantly used to distinguish single-nucleotide mismatches. However, to detect point mutations in RNA retroviruses, conventional ligase-mediated approaches require the reverse transcription of viral genomes before separate ligation and amplification steps. We developed one-step ligation on RNA amplification (LRA) for the direct detection of RNA point mutations. The process combines the ligase-mediated joining of two oligonucleotides and subsequent hot start amplification into a single-tube reaction. We report that modifications to the structure of the oligonucleotide ligation probes improve the rate of ligation and the specificity of mutation detection on RNA. We applied LRA to the detection of a common, clinically relevant HIV-1 reverse transcriptase drug-resistant point mutation, K103N, and compared it with allele-specific PCR and pyrosequencing. LRA achieved a limit of specific quantitation of 1:100 (1%), and a limit of specific detection for mutant K103N RNA transcripts among excess wild-type strands of 1:10,000 (0.01%). LRA also exhibited good detection threshold of 5 × 10(2) copies/μL K103N RNA transcripts. LRA is a novel point mutation detection method, with potential utilization in HIV drug resistance detection and early diagnostics of genetic disorders associated with other infectious diseases and cancer. PMID:26322949

  12. Fly-TILL: reverse genetics using a living point mutation resource.

    PubMed

    Cooper, Jennifer L; Till, Bradley J; Henikoff, Steven

    2008-01-01

    Mutagenesis with ethylmethanesulfonate (EMS) has been the standard for traditional genetic screens, and in recent years has been applied to reverse genetics. However, reverse-genetic strategies require maintaining a viable germline library so that mutations that are discovered can subsequently be recovered. In applying our TILLING (Targeting Induced Local Lesions IN Genomes) method to establish a Drosophila reverse-genetic service (Fly-TILL), we chose to screen the Zuker lines, a large collection of EMS-mutagenized second- and third-chromosome balanced lines that had been established for forward-genetic screening. For the past four years, our Fly-TILL service has screened this collection to provide approximately 150 allelic series of point mutations for the fly community. Our analysis of >2000 point mutations and indels have provided a glimpse into the population dynamics of this valuable genetic resource. We found evidence for selection and differential recovery of mutations, depending on distance from balancer breakpoints. Although this process led to variable mutational densities, we have nevertheless been able to deliver potentially valuable mutations in genes selected by Fly-TILL users. We anticipate that our findings will help guide the future implementation of point-mutation resources for the Drosophila community.

  13. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS).

    PubMed Central

    Newton, C R; Graham, A; Heptinstall, L E; Powell, S J; Summers, C; Kalsheker, N; Smith, J C; Markham, A F

    1989-01-01

    We have improved the "polymerase chain reaction" (PCR) to permit rapid analysis of any known mutation in genomic DNA. We demonstrate a system, ARMS (Amplification Refractory Mutation System), that allows genotyping solely by inspection of reaction mixtures after agarose gel electrophoresis. The system is simple, reliable and non-isotopic. It will clearly distinguish heterozygotes at a locus from homozygotes for either allele. The system requires neither restriction enzyme digestion, allele-specific oligonucleotides as conventionally applied, nor the sequence analysis of PCR products. The basis of the invention is that unexpectedly, oligonucleotides with a mismatched 3'-residue will not function as primers in the PCR under appropriate conditions. We have analysed DNA from patients with alpha 1-antitrypsin (AAT) deficiency, from carriers of the disease and from normal individuals. Our findings are in complete agreement with allele assignments derived by direct sequencing of PCR products. Images PMID:2785681

  14. Cellular characterization of MPZ mutations presenting with diverse clinical phenotypes.

    PubMed

    Lee, Yi-Chung; Lin, Kon-Ping; Chang, Ming-Hong; Liao, Yi-Chu; Tsai, Ching-Piao; Liao, Kwong-Kum; Soong, Bing-Wen

    2010-10-01

    Mutations in MPZ, which encodes myelin protein zero (P(0)), may lead to different subtypes of Charcot-Marie-Tooth disease (CMT). The aim of this study was to characterize the cellular manifestations of various MPZ mutations associated with CMT1, Dejerine-Sottas syndrome (DSS) and CMT2, and to correlate their cellular and clinical phenotypes. Nine P(0) mutants associated with CMT1 (P(0)S63F, R98H, R277S, and S233fs), DSS (P(0) I30T and R98C), and CMT2 (P(0)S44F, D75V, and T124M), were investigated. Wild-type and mutant P(0) fused with fluorescent proteins were expressed in vitro to monitor their intracellular localization. An adhesiveness assay was used to evaluate the adhesiveness of the transfected cells. Protein localization and cell adhesiveness of each mutant protein were compared and correlated with their clinical phenotypes. Three different intracellular localization patterns of the mutant P(0) were observed. Wild-type P(0), P(0)I30T, S44F, S63F, D75V, T124M, and R227S were mostly localized on the cell membrane, P(0)R98H, and R98C were found in the endoplasmic reticulum (ER) or Golgi apparatus, and P(0)S233fs formed aggregates within the ER. Cells expressing mutant P(0), as compared with those expressing wild-type P(0), demonstrated variable degrees of reduction in the cell adhesiveness. The molecular patho-mechanisms of MPZ mutations are likely very complex and the clinical phenotype must be influenced by many genetic or environmental factors. This complexity may contribute to the highly variable clinical manifestations resulting from different MPZ mutations. PMID:20461396

  15. First Japanese Case of Carnitine Palmitoyltransferase II Deficiency with the Homozygous Point Mutation S113L.

    PubMed

    Shima, Atsushi; Yasuno, Tetsuhiko; Yamada, Kenji; Yamaguchi, Miyoko; Kohno, Ryuichi; Yamaguchi, Seiji; Kido, Hiroshi; Fukuda, Hidetoshi

    2016-01-01

    Carnitine palmitoyltransferase II (CPT II) deficiency is a rare inherited disorder related to recurrent episodes of rhabdomyolysis. The adult myopathic form of CPT II deficiency is relatively benign and difficult to diagnose. The point mutation S113L in CPT2 is very common in Caucasian patients, whereas F383Y is the most common mutation among Japanese patients. We herein present a case of CPT II deficiency in a Japanese patient homozygous for the missense mutation S113L. The patient showed a decreased frequency of rhabdomyolysis recurrence after the administration of a diet containing medium-chain triglyceride oil and supplementation with carnitine and bezafibrate. PMID:27629963

  16. Critical sampling points methodology: case studies of geographically diverse watersheds.

    PubMed

    Strobl, Robert O; Robillard, Paul D; Debels, Patrick

    2007-06-01

    Only with a properly designed water quality monitoring network can data be collected that can lead to accurate information extraction. One of the main components of water quality monitoring network design is the allocation of sampling locations. For this purpose, a design methodology, called critical sampling points (CSP), has been developed for the determination of the critical sampling locations in small, rural watersheds with regard to total phosphorus (TP) load pollution. It considers hydrologic, topographic, soil, vegetative, and land use factors. The objective of the monitoring network design in this methodology is to identify the stream locations which receive the greatest TP loads from the upstream portions of a watershed. The CSP methodology has been translated into a model, called water quality monitoring station analysis (WQMSA), which integrates a geographic information system (GIS) for the handling of the spatial aspect of the data, a hydrologic/water quality simulation model for TP load estimation, and fuzzy logic for improved input data representation. In addition, the methodology was purposely designed to be useful in diverse rural watersheds, independent of geographic location. Three watershed case studies in Pennsylvania, Amazonian Ecuador, and central Chile were examined. Each case study offered a different degree of data availability. It was demonstrated that the developed methodology could be successfully used in all three case studies. The case studies suggest that the CSP methodology, in form of the WQMSA model, has potential in applications world-wide.

  17. DNA methylation associated with repeat-induced point mutation in Neurospora crassa.

    PubMed Central

    Singer, M J; Marcotte, B A; Selker, E U

    1995-01-01

    Repeat-induced point mutation (RIP) is a process that efficiently detects DNA duplications prior to meiosis in Neurospora crassa and peppers them with G:C to A:T mutations. Cytosine methylation is typically associated with sequences affected by RIP, and methylated cytosines are not limited to CpG dinucleotides. We generated and characterized a collection of methylated and unmethylated amRIP alleles to investigate the connection(s) between DNA methylation and mutations by RIP. Alleles of am harboring 84 to 158 mutations in the 2.6-kb region that was duplicated were heavily methylated and triggered de novo methylation when reintroduced into vegetative N. crassa cells. Alleles containing 45 and 56 mutations were methylated in the strains originally isolated but did not become methylated when reintroduced into vegetative cells. This provides the first evidence for de novo methylation in the sexual cycle and for a maintenance methylation system in Neurospora cells. No methylation was detected in am alleles containing 8 and 21 mutations. All mutations in the eight primary alleles studied were either G to A or C to T, with respect to the coding strand of the am gene, suggesting that RIP results in only one type of mutation. We consider possibilities for how DNA methylation is triggered by some sequences altered by RIP. PMID:7565710

  18. Germline BRAF mutations in Noonan, LEOPARD and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum

    PubMed Central

    Sarkozy, Anna; Carta, Claudio; Moretti, Sonia; Zampino, Giuseppe; Digilio, Maria C.; Pantaleoni, Francesca; Scioletti, Anna Paola; Esposito, Giorgia; Cordeddu, Viviana; Lepri, Francesca; Petrangeli, Valentina; Dentici, Maria L.; Mancini, Grazia M.S.; Selicorni, Angelo; Rossi, Cesare; Mazzanti, Laura; Marino, Bruno; Ferrero, Giovanni B.; Silengo, Margherita Cirillo; Memo, Luigi; Stanzial, Franco; Faravelli, Francesca; Stuppia, Liborio; Puxeddu, Efisio; Gelb, Bruce D.; Dallapiccola, Bruno; Tartaglia, Marco

    2014-01-01

    Noonan, LEOPARD and cardiofaciocutaneous syndromes (NS, LS and CFCS) are developmental disorders with overlapping features including distinctive facial dysmorphia, reduced growth, cardiac defects, skeletal and ectodermal anomalies, and variable cognitive deficits. Dysregulated RAS-mitogen-activated protein kinase (MAPK) signal traffic has been established to represent the molecular pathogenic cause underlying these conditions. To investigate the phenotypic spectrum and molecular diversity of germline mutations affecting BRAF, which encodes a serine/threonine kinase functioning as a RAS effector frequently mutated in CFCS, subjects with a diagnosis of NS (N= 270), LS (N= 6) and CFCS (N= 33), and no mutation in PTPN11, SOS1, KRAS, RAF1, MEK1 or MEK2, were screened for the entire coding sequence of the gene. Besides the expected high prevalence of mutations observed among CFCS patients (52%), a de novo heterozygous missense change was identified in one subject with LS (17%) and 5 individuals with NS (1.9%). Mutations mapped to multiple protein domains and largely did not overlap with cancer-associated defects. NS-causing mutations had not been documented in CFCS, suggesting that the phenotypes arising from germline BRAF defects might be allele specific. Selected mutant BRAF proteins promoted variable gain of function of the kinase, but appeared less activating compared than the recurrent cancer-associated p.Val600Glu mutant. Our findings provide evidence for a wide phenotypic diversity associated with mutations affecting BRAF, and occurrence of a clinical continuum associated with these molecular lesions. PMID:19206169

  19. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools

    PubMed Central

    Jia, Lei; Yarlagadda, Ramya; Reed, Charles C.

    2015-01-01

    Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find “hot spots” in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html) is a public database that consists of thousands of protein mutants’ experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG) and melting temperature change (dTm) were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor) and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models. PMID:26361227

  20. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    PubMed

    Jia, Lei; Yarlagadda, Ramya; Reed, Charles C

    2015-01-01

    Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html) is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG) and melting temperature change (dTm) were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor) and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  1. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    PubMed

    Jia, Lei; Yarlagadda, Ramya; Reed, Charles C

    2015-01-01

    Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html) is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG) and melting temperature change (dTm) were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor) and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models. PMID:26361227

  2. Rapid evolution of cis-regulatory sequences via local point mutations

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Wray, G. A.

    2001-01-01

    Although the evolution of protein-coding sequences within genomes is well understood, the same cannot be said of the cis-regulatory regions that control transcription. Yet, changes in gene expression are likely to constitute an important component of phenotypic evolution. We simulated the evolution of new transcription factor binding sites via local point mutations. The results indicate that new binding sites appear and become fixed within populations on microevolutionary timescales under an assumption of neutral evolution. Even combinations of two new binding sites evolve very quickly. We predict that local point mutations continually generate considerable genetic variation that is capable of altering gene expression.

  3. Point mutations throughout the GLI3 gene cause Greig cephalopolysyndactyly syndrome.

    PubMed

    Kalff-Suske, M; Wild, A; Topp, J; Wessling, M; Jacobsen, E M; Bornholdt, D; Engel, H; Heuer, H; Aalfs, C M; Ausems, M G; Barone, R; Herzog, A; Heutink, P; Homfray, T; Gillessen-Kaesbach, G; König, R; Kunze, J; Meinecke, P; Müller, D; Rizzo, R; Strenge, S; Superti-Furga, A; Grzeschik, K H

    1999-09-01

    Greig cephalopolysyndactyly syndrome, characterized by craniofacial and limb anomalies (GCPS; MIM 175700), previously has been demonstrated to be associated with translocations as well as point mutations affecting one allele of the zinc finger gene GLI3. In addition to GCPS, Pallister-Hall syndrome (PHS; MIM 146510) and post-axial polydactyly type A (PAP-A; MIM 174200), two other disorders of human development, are caused by GLI3 mutations. In order to gain more insight into the mutational spectrum associated with a single phenotype, we report here the extension of the GLI3 mutation analysis to 24 new GCPS cases. We report the identification of 15 novel mutations present in one of the patient's GLI3 alleles. The mutations map throughout the coding gene regions. The majority are truncating mutations (nine of 15) that engender prematurely terminated protein products mostly but not exclusively N-terminally to or within the central region encoding the DNA-binding domain. Two missense and two splicing mutations mapping within the zinc finger motifs presumably also interfere with DNA binding. The five mutations identified within the protein regions C-terminal to the zinc fingers putatively affect additional functional properties of GLI3. In cell transfection experiments using fusions of the DNA-binding domain of yeast GAL4 to different segments of GLI3, transactivating capacity was assigned to two adjacent independent domains (TA(1)and TA(2)) in the C-terminal third of GLI3. Since these are the only functional domains affected by three C-terminally truncating mutations, we postulate that GCPS may be due either to haploinsufficiency resulting from the complete loss of one gene copy or to functional haploinsufficiency related to compromised properties of this transcription factor such as DNA binding and transactivation. PMID:10441342

  4. Point Mutations within and outside the Homeodomain Identify Sequences Required for Proboscipedia Homeotic Function in Drosophila

    PubMed Central

    Benassayag, C.; Boube, M.; Seroude, L.; Cribbs, D. L.

    1997-01-01

    The Drosophila homeotic gene proboscipedia (pb) encodes a homeodomain protein homologous to vertebrate HoxA2/B2 required for adult mouthparts formation. A transgenic Hsp70-pb (HSPB) element that rescues pb mutations also induces the dominant transformation of antennae to maxillary palps. To identify sequences essential to PB protein function, we screened for EMS-induced HSPB mutations leading to phenotypic reversion of the HSPB transformation. Ten revertants harbor identified point mutations in HSPB coding sequences. The point mutations that remove all detectable phenotypes in vivo reside either within the homeodomain or, more unexpectedly, in evolutionarily nonconserved regions outside the homeodomain. Two independent homeodomain mutations that change the highly conserved Arginine-5 in the N-terminal hinge show effects on adult eye development, suggesting a previously unsuspected role for Arg5 in functional specificity. Three additional revertant mutations outside the homeodomain reduce but do not abolish PB(+) activity, identifying protein elements that contribute quantitatively to pb function. This in vivo analysis shows that apart from the conserved motifs of PB, other elements throughout the protein make important contributions to homeotic function. PMID:9215898

  5. Diversity and Functional Consequences of Germline and Somatic PTPN11 Mutations in Human Disease

    PubMed Central

    Tartaglia, Marco; Martinelli, Simone; Stella, Lorenzo; Bocchinfuso, Gianfranco; Flex, Elisabetta; Cordeddu, Viviana; Zampino, Giuseppe; Burgt, Ineke van der; Palleschi, Antonio; Petrucci, Tamara C.; Sorcini, Mariella; Schoch, Claudia; Foà, Robin; Emanuel, Peter D.; Gelb, Bruce D.

    2006-01-01

    Germline mutations in PTPN11, the gene encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome (NS) and the clinically related LEOPARD syndrome (LS), whereas somatic mutations in the same gene contribute to leukemogenesis. On the basis of our previously gathered genetic and biochemical data, we proposed a model that splits NS- and leukemia-associated PTPN11 mutations into two major classes of activating lesions with differential perturbing effects on development and hematopoiesis. To test this model, we investigated further the diversity of germline and somatic PTPN11 mutations, delineated the association of those mutations with disease, characterized biochemically a panel of mutant SHP-2 proteins recurring in NS, LS, and leukemia, and performed molecular dynamics simulations to determine the structural effects of selected mutations. Our results document a strict correlation between the identity of the lesion and disease and demonstrate that NS-causative mutations have less potency for promoting SHP-2 gain of function than do leukemia-associated ones. Furthermore, we show that the recurrent LS-causing Y279C and T468M amino acid substitutions engender loss of SHP-2 catalytic activity, identifying a previously unrecognized behavior for this class of missense PTPN11 mutations. PMID:16358218

  6. Stochastic Drift in Mitochondrial DNA Point Mutations: A Novel Perspective Ex Silico

    PubMed Central

    Poovathingal, Suresh Kumar; Gruber, Jan; Halliwell, Barry; Gunawan, Rudiyanto

    2009-01-01

    The mitochondrial free radical theory of aging (mFRTA) implicates Reactive Oxygen Species (ROS)-induced mutations of mitochondrial DNA (mtDNA) as a major cause of aging. However, fifty years after its inception, several of its premises are intensely debated. Much of this uncertainty is due to the large range of values in the reported experimental data, for example on oxidative damage and mutational burden in mtDNA. This is in part due to limitations with available measurement technologies. Here we show that sample preparations in some assays necessitating high dilution of DNA (single molecule level) may introduce significant statistical variability. Adding to this complexity is the intrinsically stochastic nature of cellular processes, which manifests in cells from the same tissue harboring varying mutation load. In conjunction, these random elements make the determination of the underlying mutation dynamics extremely challenging. Our in silico stochastic study reveals the effect of coupling the experimental variability and the intrinsic stochasticity of aging process in some of the reported experimental data. We also show that the stochastic nature of a de novo point mutation generated during embryonic development is a major contributor of different mutation burdens in the individuals of mouse population. Analysis of simulation results leads to several new insights on the relevance of mutation stochasticity in the context of dividing tissues and the plausibility of ROS ”vicious cycle” hypothesis. PMID:19936024

  7. Point mutations of the mTOR-RHEB pathway in renal cell carcinoma

    PubMed Central

    Ghosh, Arindam P.; Marshall, Christopher B.; Coric, Tatjana; Shim, Eun-hee; Kirkman, Richard; Ballestas, Mary E.; Ikura, Mitsuhiko; Bjornsti, Mary-Ann; Sudarshan, Sunil

    2015-01-01

    Aberrations in the mTOR (mechanistic target of rapamycin) axis are frequently reported in cancer. Using publicly available tumor genome sequencing data, we identified several point mutations in MTOR and its upstream regulator RHEB (Ras homolog enriched in brain) in patients with clear cell renal cell carcinoma (ccRCC), the most common histology of kidney cancer. Interestingly, we found a prominent cluster of hyperactivating mutations in the FAT (FRAP-ATM-TTRAP) domain of mTOR in renal cell carcinoma that led to an increase in both mTORC1 and mTORC2 activities and led to an increased proliferation of cells. Several of the FAT domain mutants demonstrated a decreased binding of DEPTOR (DEP domain containing mTOR-interacting protein), while a subset of these mutations showed altered binding of the negative regulator PRAS40 (proline rich AKT substrate 40). We also identified a recurrent mutation in RHEB in ccRCC patients that leads to an increase in mTORC1 activity. In vitro characterization of this RHEB mutation revealed that this mutant showed considerable resistance to TSC2 (Tuberous Sclerosis 2) GAP (GTPase activating protein) activity, though its interaction with TSC2 remained unaltered. Mutations in the FAT domain of MTOR and in RHEB remained sensitive to rapamycin, though several of these mutations demonstrated residual mTOR kinase activity after treatment with rapamycin at clinically relevant doses. Overall, our data suggests that point mutations in the mTOR pathway may lead to downstream mTOR hyperactivation through multiple different mechanisms to confer a proliferative advantage to a tumor cell. PMID:26255626

  8. A New Approach To the Diagnosis of Point Mutations in Native DNA Using Graphene Oxide.

    PubMed

    Kuznetsov, A A; Maksimova, N R; Kaimonov, V S; Alexandrov, G N; Smagulova, S A

    2016-01-01

    Development of new methods for the diagnosis of point mutations is a pressing issue. We have developed a new approach to the design of graphene oxide-based test systems for the diagnosis of point mutations in native DNA. This new approach is based on the use of graphene oxide for the adsorption and quenching of fluorescently labeled primers in a post-amplification PCR mixture followed by detection of fluorescently labeled PCR products. It is possible to detect fluorescently labelled amplicons in the presence of an excess of primers in a PCR product solution due to the different affinities of single-stranded and double-stranded DNA molecules to graphene oxide, as well as the ability of graphene oxide to act as a quencher of the fluorophores adsorbed on its surface. The new approach was tested by designing a graphene oxide-based test system for the DNA diagnosis of the point mutation associated with the development of the 3M syndrome in Yakuts. The developed approach enables one to design graphene oxide-based test systems suitable for the diagnosis of any point mutations in native DNA. PMID:27437142

  9. A New Approach To the Diagnosis of Point Mutations in Native DNA Using Graphene Oxide

    PubMed Central

    Kuznetsov, A.A.; Maksimova, N.R.; Kaimonov, V.S.; Alexandrov, G.N.; Smagulova, S.A.

    2016-01-01

    Development of new methods for the diagnosis of point mutations is a pressing issue. We have developed a new approach to the design of graphene oxide-based test systems for the diagnosis of point mutations in native DNA. This new approach is based on the use of graphene oxide for the adsorption and quenching of fluorescently labeled primers in a post-amplification PCR mixture followed by detection of fluorescently labeled PCR products. It is possible to detect fluorescently labelled amplicons in the presence of an excess of primers in a PCR product solution due to the different affinities of single-stranded and double-stranded DNA molecules to graphene oxide, as well as the ability of graphene oxide to act as a quencher of the fluorophores adsorbed on its surface. The new approach was tested by designing a graphene oxide-based test system for the DNA diagnosis of the point mutation associated with the development of the 3M syndrome in Yakuts. The developed approach enables one to design graphene oxide-based test systems suitable for the diagnosis of any point mutations in native DNA. PMID:27437142

  10. Diversity, Mutation and Recombination Analysis of Cotton Leaf Curl Geminiviruses

    PubMed Central

    Saleem, Huma; Nahid, Nazia; Shakir, Sara; Ijaz, Sehrish; Murtaza, Ghulam; Khan, Asif Ali; Mubin, Muhammad; Nawaz-ul-Rehman, Muhammad Shah

    2016-01-01

    The spread of cotton leaf curl disease in China, India and Pakistan is a recent phenomenon. Analysis of available sequence data determined that there is a substantial diversity of cotton-infecting geminiviruses in Pakistan. Phylogenetic analyses indicated that recombination between two major groups of viruses, cotton leaf curl Multan virus (CLCuMuV) and cotton leaf curl Kokhran virus (CLCuKoV), led to the emergence of several new viruses. Recombination detection programs and phylogenetic analyses showed that CLCuMuV and CLCuKoV are highly recombinant viruses. Indeed, CLCuKoV appeared to be a major donor virus for the coat protein (CP) gene, while CLCuMuV donated the Rep gene in the majority of recombination events. Using recombination free nucleotide datasets the substitution rates for CP and Rep genes were determined. We inferred similar nucleotide substitution rates for the CLCuMuV-Rep gene (4.96X10-4) and CLCuKoV-CP gene (2.706X10-4), whereas relatively higher substitution rates were observed for CLCuMuV-CP and CLCuKoV-Rep genes. The combination of sequences with equal and relatively low substitution rates, seemed to result in the emergence of viral isolates that caused epidemics in Pakistan and India. Our findings also suggest that CLCuMuV is spreading at an alarming rate, which can potentially be a threat to cotton production in the Indian subcontinent. PMID:26963635

  11. Adenylosuccinate lyase (ADSL) and infantile autism: Absence of previously reported point mutation

    SciTech Connect

    Fon, E.A.; Sarrazin, J.; Rouleau, G.A.

    1995-12-18

    Autism is a heterogeneous neuropsychiatric syndrome of unknown etiology. There is evidence that a deficiency in the enzyme adenylosuccinate lyase (ADSL), essential for de novo purine biosynthesis, could be involved in the pathogenesis of certain cases. A point mutation in the ADSL gene, resulting in a predicted serine-to-proline substitution and conferring structural instability to the mutant enzyme, has been reported previously in 3 affected siblings. In order to determine the prevalence of the mutation, we PCR-amplified the exon spanning the site of this mutation from the genomic DNA of patients fulfilling DSM-III-R criteria for autistic disorder. None of the 119 patients tested were found to have this mutation. Furthermore, on preliminary screening using single-strand conformation polymorphism (SSCP), no novel mutations were detected in the coding sequence of four ADSL exons, spanning approximately 50% of the cDNA. In light of these findings, it appears that mutations in the ADSL gene represent a distinctly uncommon cause of autism. 12 refs., 2 figs.

  12. Insilico modeling and molecular dynamic simulation of claudin-1 point mutations in HCV infection.

    PubMed

    Vipperla, Bhavaniprasad; Dass, J Febin Prabhu; Jayanthi, S

    2014-01-01

    Claudin-1 (CLDN1) in association with envelope glycoprotein (CD81) mediates the fusion of HCV into the cytosol. Recent studies have indicated that point mutations in CLDN1 are important for the entry of hepatitis C virus (HCV). To validate these findings, we employed a computational platform to investigate the structural effect of two point mutations (I32M and E48K). Initially, three-dimensional co-ordinates for CLDN1 receptor sequence were generated. Then, three mutant models were built using the point mutation including a double mutant (I32M/E48K) model from the native model structure. Finally, all the four model structures including the native and three mutant models were subjected to molecular dynamics (MD) simulation for a period of 25 ns to appreciate their dynamic behavior. The MD trajectory files were analyzed using cluster and principal component method. The analysis suggested that either of the single mutation has negligible effect on the overall structure of CLDN1 compared to the double mutant form. However, the double mutant model of CLDN1 shows significant negative impact through the impairment of H-bonds and the simultaneous increase in solvent accessible surface area. Our simulation results are visibly consistent with the experimental report suggesting that the CLDN1 receptor distortion is prominent due to the double mutation with large surface accessibility. This increase in accessible surface area due to the coexistence of double mutation may be presumed as one of the key factor that results in permissive action of HCV attachment and infection. PMID:23914916

  13. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    NASA Astrophysics Data System (ADS)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  14. Method for detecting point mutations in DNA utilizing fluorescence energy transfer

    DOEpatents

    Parkhurst, Lawrence J.; Parkhurst, Kay M.; Middendorf, Lyle

    2001-01-01

    A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

  15. Fast, sensitive point of care electrochemical molecular system for point mutation and select agent detection.

    PubMed

    MacLeod, J A; Nemeth, A C; Dicke, W C; Wang, D; Manalili Wheeler, S; Hannis, J C; Collier, G B; Drader, J J

    2016-07-01

    Point of care molecular diagnostics benefits from a portable battery-operated device capable of performing a fast turnaround using reliable inexpensive cartridges. We describe a prototype device for performing a molecular diagnostics test for clinical and biodefense samples in 16 minutes using a prototype capable of an 8 minute PCR reaction, followed by hybridization and detection on an electrochemical microarray based on the i-STAT® system. We used human buccal swabs for hemochromatosis testing including in-device DNA extraction. Additional clinical and biodefense samples included influenza A and bacterial select agents Bacillus anthracis, Yersinia pestis and Francisella tularensis. PMID:27280174

  16. [New DNA diagnostic system for determination and identification of homo- and heterozygote point mutations].

    PubMed

    Patrushev, L I; Zykova, E S; Kaiushin, A L; Korosteleva, M D; Miroshnikov, A I

    1998-03-01

    A straightforward and effective PCR-based assay system is devised that allows one to reveal and identify homozygous and heterozygous point mutations. The system uses two sets of allele-specific primers. In one set, the 3'-nucleotide matches the allele under study so that the primer functions effectively only if the DNA contains the corresponding allele. To increase primer specificity, template-noncomplementary nucleotides are introduced near its 3'-end. The primers from another set invariably bear a 3'-terminal mismatch, and, in addition, the mutant nucleotides of the alleles under study form mismatches with the internal nucleotides of the primers. In such combination, the primer activity is suppressed if the DNA contains a homozygous mutation. The assay system devised was utilized to reveal the Leiden mutation in the gene for factor V of the human blood clotting system in patients with thrombophilia.

  17. De novo point mutations in patients diagnosed with ataxic cerebral palsy.

    PubMed

    Parolin Schnekenberg, Ricardo; Perkins, Emma M; Miller, Jack W; Davies, Wayne I L; D'Adamo, Maria Cristina; Pessia, Mauro; Fawcett, Katherine A; Sims, David; Gillard, Elodie; Hudspith, Karl; Skehel, Paul; Williams, Jonathan; O'Regan, Mary; Jayawant, Sandeep; Jefferson, Rosalind; Hughes, Sarah; Lustenberger, Andrea; Ragoussis, Jiannis; Jackson, Mandy; Tucker, Stephen J; Németh, Andrea H

    2015-07-01

    Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies.

  18. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase.

    PubMed Central

    Krynetski, E Y; Schuetz, J D; Galpin, A J; Pui, C H; Relling, M V; Evans, W E

    1995-01-01

    Thiopurine S-methyltransferase (TPMT; S-adenosyl-L-methionine:thiopurine S-methyltransferase, EC 2.1.1.67) activity exhibits genetic polymorphism, with approximately 0.33% of Caucasians and African-Americans inheriting TPMT deficiency as an autosomal recessive trait. To determine the molecular genetic basis for this polymorphism, we cloned the TPMT cDNA from a TPMT-deficient patient who had developed severe hematopoietic toxicity during mercaptopurine therapy. Northern blot analysis of RNA isolated from leukocytes of the deficient patient demonstrated the presence of TPMT mRNAs of comparable size to that in subjects with high TPMT activity. Sequencing of the mutant TPMT cDNA revealed a single point mutation (G238-->C), leading to an amino acid substitution at codon 80 (Ala80-->Pro). When assessed in a yeast heterologous expression system, this mutation led to a 100-fold reduction in TPMT catalytic activity relative to the wild-type cDNA, despite a comparable level of mRNA expression. A mutation-specific PCR amplification method was developed and used to detect the G238-->C mutation in genomic DNA of the propositus and her mother. This inactivating mutation in the human TPMT gene provides insights into the genetic basis for this inherited polymorphism in drug metabolism. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:7862671

  19. The fitness effects of a point mutation in Escherichia coli change with founding population density.

    PubMed

    Cao, Huansheng; Plague, Gordon R

    2016-08-01

    Although intraspecific competition plays a seminal role in organismal evolution, little is known about the fitness effects of mutations at different population densities. We identified a point mutation in the cyclic AMP receptor protein (CRP) gene in Escherichia coli that confers significantly higher fitness than the wildtype at low founding population density, but significantly lower fitness at high founding density. Because CRP is a transcription factor that regulates the expression of nearly 500 genes, we compared global gene expression profiles of the mutant and wildtype strains. This mutation (S63F) does not affect expression of crp itself, but it does significantly affect expression of 170 and 157 genes at high and low founding density, respectively. Interestingly, acid resistance genes, some of which are known to exhibit density-dependent effects in E. coli, were consistently differentially expressed at high but not low density. As such, these genes may play a key role in reducing the crp mutant's fitness at high density, although other differentially expressed genes almost certainly also contribute to the fluctuating fitness differences we observed. Whatever the causes, we suspect that many mutations may exhibit density-dependent fitness effects in natural populations, so the fate of new mutations may frequently depend on the effective population size when they originate. PMID:27344657

  20. De novo point mutations in patients diagnosed with ataxic cerebral palsy

    PubMed Central

    Parolin Schnekenberg, Ricardo; Perkins, Emma M.; Miller, Jack W.; Davies, Wayne I. L.; D’Adamo, Maria Cristina; Pessia, Mauro; Fawcett, Katherine A.; Sims, David; Gillard, Elodie; Hudspith, Karl; Skehel, Paul; Williams, Jonathan; O’Regan, Mary; Jayawant, Sandeep; Jefferson, Rosalind; Hughes, Sarah; Lustenberger, Andrea; Ragoussis, Jiannis

    2015-01-01

    Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies. PMID:25981959

  1. The fitness effects of a point mutation in Escherichia coli change with founding population density.

    PubMed

    Cao, Huansheng; Plague, Gordon R

    2016-08-01

    Although intraspecific competition plays a seminal role in organismal evolution, little is known about the fitness effects of mutations at different population densities. We identified a point mutation in the cyclic AMP receptor protein (CRP) gene in Escherichia coli that confers significantly higher fitness than the wildtype at low founding population density, but significantly lower fitness at high founding density. Because CRP is a transcription factor that regulates the expression of nearly 500 genes, we compared global gene expression profiles of the mutant and wildtype strains. This mutation (S63F) does not affect expression of crp itself, but it does significantly affect expression of 170 and 157 genes at high and low founding density, respectively. Interestingly, acid resistance genes, some of which are known to exhibit density-dependent effects in E. coli, were consistently differentially expressed at high but not low density. As such, these genes may play a key role in reducing the crp mutant's fitness at high density, although other differentially expressed genes almost certainly also contribute to the fluctuating fitness differences we observed. Whatever the causes, we suspect that many mutations may exhibit density-dependent fitness effects in natural populations, so the fate of new mutations may frequently depend on the effective population size when they originate.

  2. Combining isothermal rolling circle amplification and electrochemiluminescence for highly sensitive point mutation detection

    NASA Astrophysics Data System (ADS)

    Su, Qiang; Zhou, Xiaoming

    2008-12-01

    Many pathogenic and genetic diseases are associated with changes in the sequence of particular genes. We describe here a rapid and highly efficient assay for the detection of point mutation. This method is a combination of isothermal rolling circle amplification (RCA) and high sensitive electrochemluminescence (ECL) detection. In the design, a circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase using a biotinylated primer. The elongation products were hybridized with tris (bipyridine) ruthenium (TBR)-tagged probes and detected in a magnetic bead based ECL platform, indicating the mutation occurrence. P53 was chosen as a model for the identification of this method. The method allowed sensitive determination of the P53 mutation from wild-type and mutant samples. The main advantage of RCA-ECL is that it can be performed under isothermal conditions and avoids the generation of false-positive results. Furthermore, ECL provides a faster, more sensitive, and economical option to currently available electrophoresis-based methods.

  3. Using Gel Electrophoresis To Illustrate Protein Diversity and Isoelectric Point.

    ERIC Educational Resources Information Center

    Browning, Mark; Vanable, Joseph

    2002-01-01

    Demonstrates the differences in protein structures by focusing on isoelectric point with an experiment that is observable under certain pH levels in gel electrophoresis. Explains the electrophoresis procedure and reports results of the experiments. (YDS)

  4. Diverse clinical phenotypes associated with a nonsense mutation in FAM161A

    PubMed Central

    Rose, A M; Sergouniotis, P; Alfano, G; Muspratt-Tucker, N; Barton, S; Moore, A T; Black, G; Bhattacharya, S S; Webster, A R

    2015-01-01

    Purpose: Mutations in the FAM161A gene have been reported in association with autosomal recessive retinitis pigmentosa (arRP) in several ethnic populations. This study aimed to assess the prevalence of FAM161A-related retinopathy in a British cohort and to characterise the phenotype associated with mutations in this gene. Methods: The FAM161A coding region and intron–exon boundaries were screened by Sanger sequencing in 120 retinitis pigmentosa (RP) patients (with likely autosomal recessive inheritance) in whom mutations in other known major RP genes have been ruled out by commercially available testing. Homozygosity mapping was performed in one consanguineous family, and high-throughput sequencing of candidate genes was performed to identify disease-associated changes. Clinical assessment of affected individuals included perimetry testing, fundus autofluorescence imaging, and optical coherence tomography. Results: Two patients of British origin with a homozygous mutation in FAM161A (c.1309A>T, p.Arg437*) were identified by Sanger sequencing. Homozygosity mapping and subsequent high-throughput sequencing analysis identified a further family of Pakistani origin with the same genotype. Clinical examination of affected members of these families revealed that this mutation was associated with a diverse clinical phenotype, ranging from mild disease with preservation of central acuity to severe visual impairment. Conclusions: Homozygosity for the c.1309A>T, p.Arg437* variant in FAM161A is a relatively common cause of arRP. The mutation occurs in diverse ethnic populations, associated with typical retinitis pigmentosa with disease onset usually in the second or third decade of life. PMID:26113502

  5. An ECL-PCR method for quantitative detection of point mutation

    NASA Astrophysics Data System (ADS)

    Zhu, Debin; Xing, Da; Shen, Xingyan; Chen, Qun; Liu, Jinfeng

    2005-04-01

    A new method for identification of point mutations was proposed. Polymerase chain reaction (PCR) amplification of a sequence from genomic DNA was followed by digestion with a kind of restriction enzyme, which only cut the wild-type amplicon containing its recognition site. Reaction products were detected by electrochemiluminescence (ECL) assay after adsorption of the resulting DNA duplexes to the solid phase. One strand of PCR products carries biotin to be bound on a streptavidin-coated microbead for sample selection. Another strand carries Ru(bpy)32+ (TBR) to react with tripropylamine (TPA) to emit light for ECL detection. The method was applied to detect a specific point mutation in H-ras oncogene in T24 cell line. The results show that the detection limit for H-ras amplicon is 100 fmol and the linear range is more than 3 orders of magnitude, thus, make quantitative analysis possible. The genotype can be clearly discriminated. Results of the study suggest that ECL-PCR is a feasible quantitative method for safe, sensitive and rapid detection of point mutation in human genes.

  6. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye

    NASA Astrophysics Data System (ADS)

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-09-01

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.

  7. Point mutations associated with Leber hereditary optic neuropathy in a Latvian population

    PubMed Central

    Baumane, Kristine; Zalite, Solveiga; Ranka, Renate; Zole, Egija; Pole, Ilva; Sepetiene, Svetlana; Laganovska, Guna; Baumanis, Viesturs; Pliss, Liana

    2013-01-01

    Purpose To study mutations associated with Leber hereditary optic neuropathy (LHON) in patients suspected of having this mitochondrial disorder in a Latvian population. Additional aims were to determine the heteroplasmy status of all non-synonymous polymorphisms identified in the current study and to identify the mitochondrial haplogroups of the studied participants because these factors may contribute to the manifestation of LHON. Methods Twelve patients, including patients in two families, were enrolled in the current study. LHON was suspected based on the findings of ophthalmologic examinations. In clinically affected individuals, the presence of all previously reported LHON-associated mutations was assessed with sequencing analysis. Additionally, the SURVEYOR endonuclease assay was used to detect heteroplasmy. The mitochondrial haplogroups were identified with restriction analysis and the sequencing of hypervariable segment 1. Results In one family (mother and son), there was one primary LHON-associated mutation, G11778A. In addition, one rare previously reported LHON-associated polymorphism, A13637G, was detected in two unrelated patients. A non-synonymous polymorphism at T6253C was found in one individual. This mutation was reported in the background of the 3460 mutation among LHON patients in a Chinese population. No non-synonymous point mutations in mitochondrial DNA were found in five of the study participants. Conclusions Molecular analysis of 12 patients with suspected LHON confirmed the diagnosis in four patients and allowed the use of appropriate prophylactic measures and treatment. Further investigations and additional studies of different populations are necessary to confirm the role of the non-synonymous polymorphisms A13637G and T6253C in the manifestation of LHON and the associations of these polymorphisms with mitochondrial haplogroups and heteroplasmy. PMID:24319328

  8. Four novel point mutations in the PMP22 gene with phenotypes of HNPP and Dejerine-Sottas neuropathy.

    PubMed

    Brožková, Dana; Mazanec, Radim; Rychlý, Zdeněk; Haberlová, Jana; Böhm, Jiří; Staněk, Jan; Plevová, Pavlína; Lisoňová, Jana; Sabová, Jana; Sakmaryová, Iva; Seeman, Pavel

    2011-11-01

    We report four novel point mutations in the PMP22 gene with two different phenotypes: mutation p.Ser79Thr arose de novo in a patient with the Dejerine-Sottas neuropathy (DSN) phenotype; and mutations c.78+5 G>A, c.320-1 G>C, and p.Trp140Stop segregated with HNPP in 5 families.Our findings show that point mutations in PMP22 may be more likely in HNPP patients than in CMT1 patients after exclusion of CMT1A/HNPP. PMID:22006697

  9. Cytosine Methylation Associated with Repeat-Induced Point Mutation Causes Epigenetic Gene Silencing in Neurospora Crassa

    PubMed Central

    Irelan, J. T.; Selker, E. U.

    1997-01-01

    Repeated DNA sequences are frequently mutated during the sexual cycle in Neurospora crassa by a process named repeat-induced point mutation (RIP). RIP is often associated with methylation of cytosine residues in and around the mutated sequences. Here we demonstrate that this methylation can silence a gene located in nearby, unique sequences. A large proportion of strains that had undergone RIP of a linked duplication flanking a single-copy transgene, hph (hygromycin B phosphotransferase), showed partial silencing of hph. These strains were all heavily methylated throughout the single-copy hph sequences and the flanking sequences. Silencing was alleviated by preventing methylation, either by 5-azacytidine (5AC) treatment or by introduction of a mutation (eth-1) known to reduce intracellular levels of S-adenosylmethionine. Silenced strains exhibited spontaneous reactivation of hph at frequencies of 10(-4) to 0.5. Reactivated strains, as well as cells that were treated with 5AC, gave rise to cultures that were hypomethylated and partially hygromycin resistant, indicating that some of the original methylation was propagated by a maintenance mechanism. Gene expression levels were found to be variable within a population of clonally related cells, and this variation was correlated with epigenetically propagated differences in methylation patterns. PMID:9178002

  10. Partial duplication and point mutations of the ornithine carbamoyl transferase (OCT) gene in congenital hyperammonaemia

    SciTech Connect

    Gilbert-Dussardier, B.; Rozet, J.M.; Seques, B.; Munnich, A.

    1994-09-01

    ACT deficiency is an enzymopathy of the urea cycle inherited as a partially dominant X-linked trait. Affected males often die during the neonatal period with untractable hyperammonaemic coma but may sometimes present with a late onset disease. Heterozygous females are sometimes symptomatic. Twenty-two unrelated patients (18 males and 4 females) were studied by single strand conformational polymorphism (SSCP) analysis followed by direct sequencing of the OCT exons. Nine of them were found to carry point mutations already reported by others (G50Z, E87K, L88N, R827, R141Z, P225L) or by our group (R277W, 2 patients). A duplication (4 bp) in exon 5 (nt177-XTCACTCAC Xnt178) was found in a male patient with a severe neonatal OCT deficiency. This change led to a frameshift mutation with no in-frame stop codon. To our knowledge, this is the first duplication reported in OCT deficiency. Eight novel missense mutations were found in 12 additional patients: R40H (exon 2, 3 patients), C109S (exon 4, 1 patient), T125M (exon 5, 1 patient), R129Q (exon 5, 3 patients), G188R (exon 6, 1 patient), A209V (exon 6, 1 patient), H302L (exon 9, 2 patients). Four of these mutations occurred in CpG doublets and all of them involved conserved regions of the gene. No such alterations were found in 70 control genes. Phenotype-genotype correlations will be discussed.

  11. Point mutations in the tyrosine aminotransferase gene in tyrosinemia type II.

    PubMed

    Natt, E; Kida, K; Odievre, M; Di Rocco, M; Scherer, G

    1992-10-01

    Tyrosinemia type II (Richner-Hanhart syndrome, RHS) is a disease of autosomal recessive inheritance characterized by keratitis, palmoplantar hyperkeratosis, mental retardation, and elevated blood tyrosine levels. The disease results from deficiency in hepatic tyrosine aminotransferase (TAT; L-tyrosine:2-oxoglutarate aminotransferase, EC 2.6.1.5), a 454-amino acid protein encoded by a gene with 12 exons. To identify the causative mutations in five TAT alleles cloned from three RHS patients, chimeric genes constructed from normal and mutant TAT alleles were tested in directing TAT activity in a transient expression assay. DNA sequence analysis of the regions identified as nonfunctional revealed six different point mutations. Three RHS alleles have nonsense mutations at codons 57, 223, and 417, respectively. One "complex" RHS allele carries a GT----GG splice donor mutation in intron 8 together with a Gly----Val substitution at amino acid 362. A new splice acceptor site in intron 2 of the fifth RHS allele leads to a shift in reading frame.

  12. Sensitivity of single-strand conformation polymorphism (SSCP) analysis in detecting p53 point mutations in tumors with mixed cell populations

    SciTech Connect

    Wu, J.K.; Zhen Ye; Darras, B.T. Tufts Univ., Boston, MA )

    1993-06-01

    Mutations in the p53 tumor-suppressor gene are commonly found in human cancers of diverse origin. Once of a number of methods developed to analyze large numbers of DNA samples for specific mutations is the single-strand conformation polymorphism (SSCP) analysis. This method is particularly well suited for analysis of tissues, such as brain tumors, with mixed cell populations. It takes advantage of the fact that, in a mixed cell population containing DNA with and without a mutation (e.g., the p53 gene mutation), both molecular species will be amplified by the PCR. A mutation within a PCR-amplified DNA fragment will alter the secondary structure of the amplified fragment and affect its electrophoretic mobility in a nondenaturing gel. The DNA fragments with the mutation are detected as an aberrantly migrating allele that can be seen concurrently with the wild-type allele. Although many studies have used this technique to screen for p53 mutations in tumors, with detection of a number of different mutations the limit of detection of point mutations in a background of wild-type DNA is not known. To test this, mixtures of mutant DNA from tumor D317 with a G-to-A point mutation in codon 272 of the p53 gene; or from tumor D263 (with a G-to-A point mutation in codon 175 of the p53 gene) and wild-type DNA from leukocytes, in ratios of 1:100, 5:95, 10:90, 15:85, 50:50, and 30:70, were prepared. The mixtures containing 100 ng of DNA were amplified using standard PCR technique. After the double-stranded DNAs were denatured, the DNA samples were loaded and electrophoresed on a nondenaturing acrylamide gel. The mutant allele was detectable even when the ratio of mutant to wild-type DNA was 5:95 in tumor D317. For tumor D263, the mutant allele was detectable when the ratio of mutant to wild-type DNA was 15:85, and it was not detectable at 10:90.

  13. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system.

    PubMed

    Inui, Masafumi; Miyado, Mami; Igarashi, Maki; Tamano, Moe; Kubo, Atsushi; Yamashita, Satoshi; Asahara, Hiroshi; Fukami, Maki; Takada, Shuji

    2014-06-23

    Introducing a point mutation is a fundamental method used to demonstrate the roles of particular nucleotides or amino acids in the genetic elements or proteins, and is widely used in in vitro experiments based on cultured cells and exogenously provided DNA. However, the in vivo application of this approach by modifying genomic loci is uncommon, partly due to its technical and temporal demands. This leaves many in vitro findings un-validated under in vivo conditions. We herein applied the CRISPR/Cas9 system to generate mice with point mutations in their genomes, which led to single amino acid substitutions in proteins of interest. By microinjecting gRNA, hCas9 mRNA and single-stranded donor oligonucleotides (ssODN) into mouse zygotes, we introduced defined genomic modifications in their genome with a low cost and in a short time. Both single gRNA/WT hCas9 and double nicking set-ups were effective. We also found that the distance between the modification site and gRNA target site was a significant parameter affecting the efficiency of the substitution. We believe that this is a powerful technique that can be used to examine the relevance of in vitro findings, as well as the mutations found in patients with genetic disorders, in an in vivo system.

  14. Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance

    PubMed Central

    Kuppu, Sundaram; Tan, Ek Han; Nguyen, Hanh; Rodgers, Andrea; Comai, Luca; Britt, Anne B.

    2015-01-01

    The centromeric histone 3 variant (CENH3, aka CENP-A) is essential for the segregation of sister chromatids during mitosis and meiosis. To better define CENH3 functional constraints, we complemented a null allele in Arabidopsis with a variety of mutant alleles, each inducing a single amino acid change in conserved residues of the histone fold domain. Many of these transgenic missense lines displayed wild-type growth and fertility on self-pollination, but exhibited frequent post-zygotic death and uniparental inheritance when crossed with wild-type plants. The failure of centromeres marked by these missense mutation in the histone fold domain of CENH3 reproduces the genome elimination syndromes described with chimeric CENH3 and CENH3 from diverged species. Additionally, evidence that a single point mutation is sufficient to generate a haploid inducer provide a simple one-step method for the identification of non-transgenic haploid inducers in existing mutagenized collections of crop species. As proof of the extreme simplicity of this approach to create haploid-inducing lines, we performed an in silico search for previously identified point mutations in CENH3 and identified an Arabidopsis line carrying the A86V substitution within the histone fold domain. This A87V non-transgenic line, while fully fertile on self-pollination, produced postzygotic death and uniparental haploids when crossed to wild type. PMID:26352591

  15. Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes

    SciTech Connect

    Fire, Emiko; Gullá, Stefano V.; Grant, Robert A.; Keating, Amy E.

    2010-06-25

    Mcl-1 is an antiapoptotic Bcl-2-family protein that protects cells against death. Structures of Mcl-1, and of other anti-apoptotic Bcl-2 proteins, reveal a surface groove into which the {alpha}-helical BH3 regions of certain proapoptotic proteins can bind. Despite high overall structural conservation, differences in this groove afford binding specificity that is important for the mechanism of Bcl-2 family function. We report the crystal structure of human Mcl-1 bound to a BH3 peptide derived from human Bim and the structures for three complexes that accommodate large physicochemical changes at conserved Bim sites. The mutations had surprisingly modest effects on complex stability, and the structures show that Mcl-1 can undergo small changes to accommodate the mutant ligands. For example, a shift in a leucine side chain fills a hole left by an isoleucine-to-alanine mutation at the first hydrophobic buried position of Bim BH3. Larger changes are also observed, with shifting of helix {alpha}3 accommodating an isoleucine-to-tyrosine mutation at this same position. We surveyed the variation in available Mcl-1 and Bcl-x{sub L} structures and observed moderate flexibility that is likely critical for facilitating interactions of diverse BH3-only proteins with Mcl-1. With the antiapoptotic Bcl-2 family members attracting significant attention as therapeutic targets, these structures contribute to our growing understanding of how specificity is achieved and can help to guide the design of novel inhibitors that target Mcl-1.

  16. Toward point-of-care testing for JAK2 V617F mutation on a microchip.

    PubMed

    Wang, Hua; Liu, Weiwei; Zhang, Xinju; Xu, Xiao; Kang, Zhihua; Li, Shibao; Wu, Zhiyuan; Yang, Zhiliu; Yao, Bo; Guan, Ming

    2015-09-01

    Molecular genetics now plays a crucial role in diagnosis, the identification of prognostic markers, and monitoring of hematological malignancies. Demonstration of acquired changes such as the JAK2 V617F mutation within myeloproliferative neoplasms (MPN) has quickly moved from a research setting to the diagnostic laboratory. Microfluidics-based assays can reduce the assay time and sample/reagent consumption and enhance the reaction efficiency; however, no current assay has integrated isothermal amplification for point-of-care MPN JAK2 V617F mutation testing with a microchip. In this report, an integrated microchip that performs the whole human blood genomic DNA extraction, loop-mediated isothermal nucleic acid amplification (LAMP) and visual detection for point-of-care genetic mutation testing is demonstrated. This method was validated on DNA from cell lines as well as on whole blood from patients with MPN. The results were compared with those obtained by unlabeled probe melting curve analysis. This chip enjoys a high accuracy, operability, and cost/time efficiency within 1h. All these benefits provide the chip with a potency toward a point-of-care genetic analysis. All samples identified as positive by unlabeled probe melting curve analysis (n=27) proved positive when tested by microchip assay. None of the 30 negative controls gave false positive results. In addition, a patient with polycythemia vera diagnosed as being JAK2 V617F-negative by unlabeled probe melting curve analysis was found to be positive by the microchip. This microchip would possibly be very attractive in developing a point-of-care platform for quick preliminary diagnosis of MPN or other severe illness in resource-limited settings. PMID:26235214

  17. Toward point-of-care testing for JAK2 V617F mutation on a microchip.

    PubMed

    Wang, Hua; Liu, Weiwei; Zhang, Xinju; Xu, Xiao; Kang, Zhihua; Li, Shibao; Wu, Zhiyuan; Yang, Zhiliu; Yao, Bo; Guan, Ming

    2015-09-01

    Molecular genetics now plays a crucial role in diagnosis, the identification of prognostic markers, and monitoring of hematological malignancies. Demonstration of acquired changes such as the JAK2 V617F mutation within myeloproliferative neoplasms (MPN) has quickly moved from a research setting to the diagnostic laboratory. Microfluidics-based assays can reduce the assay time and sample/reagent consumption and enhance the reaction efficiency; however, no current assay has integrated isothermal amplification for point-of-care MPN JAK2 V617F mutation testing with a microchip. In this report, an integrated microchip that performs the whole human blood genomic DNA extraction, loop-mediated isothermal nucleic acid amplification (LAMP) and visual detection for point-of-care genetic mutation testing is demonstrated. This method was validated on DNA from cell lines as well as on whole blood from patients with MPN. The results were compared with those obtained by unlabeled probe melting curve analysis. This chip enjoys a high accuracy, operability, and cost/time efficiency within 1h. All these benefits provide the chip with a potency toward a point-of-care genetic analysis. All samples identified as positive by unlabeled probe melting curve analysis (n=27) proved positive when tested by microchip assay. None of the 30 negative controls gave false positive results. In addition, a patient with polycythemia vera diagnosed as being JAK2 V617F-negative by unlabeled probe melting curve analysis was found to be positive by the microchip. This microchip would possibly be very attractive in developing a point-of-care platform for quick preliminary diagnosis of MPN or other severe illness in resource-limited settings.

  18. Retinitis pigmentosa: impact of different Pde6a point mutations on the disease phenotype.

    PubMed

    Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Jiao, Kangwei; Buena-Atienza, Elena; Sahaboglu, Ayse; Trifunović, Dragana; Balendran, Sukirthini; Koepfli, Tanja; Mühlfriedel, Regine; Schön, Christian; Biel, Martin; Heckmann, Angelique; Beck, Susanne C; Michalakis, Stylianos; Wissinger, Bernd; Seeliger, Mathias W; Paquet-Durand, François

    2015-10-01

    Mutations in the PDE6A gene can cause rod photoreceptors degeneration and the blinding disease retinitis pigmentosa (RP). While a number of pathogenic PDE6A mutations have been described, little is known about their impact on compound heterozygous situations and potential interactions of different disease-causing alleles. Here, we used a novel mouse model for the Pde6a R562W mutation in combination with an existing line carrying the V685M mutation to generate compound heterozygous Pde6a V685M/R562W animals, exactly homologous to a case of human RP. We compared the progression of photoreceptor degeneration in these compound heterozygous mice with the homozygous V685M and R562W mutants, and additionally with the D670G line that is known for a relatively mild phenotype. We investigated PDE6A expression, cyclic guanosine mono-phosphate accumulation, calpain and caspase activity, in vivo retinal function and morphology, as well as photoreceptor cell death and survival. This analysis confirms the severity of different Pde6a mutations and indicates that compound heterozygous mutants behave like intermediates of the respective homozygous situations. Specifically, the severity of the four different Pde6a situations may be categorized by the pace of photoreceptor degeneration: V685M (fastest) > V685M/R562W > R562W > D670G (slowest). While calpain activity was strongly increased in all four mutants, caspase activity was not. This points to the execution of non-apoptotic cell death and may lead to the identification of new targets for therapeutic interventions. For individual RP patients, our study may help to predict time-courses for Pde6a-related retinal degeneration and thereby facilitate the definition of a window-of-opportunity for clinical interventions. PMID:26188004

  19. Clinical Sensitivity of Cystic Fibrosis Mutation Panels in a Diverse Population.

    PubMed

    Hughes, Erin E; Stevens, Colleen F; Saavedra-Matiz, Carlos A; Tavakoli, Norma P; Krein, Lea M; Parker, April; Zhang, Zhen; Maloney, Breanne; Vogel, Beth; DeCelie-Germana, Joan; Kier, Catherine; Anbar, Ran D; Berdella, Maria N; Comber, Paul G; Dozor, Allen J; Goetz, Danielle M; Guida, Louis; Kattan, Meyer; Ting, Andrew; Voter, Karen Z; van Roey, Patrick; Caggana, Michele; Kay, Denise M

    2016-02-01

    Infants are screened for cystic fibrosis (CF) in New York State (NYS) using an IRT-DNA algorithm. The purpose of this study was to validate and assess clinical validity of the US FDA-cleared Illumina MiSeqDx CF 139-Variant Assay (139-VA) in the diverse NYS CF population. The study included 439 infants with CF identified via newborn screening (NBS) from 2002 to 2012. All had been screened using the Abbott Molecular CF Genotyping Assay or the Hologic InPlex CF Molecular Test. All with CF and zero or one mutation were tested using the 139-VA. DNA extracted from dried blood spots was reliably and accurately genotyped using the 139-VA. Sixty-three additional mutations were identified. Clinical sensitivity of three panels ranged from 76.2% (23 mutations recommended for screening by ACMG/ACOG) to 79.7% (current NYS 39-mutation InPlex panel), up to 86.0% for the 139-VA. For all, sensitivity was highest in Whites and lowest in the Black population. Although the sample size was small, there was a nearly 20% increase in sensitivity for the Black CF population using the 139-VA (68.2%) over the ACMG/ACOG and InPlex panels (both 50.0%). Overall, the 139-VA is more sensitive than other commercially available panels, and could be considered for NBS, clinical, or research laboratories conducting CF screening.

  20. Does landscape diversity reduce the risk of catastrophic tipping points?

    NASA Astrophysics Data System (ADS)

    Temme, Arnaud; Baartman, Jantiene; Saco, Patricia; Nijp, Jelmer; Langston, Abigail

    2016-04-01

    Most studies about tipping points are based on computer simulations. These simulations, based on first principles of vegetation growth and competition, are not only able to explain a surprising number of vegetation patterns occurring in natural ecosystems, but they also predict shifts between multiple stable states that may be catastrophic. Initially, such studies were performed on simplistic 'non-landscapes' - flats or straight slopes. Recently, we have been able to resolve geomorphic redistribution processes more accurately, so that vegetation patterning can be simulated in more complex landscapes. Here, we present a first look into how such 'real landscapes' affect the risk of catastrophic shifts. We test the hypothesis that increasing complexity and organisation in a landscape reduce the risk of catastrophic shifts by effectively creating mini-refugia where vegetation persists over a wider range of boundary conditions such as precipitation. Depending on the extent of a study area, large complexity could even change the system from one with multiple stable states into one with only one stable state.

  1. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+.

    PubMed

    Tsai, Yu-Kuo; Chen, Hung-Wen; Lo, Ta-Chun; Lin, Thy-Hou

    2009-03-01

    Lactose metabolism is a changeable phenotype in strains of Lactobacillus casei. In this study, we found that L. casei ATCC 27139 was unable to utilize lactose. However, when exposed to lactose as the sole carbon source, spontaneous Lac(+) clones could be obtained. A gene cluster (lacTEGF-galKETRM) involved in the metabolism of lactose and galactose in L. casei ATCC 27139 (Lac(-)) and its Lac(+) revertant (designated strain R1) was sequenced and characterized. We found that only one nucleotide, located in the lacTEGF promoter (lacTp), of the two lac-gal gene clusters was different. The protein sequence identity between the lac-gal gene cluster and those reported previously for some L. casei (Lac(+)) strains was high; namely, 96-100 % identity was found and no premature stop codon was identified. A single point mutation located within the lacTp promoter region was also detected for each of the 41 other independently isolated Lac(+) revertants of L. casei ATCC 27139. The revertants could be divided into six classes based on the positions of the point mutations detected. Primer extension experiments conducted on transcription from lacTp revealed that the lacTp promoter of these six classes of Lac(+) revertants was functional, while that of L. casei ATCC 27139 was not. Northern blotting experiments further confirmed that the lacTEGF operon of strain R1 was induced by lactose but suppressed by glucose, whereas no blotting signal was ever detected for L. casei ATCC 27139. These results suggest that a single point mutation in the lacTp promoter was able to restore the transcription of a fully functional lacTEGF operon and cause a phenotype switch from Lac(-) to Lac(+) for L. casei ATCC 27139. PMID:19246746

  2. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations

    PubMed Central

    Comeron, Josep M.; Reed, Jordan; Christie, Matthew; Jacobs, Julia S.; Dierdorff, Jason; Eberl, Daniel F.; Manak, J. Robert

    2016-01-01

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation. PMID:27600073

  3. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    PubMed

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-01-01

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation. PMID:27600073

  4. Point-Mutation Effects on Charge-Transport Properties of the Tumor-Suppressor Gene p53

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Tin; Roche, Stephan; Römer, Rudolf A.

    2008-01-01

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective tight-binding models which simulate hole propagation along the DNA, a statistical analysis of mutation-induced charge transfer modifications is performed. In contrast to noncancerous mutations, mutation hot spots tend to result in significantly weaker changes of transmission properties. This suggests that charge transport could play a significant role for DNA-repairing deficiency yielding carcinogenesis.

  5. Mutations in the p53 gene occur in diverse human tumour types.

    PubMed

    Nigro, J M; Baker, S J; Preisinger, A C; Jessup, J M; Hostetter, R; Cleary, K; Bigner, S H; Davidson, N; Baylin, S; Devilee, P

    1989-12-01

    The p53 gene has been a constant source of fascination since its discovery nearly a decade ago. Originally considered to be an oncogene, several convergent lines of research have indicated that the wild-type gene product actually functions as a tumour suppressor gene. For example, expression of the neoplastic phenotype is inhibited, rather than promoted, when rat cells are transfected with the murine wild-type p53 gene together with mutant p53 genes and/or other oncogenes. Moreover, in human tumours, the short arm of chromosome 17 is often deleted. In colorectal cancers, the smallest common region of deletion is centred at 17p13.1; this region harbours the p53 gene, and in two tumours examined in detail, the remaining (non-deleted) p53 alleles were found to contain mutations. This result was provocative because allelic deletion coupled with mutation of the remaining allele is a theoretical hallmark of tumour-suppressor genes. In the present report, we have attempted to determine the generality of this observation; that is, whether tumours with allelic deletions of chromosome 17p contain mutant p53 genes in the allele that is retained. Our results suggest that (1) most tumours with such allelic deletions contain p53 point mutations resulting in amino-acid substitutions, (2) such mutations are not confined to tumours with allelic deletion, but also occur in at least some tumours that have retained both parental 17p alleles, and (3) p53 gene mutations are clustered in four 'hot-spots' which exactly coincide with the four most highly conserved regions of the gene. These results suggest that p53 mutations play a role in the development of many common human malignancies.

  6. Transforming activity of the c-Ha-ras oncogene having two point mutations in codons 12 and 61.

    PubMed

    Sekiya, T; Prassolov, V S; Fushimi, M; Nishimura, S

    1985-09-01

    A recombinant plasmid carrying the human c-Ha-ras gene with two point mutations in codons 12 and 61 was constructed and its transforming activity on mouse NIH 3T3 cells was compared with those of genes with a single mutation in either codon 12 or 61. Quantitative analyses revealed that the gene with two mutations had essentially the same transforming activity as the genes with single mutations. These results indicate that a single mutation of the c-Ha-ras gene in either codon 12 or 61 is sufficient to activate the gene and that neither of the two mutation sites involved in activation of the gene needs to be intact for transforming activity.

  7. Internal Point Mutations of the Capsid Modify the Serotype of Rice Yellow Mottle Virus

    PubMed Central

    Hébrard, Eugénie; Pinel-Galzi, Agnès; Catherinot, Vincent; Labesse, Gilles; Brugidou, Christophe; Fargette, Denis

    2005-01-01

    Rice yellow mottle virus is classified in five major serotypes; the molecular diversity of the coat protein (CP) is well established, but the amino acids involved in the recognition by discriminant monoclonal antibodies (MAbs) remain unknown. Reconstruction of a phylogenetic tree and sequence alignment of the CP gene of a sample representative of the continental-large diversity were used to identify 10 serospecific amino acids (i.e., conserved in all isolates belonging to the same serotype and distinct in other serotypes). Positions occupied by serospecific residues were localized on the crystal structure of the CP monomer and on modeled capsomers. Structural, molecular, and serological properties of each serotype were analyzed, and subsequently, hypotheses on the potential role of amino acids in discriminating reactions with antibodies were formulated. The residues 114 and 115 (serospecific of Sr1) and 190 (serospecific of Sr2) were localized on the outer surface of the capsid and might be directly involved in the immunoreactivity with MAb D and MAb A, respectively. In contrast, residues 180 (Sr3) and 178 (Sr5) lay within the inner surface of the capsid. To understand the role of these internal positions in the recognition with the antibodies, two substitutions (T180K and G178D) were introduced in the CP of an infectious clone. These mutations modified the antigenicity with MAb G and MAb E discriminating Sr3 and Sr5, respectively, while the reaction with MAb D remained unaffected. This result suggests an indirect effect of these two internal mutations on local immunostructure while the global structure was maintained. PMID:15767440

  8. Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments.

    PubMed

    Chusacultanachai, Sudsanguan; Yuthavong, Yongyuth

    2004-01-01

    The first important step toward a successful preparation of large and diverse DNA libraries with desired complexity is to select a suitable mutagenesis strategy. This chapter describes three different methods for random mutagenesis, the use of XL1-red cells, error-prone polymerase chain reaction (PCR), and degenerate oligonucleotides-Pfu (DOP). These mutagenesis strategies possess different benefits and pitfalls; thus, they are differentially useful for production of DNA libraries with different density and complexity. The use of XL1-red, an engineered Escherichia coli with DNA repair deficiency, is one of the simplest mutagenesis and requires no subcloning step. After plasmid encoding DNA of inter-est is transformed into the cells, the mutations are simply generated during each round of DNA replication. The mutation frequency of this method is reported to be 1 base change per 2000 nucleotides; however, it can be slightly increased by extending the culture period to allow the accumulation of more mutations. This strategy is suitable for generation of random mutations with low frequency in a large target DNA. Error-prone PCR is one of the most widely used random mutagenesis. During DNA amplification, misincorporation of nucleotides can be promoted by altering the nucleotide ratio and the concentration of divalent cations in the reaction. We discovered that, by adjusting template concentration, frequency of mutation could be controlled easily and a library with desired mutation rate could be obtained. Additionally, efficiency of subsequent cloning steps to insert the PCR product into plasmid DNA is also a key factor determining size and complexity of the libraries. DOP mutagenesis is a rapid and effective method for random mutagenesis of small DNA and peptides. This strategy uses two chemically synthesized degenerate oligonucleotides as primers. By controlling the positions and ratios of degenerate nucleotides used during oligonucleotide synthesis, it is possible to

  9. Investigating the Impact of Asp181 Point Mutations on Interactions between PTP1B and Phosphotyrosine Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.

  10. Kinase inhibitor-responsive genotypes in EGFR mutated lung adenocarcinomas: moving past common point mutations or indels into uncommon kinase domain duplications and rearrangements

    PubMed Central

    2016-01-01

    The most frequent epidermal growth factor receptor (EGFR) mutations found by traditional or comprehensive molecular profiling of lung adenocarcinomas include indels of exon 19 (the exon 19 deletion delE746_A750 being the most common) and the exon 21 L858R point mutation. The current approval labels for first line palliative gefitinib 250 mg/day, erlotinib 150 mg/day and afatinib 40 mg/day for advanced lung cancers require the presence of the aforementioned classical/sensitizing EGFR mutations. Other gefitinib, erlotinib and afatinib sensitizing mutations include exon 18 indels, G719X, exon 19 insertions, A763_Y764insFQEA, S768I and L861Q; for which off-label EGFR kinase inhibitor use is generally agreed upon by thoracic oncologists. The main biological mechanism of resistance to approved first line EGFR inhibitors is the selection/acquisition of EGFR-T790M that in itself can be inhibited by osimertinib 80 mg/day, a 3rd generation EGFR inhibitor that is bypassed by EGFR-C797X mutations. Another class of de novo inhibitor insensitive mutation includes EGFR exon 20 insertions. More recently, the dichotomy of only point mutations or indels explaining aberrant kinase activation of EGFR plus inhibitor response has been shattered by the discovery of uncommon (<0.5% of all EGFR mutations) genomic events involving exon 18–25 kinase domain duplications (KDD) and rearrangements (EGFR-RAD51 or EGFR-PURB). The latter lead to oncogene addiction, enhanced sensitivity to kinase inhibitors in vitro and clinical responses to approved EGFR inhibitors. The enhanced landscape of EGFR inhibitor-responsive genotypes highlights that comprehensive molecular profiling may be necessary to maximize the identification of all cases that can benefit from precision oncology. PMID:27413714

  11. A maternally inherited autosomal point mutation in human phospholipase C zeta (PLCζ) leads to male infertility

    PubMed Central

    Kashir, Junaid; Konstantinidis, Michalis; Jones, Celine; Lemmon, Bernadette; Chang Lee, Hoi; Hamer, Rebecca; Heindryckx, Bjorn; Deane, Charlotte M.; De Sutter, Petra; Fissore, Rafael A.; Parrington, John; Wells, Dagan; Coward, Kevin

    2012-01-01

    BACKGROUND Male factor and idiopathic infertility contribute significantly to global infertility, with abnormal testicular gene expression considered to be a major cause. Certain types of male infertility are caused by failure of the sperm to activate the oocyte, a process normally regulated by calcium oscillations, thought to be induced by a sperm-specific phospholipase C, PLCzeta (PLCζ). Previously, we identified a point mutation in an infertile male resulting in the substitution of histidine for proline at position 398 of the protein sequence (PLCζH398P), leading to abnormal PLCζ function and infertility. METHODS AND RESULTS Here, using a combination of direct-sequencing and mini-sequencing of the PLCζ gene from the patient and his family, we report the identification of a second PLCζ mutation in the same patient resulting in a histidine to leucine substitution at position 233 (PLCζH233L), which is predicted to disrupt local protein interactions in a manner similar to PLCζH398P and was shown to exhibit abnormal calcium oscillatory ability following predictive 3D modelling and cRNA injection in mouse oocytes respectively. We show that PLCζH233L and PLCζH398P exist on distinct parental chromosomes, the former inherited from the patient's mother and the latter from his father. Neither mutation was detected utilizing custom-made single-nucleotide polymorphism assays in 100 fertile males and females, or 8 infertile males with characterized oocyte activation deficiency. CONCLUSIONS Collectively, our findings provide further evidence regarding the importance of PLCζ at oocyte activation and forms of male infertility where this is deficient. Additionally, we show that the inheritance patterns underlying male infertility are more complex than previously thought and may involve maternal mechanisms. PMID:22095789

  12. Insights into enzyme point mutation effect by molecular simulation: phenylethylamine oxidation catalyzed by monoamine oxidase A.

    PubMed

    Oanca, Gabriel; Purg, Miha; Mavri, Janez; Shih, Jean C; Stare, Jernej

    2016-05-21

    The I335Y point mutation effect on the kinetics of phenylethylamine decomposition catalyzed by monoamine oxidase A was elucidated by means of molecular simulation. The established empirical valence bond methodology was used in conjunction with the free energy perturbation sampling technique and a classical force field representing the state of reactants and products. The methodology allows for the simulation of chemical reactions, in the present case the breaking of the α-C-H bond in a phenylethylamine substrate and the subsequent hydrogen transfer to the flavin cofactor, resulting in the formation of the N-H bond on flavin. The empirical parameters were calibrated against the experimental data for the simulated reaction in a wild type protein and then used for the calculation of the reaction free energy profile in the I335Y mutant. In very good agreement with the measured kinetic data, mutation increases the free energy barrier for the rate limiting step by slightly more than 1 kcal mol(-1) and consequently decreases the rate constant by about an order of magnitude. The magnitude of the computed effect slightly varies with simulation settings, but always remains in reasonable agreement with the experiment. Analysis of trajectories reveals a major change in the interaction between phenyl rings of the substrate and the neighboring Phe352 residue upon the I335Y mutation due to the increased local polarity, leading to an attenuated quadrupole interaction between the rings and destabilization of the transition state. Additionally, the increased local polarity in the mutant allows for a larger number of water molecules to be present near the active site, effectively shielding the catalytic effect of the enzyme and contributing to the increased barrier. PMID:27121693

  13. Screening of point mutations by multiple SSCP analysis in the dystrophin gene

    SciTech Connect

    Lasa, A.; Baiget, M.; Gallano, P.

    1994-09-01

    Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder. The population frequency of DMD is one in approximately 3500 boys, of which one third is thought to be a new mutant. The DMD gene is the largest known to date, spanning over 2,3 Mb in band Xp21.2; 79 exons are transcribed into a 14 Kb mRNA coding for a protein of 427 kD which has been named dystrophin. It has been shown that about 65% of affected boys have a gene deletion with a wide variation in localization and size. The remaining affected individuals who have no detectable deletions or duplications would probably carry more subtle mutations that are difficult to detect. These mutations occur in several different exons and seem to be unique to single patients. Their identification represents a formidable goal because of the large size and complexity of the dystrophin gene. SSCP is a very efficient method for the detection of point mutations if the parameters that affect the separation of the strands are optimized for a particular DNA fragment. The multiple SSCP allows the simultaneous study of several exons, and implies the use of different conditions because no single set of conditions will be optimal for all fragments. Seventy-eight DMD patients with no deletion or duplication in the dystrophin gene were selected for the multiple SSCP analysis. Genomic DNA from these patients was amplified using the primers described for the diagnosis procedure (muscle promoter and exons 3, 8, 12, 16, 17, 19, 32, 45, 48 and 51). We have observed different mobility shifts in bands corresponding to exons 8, 12, 43 and 51. In exons 17 and 45, altered electrophoretic patterns were found in different samples identifying polymorphisms already described.

  14. Evidence that specific mtDNA point mutations may not accumulate in skeletal muscle during normal human aging.

    PubMed Central

    Pallotti, F.; Chen, X.; Bonilla, E.; Schon, E. A.

    1996-01-01

    It is unclear at present whether specific mtDNA point mutations accumulate during normal human aging. In order to address this question, we used quantitative PCR of total DNA isolated from skeletal muscle from normal individuals of various ages to search for the presence and amount of spontaneous mtDNA point mutations in two small regions of the human mitochondrial genome. We observed low levels of somatic mutations above background in both regions, but there was no correlation between the amount of mutation detected and the age of the subject. These results contrasted with our finding of an age-related increase in the amount of the mtDNA "common deletion" in these very samples. Thus, it appears that both somatic mtDNA point mutations and mtDNA deletions can arise at low frequency in normal individuals but that, unlike deletions, there is no preferential amplification or accumulation of specific point mutations in skeletal muscle over the course of the normal human life span. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:8751860

  15. New point mutation in Golga3 causes multiple defects in spermatogenesis

    PubMed Central

    Bentson, Lisa F.; Agbor, Valentine A.; Agbor, Larry N.; Lopez, Anita C.; Nfonsam, Landry E.; Bornstein, Sheila S.; Handel, Mary Ann; Linder, Carol C.

    2014-01-01

    repro27 mice exhibit fully penetrant male-specific infertility associated with a nonsense mutation in the golgin subfamily A member 3 gene (Golga3). GOLGA3 is a Golgi complex-associated protein implicated in protein trafficking, apoptosis, positioning of the Golgi, and spermatogenesis. In repro27 mutant mice, a point mutation in exon 18 of the Golga3 gene that inserts a premature termination codon leads to an absence of GOLGA3 protein expression. GOLGA3 protein was undetectable in the brain, heart, and liver in both mutant and control mice. While spermatogenesis in Golga3repro27 mutant mice appears to initiate normally, development is disrupted in late meiosis during the first wave of spermatogenesis, leading to significant germ cell loss between 15 and 18 days postpartum (dpp). Terminal deoxynucleotidyltransferase dUTP-mediated nick end labeling analysis showed elevated DNA fragmentation in meiotic germ cells by 12 dpp, suggesting apoptosis as a mechanism of germ cell loss. The few surviving postmeiotic round spermatids exhibited abnormal spermiogenesis with defects in acrosome formation, head and tail development, and extensive vacuolization in the seminiferous epithelium. Analysis of epididymal sperm showed significantly low sperm concentration and motility, and in vitro fertilization with mutant sperm was unsuccessful. Golga3repro27 mice lack GOLGA3 protein and thus provide an in vivo tool to aid in deciphering the role of GOLGA3 in Golgi complex positioning, cargo trafficking, and apoptosis signaling in male germ cells. PMID:23495255

  16. Point mutation impairs centromeric CENH3 loading and induces haploid plants

    PubMed Central

    Karimi-Ashtiyani, Raheleh; Ishii, Takayoshi; Niessen, Markus; Stein, Nils; Heckmann, Stefan; Gurushidze, Maia; Banaei-Moghaddam, Ali Mohammad; Fuchs, Jörg; Schubert, Veit; Koch, Kerstin; Weiss, Oda; Demidov, Dmitri; Schmidt, Klaus; Kumlehn, Jochen; Houben, Andreas

    2015-01-01

    The chromosomal position of the centromere-specific histone H3 variant CENH3 (also called “CENP-A”) is the assembly site for the kinetochore complex of active centromeres. Any error in transcription, translation, modification, or incorporation can affect the ability to assemble intact CENH3 chromatin and can cause centromere inactivation [Allshire RC, Karpen GH (2008) Nat Rev Genet 9 (12):923–937]. Here we show that a single-point amino acid exchange in the centromere-targeting domain of CENH3 leads to reduced centromere loading of CENH3 in barley, sugar beet, and Arabidopsis thaliana. Haploids were obtained after cenh3 L130F-complemented cenh3-null mutant plants were crossed with wild-type A. thaliana. In contrast, in a noncompeting situation (i.e., centromeres possessing only mutated or only wild-type CENH3), no uniparental chromosome elimination occurs during early embryogenesis. The high degree of evolutionary conservation of the identified mutation site offers promising opportunities for application in a wide range of crop species in which haploid technology is of interest. PMID:26294252

  17. Point mutation impairs centromeric CENH3 loading and induces haploid plants.

    PubMed

    Karimi-Ashtiyani, Raheleh; Ishii, Takayoshi; Niessen, Markus; Stein, Nils; Heckmann, Stefan; Gurushidze, Maia; Banaei-Moghaddam, Ali Mohammad; Fuchs, Jörg; Schubert, Veit; Koch, Kerstin; Weiss, Oda; Demidov, Dmitri; Schmidt, Klaus; Kumlehn, Jochen; Houben, Andreas

    2015-09-01

    The chromosomal position of the centromere-specific histone H3 variant CENH3 (also called "CENP-A") is the assembly site for the kinetochore complex of active centromeres. Any error in transcription, translation, modification, or incorporation can affect the ability to assemble intact CENH3 chromatin and can cause centromere inactivation [Allshire RC, Karpen GH (2008) Nat Rev Genet 9 (12):923-937]. Here we show that a single-point amino acid exchange in the centromere-targeting domain of CENH3 leads to reduced centromere loading of CENH3 in barley, sugar beet, and Arabidopsis thaliana. Haploids were obtained after cenh3 L130F-complemented cenh3-null mutant plants were crossed with wild-type A. thaliana. In contrast, in a noncompeting situation (i.e., centromeres possessing only mutated or only wild-type CENH3), no uniparental chromosome elimination occurs during early embryogenesis. The high degree of evolutionary conservation of the identified mutation site offers promising opportunities for application in a wide range of crop species in which haploid technology is of interest. PMID:26294252

  18. Somatic mutations contribute to genotypic diversity in sterile and fertile populations of the threatened shrub, Grevillea rhizomatosa (Proteaceae)

    PubMed Central

    Gross, C. L.; Nelson, Penelope A.; Haddadchi, Azadeh; Fatemi, Mohammad

    2012-01-01

    Background and Aims Grevillea rhizomatosa is a spreading shrub which exhibits multiple breeding strategies within a narrow area in the fire-prone heathlands of eastern Australia. Reproductive strategies include self-compatibility, self-incompatibility and clonality (with and without sterility). The close proximity of contrasting breeding systems provides an opportunity to explore the evolution of sterility and to compare and contrast the origins of genotypic diversity (recombinant or somatic) against degrees of sexual expression. Methods ISSR markers for 120 band positions (putative loci) were used to compare genetic diversity among five populations at a macro-scale of 5 m between samples (n = 244 shrubs), and at a micro-scale of nearest neighbours for all plants in five 25-m2 quadrats with contrasting fertilities (n = 162 shrubs). Nearest-neighbour sampling included several clusters of connected ramets. Matrix incompatibility (MIC) analyses were used to evaluate the relative contribution of recombination and somatic mutation to genotype diversity. Key Results High levels of genotypic diversity were found in all populations regardless of fertilities (fertile populations, G/N ≥ 0·94; sterile populations, G/N ≥ 0·97) and most sterile populations had a unique genetic profile. Somatic mutations were detected along connected ramets in ten out of 42 ramet clusters. MIC analyses showed that somatic mutations have contributed to diversity in all populations and particularly so in sterile populations. Conclusions Somatic mutations contribute significantly to gene diversity in sterile populations of Grevillea rhizomatosa, the accumulation of which is the likely cause of male and female sterility. High levels of genetic diversity therefore may not always be synonymous with sexual fitness and genetic health. We hypothesize that frequent fires drive selection for clonal reproduction, at the cost of flowering such that sexual functions are not maintained through selection

  19. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A

    SciTech Connect

    Brunner, H.G. ); Nelen, M.; Ropers, H.H.; van Oost, B.A. )

    1993-10-22

    Genetic and metabolic studies have been done on a large kindred in which several males are affected by a syndrome of borderline mental retardation and abnormal behavior. The types of behavior that occurred include impulsive aggression, arson, attempted rape, and exhibitionism. Analysis of 24-hour urine samples indicated markedly disturbed monoamine metabolism. This syndrome was associated with a complete and selective deficiency of enzymatic activity of monoamine oxidase A (MAOA). In each of five affected males, a point mutation was identified in the eighth exon of the MAOA structural gene, which changes a glutamine to a termination codon. Thus, isolated complete MAOA deficiency in this family is associated with a recognizable behavioral phenotype that includes disturbed regulation of impulsive aggression.

  20. The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations.

    PubMed

    Heinberg, Adina; Kirkman, Laura

    2015-04-01

    Drugs that target the folate-synthesis pathway have a long history of effectiveness against a variety of pathogens. As antimalarials, the antifolates were safe and well tolerated, but resistance emerged quickly and has persisted even with decreased drug pressure. The primary determinants of resistance in Plasmodium falciparum are well-described point mutations in the enzymes dihydropteroate synthase and dihydrofolate reductase targeted by the combination sulfadoxine-pyrimethamine. Recent work has highlighted the contributions of additional parasite adaptation to antifolate resistance. In fact, the evolution of antifolate-resistant parasites is multifaceted and complex. Gene amplification of the first enzyme in the parasite folate synthesis pathway, GTP-cyclohydrolase, is strongly associated with resistant parasites and potentially contributes to persistence of resistant parasites. Further understanding of how parasites adjust flux through the folate pathway is important to the further development of alternative agents targeting this crucial synthesis pathway.

  1. New molecular beacon for p53 gene point mutation and significant potential in serving as the polymerization primer.

    PubMed

    Xu, Jianguo; Dong, Haiyan; Shen, Weiyu; He, Sudan; Li, Hongling; Lu, Yusheng; Wu, Zai-Sheng; Jia, Lee

    2015-04-15

    Molecular beacon (MB) is usually explored as a convenient probe for various bioassays. In an enzymatic polymerization-based biosensing system, primer, and MB, sometimes involving other oligonucleotides, are often required to collaboratively generate an amplified fluorescent signal to detect target molecules with high sensitivity and specificity. In the current study, a multifunctional primer-integrated MB (MP-MB) was developed to detect the p53 tumor suppressor gene. Compared with the traditional MB, our MP-MB can not only selectively identify the target of interest and signal sensitively its hybridization event, but also act as the primer during enzymatic polymerization. Specifically, hybridization of MP-MB to target p53 gene restored the fluorescence intensity and activated the pre-locked primer designed by changing the molecular configuration of MP-MB. Moreover, the p53 gene could be detected down to 1nM with a linear response range of 1×10(-9)-3×10(-7)M, and p53 gene point mutation was readily distinguished from the wild-type one. Its potential application as a primer of replication in enzymatic polymerization-based assay systems was validated by running parallel gel electrophoreses in comparison with the native counterpart of MP-MB without any chemical modification. Owning to its excellent assay characteristics, less species requirement, broad sequence diversity and preserved intrinsic bioactivity, the proof-of-concept of MP-MB exhibits a great potential in various biomedical applications.

  2. Diverse Renal Phenotypes Observed in a Single Family with a Genetic Mutation in Paired Box Protein 2

    PubMed Central

    Iwafuchi, Yoichi; Morioka, Tetsuo; Morita, Takashi; Yanagihara, Toshio; Oyama, Yuko; Morisada, Naoya; Iijima, Kazumoto; Narita, Ichiei

    2016-01-01

    A common renal phenotype of paired box protein 2 (PAX2) mutations is renal coloboma syndrome. We report a single family with diverse renal phenotypes associated with PAX2 mutation. The proband presented steroid-resistant focal segmental glomerulosclerosis with optic coloboma, whereas his two sons showed severe renal hypoplasia with end-stage renal disease, with or without optic coloboma. In all three cases, a heterozygous PAX2 genetic mutation was identified (exon 2; NM_003987.3:c.76dupG, p.Val26Glyfs*28). Based on histopathological findings of the proband, we hypothesized that autophagic dysfunction was associated with the pathophysiology of the focal segmental glomerulosclerosis with PAX2 mutation. Detailed funduscopic examination – including the optic disc – might be useful for the diagnosis of renal anomalies associated with PAX2 mutation. PMID:27226968

  3. Diverse Renal Phenotypes Observed in a Single Family with a Genetic Mutation in Paired Box Protein 2.

    PubMed

    Iwafuchi, Yoichi; Morioka, Tetsuo; Morita, Takashi; Yanagihara, Toshio; Oyama, Yuko; Morisada, Naoya; Iijima, Kazumoto; Narita, Ichiei

    2016-01-01

    A common renal phenotype of paired box protein 2 (PAX2) mutations is renal coloboma syndrome. We report a single family with diverse renal phenotypes associated with PAX2 mutation. The proband presented steroid-resistant focal segmental glomerulosclerosis with optic coloboma, whereas his two sons showed severe renal hypoplasia with end-stage renal disease, with or without optic coloboma. In all three cases, a heterozygous PAX2 genetic mutation was identified (exon 2; NM_003987.3:c.76dupG, p.Val26Glyfs*28). Based on histopathological findings of the proband, we hypothesized that autophagic dysfunction was associated with the pathophysiology of the focal segmental glomerulosclerosis with PAX2 mutation. Detailed funduscopic examination - including the optic disc - might be useful for the diagnosis of renal anomalies associated with PAX2 mutation. PMID:27226968

  4. Exome sequencing for bipolar disorder points to roles of de novo loss-of-function and protein-altering mutations.

    PubMed

    Kataoka, M; Matoba, N; Sawada, T; Kazuno, A-A; Ishiwata, M; Fujii, K; Matsuo, K; Takata, A; Kato, T

    2016-07-01

    Although numerous genetic studies have been conducted for bipolar disorder (BD), its genetic architecture remains elusive. Here we perform, to the best of our knowledge, the first trio-based exome sequencing study for BD to investigate potential roles of de novo mutations in the disease etiology. We identified 71 de novo point mutations and one de novo copy-number mutation in 79 BD probands. Among the genes hit by de novo loss-of-function (LOF; nonsense, splice site or frameshift) or protein-altering (LOF, missense and inframe indel) mutations, we found significant enrichment of genes highly intolerant (first percentile of intolerant genes assessed by Residual Variation Intolerance Score) to protein-altering variants in general population, an observation that is also reported in autism and schizophrenia. When we performed a joint analysis using the data of schizoaffective disorder in published studies, we found global enrichment of de novo LOF and protein-altering mutations in the combined group of bipolar I and schizoaffective disorders. Considering relationship between de novo mutations and clinical phenotypes, we observed significantly earlier disease onset among the BD probands with de novo protein-altering mutations when compared with non-carriers. Gene ontology enrichment analysis of genes hit by de novo protein-altering mutations in bipolar I and schizoaffective disorders did not identify any significant enrichment. These results of exploratory analyses collectively point to the roles of de novo LOF and protein-altering mutations in the etiology of bipolar disorder and warrant further large-scale studies. PMID:27217147

  5. Exome sequencing for bipolar disorder points to roles of de novo loss-of-function and protein-altering mutations.

    PubMed

    Kataoka, M; Matoba, N; Sawada, T; Kazuno, A-A; Ishiwata, M; Fujii, K; Matsuo, K; Takata, A; Kato, T

    2016-07-01

    Although numerous genetic studies have been conducted for bipolar disorder (BD), its genetic architecture remains elusive. Here we perform, to the best of our knowledge, the first trio-based exome sequencing study for BD to investigate potential roles of de novo mutations in the disease etiology. We identified 71 de novo point mutations and one de novo copy-number mutation in 79 BD probands. Among the genes hit by de novo loss-of-function (LOF; nonsense, splice site or frameshift) or protein-altering (LOF, missense and inframe indel) mutations, we found significant enrichment of genes highly intolerant (first percentile of intolerant genes assessed by Residual Variation Intolerance Score) to protein-altering variants in general population, an observation that is also reported in autism and schizophrenia. When we performed a joint analysis using the data of schizoaffective disorder in published studies, we found global enrichment of de novo LOF and protein-altering mutations in the combined group of bipolar I and schizoaffective disorders. Considering relationship between de novo mutations and clinical phenotypes, we observed significantly earlier disease onset among the BD probands with de novo protein-altering mutations when compared with non-carriers. Gene ontology enrichment analysis of genes hit by de novo protein-altering mutations in bipolar I and schizoaffective disorders did not identify any significant enrichment. These results of exploratory analyses collectively point to the roles of de novo LOF and protein-altering mutations in the etiology of bipolar disorder and warrant further large-scale studies.

  6. A Noncoding Point Mutation of Zeb1 Causes Multiple Developmental Malformations and Obesity in Twirler Mice

    PubMed Central

    Kurima, Kiyoto; Hertzano, Ronna; Gavrilova, Oksana; Monahan, Kelly; Shpargel, Karl B.; Nadaraja, Garani; Kawashima, Yoshiyuki; Lee, Kyu Yup; Ito, Taku; Higashi, Yujiro; Eisenman, David J.; Strome, Scott E.; Griffith, Andrew J.

    2011-01-01

    Heterozygous Twirler (Tw) mice develop obesity and circling behavior associated with malformations of the inner ear, whereas homozygous Tw mice have cleft palate and die shortly after birth. Zeb1 is a zinc finger protein that contributes to mesenchymal cell fate by repression of genes whose expression defines epithelial cell identity. This developmental pathway is disrupted in inner ears of Tw/Tw mice. The purpose of our study was to comprehensively characterize the Twirler phenotype and to identify the causative mutation. The Tw/+ inner ear phenotype includes irregularities of the semicircular canals, abnormal utricular otoconia, a shortened cochlear duct, and hearing loss, whereas Tw/Tw ears are severely malformed with barely recognizable anatomy. Tw/+ mice have obesity associated with insulin-resistance and have lymphoid organ hypoplasia. We identified a noncoding nucleotide substitution, c.58+181G>A, in the first intron of the Tw allele of Zeb1 (Zeb1Tw). A knockin mouse model of c.58+181G>A recapitulated the Tw phenotype, whereas a wild-type knockin control did not, confirming the mutation as pathogenic. c.58+181G>A does not affect splicing but disrupts a predicted site for Myb protein binding, which we confirmed in vitro. In comparison, homozygosity for a targeted deletion of exon 1 of mouse Zeb1, Zeb1ΔEx1, is associated with a subtle abnormality of the lateral semicircular canal that is different than those in Tw mice. Expression analyses of E13.5 Twirler and Zeb1ΔEx1 ears confirm that Zeb1ΔEx1 is a null allele, whereas Zeb1Tw RNA is expressed at increased levels in comparison to wild-type Zeb1. We conclude that a noncoding point mutation of Zeb1 acts via a gain-of-function to disrupt regulation of Zeb1Tw expression, epithelial-mesenchymal cell fate or interactions, and structural development of the inner ear in Twirler mice. This is a novel mechanism underlying disorders of hearing or balance. PMID:21980308

  7. Point mutations in dihydrofolate reductase and dihydropteroate synthase genes of Plasmodium falciparum isolates from Venezuela.

    PubMed

    Urdaneta, L; Plowe, C; Goldman, I; Lal, A A

    1999-09-01

    The present study was designed to characterize mutations in dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) genes of Plasmodium falciparum in the Bolivar region of Venezuela, where high levels of clinical resistance to sulfadoxine-pyrimethamine (SP, Fansidar; F. Hoffman-La Roche, Basel, Switzerland) has been documented. We used a nested mutation-specific polymerase chain reaction and restriction digestion methods to measure 1) the prevalence of DHFR mutations at 16, 50, 51, 59, 108, and 164 codon positions, and 2) the prevalence of mutations in the 436, 437, 581, and 613 codon sites in DHPS gene. In the case of the DHFR gene, of the 54 parasite isolates analyzed, we detected the presence of Asn-108 and Ile-51 in 96% of the isolates and Arg-50 mutation in 64% of the isolates. Each of these mutations has been associated with high level of resistance to pyrimethamine. Only 2 samples (4%) showed the wild type Ser-108 mutation and none showed Thr-108 and Val-16 mutations that are specific for resistance to cycloguanil. In the case of DHPS gene, we found a mutation at position 437 (Gly) in 100% of the isolates and Gly-581 in 96% of the isolates. The simultaneous presence of mutations Asn-108 and Ile-51 in the DHFR gene and Gly-437 and Gly-581 in the DHPS gene in 96% of the samples tested suggested that a cumulative effect of mutations could be the major mechanism conferring high SP resistance in this area. PMID:10497990

  8. Point mutations in the murine fumarylacetoacetate hydrolase gene: Animal models for the human genetic disorder hereditary tyrosinemia type 1.

    PubMed

    Aponte, J L; Sega, G A; Hauser, L J; Dhar, M S; Withrow, C M; Carpenter, D A; Rinchik, E M; Culiat, C T; Johnson, D K

    2001-01-16

    Hereditary tyrosinemia type 1 (HT1) is a severe autosomal recessive metabolic disease associated with point mutations in the human fumarylacetoacetate hydrolase (FAH) gene that disrupt tyrosine catabolism. An acute form of HT1 results in death during the first months of life because of hepatic failure, whereas a chronic form leads to gradual development of liver disease often accompanied by renal dysfunction, childhood rickets, neurological crisis, and hepatocellular carcinoma. Mice homozygous for certain chromosome 7 deletions of the albino Tyr; c locus that also include Fah die perinatally as a result of liver dysfunction and exhibit a complex syndrome characterized by structural abnormalities and alterations in gene expression in the liver and kidney. Here we report that two independent, postnatally lethal mutations induced by N-ethyl-N-nitrosourea and mapped near Tyr are alleles of Fah. The Fah(6287SB) allele is a missense mutation in exon 6, and Fah(5961SB) is a splice mutation causing loss of exon 7, a subsequent frameshift in the resulting mRNA, and a severe reduction of Fah mRNA levels. Increased levels of the diagnostic metabolite succinylacetone in the urine of the Fah(6287SB) and Fah(5961SB) mutants indicate that these mutations cause a decrease in Fah enzymatic activity. Thus, the neonatal phenotype present in both mutants is due to a deficiency in Fah caused by a point mutation, and we propose Fah(5961SB) and Fah(6287SB) as mouse models for acute and chronic forms of human HT1, respectively.

  9. Point mutations in the murine fumarylacetoacetate hydrolase gene: Animalmodels for the human genetic disorder hereditary tyrosinemia type 1

    SciTech Connect

    Aponte, Jennifer; Sega, Gary A; Hauser, Loren John; Dhar, Madhu; Withrow, Catherine; Carpenter, D A; Rinchik, Eugene M.; Culiat, Cymbeline T; Johnson, Dabney K

    2001-01-01

    Hereditary tyrosinemia type 1 (HT1) is a severe autosomal recessive metabolic disease associated with point mutations in the human fumarylacetoacetate hydrolase (FAH) gene that disrupt tyrosine catabolism. An acute form of HT1 results in death during the first months of life because of hepatic failure, whereas a chronic form leads to gradual development of liver disease often accompanied by renal dysfunction, childhood rickets, neurological crisis, and hepatocellular carcinoma. Mice homozygous for certain chromosome 7 deletions of the albino Tyr; c locus that also include Fah die perinatally as a result of liver dysfunction and exhibit a complex syndrome characterized by structural abnormalities and alterations in gene expression in the liver and kidney. Here we report that two independent, postnatally lethal mutations induced by N-ethyl-N-nitrosourea and mapped near Tyr are alleles of Fah. The Fah6287SB allele is a missense mutation in exon 6, and Fah5961SB is a splice mutation causing loss of exon 7, a subsequent frameshift in the resulting mRNA, and a severe reduction of Fah mRNA levels. Increased levels of the diagnostic metabolite succinylacetone in the urine of the Fah6287SB and Fah5961SB mutants indicate that these mutations cause a decrease in Fah enzymatic activity. Thus, the neonatal phenotype present in both mutants is due to a deficiency in Fah caused by a point mutation, and we propose Fah5961SB and Fah6287SB as mouse models for acute and chronic forms of human HT1, respectively.

  10. Practicability of detecting somatic point mutation from RNA high throughput sequencing data.

    PubMed

    Sheng, Quanhu; Zhao, Shilin; Li, Chung-I; Shyr, Yu; Guo, Yan

    2016-05-01

    Traditionally, somatic mutations are detected by examining DNA sequence. The maturity of sequencing technology has allowed researchers to screen for somatic mutations in the whole genome. Increasingly, researchers have become interested in identifying somatic mutations through RNAseq data. With this motivation, we evaluated the practicability of detecting somatic mutations from RNAseq data. Current somatic mutation calling tools were designed for DNA sequencing data. To increase performance on RNAseq data, we developed a somatic mutation caller GLMVC based on bias reduced generalized linear model for both DNA and RNA sequencing data. Through comparison with MuTect and Varscan we showed that GLMVC performed better for somatic mutation detection using exome sequencing or RNAseq data. GLMVC is freely available for download at the following website: https://github.com/shengqh/GLMVC/wiki.

  11. HIV-1 Drug Resistance Mutations: Potential Applications for Point-of-Care Genotypic Resistance Testing

    PubMed Central

    Rhee, Soo-Yon; Jordan, Michael R.; Raizes, Elliot; Chua, Arlene; Parkin, Neil; Kantor, Rami; Van Zyl, Gert U.; Mukui, Irene; Hosseinipour, Mina C.; Frenkel, Lisa M.; Ndembi, Nicaise; Hamers, Raph L.; Rinke de Wit, Tobias F.; Wallis, Carole L.; Gupta, Ravindra K.; Fokam, Joseph; Zeh, Clement; Schapiro, Jonathan M.; Carmona, Sergio; Katzenstein, David; Tang, Michele; Aghokeng, Avelin F.; De Oliveira, Tulio; Wensing, Annemarie M. J.; Gallant, Joel E.; Wainberg, Mark A.; Richman, Douglas D.; Fitzgibbon, Joseph E.; Schito, Marco; Bertagnolio, Silvia; Yang, Chunfu; Shafer, Robert W.

    2015-01-01

    The increasing prevalence of acquired and transmitted HIV-1 drug resistance is an obstacle to successful antiretroviral therapy (ART) in the low- and middle-income countries (LMICs) hardest hit by the HIV-1 pandemic. Genotypic drug resistance testing could facilitate the choice of initial ART in areas with rising transmitted drug resistance (TDR) and enable care-providers to determine which individuals with virological failure (VF) on a first- or second-line ART regimen require a change in treatment. An inexpensive near point-of-care (POC) genotypic resistance test would be useful in settings where the resources, capacity, and infrastructure to perform standard genotypic drug resistance testing are limited. Such a test would be particularly useful in conjunction with the POC HIV-1 viral load tests that are currently being introduced in LMICs. A POC genotypic resistance test is likely to involve the use of allele-specific point mutation assays for detecting drug-resistance mutations (DRMs). This study proposes that two major nucleoside reverse transcriptase inhibitor (NRTI)-associated DRMs (M184V and K65R) and four major NNRTI-associated DRMs (K103N, Y181C, G190A, and V106M) would be the most useful for POC genotypic resistance testing in LMIC settings. One or more of these six DRMs was present in 61.2% of analyzed virus sequences from ART-naïve individuals with intermediate or high-level TDR and 98.8% of analyzed virus sequences from individuals on a first-line NRTI/NNRTI-containing regimen with intermediate or high-level acquired drug resistance. The detection of one or more of these DRMs in an ART-naïve individual or in a individual with VF on a first-line NRTI/NNRTI-containing regimen may be considered an indication for a protease inhibitor (PI)-containing regimen or closer virological monitoring based on cost-effectiveness or country policy. PMID:26717411

  12. HIV-1 Drug Resistance Mutations: Potential Applications for Point-of-Care Genotypic Resistance Testing.

    PubMed

    Rhee, Soo-Yon; Jordan, Michael R; Raizes, Elliot; Chua, Arlene; Parkin, Neil; Kantor, Rami; Van Zyl, Gert U; Mukui, Irene; Hosseinipour, Mina C; Frenkel, Lisa M; Ndembi, Nicaise; Hamers, Raph L; Rinke de Wit, Tobias F; Wallis, Carole L; Gupta, Ravindra K; Fokam, Joseph; Zeh, Clement; Schapiro, Jonathan M; Carmona, Sergio; Katzenstein, David; Tang, Michele; Aghokeng, Avelin F; De Oliveira, Tulio; Wensing, Annemarie M J; Gallant, Joel E; Wainberg, Mark A; Richman, Douglas D; Fitzgibbon, Joseph E; Schito, Marco; Bertagnolio, Silvia; Yang, Chunfu; Shafer, Robert W

    2015-01-01

    The increasing prevalence of acquired and transmitted HIV-1 drug resistance is an obstacle to successful antiretroviral therapy (ART) in the low- and middle-income countries (LMICs) hardest hit by the HIV-1 pandemic. Genotypic drug resistance testing could facilitate the choice of initial ART in areas with rising transmitted drug resistance (TDR) and enable care-providers to determine which individuals with virological failure (VF) on a first- or second-line ART regimen require a change in treatment. An inexpensive near point-of-care (POC) genotypic resistance test would be useful in settings where the resources, capacity, and infrastructure to perform standard genotypic drug resistance testing are limited. Such a test would be particularly useful in conjunction with the POC HIV-1 viral load tests that are currently being introduced in LMICs. A POC genotypic resistance test is likely to involve the use of allele-specific point mutation assays for detecting drug-resistance mutations (DRMs). This study proposes that two major nucleoside reverse transcriptase inhibitor (NRTI)-associated DRMs (M184V and K65R) and four major NNRTI-associated DRMs (K103N, Y181C, G190A, and V106M) would be the most useful for POC genotypic resistance testing in LMIC settings. One or more of these six DRMs was present in 61.2% of analyzed virus sequences from ART-naïve individuals with intermediate or high-level TDR and 98.8% of analyzed virus sequences from individuals on a first-line NRTI/NNRTI-containing regimen with intermediate or high-level acquired drug resistance. The detection of one or more of these DRMs in an ART-naïve individual or in a individual with VF on a first-line NRTI/NNRTI-containing regimen may be considered an indication for a protease inhibitor (PI)-containing regimen or closer virological monitoring based on cost-effectiveness or country policy. PMID:26717411

  13. Kinetic Results for Mutations of Conserved Residues H304 and R309 of Human Sulfite Oxidase Point to Mechanistic Complexities

    PubMed Central

    Davis, Amanda C.; Johnson-Winters, Kayunta; Arnold, Anna R.; Tollin, Gordon; Enemark, John H.

    2014-01-01

    Several point mutations in the gene of human sulfite oxidase (hSO) result in isolated sulfite oxidase deficiency, an inherited metabolic disorder. Three conserved residues (H304, R309, K322) are hydrogen bonded to the phosphate group of the molybdenum cofactor, and the R309H and K322R mutations are responsible for isolated sulfite oxidase deficiency. The kinetic effects of the K322R mutation have been previously reported (Rajapakshe et al. 2012, Chem. Biodiversity 9, 1621-1634); here we investigate several mutants of H304 and R309 by steady-state kinetics, laser flash photolysis studies of intramolecular electron transfer (IET), and spectroelectrochemistry. An unexpected result is that all of the mutants show decreased rates of IET but increased steady-state rates of catalysis. However, in all cases the rate of IET is greater than the overall turnover rate, showing that IET is not the rate determining step for any of the mutations. PMID:24968320

  14. Diverse mutational pathways converge on saturable chloroquine transport via the malaria parasite’s chloroquine resistance transporter

    PubMed Central

    Summers, Robert L.; Dave, Anurag; Dolstra, Tegan J.; Bellanca, Sebastiano; Marchetti, Rosa V.; Nash, Megan N.; Richards, Sashika N.; Goh, Valerie; Schenk, Robyn L.; Stein, Wilfred D.; Kirk, Kiaran; Sanchez, Cecilia P.; Lanzer, Michael; Martin, Rowena E.

    2014-01-01

    Mutations in the chloroquine resistance transporter (PfCRT) are the primary determinant of chloroquine (CQ) resistance in the malaria parasite Plasmodium falciparum. A number of distinct PfCRT haplotypes, containing between 4 and 10 mutations, have given rise to CQ resistance in different parts of the world. Here we present a detailed molecular analysis of the number of mutations (and the order of addition) required to confer CQ transport activity upon the PfCRT as well as a kinetic characterization of diverse forms of PfCRT. We measured the ability of more than 100 variants of PfCRT to transport CQ when expressed at the surface of Xenopus laevis oocytes. Multiple mutational pathways led to saturable CQ transport via PfCRT, but these could be separated into two main lineages. Moreover, the attainment of full activity followed a rigid process in which mutations had to be added in a specific order to avoid reductions in CQ transport activity. A minimum of two mutations sufficed for (low) CQ transport activity, and as few as four conferred full activity. The finding that diverse PfCRT variants are all limited in their capacity to transport CQ suggests that resistance could be overcome by reoptimizing the CQ dosage. PMID:24728833

  15. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria.

    PubMed Central

    Peterson, D S; Walliker, D; Wellems, T E

    1988-01-01

    Analysis of a genetic cross of Plasmodium falciparum and of independent parasite isolates from Southeast Asia, Africa, and South America indicates that resistance to pyrimethamine, an antifolate used in the treatment of malaria, results from point mutations in the gene encoding dihydrofolate reductase-thymidylate synthase (EC 1.5.1.3 and EC 2.1.1.45, respectively). Parasites having a mutation from Thr-108/Ser-108 to Asn-108 in DHFR-TS are resistant to the drug. The Asn-108 mutation occurs in a region analogous to the C alpha-helix bordering the active site cavity of bacterial, avian, and mammalian enzymes. Additional point mutations (Asn-51 to Ile-51 and Cys-59 to Arg-59) are associated with increased pyrimethamine resistance and also occur at sites expected to border the active site cavity. Analogies with known inhibitor/enzyme structures from other organisms suggest that the point mutations occur where pyrimethamine contacts the enzyme and may act by inhibiting binding of the drug. Images PMID:2904149

  16. High rate of A2142G point mutation associated with clarithromycin resistance among Iranian Helicobacter pylori clinical isolates.

    PubMed

    Khashei, Reza; Dara, Mahintaj; Bazargani, Abdollah; Bagheri Lankarani, Kamran; Taghavi, Alireza; Moeini, Maryam; Dehghani, Behzad; Sohrabi, Maryam

    2016-09-01

    This study aimed to investigate the clarithromycin resistance and its associated molecular mechanisms among Helicobacter pylori isolates from dyspeptic patients in Shiraz, Iran. From January to May 2014, 100 H. pylori strains were isolated from patients with gastroduodenal disorders. The resistance to clarithromycin was quantitatively evaluated, using Epsilometer (E-test) method. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed on all the isolates to detect A2143G and A2142G mutations in 23S rRNA gene. The H. pylori isolation rate was found to be 31.4%. E-test showed that 20% of isolates were resistant to clarithromycin (MIC ≥ 1 mg/L). MIC of clarithromycin ranged between 0.016 and 24 mg/L. Findings of PCR-RFLP showed that the A2142G was the most (90%) frequently point mutation, followed by the A2143G (10%). No statistically significant difference was found between H. pylori clarithromycin resistance point mutations and patients' gender or age. To the best of our knowledge, this is the first report of high frequency of A2142G point mutation in Iran and probably in other regions of the world. Considering the increasing trend of H. pylori resistance to clarithromycin due to these mutations, it is crucial to investigate the new therapeutic approaches against H. pylori infection. PMID:27357065

  17. Leber's hereditary optic neuroretinopathy (LHON) associated with mitochondrial DNA point mutation G11778A in two Croatian families.

    PubMed

    Martin-Kleiner, Irena; Gabrilovac, Jelka; Bradvica, Mario; Vidović, Tomislav; Cerovski, Branimir; Fumić, Ksenija; Boranić, Milivoj

    2006-03-01

    Leber's hereditary optic neuroretinopathy (LHON) is manifested as a bilateral acute or subacute loss of central vision due to optic atrophy. It is linked to point mutations of mitochondrial DNA, which is inherited maternally. The most common mitochondrial DNA point mutations associated with LHON are G3460A, G11778A and T14484C. These mutations are linked with the defects of subunits of the complex I (NADH-dehydrogenase-ubiquinone reductase) in mitochondria. The G11778A mitochondrial DNA point mutation is manifested by a severe visual impairment. In this paper two Croatian families with the LHON G11778A mutation are presented. Three LHON patients from two families were younger males which had the visual acuity of 0.1 or below, the ophthalmoscopy revealed telangiectatic microangiopathy and papilloedema, while Goldmann kinetic perimetry showed a central scotoma. The mothers and female relatives were LHON mutants without symptoms, whereas their sons suffered from a severe visual impairment. Molecular diagnosis helps to explain the cause of LHON disease.

  18. Point mutation in essential genes with loss or mutation of the second allele: relevance to the retention of tumor-specific antigens.

    PubMed

    Beck-Engeser, G B; Monach, P A; Mumberg, D; Yang, F; Wanderling, S; Schreiber, K; Espinosa, R; Le Beau, M M; Meredith, S C; Schreiber, H

    2001-08-01

    Antigens that are tumor specific yet retained by tumor cells despite tumor progression offer stable and specific targets for immunologic and possibly other therapeutic interventions. Therefore, we have studied two CD4(+) T cell-recognized tumor-specific antigens that were retained during evolution of two ultraviolet-light-induced murine cancers to more aggressive growth. The antigens are ribosomal proteins altered by somatic tumor-specific point mutations, and the progressor (PRO) variants lack the corresponding normal alleles. In the first tumor, 6132A-PRO, the antigen is encoded by a point-mutated L9 ribosomal protein gene. The tumor lacks the normal L9 allele because of an interstitial deletion from chromosome 5. In the second tumor, 6139B-PRO, both alleles of the L26 gene have point mutations, and each encodes a different tumor-specific CD4(+) T cell-recognized antigen. Thus, for both L9 and L26 genes, we observe "two hit" kinetics commonly observed in genes suppressing tumor growth. Indeed, reintroduction of the lost wild-type L9 allele into the 6132A-PRO variant suppressed the growth of the tumor cells in vivo. Since both L9 and L26 encode proteins essential for ribosomal biogenesis, complete loss of the tumor-specific target antigens in the absence of a normal allele would abrogate tumor growth.

  19. Sdt97: A Point Mutation in the 5′ Untranslated Region Confers Semidwarfism in Rice

    PubMed Central

    Tong, Jiping; Han, Zhengshu; Han, Aonan; Liu, Xuejun; Zhang, Shiyong; Fu, Binying; Hu, Jun; Su, Jingping; Li, Shaoqing; Wang, Shengjun; Zhu, Yingguo

    2016-01-01

    Semidwarfism is an important agronomic trait in rice breeding programs. The semidwarf mutant gene Sdt97 was previously described. However, the molecular mechanism underlying the mutant is yet to be elucidated. In this study, we identified the mutant gene by a map-based cloning method. Using a residual heterozygous line (RHL) population, Sdt97 was mapped to the long arm of chromosome 6 in the interval of nearly 60 kb between STS marker N6 and SNP marker N16 within the PAC clone P0453H04. Sequencing of the candidate genes in the target region revealed that a base transversion from G to C occurred in the 5′ untranslated region of Sdt97. qRT-PCR results confirmed that the transversion induced an obvious change in the expression pattern of Sdt97 at different growth and developmental stages. Plants transgenic for Sdt97 resulted in the restoration of semidwarfism of the mutant phenotype, or displayed a greater dwarf phenotype than the mutant. Our results indicate that a point mutation in the 5′ untranslated region of Sdt97 confers semidwarfism in rice. Functional analysis of Sdt97 will open a new field of study for rice semidwarfism, and also expand our knowledge of the molecular mechanism of semidwarfism in rice. PMID:27172200

  20. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences.

  1. A Novel Point Mutation Promotes Growth Phase-Dependent Daptomycin Tolerance in Staphylococcus aureus

    PubMed Central

    Mechler, Lukas; Herbig, Alexander; Paprotka, Kerstin; Fraunholz, Martin; Nieselt, Kay

    2015-01-01

    Recalcitrance of genetically susceptible bacteria to antibiotic killing is a hallmark of bacterial drug tolerance. This phenomenon is prevalent in biofilms, persisters, and also planktonic cells and is associated with chronic or relapsing infections with pathogens such as Staphylococcus aureus. Here we report the in vitro evolution of an S. aureus strain that exhibits a high degree of nonsusceptibility to daptomycin as a result of cyclic challenges with bactericidal concentrations of the drug. This phenotype was attributed to stationary growth phase-dependent drug tolerance and was clearly distinguished from resistance. The underlying genetic basis was revealed to be an adaptive point mutation in the putative inorganic phosphate (Pi) transporter gene pitA. Drug tolerance caused by this allele, termed pitA6, was abrogated when the upstream gene pitR was inactivated. Enhanced tolerance toward daptomycin, as well as the acyldepsipeptide antibiotic ADEP4 and various combinations of other drugs, was accompanied by elevated intracellular concentrations of Pi and polyphosphate, which may reversibly interfere with critical cellular functions. The evolved strain displayed increased rates of survival within human endothelial cells, demonstrating the correlation of intracellular persistence and drug tolerance. These findings will be useful for further investigations of S. aureus drug tolerance, toward the development of additional antipersister compounds and strategies. PMID:26100694

  2. Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations

    PubMed Central

    Rouxel, Thierry; Grandaubert, Jonathan; Hane, James K.; Hoede, Claire; van de Wouw, Angela P.; Couloux, Arnaud; Dominguez, Victoria; Anthouard, Véronique; Bally, Pascal; Bourras, Salim; Cozijnsen, Anton J.; Ciuffetti, Lynda M.; Degrave, Alexandre; Dilmaghani, Azita; Duret, Laurent; Fudal, Isabelle; Goodwin, Stephen B.; Gout, Lilian; Glaser, Nicolas; Linglin, Juliette; Kema, Gert H. J.; Lapalu, Nicolas; Lawrence, Christopher B.; May, Kim; Meyer, Michel; Ollivier, Bénédicte; Poulain, Julie; Schoch, Conrad L.; Simon, Adeline; Spatafora, Joseph W.; Stachowiak, Anna; Turgeon, B. Gillian; Tyler, Brett M.; Vincent, Delphine; Weissenbach, Jean; Amselem, Joëlle; Quesneville, Hadi; Oliver, Richard P.; Wincker, Patrick; Balesdent, Marie-Hélène; Howlett, Barbara J.

    2011-01-01

    Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes and their mechanisms of diversification. In this study, we report the genome sequence of the phytopathogenic ascomycete Leptosphaeria maculans and characterize its repertoire of protein effectors. The L. maculans genome has an unusual bipartite structure with alternating distinct guanine and cytosine-equilibrated and adenine and thymine (AT)-rich blocks of homogenous nucleotide composition. The AT-rich blocks comprise one-third of the genome and contain effector genes and families of transposable elements, both of which are affected by repeat-induced point mutation, a fungal-specific genome defence mechanism. This genomic environment for effectors promotes rapid sequence diversification and underpins the evolutionary potential of the fungus to adapt rapidly to novel host-derived constraints. PMID:21326234

  3. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    SciTech Connect

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R.; Moxley, R.T.

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  4. Mapping Point Mutations in the Drosophila Rosy Locus Using Denaturing Gradient Gel Blots

    PubMed Central

    Gray, M.; Charpentier, A.; Walsh, K.; Wu, P.; Bender, W.

    1991-01-01

    Mutations within the rosy locus of Drosophila were mapped using blots of genomic DNA fragments separated on denaturing gradient gels. DNA sequence differences between otherwise identical small rosy DNA fragments were detected among the mutants as mobility shifts on the blots. Mutations were mapped to within a few hundred base pairs of rosy sequence in 100 of 130 mutants tested--a 77% detection rate. The sequence changes in 43 rosy mutations are presented; all but six of these were single base changes. Thirty-four of 36 sequenced mutations induced by the alkylating agents N-ethyl-N-nitrosourea and ethyl methanesulfonate were transitions. All of the mutations mapped in the rosy transcription unit. Twenty-three of the 43 sequenced mutations change the predicted rosy gene polypeptide sequence; the remainder would interrupt protein translation (17), or disrupt mRNA processing (3). PMID:1901817

  5. Comprehensive detection of diverse exon 19 deletion mutations of EGFR in lung Cancer by a single probe set.

    PubMed

    Bae, Jin Ho; Jo, Seong-Min; Kim, Hak-Sung

    2015-12-15

    Detection of exon 19 deletion mutation of EGFR, one of the most frequently occurring mutations in lung cancer, provides the crucial information for diagnosis and treatment guideline in non-small-cell lung cancer (NSCLC). Here, we demonstrate a simple and efficient method to detect various exon 19 deletion mutations of EGFR using a single probe set comprising of an oligo-quencher (oligo-Q) and a molecular beacon (MB). While the MB hybridizes to both the wild and mutant target DNA, the oligo-Q only binds to the wild target DNA, leading to a fluorescent signal in case of deletion mutation. This enables the comprehensive detection of the diverse exon 19 deletion mutations using a single probe set. We demonstrated the utility and efficiency of the approach by detecting the frequent exon 19 deletion mutations of EGFR through a real-time PCR and in situ fluorescence imaging. Our approach enabled the detection of genomic DNA as low as 0.02 ng, showing a detection limit of 2% in a heterogeneous DNA mixture, and could be used for detecting mutations in a single cell level. The present MB and oligo-Q dual probe system can be used for diagnosis and treatment guideline in NSCLC.

  6. Post-zygotic Point Mutations Are an Underrecognized Source of De Novo Genomic Variation

    PubMed Central

    Acuna-Hidalgo, Rocio; Bo, Tan; Kwint, Michael P.; van de Vorst, Maartje; Pinelli, Michele; Veltman, Joris A.; Hoischen, Alexander; Vissers, Lisenka E.L.M.; Gilissen, Christian

    2015-01-01

    De novo mutations are recognized both as an important source of genetic variation and as a prominent cause of sporadic disease in humans. Mutations identified as de novo are generally assumed to have occurred during gametogenesis and, consequently, to be present as germline events in an individual. Because Sanger sequencing does not provide the sensitivity to reliably distinguish somatic from germline mutations, the proportion of de novo mutations that occur somatically rather than in the germline remains largely unknown. To determine the contribution of post-zygotic events to de novo mutations, we analyzed a set of 107 de novo mutations in 50 parent-offspring trios. Using four different sequencing techniques, we found that 7 (6.5%) of these presumed germline de novo mutations were in fact present as mosaic mutations in the blood of the offspring and were therefore likely to have occurred post-zygotically. Furthermore, genome-wide analysis of “de novo” variants in the proband led to the identification of 4/4,081 variants that were also detectable in the blood of one of the parents, implying parental mosaicism as the origin of these variants. Thus, our results show that an important fraction of de novo mutations presumed to be germline in fact occurred either post-zygotically in the offspring or were inherited as a consequence of low-level mosaicism in one of the parents. PMID:26054435

  7. Diverse mutations in patients with Menkes disease often lead to exon skipping

    SciTech Connect

    Das, S.; Levinson, Levinson, B.; Whitney, S.; Vulpe, C.; Packman, S.; Gitschier, J.

    1994-11-01

    Fibroblast cultures from 12 unrelated patients with classical Menkes disease were analyzed for mutations in the MNK gene, by reverse transcription-PCR (RT-PCR) and chemical cleavage mismatch detection. Mutations were observed in 10 patients, and in each case a different mutation was present. All of the mutations would be predicted to have adverse effects on protein expression. Mutations that resulted in splicing abnormalities, detected by RT-PCR alone, were observed in six patients and included two splice-site changes, a nonsense mutation, a missense mutation, a small duplication, and a small deletion. Chemical cleavage analysis of the remaining six patients revealed the presence of one missense mutation. A valine/leucine polymorphism was also observed. These findings, combined with the prior observation of deletions in 15%-20% of Menkes patients, suggest that Southern blot hybridization and RT-PCR will identify mutations in the majority of patients. 26 refs., 3 figs., 2 tabs.

  8. Novel point mutations in the ERG11 gene in clinical isolates of azole resistant Candida species.

    PubMed

    Silva, Danielly Beraldo dos Santos; Rodrigues, Luana Mireli Carbonera; Almeida, Adriana Araújo de; Oliveira, Kelly Mari Pires de; Grisolia, Alexéia Barufatti

    2016-03-01

    The azoles are the class of medications most commonly used to fight infections caused by Candida sp. Typically, resistance can be attributed to mutations in ERG11 gene (CYP51) which encodes the cytochrome P450 14α-demethylase, the primary target for the activity of azoles. The objective of this study was to identify mutations in the coding region of theERG11 gene in clinical isolates of Candida species known to be resistant to azoles. We identified three new synonymous mutations in the ERG11 gene in the isolates of Candida glabrata (C108G, C423T and A1581G) and two new nonsynonymous mutations in the isolates of Candida krusei--A497C (Y166S) and G1570A (G524R). The functional consequence of these nonsynonymous mutations was predicted using evolutionary conservation scores. The G524R mutation did not have effect on 14α-demethylase functionality, while the Y166S mutation was found to affect the enzyme. This observation suggests a possible link between the mutation and dose-dependent sensitivity to voriconazole in the clinical isolate of C. krusei. Although the presence of the Y166S in phenotype of reduced azole sensitivity observed in isolate C. krusei demands investigation, it might contribute to the search of new therapeutic agents against resistant Candida isolates. PMID:26982177

  9. Novel point mutations in the ERG11 gene in clinical isolates of azole resistant Candida species.

    PubMed

    Silva, Danielly Beraldo dos Santos; Rodrigues, Luana Mireli Carbonera; Almeida, Adriana Araújo de; Oliveira, Kelly Mari Pires de; Grisolia, Alexéia Barufatti

    2016-03-01

    The azoles are the class of medications most commonly used to fight infections caused by Candida sp. Typically, resistance can be attributed to mutations in ERG11 gene (CYP51) which encodes the cytochrome P450 14α-demethylase, the primary target for the activity of azoles. The objective of this study was to identify mutations in the coding region of theERG11 gene in clinical isolates of Candida species known to be resistant to azoles. We identified three new synonymous mutations in the ERG11 gene in the isolates of Candida glabrata (C108G, C423T and A1581G) and two new nonsynonymous mutations in the isolates of Candida krusei--A497C (Y166S) and G1570A (G524R). The functional consequence of these nonsynonymous mutations was predicted using evolutionary conservation scores. The G524R mutation did not have effect on 14α-demethylase functionality, while the Y166S mutation was found to affect the enzyme. This observation suggests a possible link between the mutation and dose-dependent sensitivity to voriconazole in the clinical isolate of C. krusei. Although the presence of the Y166S in phenotype of reduced azole sensitivity observed in isolate C. krusei demands investigation, it might contribute to the search of new therapeutic agents against resistant Candida isolates.

  10. Point mutations associated with organophosphate and carbamate resistance in Chinese strains of Culex pipiens quinquefasciatus (Diptera: Culicidae).

    PubMed

    Zhao, Minghui; Dong, Yande; Ran, Xin; Wu, Zhiming; Guo, Xiaoxia; Zhang, Yingmei; Xing, Dan; Yan, Ting; Wang, Gang; Zhu, Xiaojuan; Zhang, Hengduan; Li, Chunxiao; Zhao, Tongyan

    2014-01-01

    Acetylcholinesterase resistance has been well documented in many insects, including several mosquito species. We tested the resistance of five wild, Chinese strains of the mosquito Culex pipiens quinquefasciatus to two kinds of pesticides, dichlorvos and propoxur. An acetylcholinesterase gene (ace1) was cloned and sequenced from a pooled sample of mosquitoes from these five strains and the amino acids of five positions were found to vary (V185M, G247S, A328S, A391T, and T682A). Analysis of the correlation between mutation frequencies and resistance levels (LC50) suggests that two point mutations, G247S (r2 = 0.732, P = 0.065) and A328S (r2 = 0.891, P = 0.016), are associated with resistance to propoxur but not to dichlorvos. Although the V185M mutation was not associated with either dichlorvos or propoxur resistance, its RS genotype frequency was correlated with propoxur resistance (r2 = 0.815, P = 0.036). And the HWE test showed the A328S mutation is linked with V185M, also with G247S mutation. This suggested that these three mutations may contribute synergistically to propoxur resistance. The T682A mutation was negatively correlated with propoxur (r2 = 0.788, P = 0.045) resistance. Knowledge of these mutations may help design strategies for managing pesticide resistance in wild mosquito populations.

  11. Exome sequencing identifies titin mutations causing hereditary myopathy with early respiratory failure (HMERF) in families of diverse ethnic origins

    PubMed Central

    2013-01-01

    Background Hereditary myopathy with early respiratory failure (HMERF) was described in several North European families and recently linked to a titin gene (TTN) mutation. We independently studied HMERF-like diseases with the purpose to identify the cause, refine diagnostic criteria, and estimate the frequency of this disease among myopathy patients of various ethnic origins. Methods Whole exome sequencing analysis was carried out in a large U.S. family that included seven members suffering from skeletal muscle weakness and respiratory failure. Subsequent mutation screening was performed in further 45 unrelated probands with similar phenotypes. Studies included muscle strength evaluation, nerve conduction studies and concentric needle EMG, respiratory function test, cardiologic examination, and muscle biopsy. Results A novel TTN p.Gly30150Asp mutation was identified in the highly conserved A-band of titin that co-segregated with the disease in the U.S. family. Screening of 45 probands initially diagnosed as myofibrillar myopathy (MFM) but excluded based on molecular screening for the known MFM genes led to the identification of a previously reported TTN p.Cys30071Arg mutation in one patient. This same mutation was also identified in a patient with suspected HMERF. The p.Gly30150Asp and p.Cys30071Arg mutations are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. Conclusions Missense mutations in TTN are the cause of HMERF in families of diverse origins. A comparison of phenotypic features of HMERF caused by the three known TTN mutations in various populations allowed to emphasize distinct clinical/pathological features that can serve as the basis for diagnosis. The newly identified p.Gly30150Asp and the p.Cys30071Arg mutation are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. PMID:23514108

  12. Electrochemical detection of point mutation based on surface hybridization assay conjugated allele-specific polymerase chain reaction.

    PubMed

    Huang, Yong; Zhu, Jing; Li, Guiyin; Chen, Zhencheng; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2013-04-15

    In this work, we developed an electrochemical detection method based on allele-specific polymerase chain reaction (AS-PCR) and surface hybridization assay technique for the point mutation detection. A high-fidelity Vent(R)™(exo⁻) DNA polymerase, which eliminated the 3'→5' proofreading exonuclease activity by genetical engineering, was used to discriminate and extend the detection probe that perfectly matched with mutant target DNA and generate a redox-active DNA replica which folded into a molecular beacon structure by intramolecular hybridization. After hybridized with capture probe modified on gold electrode by self-assembly reaction, the redox tags can be closed to electrode, resulting in a substantial current with the maximized sensitivity for point mutation analysis. However, when there is an allele mismatch in the wild target DNA, and so no the redox-active replica DNA can be obtained. In this case, no remarkable current signal can be trigged. The proposed approach has been successfully implemented for the identification of single base mutation at the -28 position in human β-globin gene with a detection limit of 0.5 fM, demonstrating that this method provides a highly specific, sensitive and cost-efficient approach for point mutation detection.

  13. A single-point mutation enhances dual functionality of a scorpion toxin.

    PubMed

    Wang, Xueli; Gao, Bin; Zhu, Shunyi

    2016-01-01

    Scorpion venom represents a tremendous, hitherto partially explored peptide library that has been proven to be useful not only for understanding ion channels but also for drug design. MeuTXKα3 is a functionally unknown scorpion toxin-like peptide. Here we describe new transcripts of this gene arising from alternative polyadenylation and its biological function as well as a mutant with a single-point substitution at site 30. Native-like MeuTXKα3 and its mutant were produced in Escherichia coli and their toxic function against Drosophila Shaker K(+) channel and its mammalian counterparts (rKv1.1-rKv1.3) were assayed by two-electrode voltage clamp technique. The results show that MeuTXKα3 is a weak toxin with a wide-spectrum of activity on both Drosophila and mammalian K(+) channels. The substitution of a proline at site 30 by an asparagine, an evolutionarily conserved functional residue in the scorpion α-KTx family, led to an increased activity on rKv1.2 and rKv1.3 but a decreased activity on the Shaker channel without changing the potency on rKv1.1, suggesting a key role of this site in species selectivity of scorpion toxins. MeuTXKα3 was also active on a variety of bacteria with lethal concentrations ranging from 4.66 to 52.01μM and the mutant even had stronger activity on some of these bacterial species. To the best of our knowledge, this is the first report on a bi-functional short-chain peptide in the lesser Asian scorpion venom. Further extensive mutations of MeuTXKα3 at site 30 could help improve its K(+) channel-blocking and antibacterial functions.

  14. Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa

    PubMed Central

    Lewis, Zachary A.; Honda, Shinji; Khlafallah, Tamir K.; Jeffress, Jennifer K.; Freitag, Michael; Mohn, Fabio; Schübeler, Dirk; Selker, Eric U.

    2009-01-01

    Both RNAi-dependent and -independent mechanisms have been implicated in the establishment of heterochromatin domains, which may be stabilized by feedback loops involving chromatin proteins and modifications of histones and DNA. Neurospora crassa sports features of heterochromatin found in higher eukaryotes, namely cytosine methylation (5mC), methylation of histone H3 lysine 9 (H3K9me), and heterochromatin protein 1 (HP1), and is a model to investigate heterochromatin establishment and maintenance. We mapped the distribution of HP1, 5mC, H3K9me3, and H3K4me2 at 100 bp resolution and explored their interplay. HP1, H3K9me3, and 5mC were extensively co-localized and defined 44 heterochromatic domains on linkage group VII, all relics of repeat-induced point mutation. Interestingly, the centromere was found in an ∼350 kb heterochromatic domain with no detectable H3K4me2. 5mC was not found in genes, in contrast to the situation in plants and animals. H3K9me3 is required for HP1 localization and DNA methylation in N. crassa. In contrast, we found that localization of H3K9me3 was independent of 5mC or HP1 at virtually all heterochromatin regions. In addition, we observed complete restoration of DNA methylation patterns after depletion and reintroduction of the H3K9 methylation machinery. These data show that A:T-rich RIP'd DNA efficiently directs methylation of H3K9, which in turn, directs methylation of associated cytosines. PMID:19092133

  15. Fatty acid analogue N-arachidonoyl taurine restores function of IKs channels with diverse long QT mutations

    PubMed Central

    Liin, Sara I; Larsson, Johan E; Barro-Soria, Rene; Bentzen, Bo Hjorth; Larsson, H Peter

    2016-01-01

    About 300 loss-of-function mutations in the IKs channel have been identified in patients with Long QT syndrome and cardiac arrhythmia. How specific mutations cause arrhythmia is largely unknown and there are no approved IKs channel activators for treatment of these arrhythmias. We find that several Long QT syndrome-associated IKs channel mutations shift channel voltage dependence and accelerate channel closing. Voltage-clamp fluorometry experiments and kinetic modeling suggest that similar mutation-induced alterations in IKs channel currents may be caused by different molecular mechanisms. Finally, we find that the fatty acid analogue N-arachidonoyl taurine restores channel gating of many different mutant channels, even though the mutations are in different domains of the IKs channel and affect the channel by different molecular mechanisms. N-arachidonoyl taurine is therefore an interesting prototype compound that may inspire development of future IKs channel activators to treat Long QT syndrome caused by diverse IKs channel mutations. DOI: http://dx.doi.org/10.7554/eLife.20272.001 PMID:27690226

  16. The Molecular Basis of Muscular Dystrophy in the mdx Mouse: A Point Mutation

    NASA Astrophysics Data System (ADS)

    Sicinski, Piotr; Geng, Yan; Ryder-Cook, Allan S.; Barnard, Eric A.; Darlison, Mark G.; Barnard, Pene J.

    1989-06-01

    The mdx mouse is an X-linked myopathic mutant, an animal model for human Duchenne muscular dystrophy. In both mouse and man the mutations lie within the dystrophin gene, but the phenotypic differences of the disease in the two species confer much interest on the molecular basis of the mdx mutation. The complementary DNA for mouse dystrophin has been cloned, and the sequence has been used in the polymerase chain reaction to amplify normal and mdx dystrophin transcripts in the area of the mdx mutation. Sequence analysis of the amplification products showed that the mdx mouse has a single base substitution within an exon, which causes premature termination of the polypeptide chain.

  17. Congenital adrenal hypoplasia: clinical spectrum, experience with hormonal diagnosis, and report on new point mutations of the DAX-1 gene.

    PubMed

    Peter, M; Viemann, M; Partsch, C J; Sippell, W G

    1998-08-01

    X-linked congenital adrenal hypoplasia (AHC) is a rare developmental disorder of the human adrenal cortex and is caused by deletion or mutation of the DAX-1 gene, a recently discovered member of the nuclear hormone receptor superfamily. Hypogonadotropic hypogonadism is frequently associated with AHC. AHC occurs as part of a contiguous gene syndrome together with glycerol kinase deficiency (GKD) and Duchenne's muscular dystrophy. The present series, collected over the past 2 decades, includes 18 AHC boys from 16 families: 4 with AHC, GKD, and Duchenne's muscular dystrophy; 2 with AHC and GKD; and 12 with AHC (5 young adults with hypogonadotropic hypogonadism). Most of the boys presented with salt wasting and hyperpigmentation during the neonatal period. Plasma steroid determinations performed in the first weeks of life often showed confusing results, probably caused by steroids produced in the neonates' persisting fetocortex. Aldosterone deficiency usually preceded cortisol deficiency, which explains why the patients more often presented with salt-wasting rather than with hypoglycemic symptoms. An ACTH test was often necessary to detect cortisol deficiency in the very young infants. In some patients, serial testing was necessary to establish the correct diagnosis. In 4 boys studied during the first 3 months after birth, we found pubertal LH, FSH, and testosterone plasma levels indicating postnatal transient activation of the hypothalamic-pituitary-gonadal axis as in normal boys. Previous studies have shown that the DAX-1 gene is deleted in the AHC patients with a contiguous gene syndrome and is mutated in nondeletion patients. Most of the point mutations identified in AHC patients were frameshift mutations and stop mutations. In the 15 patients available for molecular analysis of the DAX-1 gene, there were large deletions in 6 patients and point mutations in another 7 patients. All of the point mutations identified in the present study resulted in a nonfunctional

  18. Identification of a Novel GJA8 (Cx50) Point Mutation Causes Human Dominant Congenital Cataracts

    NASA Astrophysics Data System (ADS)

    Ge, Xiang-Lian; Zhang, Yilan; Wu, Yaming; Lv, Jineng; Zhang, Wei; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-02-01

    Hereditary cataracts are clinically and genetically heterogeneous lens diseases that cause a significant proportion of visual impairment and blindness in children. Human cataracts have been linked with mutations in two genes, GJA3 and GJA8, respectively. To identify the causative mutation in a family with hereditary cataracts, family members were screened for mutations by PCR for both genes. Sequencing the coding regions of GJA8, coding for connexin 50, revealed a C > A transversion at nucleotide 264, which caused p.P88T mutation. To dissect the molecular consequences of this mutation, plasmids carrying wild-type and mutant mouse ORFs of Gja8 were generated and ectopically expressed in HEK293 cells and human lens epithelial cells, respectively. The recombinant proteins were assessed by confocal microscopy and Western blotting. The results demonstrate that the molecular consequences of the p.P88T mutation in GJA8 include changes in connexin 50 protein localization patterns, accumulation of mutant protein, and increased cell growth.

  19. A new point mutation in the iron-sulfur subunit of succinate dehydrogenase confers resistance to boscalid in Sclerotinia sclerotiorum.

    PubMed

    Wang, Yong; Duan, Yabing; Wang, Jianxin; Zhou, Mingguo

    2015-09-01

    Research has established that mutations in highly conserved amino acids of the succinate dehydrogenase (SDH) complex in various fungi confer SDH inhibitor (SDHI) resistance. For Sclerotinia sclerotiorum (Lib.) de Bary, a necrotrophic fungus with a broad host range and a worldwide distribution, boscalid resistance has been attributed to the mutation H132R in the highly conserved SdhD subunit protein of the SDH complex. In our previous study, however, only one point mutation, A11V in SdhB (GCA to GTA change in SdhB), was detected in S. sclerotiorum boscalid-resistant (BR) mutants. In the current study, replacement of the SdhB gene in a boscalid-sensitive (BS) S. sclerotiorum strain with the mutant SdhB gene conferred resistance. Compared with wild-type strains, BR and GSM (SdhB gene in the wild-type strain replaced by the mutant SdhB gene) mutants were more sensitive to osmotic stress, lacked the ability to produce sclerotia and exhibited lower expression of the pac1 gene. Importantly, the point mutation was not located in the highly conserved sequence of the iron-sulfur subunit of SDH. These results suggest that resistance based on non-conserved vs. conserved protein domains differs in mechanism. In addition to increasing our understanding of boscalid resistance in S. sclerotiorum, the new information will be useful for the development of alternative antifungal drugs.

  20. A new point mutation in the iron-sulfur subunit of succinate dehydrogenase confers resistance to boscalid in Sclerotinia sclerotiorum.

    PubMed

    Wang, Yong; Duan, Yabing; Wang, Jianxin; Zhou, Mingguo

    2015-09-01

    Research has established that mutations in highly conserved amino acids of the succinate dehydrogenase (SDH) complex in various fungi confer SDH inhibitor (SDHI) resistance. For Sclerotinia sclerotiorum (Lib.) de Bary, a necrotrophic fungus with a broad host range and a worldwide distribution, boscalid resistance has been attributed to the mutation H132R in the highly conserved SdhD subunit protein of the SDH complex. In our previous study, however, only one point mutation, A11V in SdhB (GCA to GTA change in SdhB), was detected in S. sclerotiorum boscalid-resistant (BR) mutants. In the current study, replacement of the SdhB gene in a boscalid-sensitive (BS) S. sclerotiorum strain with the mutant SdhB gene conferred resistance. Compared with wild-type strains, BR and GSM (SdhB gene in the wild-type strain replaced by the mutant SdhB gene) mutants were more sensitive to osmotic stress, lacked the ability to produce sclerotia and exhibited lower expression of the pac1 gene. Importantly, the point mutation was not located in the highly conserved sequence of the iron-sulfur subunit of SDH. These results suggest that resistance based on non-conserved vs. conserved protein domains differs in mechanism. In addition to increasing our understanding of boscalid resistance in S. sclerotiorum, the new information will be useful for the development of alternative antifungal drugs. PMID:25441450

  1. A novel type II collagen gene mutation in a family with spondyloepiphyseal dysplasia and extensive intrafamilial phenotypic diversity.

    PubMed

    Nakashima, Yasuharu; Sakamoto, Yuma; Nishimura, Gen; Ikegawa, Shiro; Iwamoto, Yukihide

    2016-01-01

    The purpose of this study was to describe a family with spondyloepiphyseal dysplasia caused by a novel type II collagen gene (COL2A1) mutation and the family's phenotypic diversity. Clinical and radiographic examinations of skeletal dysplasia were conducted on seven affected family members across two generations. The entire coding region of COL2A1, including the flanking intron regions, was analyzed with PCR and direct sequencing. The stature of the subjects ranged from extremely short to within normal height range. Hip deformity and advanced osteoarthritis were noted in all the subjects, ranging from severe coxa plana to mild acetabular dysplasia. Atlantoaxial subluxation combined with a hypoplastic odontoid process was found in three of the subjects. Various degrees of platyspondyly were confirmed in all subjects. Genetically, a novel COL2A1 mutation (c.1349G>C, p.Gly450Ala) was identified in all the affected family members; however, it was not present in the one unaffected family member tested. We described a family with spondyloepiphyseal dysplasia and a novel COL2A1 mutation (c.1349G>C, p.Gly450Ala). Phenotypes were diverse even among individuals with the same mutation and within the same family. PMID:27274858

  2. A novel type II collagen gene mutation in a family with spondyloepiphyseal dysplasia and extensive intrafamilial phenotypic diversity

    PubMed Central

    Nakashima, Yasuharu; Sakamoto, Yuma; Nishimura, Gen; Ikegawa, Shiro; Iwamoto, Yukihide

    2016-01-01

    The purpose of this study was to describe a family with spondyloepiphyseal dysplasia caused by a novel type II collagen gene (COL2A1) mutation and the family’s phenotypic diversity. Clinical and radiographic examinations of skeletal dysplasia were conducted on seven affected family members across two generations. The entire coding region of COL2A1, including the flanking intron regions, was analyzed with PCR and direct sequencing. The stature of the subjects ranged from extremely short to within normal height range. Hip deformity and advanced osteoarthritis were noted in all the subjects, ranging from severe coxa plana to mild acetabular dysplasia. Atlantoaxial subluxation combined with a hypoplastic odontoid process was found in three of the subjects. Various degrees of platyspondyly were confirmed in all subjects. Genetically, a novel COL2A1 mutation (c.1349G>C, p.Gly450Ala) was identified in all the affected family members; however, it was not present in the one unaffected family member tested. We described a family with spondyloepiphyseal dysplasia and a novel COL2A1 mutation (c.1349G>C, p.Gly450Ala). Phenotypes were diverse even among individuals with the same mutation and within the same family. PMID:27274858

  3. Diversity of [beta]-globin mutations in Israeli ethnic groups reflects recent historic events

    SciTech Connect

    Filon, D.; Oron, V.; Krichevski, S.; Shaag, A.; Goldfarb, A.; Aker, M.; Rachmilewitz, E.A.; Rund, D.; Oppenheim, A. )

    1994-05-01

    The authors characterized nearly 500 [beta]-thalassemia genes from the Israeli population representing a variety of ethnic subgroups. They found 28 different mutations in the [beta]-globin gene, including three mutations ([beta][sup S], [beta][sup C], and [beta][sup O-Arab]) causing hemoglobinopathies. Marked genetic heterogeneity was observed in both the Arab (20 mutations) and Jewish (17 mutations) populations. On the other hand, two ethnic isolates - Druze and Samaritans - had a single mutation each. Fifteen of the [beta]-thalassemia alleles are Mediterranean in type, 5 originated in Kurdistan, 2 are of Indian origin, and 2 sporadic alleles came from Europe. Only one mutant allele-nonsense codon 37-appears to be indigenous to Israel. While human habitation in Israel dates back to early prehistory, the present-day spectrum of [beta]-globin mutations can be largely explained by migration events that occurred in the past millennium. 26 refs., 2 figs., 3 tabs.

  4. Tribenuron-methyl resistance and mutation diversity of Pro197 in flixweed (Descurainia Sophia L.) accessions from China.

    PubMed

    Deng, Wei; Liu, Ming Jie; Yang, Qian; Mei, Yu; Li, Xue Feng; Zheng, Ming Qi

    2015-01-01

    Flixweed (Descurainia Sophia L.) is a problematic weed in winter wheat fields in China, which causes great loss of wheat yield. A total of 46 flixweed accessions from winter wheat-planting areas were collected and used for the survey of resistance to tribenuron-methyl and Pro197 mutation diversity. According to the "R" resistance rating system, 16 flixweed accessions have evolved resistance to tribenuron-methyl, 13 accessions have high risk of developing resistance to this herbicide and 17 accessions are susceptible. The mutation of Pro197 codon (CCT) changed proline (Pro) into leucine (Leu) (homozygous, RR), serine (Ser, RR), histidine (His, RR), threonine (Thr, RR), Pro/Leu (heterozygous, RS), Pro/Ser (RS), Pro/His, Pro/Thr (RS) and Pro/Tyr (RS). Among these amino acid changes, a Pro197-Pro/Tyr (heterozygous, RS) substitution caused by the mutation of two successive nucleotides was identified for the first time in resistant weed species. In addition, the Pro197-His and Pro197-Pro/His mutations have not been reported previously in flixweed. Finally, a CPAS marker was developed to identify flixweed plants with or without Pro197 mutation.

  5. Tribenuron-methyl resistance and mutation diversity of Pro197 in flixweed (Descurainia Sophia L.) accessions from China.

    PubMed

    Deng, Wei; Liu, Ming Jie; Yang, Qian; Mei, Yu; Li, Xue Feng; Zheng, Ming Qi

    2015-01-01

    Flixweed (Descurainia Sophia L.) is a problematic weed in winter wheat fields in China, which causes great loss of wheat yield. A total of 46 flixweed accessions from winter wheat-planting areas were collected and used for the survey of resistance to tribenuron-methyl and Pro197 mutation diversity. According to the "R" resistance rating system, 16 flixweed accessions have evolved resistance to tribenuron-methyl, 13 accessions have high risk of developing resistance to this herbicide and 17 accessions are susceptible. The mutation of Pro197 codon (CCT) changed proline (Pro) into leucine (Leu) (homozygous, RR), serine (Ser, RR), histidine (His, RR), threonine (Thr, RR), Pro/Leu (heterozygous, RS), Pro/Ser (RS), Pro/His, Pro/Thr (RS) and Pro/Tyr (RS). Among these amino acid changes, a Pro197-Pro/Tyr (heterozygous, RS) substitution caused by the mutation of two successive nucleotides was identified for the first time in resistant weed species. In addition, the Pro197-His and Pro197-Pro/His mutations have not been reported previously in flixweed. Finally, a CPAS marker was developed to identify flixweed plants with or without Pro197 mutation. PMID:25619914

  6. Identification of weak points prone for mutation in ferredoxin of Trichomonas vaginalis.

    PubMed

    Wiwanitkit, V

    2008-01-01

    Trichomonas vaginalis, the causative agent for human trichomoniasis, is a problematic sexually transmitted disease mainly in women. At present, metronidazole-resistant trichomoniasis is an infrequent but challenging problem with no universally successful treatment. Genetic mutation is believed to be an important factor leading to increasing drug resistance. Understanding the mutation status will help to design accurate strategies of therapy against mutant strains of T. vaginalis. The author performed a bioinformatic analysis to determine positions that tend to comply peptide motifs in the amino acid sequence of ferredoxin of T. vaginalis. Based on this study, the weak linkages in the studied protein can be identified and can be useful information for prediction of possible new mutations that can lead to drug resistance. In addition, the results from this study can be good information for further research on the diagnosis for mutants and new effective drug development. PMID:18445954

  7. The H1047R point mutation in p110 alpha changes the morphology of human colon HCT116 cancer cells

    PubMed Central

    Wan, G; Pehlke, C; Pepermans, R; Cannon, JL; Lidke, D; Rajput, A

    2015-01-01

    The class IA phosphatidylinositol 3-kinases (PI3K) is involved in controlling changes in cell morphology, which is a highly coordinated cellular event. This event is powered by actin filament polymerization and remodeling. The gain-of-function mutations in the catalytic subunit of p110α of class IA PI3K, which occur in up to one-third of human colorectal cancers (CRCs), are capable of causing dysregulation of cell signaling and thus may result in the alteration in cell morphology and motility and in turn cause cancer metastasis. In vivo studies have demonstrated that cell lines bearing the H1047R point mutation, the most frequent cancer-specific mutation in the kinase domain of p110α, are more metastatic than cells carrying wild-type p110α. In the current study, we show that the H1047R in p110α of PI3K decreases F-actin polymerization, increases the formation of filopodia and significantly changes the cell morphology in HCT116 cancer cells. The anti-apoptotic protein B-cell lymphoma 2 (Bcl-2), which is also involved in actin polymerization and cell migration, is downregulated by the H1047R mutation in p110α. Our data suggest that the H1047R mutation in PI3K is responsible for the rearrangement of the cytoskeleton, alteration in cell morphology and enhancing cell motility, and that Bcl-2 may be involved in the H1047R mutation-mediated morphological changes and increased migratory capability. PMID:27551473

  8. [Point mutations of genes encoding proteins involvedin RNA splicing in patients with myelodysplastic syndromes].

    PubMed

    Barańska, Marta; Czerwińska-Rybak, Joanna; Gil, Lidia; Komarnicki, Mieczysław

    2015-01-01

    The myelodysplastic syndromes (MDS) constitute heterogeneous group of clonal disorders, characterized by ineffective hematopoiesis, peripheral cytopenia and increased risk of acute myeloid leukemia development. Molecular mechanisms behind MDS have not been fully explained, however recent studies based on new technologies confirmed that epigenetic abnormalities and somatic mutation in the spliceasome machinery are crucial in pathogenesis of these diseases. Abnormal mRNA splicing (excision of intronic sequences from mRNA) has been found in over half of all MDS patients and resulted in accumulation of cytogenetical and molecular changes. The biological impact of splicing factor genes mutations has been evaluated only in a limited extend and current studies concentrate on analysis of MDS transcriptome. Molecular characteristic of classical and alternative splicing is presented in the paper, according to current knowledge. We review the most prominent findings from recent years concerning mutation in the spliceasome machinery with respect to MDS phenotype and disease prognosis. Perspectives in applying of novel diagnostic and therapeutic possibilities for myelodysplasia, based on spliceosome mutations identification are also presented.

  9. Point mutations in an epigenetic factor lead to multiple types of bone tumors: role of H3.3 histone variant in bone development and disease

    PubMed Central

    Kato, Shigeaki; Ishii, Takeaki; Kouzmenko, Alexander

    2015-01-01

    Coordinated post-translational modifications (PTMs) of nucleosomal histones emerge as a key mechanism of gene regulation by defining chromatin configuration. Patterns of histone modifications vary in different cells and constitute core elements of cell-specific epigenomes. Recently, in addition to canonical histone proteins produced during the S phase of cell cycle, several non-canonical histone variants have been identified and shown to express in a DNA replication-independent manner. These histone variants generate diversity in nucleosomal structures and add further complexity to mechanisms of epigenetic regulation. Cell-specific functions of histone variants remain to be determined. Several recent studies reported an association between some point mutations in the non-canonical histone H3.3 and particular types of brain and bone tumors. This suggests a possibility of differential physiological effects of histone variants in different cells and tissues, including bone. In this review, we outline the roles of histone variants and their PTMs in the epigenetic regulation of chromatin structure and discuss possible mechanisms of biological effects of the non-canonical histone mutations found in bone tumors on tumorigenesis in differentiating bone stem cells. PMID:26157578

  10. A valveless rotary microfluidic device for multiplex point mutation identification based on ligation-rolling circle amplification.

    PubMed

    Heo, Hyun Young; Chung, Soyi; Kim, Yong Tae; Kim, Do Hyun; Seo, Tae Seok

    2016-04-15

    Genetic variations such as single nucleotide polymorphism (SNP) and point mutations are important biomarkers to monitor disease prognosis and diagnosis. In this study, we developed a novel rotary microfluidic device which can perform multiplex SNP typing on the mutation sites of TP53 genes. The microdevice consists of three glass layers: a channel wafer, a Ti/Pt electrode-patterned resistance temperature detector (RTD) wafer, and a rotary plate in which twelve reaction chambers were fabricated. A series of sample injection, ligation-rolling circle amplification (L-RCA) reaction, and fluorescence detection of the resultant amplicons could be executed by rotating the top rotary plate, identifying five mutation points related with cancer prognosis. The use of the rotary plate eliminates the necessity of microvalves and micropumps to control the microfluidic flow in the channel, simplifying the chip design and chip operation for multiplex SNP detection. The proposed microdevice provides an advanced genetic analysis platform in terms of multiplexity, simplicity, and portability in the fields of biomedical diagnostics. PMID:26606304

  11. Dynamic Harmony Search with Polynomial Mutation Algorithm for Valve-Point Economic Load Dispatch

    PubMed Central

    Karthikeyan, M.; Sree Ranga Raja, T.

    2015-01-01

    Economic load dispatch (ELD) problem is an important issue in the operation and control of modern control system. The ELD problem is complex and nonlinear with equality and inequality constraints which makes it hard to be efficiently solved. This paper presents a new modification of harmony search (HS) algorithm named as dynamic harmony search with polynomial mutation (DHSPM) algorithm to solve ORPD problem. In DHSPM algorithm the key parameters of HS algorithm like harmony memory considering rate (HMCR) and pitch adjusting rate (PAR) are changed dynamically and there is no need to predefine these parameters. Additionally polynomial mutation is inserted in the updating step of HS algorithm to favor exploration and exploitation of the search space. The DHSPM algorithm is tested with three power system cases consisting of 3, 13, and 40 thermal units. The computational results show that the DHSPM algorithm is more effective in finding better solutions than other computational intelligence based methods. PMID:26491710

  12. The detection of pfcrt and pfmdr1 point mutations as molecular markers of chloroquine drug resistance, Pahang, Malaysia

    PubMed Central

    2012-01-01

    Background Malaria is still a public health problem in Malaysia with chloroquine (CQ) being the first-line drug in the treatment policy of uncomplicated malaria. There is a scarcity in information about the magnitude of Plasmodium falciparum CQ resistance. This study aims to investigate the presence of single point mutations in the P. falciparum chloroquine-resistance transporter gene (pfcrt) at codons 76, 271, 326, 356 and 371 and in P. falciparum multi-drug resistance-1 gene (pfmdr1) at codons 86 and 1246, as molecular markers of CQ resistance. Methods A total of 75 P. falciparum blood samples were collected from different districts of Pahang state, Malaysia. Single nucleotide polymorphisms in pfcrt gene (codons 76, 271, 326, 356 and 371) and pfmdr1 gene (codons 86 and 1246) were analysed by using mutation-specific nested PCR and restriction fragment length polymorphism (PCR-RFLP) methods. Results Mutations of pfcrt K76T and pfcrt R371I were the most prevalent among pfcrt gene mutations reported by this study; 52% and 77%, respectively. Other codons of the pfcrt gene and the positions 86 and 1246 of the pfmdr1 gene were found mostly of wild type. Significant associations of pfcrt K76T, pfcrt N326S and pfcrt I356T mutations with parasitaemia were also reported. Conclusion The high existence of mutant pfcrt T76 may indicate the low susceptibility of P. falciparum isolates to CQ in Peninsular Malaysia. The findings of this study establish baseline data on the molecular markers of P. falciparum CQ resistance, which may help in the surveillance of drug resistance in Peninsular Malaysia. PMID:22853645

  13. The identification of point mutations in Duchenne muscular dystrophy patients by using reverse-transcription PCR and the protein truncation test

    SciTech Connect

    Gardner, R.J.; Bobrow, M.; Roberts, R.G.

    1995-08-01

    The protein truncation test (PTT) is a mutation-detection method that monitors the integrity of the open reading frame (ORF). More than 60% of cases of Duchenne muscular dystrophy (DMD) result from gross frameshifting deletions in the dystrophin gene that are detectable by multiplex PCR system. It has become apparent that virtually all of the remaining DMD mutations also disrupt the translational reading frame, making the PTT a logical next step toward a comprehensive strategy for the identification of all DMD mutations. We report here a pilot study involving 22 patients and describe the mutations characterized. These constitute 12 point mutations or small insertions/deletions and 4 gross rearrangements. We also have a remaining five patients in whom there does not appear to be mutation in the ORF. We believe that reverse-transcription-PCR/PTT is an efficient method by which to screen for small mutations in DMD patients with no deletion. 29 refs., 2 figs., 3 tabs.

  14. Point mutations in the promoter region of the CYBB gene leading to mild chronic granulomatous disease.

    PubMed

    Weening, R S; De Boer, M; Kuijpers, T W; Neefjes, V M; Hack, W W; Roos, D

    2000-12-01

    Chronic granulomatous disease (CGD) is a clinical syndrome of recurrent bacterial and fungal infections caused by a rare disorder of phagocytic cells. In CGD, the phagocytes are unable to generate oxygen radicals after stimulation of these cells, due to a defect in the NADPH oxidase system. This NADPH oxidase is a multicomponent enzyme of at least four subunits, of which the beta-subunit of cytochrome b558, gp91-phox, is encoded by an X-linked gene (called CYBB). We report here five patients from two families; in each family we found a different mutation in the promoter region of CYBB. Both mutations prevented the expression of gp91-phox in the patients' neutrophils and thus caused inability of these cells to generate oxygen radicals. However, the mutations left the gp91-phox expression and the function of the NADPH oxidase in the patients' eosinophils intact. The relatively mild course of the CGD in these patients can probably be attributed to the fact that the eosinophils have retained their oxidative capacity. Furthermore, our results indicate that neutrophils and eosinophils differ in their regulation of gp91-phox expression.

  15. Phenotypic Switching in Mycoplasma gallisepticum Hemadsorption Is Governed by a High-Frequency, Reversible Point Mutation

    PubMed Central

    Winner, Florian; Markovà, Ivana; Much, Peter; Lugmair, Albin; Siebert-Gulle, Karin; Vogl, Gunther; Rosengarten, Renate; Citti, Christine

    2003-01-01

    Mycoplasma gallisepticum is a flask-shaped organism that commonly induces chronic respiratory disease in chickens and infectious sinusitis in turkeys. Phenotypic switching in M. gallisepticum hemadsorption (HA) was found to correlate with phase variation of the GapA cytadhesin concurrently with that of the CrmA protein, which exhibits cytadhesin-related features and is encoded by a gene located downstream of the gapA gene as part of the same transcription unit. In clones derived from strain Rlow, detailed genetic analyses further revealed that on-off switching in GapA expression is governed by a reversible base substitution occurring at the beginning of the gapA structural gene. In HA− variants, this event generates a stop codon that results in the premature termination of GapA translation and consequently affects the expression of CrmA. Sequences flanking the mutation spot do not feature any repeated motifs that could account for error-prone mutation via DNA slippage and the exact mechanism underlying this high-frequency mutational event remains to be elucidated. An HA− mutant deficient in producing CrmA, mHAD3, was obtained by disrupting the crmA gene by using transposition mutagenesis. Despite a fully functional gapA gene, the amount of GapA detected in this mutant was considerably lower than in HA+ clonal variants, suggesting that, in absence of CrmA, GapA might be subjected to a higher turnover. PMID:12595441

  16. Structural diversity of organochlorine compounds in groundwater affected by an industrial point source.

    PubMed

    Frische, Kerstin; Schwarzbauer, Jan; Ricking, Mathias

    2010-09-01

    Groundwater samples contaminated by an industrial point source were analysed in order to reveal the structural diversity of halogenated organic contaminants. Particular focus was laid on the metabolites and derivatives related to the pesticides DDT (2,2-bis(chlorophenyl)-1,1,1-trichlorethane) and lindane (γ-hexachlorocyclohexane). Additionally, a wide range of chlorinated and brominated xenobiotics were identified. These results represent a high degree of contamination with organochlorine compounds illustrating a considerable structural diversity in groundwater in the vicinity of the industrial plant. The polar DDT-metabolite DDA (2,2-bis(chlorophenyl)acetic acid), which has been neglected in water studies widely, represents the main DDT metabolite analysed in the water samples. Besides DDA, some unknown substances with structural relation to DDA and DDT were detected and identified, in detail 2,2-bis(4-chlorophenyl)acetic acid N-methyl amide (DDAMA) and 2,2-bis(4-chlorophenyl)acetic acid n-butyl ester (DDABE). As an overall implication of this study it has to be demanded that analysis of industrially affected ground waters have to be based on screening analysis for a comprehensive view on the state of pollution.

  17. Gene Coexpression Analyses Differentiate Networks Associated with Diverse Cancers Harboring TP53 Missense or Null Mutations

    PubMed Central

    Oros Klein, Kathleen; Oualkacha, Karim; Lafond, Marie-Hélène; Bhatnagar, Sahir; Tonin, Patricia N.; Greenwood, Celia M. T.

    2016-01-01

    In a variety of solid cancers, missense mutations in the well-established TP53 tumor suppressor gene may lead to the presence of a partially-functioning protein molecule, whereas mutations affecting the protein encoding reading frame, often referred to as null mutations, result in the absence of p53 protein. Both types of mutations have been observed in the same cancer type. As the resulting tumor biology may be quite different between these two groups, we used RNA-sequencing data from The Cancer Genome Atlas (TCGA) from four different cancers with poor prognosis, namely ovarian, breast, lung and skin cancers, to compare the patterns of coexpression of genes in tumors grouped according to their TP53 missense or null mutation status. We used Weighted Gene Coexpression Network analysis (WGCNA) and a new test statistic built on differences between groups in the measures of gene connectivity. For each cancer, our analysis identified a set of genes showing differential coexpression patterns between the TP53 missense- and null mutation-carrying groups that was robust to the choice of the tuning parameter in WGCNA. After comparing these sets of genes across the four cancers, one gene (KIR3DL2) consistently showed differential coexpression patterns between the null and missense groups. KIR3DL2 is known to play an important role in regulating the immune response, which is consistent with our observation that this gene's strongly-correlated partners implicated many immune-related pathways. Examining mutation-type-related changes in correlations between sets of genes may provide new insight into tumor biology. PMID:27536319

  18. Point mutations in firefly luciferase C-domain demonstrate its significance in green color of bioluminescence.

    PubMed

    Modestova, Yulia; Koksharov, Mikhail I; Ugarova, Natalia N

    2014-09-01

    Firefly luciferase is a two-domain enzyme that catalyzes the bioluminescent reaction of firefly luciferin oxidation. Color of the emitted light depends on the structure of the enzyme, yet the exact color-tuning mechanism remains unknown by now, and the role of the C-domain in it is rarely discussed, because a very few color-shifting mutations in the C-domain were described. Recently we reported a strong red-shifting mutation E457K in the C-domain; the bioluminescence spectra of this enzyme were independent of temperature or pH. In the present study we investigated the role of the residue E457 in the enzyme using the Luciola mingrelica luciferase with a thermostabilized N-domain as a parent enzyme for site-directed mutagenesis. We obtained a set of mutants and studied their catalytic properties, thermal stability and bioluminescence spectra. Experimental spectra were represented as a sum of two components (bioluminescence spectra of putative "red" and "green" emitters); λmax of these components were constant for all the mutants, but the ratio of these emitters was defined by temperature and mutations in the C-domain. We suggest that each emitter is stabilized by a specific conformation of the active site; thus, enzymes with two forms of the active site coexist in the reactive media. The rigid structure of the C-domain is crucial for maintaining the conformation corresponding to the "green" emitter. We presume that the emitters are the keto- and enol forms of oxyluciferin.

  19. HOW A SINGLE-POINT MUTATION IN HORSERADISH PEROXIDASE MARKEDLY ENHANCES ENANTIOSELECTIVITY

    PubMed Central

    Antipov, Eugene; Cho, Art E.; Klibanov, Alexander M.

    2009-01-01

    The effect of all possible mutations at position 178 on the enantioselectivity of yeast surface-bound horseradish peroxidase (HRP) toward chiral phenols has been investigated. In contrast to their wild-type predecessor, most HRP mutants are enantioselective, with the Arg178Glu variant exhibiting the greatest, 25-fold (S)/(R) preference. Using kinetic analysis of enzymatic oxidation of various substrate analogs and molecular modeling of enzyme-substrate complexes, this enantioselectivity enhancement is attributed to changes in the transition state energy due to electrostatic repulsion between the carboxylates of the enzyme's Glu178 and the substrate's (R)-enantiomer. PMID:19610634

  20. Whole exome sequencing identifies the first STRADA point mutation in a patient with polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome (PMSE).

    PubMed

    Bi, Weimin; Glass, Ian A; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Yang, Yaping; Sun, Angela

    2016-08-01

    Polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome (PMSE) is an ultra rare neurodevelopmental disorder characterized by severe, infantile-onset intractable epilepsy, neurocognitive delay, macrocephaly, and craniofacial dysmorphism. The molecular diagnosis of this condition has thus far only been made in 16 Old Order Mennonite patients carrying a homozygous 7 kb founder deletion of exons 9-13 of STRADA. We performed clinical whole exome sequencing (WES) on a 4-year-old Indian male with global developmental delay, history of failure to thrive, infantile spasms, repetitive behaviors, hypotonia, low muscle mass, marked joint laxity, and dysmorphic facial features including tall forehead, long face, arched eyebrows, small chin, wide mouth, and tented upper lip. A homozygous single nucleotide duplication, c.842dupA (p.D281fs), in exon 10 of STRADA was identified. Sanger sequencing confirmed the mutation in the individual and identified both parents as carriers. In light of the molecular discoveries, the patient's clinical phenotype was considered to be a good fit for PMSE. We identified for the first time a homozygous point mutation in STRADA causing PMSE. Additional bi-allelic mutations related to PMSE thus far have not been observed in Baylor ∼6,000 consecutive clinical WES cases, supporting the rarity of this disorder. Our findings may have treatment implications for the patient since previous studies have shown rapamycin as a potential therapeutic agent for the seizures and cognitive problems in PMSE patients. © 2016 Wiley Periodicals, Inc. PMID:27170158

  1. Combinatorial reshaping of a lipase structure for thermostability: additive role of surface stabilizing single point mutations.

    PubMed

    Kumar, Rakesh; Singh, Ranvir; Kaur, Jagdeep

    2014-05-16

    Thermostable lipases are of high priority for industrial applications. In the present study, targeted improvement of the thermostability of a lipase from metagenomic origin was examined by using a combinatorial protein engineering approach exploring additive effects of single amino acid substitutions. A variant (LipR5) was generated after combination of two thermostabilizing mutations (R214C & N355K). Thermostability of the variant enzyme was analyzed by half-life measurement and circular dichroism (CD). To assess whether catalytic properties were affected by mutation, the optimal reaction conditions were determined. The protein LipR5, displayed optimum activity at 50°C and pH 8.0. It showed two fold enhancement in thermostability (at 60°C) as compared to LipR3 (R214C) and nearly 168 fold enhancement as compared to parent enzyme (LipR1). Circular dichroism and fluorescence study suggest that the protein structure had become more rigid and stable to denaturation. Study of 3D model suggested that Lys355 was involved in formation of a Hydrogen bond with OE1 of Glu284. Lys355 was also making salt bridge with OE2 of Glu284. PMID:24751523

  2. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome.

    PubMed

    Eriksson, Maria; Brown, W Ted; Gordon, Leslie B; Glynn, Michael W; Singer, Joel; Scott, Laura; Erdos, Michael R; Robbins, Christiane M; Moses, Tracy Y; Berglund, Peter; Dutra, Amalia; Pak, Evgenia; Durkin, Sandra; Csoka, Antonei B; Boehnke, Michael; Glover, Thomas W; Collins, Francis S

    2003-05-15

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by features reminiscent of marked premature ageing. Here, we present evidence of mutations in lamin A (LMNA) as the cause of this disorder. The HGPS gene was initially localized to chromosome 1q by observing two cases of uniparental isodisomy of 1q-the inheritance of both copies of this material from one parent-and one case with a 6-megabase paternal interstitial deletion. Sequencing of LMNA, located in this interval and previously implicated in several other heritable disorders, revealed that 18 out of 20 classical cases of HGPS harboured an identical de novo (that is, newly arisen and not inherited) single-base substitution, G608G(GGC > GGT), within exon 11. One additional case was identified with a different substitution within the same codon. Both of these mutations result in activation of a cryptic splice site within exon 11, resulting in production of a protein product that deletes 50 amino acids near the carboxy terminus. Immunofluorescence of HGPS fibroblasts with antibodies directed against lamin A revealed that many cells show visible abnormalities of the nuclear membrane. The discovery of the molecular basis of this disease may shed light on the general phenomenon of human ageing.

  3. Identification of a Point Mutation Impairing the Binding between Aquaporin-4 and Neuromyelitis Optica Autoantibodies*

    PubMed Central

    Pisani, Francesco; Mola, Maria Grazia; Simone, Laura; Rosito, Stefania; Alberga, Domenico; Mangiatordi, Giuseppe Felice; Lattanzi, Gianluca; Nicolotti, Orazio; Frigeri, Antonio; Svelto, Maria; Nicchia, Grazia Paola

    2014-01-01

    Neuromyelitis optica (NMO) is characterized by the presence of pathogenic autoantibodies (NMO-IgGs) against supra-molecular assemblies of aquaporin-4 (AQP4), known as orthogonal array of particles (OAPs). NMO-IgGs have a polyclonal origin and recognize different conformational epitopes involving extracellular AQP4 loops A, C, and E. Here we hypothesize a pivotal role for AQP4 transmembrane regions (TMs) in epitope assembly. On the basis of multialignment analysis, mutagenesis, NMO-IgG binding, and cytotoxicity assay, we have disclosed the key role of aspartate 69 (Asp69) of TM2 for NMO-IgG epitope assembly. Mutation of Asp69 to histidine severely impairs NMO-IgG binding for 85.7% of the NMO patient sera analyzed here. Although Blue Native-PAGE, total internal reflection fluorescence microscopy, and water transport assays indicate that the OAP Asp69 mutant is similar in structure and function to the wild type, molecular dynamic simulations have revealed that the D69H mutation has the effect of altering the structural rearrangements of extracellular loop A. In conclusion, Asp69 is crucial for the spatial control of loop A, the particular molecular conformation of which enables the assembly of NMO-IgG epitopes. These findings provide additional clues for new strategies for NMO treatment and a wealth of information to better approach NMO pathogenesis. PMID:25239624

  4. A Point Mutation in PDGFRB Causes Autosomal-Dominant Penttinen Syndrome

    PubMed Central

    Johnston, Jennifer J.; Sanchez-Contreras, Monica Y.; Keppler-Noreuil, Kim M.; Sapp, Julie; Crenshaw, Molly; Finch, NiCole A.; Cormier-Daire, Valerie; Rademakers, Rosa; Sybert, Virginia P.; Biesecker, Leslie G.

    2015-01-01

    Penttinen syndrome is a distinctive disorder characterized by a prematurely aged appearance with lipoatrophy, epidermal and dermal atrophy along with hypertrophic lesions that resemble scars, thin hair, proptosis, underdeveloped cheekbones, and marked acro-osteolysis. All individuals have been simplex cases. Exome sequencing of an affected individual identified a de novo c.1994T>C p.Val665Ala variant in PDGFRB, which encodes the platelet-derived growth factor receptor β. Three additional unrelated individuals with this condition were shown to have the identical variant in PDGFRB. Distinct mutations in PDGFRB have been shown to cause infantile myofibromatosis, idiopathic basal ganglia calcification, and an overgrowth disorder with dysmorphic facies and psychosis, none of which overlaps with the clinical findings in Penttinen syndrome. We evaluated the functional consequence of this causative variant on the PDGFRB signaling pathway by transfecting mutant and wild-type cDNA into HeLa cells, and transfection showed ligand-independent constitutive signaling through STAT3 and PLCγ. Penttinen syndrome is a clinically distinct genetic condition caused by a PDGFRB gain-of-function mutation that is associated with a specific and unusual perturbation of receptor function. PMID:26279204

  5. Diversity and Convergence of Sodium Channel Mutations Involved in Resistance to Pyrethroids

    PubMed Central

    Rinkevich, Frank D.; Du, Yuzhe; Dong, Ke

    2013-01-01

    Pyrethroid insecticides target voltage-gated sodium channels, which are critical for electrical signaling in the nervous system. The intensive use of pyrethroids in controlling arthropod pests and disease vectors has led to many instances of pyrethroid resistance around the globe. In the past two decades, studies have identified a large number of sodium channel mutations that are associated with resistance to pyrethroids. The purpose of this review is to summarize both common and unique sodium channel mutations that have been identified in arthropod pests of importance to agriculture or human health. Identification of these mutations provides valuable molecular markers for resistance monitoring in the field and helped the discovery of the elusive pyrethroid receptor site(s) on the sodium channel. PMID:24019556

  6. Wide variety of point mutations in the H gene of Bombay and para-Bombay individuals that inactivate H enzyme.

    PubMed

    Kaneko, M; Nishihara, S; Shinya, N; Kudo, T; Iwasaki, H; Seno, T; Okubo, Y; Narimatsu, H

    1997-07-15

    by the combinatorial activity of two fucosyltransferases, the Lewis enzyme and the secretor enzyme, and the secretor status was solely determined by the secretor enzyme activity, not by H enzyme activity. Bombay individuals were confirmed to be homozygous for the inactivated H and Se genes. As expected from the very low frequency of Bombay and para-Bombay individuals in the population, ie, approximately one in two or 300,000, the H gene mutations were found to be very variable, unlike the cases of the point mutations in the other glycosyltransferase genes; the ABO genes, the Lewis gene, and the secretor gene.

  7. [SMN1 Gene Point Mutations in Type I-IV Proximal Spinal Muscular Atrophy Patients with a Single Copy of SMN1].

    PubMed

    2015-09-01

    Type I-IV proximal spinal muscular atrophy (SMA) is one of the most common autosomal-recessive diseas- es, which are characterized in the majority of cases by a severely disabling course. Proximal SMA results from mutations in the telomeric copy of SMN-SMN1 gene. Major SMN1 gene mutation types are deletions in the exons 7 and/or 8, which were revealed to be in the homozygous state in 95% of patients. Deletions in the in- dicated exons of SMN1 gene were revealed in a compound-heterozygous state in combination with intragenic point mutations in the remainder 5% of proximal SMA cases. In the present study, we conducted an analysis of point mutations in eight patients with type I-III proximal SMA phenotype, which had a deletion in 7-8- exons of SMN1 gene in the heterozygous state. We revealed seven different mutations, two of which (c.824G > C (p.Gly275A1a) and c.825-2A > T) are described here for the first time. In addition, mutation c.824G > C (p.Gly275A1a) was observed twice in the examined sample. In seven cases a heterozygous carrier of point mutations was one of the parents of the affected children (in six cases, the father; in one case, the mother). Only one mutation, c.43C > T (p.Gln15X), emerged de novo in a genital cell of the child's father. PMID:26606804

  8. Intrachromosomal Amplification, Locus Deletion and Point Mutation in the Aquaglyceroporin AQP1 Gene in Antimony Resistant Leishmania (Viannia) guyanensis

    PubMed Central

    Monte-Neto, Rubens; Laffitte, Marie-Claude N.; Leprohon, Philippe; Reis, Priscila; Frézard, Frédéric; Ouellette, Marc

    2015-01-01

    Background Antimony resistance complicates the treatment of infections caused by the parasite Leishmania. Methodology/Principal Findings Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR) mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1). Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion. Conclusions/Significance This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites. PMID:25679388

  9. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes.

    PubMed

    Henn, Brenna M; Botigué, Laura R; Peischl, Stephan; Dupanloup, Isabelle; Lipatov, Mikhail; Maples, Brian K; Martin, Alicia R; Musharoff, Shaila; Cann, Howard; Snyder, Michael P; Excoffier, Laurent; Kidd, Jeffrey M; Bustamante, Carlos D

    2016-01-26

    The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive. PMID:26712023

  10. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes

    PubMed Central

    Henn, Brenna M.; Botigué, Laura R.; Peischl, Stephan; Dupanloup, Isabelle; Lipatov, Mikhail; Maples, Brian K.; Martin, Alicia R.; Musharoff, Shaila; Cann, Howard; Snyder, Michael P.; Excoffier, Laurent; Kidd, Jeffrey M.; Bustamante, Carlos D.

    2016-01-01

    The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive. PMID:26712023

  11. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes.

    PubMed

    Henn, Brenna M; Botigué, Laura R; Peischl, Stephan; Dupanloup, Isabelle; Lipatov, Mikhail; Maples, Brian K; Martin, Alicia R; Musharoff, Shaila; Cann, Howard; Snyder, Michael P; Excoffier, Laurent; Kidd, Jeffrey M; Bustamante, Carlos D

    2016-01-26

    The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.

  12. Comparative modeling of DszC, an enzyme in biodesulfurization, and performing in silico point mutation for increasing tendency to oil.

    PubMed

    Torktaz, Ibrahim; Etemadifar, Zahra; Derikvand, Peyman

    2012-01-01

    Desulfurization protein named DszC from Rhodococcus erythropolis is the key enzyme for biodesulforization of dibenzothiophene (DBT) in 4S pathway, which is a pathway with four enzymes. DszC enzyme biodesulfurizes DBT and its derivatives in oil components and biphasic systems. It functions well at the oil- water interface. In this study point mutation performed in DszC enzyme regarding to increase protein hydrophobicity and stability for application in immobilized form. 3D model of DszC predicted using Phyre2, SAM-T08 and M4t servers. I-Mutant 2 server used to determine potential spots for point mutation, and Molegro Virtual Docker (MVD) used for performing point mutation on 3D model. Hydrophobicity plots generated by Bioedit version 7.0.8.0 in Kyte-Doolittle scale indicated that protein hydrophobicity is increased after mutation. Also protein stability increased 26.11 units in scale of DDC2. PMID:22493530

  13. General melting point prediction based on a diverse compound data set and artificial neural networks.

    PubMed

    Karthikeyan, M; Glen, Robert C; Bender, Andreas

    2005-01-01

    We report the development of a robust and general model for the prediction of melting points. It is based on a diverse data set of 4173 compounds and employs a large number of 2D and 3D descriptors to capture molecular physicochemical and other graph-based properties. Dimensionality reduction is performed by principal component analysis, while a fully connected feed-forward back-propagation artificial neural network is employed for model generation. The melting point is a fundamental physicochemical property of a molecule that is controlled by both single-molecule properties and intermolecular interactions due to packing in the solid state. Thus, it is difficult to predict, and previously only melting point models for clearly defined and smaller compound sets have been developed. Here we derive the first general model that covers a comparatively large and relevant part of organic chemical space. The final model is based on 2D descriptors, which are found to contain more relevant information than the 3D descriptors calculated. Internal random validation of the model achieves a correlation coefficient of R(2) = 0.661 with an average absolute error of 37.6 degrees C. The model is internally consistent with a correlation coefficient of the test set of Q(2) = 0.658 (average absolute error 38.2 degrees C) and a correlation coefficient of the internal validation set of Q(2) = 0.645 (average absolute error 39.8 degrees C). Additional validation was performed on an external drug data set consisting of 277 compounds. On this external data set a correlation coefficient of Q(2) = 0.662 (average absolute error 32.6 degrees C) was achieved, showing ability of the model to generalize. Compared to an earlier model for the prediction of melting points of druglike compounds our model exhibits slightly improved performance, despite the much larger chemical space covered. The remaining model error is due to molecular properties that are not captured using single-molecule based

  14. Low nucleotide diversity for the expanded organelle and nuclear genomes of Volvox carteri supports the mutational-hazard hypothesis.

    PubMed

    Smith, David Roy; Lee, Robert W

    2010-10-01

    The noncoding-DNA content of organelle and nuclear genomes can vary immensely. Both adaptive and nonadaptive explanations for this variation have been proposed. This study addresses a nonadaptive explanation called the mutational-hazard hypothesis and applies it to the mitochondrial, plastid, and nuclear genomes of the multicellular green alga Volvox carteri. Given the expanded architecture of the V. carteri organelle and nuclear genomes (60-85% noncoding DNA), the mutational-hazard hypothesis would predict them to have less silent-site nucleotide diversity (π(silent)) than their more compact counterparts from other eukaryotes-ultimately reflecting differences in 2N(g)μ (twice the effective number of genes per locus in the population times the mutation rate). The data presented here support this prediction: Analyses of mitochondrial, plastid, and nuclear DNAs from seven V. carteri forma nagariensis geographical isolates reveal low values of π(silent) (0.00038, 0.00065, and 0.00528, respectively), much lower values than those previously observed for the more compact organelle and nuclear DNAs of Chlamydomonas reinhardtii (a close relative of V. carteri). We conclude that the large noncoding-DNA content of the V. carteri genomes is best explained by the mutational-hazard hypothesis and speculate that the shift from unicellular to multicellular life in the ancestor that gave rise to V. carteri contributed to a low V. carteri population size and thus a reduced 2N(g)μ. Complete mitochondrial and plastid genome maps for V. carteri are also presented and compared with those of C. reinhardtii. PMID:20430860

  15. Identification of point mutations in exon 2 of GDF9 gene in Kermani sheep.

    PubMed

    Khodabakhshzadeh, R; Mohammadabadi, M R; Esmailizadeh, A K; Moradi Shahrebabak, H; Bordbar, F; Ansari Namin, S

    2016-01-01

    Screening the fertile ewes from national herds to detect the major genes for prolificacy is an effective way to create the fertile flocks. Growth differentiation factor (GDF) 9 is a member of the transforming growth factor β superfamily that is essential for folliculogenesis and female fertility. The aim of this study was to detect single nucleotide polymorphisms (SNPs) in exon 2 of GDF9 gene in Kermani sheep breed using PCR-SSCP. Genomic DNA was extracted from whole blood of collected samples using salting-out method. Whole exon 2 of GDF9 gene was amplified (634 bp and 647 bp fragments) using designed specific primers. The single stranded conformation polymorphism (SSCP) patterns of PCR products were studied using electrophoresis on acrylamide gel and silver-nitrate staining method. Finally, 4 banding patterns for the first primer pair and 4 banding patterns for the second primer pair were obtained. Also, indices of population genetic per SNP were calculated using Gen Alex 6.41 software. The sequencing results showed the presence of 3 mutations (SNP) (443, 477 and 721 positions) in the studied population. PMID:27487501

  16. Identification of point mutations in exon 2 of GDF9 gene in Kermani sheep.

    PubMed

    Khodabakhshzadeh, R; Mohammadabadi, M R; Esmailizadeh, A K; Moradi Shahrebabak, H; Bordbar, F; Ansari Namin, S

    2016-01-01

    Screening the fertile ewes from national herds to detect the major genes for prolificacy is an effective way to create the fertile flocks. Growth differentiation factor (GDF) 9 is a member of the transforming growth factor β superfamily that is essential for folliculogenesis and female fertility. The aim of this study was to detect single nucleotide polymorphisms (SNPs) in exon 2 of GDF9 gene in Kermani sheep breed using PCR-SSCP. Genomic DNA was extracted from whole blood of collected samples using salting-out method. Whole exon 2 of GDF9 gene was amplified (634 bp and 647 bp fragments) using designed specific primers. The single stranded conformation polymorphism (SSCP) patterns of PCR products were studied using electrophoresis on acrylamide gel and silver-nitrate staining method. Finally, 4 banding patterns for the first primer pair and 4 banding patterns for the second primer pair were obtained. Also, indices of population genetic per SNP were calculated using Gen Alex 6.41 software. The sequencing results showed the presence of 3 mutations (SNP) (443, 477 and 721 positions) in the studied population.

  17. Chemical reconstitution of a chloride pump inactivated by a single point mutation.

    PubMed Central

    Rüdiger, M; Haupts, U; Gerwert, K; Oesterhelt, D

    1995-01-01

    The arginine residue R108 plays an essential role in the transport mechanism of the light-driven anion pump halorhodopsin (HR) as demonstrated by complete inactivation of chloride transport in mutant HR-R108Q. In the presence of substrate anions, guanidinium ions bind to the mutant protein with affinities in the mM range, thereby restoring transport activity and photochemical properties of wild type. One guanidinium ion and one anion are bound per molecule of HR-R108Q. For HR wild type, HR-R108Q-guanidinium and HR-R108K, differences in transport activity and anion selectivity are found which may be explained by effects of anion solvation. The agreement between light-induced FTIR difference spectra of HR wild type and HR-R108Q-guanidinium demonstrates that no structural changes occur in the reconstituted mutant and that the photoreactions of wild type and reconstituted mutant are identical. Furthermore, an IR absorbance band of the guanidino group of R108 can be identified at 1695/1688 cm-1. In HR-R108Q, a guanidinium ion binding close to the mutated residue is proposed to mimick the role of the R108 side chain as the anion uptake site. Thus the wild type reaction mechanism is reconstituted. PMID:7737112

  18. Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread.

    PubMed

    Ramey, Andrew M; Reeves, Andrew B; Ogawa, Haruko; Ip, Hon S; Imai, Kunitoshi; Bui, Vuong Nghia; Yamaguchi, Emi; Silko, Nikita Y; Afonso, Claudio L

    2013-12-01

    Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease, one of the most economically important diseases for poultry production worldwide and a cause of periodic epizootics in wild birds in North America. In this study, we examined the genetic diversity of APMV-1 isolated from migratory birds sampled in Alaska, Japan, and Russia and assessed the evidence for intercontinental virus spread using phylogenetic methods. Additionally, we predicted viral virulence using deduced amino acid residues for the fusion protein cleavage site and estimated mutation rates for the fusion gene of class I and class II migratory bird isolates. All 73 isolates sequenced as part of this study were most closely related to virus genotypes previously reported for wild birds; however, five class II genotype I isolates formed a monophyletic clade exhibiting previously unreported genetic diversity, which met criteria for the designation of a new sub-genotype. Phylogenetic analysis of wild-bird isolates provided evidence for intercontinental virus spread, specifically viral lineages of APMV-1 class II genotype I sub-genotypes Ib and Ic. This result supports migratory bird movement as a possible mechanism for the redistribution of APMV-1. None of the predicted deduced amino acid motifs for the fusion protein cleavage site of APMV-1 strains isolated from migratory birds in Alaska, Japan, and Russia were consistent with those of previously identified virulent viruses. These data therefore provide no support for these strains contributing to the emergence of avian pathogens. The estimated mutation rates for fusion genes of class I and class II wild-bird isolates were faster than those reported previously for non-virulent APMV-1 strains. Collectively, these findings provide new insight into the diversity, spread, and evolution of APMV-1 in wild birds.

  19. Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread

    USGS Publications Warehouse

    Ramey, Andy M.; Reeves, Andrew B.; Ogawa, Haruko; Ip, Hon S.; Imai, Kunitoshi; Bui, V. N.; Yamaguchi, Emi; Silko, N. Y.; Afonso, C.L.

    2013-01-01

    Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease, one of the most economically important diseases for poultry production worldwide and a cause of periodic epizootics in wild birds in North America. In this study, we examined the genetic diversity of APMV-1 isolated from migratory birds sampled in Alaska, Japan, and Russia and assessed the evidence for intercontinental virus spread using phylogenetic methods. Additionally, we predicted viral virulence using deduced amino acid residues for the fusion protein cleavage site and estimated mutation rates for the fusion gene of class I and class II migratory bird isolates. All 73 isolates sequenced as part of this study were most closely related to virus genotypes previously reported for wild birds; however, five class II genotype I isolates formed a monophyletic clade exhibiting previously unreported genetic diversity, which met criteria for the designation of a new sub-genotype. Phylogenetic analysis of wild-bird isolates provided evidence for intercontinental virus spread, specifically viral lineages of APMV-1 class II genotype I sub-genotypes Ib and Ic. This result supports migratory bird movement as a possible mechanism for the redistribution of APMV-1. None of the predicted deduced amino acid motifs for the fusion protein cleavage site of APMV-1 strains isolated from migratory birds in Alaska, Japan, and Russia were consistent with those of previously identified virulent viruses. These data therefore provide no support for these strains contributing to the emergence of avian pathogens. The estimated mutation rates for fusion genes of class I and class II wild-bird isolates were faster than those reported previously for non-virulent APMV-1 strains. Collectively, these findings provide new insight into the diversity, spread, and evolution of APMV-1 in wild birds.

  20. From the nephrologist's point of view: diversity of causes and clinical features of acute kidney injury

    PubMed Central

    Bienholz, Anja; Wilde, Benjamin; Kribben, Andreas

    2015-01-01

    Acute kidney injury (AKI) is a clinical syndrome with multiple entities. Although AKI implies renal damage, functional impairment or both, diagnosis is solely based on the functional parameters of serum creatinine and urine output. The latest definition was provided by the Kidney Disease Improving Global Outcomes (KDIGO) working group in 2012. Independent of the underlying disease, and even in the case of full recovery, AKI is associated with an increased morbidity and mortality. Awareness of the patient's individual risk profile and the diversity of causes and clinical features of AKI is pivotal for optimization of prophylaxes, diagnosis and therapy of each form of AKI. A differentiated and individualized approach is required to improve patient mortality, morbidity, long-term kidney function and eventually the quality of life. In this review, we provide an overview of the different clinical settings in which specific forms of AKI may occur and point out possible diagnostic as well as therapeutic approaches. Secifically AKI is discussed in the context of non-kidney organ failure, organ transplantation, sepsis, malignancy and autoimmune disease. PMID:26251707

  1. Functional significance of point mutations in stress chaperone mortalin and their relevance to Parkinson disease.

    PubMed

    Wadhwa, Renu; Ryu, Jihoon; Ahn, Hyo Min; Saxena, Nishant; Chaudhary, Anupama; Yun, Chae-Ok; Kaul, Sunil C

    2015-03-27

    Mortalin/mtHsp70/Grp75 (mot-2), a heat shock protein 70 family member, is an essential chaperone, enriched in cancers, and has been shown to possess pro-proliferative and anti-apoptosis functions. An allelic form of mouse mortalin (mot-1) that differs by two amino acids, M618V and G624R, in the C terminus substrate-binding domain has been reported. Furthermore, genome sequencing of mortalin from Parkinson disease patients identified two missense mutants, R126W and P509S. In the present study, we investigated the significance of these mutations in survival, proliferation, and oxidative stress tolerance in human cells. Using mot-1 and mot-2 recombinant proteins and specific antibodies, we performed screening to find their binding proteins and then identified ribosomal protein L-7 (RPL-7) and elongation factor-1 α (EF-1α), which differentially bind to mot-1 and mot-2, respectively. We demonstrate that mot-1, R126W, or P509S mutant (i) lacks mot-2 functions involved in carcinogenesis, such as p53 inactivation and hTERT/hnRNP-K (heterogeneous nuclear ribonucleoprotein K) activation; (ii) causes increased level of endogenous oxidative stress; (iii) results in decreased tolerance of cells to exogenous oxidative stress; and (iv) shows differential binding and impact on the RPL-7 and EF-1α proteins. These factors may mediate the transformation of longevity/pro-proliferative function of mot-2 to the premature aging/anti-proliferative effect of mutants, and hence may have significance in cellular aging, Parkinson disease pathology, and prognosis. PMID:25645922

  2. The architecture of a prototypical bacterial signaling circuit enables a single point mutation to confer novel network properties.

    PubMed

    Ram, Sri; Goulian, Mark

    2013-01-01

    Even a single mutation can cause a marked change in a protein's properties. When the mutant protein functions within a network, complex phenotypes may emerge that are not intrinsic properties of the protein itself. Network architectures that enable such dramatic changes in function from a few mutations remain relatively uncharacterized. We describe a remarkable example of this versatility in the well-studied PhoQ/PhoP bacterial signaling network, which has an architecture found in many two-component systems. We found that a single point mutation that abolishes the phosphatase activity of the sensor kinase PhoQ results in a striking change in phenotype. The mutant responds to stimulus in a bistable manner, as opposed to the wild-type, which has a graded response. Mutant cells in on and off states have different morphologies, and their state is inherited over many generations. Interestingly, external conditions that repress signaling in the wild-type drive the mutant to the on state. Mathematical modeling and experiments suggest that the bistability depends on positive autoregulation of the two key proteins in the circuit, PhoP and PhoQ. The qualitatively different characteristics of the mutant come at a substantial fitness cost. Relative to the off state, the on state has a lower fitness in stationary phase cultures in rich medium (LB). However, due to the high inheritance of the on state, a population of on cells can be epigenetically trapped in a low-fitness state. Our results demonstrate the remarkable versatility of the prototypical two-component signaling architecture and highlight the tradeoffs in the particular case of the PhoQ/PhoP system.

  3. Understanding the lid movements of LolA in Escherichia coli using molecular dynamics simulation and in silico point mutation.

    PubMed

    Murahari, Priyadarshini; Anishetty, Sharmila; Pennathur, Gautam

    2013-12-01

    The Lol system in Escherichia coli is involved in localization of lipoproteins and hence is essential for growth of the organism. LolA is a periplasmic chaperone that binds to outer-membrane specific lipoproteins and transports them from inner membrane to outer membrane through LolB. The hydrophobic lipid-binding cavity of LolA consists of α-helices which act as a lid in regulating the transfer of lipoproteins from LolA to LolB. The current study aims to investigate the structural changes observed in LolA during the transition from open to closed conformation in the absence of lipoprotein. Molecular dynamics (MD) simulations were carried out for two LolA crystal structures; LolA(R43L), and in silico mutated MsL43R for a simulation time of 50 ns in water environment. We have performed an in silico point mutation of leucine to arginine in MsL43R to evaluate the importance of arginine to induce structural changes and impact the stability of protein structure. A complete dynamic analysis of open to closed conformation reveals the existence of two distinct levels; closing of lid and closing of entrance of hydrophobic cavity. Our analysis reveals that the structural flexibility of LolA is an important factor for its role as a periplasmic chaperone. PMID:23962984

  4. A unique point mutation in the fibroblast growth factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome

    PubMed Central

    Muenke, M.; Gripp, K. W.; McDonald-McGinn, D. M.; Gaudenz, K.; Whitaker, L. A.; Bartlett, S. P.; Markowitz, R. I.; Robin, N. H.; Nwokoro, N.; Mulvihill, J. J.; Losken, H. W.; Mulliken, J. B.; Guttmacher, A. E.; Wilroy, R. S.; Clarke, L. A.; Hollway, G.; Adès, L. C.; Haan, E. A.; Mulley, J. C.; Cohen, M. M.; Bellus, G. A.; Francomano, C. A.; Moloney, D. M.; Wall, S. A.; Wilkie, A. O. M.; Zackai, E. H.

    1997-01-01

    The underlying basis of many forms of syndromic craniosynostosis has been defined on a molecular level. However, many patients with familial or sporadic craniosynostosis do not have the classical findings of those craniosynostosis syndromes. Here we present 61 individuals from 20 unrelated families where coronal synostosis is due to an amino acid substitution (Pro250Arg) that results from a single point mutation in the fibroblast growth factor receptor 3 gene on chromosome 4p. In this instance, a new clinical syndrome is being defined on the basis of the molecular finding. In addition to the skull findings, some patients had abnormalities on radiographs of hands and feet, including thimble-like middle phalanges, coned epiphyses, and carpal and tarsal fusions. Brachydactyly was seen in some cases; none had clinically significant syndactyly or deviation of the great toe. Sensorineural hearing loss was present in some, and developmental delay was seen in a minority. While the radiological findings of hands and feet can be very helpful in diagnosing this syndrome, it is not in all cases clearly distinguishable on a clinical basis from other craniosynostosis syndromes. Therefore, this mutation should be tested for in patients with coronal synostosis. ImagesFigure 2Figure 3Figure 4 PMID:9042914

  5. Identification of point mutations and large intragenic deletions in Fanconi anemia using next-generation sequencing technology.

    PubMed

    Nicchia, Elena; Greco, Chiara; De Rocco, Daniela; Pecile, Vanna; D'Eustacchio, Angela; Cappelli, Enrico; Corti, Paola; Marra, Nicoletta; Ramenghi, Ugo; Pillon, Marta; Farruggia, Piero; Dufour, Carlo; Pallavicini, Alberto; Torelli, Lucio; Savoia, Anna

    2015-11-01

    Fanconi anemia (FA) is a rare bone marrow failure disorder characterized by clinical and genetic heterogeneity with at least 17 genes involved, which make molecular diagnosis complex and time-consuming. Since next-generation sequencing technologies could greatly improve the genetic testing in FA, we sequenced DNA samples with known and unknown mutant alleles using the Ion PGM (™) system (IPGM). The molecular target of 74.2 kb in size covered 96% of the FA-coding exons and their flanking regions. Quality control testing revealed high coverage. Comparing the IPGM and Sanger sequencing output of FANCA,FANCC, and FANCG we found no false-positive and a few false-negative variants, which led to high sensitivity (95.58%) and specificity (100%) at least for these two most frequently mutated genes. The analysis also identified novel mutant alleles, including those in rare complementation groups FANCF and FANCL. Moreover, quantitative evaluation allowed us to characterize large intragenic deletions of FANCA and FANCD2, suggesting that IPGM is suitable for identification of not only point mutations but also copy number variations. PMID:26740942

  6. A unique point mutation in the fibroblast growth factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome

    SciTech Connect

    Muenke, M.; Gripp, K.W.; McDonald-McGinn, D.M.

    1997-03-01

    The underlying basis of many forms of syndromic craniosynostosis has been defined on a molecular level. However, many patients with familial or sporadic craniosynostosis do not have the classical findings of those craniosynostosis syndromes. Here we present 61 individuals from 20 unrelated families where coronal synostosis is due to an amino acid substitution (Pro250Arg) that results from a single point mutation in the fibroblast growth factor receptor 3 gene on chromosome 4p. In this instance, a new clinical syndrome is being defined on the basis of the molecular finding. In addition to the skull findings, some patients had abnormalities on radiographs of hands and feet, including thimble-like middle phalanges, coned epiphyses, and carpal and tarsal fusions. Brachydactyly was seen in some cases; none had clinically significant syndactyly or deviation of the great toe. Sensorineural hearing loss was present in some, and developmental delay was seen in a minority. While the radiological findings of hands and feet can be very helpful in diagnosing this syndrome, it is not in all cases clearly distinguishable on a clinical basis from other craniosynostosis syndromes. Therefore, this mutation should be tested for in patients with coronal synostosis. 54 refs., 4 figs., 2 tabs.

  7. Modulating non-native aggregation and electrostatic protein-protein interactions with computationally designed single-point mutations.

    PubMed

    O'Brien, C J; Blanco, M A; Costanzo, J A; Enterline, M; Fernandez, E J; Robinson, A S; Roberts, C J

    2016-06-01

    Non-native protein aggregation is a ubiquitous challenge in the production, storage and administration of protein-based biotherapeutics. This study focuses on altering electrostatic protein-protein interactions as a strategy to modulate aggregation propensity in terms of temperature-dependent aggregation rates, using single-charge variants of human γ-D crystallin. Molecular models were combined to predict amino acid substitutions that would modulate protein-protein interactions with minimal effects on conformational stability. Experimental protein-protein interactions were quantified by the Kirkwood-Buff integrals (G22) from laser scattering, and G22 showed semi-quantitative agreement with model predictions. Experimental initial-rates for aggregation showed that increased (decreased) repulsive interactions led to significantly increased (decreased) aggregation resistance, even based solely on single-point mutations. However, in the case of a particular amino acid (E17), the aggregation mechanism was altered by substitution with R or K, and this greatly mitigated improvements in aggregation resistance. The results illustrate that predictions based on native protein-protein interactions can provide a useful design target for engineering aggregation resistance; however, this approach needs to be balanced with consideration of how mutations can impact aggregation mechanisms. PMID:27160179

  8. Predicting protein thermal stability changes upon point mutations using statistical potentials: Introducing HoTMuSiC

    PubMed Central

    Pucci, Fabrizio; Bourgeas, Raphaël; Rooman, Marianne

    2016-01-01

    The accurate prediction of the impact of an amino acid substitution on the thermal stability of a protein is a central issue in protein science, and is of key relevance for the rational optimization of various bioprocesses that use enzymes in unusual conditions. Here we present one of the first computational tools to predict the change in melting temperature ΔTm upon point mutations, given the protein structure and, when available, the melting temperature Tm of the wild-type protein. The key ingredients of our model structure are standard and temperature-dependent statistical potentials, which are combined with the help of an artificial neural network. The model structure was chosen on the basis of a detailed thermodynamic analysis of the system. The parameters of the model were identified on a set of more than 1,600 mutations with experimentally measured ΔTm. The performance of our method was tested using a strict 5-fold cross-validation procedure, and was found to be significantly superior to that of competing methods. We obtained a root mean square deviation between predicted and experimental ΔTm values of 4.2 °C that reduces to 2.9 °C when ten percent outliers are removed. A webserver-based tool is freely available for non-commercial use at soft.dezyme.com. PMID:26988870

  9. Site-Selective Ribosylation of Fluorescent Nucleobase Analogs Using Purine-Nucleoside Phosphorylase as a Catalyst: Effects of Point Mutations.

    PubMed

    Stachelska-Wierzchowska, Alicja; Wierzchowski, Jacek; Bzowska, Agnieszka; Wielgus-Kutrowska, Beata

    2015-12-28

    Enzymatic ribosylation of fluorescent 8-azapurine derivatives, like 8-azaguanine and 2,6-diamino-8-azapurine, with purine-nucleoside phosphorylase (PNP) as a catalyst, leads to N9, N8, and N7-ribosides. The final proportion of the products may be modulated by point mutations in the enzyme active site. As an example, ribosylation of the latter substrate by wild-type calf PNP gives N7- and N8-ribosides, while the N243D mutant directs the ribosyl substitution at N9- and N7-positions. The same mutant allows synthesis of the fluorescent N7-β-d-ribosyl-8-azaguanine. The mutated form of the E. coli PNP, D204N, can be utilized to obtain non-typical ribosides of 8-azaadenine and 2,6-diamino-8-azapurine as well. The N7- and N8-ribosides of the 8-azapurines can be analytically useful, as illustrated by N7-β-d-ribosyl-2,6-diamino-8-azapurine, which is a good fluorogenic substrate for mammalian forms of PNP, including human blood PNP, while the N8-riboside is selective to the E. coli enzyme.

  10. Haemophilia B caused by a point mutation in a donor splice junction of the human factor IX gene.

    PubMed

    Rees, D J; Rizza, C R; Brownlee, G G

    Haemophilia B (Christmas disease) is an inherited, recessive, sex-linked, haemorrhagic condition caused by a defect in the intrinsic clotting factor IX. This disease occurs in males at a frequency of approximately 1 in 30,000. Patients differ in the severity of their clinical symptoms, and variation in the clotting activity and in the concentration of factor IX antigen in their plasma has been demonstrated. There is probably heterogeneity in the molecular defects of the factor IX gene causing the disease. Here we study a severely affected, antigen-negative patient, and show that the only significant sequence difference from the normal factor IX gene is a point mutation changing the obligatory GT to a TT within the donor splice junction of exon f. We infer that this change is the cause of the disease in this individual. In addition, we have used oligodeoxynucleotide probes specific for this mutation to demonstrate the feasibility of carrier detection and prenatal diagnosis for relatives of the patient.

  11. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus.

    PubMed Central

    Krempl, C; Schultze, B; Laude, H; Herrler, G

    1997-01-01

    Enteropathogenic transmissible gastroenteritis virus (TGEV), a porcine coronavirus, is able to agglutinate erythrocytes because of sialic acid binding activity. Competitive inhibitors that may mask the sialic acid binding activity can be inactivated by sialidase treatment of virions. Here, we show that TGEV virions with efficient hemagglutinating activity were also obtained when cells were treated with sialidase prior to infection. This method was used to analyze TGEV mutants for hemagglutinating activity. Recently, mutants with strongly reduced enteropathogenicity that have point mutations or a deletion of four amino acids within residues 145 to 155 of the S protein have been described. Here, we show that in addition to their reduced pathogenicity, these mutants also have lost hemagglutinating activity. These results connect sialic acid binding activity with the enteropathogenicity of TGEV. PMID:9060696

  12. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations.

    PubMed

    Gammage, Payam A; Rorbach, Joanna; Vincent, Anna I; Rebar, Edward J; Minczuk, Michal

    2014-04-01

    We designed and engineered mitochondrially targeted obligate heterodimeric zinc finger nucleases (mtZFNs) for site-specific elimination of pathogenic human mitochondrial DNA (mtDNA). We used mtZFNs to target and cleave mtDNA harbouring the m.8993T>G point mutation associated with neuropathy, ataxia, retinitis pigmentosa (NARP) and the "common deletion" (CD), a 4977-bp repeat-flanked deletion associated with adult-onset chronic progressive external ophthalmoplegia and, less frequently, Kearns-Sayre and Pearson's marrow pancreas syndromes. Expression of mtZFNs led to a reduction in mutant mtDNA haplotype load, and subsequent repopulation of wild-type mtDNA restored mitochondrial respiratory function in a CD cybrid cell model. This study constitutes proof-of-principle that, through heteroplasmy manipulation, delivery of site-specific nuclease activity to mitochondria can alleviate a severe biochemical phenotype in primary mitochondrial disease arising from deleted mtDNA species.

  13. A point mutation in a silencer module reduces the promoter activity for the human mercaptopyruvate sulfurtransferase.

    PubMed

    Nagahara, Noriyuki; Sreeja, V G; Li, Qing; Shimizu, Takako; Tsuchiya, Terumasa; Fujii-Kuriyama, Yoshiaki

    2004-11-01

    A promoter region of human mercaptopyruvate sulfurtransferase (MST) [EC 2.8.1.2] is G+C-rich and TATA-less, showing features of a house-keeping gene. In the core promoter, a GC box (-284:GGGGCGTGGC:-275) and an initiator (-219:TTATATG:-225) are found. A cap site hunting analysis for human liver cDNA revealed four possible transcriptional start sites, nucleotides -223, -159, -35 and -25. Point mutagenesis and deletion studies suggest that a module of the silencer element is -394:GCTG:-391. A replacement of -391G to C lost the silencer function; on the other hand, a replacement of -394G to T or C, -393C to T or -392T to G markedly reduced the promoter activity. PMID:15507321

  14. A rare branch-point mutation is associated with missplicing of fibrillin-2 in a large family with congenital contractural arachnodactyly.

    PubMed Central

    Maslen, C; Babcock, D; Raghunath, M; Steinmann, B

    1997-01-01

    Congenital contractural arachnodactyly (CCA) is an autosomal dominant disorder that is phenotypically similar to but genetically distinct from Marfan syndrome. Genetic-linkage analysis has implicated the fibrillin-2 gene (FBN2) as the CCA locus. Mutation analysis of two isolated CCA patients revealed missense mutations, indicating that defects in FBN2 may be responsible for this disorder. However, cosegregation of a mutant allele with the disease phenotype has not yet been established. We have investigated the primary cause of CCA in a large well-characterized kindred with five generations comprising 18 affected individuals. Previous studies demonstrated linkage of this family's CCA phenotype to FBN2. Mutation analysis of cDNA derived from the proband and her affected brother, using a nonisotopic RNase cleavage assay, revealed the partial skipping of exon 31. Approximately 25% mutant transcript is produced, which is apparently sufficient to cause a CCA phenotype. Sequence analysis of genomic DNA revealed an unusual base composition for intron 30 and identified the mutation, a g-26t transversion, in the vicinity of the splicing branch-point site in intron 30. Genomic DNA from 30 additional family members, both affected and unaffected, then was analyzed for the mutation. The results clearly demonstrate cosegregation of the branch-point mutation with the CCA phenotype. This is the first report of a CCA mutation in a multiplex family, unequivocally establishing that mutation in FBN2 are responsible for the CCA phenotype. In addition, branch-point mutations only very rarely have been associated with human disease, suggesting that the unusual composition of this intron influences splicing stability. Images Figure 2ab Figure 2c Figure 3ab Figure 3c Figure 4 Figure 6 Figure 7 PMID:9199560

  15. Point Mutations in Exon 1B of APC Reveal Gastric Adenocarcinoma and Proximal Polyposis of the Stomach as a Familial Adenomatous Polyposis Variant.

    PubMed

    Li, Jun; Woods, Susan L; Healey, Sue; Beesley, Jonathan; Chen, Xiaoqing; Lee, Jason S; Sivakumaran, Haran; Wayte, Nicci; Nones, Katia; Waterfall, Joshua J; Pearson, John; Patch, Anne-Marie; Senz, Janine; Ferreira, Manuel A; Kaurah, Pardeep; Mackenzie, Robertson; Heravi-Moussavi, Alireza; Hansford, Samantha; Lannagan, Tamsin R M; Spurdle, Amanda B; Simpson, Peter T; da Silva, Leonard; Lakhani, Sunil R; Clouston, Andrew D; Bettington, Mark; Grimpen, Florian; Busuttil, Rita A; Di Costanzo, Natasha; Boussioutas, Alex; Jeanjean, Marie; Chong, George; Fabre, Aurélie; Olschwang, Sylviane; Faulkner, Geoffrey J; Bellos, Evangelos; Coin, Lachlan; Rioux, Kevin; Bathe, Oliver F; Wen, Xiaogang; Martin, Hilary C; Neklason, Deborah W; Davis, Sean R; Walker, Robert L; Calzone, Kathleen A; Avital, Itzhak; Heller, Theo; Koh, Christopher; Pineda, Marbin; Rudloff, Udo; Quezado, Martha; Pichurin, Pavel N; Hulick, Peter J; Weissman, Scott M; Newlin, Anna; Rubinstein, Wendy S; Sampson, Jone E; Hamman, Kelly; Goldgar, David; Poplawski, Nicola; Phillips, Kerry; Schofield, Lyn; Armstrong, Jacqueline; Kiraly-Borri, Cathy; Suthers, Graeme K; Huntsman, David G; Foulkes, William D; Carneiro, Fatima; Lindor, Noralane M; Edwards, Stacey L; French, Juliet D; Waddell, Nicola; Meltzer, Paul S; Worthley, Daniel L; Schrader, Kasmintan A; Chenevix-Trench, Georgia

    2016-05-01

    Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.

  16. Point Mutations in Exon 1B of APC Reveal Gastric Adenocarcinoma and Proximal Polyposis of the Stomach as a Familial Adenomatous Polyposis Variant.

    PubMed

    Li, Jun; Woods, Susan L; Healey, Sue; Beesley, Jonathan; Chen, Xiaoqing; Lee, Jason S; Sivakumaran, Haran; Wayte, Nicci; Nones, Katia; Waterfall, Joshua J; Pearson, John; Patch, Anne-Marie; Senz, Janine; Ferreira, Manuel A; Kaurah, Pardeep; Mackenzie, Robertson; Heravi-Moussavi, Alireza; Hansford, Samantha; Lannagan, Tamsin R M; Spurdle, Amanda B; Simpson, Peter T; da Silva, Leonard; Lakhani, Sunil R; Clouston, Andrew D; Bettington, Mark; Grimpen, Florian; Busuttil, Rita A; Di Costanzo, Natasha; Boussioutas, Alex; Jeanjean, Marie; Chong, George; Fabre, Aurélie; Olschwang, Sylviane; Faulkner, Geoffrey J; Bellos, Evangelos; Coin, Lachlan; Rioux, Kevin; Bathe, Oliver F; Wen, Xiaogang; Martin, Hilary C; Neklason, Deborah W; Davis, Sean R; Walker, Robert L; Calzone, Kathleen A; Avital, Itzhak; Heller, Theo; Koh, Christopher; Pineda, Marbin; Rudloff, Udo; Quezado, Martha; Pichurin, Pavel N; Hulick, Peter J; Weissman, Scott M; Newlin, Anna; Rubinstein, Wendy S; Sampson, Jone E; Hamman, Kelly; Goldgar, David; Poplawski, Nicola; Phillips, Kerry; Schofield, Lyn; Armstrong, Jacqueline; Kiraly-Borri, Cathy; Suthers, Graeme K; Huntsman, David G; Foulkes, William D; Carneiro, Fatima; Lindor, Noralane M; Edwards, Stacey L; French, Juliet D; Waddell, Nicola; Meltzer, Paul S; Worthley, Daniel L; Schrader, Kasmintan A; Chenevix-Trench, Georgia

    2016-05-01

    Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present. PMID:27087319

  17. Locus control region HS2 point mutations are generally not responsible for elevated fetal hemoglobin expression of sickle cell patients

    SciTech Connect

    Gilman, J.G.

    1994-09-01

    The locus control region (LCR), composed of four hypersensitive sites (HS1-4) 5{prime} of the {epsilon} globin gene, confers strong, copy-number dependent expression on globin genes in transgenic mice. Several {beta}-globin gene cluster haplotypes carry the sickle cell gene, and show variable levels of fetal hemoglobin (Hb F) expression in association with DNA sequence differences in HS2, {gamma} and {beta} globin promoters, and {gamma}IVSII: The Senegal (SEN or No. 3) haplotype generally has high (>10%) Hb F, Benin (BEN or No. 19) has intermediate Hb F (but some low and some high), and Banu (BAN or No. 20) generally has low Hb F. Huisman and colleagues have proposed that `factors produced under conditions of hematopoietic stress, together with genetic determinants on the haplotype-3 like LCR sequences, allow for high level expression of {gamma} globin genes`. We have now used slot blot to screen high Hb F (>9.5%) and low Hb F cases for two of the three HS2 point mutations described by Oener et al. Comparing eight high Hb F BEN/BEN with two low Hb F BEN/BEN, all ten had the BEN mutations considered by Oener et al. to be associated with low Hb F. Comparing three high Hb F BEN/BAN with two low Hb F BEN/BAN, all five were heterozygous at three positions; this is consistent with BEN having G and T and BAN having A at both positions. DNA sequencing of HS2 for BAN, which is generally associated with low HB F, showed that the point mutations at all three positions were those seen in SEN (generally high Hb F); only the AT repeat region showed major differences, confirming results of Huisman and colleagues. Hence, if there is any effect of HS2 of the Senegal sickle cell haplotype in causing elevated Hb F under hematopoietic stress, it must be due to specific variation in the AT repeat region, which Oener et al. have suggested may bind a silencer.

  18. A pilot study of mitochondrial DNA point mutation A3243G in a sample of Croatian patients having type 2 diabetes mellitus associated with maternal inheritance.

    PubMed

    Martin-Kleiner, I; Pape-Medvidović, E; Pavlić-Renar, I; Metelko, Z; Kusec, R; Gabrilovac, J; Boranić, M

    2004-12-01

    In this work, patients having type 2 diabetes mellitus and diabetic mothers were tested for the presence of mitochondrial DNA point mutation A3243G. This mutation is associated with the MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), diabetes and deafness. Twenty-two diabetic persons were screened. DNA was isolated from peripheral blood lymphocytes and from swabs of oral mucosa. The mitochondrial DNA point mutation A3243G was detected using PCR-RFLP test. The mutation was detected in oral mucosal DNA of two patients (but not from lymphocyte DNA). One patient was a man with hearing and visual impairments and proteinuria; the other was a woman having proteinuria but no hearing impairment. The mutation was not detectable in oral mucosal DNA from the control persons: 20 diabetic patients having diabetic fathers and 22 healthy, nondiabetic volunteers. The incidence of mitochondrial DNA point mutation A3243G in this study of Croatian diabetic patients is in line with data in the literature.

  19. Disentangling the Influence of Mutation and Migration in Clonal Seagrasses Using the Genetic Diversity Spectrum for Microsatellites.

    PubMed

    Arnaud-Haond, Sophie; Moalic, Yann; Hernández-García, Emilio; Eguiluz, Victor M; Alberto, Filipe; Serrão, Ester A; Duarte, Carlos M

    2014-03-19

    The recurrent lack of isolation by distance reported at regional scale in seagrass species was recently suggested to stem from stochastic events of large-scale dispersal. We explored the usefulness of phylogenetic information contained in microsatellite loci to test this hypothesis by using the Genetic Diversity Spectrum (GDS) on databases containing, respectively, 7 and 9 microsatellites genotypes for 1541 sampling units of Posidonia oceanica and 1647 of Cymodocea nodosa. The simultaneous increase of microsatellite and geographic distances that emerges reveals a coherent pattern of isolation by distance in contrast to the chaotic pattern previously described using allele frequencies, in particular, for the long-lived P. oceanica. These results suggest that the lack of isolation by distance, rather than the resulting from rare events of large-scale dispersal, reflects at least for some species a stronger influence of mutation over migration at the scale of the distribution range. The global distribution of genetic polymorphism may, therefore, result predominantly from ancient events of step-by-step (re)colonization followed by local recruitment and clonal growth, rather than contemporary gene flow. The analysis of GDS appears useful to unravel the evolutionary forces influencing the dynamics and evolution at distinct temporal and spatial scales by accounting for phylogenetic information borne by microsatellites, under an appropriate mutation model. This finding adds nuance to the generalization of the influence of large-scale dispersal on the dynamics of seagrasses.

  20. The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries.

    PubMed

    Guérillot, Romain; Siguier, Patricia; Gourbeyre, Edith; Chandler, Michael; Glaser, Philippe

    2014-02-01

    Transposable elements (TEs) are major components of both prokaryotic and eukaryotic genomes and play a significant role in their evolution. In this study, we have identified new prokaryotic DDE transposase families related to the eukaryotic Mutator-like transposases. These genes were retrieved by cascade PSI-Blast using as initial query the transposase of the streptococcal integrative and conjugative element (ICE) TnGBS2. By combining secondary structure predictions and protein sequence alignments, we predicted the DDE catalytic triad and the DNA-binding domain recognizing the terminal inverted repeats. Furthermore, we systematically characterized the organization and the insertion specificity of the TEs relying on these prokaryotic Mutator-like transposases (p-MULT) for their mobility. Strikingly, two distant TE families target their integration upstream σA dependent promoters. This allowed us to identify a transposase sequence signature associated with this unique insertion specificity and to show that the dissymmetry between the two inverted repeats is responsible for the orientation of the insertion. Surprisingly, while DDE transposases are generally associated with small and simple transposons such as insertion sequences (ISs), p-MULT encoding TEs show an unprecedented diversity with several families of IS, transposons, and ICEs ranging in size from 1.1 to 52 kb.

  1. Structural analysis of point mutations at the Vaccinia virus A20/D4 interface.

    PubMed

    Contesto-Richefeu, Céline; Tarbouriech, Nicolas; Brazzolotto, Xavier; Burmeister, Wim P; Peyrefitte, Christophe N; Iseni, Frédéric

    2016-09-01

    The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil-DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201-50) revealed the importance of three residues, forming a cation-π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4-R167A/A201-50, D4-P173G/A201-50 and D4/A201-50-W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation-π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface. PMID:27599859

  2. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution

    PubMed Central

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A.; Catenacci, Daniel V. T.; Hudson, Richard R.; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-01-01

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 “polymorphic” SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors. PMID:26561581

  3. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution.

    PubMed

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A; Catenacci, Daniel V T; Hudson, Richard R; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-11-24

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 "polymorphic" SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors.

  4. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution.

    PubMed

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A; Catenacci, Daniel V T; Hudson, Richard R; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-11-24

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 "polymorphic" SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors. PMID:26561581

  5. In silico point mutation and evolutionary trace analysis applied to nicotinic acetylcholine receptors in deciphering ligand-binding surfaces.

    PubMed

    Parthiban, Marimuthu; Shanmughavel, Piramanayagam; Sowdhamini, Ramanathan

    2010-10-01

    The nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily and contain ligand gated ion channels (LGIC). These receptors are located mostly in the central nervous system (CNS) and peripheral nervous system (PNS). nAChRs reside at pre-synaptic regions to mediate acetylcholine neurotransmission and in the post synaptic membrane to propagate nerve impulses through neurons via acetylcholine. Malfunction of this neurotransmitter receptor is believed to cause various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and schizophrenia, and nAChRs are thus important drug targets. In the present work, starting from an earlier model of pentameric alpha7nAChR, a considerable effort has been taken to investigate interaction with ligands by performing docking studies with a diverse array of agonists and antagonists. Analysis of these docking complexes reveals identification of possible ligand-interacting residues. Some of these residues, e.g. Ser34, Gln55, Ser146, and Tyr166, which are evolutionarily conserved, were specifically subjected to virtual mutations based on their amino acid properties and found to be highly sensitive in the presence of antagonists by docking. Further, the study was extended using evolutionary trace analysis, revealing conserved and class-specific residues close to the putative ligand-binding site, further supporting the results of docking experiments.

  6. A genomic point mutation in the extracellular domain of the thyrotropin receptor in patients with Graves` ophthalmopathy

    SciTech Connect

    Bahn, R.S.; Dutton, C.M.; Heufelder, A.E.; Sarkar, G. |

    1994-02-01

    Orbital and pretibial fibroblasts are targets of autoimmune attack in Graves` ophthalmopathy (GO) and pretibial dermopathy (PTD). The fibroblast autoantigen involved in these peripheral manifestations of Graves` disease and the reason for the association of GO and PTD with hyperthyroidism are unknown. RNA encoding the full-length extracellular domain of the TSH receptor has been demonstrated in orbital and dermal fibroblasts from patients with GO and normal subjects, suggesting a possible antigenic link between fibroblasts and thyrocytes. RNA was isolated from cultured orbital, pretibial, and abdominal fibroblasts obtained from patients with severe GO (n = 22) and normal subjects (n = 5). RNA was reverse transcribed, and the resulting cDNA was amplified by the polymerase chain reaction, using primers spanning overlapping regions of the entire extracellular domain of the TSH receptor. Nucleotide sequence analysis showed an A for C substitution in the first position of codon 52 in 2 of the patients, both of whom had GO, PTD, and acropachy. Genomic DNA isolated from the 2 affected patients, and not from an additional 12 normal subjects, revealed the codon 52 mutation by direct sequencing and AciI restriction enzyme digestions. In conclusion, the authors have demonstrated the presence of a genomic point mutation, leading to a threonine for proline amino acid shift in the predicted peptide, in the extracellular domain of the TSH receptor in two patients with severe GO, PTD, acropachy, and high thyroid-stimulating immunoglobulin levels. RNA encoding this mutant product was demonstrated in the fibroblasts of these patients. They suggest that the TSH receptor may be an important fibroblast autoantigen in GO and PTD, and that this mutant form of the receptor may have unique immunogenic properties. 28 refs., 3 figs., 2 tabs.

  7. Point mutation of the xylose reductase (XR) gene reduces xylitol accumulation and increases citric acid production in Aspergillus carbonarius.

    PubMed

    Weyda, István; Lübeck, Mette; Ahring, Birgitte K; Lübeck, Peter S

    2014-04-01

    Aspergillus carbonarius accumulates xylitol when it grows on D-xylose. In fungi, D-xylose is reduced to xylitol by the NAD(P)H-dependent xylose reductase (XR). Xylitol is then further oxidized by the NAD(+)-dependent xylitol dehydrogenase (XDH). The cofactor impairment between the XR and XDH can lead to the accumulation of xylitol under oxygen-limiting conditions. Most of the XRs are NADPH dependent and contain a conserved Ile-Pro-Lys-Ser motif. The only known naturally occurring NADH-dependent XR (from Candida parapsilosis) carries an arginine residue instead of the lysine in this motif. In order to overcome xylitol accumulation in A. carbonarius a Lys-274 to Arg point mutation was introduced into the XR with the aim of changing the specificity toward NADH. The effect of the genetic engineering was examined in fermentation for citric acid production and xylitol accumulation by using D-xylose as the sole carbon source. Fermentation with the mutant strain showed a 2.8-fold reduction in xylitol accumulation and 4.5-fold increase in citric acid production compared to the wild-type strain. The fact that the mutant strain shows decreased xylitol levels is assumed to be associated with the capability of the mutated XR to use the NADH generated by the XDH, thus preventing the inhibition of XDH by the high levels of NADH and ensuring the flux of xylose through the pathway. This work shows that enhanced production of citric acid can be achieved using xylose as the sole carbon source by reducing accumulation of other by-products, such as xylitol.

  8. Anti-GD2 with an FC point mutation reduces complement fixation and decreases antibody-induced allodynia

    PubMed Central

    Sorkin, Linda S.; Otto, Mario; Baldwin, William M.; Vail, Emily; Gillies, Stephen D.; Handgretinger, Rupert; Barfield, Raymond C.; Yu, Hui Ming; Yu, Alice L.

    2013-01-01

    Monoclonal antibodies against GD2 ganglioside, such as ch14.18, the human–mouse chimeric antibody, have been shown to be effective for the treatment of neuroblastoma. However, treatment is associated with generalized, relatively opiate-resistant pain. We investigated if a point mutation in ch14.18 antibody (hu14.18K332A) to limit complement-dependent cytotoxicity (CDC) would ameliorate the pain behavior, while preserving antibody-dependent cellular cytotoxicity (ADCC). In vitro, CDC and ADCC were measured using europium-TDA assay. In vivo, allodynia was evaluated by measuring thresholds to von Frey filaments applied to the hindpaws after injection of either ch14.18 or hu14.18K332 into wild type rats or rats with deficient complement factor 6. Other rats were pretreated with complement factor C5a receptor antagonist and tested following ch14.18 injection. The mutation reduces the antibody’s ability to activate complement, while maintaining its ADCC capabilities. Injection of hu14.18K322 (1 or 3 mg/kg) produced faster resolving allodynia than that engendered by ch14.18 (1 mg/kg). Injection of ch14.18 (1 mg/kg) into rats with C6 complement deficiency further reduced antibody-induced allodynia, while pre-treatment with complement factor C5a receptor antagonist completely abolished ch14.18-induced allodynia. These findings showed that mutant hu14.18 K322 elicited less allodynia than ch14.18 and that ch14.18-elicited allodynia is due to activation of the complement cascade: in part, to formation of membrane attack complex, but more importantly to release of complement factor C5a. Development of immunotherapeutic agents with decreased complement-dependent lysis while maintaining cellular cytotoxicity may offer treatment options with reduced adverse side effects, thereby allowing dose escalation of therapeutic antibodies. PMID:20171010

  9. Influence of point mutations on the stability, dimerization, and oligomerization of human cystatin C and its L68Q variant.

    PubMed

    Szymańska, Aneta; Jankowska, Elżbieta; Orlikowska, Marta; Behrendt, Izabela; Czaplewska, Paulina; Rodziewicz-Motowidło, Sylwia

    2012-01-01

    Human cystatin C (hCC) is a small but very intriguing protein. Produced by all nucleated cells is found in almost all tissues and body fluids where, at physiological conditions, plays a role of a very potent inhibitor of cysteine proteases. Biologically active hCC is a monomeric protein but during cellular trafficking it forms dimers, transiently losing its inhibitory activity. In vitro, dimerization of cystatin C was observed for the mature protein during crystallization trials, revealing that the mechanism of this process is based on the three dimensional swapping of the protein domains. In our work we have focused on the impact of two proposed "hot spots" in cystatin C structure on its conformational stability. Encouraged by promising results of the theoretical calculations, we designed and produced several hCC hinge region point mutation variants that display a variety of conformational stability and propensity for dimerization and aggregation. A similar approach, i.e., rational mutagenesis, has been also applied to study the amyloidogenic L68Q variant to determine the contribution of hydrophobic interactions and steric effect on the stability of monomeric cystatin C. In this overview we would like to summarize the results of our studies. The impact of a particular mutation on the properties of the studied proteins will be presented in the context of their thermal and mechanical stability, in vitro dimerization tendency as well as the outcome of crystallization. Better understanding of the mechanism and, especially, factors affecting conformational stability of cystatin C and access to stable monomeric and dimeric versions of the protein opens new perspectives in explaining the role of dimers and the domain swapping process in hCC oligomerization, as well as designing potential inhibitors of this process.

  10. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression

    PubMed Central

    Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H. N.; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K.; Appawu, Maxwell; Ohta, Nobuo; Minakawa, Noboru

    2016-01-01

    Background Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. Methodology/Principal Findings High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. Conclusions/Significance The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries

  11. Three novel mutations of CHD7 gene in two turkish patients with charge syndrome; A double point mutation and an insertion

    PubMed Central

    Bozkaya, O Giray; Ataman, E; Randa, C; Cura, D Onur; Gürsoy, S; Aksel, O; Ulgenalp, A

    2015-01-01

    The CHARGE (coloboma, heart defects, atresia, retardation, genital, ear) syndrome is a genetic disease characterized by ocular coloboma, choanal atresia or stenosis and semicircular canal abnormalities. Most of the patients clinically diagnosed with CHARGE syndrome have mutations in chromodomain helicase DNA-binding protein 7 (CHD7) gene. The CHD7 gene is located on chromosome 8q12.1, and up to now, there are more than 500 pathogenic mutations identified in the literature. We report two patients diagnosed with CHARGE syndrome with two novel mutations in the CHD7 gene: the first patient has double consecutive novel mutations in three adjacent codons, and the other has a novel insertion. PMID:26929907

  12. Point mutations in the post-M2 region of human alpha-ENaC regulate cation selectivity.

    PubMed

    Ji, H L; Parker, S; Langloh, A L; Fuller, C M; Benos, D J

    2001-07-01

    We tested the hypothesis that an arginine-rich region immediately following the second transmembrane domain may constitute part of the inner mouth of the epithelial Na+ channel (ENaC) pore and, hence, influence conduction and/or selectivity properties of the channel by expressing double point mutants in Xenopus oocytes. Double point mutations of arginines in this post-M2 region of the human alpha-ENaC (alpha-hENaC) led to a decrease and increase in the macroscopic conductance of alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, respectively, but had no effect on the single-channel conductance of either double point mutant. However, the apparent equilibrium dissociation constant for Na+ was decreased for both alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, and the maximum amiloride-sensitive Na+ current was decreased for alphaR586E,R587Ebetagamma-hENaC and increased for alphaR589E,R591Ebetagamma-hENaC. The relative permeabilities of Li+ and K+ vs. Na+ were increased 11.25- to 27.57-fold for alphaR586E,R587Ebetagamma-hENaC compared with wild type. The relative ion permeability of these double mutants and wild-type ENaC was inversely related to the crystal diameter of the permeant ions. Thus the region of positive charge is important for the ion permeation properties of the channel and may form part of the pore itself. PMID:11401828

  13. Improvement of the Mutation-Discrimination Threshold for Rare Point Mutations by a Separation-Free Ligase Detection Reaction Assay Based on Fluorescence Resonance Energy Transfer.

    PubMed

    Hagihara, Kenta; Tsukagoshi, Kazuhiko; Nakajima, Chinami; Esaki, Shinsuke; Hashimoto, Masahiko

    2016-01-01

    We previously developed a separation-free ligase detection reaction assay based on fluorescence resonance energy transfer from a donor quantum dot to an acceptor fluorescent dye. This assay could successfully detect one cancer mutation among 10 wild-type templates. In the current study, the mutation-discrimination threshold was improved by one order of magnitude by replacing the original acceptor dye (Alexa Fluor 647) with another fluorescent dye (Cyanine 5) that was spectrally similar but more fluorescent. PMID:26960620

  14. From Whole Gene Deletion to Point Mutations of EP300-Positive Rubinstein-Taybi Patients: New Insights into the Mutational Spectrum and Peculiar Clinical Hallmarks.

    PubMed

    Negri, Gloria; Magini, Pamela; Milani, Donatella; Colapietro, Patrizia; Rusconi, Daniela; Scarano, Emanuela; Bonati, Maria Teresa; Priolo, Manuela; Crippa, Milena; Mazzanti, Laura; Wischmeijer, Anita; Tamburrino, Federica; Pippucci, Tommaso; Finelli, Palma; Larizza, Lidia; Gervasini, Cristina

    2016-02-01

    Rubinstein-Taybi syndrome (RSTS) is a rare congenital neurodevelopmental disorder characterized by growth deficiency, skeletal abnormalities, dysmorphic features, and intellectual disability. Causative mutations in CREBBP and EP300 genes have been identified in ∼55% and ∼8% of affected individuals. To date, only 28 EP300 alterations in 29 RSTS clinically described patients have been reported. EP300 analysis of 22 CREBBP-negative RSTS patients from our cohort led us to identify six novel mutations: a 376-kb deletion depleting EP300 gene; an exons 17-19 deletion (c.(3141+1_3142-1)_(3590+1_3591-1)del/p.(Ile1047Serfs*30)); two stop mutations, (c.3829A>T/p.(Lys1277*) and c.4585C>T/p.(Arg1529*)); a splicing mutation (c.1878-12A>G/p.(Ala627Glnfs*11)), and a duplication (c.4640dupA/p.(Asn1547Lysfs*3)). All EP300-mutated individuals show a mild RSTS phenotype and peculiar findings including maternal gestosis, skin manifestation, especially nevi or keloids, back malformations, and a behavior predisposing to anxiety. Furthermore, the patient carrying the complete EP300 deletion does not show a markedly severe clinical picture, even if a more composite phenotype was noticed. By characterizing six novel EP300-mutated patients, this study provides further insights into the EP300-specific clinical presentation and expands the mutational repertoire including the first case of a whole gene deletion. These new data will enhance EP300-mutated cases identification highlighting distinctive features and will improve the clinical practice allowing a better genotype-phenotype correlation.

  15. Mediterranean Founder Mutation Database (MFMD): Taking Advantage from Founder Mutations in Genetics Diagnosis, Genetic Diversity and Migration History of the Mediterranean Population.

    PubMed

    Charoute, Hicham; Bakhchane, Amina; Benrahma, Houda; Romdhane, Lilia; Gabi, Khalid; Rouba, Hassan; Fakiri, Malika; Abdelhak, Sonia; Lenaers, Guy; Barakat, Abdelhamid

    2015-11-01

    The Mediterranean basin has been the theater of migration crossroads followed by settlement of several societies and cultures in prehistoric and historical times, with important consequences on genetic and genomic determinisms. Here, we present the Mediterranean Founder Mutation Database (MFMD), established to offer web-based access to founder mutation information in the Mediterranean population. Mutation data were collected from the literature and other online resources and systematically reviewed and assembled into this database. The information provided for each founder mutation includes DNA change, amino-acid change, mutation type and mutation effect, as well as mutation frequency and coalescence time when available. Currently, the database contains 383 founder mutations found in 210 genes related to 219 diseases. We believe that MFMD will help scientists and physicians to design more rapid and less expensive genetic diagnostic tests. Moreover, the coalescence time of founder mutations gives an overview about the migration history of the Mediterranean population. MFMD can be publicly accessed from http://mfmd.pasteur.ma.

  16. Diffusion-collision of foldons elucidates the kinetic effects of point mutations and suggests control strategies of the folding process of helical proteins.

    PubMed

    Capriotti, Emidio; Compiani, Mario

    2006-07-01

    In this article we use mutation studies as a benchmark for a minimal model of the folding process of helical proteins. The model ascribes a pivotal role to the collisional dynamics of a few crucial residues (foldons) and predicts the folding rates by exploiting information drawn from the protein sequence. We show that our model rationalizes the effects of point mutations on the kinetics of folding. The folding times of two proteins and their mutants are predicted. Stability and location of foldons have a critical role as the determinants of protein folding. This allows us to elucidate two main mechanisms for the kinetic effects of mutations. First, it turns out that the mutations eliciting the most notable effects alter protein stability through stabilization or destabilization of the foldons. Secondly, the folding rate is affected via a modification of the foldon topology by those mutations that lead to the birth or death of foldons. The few mispredicted folding rates of some mutants hint at the limits of the current version of the folding model proposed in the present article. The performance of our folding model declines in case the mutated residues are subject to strong long-range forces. That foldons are the critical targets of mutation studies has notable implications for design strategies and is of particular interest to address the issue of the kinetic regulation of single proteins in the general context of the overall dynamics of the interactome.

  17. Synergistic and compensatory effects of two point mutations conferring target-site resistance to fipronil in the insect GABA receptor RDL

    PubMed Central

    Zhang, Yixi; Meng, Xiangkun; Yang, Yuanxue; Li, Hong; Wang, Xin; Yang, Baojun; Zhang, Jianhua; Li, Chunrui; Millar, Neil S.; Liu, Zewen

    2016-01-01

    Insecticide resistance can arise from a variety of mechanisms, including changes to the target site, but is often associated with substantial fitness costs to insects. Here we describe two resistance-associated target-site mutations that have synergistic and compensatory effects that combine to produce high and persistent levels of resistance to fipronil, an insecticide targeting on γ-aminobytyric acid (GABA) receptors. In Nilaparvata lugens, a major pest of rice crops in many parts of Asia, we have identified a single point mutation (A302S) in the GABA receptor RDL that has been identified previously in other species and which confers low levels of resistance to fipronil (23-fold) in N. lugans. In addition, we have identified a second resistance-associated RDL mutation (R300Q) that, in combination with A302S, is associated with much higher levels of resistance (237-fold). The R300Q mutation has not been detected in the absence of A302S in either laboratory-selected or field populations, presumably due to the high fitness cost associated with this mutation. Significantly, it appears that the A302S mutation is able to compensate for deleterious effects of R300Q mutation on fitness cost. These findings identify a novel resistance mechanism and may have important implications for the spread of insecticide resistance. PMID:27557781

  18. One Hundred Twenty-One Dystrophin Point Mutations Detected from Stored DNA Samples by Combinatorial Denaturing High-Performance Liquid Chromatography

    PubMed Central

    Torella, Annalaura; Trimarco, Amelia; Del Vecchio Blanco, Francesca; Cuomo, Anna; Aurino, Stefania; Piluso, Giulio; Minetti, Carlo; Politano, Luisa; Nigro, Vincenzo

    2010-01-01

    Duchenne and Becker muscular dystrophies are caused by a large number of different mutations in the dystrophin gene. Outside of the deletion/duplication “hot spots,” small mutations occur at unpredictable positions. These account for about 15 to 20% of cases, with the major group being premature stop codons. When the affected male is deceased, carrier testing for family members and prenatal diagnosis become difficult and expensive. We tailored a cost-effective and reliable strategy to discover point mutations from stored DNA samples in the absence of a muscle biopsy. Samples were amplified in combinatorial pools and tested by denaturing high-performance liquid chromatography analysis. An anomalous elution profile belonging to two different pools univocally addressed the allelic variation to an unambiguous sample. Mutations were then detected by sequencing. We identified 121 mutations of 99 different types. Fifty-six patients show stop codons that represent the 46.3% of all cases. Three non-obvious single amino acid mutations were considered as causative. Our data support combinatorial denaturing high-performance liquid chromatography analysis as a clear-cut strategy for time and cost-effective identification of small mutations when only DNA is available. PMID:19959795

  19. Synergistic and compensatory effects of two point mutations conferring target-site resistance to fipronil in the insect GABA receptor RDL.

    PubMed

    Zhang, Yixi; Meng, Xiangkun; Yang, Yuanxue; Li, Hong; Wang, Xin; Yang, Baojun; Zhang, Jianhua; Li, Chunrui; Millar, Neil S; Liu, Zewen

    2016-01-01

    Insecticide resistance can arise from a variety of mechanisms, including changes to the target site, but is often associated with substantial fitness costs to insects. Here we describe two resistance-associated target-site mutations that have synergistic and compensatory effects that combine to produce high and persistent levels of resistance to fipronil, an insecticide targeting on γ-aminobytyric acid (GABA) receptors. In Nilaparvata lugens, a major pest of rice crops in many parts of Asia, we have identified a single point mutation (A302S) in the GABA receptor RDL that has been identified previously in other species and which confers low levels of resistance to fipronil (23-fold) in N. lugans. In addition, we have identified a second resistance-associated RDL mutation (R300Q) that, in combination with A302S, is associated with much higher levels of resistance (237-fold). The R300Q mutation has not been detected in the absence of A302S in either laboratory-selected or field populations, presumably due to the high fitness cost associated with this mutation. Significantly, it appears that the A302S mutation is able to compensate for deleterious effects of R300Q mutation on fitness cost. These findings identify a novel resistance mechanism and may have important implications for the spread of insecticide resistance. PMID:27557781

  20. Novel Point Mutations and A8027G Polymorphism in Mitochondrial-DNA-Encoded Cytochrome c Oxidase II Gene in Mexican Patients with Probable Alzheimer Disease

    PubMed Central

    Loera-Castañeda, Verónica; Sandoval-Ramírez, Lucila; Pacheco Moisés, Fermín Paul; Macías-Islas, Miguel Ángel; Alatorre Jiménez, Moisés Alejandro; González-Renovato, Erika Daniela; Cortés-Enríquez, Fernando; Célis de la Rosa, Alfredo; Velázquez-Brizuela, Irma E.

    2014-01-01

    Mitochondrial dysfunction has been thought to contribute to Alzheimer disease (AD) pathogenesis through the accumulation of mitochondrial DNA mutations and net production of reactive oxygen species (ROS). Mitochondrial cytochrome c-oxidase plays a key role in the regulation of aerobic production of energy and is composed of 13 subunits. The 3 largest subunits (I, II, and III) forming the catalytic core are encoded by mitochondrial DNA. The aim of this work was to look for mutations in mitochondrial cytochrome c-oxidase gene II (MTCO II) in blood samples from probable AD Mexican patients. MTCO II gene was sequenced in 33 patients with diagnosis of probable AD. Four patients (12%) harbored the A8027G polymorphism and three of them were early onset (EO) AD cases with familial history of the disease. In addition, other four patients with EOAD had only one of the following point mutations: A8003C, T8082C, C8201T, or G7603A. Neither of the point mutations found in this work has been described previously for AD patients, and the A8027G polymorphism has been described previously; however, it hasn't been related to AD. We will need further investigation to demonstrate the role of the point mutations of mitochondrial DNA in the pathogenesis of AD. PMID:24701363

  1. Novel Point Mutations and A8027G Polymorphism in Mitochondrial-DNA-Encoded Cytochrome c Oxidase II Gene in Mexican Patients with Probable Alzheimer Disease.

    PubMed

    Loera-Castañeda, Verónica; Sandoval-Ramírez, Lucila; Pacheco Moisés, Fermín Paul; Macías-Islas, Miguel Ángel; Alatorre Jiménez, Moisés Alejandro; González-Renovato, Erika Daniela; Cortés-Enríquez, Fernando; Célis de la Rosa, Alfredo; Velázquez-Brizuela, Irma E; Ortiz, Genaro Gabriel

    2014-01-01

    Mitochondrial dysfunction has been thought to contribute to Alzheimer disease (AD) pathogenesis through the accumulation of mitochondrial DNA mutations and net production of reactive oxygen species (ROS). Mitochondrial cytochrome c-oxidase plays a key role in the regulation of aerobic production of energy and is composed of 13 subunits. The 3 largest subunits (I, II, and III) forming the catalytic core are encoded by mitochondrial DNA. The aim of this work was to look for mutations in mitochondrial cytochrome c-oxidase gene II (MTCO II) in blood samples from probable AD Mexican patients. MTCO II gene was sequenced in 33 patients with diagnosis of probable AD. Four patients (12%) harbored the A8027G polymorphism and three of them were early onset (EO) AD cases with familial history of the disease. In addition, other four patients with EOAD had only one of the following point mutations: A8003C, T8082C, C8201T, or G7603A. Neither of the point mutations found in this work has been described previously for AD patients, and the A8027G polymorphism has been described previously; however, it hasn't been related to AD. We will need further investigation to demonstrate the role of the point mutations of mitochondrial DNA in the pathogenesis of AD.

  2. Do mutator mutations fuel tumorigenesis?

    PubMed

    Fox, Edward J; Prindle, Marc J; Loeb, Lawrence A

    2013-12-01

    The mutator phenotype hypothesis proposes that the mutation rate of normal cells is insufficient to account for the large number of mutations found in human cancers. Consequently, human tumors exhibit an elevated mutation rate that increases the likelihood of a tumor acquiring advantageous mutations. The hypothesis predicts that tumors are composed of cells harboring hundreds of thousands of mutations, as opposed to a small number of specific driver mutations, and that malignant cells within a tumor therefore constitute a highly heterogeneous population. As a result, drugs targeting specific mutated driver genes or even pathways of mutated driver genes will have only limited anticancer potential. In addition, because the tumor is composed of such a diverse cell population, tumor cells harboring drug-resistant mutations will exist prior to the administration of any chemotherapeutic agent. We present recent evidence in support of the mutator phenotype hypothesis, major arguments against this concept, and discuss the clinical consequences of tumor evolution fueled by an elevated mutation rate. We also consider the therapeutic possibility of altering the rate of mutation accumulation. Most significantly, we contend that there is a need to fundamentally reconsider current approaches to personalized cancer therapy. We propose that targeting cellular pathways that alter the rate of mutation accumulation in tumors will ultimately prove more effective than attempting to identify and target mutant driver genes or driver pathways.

  3. Myeloma Ig heavy chain V region sequences reveal prior antigenic selection and marked somatic mutation but no intraclonal diversity

    SciTech Connect

    Vescio, R.A.; Cao, J.; Hong, C.H.

    1995-09-01

    The IgV{sub H} region sequence in 48 patients with multiple myeloma (MM) was analyzed to characterize the malignant cell of origin. The sequences were obtained after amplification of bone marrow cDNA by using V{sub H} family-specific and C{sub H} primers, then compared with either directly sequenced patient germ-line or published V{sub H} gene sequences to assay for somatic mutation. Because somatic hypermutation of the V{sub H} gene occurs late in B cell development, its presence has been helpful in determining the cell of origin in other B cell malignancies. Overall, a median of 8.2% of the nucleotides had evidence of substitution within each V{sub H} gene sequence (range = 2.7% to 16.5%), which is more prevalent than in any other reported tumor type. Strong evidence of prior antigenic selection pressure was also evident. The ratio of nucleotide substitutions that resulted in amino acid replacement was significantly higher in the complementarity-determining region than in the framework region (3.25 vs. 1.56, respectively; p < 0.00005). No V{sub H} gene intraclonal diversity was noted, despite sequencing multiple clones (3-16) from each patient, nor was there evidence of further V{sub H} gene somatic mutation over the course of three patients` disease. These findings strongly imply that the malignant clone in MM evolves from a cell late in B cell development. 63 refs., 4 figs., 2 tabs.

  4. Assessing the Metabolic Diversity of Streptococcus from a Protein Domain Point of View

    PubMed Central

    Koehorst, Jasper J.; Martins dos Santos, Vitor A. P.; Schaap, Peter J.

    2015-01-01

    Understanding the diversity and robustness of the metabolism of bacteria is fundamental for understanding how bacteria evolve and adapt to different environments. In this study, we characterised 121 Streptococcus strains and studied metabolic diversity from a protein domain perspective. Metabolic pathways were described in terms of the promiscuity of domains participating in metabolic pathways that were inferred to be functional. Promiscuity was defined by adapting existing measures based on domain abundance and versatility. The approach proved to be successful in capturing bacterial metabolic flexibility and species diversity, indicating that it can be described in terms of reuse and sharing functional domains in different proteins involved in metabolic activity. Additionally, we showed striking differences among metabolic organisation of the pathogenic serotype 2 Streptococcus suis and other strains. PMID:26366735

  5. A methylated Neurospora 5S rRNA pseudogene contains a transposable element inactivated by repeat-induced point mutation.

    PubMed Central

    Margolin, B S; Garrett-Engele, P W; Stevens, J N; Fritz, D Y; Garrett-Engele, C; Metzenberg, R L; Selker, E U

    1998-01-01

    In an analysis of 22 of the roughly 100 dispersed 5S rRNA genes in Neurospora crassa, a methylated 5S rRNA pseudogene, Psi63, was identified. We characterized the Psi63 region to better understand the control and function of DNA methylation. The 120-bp 5S rRNA-like region of Psi63 is interrupted by a 1.9-kb insertion that has characteristics of sequences that have been modified by repeat-induced point mutation (RIP). We found sequences related to this insertion in wild-type strains of N. crassa and other Neurospora species. Most showed evidence of RIP; but one, isolated from the N. crassa host of Psi63, showed no evidence of RIP. A deletion from near the center of this sequence apparently rendered it incapable of participating in RIP with the related full-length copies. The Psi63 insertion and the related sequences have features of transposons and are related to the Fot1 class of fungal transposable elements. Apparently Psi63 was generated by insertion of a previously unrecognized Neurospora transposable element into a 5S rRNA gene, followed by RIP. We name the resulting inactivated Neurospora transposon PuntRIP1 and the related sequence showing no evidence of RIP, but harboring a deletion that presumably rendered it defective for transposition, dPunt. PMID:9691037

  6. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides.

    PubMed

    Bialk, Pawel; Sansbury, Brett; Rivera-Torres, Natalia; Bloh, Kevin; Man, Dula; Kmiec, Eric B

    2016-09-09

    The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9.

  7. A simple extension to the CMASA method for the prediction of catalytic residues in the presence of single point mutations.

    PubMed

    Flores, David I; Sotelo-Mundo, Rogerio R; Brizuela, Carlos A

    2014-01-01

    The automatic identification of catalytic residues still remains an important challenge in structural bioinformatics. Sequence-based methods are good alternatives when the query shares a high percentage of identity with a well-annotated enzyme. However, when the homology is not apparent, which occurs with many structures from the structural genome initiative, structural information should be exploited. A local structural comparison is preferred to a global structural comparison when predicting functional residues. CMASA is a recently proposed method for predicting catalytic residues based on a local structure comparison. The method achieves high accuracy and a high value for the Matthews correlation coefficient. However, point substitutions or a lack of relevant data strongly affect the performance of the method. In the present study, we propose a simple extension to the CMASA method to overcome this difficulty. Extensive computational experiments are shown as proof of concept instances, as well as for a few real cases. The results show that the extension performs well when the catalytic site contains mutated residues or when some residues are missing. The proposed modification could correctly predict the catalytic residues of a mutant thymidylate synthase, 1EVF. It also successfully predicted the catalytic residues for 3HRC despite the lack of information for a relevant side chain atom in the PDB file. PMID:25268770

  8. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides.

    PubMed

    Bialk, Pawel; Sansbury, Brett; Rivera-Torres, Natalia; Bloh, Kevin; Man, Dula; Kmiec, Eric B

    2016-01-01

    The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9. PMID:27609304

  9. Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype

    PubMed Central

    Ralvenius, William T.; Benke, Dietmar; Acuña, Mario A.; Rudolph, Uwe; Zeilhofer, Hanns Ulrich

    2015-01-01

    Agonists at the benzodiazepine-binding site of GABAA receptors (BDZs) enhance synaptic inhibition through four subtypes (α1, α2, α3 and α5) of GABAA receptors (GABAAR). When applied to the spinal cord, they alleviate pathological pain; however, insufficient efficacy after systemic administration and undesired effects preclude their use in routine pain therapy. Previous work suggested that subtype-selective drugs might allow separating desired antihyperalgesia from unwanted effects, but the lack of selective agents has hitherto prevented systematic analyses. Here we use four lines of triple GABAAR point-mutated mice, which express only one benzodiazepine-sensitive GABAAR subtype at a time, to show that targeting only α2GABAARs achieves strong antihyperalgesia and reduced side effects (that is, no sedation, motor impairment and tolerance development). Additional pharmacokinetic and pharmacodynamic analyses in these mice explain why clinically relevant antihyperalgesia cannot be achieved with nonselective BDZs. These findings should foster the development of innovative subtype-selective BDZs for novel indications such as chronic pain. PMID:25865415

  10. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina.

    PubMed Central

    Bouhouche, Khaled; Zickler, Denise; Debuchy, Robert; Arnaise, Sylvie

    2004-01-01

    Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR. PMID:15166143

  11. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides

    PubMed Central

    Bialk, Pawel; Sansbury, Brett; Rivera-Torres, Natalia; Bloh, Kevin; Man, Dula; Kmiec, Eric B.

    2016-01-01

    The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9. PMID:27609304

  12. Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion

    SciTech Connect

    Wu Liguo; Hutt-Fletcher, Lindsey M. . E-mail: lhuttf@lsuhsc.edu

    2007-06-20

    Cell fusion mediated by Epstein-Barr virus requires three conserved glycoproteins, gB and gHgL, but activation is cell type specific. B cell fusion requires interaction between MHC class II and a fourth virus glycoprotein, gp42, which complexes non-covalently with gHgL. Epithelial cell fusion requires interaction between gHgL and a novel epithelial cell coreceptor and is blocked by excess gp42. We show here that gp42 interacts directly with gH and that point mutations in the region of gH recognized by an antibody that differentially inhibits epithelial and B cell fusion significantly impact both the core fusion machinery and cell-specific events. Substitution of alanine for glycine at residue 594 completely abrogates fusion with either B cells or epithelial cells. Substitution of alanine for glutamic acid at residue 595 reduces fusion with epithelial cells, greatly enhances fusion with B cells and allows low levels of B cell fusion even in the absence of gL.

  13. A simple extension to the CMASA method for the prediction of catalytic residues in the presence of single point mutations.

    PubMed

    Flores, David I; Sotelo-Mundo, Rogerio R; Brizuela, Carlos A

    2014-01-01

    The automatic identification of catalytic residues still remains an important challenge in structural bioinformatics. Sequence-based methods are good alternatives when the query shares a high percentage of identity with a well-annotated enzyme. However, when the homology is not apparent, which occurs with many structures from the structural genome initiative, structural information should be exploited. A local structural comparison is preferred to a global structural comparison when predicting functional residues. CMASA is a recently proposed method for predicting catalytic residues based on a local structure comparison. The method achieves high accuracy and a high value for the Matthews correlation coefficient. However, point substitutions or a lack of relevant data strongly affect the performance of the method. In the present study, we propose a simple extension to the CMASA method to overcome this difficulty. Extensive computational experiments are shown as proof of concept instances, as well as for a few real cases. The results show that the extension performs well when the catalytic site contains mutated residues or when some residues are missing. The proposed modification could correctly predict the catalytic residues of a mutant thymidylate synthase, 1EVF. It also successfully predicted the catalytic residues for 3HRC despite the lack of information for a relevant side chain atom in the PDB file.

  14. A Simple Extension to the CMASA Method for the Prediction of Catalytic Residues in the Presence of Single Point Mutations

    PubMed Central

    Flores, David I.; Sotelo-Mundo, Rogerio R.; Brizuela, Carlos A.

    2014-01-01

    The automatic identification of catalytic residues still remains an important challenge in structural bioinformatics. Sequence-based methods are good alternatives when the query shares a high percentage of identity with a well-annotated enzyme. However, when the homology is not apparent, which occurs with many structures from the structural genome initiative, structural information should be exploited. A local structural comparison is preferred to a global structural comparison when predicting functional residues. CMASA is a recently proposed method for predicting catalytic residues based on a local structure comparison. The method achieves high accuracy and a high value for the Matthews correlation coefficient. However, point substitutions or a lack of relevant data strongly affect the performance of the method. In the present study, we propose a simple extension to the CMASA method to overcome this difficulty. Extensive computational experiments are shown as proof of concept instances, as well as for a few real cases. The results show that the extension performs well when the catalytic site contains mutated residues or when some residues are missing. The proposed modification could correctly predict the catalytic residues of a mutant thymidylate synthase, 1EVF. It also successfully predicted the catalytic residues for 3HRC despite the lack of information for a relevant side chain atom in the PDB file. PMID:25268770

  15. Modeling the effects of point and non-point source pollution on a diversion channel from Yellow River to an artificial lake in China.

    PubMed

    Gao, X P; Li, G N; Li, G R; Zhang, C

    2015-01-01

    The Dragon lake diversion channel (DLDC) is the only river that recharges Dragon Lake, an artificial lake in China. This paper examines the main factors influencing water quality by investigating point source and non-point source pollutants along the main route. Based on the complicated system of rivers and desilting basins, a three-dimensional water quality model using environmental fluid dynamics code (EFDC) was developed. The model of DLDC was calibrated and verified using observed data. The error ranges of river water level, total phosphorus, total nitrogen and chemical oxygen demand were within 5%, 10%, 16% and 20%, respectively, all of which meet the precision requirement. The model was employed to predict the concentrations of pollutants in the main stream under current pollution loads within a year and a flood lasting for 24 hours. The results revealed that the main pollution sources that influence the water quality of waterways were the point sources followed by the non-point pollution sources. Water quality improved when large water quantities were delivered and this trend can be described as dilution. The water quality of the Dongfeng main channel meets the requirement; however, the water quality of the Dongfeng River is somewhat poor, and the water quality of the Wei River is seriously contaminated. To address these problems, we suggest that the Dongfeng River and Wei River adopt a culvert under its riverbeds.

  16. A point mutation in NEMO associated with anhidrotic ectodermal dysplasia with immunodeficiency pathology results in destabilization of the oligomer and reduces lipopolysaccharide- and tumor necrosis factor-mediated NF-kappa B activation.

    PubMed

    Vinolo, Emilie; Sebban, Hélène; Chaffotte, Alain; Israël, Alain; Courtois, Gilles; Véron, Michel; Agou, Fabrice

    2006-03-10

    The NEMO (NF-kappaB essential modulator) protein plays a crucial role in the canonical NF-kappaB pathway as the regulatory component of the IKK (IkappaB kinase) complex. The human disease anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) has been recently linked to mutations in NEMO. We investigated the effect of an alanine to glycine substitution found in the NEMO polypeptide of an EDA-ID patient. This pathogenic mutation is located within the minimal oligomerization domain of the protein, which is required for the IKK activation in response to diverse stimuli. The mutation does not dramatically change the native-like state of the trimer, but temperature-induced unfolding studied by circular dichroism showed that it leads to an important loss in the oligomer stability. Furthermore, fluorescence studies showed that the tyrosine located in the adjacent zinc finger domain, which is possibly required for NEMO ubiquitination, exhibits an alteration in its spectral properties. This is probably due to a conformational change of this domain, providing evidence for a close interaction between the oligomerization domain and the zinc finger. In addition, functional complementation assays using NEMO-deficient pre-B and T lymphocytes showed that the pathogenic mutation reduced TNF-alpha and LPS-induced NF-kappaB activation by altering the assembly of the IKK complex. Altogether, our findings provide understanding as to how a single point mutation in NEMO leads to the observed EDA-ID phenotype in relation to the NEMO-dependent mechanism of IKK activation.

  17. Haplotypes in the Dystrophin DNA Segment Point to a Mosaic Origin of Modern Human Diversity

    PubMed Central

    Ziętkiewicz, Ewa; Yotova, Vania; Gehl, Dominik; Wambach, Tina; Arrieta, Isabel; Batzer, Mark; Cole, David E. C.; Hechtman, Peter; Kaplan, Feige; Modiano, David; Moisan, Jean-Paul; Michalski, Roman; Labuda, Damian

    2003-01-01

    Although Africa has played a central role in human evolutionary history, certain studies have suggested that not all contemporary human genetic diversity is of recent African origin. We investigated 35 simple polymorphic sites and one Tn microsatellite in an 8-kb segment of the dystrophin gene. We found 86 haplotypes in 1,343 chromosomes from around the world. Although a classical out-of-Africa topology was observed in trees based on the variant frequencies, the tree of haplotype sequences reveals three lineages accounting for present-day diversity. The proportion of new recombinants and the diversity of the Tn microsatellite were used to estimate the age of haplotype lineages and the time of colonization events. The lineage that underwent the great expansion originated in Africa prior to the Upper Paleolithic (27,000–56,000 years ago). A second group, of structurally distinct haplotypes that occupy a central position on the tree, has never left Africa. The third lineage is represented by the haplotype that lies closest to the root, is virtually absent in Africa, and appears older than the recent out-of-Africa expansion. We propose that this lineage could have left Africa before the expansion (as early as 160,000 years ago) and admixed, outside of Africa, with the expanding lineage. Contemporary human diversity, although dominated by the recently expanded African lineage, thus represents a mosaic of different contributions. PMID:14513410

  18. Interface design challenges for single point access to diverse and dispersed science databases

    NASA Technical Reports Server (NTRS)

    Harberts, R. L.; Pfister, R. G.; Dobinson, E. R.

    1992-01-01

    Efforts to relate the diversity of terminology in science data bases in a logical way for information system interfaces are discussed. Attention is given to the NASA development of the Information Management System (V. 0 IMS), a prototypic common interface for accessing dispersed earth science data.

  19. Diversity of LTR-retrotransposons and Enhancer/Suppressor Mutator-like transposons in cassava (Manihot esculenta Crantz).

    PubMed

    Gbadegesin, Michael A; Wills, Matthew A; Beeching, John R

    2008-10-01

    Cassava (Manihot esculenta Crantz), though a major world crop with enormous potential, is very under studied. Little is known about its genome structure and organisation. Transposable elements have a key role in the evolution of genome structure, and can be used as important tools in applied genetics. This paper sets out to survey the diversity of members of three major classes of transposable element within the cassava genome and in relation to similar elements in other plants. Members of two classes of LTR-retrotransposons, Ty1/copia-like and Ty3/gypsy-like, and of Enhancer/Suppressor Mutator (En/Spm)-like transposons were isolated and characterised. Analyses revealed 59 families of Ty1/copia, 26 families of Ty3/gypsy retrotransposons, and 40 families of En/Spm in the cassava genome. In the comparative analyses, the predicted amino acid sequences for these transposon classes were compared with those of related elements from other plant species. These revealed that there were multiple lineages of Ty1/copia-like retrotransposons in the genome of cassava and suggested that vertical and horizontal transmission as the source of cassava Mecops may not be mutually exclusive. For the Ty3/gypsy elements network, two groups of cassava Megyps were evident including the Arabidopsis Athila lineage. However, cassava En/Spm-like elements (Meens) constituted a single group within a network of plant En/Spm-like elements. Hybridisation analysis supported the presence of transposons in the genome of cassava in medium (Ty3/gypsy and En/Spm) to high (Ty1/copia) copy numbers. Thus the cassava genome was shown to contain diverse members of three major classes of transposable element; however, the different classes exhibited contrasting evolutionary histories.

  20. Somatic Point Mutations in mtDNA Control Region Are Influenced by Genetic Background and Associated with Healthy Aging: A GEHA Study

    PubMed Central

    Rose, Giuseppina; Romeo, Giuseppe; Dato, Serena; Crocco, Paolina; Bruni, Amalia C.; Hervonen, Antti; Majamaa, Kari; Sevini, Federica; Franceschi, Claudio; Passarino, Giuseppe

    2010-01-01

    Tissue specific somatic mutations occurring in the mtDNA control region have been proposed to provide a survival advantage. Data on twins and on relatives of long-lived subjects suggested that the occurrence/accumulation of these mutations may be genetically influenced. To further investigate control region somatic heteroplasmy in the elderly, we analyzed the segment surrounding the nt 150 position (previously reported as specific of Leukocytes) in various types of leukocytes obtained from 195 ultra-nonagenarians sib-pairs of Italian or Finnish origin collected in the frame of the GEHA Project. We found a significant correlation of the mtDNA control region heteroplasmy between sibs, confirming a genetic influence on this phenomenon. Furthermore, many subjects showed heteroplasmy due to mutations different from the C150T transition. In these cases heteroplasmy was correlated within sibpairs in Finnish and northern Italian samples, but not in southern Italians. This suggested that the genetic contribution to control region mutations may be population specific. Finally, we observed a possible correlation between heteroplasmy and Hand Grip strength, one of the best markers of physical performance and of mortality risk in the elderly. Our study provides new evidence on the relevance of mtDNA somatic mutations in aging and longevity and confirms that the occurrence of specific point mutations in the mtDNA control region may represent a strategy for the age-related remodelling of organismal functions. PMID:20976236

  1. Low prevalence of clarithromycin-resistant Helicobacter pylori isolates with A2143G point mutation in the 23S rRNA gene in North India.

    PubMed

    Gehlot, Valentina; Mahant, Shweta; Mukhopadhyay, Asish Kumar; Das, Kunal; Alam, Jawed; Ghosh, Prachetash; Das, Rajashree

    2016-09-01

    Resistance of Helicobacter pylori to clarithromycin is associated with a single base substitution in the 23S rRNA gene. In this study, clarithromycin-resistant H. pylori isolates were analysed for the presence of 23S rRNA gene mutations. H. pylori were isolated from 68 patients suffering from various gastroduodenal diseases in North India. Minimum inhibitory concentrations (MICs) were determined by the agar dilution method, and point mutations in clarithromycin-resistant strains were identified by PCR-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing. Clarithromycin resistance was observed in 11.8% (8/68) of the H. pylori isolates in North India. The A2143G point mutation in the 23S rRNA gene was found in 87.5% (7/8) of the clarithromycin-resistant strains, and the A2142G mutation in association with the T2182C mutation was found in 12.5% (1/8). In conclusion, the continued high prevalence of clarithromycin-sensitive H. pylori strains (88.2%) observed in this study allows the use of the triple-therapy regimen for the treatment of H. pylori infection in this region. Surveillance studies need to be conducted at regular intervals for clarithromycin resistance in the population. To our knowledge, this is the first study in India to report that point mutations at position A2143G and at A2142G in association with T2182C are associated with clarithromycin resistance, confirming reports from other parts of the world. PMID:27530837

  2. In Vivo Analysis of Disease-Associated Point Mutations Unveils Profound Differences in mRNA Splicing of Peripherin-2 in Rod and Cone Photoreceptors.

    PubMed

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong Nam Phuong; Riedmayr, Lisa Maria; Koch, Mirja Annika; Schulze, Elisabeth; Kohl, Susanne; Borsch, Oliver; Santos-Ferreira, Tiago; Ader, Marius; Michalakis, Stylianos; Biel, Martin

    2016-01-01

    Point mutations in peripherin-2 (PRPH2) are associated with severe retinal degenerative disorders affecting rod and/or cone photoreceptors. Various disease-causing mutations have been identified, but the exact contribution of a given mutation to the clinical phenotype remains unclear. Exonic point mutations are usually assumed to alter single amino acids, thereby influencing specific protein characteristics; however, they can also affect mRNA splicing. To examine the effects of distinct PRPH2 point mutations on mRNA splicing and protein expression in vivo, we designed PRPH2 minigenes containing the three coding exons and relevant intronic regions of human PRPH2. Minigenes carrying wild type PRPH2 or PRPH2 exon 2 mutations associated with rod or cone disorders were expressed in murine photoreceptors using recombinant adeno-associated virus (rAAV) vectors. We detect three PRPH2 splice isoforms in rods and cones: correctly spliced, intron 1 retention, and unspliced. In addition, we show that only the correctly spliced isoform results in detectable protein expression. Surprisingly, compared to rods, differential splicing leads to lower expression of correctly spliced and higher expression of unspliced PRPH2 in cones. These results were confirmed in qRT-PCR experiments from FAC-sorted murine rods and cones. Strikingly, three out of five cone disease-causing PRPH2 mutations profoundly enhanced correct splicing of PRPH2, which correlated with strong upregulation of mutant PRPH2 protein expression in cones. By contrast, four out of six PRPH2 mutants associated with rod disorders gave rise to a reduced PRPH2 protein expression via different mechanisms. These mechanisms include aberrant mRNA splicing, protein mislocalization, and protein degradation. Our data suggest that upregulation of PRPH2 levels in combination with defects in the PRPH2 function caused by the mutation might be an important mechanism leading to cone degeneration. By contrast, the pathology of rod

  3. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    NASA Astrophysics Data System (ADS)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  4. Protein Adsorption and Reorganization on Nanoparticles Probed by the Coffee-Ring Effect: Application to Single Point Mutation Detection.

    PubMed

    Devineau, Stéphanie; Anyfantakis, Manos; Marichal, Laurent; Kiger, Laurent; Morel, Mathieu; Rudiuk, Sergii; Baigl, Damien

    2016-09-14

    The coffee-ring effect denotes the accumulation of particles at the edge of an evaporating sessile drop pinned on a substrate. Because it can be detected by simple visual inspection, this ubiquitous phenomenon can be envisioned as a robust and cost-effective diagnostic tool. Toward this direction, here we systematically analyze the deposit morphology of drying drops containing polystyrene particles of different surface properties with various proteins (bovine serum albumin (BSA) and different forms of hemoglobin). We show that deposit patterns reveal information on both the adsorption of proteins onto particles and their reorganization following adsorption. By combining pattern analysis with adsorption isotherm and zeta potential measurements, we show that the suppression of the coffee-ring effect and the formation of a disk-shaped pattern is primarily associated with particle neutralization by protein adsorption. However, our findings also suggest that protein reorganization following adsorption can dramatically invert this tendency. Exposure of hydrophobic (respectively charged) residues can lead to disk (respectively ring) deposit morphologies independently of the global particle charge. Surface tension measurements and microscopic observations of the evaporating drops show that the determinant factor of the deposit morphology is the accumulation of particles at the liquid/gas interface during evaporation. This general behavior opens the possibility to probe protein adsorption and reorganization on particles by the analysis of the deposit patterns, the formation of a disk being the robust signature of particles rendered hydrophobic by protein adsorption. We show that this method is sensitive enough to detect a single point mutation in a protein, as demonstrated here by the distinct patterns formed by human native hemoglobin h-HbA and its mutant form h-HbS, which is responsible for sickle cell anemia. PMID:27562632

  5. A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in Drosophila melanogaster.

    PubMed

    Zimmer, Christoph T; Garrood, William T; Puinean, A Mirel; Eckel-Zimmer, Manuela; Williamson, Martin S; Davies, T G Emyr; Bass, Chris

    2016-06-01

    Spinosad, a widely used and economically important insecticide, targets the nicotinic acetylcholine receptor (nAChRs) of the insect nervous system. Several studies have associated loss of function mutations in the insect nAChR α6 subunit with resistance to spinosad, and in the process identified this particular subunit as the specific target site. More recently a single non-synonymous point mutation, that does not result in loss of function, was identified in spinosad resistant strains of three insect species that results in an amino acid substitution (G275E) of the nAChR α6 subunit. The causal role of this mutation has been called into question as, to date, functional evidence proving its involvement in resistance has been limited to the study of vertebrate receptors. Here we use the CRISPR/Cas9 gene editing platform to introduce the G275E mutation into the nAChR α6 subunit of Drosophila melanogaster. Reverse transcriptase-PCR and sequencing confirmed the presence of the mutation in Dα6 transcripts of mutant flies and verified that it does not disrupt the normal splicing of the two exons in close vicinity to the mutation site. A marked decrease in sensitivity to spinosad (66-fold) was observed in flies with the mutation compared to flies of the same genetic background minus the mutation, clearly demonstrating the functional role of this amino acid substitution in resistance to spinosad. Although the resistance levels observed are 4.7-fold lower than exhibited by a fly strain with a null mutation of Dα6, they are nevertheless predicated to be sufficient to result in resistance to spinosad at recommended field rates. Reciprocal crossings with susceptible fly strains followed by spinosad bioassays revealed G275E is inherited as an incompletely recessive trait, thus resembling the mode of inheritance described for this mutation in the western flower thrips, Frankliniella occidentalis. This study both resolves a debate on the functional significance of a target

  6. A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in Drosophila melanogaster.

    PubMed

    Zimmer, Christoph T; Garrood, William T; Puinean, A Mirel; Eckel-Zimmer, Manuela; Williamson, Martin S; Davies, T G Emyr; Bass, Chris

    2016-06-01

    Spinosad, a widely used and economically important insecticide, targets the nicotinic acetylcholine receptor (nAChRs) of the insect nervous system. Several studies have associated loss of function mutations in the insect nAChR α6 subunit with resistance to spinosad, and in the process identified this particular subunit as the specific target site. More recently a single non-synonymous point mutation, that does not result in loss of function, was identified in spinosad resistant strains of three insect species that results in an amino acid substitution (G275E) of the nAChR α6 subunit. The causal role of this mutation has been called into question as, to date, functional evidence proving its involvement in resistance has been limited to the study of vertebrate receptors. Here we use the CRISPR/Cas9 gene editing platform to introduce the G275E mutation into the nAChR α6 subunit of Drosophila melanogaster. Reverse transcriptase-PCR and sequencing confirmed the presence of the mutation in Dα6 transcripts of mutant flies and verified that it does not disrupt the normal splicing of the two exons in close vicinity to the mutation site. A marked decrease in sensitivity to spinosad (66-fold) was observed in flies with the mutation compared to flies of the same genetic background minus the mutation, clearly demonstrating the functional role of this amino acid substitution in resistance to spinosad. Although the resistance levels observed are 4.7-fold lower than exhibited by a fly strain with a null mutation of Dα6, they are nevertheless predicated to be sufficient to result in resistance to spinosad at recommended field rates. Reciprocal crossings with susceptible fly strains followed by spinosad bioassays revealed G275E is inherited as an incompletely recessive trait, thus resembling the mode of inheritance described for this mutation in the western flower thrips, Frankliniella occidentalis. This study both resolves a debate on the functional significance of a target

  7. Antimicrobial Susceptibility and SOS-Dependent Increase in Mutation Frequency Are Impacted by Escherichia coli Topoisomerase I C-Terminal Point Mutation

    PubMed Central

    Yang, Jenny; Annamalai, Thirunavukkarasu; Cheng, Bokun; Banda, Srikanth; Tyagi, Rakhi

    2015-01-01

    Topoisomerase functions are required in all organisms for many vital cellular processes, including transcription elongation. The C terminus domains (CTD) of Escherichia coli topoisomerase I interact directly with RNA polymerase to remove transcription-driven negative supercoiling behind the RNA polymerase complex. This interaction prevents inhibition of transcription elongation from hypernegative supercoiling and R-loop accumulation. The physiological function of bacterial topoisomerase I in transcription is especially important for a rapid network response to an antibiotic challenge. In this study, Escherichia coli with a topA66 single nucleotide deletion mutation, which results in a frameshift in the TopA CTD, was shown to exhibit increased sensitivity to trimethoprim and quinolone antimicrobials. The topoisomerase I-RNA polymerase interaction and the SOS response to the antimicrobial agents were found to be significantly reduced by this topA66 mutation. Consequently, the mutation frequency measured by rifampin selection following SOS induction was diminished in the topA66 mutant. The increased antibiotic sensitivity for the topA66 mutant can be reversed by the expression of recombinant E. coli topoisomerase I but not by the expression of recombinant Mycobacterium tuberculosis topoisomerase I that has a nonhomologous CTD even though the recombinant M. tuberculosis topoisomerase I can restore most of the plasmid DNA linking number deficiency caused by the topA66 mutation. Direct interactions of E. coli topoisomerase I as part of transcription complexes are likely to be required for the rapid network response to an antibiotic challenge. Inhibitors of bacterial topoisomerase I functions and interactions may sensitize pathogens to antibiotic treatment and limit the mutagenic response. PMID:26248366

  8. Antimicrobial Susceptibility and SOS-Dependent Increase in Mutation Frequency Are Impacted by Escherichia coli Topoisomerase I C-Terminal Point Mutation.

    PubMed

    Yang, Jenny; Annamalai, Thirunavukkarasu; Cheng, Bokun; Banda, Srikanth; Tyagi, Rakhi; Tse-Dinh, Yuk-Ching

    2015-10-01

    Topoisomerase functions are required in all organisms for many vital cellular processes, including transcription elongation. The C terminus domains (CTD) of Escherichia coli topoisomerase I interact directly with RNA polymerase to remove transcription-driven negative supercoiling behind the RNA polymerase complex. This interaction prevents inhibition of transcription elongation from hypernegative supercoiling and R-loop accumulation. The physiological function of bacterial topoisomerase I in transcription is especially important for a rapid network response to an antibiotic challenge. In this study, Escherichia coli with a topA66 single nucleotide deletion mutation, which results in a frameshift in the TopA CTD, was shown to exhibit increased sensitivity to trimethoprim and quinolone antimicrobials. The topoisomerase I-RNA polymerase interaction and the SOS response to the antimicrobial agents were found to be significantly reduced by this topA66 mutation. Consequently, the mutation frequency measured by rifampin selection following SOS induction was diminished in the topA66 mutant. The increased antibiotic sensitivity for the topA66 mutant can be reversed by the expression of recombinant E. coli topoisomerase I but not by the expression of recombinant Mycobacterium tuberculosis topoisomerase I that has a nonhomologous CTD even though the recombinant M. tuberculosis topoisomerase I can restore most of the plasmid DNA linking number deficiency caused by the topA66 mutation. Direct interactions of E. coli topoisomerase I as part of transcription complexes are likely to be required for the rapid network response to an antibiotic challenge. Inhibitors of bacterial topoisomerase I functions and interactions may sensitize pathogens to antibiotic treatment and limit the mutagenic response.

  9. Highly diverse, massive organic data as explored by a composite QSPR strategy: an advanced study of boiling point.

    PubMed

    Ivanova, A A; Ivanov, A A; Oliferenko, A A; Palyulin, V A; Zefirov, N S

    2005-06-01

    An improved strategy of quantitative structure-property relationship (QSPR) studies of diverse and inhomogeneous organic datasets has been proposed. A molecular connectivity term was successively corrected for different structural features encoded in fragmental descriptors. The so-called solvation index 1chis (a weighted Randic index) was used as a "leading" variable and standardized molecular fragments were employed as "corrective" class-specific variables. Performance of the new approach was illustrated by modelling a dataset of experimental normal boiling points of 833 organic compounds belonging to 20 structural classes. Firstly, separate QSPR models were derived for each class and for eight groups of structurally similar classes. Finally, a general model formed by combining all the classes together was derived (r2=0.957, s=12.9degreesC). The strategy outlined can find application in QSPR analyses of massive, highly diverse databases of organic compounds.

  10. Connecting Online Learners with Diverse Local Practices: The Design of Effective Common Reference Points for Conversation

    ERIC Educational Resources Information Center

    Friend Wise, Alyssa; Padmanabhan, Poornima; Duffy, Thomas M.

    2009-01-01

    This mixed-methods study probed the effectiveness of three kinds of objects (video, theory, metaphor) as common reference points for conversations between online learners (student teachers). Individuals' degree of detail-focus was examined as a potentially interacting covariate and the outcome measure was learners' level of tacit knowledge related…

  11. Beyond the Tipping Point: Issues of Racial Diversity in Magnet Schools Following Unitary Status

    ERIC Educational Resources Information Center

    Smrekar, Claire

    2009-01-01

    This article uses qualitative case study methodology to examine why the racial composition of magnet schools in Nashville, Tennessee, has shifted to predominantly African American in the aftermath of unitary status. The article compares the policy contexts and parents' reasons for choosing magnet schools at two points in time--under court order…

  12. Disentangling the effects of mating systems and mutation rates on cytoplasmic [correction of cytoplamic] diversity in gynodioecious Silene nutans and dioecious Silene otites.

    PubMed

    Lahiani, E; Dufaÿ, M; Castric, V; Le Cadre, S; Charlesworth, D; Van Rossum, F; Touzet, P

    2013-08-01

    Many flowering plant species exhibit a variety of distinct sexual morphs, the two most common cases being the co-occurrence of females and males (dioecy) or the co-occurrence of hermaphrodites and females (gynodioecy). In this study, we compared DNA sequence variability of the three genomes (nuclear, mitochondrial and chloroplastic) of a gynodioecious species, Silene nutans, with that of a closely related dioecious species, Silene otites. In the light of theoretical models, we expect cytoplasmic diversity to differ between the two species due to the selective dynamics that acts on cytoplasmic genomes in gynodioecious species: under an epidemic scenario, the gynodioecious species is expected to exhibit lower cytoplasmic diversity than the dioecious species, while the opposite is expected in the case of balancing selection maintaining sterility cytoplasms in the gynodioecious species. We found no difference between the species for nuclear gene diversity, but, for the cytoplasmic loci, the gynodioecious S. nutans had more haplotypes, and higher nucleotide diversity, than the dioecious relative, S. otites, even though the latter has a relatively high rate of mitochondrial synonymous substitutions, and therefore presumably a higher mutation rate. Therefore, as the mitochondrial mutation rate cannot account for the higher cytoplasmic diversity found in S. nutans, our findings support the hypothesis that gynodioecy in S. nutans has been maintained by balancing selection rather than by epidemic-like dynamics.

  13. Systems-level response to point mutations in a core metabolic enzyme modulates genotype-phenotype relationship.

    PubMed

    Bershtein, Shimon; Choi, Jeong-Mo; Bhattacharyya, Sanchari; Budnik, Bogdan; Shakhnovich, Eugene

    2015-04-28

    Linking the molecular effects of mutations to fitness is central to understanding evolutionary dynamics. Here, we establish a quantitative relation between the global effect of mutations on the E. coli proteome and bacterial fitness. We created E. coli strains with specific destabilizing mutations in the chromosomal folA gene encoding dihydrofolate reductase (DHFR) and quantified the ensuing changes in the abundances of 2,000+ E. coli proteins in mutant strains using tandem mass tags with subsequent LC-MS/MS. mRNA abundances in the same E. coli strains were also quantified. The proteomic effects of mutations in DHFR are quantitatively linked to phenotype: the SDs of the distributions of logarithms of relative (to WT) protein abundances anticorrelate with bacterial growth rates. Proteomes hierarchically cluster first by media conditions, and within each condition, by the severity of the perturbation to DHFR function. These results highlight the importance of a systems-level layer in the genotype-phenotype relationship.

  14. Short peptides from leucyl-tRNA synthetase rescue disease-causing mitochondrial tRNA point mutations.

    PubMed

    Perli, Elena; Fiorillo, Annarita; Giordano, Carla; Pisano, Annalinda; Montanari, Arianna; Grazioli, Paola; Campese, Antonio F; Di Micco, Patrizio; Tuppen, Helen A; Genovese, Ilaria; Poser, Elena; Preziuso, Carmela; Taylor, Robert W; Morea, Veronica; Colotti, Gianni; d'Amati, Giulia

    2016-03-01

    Mutations in mitochondrial (mt) genes coding for mt-tRNAs are responsible for a range of syndromes, for which no effective treatment is available. We recently showed that the carboxy-terminal domain (Cterm) of human mt-leucyl tRNA synthetase rescues the pathologic phenotype associated either with the m.3243A>G mutation in mt-tRNA(Leu(UUR)) or with mutations in the mt-tRNA(Ile), both of which are aminoacylated by Class I mt-aminoacyl-tRNA synthetases (mt-aaRSs). Here we show, by using the human transmitochondrial cybrid model, that the Cterm is also able to improve the phenotype caused by the m.8344A>G mutation in mt-tRNA(Lys), aminoacylated by a Class II aaRS. Importantly, we demonstrate that the same rescuing ability is retained by two Cterm-derived short peptides, β30_31 and β32_33, which are effective towards both the m.8344A>G and the m.3243A>G mutations. Furthermore, we provide in vitro evidence that these peptides bind with high affinity wild-type and mutant human mt-tRNA(Leu(UUR)) and mt-tRNA(Lys), and stabilize mutant mt-tRNA(Leu(UUR)). In conclusion, we demonstrate that small Cterm-derived peptides can be effective tools to rescue cellular defects caused by mutations in a wide range of mt-tRNAs.

  15. Short peptides from leucyl-tRNA synthetase rescue disease-causing mitochondrial tRNA point mutations

    PubMed Central

    Perli, Elena; Fiorillo, Annarita; Giordano, Carla; Pisano, Annalinda; Montanari, Arianna; Grazioli, Paola; Campese, Antonio F.; Di Micco, Patrizio; Tuppen, Helen A.; Genovese, Ilaria; Poser, Elena; Preziuso, Carmela; Taylor, Robert W.; Morea, Veronica; Colotti, Gianni; d'Amati, Giulia

    2016-01-01

    Mutations in mitochondrial (mt) genes coding for mt-tRNAs are responsible for a range of syndromes, for which no effective treatment is available. We recently showed that the carboxy-terminal domain (Cterm) of human mt-leucyl tRNA synthetase rescues the pathologic phenotype associated either with the m.3243A>G mutation in mt-tRNALeu(UUR) or with mutations in the mt-tRNAIle, both of which are aminoacylated by Class I mt-aminoacyl-tRNA synthetases (mt-aaRSs). Here we show, by using the human transmitochondrial cybrid model, that the Cterm is also able to improve the phenotype caused by the m.8344A>G mutation in mt-tRNALys, aminoacylated by a Class II aaRS. Importantly, we demonstrate that the same rescuing ability is retained by two Cterm-derived short peptides, β30_31 and β32_33, which are effective towards both the m.8344A>G and the m.3243A>G mutations. Furthermore, we provide in vitro evidence that these peptides bind with high affinity wild-type and mutant human mt-tRNALeu(UUR) and mt-tRNALys, and stabilize mutant mt-tRNALeu(UUR). In conclusion, we demonstrate that small Cterm-derived peptides can be effective tools to rescue cellular defects caused by mutations in a wide range of mt-tRNAs. PMID:26721932

  16. High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes.

    PubMed

    Chisholm, Stephanie A; Dave, Jayshree; Ison, Catherine A

    2010-09-01

    High-level azithromycin resistance (AZM-HR), defined as a MIC of > or = 256 mg/liter, emerged in Neisseria gonorrhoeae in the United Kingdom in 2004. To determine the mechanism of this novel phenotype, isolates from the United Kingdom that were AZM-HR (n, 19), moderately AZM resistant (MICs, 2 to 8 mg/liter) (n, 26), or sensitive (MICs, 0.12 to 0.25 mg/liter) (n, 4) were screened for methylase (erm) genes and for mutations in the mtrR promoter region, associated with efflux pump upregulation. All AZM-resistant isolates and 12 sensitive isolates were screened for mutations in domain V of each 23S rRNA allele. All AZM-HR isolates contained the A2059G mutation (Escherichia coli numbering) in three (3 isolates) or four (16 isolates) 23S rRNA alleles. Most (22/26) moderately AZM resistant isolates contained the C2611T mutation in at least 3/4 alleles. The remainder contained four wild-type alleles, as did 8/12 sensitive isolates, while one allele was mutated in the remaining four sensitive isolates. Serial passage of AZM-sensitive colonies on an erythromycin-containing medium selected AZM-HR if the parent strain already contained mutation A2059G in one 23S rRNA allele. The resultant AZM-HR strains contained four mutated alleles. Eight isolates (five moderately AZM resistant and three AZM-HR) contained mutations in the mtrR promoter. No methylase genes were detected. This is the first evidence that AZM-HR in gonococci may result from a single point mutation (A2059G) in the peptidyltransferase loop in domain V of the 23S rRNA gene. Mutation of a single allele is insufficient to confer AZM-HR, but AZM-HR can develop under selection pressure. The description of a novel resistance mechanism will aid in screening for the AZM-HR phenotype. PMID:20585125

  17. A Point Mutation in DNA Polymerase β (POLB) Gene Is Associated with Increased Progesterone Receptor (PR) Expression and Intraperitoneal Metastasis in Gastric Cancer

    PubMed Central

    Tan, Xiaohui; Wu, Xiaoling; Ren, Shuyang; Wang, Hongyi; Li, Zhongwu; Alshenawy, Weaam; Li, Wenmei; Cui, Jiantao; Luo, Guangbin; Siegel, Robert S.; Fu, Sidney W.; Lu, Youyong

    2016-01-01

    Increased expression of progesterone receptor (PR) has been reported in gastric cancer (GC). We have previously identified a functional T889C point mutation in DNA polymerase beta (POLB), a DNA repair gene in GC. To provide a detailed analysis of molecular changes associated with the mutation, human cDNA microarrays focusing on 18 signal transduction pathways were used to analyze differential gene expression profiles between GC tissues with T889C mutant in POLB gene and those with wild type. Among the differentially expressed genes, notably, PR was one of the significantly up-regulated genes in T889C mutant POLB tissues, which were subsequently confirmed in POLB gene transfected AGS cell line. Interestingly, patients with T889C mutation and PR positivity were associated with higher incidence of intraperitoneal metastasis (IM). In vitro studies indicate that PR expression was upregulated in AGS cell line when transfected with T889C mutant expression vector. Cotransfection of T889C mutant allele and PR gene induced cell migration in the cell line. These data demonstrated that T889C mutation-associated PR overexpression results in increased IM. Therefore, T889C mutation-associated PR overexpression may serve as a biomarker for an adverse prognosis for human GC. PMID:27471563

  18. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene-KCNA1 (Kv1.1)

    SciTech Connect

    Browne, D.L.; Gancher, S.T.; Nutt, J.G.

    1994-09-01

    Episodic ataxia (EA) is a rare, familial disorder producing attacks of generalized ataxia, with normal or near-normal neurological function between attacks. One type of EA (MIM No.160120) displays autosomal dominant inheritance and is characterized by episodes of ataxia lasting seconds to minutes with myokymia (rippling of small muscles) evident between attacks. Genetic linkage studies in 4 families suggested localization of an EA/myokymia gene near the K{sup +} channel gene KCNA1 (Kv1.1) on chromosome 12p. Chemical cleavage mismatch and DNA sequence analysis of the KCNA1 coding region in these families identified 4 different missense point mutations present in the heterozygous state. The mutations found were Val174Phe, Arg239Ser, Phe249Ile and Val408Ala; the residue numbers correspond to those in the published amino acid sequence of KCNA1 (Genbank Accession No. L02750). Each of these mutations affects an amino acid residue that is invariant among Drosophila melanogaster, mouse, rat and human, The mutations were present in the affected members of the family and absent in all of the unaffected members and in at least 70 unrelated control individuals. These data strongly suggest that EA/myokymia can result from mutations in the KCNA1 gene.

  19. Development of a High-Resolution Melting Approach for Scanning Beta Globin Gene Point Mutations in the Greek and Other Mediterranean Populations.

    PubMed

    Chassanidis, Christos; Boutou, Effrossyni; Voskaridou, Ersi; Balassopoulou, Angeliki

    2016-01-01

    Beta-thalassaemia is one of the most common autosomal recessive disorders worldwide. The disease's high incidence, which is observed in the broader Mediterranean area has led to the establishment of molecular diagnostics' assays to prevent affected births. Therefore, the development of a reliable, cost-effective and rapid scanning method for β globin gene point mutations, easily adapted to a routine laboratory, is absolutely essential. Here, we describe, for the first time, the development of a High-Resolution Melting Analysis (HRMA) approach, suitable for scanning the particularly heterogeneous beta globin gene mutations present in the Greek population, and thus adaptable to the Mediterranean and other areas where these mutations have been identified. Within this context, β globin gene regions containing mutations frequently identified in the Greek population were divided in ten overlapping amplicons. Our reactions' setup allowed for the simultaneous amplification of multiple primer sets and partial multiplexing, thereby resulting in significant reduction of the experimental time. DNA samples from β-thalassaemia patients/carriers with defined genotypes were tested. Distinct genotypes displayed distinguishable melting curves, enabling accurate detection of mutations. The described HRMA can be adapted to a high-throughput level. It represents a rapid, simple, cost-effective, reliable, highly feasible and sensitive method for β-thalassaemia gene scanning. PMID:27351925

  20. Development of a High-Resolution Melting Approach for Scanning Beta Globin Gene Point Mutations in the Greek and Other Mediterranean Populations.

    PubMed

    Chassanidis, Christos; Boutou, Effrossyni; Voskaridou, Ersi; Balassopoulou, Angeliki

    2016-01-01

    Beta-thalassaemia is one of the most common autosomal recessive disorders worldwide. The disease's high incidence, which is observed in the broader Mediterranean area has led to the establishment of molecular diagnostics' assays to prevent affected births. Therefore, the development of a reliable, cost-effective and rapid scanning method for β globin gene point mutations, easily adapted to a routine laboratory, is absolutely essential. Here, we describe, for the first time, the development of a High-Resolution Melting Analysis (HRMA) approach, suitable for scanning the particularly heterogeneous beta globin gene mutations present in the Greek population, and thus adaptable to the Mediterranean and other areas where these mutations have been identified. Within this context, β globin gene regions containing mutations frequently identified in the Greek population were divided in ten overlapping amplicons. Our reactions' setup allowed for the simultaneous amplification of multiple primer sets and partial multiplexing, thereby resulting in significant reduction of the experimental time. DNA samples from β-thalassaemia patients/carriers with defined genotypes were tested. Distinct genotypes displayed distinguishable melting curves, enabling accurate detection of mutations. The described HRMA can be adapted to a high-throughput level. It represents a rapid, simple, cost-effective, reliable, highly feasible and sensitive method for β-thalassaemia gene scanning.

  1. Development of a High-Resolution Melting Approach for Scanning Beta Globin Gene Point Mutations in the Greek and Other Mediterranean Populations

    PubMed Central

    Chassanidis, Christos; Boutou, Effrossyni; Voskaridou, Ersi; Balassopoulou, Angeliki

    2016-01-01

    Beta-thalassaemia is one of the most common autosomal recessive disorders worldwide. The disease’s high incidence, which is observed in the broader Mediterranean area has led to the establishment of molecular diagnostics’ assays to prevent affected births. Therefore, the development of a reliable, cost-effective and rapid scanning method for β globin gene point mutations, easily adapted to a routine laboratory, is absolutely essential. Here, we describe, for the first time, the development of a High-Resolution Melting Analysis (HRMA) approach, suitable for scanning the particularly heterogeneous beta globin gene mutations present in the Greek population, and thus adaptable to the Mediterranean and other areas where these mutations have been identified. Within this context, β globin gene regions containing mutations frequently identified in the Greek population were divided in ten overlapping amplicons. Our reactions’ setup allowed for the simultaneous amplification of multiple primer sets and partial multiplexing, thereby resulting in significant reduction of the experimental time. DNA samples from β-thalassaemia patients/carriers with defined genotypes were tested. Distinct genotypes displayed distinguishable melting curves, enabling accurate detection of mutations. The described HRMA can be adapted to a high-throughput level. It represents a rapid, simple, cost-effective, reliable, highly feasible and sensitive method for β-thalassaemia gene scanning. PMID:27351925

  2. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes.

    PubMed

    Fang, Mingyue; Jin, Lihua; Zhang, Chong; Tan, Yinyee; Jiang, Peixia; Ge, Nan; Heping Li; Xing, Xinhui

    2013-01-01

    In this paper, we aimed to improve the carbohydrate productivity of Spirulina platensis by generating mutants with increased carbohydrate content and growth rate. ARTP was used as a new mutagenesis tool to generate a mutant library of S. platensis with diverse phenotypes. Protocol for rapid mutation of S. platensis by 60 s treatment with helium driven ARTP and high throughput screening method of the mutants using the 96-well microplate and microplate reader was established. A mutant library of 62 mutants was then constructed and ideal mutants were selected out. The characteristics of the mutants after the mutagenesis inclined to be stable after around 9(th) subculture, where the total mutation frequency and positive mutation frequency in terms of specific growth rate reached 45% and 25%, respectively. The mutants in mutant library showed diverse phenotypes in terms of cell growth rate, carbohydrate content and flocculation intensity. The positive mutation frequency in terms of cellular carbohydrate content with the increase by more than 20% percent than the wild strain was 32.3%. Compared with the wild strain, the representative mutants 3-A10 and 3-B2 showed 40.3% and 78.0% increase in carbohydrate content, respectively, while the mutant 4-B3 showed 10.5% increase in specific growth rate. The carbohydrate contents of the representative mutants were stable during different subcultures, indicating high genetic stability. ARTP was demonstrated to be an effective and non-GMO mutagenesis tool to generate the mutant library for multicellular microalgae. PMID:24319517

  3. Rapid Mutation of Spirulina platensis by a New Mutagenesis System of Atmospheric and Room Temperature Plasmas (ARTP) and Generation of a Mutant Library with Diverse Phenotypes

    PubMed Central

    Zhang, Chong; Tan, Yinyee; Jiang, Peixia; Ge, Nan; Heping Li; Xing, Xinhui

    2013-01-01

    In this paper, we aimed to improve the carbohydrate productivity of Spirulina platensis by generating mutants with increased carbohydrate content and growth rate. ARTP was used as a new mutagenesis tool to generate a mutant library of S. platensis with diverse phenotypes. Protocol for rapid mutation of S. platensis by 60 s treatment with helium driven ARTP and high throughput screening method of the mutants using the 96-well microplate and microplate reader was established. A mutant library of 62 mutants was then constructed and ideal mutants were selected out. The characteristics of the mutants after the mutagenesis inclined to be stable after around 9th subculture, where the total mutation frequency and positive mutation frequency in terms of specific growth rate reached 45% and 25%, respectively. The mutants in mutant library showed diverse phenotypes in terms of cell growth rate, carbohydrate content and flocculation intensity. The positive mutation frequency in terms of cellular carbohydrate content with the increase by more than 20% percent than the wild strain was 32.3%. Compared with the wild strain, the representative mutants 3-A10 and 3-B2 showed 40.3% and 78.0% increase in carbohydrate content, respectively, while the mutant 4-B3 showed 10.5% increase in specific growth rate. The carbohydrate contents of the representative mutants were stable during different subcultures, indicating high genetic stability. ARTP was demonstrated to be an effective and non-GMO mutagenesis tool to generate the mutant library for multicellular microalgae. PMID:24319517

  4. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes.

    PubMed

    Fang, Mingyue; Jin, Lihua; Zhang, Chong; Tan, Yinyee; Jiang, Peixia; Ge, Nan; Heping Li; Xing, Xinhui

    2013-01-01

    In this paper, we aimed to improve the carbohydrate productivity of Spirulina platensis by generating mutants with increased carbohydrate content and growth rate. ARTP was used as a new mutagenesis tool to generate a mutant library of S. platensis with diverse phenotypes. Protocol for rapid mutation of S. platensis by 60 s treatment with helium driven ARTP and high throughput screening method of the mutants using the 96-well microplate and microplate reader was established. A mutant library of 62 mutants was then constructed and ideal mutants were selected out. The characteristics of the mutants after the mutagenesis inclined to be stable after around 9(th) subculture, where the total mutation frequency and positive mutation frequency in terms of specific growth rate reached 45% and 25%, respectively. The mutants in mutant library showed diverse phenotypes in terms of cell growth rate, carbohydrate content and flocculation intensity. The positive mutation frequency in terms of cellular carbohydrate content with the increase by more than 20% percent than the wild strain was 32.3%. Compared with the wild strain, the representative mutants 3-A10 and 3-B2 showed 40.3% and 78.0% increase in carbohydrate content, respectively, while the mutant 4-B3 showed 10.5% increase in specific growth rate. The carbohydrate contents of the representative mutants were stable during different subcultures, indicating high genetic stability. ARTP was demonstrated to be an effective and non-GMO mutagenesis tool to generate the mutant library for multicellular microalgae.

  5. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex*

    PubMed Central

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E.; Jaspers, Nicolaas G. J.; Kaptein, Robert; Hoeijmakers, Jan H. J.; Boelens, Rolf

    2015-01-01

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe231, Leu231 lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. PMID:26085086

  6. Genomic rearrangements of the CDKN2A locus are infrequent in Italian malignant melanoma families without evidence of CDKN2A/CDK4 point mutations.

    PubMed

    Vignoli, Marina; Scaini, Maria Chiara; Ghiorzo, Paola; Sestini, Roberta; Bruno, William; Menin, Chiara; Gensini, Francesca; Piazzini, Mauro; Testori, Alessandro; Manoukian, Siranoush; Orlando, Claudio; D'Andrea, Emma; Bianchi-Scarrà, Giovanna; Genuardi, Maurizio

    2008-12-01

    Predisposition to familial cutaneous malignant melanoma has been associated with mutations in the CDKN2A and CDK4 genes. However, only a small subgroup of melanoma pedigrees harbour CDKN2A or CDK4 germline mutations. It is possible that other types of CDKN2A rearrangements, not detectable by routine PCR-based approaches, are involved in a fraction of melanoma cases negative for point sequence changes. In order to gain insights on the possible role of CDKN2A large deletions or duplications in melanoma susceptibility in the Italian population, we screened a series of 124 cutaneous malignant melanoma families referred to five national medical/cancer genetics centres. All probands were negative for point mutations in CDKN2A and CDK4. All samples were tested by MLPA (multiplex ligation-dependent probe amplification), and the results were confirmed by real-time quantitative PCR in a subset of 53 cases. No genomic rearrangements were detected in this series, one of the largest so far investigated. These data suggest that large deletions/duplications in the CDKN2A locus are infrequently involved in the development of familial melanoma in the Italian population. Based on these results, routine search for these rearrangements in CDKN2A- and CDK4-mutation negative melanoma families is not warranted, although it would be reasonable to pursue it in selected cases with very strong family history and/or showing linkage to 9p21.

  7. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex.

    PubMed

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E; Jaspers, Nicolaas G J; Kaptein, Robert; Hoeijmakers, Jan H J; Boelens, Rolf

    2015-08-14

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe(231), Leu(231) lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation.

  8. Long-range effects of histone point mutations on DNA remodeling revealed from computational analyses of SIN-mutant nucleosome structures

    PubMed Central

    Xu, Fei; Colasanti, Andrew V.; Li, Yun; Olson, Wilma K.

    2010-01-01

    The packaging of DNA into nucleosomes impedes the binding and access of molecules involved in its processing. The SWI/SNF multi-protein assembly, found in yeast, is one of many regulatory factors that stimulate the remodeling of DNA required for its transcription. Amino-acid point mutations in histones H3 or H4 partially bypass the requirement of the SWI/SNF complex in this system. The mechanisms underlying the observed remodeling, however, are difficult to discern from the crystal structures of nucleosomes bearing these so-called SIN (SWI/SNF INdependent) mutations. Here, we report detailed analyses of the conformations and interactions of the histones and DNA in these assemblies. We find that the loss of direct protein–DNA contacts near point-mutation sites, reported previously, is coupled to unexpected additional long-range effects, i.e. loss of intermolecular contacts and accompanying DNA conformational changes at sequentially and spatially distant sites. The SIN mutations seemingly transmit information relevant to DNA binding across the nucleosome. The energetic cost of deforming the DNA to the states found in the SIN-mutant structures helps to distinguish the mutants that show phenotypes in yeast from those that do not. Models incorporating these deformed dimer steps suggest ways that nucleosomal DNA may be remodeled during its biological processing. PMID:20647418

  9. A smart device for label-free and real-time detection of gene point mutations based on the high dark phase contrast of vapor condensation.

    PubMed

    Zhang, Junqi; Fu, Rongxin; Xie, Liping; Li, Qi; Zhou, Wenhan; Wang, Ruliang; Ye, Jiancheng; Wang, Dong; Xue, Ning; Lin, Xue; Lu, Ying; Huang, Guoliang

    2015-10-01

    A smart device for label-free and real-time detection of gene point mutation-related diseases was developed based on the high dark phase contrast of vapor condensation. The main components of the device included a Peltier cooler and a mini PC board for image processing. Heat from the hot side of the Peltier cooler causes the fluid in a copper chamber to evaporate, and the vapor condenses on the surface of a microarray chip placed on the cold side of the cooler. The high dark phase contrast of vapor condensation relative to the analytes on the microarray chip was explored. Combined with rolling circle amplification, the device visualizes less-to-more hydrophilic transitions caused by gene trapping and DNA amplification. A lung cancer gene point mutation was analysed, proving the high selectivity and multiplex analysis capability of this low-cost device. PMID:26266399

  10. Genetic diversity of hepatitis B virus and mutations associated to hepatocellular carcinoma in patients from Venezuela, with different stages of liver disease.

    PubMed

    Puche, Mary L; Kay-Valero, Sharon; Michelli, Pedro; Oropeza, Maria D; Loureiro, Carmen L; Devesa, Marisol; Dagher, Lucy; Puol, Flor H

    2016-03-01

    Globally, about 50% of liver cancer originates as a result of long term infection with hepatitis B virus (HBV), and some genotypes and mutations have been associated with an increased severity of infection. The aim of this study was to evaluate the genetic diversity of HBV in patients from Venezuela, with chronic infection, cirrhosis and hepatocellular carcinoma (HCC) and to compare the occurrence of mutations in all patient groups. Samples from patients with different pathologies of the liver, associated with HBV infection, were collected. The HBV S region was analyzed for genotype determination and, when available, the whole genome sequence was examined for mutations analysis. Genotype F was the most common genotype (87%). While the HBV subgenotype F3 was the most frequent genotype in the whole group of samples (44%), the subgenotype F2 predominated in HCC patients (56%). Mutations were more common in HCC and cirrhosis cases (p=0.01). The A1762T mutation was significantly associated with the advanced stage of liver disease (p=0.008). Additionally, mutations were more common in early stages of liver disease in HBV subgenotype F2-infected patients, and a significant association between this subgenotype and the emergence of T 1753C, A1762T, A1762T/G1764A (p=0.04) and C1773T (p=0.001) mutations in chronic patients was found, when compared to the HBV subgenotype F3. By comparing F2 with all other HBV subgenotypes, a positive association for the three basal core promoter (BCP) mutants (A1762T, A1762T/G1764A p=0.01, G1764A p=0.04) was found. These results suggest that the HBV subgenotype F2 might be associated to more severe forms of liver disease in comparison with the HBV subgenotype F3. PMID:27382800

  11. Point mutation in mitochondrial tRNA gene is associated with polycystic ovary syndrome and insulin resistance.

    PubMed

    Ding, Yu; Zhuo, Guangchao; Zhang, Caijuan; Leng, Jianhang

    2016-04-01

    Polycystic ovarian syndrome (PCOS) is characterized by chronic anovulation, hyperandrogenism and polycystic ovaries. To date, the molecular mechanisms underlying PCOS have remained to be fully elucidated. As recent studies have revealed a positive association between mitochondrial dysfunction and PCOS, current investigations focus on mutations in the mitochondrial genome of patients with POCS. The present study reported a Chinese patient with PCOS. Sequence analysis of the mitochondrial genome showed the presence of homoplasmic ND5 T12338C and tRNASer (UCN) C7492T mutations as well as a set of polymorphisms belonging to the human mitochondrial haplogroup F2. The T12338C mutation is known to decrease the ND5 mRNA levels and to inhibit the processing of RNA precursors. The C7492T mutation, which occurred at the highly conserved nucleotide in the anticodon stem of the tRNASer (UCN) gene, is important for the tRNA steady‑state level as well as the aminoacylation ability. Therefore, the combination of the ND5 T12338C and tRNASer (UCN) C7492T mutations may lead to mitochondrial dysfunction, and is likely to be involved in the pathogenesis of PCOS. The present study provided novel insight into the molecular mechanisms of PCOS. PMID:26935780

  12. A novel one cycle allele specific primer extension--molecular beacon displacement method for DNA point mutation detection with improved specificity.

    PubMed

    Li, Xiaomin; Huang, Yong; Guan, Yuan; Zhao, Meiping; Li, Yuanzong

    2007-02-12

    We report here a new method for the real-time detection of DNA point mutations with molecular beacon as the fluorescence tracer and 3' (exo-) Bst DNA polymerase large fragment as the polymerase. The method is based on the mechanism of allele specific primer extension-strand displacement (ASPE-SD). To improve the specificity of the method only one cycle of the allele specific polymerase chain reaction (PCR) was used that could largely eliminate the non-specific reactions between the primers and template of the "wrong" genotype. At first, the primer and molecular beacon both hybridize to the DNA template, and the molecular beacon emits intensive fluorescence. The role of 3' exonuclease excision of Bst DNA polymerase large fragment is utilized for primer extension. When 3'-termini matches its corresponding template, the primer would efficiently extend and replace the molecular beacon that would simultaneously return to its closed form leading to the quenching of the fluorescence. However, when 3'-termini of the primer mismatches its corresponding template primer extension and molecular beacon displacement would not happen and fluorescence of the hybridized molecular beacon holds the line without fluorescence quenching. This approach was fully demonstrated in synthetic template systems and applied to detect point mutation at codon 259, a possible point mutation site in exon 7 of p53 gene, obtained from human genomic DNA samples with unambiguous differentiation power.

  13. Novel Point and Combo-Mutations in the Genome of Hepatitis B Virus-Genotype D: Characterization and Impact on Liver Disease Progression to Hepatocellular Carcinoma

    PubMed Central

    Datta, Somenath; Ghosh, Alip; Dasgupta, Debanjali; Ghosh, Amit; Roychoudhury, Shrabasti; Roy, Gaurav; Das, Soumyojit; Das, Kausik; Gupta, Subash; Basu, Keya; Basu, Analabha; Datta, Simanti; Chowdhury, Abhijit; Banerjee, Soma

    2014-01-01

    prediction more accurately than point mutations and hence these predictors may support the existing surveillance strategies in proper management of the patients. PMID:25333524

  14. CDH23 Mutation and Phenotype Heterogeneity: A Profile of 107 Diverse Families with Usher Syndrome and Nonsyndromic Deafness

    PubMed Central

    Astuto, L. M.; Bork, J. M.; Weston, M. D.; Askew, J. W.; Fields, R. R.; Orten, D. J.; Ohliger, S. J.; Riazuddin, S.; Morell, R. J.; Khan, S.; Riazuddin, S.; Kremer, H.; van Hauwe, P.; Moller, C. G.; Cremers, C. W. R. J.; Ayuso, C.; Heckenlively, J. R.; Rohrschneider, K.; Spandau, U.; Greenberg, J.; Ramesar, R.; Reardon, W.; Bitoun, P.; Millan, J.; Legge, R.; Friedman, T. B.; Kimberling, W. J.

    2002-01-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP–like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia. PMID:12075507

  15. A new point mutation in the ND1 mitochondrial gene identified in a type II diabetic patient

    SciTech Connect

    Kalinin, V.N.; Schmidt, W.; Olek, K.

    1995-08-01

    A novel mutation in a mitochondrial gene was identified in a patient with type II diabetes mellitus. G-to-A transition was localized at the nt3316 position of gene ND1 and resulted in alanine threonine replacement at position 4 of mitochondrial NAD-H-dehydrogenase. 6 refs., 2 figs.

  16. Point mutation of Arg440 to his in cytochrome P450c17 causes severe 17{alpha}-hydroxylase deficiency

    SciTech Connect

    Fardella, C.E.; Hum, D.W.; Miller, W.L.; Homoki, J.

    1994-07-01

    Genetic disorders in the gene encoding P450c17 cause 17{alpha}-hydroxylase deficiency. The consequent defects in the synthesis of cortisol and sex steroids cause sexual infantilism and a female phenotype in both genetic sexes as well as mineralorcorticoid excess and hypertension. A 15-yr-old patient from Germany was seen for absent pubertal development and mild hypertension with hypokalemia, high concentrations of 17-deoxysteroids, and hypergonadotropic hypogonadism. Analysis of her P450c17 gene by polymerase chain reaction amplification and direct sequencing showed mutation of codon 440 from CGC (Arg) to CAC (His). Expression of a vector encoding this mutated form of P450c17 in transfected nonsteroidogenic COS-1 cells showed that the mutant P450c17 protein was produced, but it lacked both 17{alpha}-hydroxylase and 17,20-lyase activities. To date, 15 different P450c17 mutations have been described in 23 patients with 17{alpha}-hydroxylase deficiency, indicating that mutations in this gene are due to random events. 36 refs., 3 figs., 2 tabs.

  17. Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method.

    PubMed

    Petukh, Marharyta; Li, Minghui; Alexov, Emil

    2015-07-01

    A new methodology termed Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) was developed to predict the changes of the binding free energy caused by mutations. The method utilizes 3D structures of the corresponding protein-protein complexes and takes advantage of both approaches: sequence- and structure-based methods. The method has two components: a MM/PBSA-based component, and an additional set of statistical terms delivered from statistical investigation of physico-chemical properties of protein complexes. While the approach is rigid body approach and does not explicitly consider plausible conformational changes caused by the binding, the effect of conformational changes, including changes away from binding interface, on electrostatics are mimicked with amino acid specific dielectric constants. This provides significant improvement of SAAMBE predictions as indicated by better match against experimentally determined binding free energy changes over 1300 mutations in 43 proteins. The final benchmarking resulted in a very good agreement with experimental data (correlation coefficient 0.624) while the algorithm being fast enough to allow for large-scale calculations (the average time is less than a minute per mutation).

  18. Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method

    PubMed Central

    Petukh, Marharyta; Li, Minghui; Alexov, Emil

    2015-01-01

    A new methodology termed Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) was developed to predict the changes of the binding free energy caused by mutations. The method utilizes 3D structures of the corresponding protein-protein complexes and takes advantage of both approaches: sequence- and structure-based methods. The method has two components: a MM/PBSA-based component, and an additional set of statistical terms delivered from statistical investigation of physico-chemical properties of protein complexes. While the approach is rigid body approach and does not explicitly consider plausible conformational changes caused by the binding, the effect of conformational changes, including changes away from binding interface, on electrostatics are mimicked with amino acid specific dielectric constants. This provides significant improvement of SAAMBE predictions as indicated by better match against experimentally determined binding free energy changes over 1300 mutations in 43 proteins. The final benchmarking resulted in a very good agreement with experimental data (correlation coefficient 0.624) while the algorithm being fast enough to allow for large-scale calculations (the average time is less than a minute per mutation). PMID:26146996

  19. Systems-level response to point mutations in a core metabolic enzyme modulates genotype-phenotype relationship.

    PubMed

    Bershtein, Shimon; Choi, Jeong-Mo; Bhattacharyya, Sanchari; Budnik, Bogdan; Shakhnovich, Eugene

    2015-04-28

    Linking the molecular effects of mutations to fitness is central to understanding evolutionary dynamics. Here, we establish a quantitative relation between the global effect of mutations on the E. coli proteome and bacterial fitness. We created E. coli strains with specific destabilizing mutations in the chromosomal folA gene encoding dihydrofolate reductase (DHFR) and quantified the ensuing changes in the abundances of 2,000+ E. coli proteins in mutant strains using tandem mass tags with subsequent LC-MS/MS. mRNA abundances in the same E. coli strains were also quantified. The proteomic effects of mutations in DHFR are quantitatively linked to phenotype: the SDs of the distributions of logarithms of relative (to WT) protein abundances anticorrelate with bacterial growth rates. Proteomes hierarchically cluster first by media conditions, and within each condition, by the severity of the perturbation to DHFR function. These results highlight the importance of a systems-level layer in the genotype-phenotype relationship. PMID:25892240

  20. Resistance Assessment for Oxathiapiprolin in Phytophthora capsici and the Detection of a Point Mutation (G769W) in PcORP1 that Confers Resistance

    PubMed Central

    Miao, Jianqiang; Cai, Meng; Dong, Xue; Liu, Li; Lin, Dong; Zhang, Can; Pang, Zhili; Liu, Xili

    2016-01-01

    The potential for oxathiapiprolin resistance in Phytophthora capsici was evaluated. The baseline sensitivities of 175 isolates to oxathiapiprolin were initially determinated and found to conform to a unimodal curve with a mean EC50 value of 5.61 × 10-4 μg/ml. Twelve stable oxathiapiprolin-resistant mutants were generated by fungicide adaptation in two sensitive isolates, LP3 and HNJZ10. The fitness of the LP3-mutants was found to be similar to or better than that of the parental isolate LP3, while the HNJZ10-mutants were found to have lost the capacity to produce zoospores. Taken together these results suggest that the risk of P. capsici developing resistance to oxathiapiprolin is moderate. Comparison of the PcORP1 genes in the LP3-mutants and wild-type parental isolate, which encode the target protein of oxathiapiprolin, revealed that a heterozygous mutation caused the amino acid substitution G769W. Transformation and expression of the mutated PcORP1-769W allele in the sensitive wild-type isolate BYA5 confirmed that the mutation in PcORP1 was responsible for the observed oxathiapiprolin resistance. Finally diagnostic tests including As-PCR and CAPs were developed to detect the oxathiapiprolin resistance resulting from the G769W point mutation in field populations of P. capsici. PMID:27199944

  1. Infantile demyelinating neuropathy associated with a de novo point mutation on Ser72 in PMP22 and basal lamina onion bulbs in skin biopsy.

    PubMed

    Ceuterick-de Groote, C; De Jonghe, P; Timmerman, V; Van Goethem, G; Löfgren, A; Ceulemans, B; Van Broeckhoven, C; Martin, J J

    2001-01-01

    Codon 72 has been designated as a hot spot for distinct missense mutations in the peripheral myelin protein 22 (PMP22) gene. Ser72Leu substitution was associated with Dejerine-Sottas syndrome (DSS) in four patients and with congenital hypomyelination neuropathy (CHN) in one patient. Our objective was to report one other DSS patient with Ser72Leu substitution in PMP22 and to concurrently illustrate how less invasive procedures such as skin biopsy could provide a rapid and reliable alternative to conventional sural nerve biopsy for the characterization of histophenotypic features. A skin biopsy was carried out in a 2 4/12-year-old girl with muscle atrophy, hypotonia and weakness, as well as generalized areflexia and absent sensory and motor nerve responses. Standard electron microscope techniques were used. PMP22 was screened by automated direct nucleotide sequencing analysis. Morphological examination revealed basal lamina onion bulbs surrounding a de- or hypomyelinated axon in all nerve bundles. Mutation analysis demonstrated a missense point mutation in codon 72 of the PMP22 gene leading to a Ser72Leu substitution. Further genotype-phenotype correlations will have to determine whether morphologically distinct phenotypes can be correlated with specific mutations. For this purpose, cutaneous nerve bundles could serve as an alternative tool to help identify and classify subtypes in this heterogeneous syndrome. PMID:11314784

  2. Microbead-based ligase detection reaction assay using a molecular beacon probe for the detection of low-abundance point mutations.

    PubMed

    Watanabe, Sho; Hagihara, Kenta; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2014-01-01

    A microbead-based ligase detection reaction (LDR) assay using a molecular beacon probe was developed for the facile and rapid detection of point mutations present in low copy numbers in a mixed population of wild-type DNA. Biotin-tagged ligation products generated in the LDR were captured on the surface of streptavidin-modified magnetic beads for purification and concentration. The resulting product-tethered microbeads were combined with a molecular beacon probe solution, and the suspension was directly flowed into a capillary. The microbeads were accumulated in a confined space within the capillary using a bar magnet. The packed bead sample was then scanned by a fluorescence scanning imager to detect the presence of any mutations. With the developed methodology, we were able to successfully detect one cancer mutation in a mixture of 400 wild-type templates (t test at 95% confidence level). Furthermore, the post-LDR processing, typically the most laborious and time-consuming step in LDR-based mutation detection assays, could be carried out much more rapidly (approximately 20 min). This was enabled by the simple bead and fluid manipulations involved in the present assay.

  3. Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3' Splice Site Selection through Use of a Different Branch Point.

    PubMed

    Darman, Rachel B; Seiler, Michael; Agrawal, Anant A; Lim, Kian H; Peng, Shouyong; Aird, Daniel; Bailey, Suzanna L; Bhavsar, Erica B; Chan, Betty; Colla, Simona; Corson, Laura; Feala, Jacob; Fekkes, Peter; Ichikawa, Kana; Keaney, Gregg F; Lee, Linda; Kumar, Pavan; Kunii, Kaiko; MacKenzie, Crystal; Matijevic, Mark; Mizui, Yoshiharu; Myint, Khin; Park, Eun Sun; Puyang, Xiaoling; Selvaraj, Anand; Thomas, Michael P; Tsai, Jennifer; Wang, John Y; Warmuth, Markus; Yang, Hui; Zhu, Ping; Garcia-Manero, Guillermo; Furman, Richard R; Yu, Lihua; Smith, Peter G; Buonamici, Silvia

    2015-11-01

    Recurrent mutations in the spliceosome are observed in several human cancers, but their functional and therapeutic significance remains elusive. SF3B1, the most frequently mutated component of the spliceosome in cancer, is involved in the recognition of the branch point sequence (BPS) during selection of the 3' splice site (ss) in RNA splicing. Here, we report that common and tumor-specific splicing aberrations are induced by SF3B1 mutations and establish aberrant 3' ss selection as the most frequent splicing defect. Strikingly, mutant SF3B1 utilizes a BPS that differs from that used by wild-type SF3B1 and requires the canonical 3' ss to enable aberrant splicing during the second step. Approximately 50% of the aberrantly spliced mRNAs are subjected to nonsense-mediated decay resulting in downregulation of gene and protein expression. These findings ascribe functional significance to the consequences of SF3B1 mutations in cancer. PMID:26565915

  4. Mitochondrial encephalomyopathy and retinoblastoma explained by compound heterozygosity of SUCLA2 point mutation and 13q14 deletion

    PubMed Central

    Matilainen, Sanna; Isohanni, Pirjo; Euro, Liliya; Lönnqvist, Tuula; Pihko, Helena; Kivelä, Tero; Knuutila, Sakari; Suomalainen, Anu

    2015-01-01

    Mutations in SUCLA2, encoding the ß-subunit of succinyl-CoA synthetase of Krebs cycle, are one cause of mitochondrial DNA depletion syndrome. Patients have been reported to have severe progressive childhood-onset encephalomyopathy, and methylmalonic aciduria, often leading to death in childhood. We studied two families, with children manifesting with slowly progressive mitochondrial encephalomyopathy, hearing impairment and transient methylmalonic aciduria, without mtDNA depletion. The other family also showed dominant inheritance of bilateral retinoblastoma, which coexisted with mitochondrial encephalomyopathy in one patient. We found a variant in SUCLA2 leading to Asp333Gly change, homozygous in one patient and compound heterozygous in one. The latter patient also carried a deletion of 13q14 of the other allele, discovered with molecular karyotyping. The deletion spanned both SUCLA2 and RB1 gene regions, leading to manifestation of both mitochondrial disease and retinoblastoma. We made a homology model for human succinyl-CoA synthetase and used it for structure–function analysis of all reported pathogenic mutations in SUCLA2. On the basis of our model, all previously described mutations were predicted to result in decreased amounts of incorrectly assembled protein or disruption of ADP phosphorylation, explaining the severe early lethal manifestations. However, the Asp333Gly change was predicted to reduce the activity of the otherwise functional enzyme. On the basis of our findings, SUCLA2 mutations should be analyzed in patients with slowly progressive encephalomyopathy, even in the absence of methylmalonic aciduria or mitochondrial DNA depletion. In addition, an encephalomyopathy in a patient with retinoblastoma suggests mutations affecting SUCLA2. PMID:24986829

  5. Chloroplast DNA diversity in wild and cultivated species of rice (Genus Oryza, section Oryza). Cladistic-mutation and genetic-distance analysis.

    PubMed

    Dally, A M; Second, G

    1990-08-01

    Using a novel nonaqueous procedure, chloroplast DNA was isolated from 318 individual adult rice plants, representing 247 accessions and the breadth of the diversity in section Oryza of genus Oryza. Among them, 32 different cpDNA restriction patterns were distinguished using the restriction endonucleases EcoRI and AvaI, and they were further characterized by restriction with BamHI, HindIII, SmaI, PstI, and BstEII enzymes. The differences in the electrophoretic band patterns were parsimoniously interpreted as being the result of 110 mutations, including 47 restriction site mutations. The relationships between band patterns were studied by a cladistic analysis based on shared mutations and by the computation of genetic distances based on shared bands. The deduced relationships were compared with earlier taxonomical studies. The maternal parents for BC genome allotetraploids were deduced. Within species, cpDNA diversity was found larger in those species with an evolutionary history of recent introgression and/or allotetraploidization. Occasional paternal inheritance and recombination of cpDNA in rice was suggested.

  6. Chloroplast DNA diversity in wild and cultivated species of rice (Genus Oryza, section Oryza). Cladistic-mutation and genetic-distance analysis.

    PubMed

    Dally, A M; Second, G

    1990-08-01

    Using a novel nonaqueous procedure, chloroplast DNA was isolated from 318 individual adult rice plants, representing 247 accessions and the breadth of the diversity in section Oryza of genus Oryza. Among them, 32 different cpDNA restriction patterns were distinguished using the restriction endonucleases EcoRI and AvaI, and they were further characterized by restriction with BamHI, HindIII, SmaI, PstI, and BstEII enzymes. The differences in the electrophoretic band patterns were parsimoniously interpreted as being the result of 110 mutations, including 47 restriction site mutations. The relationships between band patterns were studied by a cladistic analysis based on shared mutations and by the computation of genetic distances based on shared bands. The deduced relationships were compared with earlier taxonomical studies. The maternal parents for BC genome allotetraploids were deduced. Within species, cpDNA diversity was found larger in those species with an evolutionary history of recent introgression and/or allotetraploidization. Occasional paternal inheritance and recombination of cpDNA in rice was suggested. PMID:24220898

  7. Familial Dysalbuminemic Hyperthyroxinemia in a Japanese Man Caused by a Point Albumin Gene Mutation (R218P)

    PubMed Central

    Osaki, Yoshinori; Hayashi, Yoshitaka; Nakagawa, Yoshinori; Yoshida, Katsumi; Ozaki, Hiroshi; Fukazawa, Hiroshi

    2016-01-01

    Familial dysalbuminemic hyperthyroxinemia (FDH) is a familial autosomal dominant disease caused by mutation in the albumin gene that produces a condition of euthyroid hyperthyroxinemia. In patients with FDH, serum-free thyroxine (FT4) and free triiodothyronine (FT3) concentrations as measured by several commercial methods are often falsely increased with normal thyrotropin (TSH). Therefore, several diagnostic steps are needed to differentiate TSH-secreting tumor or generalized resistance to thyroid hormone from FDH. We herein report a case of a Japanese man born in Aomori prefecture, with FDH caused by a mutant albumin gene (R218P). We found that a large number of FDH patients reported in Japan to date might have been born in Aomori prefecture and have shown the R218P mutation. In conclusion, FDH needs to be considered among the differential diagnoses in Japanese patients born in Aomori prefecture and showing normal TSH levels and elevated FT4 levels. PMID:27081329

  8. Dejerine-Sottas syndrome and vestibular loss due to a point mutation in the PMP22 gene.

    PubMed

    Jen, Joanna; Baloh, Robert H; Ishiyama, Akira; Baloh, Robert W

    2005-10-15

    We describe a father and daughter with Dejerine-Sottas syndrome and bilateral vestibular loss due to an L71P missense mutation in the peripheral myelin protein 22 (PMP22). The combination of vestibular loss and peripheral neuropathy led to profound imbalance at a young age. It is important to recognize this combination of peripheral nerve and vestibular deficits since rehabilitation strategies and prognosis are different. PMID:15992829

  9. Pelizaeus-Merzbacher disease: a valine to phenylalanine point mutation in a putative extracellular loop of myelin proteolipid.

    PubMed Central

    Pham-Dinh, D; Popot, J L; Boespflug-Tanguy, O; Landrieu, P; Deleuze, J F; Boué, J; Jollès, P; Dautigny, A

    1991-01-01

    In the central nervous system, myelin proteolipid protein isoforms (PLP and DM20) play an essential structural role in myelination. It has been shown in several species that myelination is impaired by molecular defects resulting from single base mutations in the PLP gene. We have used DNA amplification by polymerase chain reaction to study the PLP gene coding regions from 17 patients in 15 unrelated families with similar Pelizaeus-Merzbacher phenotype. In one case amplification of peripheral nerve PLP/DM20 cDNAs revealed that a silent T----C transition was unrelated to the disease. In one family a nonsilent mutation was identified that leads to a phenylalanine substitution for valine-218 in PLP/DM20 proteins. We investigated the inheritance of the mutant allele in 19 subjects of this four-generation family and found a strict cosegregation of the Phe218 substitution with transmission and expression of the disease. The effect of the Val218----Phe mutation is discussed in the frame of a recently suggested topological model of PLP/DM20, according to which Val218 is part of an extracellular loop that connects the last two of four membrane-spanning alpha-helices. Images PMID:1715570

  10. A nicotinic acetylcholine receptor transmembrane point mutation (G275E) associated with resistance to spinosad in Frankliniella occidentalis

    PubMed Central

    Puinean, Alin M; Lansdell, Stuart J; Collins, Toby; Bielza, Pablo; Millar, Neil S

    2013-01-01

    High levels of resistance to spinosad, a macrocyclic lactone insecticide, have been reported previously in western flower thrips, Frankliniella occidentalis, an economically important insect pest of vegetables, fruit and ornamental crops. We have cloned the nicotinic acetylcholine receptor (nAChR) α6 subunit from F. occidentalis (Foα6) and compared the nucleotide sequence of Foα6 from susceptible and spinosad-resistant insect populations (MLFOM and R1S respectively). A single nucleotide change has been identified in Foα6, resulting in the replacement of a glycine (G) residue in susceptible insects with a glutamic acid (E) in resistant insects. The resistance-associated mutation (G275E) is predicted to lie at the top of the third α-helical transmembrane domain of Foα6. Although there is no direct evidence identifying the location of the spinosad binding site, the analogous amino acid in the C. elegans glutamate-gated chloride channel lies in close proximity (4.4 Å) to the known binding site of ivermectin, another macrocyclic lactone pesticide. The functional consequences of the resistance-associated mutation have been examined in the human nAChR α7 subunit. Introduction of an analogous (A272E) mutation in α7 abolishes the modulatory effects of spinosad whilst having no significant effect upon activation by acetylcholine, consistent with spinosad having an allosteric mechanism of action. PMID:23016960

  11. Point mutations in the major outer membrane protein drive hypervirulence of a rapidly expanding clone of Campylobacter jejuni.

    PubMed

    Wu, Zuowei; Periaswamy, Balamurugan; Sahin, Orhan; Yaeger, Michael; Plummer, Paul; Zhai, Weiwei; Shen, Zhangqi; Dai, Lei; Chen, Swaine L; Zhang, Qijing

    2016-09-20

    Infections due to clonal expansion of highly virulent bacterial strains are clear and present threats to human and animal health. Association of genetic changes with disease is now a routine, but identification of causative mutations that enable disease remains difficult. Campylobacter jejuni is an important zoonotic pathogen transmitted to humans mainly via the foodborne route. C. jejuni typically colonizes the gut, but a hypervirulent and rapidly expanding clone of C. jejuni recently emerged, which is able to translocate across the intestinal tract, causing systemic infection and abortion in pregnant animals. The genetic basis responsible for this hypervirulence is unknown. Here, we developed a strategy, termed "directed genome evolution," by using hybridization between abortifacient and nonabortifacient strains followed by selection in an animal disease model and whole-genome sequence analysis. This strategy successfully identified SNPs in porA, encoding the major outer membrane protein, are responsible for the hypervirulence. Defined mutagenesis verified that these mutations were both necessary and sufficient for causing abortion. Furthermore, sequence analysis identified porA as the gene with the top genome-wide signal of adaptive evolution using Fu's Fs, a population genetic metric for recent population size changes, which is consistent with the recent expansion of clone "sheep abortion." These results identify a key virulence factor in Campylobacter and a potential target for the control of this zoonotic pathogen. Furthermore, this study provides general, unbiased experimental and computational approaches that are broadly applicable for efficient elucidation of disease-causing mutations in bacterial pathogens. PMID:27601641

  12. A point mutation in the polymerase protein PB2 allows a reassortant H9N2 influenza isolate of wild-bird origin to replicate in human cells.

    PubMed

    Hussein, Islam T M; Ma, Eric J; Hill, Nichola J; Meixell, Brandt W; Lindberg, Mark; Albrecht, Randy A; Bahl, Justin; Runstadler, Jonathan A

    2016-07-01

    H9N2 influenza A viruses are on the list of potentially pandemic subtypes. Therefore, it is important to understand how genomic reassortment and genetic polymorphisms affect phenotypes of H9N2 viruses circulating in the wild bird reservoir. A comparative genetic analysis of North American H9N2 isolates of wild bird origin identified a naturally occurring reassortant virus containing gene segments derived from both North American and Eurasian lineage ancestors. The PB2 segment of this virus encodes 10 amino acid changes that distinguish it from other H9 strains circulating in North America. G590S, one of the 10 amino acid substitutions observed, was present in ~12% of H9 viruses worldwide. This mutation combined with R591 has been reported as a marker of pathogenicity for human pandemic 2009 H1N1 viruses. Screening by polymerase reporter assay of all the natural polymorphisms at these two positions identified G590/K591 and S590/K591 as the most active, with the highest polymerase activity recorded for the SK polymorphism. Rescued viruses containing these two polymorphic combinations replicated more efficiently in MDCK cells and they were the only ones tested that were capable of establishing productive infection in NHBE cells. A global analysis of all PB2 sequences identified the K591 signature in six viral HA/NA subtypes isolated from several hosts in seven geographic locations. Interestingly, introducing the K591 mutation into the PB2 of a human-adapted H3N2 virus did not affect its polymerase activity. Our findings demonstrate that a single point mutation in the PB2 of a low pathogenic H9N2 isolate could have a significant effect on viral phenotype and increase its propensity to infect mammals. However, this effect is not universal, warranting caution in interpreting point mutations without considering protein sequence context. PMID:27101787

  13. A point mutation in the polymerase protein PB2 allows a reassortant H9N2 influenza isolate of wild-bird origin to replicate in human cells.

    PubMed

    Hussein, Islam T M; Ma, Eric J; Hill, Nichola J; Meixell, Brandt W; Lindberg, Mark; Albrecht, Randy A; Bahl, Justin; Runstadler, Jonathan A

    2016-07-01

    H9N2 influenza A viruses are on the list of potentially pandemic subtypes. Therefore, it is important to understand how genomic reassortment and genetic polymorphisms affect phenotypes of H9N2 viruses circulating in the wild bird reservoir. A comparative genetic analysis of North American H9N2 isolates of wild bird origin identified a naturally occurring reassortant virus containing gene segments derived from both North American and Eurasian lineage ancestors. The PB2 segment of this virus encodes 10 amino acid changes that distinguish it from other H9 strains circulating in North America. G590S, one of the 10 amino acid substitutions observed, was present in ~12% of H9 viruses worldwide. This mutation combined with R591 has been reported as a marker of pathogenicity for human pandemic 2009 H1N1 viruses. Screening by polymerase reporter assay of all the natural polymorphisms at these two positions identified G590/K591 and S590/K591 as the most active, with the highest polymerase activity recorded for the SK polymorphism. Rescued viruses containing these two polymorphic combinations replicated more efficiently in MDCK cells and they were the only ones tested that were capable of establishing productive infection in NHBE cells. A global analysis of all PB2 sequences identified the K591 signature in six viral HA/NA subtypes isolated from several hosts in seven geographic locations. Interestingly, introducing the K591 mutation into the PB2 of a human-adapted H3N2 virus did not affect its polymerase activity. Our findings demonstrate that a single point mutation in the PB2 of a low pathogenic H9N2 isolate could have a significant effect on viral phenotype and increase its propensity to infect mammals. However, this effect is not universal, warranting caution in interpreting point mutations without considering protein sequence context.

  14. Assessing the Risk That Phytophthora melonis Can Develop a Point Mutation (V1109L) in CesA3 Conferring Resistance to Carboxylic Acid Amide Fungicides

    PubMed Central

    Chen, Lei; Zhu, Shusheng; Lu, Xiaohong; Pang, Zhili; Cai, Meng; Liu, Xili

    2012-01-01

    The risk that the plant pathogen Phytophthora melonis develops resistance to carboxylic acid amide (CAA) fungicides was determined by measuring baseline sensitivities of field isolates, generating resistant mutants, and measuring the fitness of the resistant mutants. The baseline sensitivities of 80 isolates to flumorph, dimethomorph and iprovalicarb were described by unimodal curves, with mean EC50 values of 0.986 (±0.245), 0.284 (±0.060) and 0.327 (±0.068) µg/ml, respectively. Seven isolates with different genetic background (as indicated by RAPD markers) were selected to generate CAA-resistance. Fifty-five resistant mutants were obtained from three out of seven isolates by spontaneous selection and UV-mutagenesis with frequencies of 1×10−7 and 1×10−6, respectively. CAA-resistance was stable for all mutants. The resistance factors of these mutants ranged from 7 to 601. The compound fitness index (CFI  =  mycelial growth × zoospore production × pathogenicity) was often lower for the CAA-resistant isolates than for wild-type isolates, suggesting that the risk of P. melonis developing resistance to CAA fungicides is low to moderate. Among the CAA-resistant isolates, a negative correlation between EC50 values was found for iprovalicarb vs. flumorph and for iprovalicarb vs. dimethomorph. Comparison of the full-length cellulose synthase 3 (CesA3) between wild-type and CAA-resistant isolates revealed only one point mutation at codon position 1109: a valine residue (codon GTG in wild-type isolates) was converted to leucine (codon CTG in resistant mutants). This represents a novel point mutation with respect to mutations in CesA3 conferring resistance to CAA fungicides. Based on this mutation, an efficient allelic-specific PCR (AS-PCR) method was developed for rapid detection of CAA-resistance in P. melonis populations. PMID:22848705

  15. Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells

    PubMed Central

    Corns, Laura F.; Johnson, Stuart L.; Kros, Corné J.

    2016-01-01

    The transduction of sound into electrical signals depends on mechanically sensitive ion channels in the stereociliary bundle. The molecular composition of this mechanoelectrical transducer (MET) channel is not yet known. Transmembrane channel-like protein isoforms 1 (TMC1) and 2 (TMC2) have been proposed to form part of the MET channel, although their exact roles are still unclear. Using Beethoven (Tmc1Bth/Bth) mice, which have an M412K point mutation in TMC1 that adds a positive charge, we found that Ca2+ permeability and conductance of the MET channel of outer hair cells (OHCs) were reduced. Tmc1Bth/Bth OHCs were also less sensitive to block by the permeant MET channel blocker dihydrostreptomycin, whether applied extracellularly or intracellularly. These findings suggest that the amino acid that is mutated in Bth is situated at or near the negatively charged binding site for dihydrostreptomycin within the permeation pore of the channel. We also found that the Ca2+ dependence of the operating range of the MET channel was altered by the M412K mutation. Depolarization did not increase the resting open probability of the MET current of Tmc1Bth/Bth OHCs, whereas raising the intracellular concentration of the Ca2+ chelator BAPTA caused smaller increases in resting open probability in Bth mutant OHCs than in wild-type control cells. We propose that these observations can be explained by the reduced Ca2+ permeability of the mutated MET channel indirectly causing the Ca2+ sensor for adaptation, at or near the intracellular face of the MET channel, to become more sensitive to Ca2+ influx as a compensatory mechanism. SIGNIFICANCE STATEMENT In the auditory system, the hair cells convert sound-induced mechanical movement of the hair bundles atop these cells into electrical signals through the opening of mechanically gated ion channels at the tips of the bundles. Although the nature of these mechanoelectrical transducer (MET) channels is still unclear, recent studies implicate

  16. A Substantial Fraction of Barley (Hordeum vulgare L.) Low Phytic Acid Mutations Have Little or No Effect on Yield across Diverse Production Environments.

    PubMed

    Raboy, Victor; Peterson, Kevin; Jackson, Chad; Marshall, Juliet M; Hu, Gongshe; Saneoka, Hirofumi; Bregitzer, Phil

    2015-04-29

    The potential benefits of the low phytic acid (lpa) seed trait for human and animal nutrition, and for phosphorus management in non-ruminant animal production, are well documented. However, in many cases the lpa trait is associated with impaired seed or plant performance, resulting in reduced yield. This has given rise to the perception that the lpa trait is tightly correlated with reduced yield in diverse crop species. Here we report a powerful test of this correlation. We measured grain yield in lines homozygous for each of six barley (Hordeum vulgare L.) lpa mutations that greatly differ in their seed phytic acid levels. Performance comparisons were between sibling wild-type and mutant lines obtained following backcrossing, and across two years in five Idaho (USA) locations that greatly differ in crop yield potential. We found that one lpa mutation (Hvlpa1-1) had no detectable effect on yield and a second (Hvlpa4-1) resulted in yield losses of only 3.5%, across all locations. When comparing yields in three relatively non-stressful production environments, at least three lpa mutations (Hvlpa1-1, Hvlpa3-1, and Hvlpa4-1) typically had yields similar to or within 5% of the wild-type sibling isoline. Therefore in the case of barley, lpa mutations can be readily identified that when simply incorporated into a cultivar result in adequately performing lines, even with no additional breeding for performance within the lpa line. In conclusion, while some barley lpa mutations do impact field performance, a substantial fraction appears to have little or no effect on yield.

  17. A Substantial Fraction of Barley (Hordeum vulgare L.) Low Phytic Acid Mutations Have Little or No Effect on Yield across Diverse Production Environments

    PubMed Central

    Raboy, Victor; Peterson, Kevin; Jackson, Chad; Marshall, Juliet M.; Hu, Gongshe; Saneoka, Hirofumi; Bregitzer, Phil

    2015-01-01

    The potential benefits of the low phytic acid (lpa) seed trait for human and animal nutrition, and for phosphorus management in non-ruminant animal production, are well documented. However, in many cases the lpa trait is associated with impaired seed or plant performance, resulting in reduced yield. This has given rise to the perception that the lpa trait is tightly correlated with reduced yield in diverse crop species. Here we report a powerful test of this correlation. We measured grain yield in lines homozygous for each of six barley (Hordeum vulgare L.) lpa mutations that greatly differ in their seed phytic acid levels. Performance comparisons were between sibling wild-type and mutant lines obtained following backcrossing, and across two years in five Idaho (USA) locations that greatly differ in crop yield potential. We found that one lpa mutation (Hvlpa1-1) had no detectable effect on yield and a second (Hvlpa4-1) resulted in yield losses of only 3.5%, across all locations. When comparing yields in three relatively non-stressful production environments, at least three lpa mutations (Hvlpa1-1, Hvlpa3-1, and Hvlpa4-1) typically had yields similar to or within 5% of the wild-type sibling isoline. Therefore in the case of barley, lpa mutations can be readily identified that when simply incorporated into a cultivar result in adequately performing lines, even with no additional breeding for performance within the lpa line. In conclusion, while some barley lpa mutations do impact field performance, a substantial fraction appears to have little or no effect on yield. PMID:27135325

  18. Point mutations in the major outer membrane protein drive hypervirulence of a rapidly expanding clone of Campylobacter jejuni

    PubMed Central

    Wu, Zuowei; Periaswamy, Balamurugan; Sahin, Orhan; Yaeger, Michael; Plummer, Paul; Zhai, Weiwei; Shen, Zhangqi; Dai, Lei; Zhang, Qijing

    2016-01-01

    Infections due to clonal expansion of highly virulent bacterial strains are clear and present threats to human and animal health. Association of genetic changes with disease is now a routine, but identification of causative mutations that enable disease remains difficult. Campylobacter jejuni is an important zoonotic pathogen transmitted to humans mainly via the foodborne route. C. jejuni typically colonizes the gut, but a hypervirulent and rapidly expanding clone of C. jejuni recently emerged, which is able to translocate across the intestinal tract, causing systemic infection and abortion in pregnant animals. The genetic basis responsible for this hypervirulence is unknown. Here, we developed a strategy, termed “directed genome evolution,” by using hybridization between abortifacient and nonabortifacient strains followed by selection in an animal disease model and whole-genome sequence analysis. This strategy successfully identified SNPs in porA, encoding the major outer membrane protein, are responsible for the hypervirulence. Defined mutagenesis verified that these mutations were both necessary and sufficient for causing abortion. Furthermore, sequence analysis identified porA as the gene with the top genome-wide signal of adaptive evolution using Fu’s Fs, a population genetic metric for recent population size changes, which is consistent with the recent expansion of clone “sheep abortion.” These results identify a key virulence factor in Campylobacter and a potential target for the control of this zoonotic pathogen. Furthermore, this study provides general, unbiased experimental and computational approaches that are broadly applicable for efficient elucidation of disease-causing mutations in bacterial pathogens. PMID:27601641

  19. Combination of a modified block PCR and endonuclease IV-based signal amplification system for ultra-sensitive detection of low-abundance point mutations.

    PubMed

    Xiao, Xianjin; Xu, Anqin; Zhai, Junqiu; Zhao, Meiping

    2013-12-15

    By combination of a modified block PCR and endonuclease IV-based signal amplification system, we have developed a novel approach for ultra-sensitive detection of point mutations. The method can effectively identify mutant target sequence immersed in a large background of wild-type sequences with abundance down to 0.03% (for C→A) and 0.005% (for C→G). This sensitivity is among the highest in comparison with other existing approaches and the operating procedures are simple and time saving. The method holds great potential for future application in clinical diagnosis and biomedical research.

  20. Identification of a point mutation in growth factor repeat C of the low density lipoprotein-receptor gene in a patient with homozygous familial hypercholesterolemia

    SciTech Connect

    Soutar, A.K.; Knight, B.L.; Patel, D.D. )

    1989-06-01

    The coding region of the low density lipoprotein (LDL)-receptor gene from a patient (MM) with homozygous familial hypercholesterolemia (FH) has been sequenced from six overlapping 500-base-pair amplified fragments of the cDNA from cultured skin fibroblasts. Two separate single nucleotide base changes from the normal sequence were detected. The first involved substitution of guanine for adenine in the third position of the codon for amino acid residue Cys-27 and did not affect the protein sequence. The second mutation was substitution of thymine for cytosine in the DNA for the codon for amino acid residue 664, changing the codon from CCG (proline) to CTG (leucine) and introducing a new site for the restriction enzyme PstI. MM is a true homozygote with two identical genes, and the mutation cosegregated with clinically diagnosed FH in his family in which first cousin marriages occurred frequently. LDL receptors in MM's skin fibroblasts bind less LDL than normal and with reduced affinity. Thus this naturally occurring single point mutation affects both intracellular transport of the protein and ligand binding and occurs in growth factor-like repeat C, a region that has not previously been found to influence LDL binding.

  1. Genetic basis of human complement C4A deficiency. Detection of a point mutation leading to nonexpression.

    PubMed Central

    Barba, G; Rittner, C; Schneider, P M

    1993-01-01

    The fourth component of the human complement system (C4) is coded for by two genes, C4A and C4B, located within the MHC. Null alleles of C4 (C4Q0) are defined by the absence of C4 protein in plasma. These null alleles are due either to large gene deletions or to nonexpression of the respective genes. In a previous study, evidence was obtained for nonexpressed defective genes at the C4A locus, and for gene conversion at the C4B locus. To further characterize the molecular basis of these non-expressed C4A genes, we selected nine pairs of PCR primers from flanking genomic intron sequences to amplify all 41 exons from individuals with a defective C4A gene. The amplified products were subjected to single-stranded conformation polymorphism (SSCP) analysis to detect possible mutations. PCR products exhibiting a variation in the SSCP pattern were sequenced directly. In 10 of 12 individuals studied, we detected a 2-bp insertion in exon 29 leading to nonexpression due to the creation of a termination codon, which was observed in linkage to the haplotype HLA-B60-DR6 in seven cases. In one of the other two individuals without this mutation, evidence was obtained for gene conversion to the C4B isotype. The genetic basis of C4A nonexpression in the second individual is not yet known and will be subject to further analysis. Images PMID:8473511

  2. Racing to block tumorigenesis after pRb loss: an innocuous point mutation wins with synthetic lethality.

    PubMed

    Bauzon, Frederick; Zhu, Liang

    2010-06-01

    A major goal of tumor suppressor research is to neutralize the tumorigenic effects of their loss. Since loss of pRb does not induce tumorigenesis in many types of cells, natural mechanisms may neutralize the tumorigenic effects of pRb loss in these cells. For susceptible cells, neutralizing the tumorigenic effects of pRb loss could logically be achieved by correcting the deregulated activities of pRb targets to render pRb-deficient cells less abnormal. This line of research has unexpectedly revealed that knocking out the pRb target Skp2 did not render Rb1 deficient cells less abnormal but, rather, induced apoptosis in them, thereby completely blocking tumorigenesis in Rb1+/- mice and after targeted deletion of Rb1 in pituitary intermediate lobe (IL). Skp2 is a substrate-recruiting component of the SCFSkp2 E3 biquitin ligase; one of its substrates is Thr187-phosphorylated p27Kip1. A p27T187A knockin (KI) mutation phenocopied Skp2 knockout (KO) in inducing apoptosis following Rb1 loss. Thus, Skp2 KO or p27T187A KI are synthetic lethal with pRb inactivation. Since homozygous p27T187A KI mutations show no adverse effects in mice, inhibiting p27T187 phosphorylation or p27T187p ubiquitination could be a highly therapeutic and minimally toxic intervention strategy for pRb deficiency-induced tumorigenesis.

  3. The Ec-NhaA antiporter switches from antagonistic to synergistic antiport upon a single point mutation

    PubMed Central

    Dwivedi, Manish; Sukenik, Shahar; Friedler, Assaf; Padan, Etana

    2016-01-01

    The Na+, Li+/H+ antiporter of Escherichia coli (Ec-NhaA) maintains pH, Na+ homeostasis in enterobacteria. We used isothermal titration calorimetry to perform a detailed thermodynamic analysis of Li+ binding to Ec-NhaA and several of its mutants. We found that, in line with the canonical alternative access mechanistic model of secondary transporters, Li+/H+ binding to the antiporter is antagonistically coupled. Binding of Li+ displaces 2 H+ from the binding site. The process is enthalpically driven, the enthalpic gain just compensating for an entropic loss and the buffer-associated enthalpic changes dominate the overall free-energy change. Li+ binding, H+ release and antiporter activity were all affected to the same extent by mutations in the Li+ binding site (D163E, D163N, D164N, D164E), while D133C changed the H+/Li+ stoichiometry to 4. Most striking, however, was the mutation, A167P, which converted the Ec-NhaA antagonistic binding into synergistic binding which is only known to occur in Cl−/H+ antiporter. PMID:27021484

  4. Modification of a Hydrophobic Layer by a Point Mutation in Syntaxin 1A Regulates the Rate of Synaptic Vesicle Fusion

    PubMed Central

    Lagow, Robert D; Bao, Hong; Cohen, Evan N; Daniels, Richard W; Zuzek, Aleksej; Williams, Wade H; Macleod, Gregory T; Sutton, R. Bryan; Zhang, Bing

    2007-01-01

    Both constitutive secretion and Ca2+-regulated exocytosis require the assembly of the soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes. At present, little is known about how the SNARE complexes mediating these two distinct pathways differ in structure. Using the Drosophila neuromuscular synapse as a model, we show that a mutation modifying a hydrophobic layer in syntaxin 1A regulates the rate of vesicle fusion. Syntaxin 1A molecules share a highly conserved threonine in the C-terminal +7 layer near the transmembrane domain. Mutation of this threonine to isoleucine results in a structural change that more closely resembles those found in syntaxins ascribed to the constitutive secretory pathway. Flies carrying the I254 mutant protein have increased levels of SNARE complexes and dramatically enhanced rate of both constitutive and evoked vesicle fusion. In contrast, overexpression of the T254 wild-type protein in neurons reduces vesicle fusion only in the I254 mutant background. These results are consistent with molecular dynamics simulations of the SNARE core complex, suggesting that T254 serves as an internal brake to dampen SNARE zippering and impede vesicle fusion, whereas I254 favors fusion by enhancing intermolecular interaction within the SNARE core complex. PMID:17341138

  5. Phenotype diversity in familial cylindromatosis: a frameshift mutation in the tumor suppressor gene CYLD underlies different tumors of skin appendages.

    PubMed

    Poblete Gutiérrez, Pamela; Eggermann, Thomas; Höller, Daniela; Jugert, Frank K; Beermann, Torsten; Grussendorf-Conen, Elke-Ingrid; Zerres, Klaus; Merk, Hans F; Frank, Jorge

    2002-08-01

    Familial cylindromatosis (turban tumor syndrome; Brooke-Spiegler syndrome) (OMIM numbers 123850, 132700, 313100, and 605041) is a rare autosomal dominantly inherited tumor syndrome. The disorder can present with cutaneous adnexal tumors such as cylindromas, trichoepitheliomas, and spiradenomas, and tumors preferably develop in hairy areas of the body such as head and neck. In affected families, mutations have been demonstrated in the CYLD gene located on chromosome 16q12-13 and reveal the characteristic attributes of a tumor suppressor. Here, we studied familial cylindromatosis in a multigeneration family of German origin. Clinically, some individuals only revealed discrete small skin-colored tumors localized in the nasolabial region whereas one family member showed expansion of multiple big tumors on the trunk and in a turban-like fashion on the scalp. Histologically, cylindromas as well as epithelioma adenoides cysticum were found. We detected a frameshift mutation in the CYLD gene, designated 2253delG, underlying the disorder and were able to show that a single mutation can result in distinct clinical and histologic expression in familial cylindromatosis. The reasons for different expression patterns of the same genetic defect in this disease remain elusive, however. Identification of mutations in the CYLD gene enable us to rapidly confirm putative diagnoses on the genetic level and to provide affected families with genetic counseling.

  6. Diversity of mutations in the RET proto-oncogene and its oncogenic mechanism in medullary thyroid cancer.

    PubMed

    Hedayati, Mehdi; Zarif Yeganeh, Marjan; Sheikholeslami, Sara; Afsari, Farinaz

    2016-08-01

    Thyroid cancer is the most common endocrine malignancy and accounts for nearly 1% of all of human cancer. Thyroid cancer has four main histological types: papillary, follicular, medullary, and anaplastic. Papillary, follicular, and anaplastic thyroid carcinomas are derived from follicular thyroid cells, whereas medullary thyroid carcinoma (MTC) originates from the neural crest parafollicular cells or C-cells of the thyroid gland. MTC represents a neuroendocrine tumor and differs considerably from differentiated thyroid carcinoma. MTC is one of the aggressive types of thyroid cancer, which represents 3-10% of all thyroid cancers. It occurs in hereditary (25%) and sporadic (75%) forms. The hereditary form of MTC has an autosomal dominant mode of inheritance. According to the present classification, hereditary MTC is classified as a multiple endocrine neoplasi type 2 A & B (MEN2A & MEN2B) and familial MTC (FMTC). The RET proto-oncogene is located on chromosome 10q11.21. It is composed of 21 exons and encodes a transmembrane receptor tyrosine kinase. RET regulates a complex network of signal transduction pathways during development, survival, proliferation, differentiation, and migration of the enteric nervous system progenitor cells. Gain of function mutations in RET have been well demonstrated in MTC development. Variants of MTC result from different RET mutations, and they have a good genotype-phenotype correlation. Various MTC related mutations have been reported in different exons of the RET gene. We proposed that RET genetic mutations may be different in distinct populations. Therefore, the aim of this study was to find a geographical pattern of RET mutations in different populations. PMID:26678667

  7. [A point mutation in the coat protein gene affects long distance transport of the tobacco mosaic virus].

    PubMed

    Koshkina, T E; Baranova, E N; Zavriev, S K

    2003-01-01

    A mutation resulting in substitution of positively charged Lys53 with negatively charged Glu in the coat protein was introduced in the infectious cDNA copy of the genome of wild-type tobacco mosaic virus strain U1. Kinetic analysis of long-distance virus transport in plants showed that systemic distribution of the mutant virus was delayed by 5-6 days as compared with the wild-type one. On evidence of RNA sequencing in the mutant progeny, Glu50 of the coat protein was substituted with Lys after passage I to compensate for the loss of the positive charge at position 53. Electron microscopy revealed atypical inclusions (rodlike structures, multiple electron-dense globular particles) in the nuclear interchromatin space of leaf mesophyll cells infected with the mutant but not with the wild-type virus. PMID:12942648

  8. A single point mutation reveals gating of the human ClC-5 Cl-/H+ antiporter.

    PubMed

    De Stefano, Silvia; Pusch, Michael; Zifarelli, Giovanni

    2013-12-01

    ClC-5 is a 2Cl(-)/1H(+) antiporter highly expressed in endosomes of proximal tubule cells. It is essential for endocytosis and mutations in ClC-5 cause Dent's disease, potentially leading to renal failure. However, the physiological role of ClC-5 is still unclear. One of the main issues is whether the strong rectification of ClC-5 currents observed in heterologous systems, with currents elicited only at positive voltages, is preserved in vivo and what is the origin of this rectification. In this work we identified a ClC-5 mutation, D76H, which, besides the typical outward currents of the wild-type (WT), shows inward tail currents at negative potentials that allow the estimation of the reversal of ClC-5 currents for the first time. A detailed analysis of the dependence of these inward tail currents on internal and external pH and [Cl(-)] shows that they are generated by a coupled transport of Cl(-) and H(+) with a 2 : 1 stoichiometry. From this result we conclude that the inward tail currents are caused by a gating mechanism that regulates ClC-5 transport activity and not by a major alteration of the transport mechanism itself. This implies that the strong rectification of the currents of WT ClC-5 is at least in part caused by a gating mechanism that activates the transporter at positive potentials. These results elucidate the biophysical properties of ClC-5 and contribute to the understanding of its physiological role.

  9. Unusual Reversible Oligomerization of Unfolded Dengue Envelope Protein Domain 3 at High Temperatures and Its Abolition by a Point Mutation.

    PubMed

    Saotome, Tomonori; Nakamura, Shigeyoshi; Islam, Mohammad M; Nakazawa, Akiko; Dellarole, Mariano; Arisaka, Fumio; Kidokoro, Shun-Ichi; Kuroda, Yutaka

    2016-08-16

    We report differential scanning calorimetry (DSC) experiments between 10 and 120 °C of Dengue 4 envelope protein domain 3 (DEN4 ED3), a small 107-residue monomeric globular protein domain. The thermal unfolding of DEN4 ED3 was fully reversible and exhibited two peculiar endothermic peaks. AUC (analytical ultracentrifugation) experiments at 25 °C indicated that DEN4 ED3 was monomeric. Detailed thermodynamic analysis indicated that the two endothermic peaks separated with an increasing protein concentration, and global fitting of the DSC curves strongly suggested the presence of unfolded tetramers at temperatures around 80-90 °C, which dissociated to unfolded monomers at even higher temperatures. To further characterize this rare thermal unfolding process, we designed and constructed a DEN4 ED3 variant that would unfold according to a two-state model, typical of globular proteins. We thus substituted Val 380, the most buried residue at the dimeric interface in the protein crystal, with less hydrophobic amino acids (Ala, Ser, Thr, Asn, and Lys). All variants showed a single heat absorption peak, typical of small globular proteins. In particular, the DSC thermogram of DEN4 V380K indicated a two-state reversible thermal unfolding independent of protein concentration, indicating that the high-temperature oligomeric state was successfully abolished by a single mutation. These observations confirmed the standard view that small monomeric globular proteins undergo a two-state unfolding. However, the reversible formation of unfolded oligomers at high temperatures is a truly new phenomenon, which was fully inhibited by an accurately designed single mutation. PMID:27433922

  10. Analysis of the CYP21A1P pseudogene: indication of mutational diversity and CYP21A2-like and duplicated CYP21A2 genes.

    PubMed

    Tsai, Li-Ping; Cheng, Ching-Feng; Chuang, Shu-Hua; Lee, Hsien-Hsiung

    2011-06-15

    The CYP21A1P gene downstream of the XA gene, carrying 15 deteriorated mutations, is a nonfunctional pseudogene that shares 98% nucleotide sequence homology with CYP21A2 located on chromosome 6p21.3. However, these mutations in the CYP21A1P gene are not totally involved in each individual. From our analysis of 100 healthy ethnic Chinese (i.e., Taiwanese) (n=200 chromosomes) using the polymerase chain reaction (PCR) products combined with an amplification-created restriction site (ACRS) method and DNA sequencing, we found that approximately 10% of CYP21A1P alleles (n=195 chromosomes) presented the CYP21A2 sequence; frequencies of P30, V281, Q318, and R356 in that locus were approximately 24%, 21%, 11%, and 34%, respectively, and approximately 90% of the CYP21A1P alleles had 15 mutated loci. In addition, approximately 2.5% (n=5 chromosomes) showed four haplotypes of the 3.7-kb TaqI-produced fragment of the CYP21A2-like gene and one duplicated CYP21A2 gene. We conclude that the pseudogene of the CYP21A1P mutation presents diverse variants. Moreover, the existence of the CYP21A2-like gene is more abundant than that of the duplicated CYP21A2 gene downstream of the XA gene and could not be distinguished from the CYP21A2-TNXB gene; thus, it may be misdiagnosed by previously established methods for congenital adrenal hyperplasia caused by a 21-hydroxylase deficiency.

  11. β-Amyloid Carrying the Dutch Mutation Has Diverse Effects on Calpain-Mediated Toxicity in Hippocampal Neurons

    PubMed Central

    Nicholson, Alexandra M; Wold, Lindsey A; Walsh, Dominic M; Ferreira, Adriana

    2012-01-01

    Hereditary cerebral hemorrhage with amyloidosis–Dutch type is a disorder associated with a missense mutation (E693Q) in the β-amyloid (Aβ)-coding region of the amyloid precursor protein (APP). This familial disease is characterized by cognitive deficits secondary to intracerebral hemorrhage and, in some cases, progressive Alzheimer’s disease (AD)-like dementia. Although this mutation was the first ever reported in the human APP gene, little is known about the molecular mechanisms underlying the direct toxic effects of this mutated Aβ on central neurons. In the present study, we assessed the role of calpain-mediated toxicity in such effects using an AD primary culture model system. Our results showed that Dutch mutant Aβ (E22Q) induced calpain-mediated cleavage of dynamin 1 and a significant decrease in synaptic contacts in mature hippocampal cultures. These synaptic deficits were similar to those induced by wild-type (WT) Aβ. In contrast, calpain-mediated tau cleavage leading to the generation of a 17-kDa neurotoxic fragment, as well as neuronal death, were significantly reduced in E22Q Aβ–treated neurons when compared with WT Aβ–treated ones. This complex regulation of the calpain-mediated toxicity pathway by E22Q Aβ could have some bearing in the pathobiology of this familial AD form. PMID:22160219

  12. An ABCD1 Mutation (c.253dupC) Caused Diverse Phenotypes of Adrenoleukodystrophy in an Iranian Consanguineous Pedigree

    PubMed Central

    Mehrpour, Masoud; Gohari, Faeze; Dizaji, Majid Zaki; Ahani, Ali; Malicdan, May Christine V.; Behnam, Babak

    2016-01-01

    Objectives Current study was the first to report a consanguineous Iranian pedigree with ABCD1 mutation. Methods Targeted molecular analysis was initially performed in three affected individuals in one family suspected to have X-ALD due to chronic progressive spasticity. Upon confirmation of genetic diagnosis, further neurologic and genetic evaluation of all family members was done. Results A mutation in ABCD1 was identified in 35 affected individuals (out 96 pedigree members). The c. 253dup, in exon 1, leads to a frame shift and a premature stop codon at amino acid position 194 (p.Arg85Profs*110). Surprisingly, affected individuals in our cohort show some variability in phenotype, including childhood cerebral ALD, adrenomyeloneuropathy, and addison-only disease phenotypes, expanding the phenotype of X-ALD with p.Arg85Profs*110. Conclusion This report characterizes the clinical spectrum of an expanded Iranian pedigree with X-ALD due to an ABCD1 mutation. Given a high frequency of carriers in this region, we expect the prevalence of X-ALD to be higher, underscoring the importance of genetic counseling through reliable identification of heterozygous as well as homozygote females in consanguineous communities. PMID:27489563

  13. CSF1R copy number changes, point mutations, and RNA and protein overexpression in renal cell carcinomas.

    PubMed

    Soares, Maria J; Pinto, Mafalda; Henrique, Rui; Vieira, Joana; Cerveira, Nuno; Peixoto, Ana; Martins, Ana T; Oliveira, Jorge; Jerónimo, Carmen; Teixeira, Manuel R

    2009-06-01

    Renal cell carcinomas comprise a heterogeneous group of tumors. Of these, 80% are clear cell renal cell carcinomas, which are characterized by loss of 3p, often with concomitant gain of 5q22qter. Although VHL is considered the main target gene of the 3p deletions, none has been identified as the relevant target gene for the 5q gain. We have studied 75 consecutive kidney tumors and paired normal kidney samples to evaluate at the genomic and expression levels the tyrosine kinase genes CSF1R and PDGFRB as potential targets in this region. Our findings show that RNA expression of CSF1R, but not of PDGFRB, was significantly higher in clear cell renal cell carcinomas than in normal tissue samples, something that was corroborated at the protein level by immunohistochemistry. The CSF1R staining pattern in clear cell renal cell carcinomas was clearly different from that observed in other renal cell carcinomas, suggesting its potential usefulness in differential diagnosis. FISH analysis demonstrated whole chromosomal gain and relative CSF1R/PDGFRB copy number gain in clear cell renal cell carcinomas, which might contribute to CSF1R overexpression. Finally, one polymorphism and two novel mutations were identified in CSF1R in clear cell renal cell carcinoma patients. Our data allow us to conclude that CSF1R plays a relevant role in clear cell renal cell carcinoma carcinogenesis and raise the possibility that CSF1R may represent a future valuable therapeutic target in these patients.

  14. In vitro susceptibility and a new point mutation associated with tylosin-resistance in Japanese canine intestinal spirochetes.

    PubMed

    Prapasarakul, Nuvee; Ochi, Kozo; Adachi, Yoshikazu

    2003-12-01

    The in vitro susceptibilities of six commonly used antimicrobial agents against 29 isolates of intestinal spirochetes isolated from dogs in Japan were examined by the agar dilution technique. In addition, the genetic basis of tylosin resistance in in vitro selected resistant mutants of two reference strains and three tylosin-susceptible field isolates obtained by three successive subcultures on blood agar containing 1 microg/ml of tylosin was investigated. Carbadox was the most active (MIC: < 0.00625) of all the antimicrobial agents. Although all the isolates were susceptible to tylosin, some were resistant to erythromycin. Tiamulin, lincomycin and dimetridazole were also very active against the isolates. All the resistant isolates did not harbor any plasmids. In vitro selected tylosin-resistant mutants of previously tylosin-susceptible isolates showed a new mutation in which their adenine at the base position equivalent to 2062 of 23S rDNA of Escherichia coli has been replaced by cytosine. These findings may both provide guidance towards the proper choice of antimicrobial agents for the treatment of canine intestinal spirochetosis, and add to the understanding of the genetic basis of tylosin resistance. PMID:14709813

  15. Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663

    SciTech Connect

    Gilbert, Nathaniel C.; Rui, Zhe; Neau, David B.; Waight, Maria T.; Bartlett, Sue G.; Boeglin, William E.; Brash, Alan R.; Newcomer, Marcia E.

    2012-08-31

    The enzyme 5-lipoxygenase (5-LOX) initiates biosynthesis of the proinflammatory leukotriene lipid mediators and, together with 15-LOX, is also required for synthesis of the anti-inflammatory lipoxins. The catalytic activity of 5-LOX is regulated through multiple mechanisms, including Ca{sup 2+}-targeted membrane binding and phosphorylation at specific serine residues. To investigate the consequences of phosphorylation at S663, we mutated the residue to the phosphorylation mimic Asp, providing a homogenous preparation suitable for catalytic and structural studies. The S663D enzyme exhibits robust 15-LOX activity, as determined by spectrophotometric and HPLC analyses, with only traces of 5-LOX activity remaining; synthesis of the anti-inflammatory lipoxin A4 from arachidonic acid is also detected. The crystal structure of the S663D mutant in the absence and presence of arachidonic acid (in the context of the previously reported Stable-5-LOX) reveals substantial remodeling of helices that define the active site so that the once fully encapsulated catalytic machinery is solvent accessible. Our results suggest that phosphorylation of 5-LOX at S663 could not only down-regulate leukotriene synthesis but also stimulate lipoxin production in inflammatory cells that do not express 15-LOX, thus redirecting lipid mediator biosynthesis to the production of proresolving mediators of inflammation.

  16. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21.

    PubMed

    Preudhomme, C; Warot-Loze, D; Roumier, C; Grardel-Duflos, N; Garand, R; Lai, J L; Dastugue, N; Macintyre, E; Denis, C; Bauters, F; Kerckaert, J P; Cosson, A; Fenaux, P

    2000-10-15

    The AML1 gene, situated in 21q22, is often rearranged in acute leukemias through t(8;21) translocation, t(12;21) translocation, or less often t(3;21) translocation. Recently, point mutations in the Runt domain of the AML1 gene have also been reported in leukemia patients. Observations for mutations of the Runt domain of the AML1 gene in bone marrow cells were made in 300 patients, including 131 with acute myeloid leukemia (AML), 94 with myelodysplastic syndrome (MDS), 28 with blast crisis chronic myeloid leukemia (CML), 3 with atypical CML, 41 with acute lymphoblastic leukemia (ALL), and 3 with essential thrombocythemia (ET). Forty-one of the patients had chromosome 21 abnormalities, including t(8;21) in 6 of the patients with AML, t(12;21) in 8 patients with ALL, acquired trisomy 21 in 17 patients, tetrasomy 21 in 7 patients, and constitutional trisomy 21 (Down syndrome) in 3 patients. A point mutation was found in 14 cases (4.7%), including 9 (22%) of the 41 patients with AML of the Mo type (MoAML) (none of them had detectable chromosome 21 rearrangement) and 5 (38%) of the 13 myeloid malignancies with acquired trisomy 21 (1 M1AML, 2 M2AML, 1 ET, and 1 atypical CML). In at least 8 of 9 mutated cases of MoAML, both AML alleles were mutated: 3 patients had different stop codon mutations of the 2 AML1 alleles, and 5 patients had the same missense or stop codon mutation in both AML1 alleles, which resulted in at least 3 of the patients having duplication of the mutated allele and deletion of the normal residual allele, as shown by FISH analysis and by comparing microsatellite analyses of several chromosome 21 markers on diagnosis and remission samples. In the remaining mutated cases, with acquired trisomy 21, a missense mutation of AML1, which involved 2 of the 3 copies of the AML1 gene, was found. Four of the 7 mutated cases could be reanalyzed in complete remission, and no AML1 mutation was found, showing that mutations were acquired in the leukemic clone. In

  17. Selected cysteine point mutations confer mercurial sensitivity to the mercurial-insensitive water channel MIWC/AQP-4.

    PubMed

    Shi, L B; Verkman, A S

    1996-01-16

    The mercurial-insensitive water channel (MIWC or AQP-4) is a 30-32 kDA integral membrane protein expressed widely in fluid-transporting epithelia [Hasegawa et al. (1994) J. Biol. Chem. 269, 5497-5500]. To investigate the mercurial insensitivity and key residues involved in MIWC-mediated water transport, amino acids just proximal to the conserved NPA motifs (residues 69-74 and 187-190) were mutated individually to cysteine. Complementary RNAs were expressed in Xenopus oocytes for assay of osmotic water permeability (Pf) and HgCl2 inhibition dose-response. Oocytes expressing the cysteine mutants were highly water permeable, with Pf values (24-33 x 10(-3) cm/s) not different from that of wild-type (WT) MIWC. Pf was reversibly inhibited by HgCl2 in mutants S70C, G71C, G72C, H73C, and S189C but insensitive to HgCl2 in the other mutants. K1/2 values for 50% inhibition of Pf by HgCl2 were as follows (in millimolar): 0.40 (S70C), 0.36 (G71C), 0.14 (G72C), 0.45 (H73C), 0.24 (S189C), and > 1 for WT MIWC and the other mutants. To test the hypothesis that these residues are near the MIWC aqueous pore, residues 72 and 188 were mutated individually to the larger amino acid tryptophan. Pf in oocytes expressing mutants G72W or A188W (1.3-1.4 x 10(-3) cm/s) was not greater than that in water-injected oocytes even though these proteins were expressed at the oocyte plasma membrane as shown by quantitative immunofluorescence. Coinjection of cRNAs encoding WT MIWC and G72W or A188W indicated a dominant negative effect; Pf (x 10(-3) cm/s) was 22 (0.25 ng of WT), 10 (0.25 ng of WT + 0.25 ng of G72W), and 12 (0.25 ng of WT + 0.25 ng of A188W). Taken together, these results suggest the MIWC is mercurial-insensitive because of absence of a cysteine residue near the NPA motifs and that residues 70-73 and 189 are located at or near the MIWC aqueous pore. In contrast to previous data for the channel-forming integral protein of 28kDa (CHIP28), the finding of a dominant negative phenotype for

  18. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection.

    PubMed

    Gao, Wei; Chua, Kyra; Davies, John K; Newton, Hayley J; Seemann, Torsten; Harrison, Paul F; Holmes, Natasha E; Rhee, Hyun-Woo; Hong, Jong-In; Hartland, Elizabeth L; Stinear, Timothy P; Howden, Benjamin P

    2010-01-01

    Staphylococcus aureus frequently invades the human bloodstream, leading to life threatening bacteremia and often secondary foci of infection. Failure of antibiotic therapy to eradicate infection is frequently described; in some cases associated with altered S. aureus antimicrobial resistance or the small colony variant (SCV) phenotype. Newer antimicrobials, such as linezolid, remain the last available therapy for some patients with multi-resistant S. aureus infections. Using comparative and functional genomics we investigated the molecular determinants of resistance and SCV formation in sequential S. aureus isolates from a patient who had a persistent and recurrent S. aureus infection, after failed therapy with multiple antimicrobials, including linezolid. Two point mutations in key staphylococcal genes dramatically affected clinical behaviour of the bacterium, altering virulence and antimicrobial resistance. Most strikingly, a single nucleotide substitution in relA (SACOL1689) reduced RelA hydrolase activity and caused accumulation of the intracellular signalling molecule guanosine 3', 5'-bis(diphosphate) (ppGpp) and permanent activation of the stringent response, which has not previously been reported in S. aureus. Using the clinical isolate and a defined mutant with an identical relA mutation, we demonstrate for the first time the impact of an active stringent response in S. aureus, which was associated with reduced growth, and attenuated virulence in the Galleria mellonella model. In addition, a mutation in rlmN (SACOL1230), encoding a ribosomal methyltransferase that methylates 23S rRNA at position A2503, caused a reduction in linezolid susceptibility. These results reinforce the exquisite adaptability of S. aureus and show how subtle molecular changes cause major alterations in bacterial behaviour, as well as highlighting potential weaknesses of current antibiotic treatment regimens.

  19. A new point mutation (C446R) in the thyroid hormone receptor-{beta} gene of a family with resistance to thyroid hormone

    SciTech Connect

    Weiss, R.E.; Chyna, B.; Hayashi, Yoshitaka; Sunthornthepvarakul, T.; Refetoff, S.; Duell, P.B.

    1994-05-01

    Resistance to thyroid hormone (RTH) is a condition of impaired end-organ responsiveness to thyroid hormone characterized by goiter and elevated thyroid hormone levels with an appropriately normal TSH. RTH has been associated with mutations in the thyroid hormone receptor-{beta} (TR{beta}) gene. The authors report studies carried out in 21 members of a family (F119), 12 of whom exhibited the RTH phenotype. A point mutation was detected in the T{sub 3}-binding domain of the TR{beta} gene. It resulted in replacement of the normal cysteine-446 with an arginine (C446R) that has not been previously reported. The clinical characteristics of this family are similar to those reported in other families with RTH, namely goiter, tachycardia, and learning disabilities. Thyroid function tests are also typical of other subjects with RTH. The mean values ({+-}SD) in untreated affected subjects compared to those in unaffected family members were: free T{sub 4} index, 250 {+-} 21 vs. 108 {+-} 13; total T{sub 3}, 4.3 {+-} 0.4 vs. 2.4 {+-} 0.4 nmol/L; and TSH, 4.5 {+-} 1.1 vs. 2.4 {+-} 1.1 mU/L. DNA samples from 18 family members were screened for the TR{beta} mutation, which results in the loss of a BsmI restriction site, and each of the 11 subjects with abnormal thyroid function tests were heterozygous for the mutant allele. The mutant TR{beta} expressed in Cos-I cells did not bind T{sub 3} (K{sub a} of C446R/wild-type, <0.05). T{sub 3} at a concentration up to 100 nmol/L failed to enhance the transactivation of a reporter gene, and the mutant receptor inhibited the T{sub 3}-mediated transcriptional activation of the wild-type TR{beta}. 17 refs., 3 figs., 1 tab.

  20. Disruption of RB/E2F-1 interaction by single point mutations in E2F-1 enhances S-phase entry and apoptosis.

    PubMed Central

    Shan, B; Durfee, T; Lee, W H

    1996-01-01

    The retinoblastoma protein (RB) has been proposed to function as a negative regulator of cell proliferation by complexing with cellular proteins such as the transcription factor E2F. To study the biological consequences of the RB/E2F-1 interaction, point mutants of E2F-1 which fail to bind to RB were isolated by using the yeast two-hybrid system. Sequence analysis revealed that within the minimal 18-amino acid peptide of E2F-1 required for RB binding, five residues, Tyr (position 411), Glu (419), and Asp-Leu-Phe (423-425), are critical. These amino acids are conserved among the known E2F family members. While mutation of any of these five amino acids abolished binding to RB, all mutants retained their full transactivation potential. Expression of mutated E2F-1, when compared with that of wild-type, significantly accelerated entry into S phase and subsequent apoptosis. These results provide direct genetic evidence for the biological significance of the RB/E2F interaction and strongly suggest that the interplay between RB and E2F is critical for proper cell cycle progression. Images Fig. 3 Fig. 4 PMID:8570615

  1. Evidence of ectopic recombination and a repeat-induced point (RIP) mutation in the genome of Sclerotinia sclerotiorum, the agent responsible for white mold.

    PubMed

    Goldfarb, Míriam; Santana, Mateus Ferreira; Salomão, Tânia Maria Fernandes; Queiroz, Marisa Vieira de; Barros, Everaldo Gonçalves de

    2016-01-01

    Two retrotransposons from the superfamilies Copia and Gypsy named as Copia-LTR_SS and Gypsy-LTR_SS, respectively, were identified in the genomic bank of Sclerotinia sclerotiorum. These transposable elements (TEs) contained direct and preserved long terminal repeats (LTR). Domains related to codified regions for gag protein, integrase, reverse transcriptase and RNAse H were identified in Copia-LTR_SS, whereas in Gypsy-LTR_SS only domains for gag, reverse transcriptase and RNAse H were found. The abundance of identified LTR-Solo suggested possible genetic recombination events in the S. sclerotiorum genome. Furthermore, alignment of the sequences for LTR elements from each superfamily suggested the presence of a RIP (repeat-induced point mutation) silencing mechanism that may directly affect the evolution of this species. PMID:27560652

  2. Evidence of ectopic recombination and a repeat-induced point (RIP) mutation in the genome of Sclerotinia sclerotiorum, the agent responsible for white mold

    PubMed Central

    Goldfarb, Míriam; Santana, Mateus Ferreira; Salomão, Tânia Maria Fernandes; de Queiroz, Marisa Vieira; de Barros, Everaldo Gonçalves

    2016-01-01

    Abstract Two retrotransposons from the superfamilies Copia and Gypsy named as Copia-LTR_SS and Gypsy-LTR_SS, respectively, were identified in the genomic bank of Sclerotinia sclerotiorum. These transposable elements (TEs) contained direct and preserved long terminal repeats (LTR). Domains related to codified regions for gag protein, integrase, reverse transcriptase and RNAse H were identified in Copia-LTR_SS, whereas in Gypsy-LTR_SS only domains for gag, reverse transcriptase and RNAse H were found. The abundance of identified LTR-Solo suggested possible genetic recombination events in the S. sclerotiorum genome. Furthermore, alignment of the sequences for LTR elements from each superfamily suggested the presence of a RIP (repeat-induced point mutation) silencing mechanism that may directly affect the evolution of this species. PMID:27560652

  3. Late-onset muscle weakness in partial phosphofructokinase deficiency: a unique myopathy with vacuoles, abnormal mitochondria, and absence of the common exon 5/intron 5 junction point mutation.

    PubMed

    Sivakumar, K; Vasconcelos, O; Goldfarb, L; Dalakas, M C

    1996-05-01

    Three patients (ages 51, 59, and 79) from two generations of an Ashkenazi Jewish family had partial (33% activity) phosphofructokinase (PFK) deficiency that presented with fixed muscle weakness after the age of 50 years. MR spectroscopy revealed accumulation of phosphomonoesters during exercise. Muscle biopsy showed a vacuolar myopathy with increased autophagic activity and several ragged-red and cytochrome c oxidase-negative fibers. The older patient, age 79 at biopsy, had several necrotic fibers. Electron microscopy revealed subsarcolemmal and intermyofibrillar glycogen accumulation and proliferation of mitochondria with paracrystalline inclusions, probably related to reduced availability of energy due to impaired glycolysis. The common point mutation of exon 5/intron 5 junction seen in Jewish Ashkenazi patients with PFK deficiency was excluded. We conclude that late-onset fixed muscle weakness occurs in partial PFK deficiency and it may represent the end result of continuing episodes of muscle fiber destruction. Partial enzyme deficiency in two successive generations suggests a unique molecular mechanism.

  4. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity.

    PubMed

    Nagaoka, Hitoshi; Tran, Thinh Huy; Kobayashi, Maki; Aida, Masatoshi; Honjo, Tasuku

    2010-04-01

    Activation-induced cytidine deaminase (AID) is essential and sufficient to accomplish class-switch recombination and somatic hypermutation, which are two genetic events required for the generation of antibody-mediated memory responses. However, AID can also introduce genomic instability, giving rise to chromosomal translocation and/or mutations in proto-oncogenes. It is therefore important for cells to suppress AID expression unless B lymphocytes are stimulated by pathogens. The mechanisms for avoiding the accidental activation of AID and thereby avoiding genomic instability can be classified into three types: (i) transcriptional regulation, (ii) post-transcriptional regulation and (iii) target specificity. This review summarizes the recently elucidated comprehensive transcriptional regulation mechanisms of the AID gene and the post-transcriptional regulation that may be critical for preventing excess AID activity. Finally, we discuss why AID targets not only Igs but also other proto-oncogenes. AID targets many genes but it is not totally promiscuous and the criteria that specify its targets are unclear. A recent finding that a non-B DNA structure forms upon a decrease in topoisomerase 1 expression may explain this paradoxical target specificity determination. Evolution has chosen AID as a mutator of Ig genes because of its efficient DNA cleavage activity, even though its presence increases the risk of genomic instability. This is probably because immediate protection against pathogens is more critical for species survival than complete protection from the slower acting consequences of genomic instability, such as tumor formation.

  5. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.

    PubMed

    Komati Reddy, Gajendar; Lindner, Steffen N; Wendisch, Volker F

    2015-03-01

    Corynebacterium glutamicum uses the Embden-Meyerhof-Parnas pathway of glycolysis and gains 2 mol of ATP per mol of glucose by substrate-level phosphorylation (SLP). To engineer glycolysis without net ATP formation by SLP, endogenous phosphorylating NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was replaced by nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GapN) from Clostridium acetobutylicum, which irreversibly converts glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) without generating ATP. As shown recently (S. Takeno, R. Murata, R. Kobayashi, S. Mitsuhashi, and M. Ikeda, Appl Environ Microbiol 76:7154-7160, 2010, http://dx.doi.org/10.1128/AEM.01464-10), this ATP-neutral, NADPH-generating glycolytic pathway did not allow for the growth of Corynebacterium glutamicum with glucose as the sole carbon source unless hitherto unknown suppressor mutations occurred; however, these mutations were not disclosed. In the present study, a suppressor mutation was identified, and it was shown that heterologous expression of udhA encoding soluble transhydrogenase from Escherichia coli partly restored growth, suggesting that growth was inhibited by NADPH accumulation. Moreover, genome sequence analysis of second-site suppressor mutants that were able to grow faster with glucose revealed a single point mutation in the gene of non-proton-pumping NADH:ubiquinone oxidoreductase (NDH-II) leading to the amino acid change D213G, which was shared by these suppressor mutants. Since related NDH-II enzymes accepting NADPH as the substrate possess asparagine or glutamine residues at this position, D213G, D213N, and D213Q variants of C. glutamicum NDH-II were constructed and were shown to oxidize NADPH in addition to NADH. Taking these findings together, ATP-neutral glycolysis by the replacement of endogenous NAD-dependent GAPDH with NADP-dependent GapN became possible via oxidation of NADPH formed in this pathway by mutant NADPH

  6. Functional Assessment of Residues in the Amino- and Carboxyl-Termini of Crustacean Hyperglycemic Hormone (CHH) in the Mud Crab Scylla olivacea Using Point-Mutated Peptides.

    PubMed

    Liu, Chun-Jing; Huang, Shiau-Shan; Toullec, Jean-Yves; Chang, Cheng-Yen; Chen, Yun-Ru; Huang, Wen-San; Lee, Chi-Ying

    2015-01-01

    To assess functional importance of the residues in the amino- and carboxyl-termini of crustacean hyperglycemic hormone in the mud crab Scylla olivacea (Sco-CHH), both wild-type and point-mutated CHH peptides were produced with an amidated C-terminal end. Spectral analyses of circular dichroism, chromatographic retention time, and mass spectrometric analysis of the recombinant peptides indicate that they were close in conformation to native CHH and were produced with the intended substitutions. The recombinant peptides were subsequently used for an in vivo hyperglycemic assay. Two mutants (R13A and I69A rSco-CHH) completely lacked hyperglycemic activity, with temporal profiles similar to that of vehicle control. Temporal profiles of hyperglycemic responses elicited by 4 mutants (I2A, F3A, D12A, and D60A Sco-CHH) were different from that elicited by wild-type Sco-CHH; I2A was unique in that it exhibited significantly higher hyperglycemic activity, whereas the remaining 3 mutants showed lower activity. Four mutants (D4A, Q51A, E54A, and V72A rSco-CHH) elicited hyperglycemic responses with temporal profiles similar to those evoked by wild-type Sco-CHH. In contrast, the glycine-extended version of V72A rSco-CHH (V72A rSco-CHH-Gly) completely lost hyperglycemic activity. By comparing our study with previous ones of ion-transport peptide (ITP) and molt-inhibiting hormone (MIH) using deleted or point-mutated mutants, detail discussion is made regarding functionally important residues that are shared by both CHH and ITP (members of Group I of the CHH family), and those that discriminate CHH from ITP, and Group-I from Group-II peptides. Conclusions summarized in the present study provide insights into understanding of how functional diversification occurred within a peptide family of multifunctional members.

  7. Functional Assessment of Residues in the Amino- and Carboxyl-Termini of Crustacean Hyperglycemic Hormone (CHH) in the Mud Crab Scylla olivacea Using Point-Mutated Peptides

    PubMed Central

    Liu, Chun-Jing; Huang, Shiau-Shan; Toullec, Jean-Yves; Chang, Cheng-Yen; Chen, Yun-Ru; Huang, Wen-San; Lee, Chi-Ying

    2015-01-01

    To assess functional importance of the residues in the amino- and carboxyl-termini of crustacean hyperglycemic hormone in the mud crab Scylla olivacea (Sco-CHH), both wild-type and point-mutated CHH peptides were produced with an amidated C-terminal end. Spectral analyses of circular dichroism, chromatographic retention time, and mass spectrometric analysis of the recombinant peptides indicate that they were close in conformation to native CHH and were produced with the intended substitutions. The recombinant peptides were subsequently used for an in vivo hyperglycemic assay. Two mutants (R13A and I69A rSco-CHH) completely lacked hyperglycemic activity, with temporal profiles similar to that of vehicle control. Temporal profiles of hyperglycemic responses elicited by 4 mutants (I2A, F3A, D12A, and D60A Sco-CHH) were different from that elicited by wild-type Sco-CHH; I2A was unique in that it exhibited significantly higher hyperglycemic activity, whereas the remaining 3 mutants showed lower activity. Four mutants (D4A, Q51A, E54A, and V72A rSco-CHH) elicited hyperglycemic responses with temporal profiles similar to those evoked by wild-type Sco-CHH. In contrast, the glycine-extended version of V72A rSco-CHH (V72A rSco-CHH-Gly) completely lost hyperglycemic activity. By comparing our study with previous ones of ion-transport peptide (ITP) and molt-inhibiting hormone (MIH) using deleted or point-mutated mutants, detail discussion is made regarding functionally important residues that are shared by both CHH and ITP (members of Group I of the CHH family), and those that discriminate CHH from ITP, and Group-I from Group-II peptides. Conclusions summarized in the present study provide insights into understanding of how functional diversification occurred within a peptide family of multifunctional members. PMID:26261986

  8. Resistance to the Novel Fungicide Pyrimorph in Phytophthora capsici: Risk Assessment and Detection of Point Mutations in CesA3 That Confer Resistance

    PubMed Central

    Pang, Zhili; Shao, Jingpeng; Chen, Lei; Lu, Xiaohong; Hu, Jian; Qin, Zhaohai; Liu, Xili

    2013-01-01

    Pyrimorph is a novel fungicide with high activity against the plant pathogen Phytophthora capsici. We investigated the risk that P. capsici can develop resistance to pyrimorph. The baseline sensitivities of 226 P. capsici isolates, tested by mycelial growth inhibition, showed a unimodal distribution with a mean EC50 value of 1.4261 (±0.4002) µg/ml. Twelve pyrimorph-resistant mutants were obtained by repeated exposure to pyrimorph in vitro with a frequency of approximately 1×10−4. The resistance factors of the mutants ranged from 10.67 to 56.02. Pyrimorph resistance of the mutants was stable after 10 transfers on pyrimorph-free medium. Fitness in sporulation, cystospore germination, and pathogenicity in the pyrimorph-resistant mutants was similar to or less than that in the parental wild-type isolates. On detached pepper leaves and pepper plants treated with the recommended maximum dose of pyrimorph, however, virulence was greater for mutants with a high level of pyrimorph resistance than for the wild type. The results suggest that the risk of P. capsici developing resistance to pyrimorph is low to moderate. Among mutants with a high level of pyrimorph resistance, EC50 values for pyrimorph and CAA fungicides flumorph, dimethomorph, and mandipropamid were positively correlated. This indicated that point mutations in cellulose synthase 3 (CesA3) may confer resistance to pyrimorph. Comparison of CesA3 in isolates with a high level of pyrimorph resistance and parental isolates showed that an amino acid change from glutamine to lysine at position 1077 resulted in stable, high resistance in the mutants. Based on the point mutations, an allele-specific PCR method was developed to detect pyrimorph resistance in P. capsici populations. PMID:23431382

  9. In vitro resistance selections for Plasmodium falciparum dihydroorotate dehydrogenase inhibitors give mutants with multiple point mutations in the drug-binding site and altered growth.

    PubMed

    Ross, Leila S; Gamo, Francisco Javier; Lafuente-Monasterio, Maria José; Singh, Onkar M P; Rowland, Paul; Wiegand, Roger C; Wirth, Dyann F

    2014-06-27

    Malaria is a preventable and treatable disease; yet half of the world's population lives at risk of infection, and an estimated 660,000 people die of malaria-related causes every year. Rising drug resistance threatens to make malaria untreatable, necessitating both the discovery of new antimalarial agents and the development of strategies to identify and suppress the emergence and spread of drug resistance. We focused on in-development dihydroorotate dehydrogenase (DHODH) inhibitors. Characterizing resistance pathways for antimalarial agents not yet in clinical use will increase our understanding of the potential for resistance. We identified resistance mechanisms of Plasmodium falciparum (Pf) DHODH inhibitors via in vitro resistance selections. We found 11 point mutations in the PfDHODH target. Target gene amplification and unknown mechanisms also contributed to resistance, albeit to a lesser extent. These mutant parasites were often hypersensitive to other PfDHODH inhibitors, which immediately suggested a novel combination therapy approach to preventing resistance. Indeed, a combination of wild-type and mutant-type selective inhibitors led to resistance far less often than either drug alone. The effects of point mutations in PfDHODH were corroborated with purified recombinant wild-type and mutant-type PfDHODH proteins, which showed the same trends in drug response as the cognate cell lines. Comparative growth assays demonstrated that two mutant parasites grew less robustly than their wild-type parent, and the purified protein of those mutants showed a decrease in catalytic efficiency, thereby suggesting a reason for the diminished growth rate. Co-crystallography of PfDHODH with three inhibitors suggested that hydrophobic interactions are important for drug binding and selectivity.

  10. Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance.

    PubMed

    Pang, Zhili; Shao, Jingpeng; Chen, Lei; Lu, Xiaohong; Hu, Jian; Qin, Zhaohai; Liu, Xili

    2013-01-01

    Pyrimorph is a novel fungicide with high activity against the plant pathogen Phytophthora capsici. We investigated the risk that P. capsici can develop resistance to pyrimorph. The baseline sensitivities of 226 P. capsici isolates, tested by mycelial growth inhibition, showed a unimodal distribution with a mean EC(50) value of 1.4261 (± 0.4002) µg/ml. Twelve pyrimorph-resistant mutants were obtained by repeated exposure to pyrimorph in vitro with a frequency of approximately 1 × 10(-4). The resistance factors of the mutants ranged from 10.67 to 56.02. Pyrimorph resistance of the mutants was stable after 10 transfers on pyrimorph-free medium. Fitness in sporulation, cystospore germination, and pathogenicity in the pyrimorph-resistant mutants was similar to or less than that in the parental wild-type isolates. On detached pepper leaves and pepper plants treated with the recommended maximum dose of pyrimorph, however, virulence was greater for mutants with a high level of pyrimorph resistance than for the wild type. The results suggest that the risk of P. capsici developing resistance to pyrimorph is low to moderate. Among mutants with a high level of pyrimorph resistance, EC(50) values for pyrimorph and CAA fungicides flumorph, dimethomorph, and mandipropamid were positively correlated. This indicated that point mutations in cellulose synthase 3 (CesA3) may confer resistance to pyrimorph. Comparison of CesA3 in isolates with a high level of pyrimorph resistance and parental isolates showed that an amino acid change from glutamine to lysine at position 1077 resulted in stable, high resistance in the mutants. Based on the point mutations, an allele-specific PCR method was developed to detect pyrimorph resistance in P. capsici populations.

  11. Using diverse U.S. beef cattle genomes to identify missense mutations in EPAS1, a gene associated with pulmonary hypertension

    PubMed Central

    Heaton, Michael P.; Smith, Timothy P.L.; Carnahan, Jacky K.; Basnayake, Veronica; Qiu, Jiansheng; Simpson, Barry; Kalbfleisch, Theodore S.

    2016-01-01

    The availability of whole genome sequence (WGS) data has made it possible to discover protein variants in silico. However, existing bovine WGS databases do not show data in a form conducive to protein variant analysis, and tend to under represent the breadth of genetic diversity in global beef cattle. Thus, our first aim was to use 96 beef sires, sharing minimal pedigree relationships, to create a searchable and publicly viewable set of mapped genomes relevant for 19 popular breeds of U.S. cattle. Our second aim was to identify protein variants encoded by the bovine endothelial PAS domain-containing protein 1 gene ( EPAS1), a gene associated with pulmonary hypertension in Angus cattle. The identity and quality of genomic sequences were verified by comparing WGS genotypes to those derived from other methods. The average read depth, genotype scoring rate, and genotype accuracy exceeded 14, 99%, and 99%, respectively. The 96 genomes were used to discover four amino acid variants encoded by EPAS1 (E270Q, P362L, A671G, and L701F) and confirm two variants previously associated with disease (A606T and G610S). The six EPAS1 missense mutations were verified with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assays, and their frequencies were estimated in a separate collection of 1154 U.S. cattle representing 46 breeds. A rooted phylogenetic tree of eight polypeptide sequences provided a framework for evaluating the likely order of mutations and potential impact of EPAS1 alleles on the adaptive response to chronic hypoxia in U.S. cattle. This public, whole genome resource facilitates in silico identification of protein variants in diverse types of U.S. beef cattle, and provides a means of translating WGS data into a practical biological and evolutionary context for generating and testing hypotheses. PMID:27746904

  12. Genetic analysis of the Kirsten-ras-revertant 1 gene: Potentiation of its tumor suppressor activity by specific point mutations

    SciTech Connect

    Kitayama, Hitoshi Univ. of Tsukuba, Ibaraki ); Matsuzaki, Tomoko; Ikawa, Yoji; Noda, Makoto )

    1990-06-01

    Kirsten-ras-revertant 1 (Krev-1) cDNA encodes a ras-related protein and exhibits an activity of inducing flat revertants at certain frequencies (2-5% of total transfectants) when introduced into a v-K-ras-transformed mouse NIH 3T3 cell line, DT. Toward understanding the mechanism of action of Krev-1 protein, the authors constructed a series of point mutants of Krev-1 cDNA and tested their biological activities in DT cells and HT1080 human fibrosarcoma cells harboring the activated N-ras gene. Substitutions of the amino acid residues in the putative guanine nucleotide-binding regions (Asp{sup 17} and Asn{sup 116}), in the putative effector-binding domain (residue 38), at the putative acylation site (Cys{sup 181}), and at the unique Thr{sup 61} all decreased the transformation suppressor activity. On the other hand, substitutions such as Gly{sup 12} to Val{sup 12} and Gln{sup 63} to Glu{sup 63} were found to significantly increase the transformation suppressor/tumor suppressor activity of Krev-1. These findings are consistent with the idea that Krev-1 protein is regulated like many other G proteins by the guanine triphosphate/guanine diphosphate-exchange mechanism probably in response to certain negative growth-regulatory signals.

  13. Screening of nineteen unrelated families with generalized resistance to thyroid hormone for known point mutations in the thyroid hormone receptor beta gene and the detection of a new mutation.

    PubMed Central

    Takeda, K; Balzano, S; Sakurai, A; DeGroot, L J; Refetoff, S

    1991-01-01

    Generalized resistance to thyroid hormone (GRTH) is a syndrome characterized by impaired tissue responsiveness to thyroid hormone. Two distinct point mutations in the hormone binding domain of the thyroid hormone receptor (TR) beta have recently been identified in two unrelated families with GRTH. One, Mf, involves a replacement of the normal glycine-345 for arginine in exon 7 and another, Mh, replaces the normal proline-453 for histidine in exon 8. To probe for the presence of the Mf and Mh defect in 19 unrelated families with GRTH, we applied separate polymerase chain reactions using allele-specific oligonucleotide primers containing the normal and each of the two mutant nucleotides at the 3'-position. A total of 24 affected subjects and 13 normal family members were studied. The mode of inheritance was dominant in 13 families, was unknown in 5 families, and was clearly recessive in 1 family in which only the consanguineous subjects were affected. Primers containing the substitutions specific for Mf and Mh amplified exons 7 and 8, respectively, only in affected members of each of the two index families. Primers containing the normal sequences amplified exons 7 and 8 of the TR beta gene in all subjects except affected members of one family. In this family with recessively inherited GRTH, neither exon could be amplified using any combinations of primers and DNA blot revealed absence of all coding exons. These results indicate a major deletion of the TR beta gene, including both DNA and hormone binding domains. Since heterozygous members of this family are not affected, the presence of a single normal allele is sufficient for normal function of the TR beta. These data also support the hypothesis that in the dominant mode of GRTH inheritance the presence of an abnormal TR beta interferes with the function of the normal TR beta. Distinct mutations are probably responsible for GRTH in unrelated families. Images PMID:1991834

  14. Mutation accumulation and fitness in mutator subpopulations of Escherichia coli.

    PubMed

    Maharjan, Ram P; Liu, Bin; Li, Yang; Reeves, Peter R; Wang, Lei; Ferenci, Thomas

    2013-02-23

    Bacterial populations in clinical and laboratory settings contain a significant proportion of mutants with elevated mutation rates (mutators). Mutators have a particular advantage when multiple beneficial mutations are needed for fitness, as in antibiotic resistance. Nevertheless, high mutation rates potentially lead to increasing numbers of deleterious mutations and subsequently to the decreased fitness of mutators. To test how fitness changed with mutation accumulation, genome sequencing and fitness assays of nine Escherichia coli mutY mutators were undertaken in an evolving chemostat population at three time points. Unexpectedly, the fitness in members of the mutator subpopulation became constant despite a growing number of mutations over time. To test if the accumulated mutations affected fitness, we replaced each of the known beneficial mutations with wild-type alleles in a mutator isolate. We found that the other 25 accumulated mutations were not deleterious. Our results suggest that isolates with deleterious mutations are eliminated by competition in a continuous culture, leaving mutators with mostly neutral mutations. Interestingly, the mutator-non-mutator balance in the population reversed after the fitness plateau of mutators was reached, suggesting that the mutator-non-mutator ratio in populations has more to do with competition between members of the population than the accumulation of deleterious mutations.

  15. A novel asymmetric-loop molecular beacon-based two-phase hybridization assay for accurate and high-throughput detection of multiple drug resistance-conferring point mutations in Mycobacterium tuberculosis.

    PubMed

    Chen, Qinghai; Wu, Nan; Xie, Meng; Zhang, Bo; Chen, Ming; Li, Jianjun; Zhuo, Lisha; Kuang, Hong; Fu, Weiling

    2012-04-01

    The accurate and high-throughput detection of drug resistance-related multiple point mutations remains a challenge. Although the combination of molecular beacons with bio-immobilization technology, such as microarray, is promising, its application is difficult due to the ineffective immobilization of molecular beacons on the chip surface. Here, we propose a novel asymmetric-loop molecular beacon in which the loop consists of 2 parts. One is complementary to a target, while the other is complementary to an oligonucleotide probe immobilized on the chip surface. With this novel probe, a two-phase hybridization assay can be used for simultaneously detecting multiple point mutations. This assay will have advantages, such as easy probe availability, multiplex detection, low background, and high-efficiency hybridization, and may provide a new avenue for the immobilization of molecular beacons and high-throughput detection of point mutations.

  16. Loss of striatal cannabinoid CB1 receptor function in attention-deficit / hyperactivity disorder mice with point-mutation of the dopamine transporter.

    PubMed

    Castelli, Maura; Federici, Mauro; Rossi, Silvia; De Chiara, Valentina; Napolitano, Francesco; Studer, Valeria; Motta, Caterina; Sacchetti, Lucia; Romano, Rosaria; Musella, Alessandra; Bernardi, Giorgio; Siracusano, Alberto; Gu, Howard H; Mercuri, Nicola B; Usiello, Alessandro; Centonze, Diego

    2011-11-01

    Abnormal dopamine (DA) transmission in the striatum plays a pivotal role in attention-deficit/hyperactivity disorder (ADHD). As striatal DA signalling modulates the endocannabinoid system (ECS), the present study was aimed at investigating cannabinoid CB1 receptor (CB1R) function in a model of ADHD obtained by triple point-mutation in the dopamine transporter (DAT) gene in mice, making them insensitive to cocaine [DAT cocaine-insensitive (DAT-CI) mice]. DAT-CI mice had a marked hyperactive phenotype, and neurophysiological recordings revealed that the sensitivity of CB1Rs controlling GABA-mediated synaptic currents [CB1Rs((GABA)) ] in the striatum was completely lost. In contrast, CB1Rs modulating glutamate transmission [CB1Rs((Glu)) ], and GABA(B) receptors were not affected in this model of ADHD. In DAT-CI mice, the blockade of CB1R((GABA)) function was complete even after cocaine or environmental manipulations activating the endogenous DA-dependent reward system, which are known to sensitize these receptors in control animals. Conversely, the hedonic property of sucrose was intact in DAT-CI mice, indicating normal sweet perception in these animals. Our results point to CB1Rs as novel molecular players in ADHD, and suggest that therapeutic strategies aimed at interfering with the ECS might prove effective in this disorder. PMID:22034972

  17. Loss of striatal cannabinoid CB1 receptor function in attention-deficit / hyperactivity disorder mice with point-mutation of the dopamine transporter.

    PubMed

    Castelli, Maura; Federici, Mauro; Rossi, Silvia; De Chiara, Valentina; Napolitano, Francesco; Studer, Valeria; Motta, Caterina; Sacchetti, Lucia; Romano, Rosaria; Musella, Alessandra; Bernardi, Giorgio; Siracusano, Alberto; Gu, Howard H; Mercuri, Nicola B; Usiello, Alessandro; Centonze, Diego

    2011-11-01

    Abnormal dopamine (DA) transmission in the striatum plays a pivotal role in attention-deficit/hyperactivity disorder (ADHD). As striatal DA signalling modulates the endocannabinoid system (ECS), the present study was aimed at investigating cannabinoid CB1 receptor (CB1R) function in a model of ADHD obtained by triple point-mutation in the dopamine transporter (DAT) gene in mice, making them insensitive to cocaine [DAT cocaine-insensitive (DAT-CI) mice]. DAT-CI mice had a marked hyperactive phenotype, and neurophysiological recordings revealed that the sensitivity of CB1Rs controlling GABA-mediated synaptic currents [CB1Rs((GABA)) ] in the striatum was completely lost. In contrast, CB1Rs modulating glutamate transmission [CB1Rs((Glu)) ], and GABA(B) receptors were not affected in this model of ADHD. In DAT-CI mice, the blockade of CB1R((GABA)) function was complete even after cocaine or environmental manipulations activating the endogenous DA-dependent reward system, which are known to sensitize these receptors in control animals. Conversely, the hedonic property of sucrose was intact in DAT-CI mice, indicating normal sweet perception in these animals. Our results point to CB1Rs as novel molecular players in ADHD, and suggest that therapeutic strategies aimed at interfering with the ECS might prove effective in this disorder.

  18. Proteolipoprotein gene analysis in 82 patients with sporadic Pelizaeus-Merzbacher Disease: duplications, the major cause of the disease, originate more frequently in male germ cells, but point mutations do not. The Clinical European Network on Brain Dysmyelinating Disease.

    PubMed Central

    Mimault, C; Giraud, G; Courtois, V; Cailloux, F; Boire, J Y; Dastugue, B; Boespflug-Tanguy, O

    1999-01-01

    Pelizaeus-Merzbacher Disease (PMD) is an X-linked developmental defect of myelination affecting the central nervous system and segregating with the proteolipoprotein (PLP) locus. Investigating 82 strictly selected sporadic cases of PMD, we found PLP mutations in 77%; complete PLP-gene duplications were the most frequent abnormality (62%), whereas point mutations in coding or splice-site regions of the gene were involved less frequently (38%). We analyzed the maternal status of 56 cases to determine the origin of both types of PLP mutation, since this is relevant to genetic counseling. In the 22 point mutations, 68% of mothers were heterozygous for the mutation, a value identical to the two-thirds of carrier mothers that would be expected if there were an equal mutation rate in male and female germ cells. In sharp contrast, among the 34 duplicated cases, 91% of mothers were carriers, a value significantly (chi2=9. 20, P<.01) in favor of a male bias, with an estimation of the male/female mutation frequency (k) of 9.3. Moreover, we observed the occurrence of de novo mutations between parental and grandparental generations in 17 three-generation families, which allowed a direct estimation of the k value (k=11). Again, a significant male mutation imbalance was observed only for the duplications. The mechanism responsible for this strong male bias in the duplications may involve an unequal sister chromatid exchange, since two deletion events, responsible for mild clinical manifestations, have been reported in PLP-related diseases. PMID:10417279

  19. The cytosol-synthesized subunit II (Cox2) precursor with the point mutation W56R is correctly processed in yeast mitochondria to rescue cytochrome oxidase.

    PubMed

    Cruz-Torres, Valentín; Vázquez-Acevedo, Miriam; García-Villegas, Rodolfo; Pérez-Martínez, Xochitl; Mendoza-Hernández, Guillermo; González-Halphen, Diego

    2012-12-01

    Deletion of the yeast mitochondrial gene COX2 encoding subunit 2 (Cox2) of cytochrome c oxidase (CcO) results in loss of respiration (Δcox2 strain). Supekova et al. (2010) [1] transformed a Δcox2 strain with a vector expressing Cox2 with a mitochondrial targeting sequence (MTS) and the point mutation W56R (Cox2(W56R)), restoring respiratory growth. Here, the CcO carrying the allotopically-expressed Cox2(W56R) was characterized. Yeast mitochondria from the wild-type (WT) and the Δcox2+Cox2(W56R) strains were subjected to Blue Native electrophoresis. In-gel activity of CcO and spectroscopic quantitation of cytochromes revealed that only 60% of CcO is present in the complemented strain, and that less CcO is found associated in supercomplexes as compared to WT. CcOs from the WT and the mutant exhibited similar subunit composition, although activity was 20-25% lower in the enzyme containing Cox2(W56R) than in the one with Cox2(WT). Tandem mass spectrometry confirmed that W(56) was substituted by R(56) in Cox2(W56R). In addition, Cox2(W56R) exhibited the same N-terminus than Cox2(WT), indicating that the MTS of Oxa1 and the leader sequence of 15 residues were removed from Cox2(W56R) during maturation. Thus, Cox2(W56R) is identical to Cox2(WT) except for the point mutation W56R. Mitochondrial Cox1 synthesis is strongly reduced in Δcox2 mutants, but the Cox2(W56R) complemented strain led to full restoration of Cox1 synthesis. We conclude that the cytosol-synthesized Cox2(W56R) follows a rate-limiting process of import, maturation or assembly that yields lower steady-state levels of CcO. Still, the allotopically-expressed Cox2(W56R) restores CcO activity and allows mitochondrial Cox1 synthesis to advance at WT levels.

  20. Comparing Weighted and Unweighted Grade Point Averages in Predicting College Success of Diverse and Low-Income College Students

    ERIC Educational Resources Information Center

    Warne, Russell T.; Nagaishi, Chanel; Slade, Michael K.; Hermesmeyer, Paul; Peck, Elizabeth Kimberli

    2014-01-01

    While research has shown the statistical significance of high school grade point averages (HSGPAs) in predicting future academic outcomes, the systems with which HSGPAs are calculated vary drastically across schools. Some schools employ unweighted grades that carry the same point value regardless of the course in which they are earned; other…

  1. Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor cell DNA assay

    PubMed Central

    Schwaederle, Maria; Husain, Hatim; Fanta, Paul T.; Piccioni, David E.; Kesari, Santosh; Schwab, Richard B.; Banks, Kimberly C.; Lanman, Richard B.; Talasaz, AmirAli; Parker, Barbara A.; Kurzrock, Razelle

    2016-01-01

    Analysis of cell-free DNA using next-generation sequencing (NGS) is a powerful tool for the detection/monitoring of alterations present in circulating tumor DNA (ctDNA). Plasma extracted from 171 patients with a variety of cancers was analyzed for ctDNA (54 genes and copy number variants (CNVs) in three genes (EGFR, ERBB2 and MET)). The most represented cancers were lung (23%), breast (23%), and glioblastoma (19%). Ninety-nine patients (58%) had at least one detectable alteration. The most frequent alterations were TP53 (29.8%), followed by EGFR (17.5%), MET (10.5%), PIK3CA (7%), and NOTCH1 (5.8%). In contrast, of 222 healthy volunteers, only one had an aberration (TP53). Ninety patients with non-brain tumors had a discernible aberration (65% of 138 patients; in 70% of non-brain tumor patients with an alteration, the anomaly was potentially actionable). Interestingly, nine of 33 patients (27%) with glioblastoma had an alteration (6/33 (18%) potentially actionable). Overall, sixty-nine patients had potentially actionable alterations (40% of total; 69.7% of patients (69/99) with alterations); 68 patients (40% of total; 69% of patients with alterations), by a Food and Drug Administration (FDA) approved drug. In summary, 65% of diverse cancers (as well as 27% of glioblastomas) had detectable ctDNA aberration(s), with the majority theoretically actionable by an approved agent. PMID:26848768

  2. Single point mutations in the helicase domain of the NS3 protein enhance dengue virus replicative capacity in human monocyte-derived dendritic cells and circumvent the type I interferon response.

    PubMed

    Silveira, G F; Strottmann, D M; de Borba, L; Mansur, D S; Zanchin, N I T; Bordignon, J; dos Santos, C N Duarte

    2016-01-01

    Dengue is the most prevalent arboviral disease worldwide. The outcome of the infection is determined by the interplay of viral and host factors. In the present study, we evaluated the cellular response of human monocyte-derived DCs (mdDCs) infected with recombinant dengue virus type 1 (DV1) strains carrying a single point mutation in the NS3hel protein (L435S or L480S). Both mutated viruses infect and replicate more efficiently and produce more viral progeny in infected mdDCs compared with the parental, non-mutated virus (vBACDV1). Additionally, global gene expression analysis using cDNA microarrays revealed that the mutated DVs induce the up-regulation of the interferon (IFN) signalling and pattern recognition receptor (PRR) canonical pathways in mdDCs. Pronounced production of type I IFN were detected specifically in mdDCs infected with DV1-NS3hel-mutated virus compared with mdDCs infected with the parental virus. In addition, we showed that the type I IFN produced by mdDCs is able to reduce DV1 infection rates, suggesting that cytokine function is effective but not sufficient to mediate viral clearance of DV1-NS3hel-mutated strains. Our results demonstrate that single point mutations in subdomain 2 have important implications for adenosine triphosphatase (ATPase) activity of DV1-NS3hel. Although a direct functional connection between the increased ATPase activity and viral replication still requires further studies, these mutations speed up viral RNA replication and are sufficient to enhance viral replicative capacity in human primary cell infection and circumvent type I IFN activity. This information may have particular relevance for attenuated vaccine protocols designed for DV. PMID:26340409

  3. Single point mutations in the helicase domain of the NS3 protein enhance dengue virus replicative capacity in human monocyte-derived dendritic cells and circumvent the type I interferon response.

    PubMed

    Silveira, G F; Strottmann, D M; de Borba, L; Mansur, D S; Zanchin, N I T; Bordignon, J; dos Santos, C N Duarte

    2016-01-01

    Dengue is the most prevalent arboviral disease worldwide. The outcome of the infection is determined by the interplay of viral and host factors. In the present study, we evaluated the cellular response of human monocyte-derived DCs (mdDCs) infected with recombinant dengue virus type 1 (DV1) strains carrying a single point mutation in the NS3hel protein (L435S or L480S). Both mutated viruses infect and replicate more efficiently and produce more viral progeny in infected mdDCs compared with the parental, non-mutated virus (vBACDV1). Additionally, global gene expression analysis using cDNA microarrays revealed that the mutated DVs induce the up-regulation of the interferon (IFN) signalling and pattern recognition receptor (PRR) canonical pathways in mdDCs. Pronounced production of type I IFN were detected specifically in mdDCs infected with DV1-NS3hel-mutated virus compared with mdDCs infected with the parental virus. In addition, we showed that the type I IFN produced by mdDCs is able to reduce DV1 infection rates, suggesting that cytokine function is effective but not sufficient to mediate viral clearance of DV1-NS3hel-mutated strains. Our results demonstrate that single point mutations in subdomain 2 have important implications for adenosine triphosphatase (ATPase) activity of DV1-NS3hel. Although a direct functional connection between the increased ATPase activity and viral replication still requires further studies, these mutations speed up viral RNA replication and are sufficient to enhance viral replicative capacity in human primary cell infection and circumvent type I IFN activity. This information may have particular relevance for attenuated vaccine protocols designed for DV.

  4. A novel m.7539C>T point mutation in the mt-tRNA(Asp) gene associated with multisystemic mitochondrial disease.

    PubMed

    Lehmann, Diana; Schubert, Kathrin; Joshi, Pushpa R; Baty, Karen; Blakely, Emma L; Zierz, Stephan; Taylor, Robert W; Deschauer, Marcus

    2015-01-01

    Mitochondrial transfer RNA (mt-tRNA) mutations are the commonest sub-type of mitochondrial (mtDNA) mutations associated with human disease. We report a patient with multisytemic disease characterised by myopathy, spinal ataxia, sensorineural hearing loss, cataract and cognitive impairment in whom a novel m.7539C>T mt-tRNA(Asp) transition was identified. Muscle biopsy revealed extensive histopathological findings including cytochrome c oxidase (COX)-deficient fibres. Pyrosequencing confirmed mtDNA heteroplasmy for the mutation whilst single muscle fibre segregation studies revealed statistically significant higher mutation loads in COX-deficient fibres than in COX-positive fibres. Absence from control databases, hierarchical mt-tRNA mutation segregation within tissues, and occurrence at conserved sequence positions, further confirm this novel mt-tRNA mutation to be pathogenic. To date only three mt-tRNA(Asp) gene mutations have been described with clear evidence of pathogenicity. The novel m.7539C>T mt-tRNA(Asp) gene mutation extends the spectrum of pathogenic mutations in this gene, further supporting the notion that mt-tRNA(Asp) gene mutations are associated with multisystemic disease presentations.

  5. In silico study of the human rhodopsin and meta rhodopsin II/S-arrestin complexes: impact of single point mutations related to retina degenerative diseases.

    PubMed

    Mokarzel-Falcón, Leonardo; Padrón-García, Juan Alexander; Carrasco-Velar, Ramón; Berry, Colin; Montero-Cabrera, Luis A

    2008-03-01

    We propose two models of the human S-arrestin/rhodopsin complex in the inactive dark adapted rhodopsin and meta rhodopsin II form, obtained by homology modeling and knowledge based docking. First, a homology model for the human S-arrestin was built and validated by molecular dynamics, showing an average root mean square deviation difference from the pattern behavior of 0.76 A. Then, combining the human S-arrestin model and the modeled structure of the two human rhodopsin forms, we propose two models of interaction for the human S-arrestin/rhodopsin complex. The models involve two S-arrestin regions related to the N domain (residues 68-78; 170-182) and a third constituent of the C domain (248-253), with the rhodopsin C terminus (330-348). Of the 22 single point mutations related to retinitis pigmentosa and congenital night blindness located in the cytoplasmatic portion of rhodopsin or in S-arrestin, our models locate 16 in the interaction region and relate two others to possible dimer formation. Our calculations also predict that the light activated complex is more stable than the dark adapted rhodopsin and, therefore, of higher affinity to S-arrestin.

  6. Highly sensitive DNA detection and point mutation identification: an electrochemical approach based on the combined use of ligase and reverse molecular beacon.

    PubMed

    Wu, Zai-Sheng; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2007-06-01

    A novel strategy is described for highly sensitive DNA detection and point mutation identification based on the combination of reverse molecular beacon with DNA ligase. A 5'-phosphoryl and 3'-ferrocene terminated DNA sequence is used as detection probe, which may be ligated to capture DNA immobilized on an electrode surface in the presence of a target DNA strand that is complementary to the ends of each DNA, since this allows formation of a nicked, double-stranded DNA. The ligation product may form a hairpin structure after the removal of target DNA. By this method, target DNA can be determined in the range from 3.4 x 10(-12) to 1.4 x 10(-7) M with a detection limit of 1.0 x 10(-12) M. In contrast to existing methods based on the conformation change of redox-labeled oligonucleotides, the proposed strategy offers several substantial advantages: first, the background peak current is eliminated as the ferrocene (Fc)-tagged oligonucleotide probe is specifically ligated to capture DNA; second, a "signal-on" mechanism makes the current intensity increase with increasing target DNA concentration; third, improved current signal is obtained due to the formation of the hairpin structure of ligation products. Additionally, the present system exhibits excellent capability to discriminate mutant target sequences from fully complementary target sequences.

  7. Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes.

    PubMed

    Wabuyele, Musundi B; Farquar, Hannah; Stryjewski, Wieslaw; Hammer, Robert P; Soper, Steven A; Cheng, Yu-Wei; Barany, Francis

    2003-06-11

    The aim of this study was to develop new strategies for analyzing molecular signatures of disease states approaching real-time using single pair fluorescence resonance energy transfer (spFRET) to rapidly detect point mutations in unamplified genomic DNA. In addition, the detection process was required to discriminate between normal and mutant (minority) DNAs in heterogeneous populations. The discrimination was carried out using allele-specific primers, which flanked the point mutation in the target gene and were ligated using a thermostable ligase enzyme only when the genomic DNA carried this mutation. The allele-specific primers also carried complementary stem structures with end-labels (donor/acceptor fluorescent dyes, Cy5/Cy5.5, respectively), which formed a molecular beacon following ligation. We coupled ligase detection reaction (LDR) with spFRET to identify a single base mutation in codon 12 of a K-ras oncogene that has high diagnostic value for colorectal cancers. A simple diode laser-based fluorescence system capable of interrogating single fluorescent molecules undergoing FRET was used to detect photon bursts generated from the molecular beacon probes formed upon ligation. LDR-spFRET provided the necessary specificity and sensitivity to detect single-point mutations in as little as 600 copies of human genomic DNA directly without PCR at a level of 1 mutant per 1000 wild type sequences using 20 LDR thermal cycles. We also demonstrate the ability to rapidly discriminate single base differences in the K-ras gene in less than 5 min at a frequency of 1 mutant DNA per 10 normals using only a single LDR thermal cycle of genomic DNA (600 copies). Real-time LDR-spFRET detection of point mutations in the K-ras gene was accomplished in PMMA microfluidic devices using sheath flows.

  8. Zinc Finger Domain of the PRDM9 Gene on Chromosome 1 Exhibits High Diversity in Ruminants but Its Paralog PRDM7 Contains Multiple Disruptive Mutations

    PubMed Central

    Ahlawat, Sonika; Sharma, Priyanka; Sharma, Rekha; Arora, Reena; De, Sachinandan

    2016-01-01

    PRDM9 is the sole hybrid sterility gene identified so far in vertebrates. PRDM9 gene encodes a protein with an immensely variable zinc-finger (ZF) domain that determines the site of meiotic recombination hotspots genome-wide. In this study, the terminal ZF domain of PRDM9 on bovine chromosome 1 and its paralog on chromosome 22 were characterized in 225 samples from five ruminant species (cattle, yak, mithun, sheep and goat). We found extraordinary variation in the number of PRDM9 zinc fingers (6 to 12). We sequenced PRDM9 ZF encoding region from 15 individuals (carrying the same ZF number in both copies) and found 43 different ZF domain sequences. Ruminant zinc fingers of PRDM9 were found to be diversifying under positive selection and concerted evolution, specifically at positions involved in defining their DNA-binding specificity, consistent with the reports from other vertebrates such as mice, humans, equids and chimpanzees. ZF-encoding regions of the PRDM7, a paralog of PRDM9 on bovine chromosome 22 and on unknown chromosomes in other studied species were found to contain 84 base repeat units as in PRDM9, but there were multiple disruptive mutations after the first repeat unit. The diversity of the ZFs suggests that PRDM9 may activate recombination hotspots that are largely unique to each ruminant species. PMID:27203728

  9. Zinc Finger Domain of the PRDM9 Gene on Chromosome 1 Exhibits High Diversity in Ruminants but Its Paralog PRDM7 Contains Multiple Disruptive Mutations.

    PubMed

    Ahlawat, Sonika; Sharma, Priyanka; Sharma, Rekha; Arora, Reena; De, Sachinandan

    2016-01-01

    PRDM9 is the sole hybrid sterility gene identified so far in vertebrates. PRDM9 gene encodes a protein with an immensely variable zinc-finger (ZF) domain that determines the site of meiotic recombination hotspots genome-wide. In this study, the terminal ZF domain of PRDM9 on bovine chromosome 1 and its paralog on chromosome 22 were characterized in 225 samples from five ruminant species (cattle, yak, mithun, sheep and goat). We found extraordinary variation in the number of PRDM9 zinc fingers (6 to 12). We sequenced PRDM9 ZF encoding region from 15 individuals (carrying the same ZF number in both copies) and found 43 different ZF domain sequences. Ruminant zinc fingers of PRDM9 were found to be diversifying under positive selection and concerted evolution, specifically at positions involved in defining their DNA-binding specificity, consistent with the reports from other vertebrates such as mice, humans, equids and chimpanzees. ZF-encoding regions of the PRDM7, a paralog of PRDM9 on bovine chromosome 22 and on unknown chromosomes in other studied species were found to contain 84 base repeat units as in PRDM9, but there were multiple disruptive mutations after the first repeat unit. The diversity of the ZFs suggests that PRDM9 may activate recombination hotspots that are largely unique to each ruminant species. PMID:27203728

  10. Analytical Evaluation of Bit Error Rate Performance of a Free-Space Optical Communication System with Receive Diversity Impaired by Pointing Error

    NASA Astrophysics Data System (ADS)

    Nazrul Islam, A. K. M.; Majumder, S. P.

    2015-06-01

    Analysis is carried out to evaluate the conditional bit error rate conditioned on a given value of pointing error for a Free Space Optical (FSO) link with multiple receivers using Equal Gain Combining (EGC). The probability density function (pdf) of output signal to noise ratio (SNR) is also derived in presence of pointing error with EGC. The average BER of a SISO and SIMO FSO links are analytically evaluated by averaging the conditional BER over the pdf of the output SNR. The BER performance results are evaluated for several values of pointing jitter parameters and number of IM/DD receivers. The results show that, the FSO system suffers significant power penalty due to pointing error and can be reduced by increasing in the number of receivers at a given value of pointing error. The improvement of receiver sensitivity over SISO is about 4 dB and 9 dB when the number of photodetector is 2 and 4 at a BER of 10-10. It is also noticed that, system with receive diversity can tolerate higher value of pointing error at a given BER and transmit power.

  11. Activating point mutations in the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors suggest the involvement of beta subunit dimerization and cell type-specific molecules in signalling.

    PubMed Central

    Jenkins, B J; D'Andrea, R; Gonda, T J

    1995-01-01

    We have combined retroviral expression cloning with random mutagenesis to identify two activating point mutations in the common signal-transducing subunit (h beta c) of the receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3 and IL-5 by virtue of their ability to confer factor independence on the haemopoietic cell line, FDC-P1. One mutation (V449E) is located within the transmembrane domain and, by analogy with a similar mutation in the neu oncogene, may act by inducing dimerization of h beta c. The other mutation (I374N) lies in the extracellular, membrane-proximal portion of h beta c. Neither of these mutants, nor a previously described mutant of h beta c (FI delta, which has a small duplication in the extracellular region), was capable of inducing factor independence in CTLL-2 cells, while only V449E could induce factor independence in BAF-B03 cells. These results imply that the extracellular and transmembrane mutations act by different mechanisms. Furthermore, they imply that the mutants, and hence also wild-type h beta c, interact with cell type-specific signalling molecules. Models are presented which illustrate how these mutations may act and predict some of the characteristics of the putative receptor-associated signalling molecules. Images PMID:7556069

  12. African diversity from the HLA point of view: influence of genetic drift, geography, linguistics, and natural selection.

    PubMed

    Sanchez-Mazas, A

    2001-09-01

    This study investigates the influence of different evolutionary factors on the patterns of human leukocyte antigen (HLA) genetic diversity within sub-Saharan Africa, and between Africa, Europe, and East Asia. This is done by comparing the significance of several statistics computed on equivalent population data sets tested for two HLA class II loci, DRB1 and DPB1, which strongly differ from each other by the shape of their allelic distributions. Similar results are found for the two loci concerning highly significant correlations between geographic and genetic distances at the world scale, high levels of genetic diversity within sub-Saharan Africa and East Asia, and low within Europe, and low genetic differentiations among the three broad continental areas, with no special divergence of Africa. On the other hand, DPB1 behaves as a neutral polymorphism, although a significant excess of heterozygotes is often observed for DRB1. Whereas the pattern observed for DPB1 is explained by geographic differentiations and genetic drift in isolated populations, balancing selection is likely to have prevented genetic differentiations among populations at the DRB1 locus. However, this selective effect did not disrupt the high correlation found between DRB1 and geography at the world scale, nor between DRB1 and linguistic differentiations at the African level.

  13. Improved protocol to purify untagged amelogenin - Application to murine amelogenin containing the equivalent P70→T point mutation observed in human amelogenesis imperfecta.

    PubMed

    Buchko, Garry W; Shaw, Wendy J

    2015-01-01

    Amelogenin is the predominant extracellular protein responsible for converting carbonated hydroxyapatite into dental enamel, the hardest and most heavily mineralized tissue in vertebrates. Despite much effort, the precise mechanism by which amelogenin regulates enamel formation is not fully understood. To assist efforts aimed at understanding the biochemical mechanism of enamel formation, more facile protocols to purify recombinantly expressed amelogenin, ideally without any tag to assist affinity purification, are advantageous. Here we describe an improved method to purify milligram quantities of amelogenin that exploits its high solubility in 2% glacial acetic acid under conditions of low ionic strength. The method involves heating the frozen cell pellet for two 15min periods at ∼70°C with 2min of sonication in between, dialysis twice in 2% acetic acid (1:250 v/v), and reverse phase chromatography. A further improvement in yield is obtained by resuspending the frozen cell pellet in 6M guanidine hydrochloride in the first step. The acetic acid heating method is illustrated with a murine amelogenin containing the corresponding P70→T point mutation observed in an human amelogenin associated with amelogenesis imperfecta (P71T), while the guanidine hydrochloride heating method is illustrated with wild type murine amelogenin (M180). The self-assembly properties of P71T were probed by NMR chemical shift perturbation studies as a function of protein (0.1-1.8mM) and NaCl (0-367mM) concentration. Relative to similar studies with wild type murine amelogenin, P71T self-associates at lower protein or salt concentrations with the interactions initiated near the N-terminus.

  14. Improved protocol to purify untagged amelogenin – Application to murine amelogenin containing the equivalent P70→T point mutation observed in human amelogenesis imperfecta

    SciTech Connect

    Buchko, Garry W.; Shaw, Wendy J.

    2014-10-13

    Amelogenin is the predominant extracellular protein responsible for converting carbonated hydroxyapatite into dental enamel, the hardest and most heavily mineralized tissue in vertebrates. Despite much effort, the precise mechanism by which amelogenin regulates enamel formation is not fully understood. To assist efforts aimed at understanding the biochemical mechanism of enamel formation, more facile protocols to purify recombinantly expressed amelogenin, ideally without any tag to assist affinity purification, are advantageous. Here we describe an improved method to purify milligram quantities of amelogenin that exploits its high solubility in 2% glacial acetic acid under conditions of low ionic strength. The method involves heating the frozen cell pellet for two 15 min periods at ~70 ºC with two minutes of sonication in between, dialysis twice in 2% acetic acid (1:250 v/v), and reverse phase chromatography. A further improvement in yield is obtained by resuspending the frozen cell pellet in 6 M guanidine hydrochloride in the first step. The acetic acid heating method is illustrated with a murine amelogenin containing the corresponding P70→T point mutation observed in an human amelogenin associated with amelogenesis imperfecta (P71T), while the guanidine hydrochloride heating method is illustrated with wild type murine amelogenin (M180). The self-assembly properties of P71T were probed by NMR chemical shift perturbation studies as a function of protein (0.1 to 1.8 mM) and NaCl (0 to 367 mM) concentration. In conclusion, relative to similar studies with wild type murine amelogenin, P71T self-associates at lower protein or salt concentrations with the interactions initiated near the N-terminus.

  15. Improved protocol to purify untagged amelogenin – Application to murine amelogenin containing the equivalent P70→T point mutation observed in human amelogenesis imperfecta

    DOE PAGES

    Buchko, Garry W.; Shaw, Wendy J.

    2014-10-13

    Amelogenin is the predominant extracellular protein responsible for converting carbonated hydroxyapatite into dental enamel, the hardest and most heavily mineralized tissue in vertebrates. Despite much effort, the precise mechanism by which amelogenin regulates enamel formation is not fully understood. To assist efforts aimed at understanding the biochemical mechanism of enamel formation, more facile protocols to purify recombinantly expressed amelogenin, ideally without any tag to assist affinity purification, are advantageous. Here we describe an improved method to purify milligram quantities of amelogenin that exploits its high solubility in 2% glacial acetic acid under conditions of low ionic strength. The method involvesmore » heating the frozen cell pellet for two 15 min periods at ~70 ºC with two minutes of sonication in between, dialysis twice in 2% acetic acid (1:250 v/v), and reverse phase chromatography. A further improvement in yield is obtained by resuspending the frozen cell pellet in 6 M guanidine hydrochloride in the first step. The acetic acid heating method is illustrated with a murine amelogenin containing the corresponding P70→T point mutation observed in an human amelogenin associated with amelogenesis imperfecta (P71T), while the guanidine hydrochloride heating method is illustrated with wild type murine amelogenin (M180). The self-assembly properties of P71T were probed by NMR chemical shift perturbation studies as a function of protein (0.1 to 1.8 mM) and NaCl (0 to 367 mM) concentration. In conclusion, relative to similar studies with wild type murine amelogenin, P71T self-associates at lower protein or salt concentrations with the interactions initiated near the N-terminus.« less

  16. A transgenic mouse model demonstrates a dominant negative effect of a point mutation in the RPS19 gene associated with Diamond-Blackfan anemia.

    PubMed

    Devlin, Emily E; Dacosta, Lydie; Mohandas, Narla; Elliott, Gene; Bodine, David M

    2010-10-14

    Diamond Blackfan anemia (DBA) is an inherited erythroblastopenia associated with mutations in at least 8 different ribosomal protein genes. Mutations in the gene encoding ribosomal protein S19 (RPS19) have been identified in approximately 25% of DBA families. Most of these mutations disrupt either the translation or stability of the RPS19 protein and are predicted to cause DBA by haploinsufficiency. However, approximately 30% of RPS19 mutations are missense mutations that do not alter the stability of the RPS19 protein and are hypothesized to act by a dominant negative mechanism. To formally test this hypothesis, we generated a transgenic mouse model expressing an RPS19 mutation in which an arginine residue is replaced with a tryptophan residue at codon 62 (RPS19R62W). Constitutive expression of RPS19R62W in developing mice was lethal. Conditional expression of RPS19R62W resulted in growth retardation, a mild anemia with reduced numbers of erythroid progenitors, and significant inhibition of terminal erythroid maturation, similar to DBA. RNA profiling demonstrated more than 700 dysregulated genes belonging to the same pathways that are disrupted in RNA profiles of DBA patient cells. We conclude that RPS19R62W is a dominant negative DBA mutation.

  17. Single point mutations in various domains of a plant plasma membrane H(+)-ATPase expressed in Saccharomyces cerevisiae increase H(+)-pumping and permit yeast growth at low pH.

    PubMed Central

    Morsomme, P; de Kerchove d'Exaerde, A; De Meester, S; Thinès, D; Goffeau, A; Boutry, M

    1996-01-01

    In plants, the proton pump-ATPase (H(+)-ATPase) of the plasma membrane is encoded by a multigene family. The PMA2 (plasma membrane H(+)-ATPase) isoform from Nicotiana plumbaginifolia was previously shown to be capable of functionally replacing the yeast H(+)-ATPase, provided that the external pH was kept above pH 5.5. In this study, we used a positive selection to isolate 19 single point mutations of PMA2 which permit the growth of yeast cells at pH 4.0. Thirteen mutations were restricted to the C-terminus region, but another six mutations were found in four other regions of the enzyme. Kinetic studies determined on nine mutated PMA2 compared with the wild-type PMA2 revealed an activated enzyme characterized by an alkaline shift of the optimum pH and a slightly higher specific ATPase activity. However, the most striking difference was a 2- to 3-fold increase of H(+)-pumping in both reconstituted vesicles and intact cells. These results indicate that point mutations in various domains of the plant H(+)-ATPase improve the coupling between H(+)-pumping and ATP hydrolysis, resulting in better growth at low pH. Moreover, the yeast cells expressing the mutated PMA2 showed a marked reduction in the frequency of internal membrane proliferation seen with the strain expressing the wild-type PMA2, indicating a relationship between H(+)-ATPase activity and perturbations of the secretory pathway. Images PMID:8896445

  18. PCR-SSCP analysis of the type VII collagen gene (COL7A1): Detection of a point mutation in five patients

    SciTech Connect

    Dunnil, M.G.S.; Richards, A.J.; Pope, F.M.

    1994-09-01

    Type VII collagen is the major component of anchoring fibrils, structures which extend below the lamina densa of the epidermal basement membrane in stratified squamous epithelia. Genetic linkage studies and two mutation reports have implicated the type VII collagen gene, COL7A1, in dystrophic epidermolysis bullosa (DEB), an inherited disorder characterized by blistering and scarring of the skin and mucous membranes after minor trauma. We have used PCR-SSCP of genomic DNA to screen exons of COL7A1 for mutations in recessive DEB patients. Band mobility shifts were detected in exon FN4-B in five patients. Sequencing revealed a C to T transition changing a codon for arginine into a stop codon, homozygous in two related patients and heterozygous in the others. We are currently searching for a second mutation in these three heterozygous patients who are presumably genetic compounds. Screening for an informative Xho I restriction site altered by the mutation showed parental heterozygosity but no evidence for the mutation in 50 normal chromosomes. Segregation of COL7A1 markers in these patients suggests that the mutation has arisen independently in at least two of our families. The premature stop mutation in the 5{prime} end of the gene predicts a severely shortened collagen VII molecule. The homozygote formation of anchoring fibrils would be impaired providing an explanation at the molecular level for the ultrastructural findings of reduced numbers or absence of anchoring fibrils in this disease. In conclusion, these data strongly suggest that this novel premature stop mutation is the cause of DEB in the homozygotes and contributes to the disease in the other patients. The important role of anchoring fibrils in dermal-epidermal adhesion is also underlined.

  19. Altered HLA Class I Profile Associated with Type A/D Nucleophosmin Mutation Points to Possible Anti-Nucleophosmin Immune Response in Acute Myeloid Leukemia.

    PubMed

    Kuželová, Kateřina; Brodská, Barbora; Fuchs, Ota; Dobrovolná, Marie; Soukup, Petr; Cetkovský, Petr

    2015-01-01

    Nucleophosmin 1 (NPM1) mutations are frequently found in patients with acute myeloid leukemia (AML) and the newly generated sequences were suggested to induce immune response contributing to the relatively favorable outcome of patients in this AML subset. We hypothesized that if an efficient immune response against mutated nucleophosmin can be induced in vivo, the individuals expressing HLA alleles suitable for presenting NPM-derived peptides should be less prone to developing AML associated with NPM1 mutation. We thus compared HLA class I frequencies in a cohort of patients with mutated NPM1 (63 patients, NPMc+), a cohort of patients with wild-type NPM1 (94 patients, NPMwt) and in normal individuals (large datasets available from Allele Frequency Net Database). Several HLA allelic groups were found to be depleted in NPMc+ patients, but not in NPMwt compared to the normal distribution. The decrease was statistically significant for HLA B(*)07, B(*)18, and B(*)40. Furthermore, statistically significant advantage in the overall survival was found for patients with mutated NPM1 expressing at least one of the depleted allelic groups. The majority of the depleted alleles were predicted to bind potent NPM-derived immunopeptides and, importantly, these peptides were often located in the unmutated part of the protein. Our analysis suggests that individuals expressing specific HLA allelic groups are disposed to develop an efficient anti-AML immune response thanks to aberrant cytoplasmic localization of the mutated NPM protein.

  20. Altered HLA Class I Profile Associated with Type A/D Nucleophosmin Mutation Points to Possible Anti-Nucleophosmin Immune Response in Acute Myeloid Leukemia

    PubMed Central

    Kuželová, Kateřina; Brodská, Barbora; Fuchs, Ota; Dobrovolná, Marie; Soukup, Petr; Cetkovský, Petr

    2015-01-01

    Nucleophosmin 1 (NPM1) mutations are frequently found in patients with acute myeloid leukemia (AML) and the newly generated sequences were suggested to induce immune response contributing to the relatively favorable outcome of patients in this AML subset. We hypothesized that if an efficient immune response against mutated nucleophosmin can be induced in vivo, the individuals expressing HLA alleles suitable for presenting NPM-derived peptides should be less prone to developing AML associated with NPM1 mutation. We thus compared HLA class I frequencies in a cohort of patients with mutated NPM1 (63 patients, NPMc+), a cohort of patients with wild-type NPM1 (94 patients, NPMwt) and in normal individuals (large datasets available from Allele Frequency Net Database). Several HLA allelic groups were found to be depleted in NPMc+ patients, but not in NPMwt compared to the normal distribution. The decrease was statistically significant for HLA B*07, B*18, and B*40. Furthermore, statistically significant advantage in the overall survival was found for patients with mutated NPM1 expressing at least one of the depleted allelic groups. The majority of the depleted alleles were predicted to bind potent NPM-derived immunopeptides and, importantly, these peptides were often located in the unmutated part of the protein. Our analysis suggests that individuals expressing specific HLA allelic groups are disposed to develop an efficient anti-AML immune response thanks to aberrant cytoplasmic localization of the mutated NPM protein. PMID:25992555

  1. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease.

    PubMed

    Zou, Jizhong; Mali, Prashant; Huang, Xiaosong; Dowey, Sarah N; Cheng, Linzhao

    2011-10-27

    Human induced pluripotent stem cells (iPSCs) bearing monogenic mutations have great potential for modeling disease phenotypes, screening candidate drugs, and cell replacement therapy provided the underlying disease-causing mutation can be corrected. Here, we report a homologous recombination-based approach to precisely correct the sickle cell disease (SCD) mutation in patient-derived iPSCs with 2 mutated β-globin alleles (β(s)/β(s)). Using a gene-targeting plasmid containing a loxP-flanked drug-resistant gene cassette to assist selection of rare targeted clones and zinc finger nucleases engineered to specifically stimulate homologous recombination at the β(s) locus, we achieved precise conversion of 1 mutated β(s) to the wild-type β(A) in SCD iPSCs. However, the resulting co-integration of the selection gene cassette into the first intron suppressed the corrected allele transcription. After Cre recombinase-mediated excision of this loxP-flanked selection gene cassette, we obtained "secondary" gene-corrected β(s)/β(A) heterozygous iPSCs that express at 25% to 40% level of the wild-type transcript when differentiated into erythrocytes. These data demonstrate that single nucleotide substitution in the human genome is feasible using human iPSCs. This study also provides a new strategy for gene therapy of monogenic diseases using patient-specific iPSCs, even if the underlying disease-causing mutation is not expressed in iPSCs.

  2. Exon redefinition by a point mutation within exon 5 of the glucose-6-phosphatase gene is the major cause of glycogen storage disease type 1a in Japan

    SciTech Connect

    Kajihara, Susumu; Yamamoto, Kyosuke; Kido, Keiko

    1995-09-01

    Glycogen storage disease (GSD) type 1a (von Gierke disease) is an autosomal recessive disorder caused by a deficiency in microsomal glucose-6-phosphatase (G6Pase). We have identified a novel mutation in the G6Pase gene of a individual with GSD type 1a. The cDNA from the patient`s liver revealed a 91-nt deletion in exon 5. The genomic DNA from the patient`s white blood cells revealed no deletion or mutation at the splicing junction of intron 4 and exon 5. The 3{prime} splicing occurred 91 bp from the 5{prime} site of exon 5 (at position 732 in the coding region), causing a substitution of a single nucleotide (G to T) at position 727 in the coding region. Further confirmation of the missplicing was obtained by transient expression of allelic minigene constructs into animal cells. Another eight unrelated families of nine Japanese patients were all found to have this mutation. This mutation is a new type of splicing mutation in the G6Pase gene, and 91% of patients and carriers suffering from GSD1a in Japan are detectable with this splicing mutation. 28 refs., 5 figs., 2 tabs.

  3. The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression

    PubMed Central

    Alemán, Fernando; Caballero, Fernando; Ródenas, Reyes; Rivero, Rosa M.; Martínez, Vicente; Rubio, Francisco

    2014-01-01

    Potassium (K+) is an essential macronutrient required for plant growth, development and high yield production of crops. Members of group I of the KT/HAK/KUP family of transporters, such as HAK5, are key components for K+ acquisition by plant roots at low external K+ concentrations. Certain abiotic stress conditions such as salinity or Cs+-polluted soils may jeopardize plant K+ nutrition because HAK5-mediated K+ transport is inhibited by Na+ and Cs+. Here, by screening in yeast a randomly-mutated collection of AtHAK5 transporters, a new mutation in AtHAK5 sequence is identified that greatly increases Na+ tolerance. The single point mutation F130S, affecting an amino acid residue conserved in HAK5 transporters from several species, confers high salt tolerance, as well as Cs+ tolerance. This mutation increases more than 100-fold the affinity of AtHAK5 for K+ and reduces the Ki values for Na+ and Cs+, suggesting that the F130 residue may contribute to the structure of the pore region involved in K+ binding. In addition, this mutation increases the Vmax for K+. All this changes occur without increasing the amount of the AtHAK5 protein in yeast and support the idea that this residue is contributing to shape the selectivity filter of the AtHAK5 transporter. PMID:25228905

  4. A solution NMR investigation into the impaired self-assembly properties of two murine amelogenins containing the point mutations T21→I or P41→T

    SciTech Connect

    Buchko, Garry W.; Lin, Genyao; Tarasevich, Barbara J.; Shaw, Wendy J.

    2013-08-26

    Amelogenesis imperfecta describes a group of inherited disorders that results in defective tooth enamel. Two disorders associated with human amelogenesis imperfecta are the point mutations T21?I or P40?T in amelogenin, the dominant protein present during the early stages of enamel biomineralization. The biophysical properties of wildtype murine amelogenin (M180) and two proteins containing the equivalent mutations in murine amelogenin, T21?I (M180-I) and P41?T (M180-T), were probed by NMR spectroscopy. At low protein concentration (0.1 mM), M180, M180-I, and M180-T are predomi- nately monomeric at pH 3.0 in 2% acetic acid and neither mutation produces a major structural change. Chemical shift perturbation studies as a function of protein (0.1–1.8 mM) or NaCl (0–400 mM) concentra- tions show that the mutations affect the self-association properties by causing self-assembly at lower protein or salt concentrations, relative to wildtype amelogenin, with the largest effect observed for M180-I. Under both conditions, the premature self-assembly is initiated near the N-terminus, providing further evidence for the importance of this region in the self-assembly process. The self-association of M180-I and M180-T at lower protein concentrations and lower ionic strengths than wildtype M180 may account for the clinical phenotypes of these mutations, defective enamel formation.

  5. Immigrants' mortality patterns in the short- and long-term point toward origin-related diversities: the Israeli experience.

    PubMed

    Gabbay, Uri; Leshukovits, Yuri; Sadetzki, Siegal

    2014-02-01

    Immigrant mortality studies reveal conflicting results that were attributed to diversity in immigrant definition, different classifications, and lack of appropriate comparisons. This work studied mortality patterns of the immigrations absorbed in Israel. Short-term mortality was evaluated by comparing the Standardized Mortality Rate (SMR) of the first year after immigration to the SMR of the second to fifth years. Long-term mortality was evaluated by comparing recent immigrant cohorts to cohorts of immigrants who have been residents 5 and 10 years. Stratification was made by source country classification and gender. Data were derived from the Israel National Population Registry and were analyzed anonymously. Immigrants from developed and developing countries had the highest SMR in the first year, which considerably decreased in both short and long term. Immigrants from mid-developed countries had stable SMR in the short term followed by only a modest decrease in the long term. Ethiopian immigrants exhibited exceptionally low SMR in the first year, following which it increased but remained relatively low. Mortality patterns of different immigrant groups differ even under similar definitions, conditions, and period. Only immigrants of developed and developing countries presented the expected pattern of excessive short-term mortality, which consistently decreased with time. Unique mortality patterns were discovered among two groups: Immigrants from mid-developed countries presented stable mortality attributable to isolation and delayed adaptation, and Ethiopian low mortality attributable to pre-migration natural selection.

  6. Immigrants' mortality patterns in the short- and long-term point toward origin-related diversities: the Israeli experience.

    PubMed

    Gabbay, Uri; Leshukovits, Yuri; Sadetzki, Siegal

    2014-02-01

    Immigrant mortality studies reveal conflicting results that were attributed to diversity in immigrant definition, different classifications, and lack of appropriate comparisons. This work studied mortality patterns of the immigrations absorbed in Israel. Short-term mortality was evaluated by comparing the Standardized Mortality Rate (SMR) of the first year after immigration to the SMR of the second to fifth years. Long-term mortality was evaluated by comparing recent immigrant cohorts to cohorts of immigrants who have been residents 5 and 10 years. Stratification was made by source country classification and gender. Data were derived from the Israel National Population Registry and were analyzed anonymously. Immigrants from developed and developing countries had the highest SMR in the first year, which considerably decreased in both short and long term. Immigrants from mid-developed countries had stable SMR in the short term followed by only a modest decrease in the long term. Ethiopian immigrants exhibited exceptionally low SMR in the first year, following which it increased but remained relatively low. Mortality patterns of different immigrant groups differ even under similar definitions, conditions, and period. Only immigrants of developed and developing countries presented the expected pattern of excessive short-term mortality, which consistently decreased with time. Unique mortality patterns were discovered among two groups: Immigrants from mid-developed countries presented stable mortality attributable to isolation and delayed adaptation, and Ethiopian low mortality attributable to pre-migration natural selection. PMID:23765036

  7. Copper(II) complexes of alloferon 1 with point mutations (H1A) and (H9A) stability structure and biological activity.

    PubMed

    Matusiak, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2014-09-01

    Mono- and polynuclear copper(II) complexes of the alloferon 1 with point mutations (H1A) A(1)GVSGH(6)GQH(9)GVH(12)G (Allo1A) and (H9A) H(1)GVSGH(6)GQA(9)GVH(12)G (Allo9A) have been studied by potentiometric, UV-visible, CD, EPR spectroscopic and mass spectrometry (MS) methods. To obtain a complete complex speciation different metal-to-ligand molar ratios ranging from 1:1 to 4:1 for Allo1A and to 3:1 for Allo9A were studied. The presence of the His residue in first position of the peptide chain changes the coordination abilities of the Allo9A peptide in comparison to that of the Allo1A. Imidazole-N3 atom of N-terminal His residue of the Allo9A peptide forms stable 6-membered chelate with the terminal amino group. Furthermore, the presence of two additional histidine residues in the Allo9A peptide (H(6),H(12)) leads to the formation of the CuL complex with 4N {NH2,NIm-H(1),NIm-H(6),NIm-H(12)} binding site in wide pH range (5-8). For the Cu(II)-Allo1A system, the results demonstrated that at physiological pH7.4 the predominant complex the CuH-1L consists of the 3N {NH2,N(-),CO,NIm} coordination mode. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 were studied. The Allo1A, Allo1K peptides and their copper(II) complexes displayed the lowest hemocytotoxic activity while the most active was the Cu(II)-Allo9A complex formed at pH7.4. The results may suggest that the N-terminal-His(1) and His(6) residues may be more important for their proapoptotic properties in insects than those at positions 9 and 12 in the peptide chain. PMID:24935092

  8. Copper(II) complexes of neuropeptide gamma with point mutations (S8,16A) products of metal-catalyzed oxidation.

    PubMed

    Błaszak, Marta; Jankowska, Elżbieta; Kowalik-Jankowska, Teresa

    2013-12-01

    To obtain the information about the influence of the serine residues (S8,S16) on the acid-base properties of the neuropeptide gamma, the peptide with point mutations (S8,16A) and its N-acetyl derivative were synthesized. Any additional deprotonations were not observed. It means that the presence of serine residues is necessary in the amino acid sequence of the neuropeptide gamma to have its acid-base properties. The stability constants, stoichiometry and solution structures of copper(II) complexes of the neuropeptide gamma mutants D(1)AGH(4)GQIA(8)H(9)KRH(12)KTDA(16)FVGLM(21)-NH2 (S8,16A) 2ANPG and its N-acetyl derivative Ac-2ANPG were determined in aqueous solution. The equilibrium and structural properties of copper(II) complexes have been characterized by pH-metric, spectroscopic (UV-visible, CD, EPR) and mass spectrometric (MS) methods. At physiological pH7.4 the 2ANPG forms the CuH2L and CuHL complexes in equilibrium with 3N {NH2,βCOO(-)-D(1),2NIm} and 4N {NH2,N(-),2NIm} binding sites, respectively. The exchange Ser on Ala residues does not alter the coordination mode of the peptide. To elucidate the products of the copper(II)-catalyzed oxidation of 2ANPG and Ac-2ANPG the liquid chromatography-mass spectrometry method (LC-MS) and the Cu(II)/H2O2 as a model oxidizing system were employed. For solutions containing a 1:4 peptide-hydrogen peroxide molar ratio oxidation of the methionine residue to methionine sulphoxide was observed. For the 1:1:4 Cu(II)-2ANPG-H2O2 system oxidation of two His residues and cleavage of the G(3)H(4) peptide bond was observed, while for the 1:1:4 Cu(II)-Ac-2ANPG-H2O2 system oxidation of three histidine residues to 2-oxohistidines was also observed.

  9. A point mutation in the extracellular domain of KIT promotes tumorigenesis of mast cells via ligand-independent auto-dimerization

    PubMed Central

    Amagai, Yosuke; Matsuda, Akira; Jung, Kyungsook; Oida, Kumiko; Jang, Hyosun; Ishizaka, Saori; Matsuda, Hiroshi; Tanaka, Akane

    2015-01-01

    Mutations in the juxtamembrane and tyrosine kinase domains of the KIT receptor have been implicated in several cancers and are known to promote tumorigenesis. However, the pathophysiological manifestations of mutations in the extracellular domain remain unknown. In this study, we examined the impact of a mutation in the extracellular domain of KIT on mast cell tumorigenesis. A KIT mutant with an Asn508Ile variation (N508I) in the extracellular domain derived from a canine mast cell tumor was introduced into IC-2 cells. The IC-2N508I cells proliferated in a cytokine-independent manner and showed KIT auto-phosphorylation. Subcutaneous injection of IC-2N508I cells into the dorsal area of immunodeficient BALB/c-nu/nu mice resulted in the formation of solid tumors, but tumor progression was abrogated by treatment with a tyrosine kinase inhibitor (STI571). In addition, the N508I mutant KIT protein dimerized in the absence of the natural ligand, stem cell factor. Structure modeling indicates that the increased hydrophobicity of the mutant led to the stabilization of KIT dimers. These results suggest that this extracellular domain mutation confers a ligand-independent tumorigenic phenotype to mast cells by KIT auto-dimerization that is STI571-sensitive. This is the first report demonstrating the tumorigenic potential of a mutation in the extracellular domain of KIT. PMID:25965812

  10. Two novel exonic point mutations in HEXA identified in a juvenile Tay-Sachs patient: role of alternative splicing and nonsense-mediated mRNA decay.

    PubMed

    Levit, A; Nutman, D; Osher, E; Kamhi, E; Navon, R

    2010-06-01

    We have identified three mutations in the beta-hexoseaminidase A (HEXA) gene in a juvenile Tay-Sachs disease (TSD) patient, which exhibited a reduced level of HEXA mRNA. Two mutations are novel, c.814G>A (p.Gly272Arg) and c.1305C>T (p.=), located in exon 8 and in exon 11, respectively. The third mutation, c.1195A>G (p.Asn399Asp) in exon 11, has been previously characterized as a common polymorphism in African-Americans. Hex A activity measured in TSD Glial cells, transfected with HEXA cDNA constructs bearing these mutations, was unaltered from the activity level measured in normal HEXA cDNA. Analysis of RT-PCR products revealed three aberrant transcripts in the patient, one where exon 8 was absent, one where exon 11 was absent and a third lacking both exons 10 and 11. All three novel transcripts contain frameshifts resulting in premature termination codons (PTCs). Transfection of mini-gene constructs carrying the c.814G>A and c.1305C>T mutations proved that the two mutations result in exon skipping. mRNAs that harbor a PTC are detected and degraded by the nonsense-mediated mRNA decay (NMD) pathway to prevent synthesis of abnormal proteins. However, although NMD is functional in the patient's fibroblasts, aberrant transcripts are still present. We suggest that the level of correctly spliced transcripts as well as the efficiency in which NMD degrade the PTC-containing transcripts, apparently plays an important role in the phenotype severity of the unique patient and thus should be considered as a potential target for drug therapy. PMID:20363167

  11. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder.

    PubMed Central

    Nagata, H; Worobec, A S; Oh, C K; Chowdhury, B A; Tannenbaum, S; Suzuki, Y; Metcalfe, D D

    1995-01-01

    Both stem cells and mast cells express c-kit and proliferate after exposure to c-kit ligand. Mutations in c-kit may enhance or interfere with the ability of c-kit receptor to initiate the intracellular pathways resulting in cell proliferation. These observations suggested to us that mastocytosis might in some patients result from mutations in c-kit. cDNA synthesized from peripheral blood mononuclear cells of patients with indolent mastocytosis, mastocytosis with an associated hematologic disorder, aggressive mastocytosis, solitary mastocytoma, and chronic myelomonocytic leukemia unassociated with mastocytosis was thus screened for a mutation of c-kit. This analysis revealed that four of four mastocytosis patients with an associated hematologic disorder with predominantly myelodysplastic features had an A-->T substitution at nt 2468 of c-kit mRNA that causes an Asp-816-->Val substitution. One of one patient examined who had mastocytosis with an associated hematologic disorder had the corresponding mutation in genomic DNA. Identical or similar amino acid substitutions in mast cell lines result in ligand-independent autophosphorylation of the c-kit receptor. This mutation was not identified in the patients within the other disease categories or in 67 of 67 controls. The identification of the point mutation Asp816Val in c-kit in patients with mastocytosis with an associated hematologic disorder provides insight not only into the pathogenesis of this form of mastocytosis but also into how hematopoiesis may become dysregulated and may serve to provide a means of confirming the diagnosis, assessing prognosis, and developing intervention strategies. Images Fig. 1 Fig. 2 Fig. 3 PMID:7479840

  12. Electron capture dissociation and drift tube ion mobility-mass spectrometry coupled with site directed mutations provide insights into the conformational diversity of a metamorphic protein.

    PubMed

    Harvey, Sophie R; Porrini, Massimiliano; Tyler, Robert C; MacPhee, Cait E; Volkman, Brian F; Barran, Perdita E

    2015-04-28

    Ion mobility mass spectrometry can be combined with data from top-down sequencing to discern adopted conformations of proteins in the absence of solvent. This multi-technique approach has particular applicability for conformationally dynamic systems. Previously, we demonstrated the use of drift tube ion mobility-mass spectrometry (DT IM-MS) and electron capture dissociation (ECD) to study the metamorphic protein lymphotactin (Ltn). Ltn exists in equilibrium between distinct monomeric (Ltn10) and dimeric (Ltn40) folds, both of which can be preserved and probed in the gas-phase. Here, we further test this mass spectrometric framework, by examining two site directed mutants of Ltn, designed to stabilise either distinct fold in solution, in addition to a truncated form consisting of a minimum model of structure for Ltn10. The truncated mutant has similar collision cross sections to the wild type (WT), for low charge states, and is resistant to ECD fragmentation. The monomer mutant (CC3) presents in similar conformational families as observed previously for the WT Ltn monomer. As with the WT, the CC3 mutant is resistant to ECD fragmentation at low charge states. The dimer mutant W55D is found here to exist as both a monomer and dimer. As a monomer W55D exhibits similar behaviour to the WT, but as a dimer presents a much larger charge state and collision cross section range than the WT dimer, suggesting a smaller interaction interface. In addition, ECD on the W55D mutant yields greater fragmentation than for the WT, suggesting a less stable β-sheet core. The results highlight the power of MS to provide insight into dynamic proteins, providing further information on each distinct fold of Ltn. In addition we observe differences in the fold stability following single or double point mutations. This approach, therefore, has potential to be a useful tool to screen for the structural effects of mutagenesis, even when sample is limited.

  13. The Trojan Female Technique for pest control: a candidate mitochondrial mutation confers low male fertility across diverse nuclear backgrounds in Drosophila melanogaster.

    PubMed

    Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J

    2015-10-01

    Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control.

  14. The Trojan Female Technique for pest control: a candidate mitochondrial mutation confers low male fertility across diverse nuclear backgrounds in Drosophila melanogaster

    PubMed Central

    Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J

    2015-01-01

    Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control. PMID:26495040

  15. A Point Mutation in Suppressor of Cytokine Signalling 2 (Socs2) Increases the Susceptibility to Inflammation of the Mammary Gland while Associated with Higher Body Weight and Size and Higher Milk Production in a Sheep Model.

    PubMed

    Rupp, Rachel; Senin, Pavel; Sarry, Julien; Allain, Charlotte; Tasca, Christian; Ligat, Laeticia; Portes, David; Woloszyn, Florent; Bouchez, Olivier; Tabouret, Guillaume; Lebastard, Mathieu; Caubet, Cécile; Foucras, Gilles; Tosser-Klopp, Gwenola

    2015-12-01

    Mastitis is an infectious disease mainly caused by bacteria invading the mammary gland. Genetic control of susceptibility to mastitis has been widely evidenced in dairy ruminants, but the genetic basis and underlying mechanisms are still largely unknown. We describe the discovery, fine mapping and functional characterization of a genetic variant associated with elevated milk leukocytes count, or SCC, as a proxy for mastitis. After implementing genome-wide association studies, we identified a major QTL associated with SCC on ovine chromosome 3. Fine mapping of the region, using full sequencing with 12X coverage in three animals, provided one strong candidate SNP that mapped to the coding sequence of a highly conserved gene, suppressor of cytokine signalling 2 (Socs2). The frequency of the SNP associated with increased SCC was 21.7% and the Socs2 genotype explained 12% of the variance of the trait. The point mutation induces the p.R96C substitution in the SH2 functional domain of SOCS2 i.e. the binding site of the protein to various ligands, as well-established for the growth hormone receptor GHR. Using surface plasmon resonance we showed that the p.R96C point mutation completely abrogates SOCS2 binding affinity for the phosphopeptide of GHR. Additionally, the size, weight and milk production in p.R96C homozygote sheep, were significantly increased by 24%, 18%, and 4.4%, respectively, when compared to wild type sheep, supporting the view that the point mutation causes a loss of SOCS2 functional activity. Altogether these results provide strong evidence for a causal mutation controlling SCC in sheep and highlight the major role of SOCS2 as a tradeoff between the host's inflammatory response to mammary infections, and body growth and milk production, which are all mediated by the JAK/STAT signaling pathway. PMID:26658352

  16. A Point Mutation in Suppressor of Cytokine Signalling 2 (Socs2) Increases the Susceptibility to Inflammation of the Mammary Gland while Associated with Higher Body Weight and Size and Higher Milk Production in a Sheep Model.

    PubMed

    Rupp, Rachel; Senin, Pavel; Sarry, Julien; Allain, Charlotte; Tasca, Christian; Ligat, Laeticia; Portes, David; Woloszyn, Florent; Bouchez, Olivier; Tabouret, Guillaume; Lebastard, Mathieu; Caubet, Cécile; Foucras, Gilles; Tosser-Klopp, Gwenola

    2015-12-01

    Mastitis is an infectious disease mainly caused by bacteria invading the mammary gland. Genetic control of susceptibility to mastitis has been widely evidenced in dairy ruminants, but the genetic basis and underlying mechanisms are still largely unknown. We describe the discovery, fine mapping and functional characterization of a genetic variant associated with elevated milk leukocytes count, or SCC, as a proxy for mastitis. After implementing genome-wide association studies, we identified a major QTL associated with SCC on ovine chromosome 3. Fine mapping of the region, using full sequencing with 12X coverage in three animals, provided one strong candidate SNP that mapped to the coding sequence of a highly conserved gene, suppressor of cytokine signalling 2 (Socs2). The frequency of the SNP associated with increased SCC was 21.7% and the Socs2 genotype explained 12% of the variance of the trait. The point mutation induces the p.R96C substitution in the SH2 functional domain of SOCS2 i.e. the binding site of the protein to various ligands, as well-established for the growth hormone receptor GHR. Using surface plasmon resonance we showed that the p.R96C point mutation completely abrogates SOCS2 binding affinity for the phosphopeptide of GHR. Additionally, the size, weight and milk production in p.R96C homozygote sheep, were significantly increased by 24%, 18%, and 4.4%, respectively, when compared to wild type sheep, supporting the view that the point mutation causes a loss of SOCS2 functional activity. Altogether these results provide strong evidence for a causal mutation controlling SCC in sheep and highlight the major role of SOCS2 as a tradeoff between the host's inflammatory response to mammary infections, and body growth and milk production, which are all mediated by the JAK/STAT signaling pathway.

  17. A Point Mutation in Suppressor of Cytokine Signalling 2 (Socs2) Increases the Susceptibility to Inflammation of the Mammary Gland while Associated with Higher Body Weight and Size and Higher Milk Production in a Sheep Model

    PubMed Central

    Rupp, Rachel; Senin, Pavel; Sarry, Julien; Allain, Charlotte; Tasca, Christian; Ligat, Laeticia; Portes, David; Woloszyn, Florent; Bouchez, Olivier; Tabouret, Guillaume; Lebastard, Mathieu; Caubet, Cécile

    2015-01-01

    Mastitis is an infectious disease mainly caused by bacteria invading the mammary gland. Genetic control of susceptibility to mastitis has been widely evidenced in dairy ruminants, but the genetic basis and underlying mechanisms are still largely unknown. We describe the discovery, fine mapping and functional characterization of a genetic variant associated with elevated milk leukocytes count, or SCC, as a proxy for mastitis. After implementing genome-wide association studies, we identified a major QTL associated with SCC on ovine chromosome 3. Fine mapping of the region, using full sequencing with 12X coverage in three animals, provided one strong candidate SNP that mapped to the coding sequence of a highly conserved gene, suppressor of cytokine signalling 2 (Socs2). The frequency of the SNP associated with increased SCC was 21.7% and the Socs2 genotype explained 12% of the variance of the trait. The point mutation induces the p.R96C substitution in the SH2 functional domain of SOCS2 i.e. the binding site of the protein to various ligands, as well-established for the growth hormone receptor GHR. Using surface plasmon resonance we showed that the p.R96C point mutation completely abrogates SOCS2 binding affinity for the phosphopeptide of GHR. Additionally, the size, weight and milk production in p.R96C homozygote sheep, were significantly increased by 24%, 18%, and 4.4%, respectively, when compared to wild type sheep, supporting the view that the point mutation causes a loss of SOCS2 functional activity. Altogether these results provide strong evidence for a causal mutation controlling SCC in sheep and highlight the major role of SOCS2 as a tradeoff between the host’s inflammatory response to mammary infections, and body growth and milk production, which are all mediated by the JAK/STAT signaling pathway. PMID:26658352

  18. Determination of a new collagen type I alpha 2 gene point mutation which causes a Gly640 Cys substitution in osteogenesis imperfecta and prenatal diagnosis by DNA hybridisation.

    PubMed Central

    Gomez-Lira, M; Sangalli, A; Pignatti, P F; Digilio, M C; Giannotti, A; Carnevale, E; Mottes, M

    1994-01-01

    The molecular defect responsible for a sporadic case of extremely severe (type II/III) osteogenesis imperfecta was investigated. The mutation site was localised in the collagen type I pro alpha 2 mRNA molecules produced by the proband's skin fibroblasts by chemical cleavage of mismatch in heteroduplex nucleic acids. Reverse transcription-polymerase chain reaction DNA amplification, followed by cloning and sequencing, showed heterozygosity for a G to T transversion in the first nucleotide of exon 37 of the COL1A2 gene, which led to a cysteine for glycine substitution at position 640 of the triple helical domain. This newly characterised mutation is localised in a domain which contains several milder mutations, confirming that glycine substitutions within the alpha 2(I) chain do not follow a linear gradient pattern for genotype to phenotype correlations. In a subsequent pregnancy, absence of the G2327T mutation in the fetus was shown by allele specific oligonucleotide hybridisation to the trophoblast derived fibroblast mRNA after reverse transcription and in vitro amplification. (The nucleotide number assigned to the mutant base was inferred from the numbering system devised by the Osteogenesis Imperfecta Analysis Consortium (The OIAC Newsletter, 1 April 1994).) Images PMID:7891382

  19. A point mutation of zebrafish c-cbl gene in the ring finger domain produces a phenotype mimicking human myeloproliferative disease.

    PubMed

    Peng, X; Dong, M; Ma, L; Jia, X-E; Mao, J; Jin, C; Chen, Y; Gao, L; Liu, X; Ma, K; Wang, L; Du, T; Jin, Y; Huang, Q; Li, K; Zon, L I; Liu, T; Deng, M; Zhou, Y; Xi, X; Zhou, Y; Chen, S

    2015-12-01

    Controlled self-renewal and differentiation of hematopoietic stem/progenitor cells (HSPCs) are critical for vertebrate development and survival. These processes are tightly regulated by the transcription factors, signaling molecules and epigenetic factors. Impaired regulations of their function could result in hematological malignancies. Using a large-scale zebrafish N-ethyl-N-nitrosourea mutagenesis screening, we identified a line named LDD731, which presented significantly increased HSPCs in hematopoietic organs. Further analysis revealed that the cells of erythroid/myeloid lineages in definitive hematopoiesis were increased while the primitive hematopoiesis was not affected. The homozygous mutation was lethal with a median survival time around 14-15 days post fertilization. The causal mutation was located by positional cloning in the c-cbl gene, the human ortholog of which, c-CBL, is found frequently mutated in myeloproliferative neoplasms (MPN) or acute leukemia. Sequence analysis showed the mutation in LDD731 caused a histidine-to-tyrosine substitution of the amino acid codon 382 within the RING finger domain of c-Cbl. Moreover, the myeloproliferative phenotype in zebrafish seemed dependent on the Flt3 (fms-like tyrosine kinase 3) signaling, consistent with that observed in both mice and humans. Our study may shed new light on the pathogenesis of MPN and provide a useful in vivo vertebrate model of this syndrome for screening drugs.

  20. New Point Mutations in Surface and Core Genes of Hepatitis B Virus Associated with Acute on Chronic Liver Failure Identified by Complete Genomic Sequencing

    PubMed Central

    Lou, Guohua; Zheng, Min; Cao, Qingyi; Chen, Zhi

    2015-01-01

    The objective of this study was to identify new viral biomarkers associated with acute on chronic liver failure (ACLF) by complete genomic sequencing of HBV. Hepatitis B virus mutations associated with ACLF were screened by Illumina high-throughput sequencing in twelve ACLF cases and twelve age-matched mild chronic hepatitis B patients, which were validated in 438 chronic hepatitis B patients (80 asymptomatic carriers, 152 mild chronic hepatitis B patients, 102 severe chronic hepatitis B patients and 104 ACLF patients) by direct sequencing. The results of Illumina sequencing showed that the mutations at 7 sites (T216C, G285A, A1846T, G1896A, C1913A/G, A2159G, and A2189C) of 12 ACLF patients were significantly higher than those of 12 controls. In the validation cohorts, a significantly higher ratio of genotype B to C was found in patients with ACLF than in patients with non-ACLF. Multivariate analysis showed that T216C, G1896A, C1913A/G and A2159G/C were independent risk factors for ACLF. C216 in any combination, A/G1913 in any combination, and G/C2159 in any combination had high specificity for ACLF. In summary, T216C and A2159G/C mutations were novel factors independently associated with ACLF. Combined mutations in hepatitis B cases could play important roles in ACLF development. PMID:25849554

  1. A point mutation of zebrafish c-cbl gene in the ring finger domain produces a phenotype mimicking human myeloproliferative disease.

    PubMed

    Peng, X; Dong, M; Ma, L; Jia, X-E; Mao, J; Jin, C; Chen, Y; Gao, L; Liu, X; Ma, K; Wang, L; Du, T; Jin, Y; Huang, Q; Li, K; Zon, L I; Liu, T; Deng, M; Zhou, Y; Xi, X; Zhou, Y; Chen, S

    2015-12-01

    Controlled self-renewal and differentiation of hematopoietic stem/progenitor cells (HSPCs) are critical for vertebrate development and survival. These processes are tightly regulated by the transcription factors, signaling molecules and epigenetic factors. Impaired regulations of their function could result in hematological malignancies. Using a large-scale zebrafish N-ethyl-N-nitrosourea mutagenesis screening, we identified a line named LDD731, which presented significantly increased HSPCs in hematopoietic organs. Further analysis revealed that the cells of erythroid/myeloid lineages in definitive hematopoiesis were increased while the primitive hematopoiesis was not affected. The homozygous mutation was lethal with a median survival time around 14-15 days post fertilization. The causal mutation was located by positional cloning in the c-cbl gene, the human ortholog of which, c-CBL, is found frequently mutated in myeloproliferative neoplasms (MPN) or acute leukemia. Sequence analysis showed the mutation in LDD731 caused a histidine-to-tyrosine substitution of the amino acid codon 382 within the RING finger domain of c-Cbl. Moreover, the myeloproliferative phenotype in zebrafish seemed dependent on the Flt3 (fms-like tyrosine kinase 3) signaling, consistent with that observed in both mice and humans. Our study may shed new light on the pathogenesis of MPN and provide a useful in vivo vertebrate model of this syndrome for screening drugs. PMID:26104663

  2. Consequences of point mutations in melanoma-associated antigen 4 (MAGE-A4) protein: Insights from structural and biophysical studies

    PubMed Central

    Hagiwara, Yoshio; Sieverling, Lina; Hanif , Farina; Anton, Jensy; Dickinson, Eleanor R.; Bui, Tam T. T.; Andreeva, Antonina; Barran, Perdita E.; Cota, Ernesto; Nikolova, Penka V.

    2016-01-01

    The Melanoma-Associated Antigen A4 (MAGE-A4) protein is a target for cancer therapy. The function of this protein is not well understood. We report the first comprehensive study on key cancer-associated MAGE-A4 mutations and provide analysis on the consequences of these mutations on the structure, folding and stability of the protein. Based on Nuclear Magnetic Resonance and Circular Dichroism, these mutations had no significant effects on the structure and the folding of the protein. Some mutations affected the thermal stability of the protein remarkably. Native mass spectrometry of wild-type MAGE-A4 showed a broad charge state distribution suggestive of a structurally dynamic protein. Significant intensity was found in relatively low charge states, indicative of a predominantly globular form and some population in more extended states. The latter is supported by Ion Mobility measurements. The MAGE-A4 mutants exhibited similar features. These novel molecular insights shed further light on better understanding of these proteins, which are implicated in a wide range of human cancers. PMID:27121989

  3. A novel point mutation (G-1 to T) in a 5' splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker muscular dystrophy.

    PubMed

    Hagiwara, Y; Nishio, H; Kitoh, Y; Takeshima, Y; Narita, N; Wada, H; Yokoyama, M; Nakamura, H; Matsuo, M

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. We now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5' splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5' splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G-1-to-T mutation at the 5' splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection.

  4. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    SciTech Connect

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko; Takeshima, Yasuhiro; Narita, Naoko; Wada, Hiroko; Yokoyama, Mitsuhiro; Nakamura, Hajime; Matsuo, Masafumi )

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.

  5. Point mutations at the local anesthetic receptor site modulate the state-dependent block of rat Na v1.4 sodium channels by pyrazoline-type insecticides.

    PubMed

    Silver, Kristopher S; Soderlund, David M

    2007-05-01

    Pyrazoline-type insecticides (PTIs) selectively block sodium channels at membrane potentials that promote slow sodium channel inactivation and are proposed to interact with a site that overlaps the local anesthetic (LA) receptor site. Mutagenesis studies identified two amino acid residues in the S6 segment of homology domain IV (Phe-1579 and Tyr-1586 in the rat Na(v)1.4 sodium channel) as principal elements of the LA receptor. To test the hypothesis that PTIs bind to the LA receptor, we constructed mutated Na(v)1.4/F1579A and Na(v)1.4/Y1586A cDNAs, expressed native and mutated channels in Xenopus oocytes, and examined the effects of these mutations on channel block by three PTIs (indoxacarb, its bioactivation product DCJW, and RH3421) by two-electrode voltage clamp. DCJW and RH3421 had no effect on Na(v)1.4 channels held at -120mV but caused a slowly developing block upon depolarization to -30mV. Estimated IC(50) values following 15min of exposure were 1 and 4muM for DCJW and RH3421, respectively. Indoxacarb failed to block Na(v)1.4 channels under all experimental conditions. Sensitivity to block by DCJW and RH3421 at -30mV was significantly reduced in Na(v)1.4/F1579A channels, a finding that is consistent with the impact of this mutation on drug binding. In contrast to its effect on drug binding, the Y1586A mutation increased the sensitivity of Na(v)1.4 channels held at -30mV to all three compounds, conferring modest sensitivity to indoxacarb and increasing sensitivity to DCJW and RH3421 by 58- and 16-fold, respectively. These results provide direct evidence for the action of PTIs at the LA receptor.

  6. Mutations in man

    SciTech Connect

    Obe, G.

    1984-01-01

    This book contains 13 selections that cover some of the following topics: DNA repair, gene or point mutations, aspects of nondisjunction, origin and significance of chromosomal alterations, structure and organization of the human genome, and mutagenic activity of cigarette smoke.

  7. Mutational landscape of yeast mutator strains.

    PubMed

    Serero, Alexandre; Jubin, Claire; Loeillet, Sophie; Legoix-Né, Patricia; Nicolas, Alain G

    2014-02-01

    The acquisition of mutations is relevant to every aspect of genetics, including cancer and evolution of species on Darwinian selection. Genome variations arise from rare stochastic imperfections of cellular metabolism and deficiencies in maintenance genes. Here, we established the genome-wide spectrum of mutations that accumulate in a WT and in nine Saccharomyces cerevisiae mutator strains deficient for distinct genome maintenance processes: pol32Δ and rad27Δ (replication), msh2Δ (mismatch repair), tsa1Δ (oxidative stress), mre11Δ (recombination), mec1Δ tel1Δ (DNA damage/S-phase checkpoints), pif1Δ (maintenance of mitochondrial genome and telomere length), cac1Δ cac3Δ (nucleosome deposition), and clb5Δ (cell cycle progression). This study reveals the diversity, complexity, and ultimate unique nature of each mutational spectrum, composed of punctual mutations, chromosomal structural variations, and/or aneuploidies. The mutations produced in clb5Δ/CCNB1, mec1Δ/ATR, tel1Δ/ATM, and rad27Δ/FEN1 strains extensively reshape the genome, following a trajectory dependent on previous events. It comprises the transmission of unstable genomes that lead to colony mosaicisms. This comprehensive analytical approach of mutator defects provides a model to understand how genome variations might accumulate during clonal evolution of somatic cell populations, including tumor cells.

  8. No Evidence for Association of Autism with Rare Heterozygous Point Mutations in Contactin-Associated Protein-Like 2 (CNTNAP2), or in Other Contactin-Associated Proteins or Contactins

    PubMed Central

    Murdoch, John D.; Gupta, Abha R.; Sanders, Stephan J.; Walker, Michael F.; Keaney, John; Fernandez, Thomas V.; Murtha, Michael T.; Anyanwu, Samuel; Ober, Gordon T.; Raubeson, Melanie J.; DiLullo, Nicholas M.; Villa, Natalie; Waqar, Zainabdul; Sullivan, Catherine; Gonzalez, Luis; Willsey, A. Jeremy; Choe, So-Yeon; Neale, Benjamin M.; Daly, Mark J.; State, Matthew W.

    2015-01-01

    Contactins and Contactin-Associated Proteins, and Contactin-Associated Protein-Like 2 (CNTNAP2) in particular, have been widely cited as autism risk genes based on findings from homozygosity mapping, molecular cytogenetics, copy number variation analyses, and both common and rare single nucleotide association studies. However, data specifically with regard to the contribution of heterozygous single nucleotide variants (SNVs) have been inconsistent. In an effort to clarify the role of rare point mutations in CNTNAP2 and related gene families, we have conducted targeted next-generation sequencing and evaluated existing sequence data in cohorts totaling 2704 cases and 2747 controls. We find no evidence for statistically significant association of rare heterozygous mutations in any of the CNTN or CNTNAP genes, including CNTNAP2, placing marked limits on the scale of their plausible contribution to risk. PMID:25621974

  9. No evidence for association of autism with rare heterozygous point mutations in Contactin-Associated Protein-Like 2 (CNTNAP2), or in Other Contactin-Associated Proteins or Contactins.

    PubMed

    Murdoch, John D; Gupta, Abha R; Sanders, Stephan J; Walker, Michael F; Keaney, John; Fernandez, Thomas V; Murtha, Michael T; Anyanwu, Samuel; Ober, Gordon T; Raubeson, Melanie J; DiLullo, Nicholas M; Villa, Natalie; Waqar, Zainabdul; Sullivan, Catherine; Gonzalez, Luis; Willsey, A Jeremy; Choe, So-Yeon; Neale, Benjamin M; Daly, Mark J; State, Matthew W

    2015-01-01

    Contactins and Contactin-Associated Proteins, and Contactin-Associated Protein-Like 2 (CNTNAP2) in particular, have been widely cited as autism risk genes based on findings from homozygosity mapping, molecular cytogenetics, copy number variation analyses, and both common and rare single nucleotide association studies. However, data specifically with regard to the contribution of heterozygous single nucleotide variants (SNVs) have been inconsistent. In an effort to clarify the role of rare point mutations in CNTNAP2 and related gene families, we have conducted targeted next-generation sequencing and evaluated existing sequence data in cohorts totaling 2704 cases and 2747 controls. We find no evidence for statistically significant association of rare heterozygous mutations in any of the CNTN or CNTNAP genes, including CNTNAP2, placing marked limits on the scale of their plausible contribution to risk.

  10. Amplification-free In Situ KRAS Point Mutation Detection at 60 copies/mL in Urine in a Background of 1000-fold Wild Type

    PubMed Central

    KirimLi, Ceyhun E.; Shih, Wei-Heng; Shih, Wan Y.

    2016-01-01

    We have examined in situ detection of single-nucleotide KRAS mutation in urine using a (Pb(Mg1/3Nb2/3)O3)0.65(PbTiO3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) coated with a 17-nucleotide (nt) locked nucleic acid (LNA) probe DNA complementary to the KRAS mutation. To enhance in situ mutant (MT) DNA detection specificity against the wild type (WT), the detection was carried out in a flow with a flow rate of 4 mL/min and at 63°C with the PEPS vertically situated at the center of the flow in which both the temperature and the flow impingement force discriminated the wild type. Under such conditions, PEPS was shown to specifically detect KRAS MT in situ with 60 copies/mL analytical sensitivity in a background of clinically-relevant 1000-fold more WT in 30 min without DNA isolation, amplification, or labeling. For validation, the detection was followed with detection in a mixture of blue MT fluorescent reporter microspheres (FRMs) (MT FRMs) that bound to only the captured MT and orange WT FRMs that bound to only the captured WT. Microscopic examinations showed that the captured blue MT FRMs still outnumbered the orange WT FRMs by a factor of 4 to 1 even though WT was 1000-fold of MT in urine. Finally, multiplexed specific mutation detection was demonstrated using a 6-PEPS array each with a probe DNA targeting one of the 6 codon-12 KRAS mutations. PMID:26783561

  11. Amplification-free in situ KRAS point mutation detection at 60 copies per mL in urine in a background of 1000-fold wild type.

    PubMed

    Kirimli, Ceyhun E; Shih, Wei-Heng; Shih, Wan Y

    2016-02-21

    We have examined the in situ detection of a single-nucleotide KRAS mutation in urine using a (Pb(Mg1/3Nb2/3)O3)0.65(PbTiO3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) coated with a 17-nucleotide (nt) locked nucleic acid (LNA) probe DNA complementary to the KRAS mutation. To enhance the in situ mutant (MT) DNA detection specificity against the wild type (WT), detection was carried out in a flow with a flow rate of 4 mL min(-1) and at 63 °C with the PEPS vertically situated at the center of the flow in which both the temperature and the flow impingement force discriminated the wild type. Under such conditions, PEPS was shown to specifically detect KRAS MT in situ with 60 copies per mL analytical sensitivity in a background of clinically-relevant 1000-fold more WT in 30 min without DNA isolation, amplification, or labeling. For validation, this detection was followed with detection in a mixture of blue MT fluorescent reporter microspheres (FRMs) (MT FRMs) that bound to only the captured MT and orange WT FRMs that bound to only the captured WT. Microscopic examinations showed that the captured blue MT FRMs still outnumbered the orange WT FRMs by a factor of 4 to 1 even though WT was 1000-fold of MT in urine. Finally, multiplexed specific mutation detection was demonstrated using a 6-PEPS array each with a probe DNA targeting one of the 6 codon-12 KRAS mutations. PMID:26783561

  12. The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68.

    PubMed

    Dubey, P; Hendrickson, R C; Meredith, S C; Siegel, C T; Shabanowitz, J; Skipper, J C; Engelhard, V H; Hunt, D F; Schreiber, H

    1997-02-17

    The genetic origins of CD8+ T cell-recognized unique antigens to which mice respond when immunized with syngeneic tumor cells are unknown. The ultraviolet light-induced murine tumor 8101 expresses an H-2Kb-restricted immunodominant antigen, A, that induces cytolytic CD8+ T cells in vivo A+ 8101 cells are rejected by naive mice while A- 8101 tumor cells grow. To identify the antigen H-2Kb molecules were immunoprecipitated from A+ 8101 cells and peptides were eluted by acid. The sensitizing peptide was isolated by sequential reverse-phase HPLC and sequenced using microcapillary HPLC-triple quadruple mass spectrometry. The peptide, SNFVFAGI, matched the sequence of the DEAD box protein p68 RNA helicase except for a single amino acid substitution, caused by a single nucleotide change. This mutation was somatic since fibroblasts from the mouse of tumor origin expressed the wild-type sequence. The amino acid substitution created an anchor for binding of the mutant peptide to H-2Kb. Our results are consistent with mutant p68 being responsible for rejection of the tumor. Several functions of p68, which include nucleolar assembly and inhibition of DNA unwinding, may be mediated through its IQ domain, which was altered by the mutation. This is the first description of a somatic tumor-specific mutation in the coding region of a nucleic acid helicase.

  13. The Immunodominant Antigen of an Ultraviolet-induced Regressor Tumor Is Generated by a Somatic Point Mutation in the DEAD Box Helicase p68

    PubMed Central

    Dubey, Purnima; Hendrickson, Ronald C.; Meredith, Stephen C.; Siegel, Christopher T.; Shabanowitz, Jeffrey; Skipper, Jonathan C.A.; Engelhard, Victor H.; Hunt, Donald F.; Schreiber, Hans

    1997-01-01

    The genetic origins of CD8+ T cell–recognized unique antigens to which mice respond when immunized with syngeneic tumor cells are unknown. The ultraviolet light-induced murine tumor 8101 expresses an H-2Kb-restricted immunodominant antigen, A, that induces cytolytic CD8+ T cells in vivo A+ 8101 cells are rejected by naive mice while A− 8101 tumor cells grow. To identify the antigen H-2Kb molecules were immunoprecipitated from A+ 8101 cells and peptides were eluted by acid. The sensitizing peptide was isolated by sequential reverse-phase HPLC and sequenced using microcapillary HPLC-triple quadruple mass spectrometry. The peptide, SNFVFAGI, matched the sequence of the DEAD box protein p68 RNA helicase except for a single amino acid substitution, caused by a single nucleotide change. This mutation was somatic since fibroblasts from the mouse of tumor origin expressed the wild-type sequence. The amino acid substitution created an anchor for binding of the mutant peptide to H-2Kb. Our results are consistent with mutant p68 being responsible for rejection of the tumor. Several functions of p68, which include nucleolar assembly and inhibition of DNA unwinding, may be mediated through its IQ domain, which was altered by the mutation. This is the first description of a somatic tumor–specific mutation in the coding region of a nucleic acid helicase. PMID:9034148

  14. Evaluation of point mutation detection in Mycobacterium tuberculosis with isoniazid resistance using real-time PCR and TaqMan probe assay.

    PubMed

    Riahi, F; Derakhshan, M; Mosavat, A; Soleimanpour, S; Rezaee, S A

    2015-03-01

    Rapid methods for diagnosis of Mycobacterium tuberculosis (Mtb) drug resistance and choosing appropriate antibiotic treatment are pivotal. Thirty isoniazid (INH)-resistant and 30 INH-susceptible Mtb isolates were evaluated using minimum inhibitory concentration (MIC) method followed by multiplex real-time PCR (RT-PCR). Amplification refractory mutation system (ARMS) for detection of mutation in 315 codon of katG gene and single-nucleotide polymorphism (SNP) for detection of mutation in -15 (C>T) in the regulatory zone of mabA-inhA were carried out using the TaqMan method. Primers and probe were used for IS6110 region of Mtb as an internal amplification control. The sensitivity and specificity of the RT-PCR TaqMan probe for detection of Mtb complex were 100 %. Detection of INH-resistant Mtb using the ARMS method for KatG had 69 % sensitivity and 100 % specificity. The sensitivity and specificity of SNP in mabA-inhA fragment for detection of INH-resistant Mtb were 53 and 100 %, respectively. Furthermore, considering both regions, the sensitivity of RT-PCR has increased to 75 %. This study revealed that the qPCR-TaqMan method can be used as a standard tool for diagnosis of Mtb. Moreover, ARMS and SNP RT-PCR TaqMan methods can be used as rapid screening methods for detection of INH-resistant Mtb.

  15. True hermaphroditism in a 46, XY individual, caused by a postzygotic somatic point mutation in the male gonadal sex-determining locus (SRY): Molecular genetics and histological findings in a sporadic case

    SciTech Connect

    Braun, A.; Kammerer, S.; Cleve, H.; Loehrs, U.; Schwarz, H.P.; Kuhnle, U. )

    1993-03-01

    Recently, the gene for the determination of maleness has been identified in the sex-determining region on the short arm of the Y chromosome (SRY) between the Y-chromosomal pseudoautosomal boundary (PABY) and the ZFY gene locus. Experiments with transgenic mice confirmed that SRY is a part of the testis-determining factor (TDF). The authors describe a sporadic case of a patient with intersexual genitalia and the histological finding of ovotestes in the gonad, which resembles the mixed type of gonadal tissue without primordial follicle structures. The karyotype of the patient was 46,XY. By PCR amplification, they tested for the presence of SRY by using DNA obtained from histological gonadal slices. The SRY products of both DNA preparations were further analyzed by direct sequencing. All three parts of the sex-determining region of the Y chromosome could be amplified from leukocytic DNA. The patient's and the father's SRY sequences were identical with the published sequence. In the SRY PCR product of gonadal DNA, the wild-type and two point mutations were present in the patient's sequence, simulating a heterozygous state of a Y-chromosomal gene: one of the mutations was silent, while the other encoded for a nonconservative amino acid substitution from leucine to histidine. Subcloning procedures showed that the two point mutations always occurred together. The origin of the patient's intersexuality is a postzygotic mutation of the SRY occurring in part of the gonadal tissue. This event caused the loss of the testis-determining function in affected cells. 37 refs., 6 figs.

  16. The arrhythmogenic human HRC point mutation S96A leads to spontaneous Ca(2+) release due to an impaired ability to buffer store Ca(2+).

    PubMed

    Zhang, Joe Z; McLay, Janet C; Jones, Peter P

    2014-09-01

    The Ser96Ala (S96A) mutation within the histidine rich Ca(2+) binding protein (HRC) has recently been linked to cardiac arrhythmias in idiopathic dilated cardiomyopathy patients, potentially attributable to an increase in spontaneous Ca(2+) release events. However, the molecular mechanism connecting the S96A mutation of HRC to increased Ca(2+) release events remains unclear. Previous findings by our group indicate that these spontaneous Ca(2+) release events may be linked to store overload induced Ca(2+) release (SOICR) via the cardiac ryanodine receptor (RyR2). Therefore, in the present study we sought to determine whether HRC wild type (HRC WT) and S96A mutant (HRC S96A) expression has a direct effect on SOICR. Using both cytosolic and intra-Ca(2+) store measurements in human embryonic kidney cells expressing RyR2, we found that HRC WT significantly inhibited the propensity for SOICR by buffering store free Ca(2+) and inhibiting store Ca(2+) uptake. In contrast, HRC S96A exhibited a markedly suppressed inhibitory effect on SOICR, which was attributed to an impaired ability to buffer store Ca(2+) and reduce store Ca(2+) uptake. In addition to impairing the ability of HRC to regulate bulk store Ca(2+), a proximity ligation assay demonstrated that the S96A mutation also disrupts the Ca(2+) microdomain around the RyR2, as it alters the Ca(2+) dependent association of RyR2 and HRC. Importantly, in contrast to previous reports, the absence of triadin in our experimental model illustrates that the S96A mutation in HRC can alter the propensity for SOICR without any interaction with triadin. Collectively, our results demonstrate that the human HRC mutation S96A leads to an increase in spontaneous Ca(2+) release and ultimately arrhythmias by disrupting the regulation of intra-store free Ca(2+). This is primarily due to an impaired ability to act as an effective bulk and local microdomain store Ca(2+) buffer.

  17. Was the C282Y mutation an Irish Gaelic mutation that the Vikings help disseminate?

    PubMed

    Whittington, C A

    2006-01-01

    The C282Y mutation is held to have arisen in either a Celtic or a Viking ancestor some 60 generations ago. While the Scandinavians have a high frequency of C282Y, the Irish have the highest frequency of the C282Y mutation in the world. However testing of the Irish people for C282Y has been patchy. The true frequency of the C282Y mutation in Ireland and specifically in the relatively isolated western province of Connaught is unknown. Establishment of the C282Y frequency in the Irish male population of Connaught with traditional Irish surnames, a group which has a virtual fixation for Y chromosome R1b3, could help establish C282Y as an Irish mutation. Elucidation of greater C282Y haplotype diversity for the Irish as opposed to the Scandinavians would indicate the Irish as the likely source population for C282Y. Taken together, linking of C282Y to the Irish Gaelic male population of Connaught and establishment of an Irish origin of the C282Y mutation would point to dissemination of the C282Y mutation by Viking raiders and colonizers.

  18. Targeted Next-Generation Sequencing Reveals Novel USH2A Mutations Associated with Diverse Disease Phenotypes: Implications for Clinical and Molecular Diagnosis

    PubMed Central

    Li, Huiping; Liu, Yani; Rong, Weining; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Zhao, Kanxing; Zhao, Chen

    2014-01-01

    USH2A mutations have been implicated in the disease etiology of several inherited diseases, including Usher syndrome type 2 (USH2), nonsyndromic retinitis pigmentosa (RP), and nonsyndromic deafness. The complex genetic and phenotypic spectrums relevant to USH2A defects make it difficult to manage patients with such mutations. In the present study, we aim to determine the genetic etiology and to characterize the correlated clinical phenotypes for three Chinese pedigrees with nonsyndromic RP, one with RP sine pigmento (RPSP), and one with USH2. Family histories and clinical details for all included patients were reviewed. Ophthalmic examinations included best corrected visual acuities, visual field measurements, funduscopy, and electroretinography. Targeted next-generation sequencing (NGS) was applied using two sequence capture arrays to reveal the disease causative mutations for each family. Genotype-phenotype correlations were also annotated. Seven USH2A mutations, including four missense substitutions (p.P2762A, p.G3320C, p.R3719H, and p.G4763R), two splice site variants (c.8223+1G>A and c.8559-2T>C), and a nonsense mutation (p.Y3745*), were identified as disease causative in the five investigated families, of which three reported to have consanguineous marriage. Among all seven mutations, six were novel, and one was recurrent. Two homozygous missense mutations (p.P2762A and p.G3320C) were found in one individual family suggesting a potential double hit effect. Significant phenotypic divergences were revealed among the five families. Three families of the five families were affected with early, moderated, or late onset RP, one with RPSP, and the other one with USH2. Our study expands the genotypic and phenotypic variability relevant to USH2A mutations, which would help with a clear insight into the complex genetic and phenotypic spectrums relevant to USH2A defects, and is complementary for a better management of patients with such mutations. We have also

  19. A novel mutation in NF1 is associated with diverse intra-familial phenotypic variation and astrocytoma in a Chinese family.

    PubMed

    Banerjee, Santasree; Dai, Yi; Liang, Shengran; Chen, Huishuang; Wang, Yanyan; Tang, Lihui; Wu, Jing; Huang, Hui

    2016-09-01

    Neurofibromatosis type 1 (NF1) is a dysregulated neurocutaneous disorder, characterized by neurofibromas and café-au-lait spots. NF1 is caused by mutations in the NF1 gene, encoding neurofibromin. Here, we present a clinical molecular study of a three-generation Chinese family with NF1. The proband was a male patient who showed café-au-lait spots and multiple subcutaneous neurofibromas over the whole body, but his siblings only had regional lesions. The man's daughter presented with severe headache and vomiting. Neurological examination revealed an intracranial space occupying lesion. Surgery was undertaken and the histopathological examination showed a grade I-II astrocytoma. Next-Generation sequencing (Illumina HiSeq2500 Analyzers; Illumina, San Diego, CA, USA) and Sanger sequencing (ABI PRISM 3730 automated sequencer; Applied Biosystems, Foster City, CA, USA) identified the c.227delA mutation in the NF1 gene in the man. The mutation is co-segregated with the disease phenotypes among the affected members of this family and was absent in 100 healthy controls. This novel mutation results in a frameshift (p.Asn78IlefsX7) as well as truncation of neurofibromin by formation of a premature stop codon. Our results not only extended the mutational and phenotypic spectra of the gene and the disease, but also highlight the importance of the other genetic or environmental factors in the development and severity of the disease. PMID:27234610

  20. Incidence in diverse pig populations of an IGF2 mutation with potential influence on meat quality and quantity: An assay based on real time PCR (RT-PCR).

    PubMed

    Carrodeguas, José Alberto; Burgos, Carmen; Moreno, Carlos; Sánchez, Ana Cristina; Ventanas, Sonia; Tarrafeta, Luis; Barcelona, José Antonio; López, Maria Otilia; Oria, Rosa; López-Buesa, Pascual

    2005-11-01

    IGF2, insulin-like growth factor 2, is implicated in myogenesis and lean meat content. A mutation in a single base (A for G substitution) of the gene for IGF2 (position 3072 in intron 3) has been recently described as the cause of a major QTL effect on muscle growth in pigs [Van Laere, A. S, Nguyen, M., Braunschweig, M., Nezer, C., Collete, C., & Moreau, L. et al. (2003). Nature, 425, 832-836]. We describe here a rapid assay based on real time PCR (RT-PCR) to detect this mutation. We have evaluated the incidence of the mutation in commercial pig crosses, in three populations of purebred Iberian or Iberian×Duroc crosses, and in cured meat products and wild boars. The incidence of the mutation varies among these groups. Penetrance of the A mutation is about 80% in the commercial population. Purebred Iberian pigs were all homozygous G/G whereas crosses of Iberian pigs were heterozygous (90%) or homozygous A/A (10%). The implications of this gene for the selection of Iberian pigs are discussed.

  1. A Point Mutation in the Ubiquitin Ligase RNF170 That Causes Autosomal Dominant Sensory Ataxia Destabilizes the Protein and Impairs Inositol 1,4,5-Trisphosphate Receptor-mediated Ca2+ Signaling.

    PubMed

    Wright, Forrest A; Lu, Justine P; Sliter, Danielle A; Dupré, Nicolas; Rouleau, Guy A; Wojcikiewicz, Richard J H

    2015-05-29

    RNF170 is an endoplasmic reticulum membrane ubiquitin ligase that contributes to the ubiquitination of activated inositol 1,4,5-trisphosphate (IP3) receptors, and also, when point mutated (arginine to cysteine at position 199), causes autosomal dominant sensory ataxia (ADSA), a disease characterized by neurodegeneration in the posterior columns of the spinal cord. Here we demonstrate that this point mutation inhibits RNF170 expression and signaling via IP3 receptors. Inhibited expression of mutant RNF170 was seen in cells expressing exogenous RNF170 constructs and in ADSA lymphoblasts, and appears to result from enhanced RNF170 autoubiquitination and proteasomal degradation. The basis for these effects was probed via additional point mutations, revealing that ionic interactions between charged residues in the transmembrane domains of RNF170 are required for protein stability. In ADSA lymphoblasts, platelet-activating factor-induced Ca(2+) mobilization was significantly impaired, whereas neither Ca(2+) store content, IP3 receptor levels, nor IP3 production were altered, indicative of a functional defect at the IP3 receptor locus, which may be the cause of neurodegeneration. CRISPR/Cas9-mediated genetic deletion of RNF170 showed that RNF170 mediates the addition of all of the ubiquitin conjugates known to become attached to activated IP3 receptors (monoubiquitin and Lys(48)- and Lys(63)-linked ubiquitin chains), and that wild-type and mutant RNF170 have apparently identical ubiquitin ligase activities toward IP3 receptors. Thus, the Ca(2+) mobilization defect seen in ADSA lymphoblasts is apparently not due to aberrant IP3 receptor ubiquitination. Rather, the defect likely reflects abnormal ubiquitination of other substrates, or adaptation to the chronic reduction in RNF170 levels.

  2. Single-Particle Tracking Shows that a Point Mutation in the Carnivore Parvovirus Capsid Switches Binding between Host-Specific Transferrin Receptors.

    PubMed

    Lee, Donald W; Allison, Andrew B; Bacon, Kaitlyn B; Parrish, Colin R; Daniel, Susan

    2016-05-01

    Determining how viruses infect new hosts via receptor-binding mechanisms is important for understanding virus emergence. We studied the binding kinetics of canine parvovirus (CPV) variants isolated from raccoons-a newly recognized CPV host-to different carnivore transferrin receptors (TfRs) using single-particle tracking. Our data suggest that CPV may utilize adhesion-strengthening mechanisms during TfR binding and that a single mutation in the viral capsid at VP2 position 300 can profoundly alter receptor binding and infectivity. PMID:26889026

  3. Single-Particle Tracking Shows that a Point Mutation in the Carnivore Parvovirus Capsid Switches Binding between Host-Specific Transferrin Receptors

    PubMed Central

    Lee, Donald W.; Allison, Andrew B.; Bacon, Kaitlyn B.

    2016-01-01

    Determining how viruses infect new hosts via receptor-binding mechanisms is important for understanding virus emergence. We studied the binding kinetics of canine parvovirus (CPV) variants isolated from raccoons—a newly recognized CPV host—to different carnivore transferrin receptors (TfRs) using single-particle tracking. Our data suggest that CPV may utilize adhesion-strengthening mechanisms during TfR binding and that a single mutation in the viral capsid at VP2 position 300 can profoundly alter receptor binding and infectivity. PMID:26889026

  4. Single-Particle Tracking Shows that a Point Mutation in the Carnivore Parvovirus Capsid Switches Binding between Host-Specific Transferrin Receptors.

    PubMed

    Lee, Donald W; Allison, Andrew B; Bacon, Kaitlyn B; Parrish, Colin R; Daniel, Susan

    2016-05-01

    Determining how viruses infect new hosts via receptor-binding mechanisms is important for understanding virus emergence. We studied the binding kinetics of canine parvovirus (CPV) variants isolated from raccoons-a newly recognized CPV host-to different carnivore transferrin receptors (TfRs) using single-particle tracking. Our data suggest that CPV may utilize adhesion-strengthening mechanisms during TfR binding and that a single mutation in the viral capsid at VP2 position 300 can profoundly alter receptor binding and infectivity.

  5. Prevalence of HIV-1 Subtypes and Drug Resistance-Associated Mutations in HIV-1-Positive Treatment-Naive Pregnant Women in Pointe Noire, Republic of the Congo (Kento-Mwana Project).

    PubMed

    Bruzzone, Bianca; Saladini, Francesco; Sticchi, Laura; Mayinda Mboungou, Franc A; Barresi, Renata; Caligiuri, Patrizia; Calzi, Anna; Zazzi, Maurizio; Icardi, Giancarlo; Viscoli, Claudio; Bisio, Francesca

    2015-08-01

    The Kento-Mwana project was carried out in Pointe Noire, Republic of the Congo, to prevent mother-to-child HIV-1 transmission. To determine the prevalence of different subtypes and transmitted drug resistance-associated mutations, 95 plasma samples were collected at baseline from HIV-1-positive naive pregnant women enrolled in the project during the years 2005-2008. Full protease and partial reverse transcriptase sequencing was performed and 68/95 (71.6%) samples were successfully sequenced. Major mutations to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors were detected in 4/68 (5.9%), 3/68 (4.4%), and 2/68 (2.9%) samples, respectively. Phylogenetic analysis of HIV-1 isolates showed a high prevalence of unique recombinant forms (24/68, 35%), followed by CRF45_cpx (7/68, 10.3%) and subsubtype A3 and subtype G (6/68 each, 8.8%). Although the prevalence of transmitted drug resistance mutations appears to be currently limited, baseline HIV-1 genotyping is highly advisable in conjunction with antiretroviral therapy scale-up in resource-limited settings to optimize treatment and prevent perinatal transmission. PMID:25970260

  6. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  7. SAAFEC: Predicting the Effect of Single Point Mutations on Protein Folding Free Energy Using a Knowledge-Modified MM/PBSA Approach

    PubMed Central

    Getov, Ivan; Petukh, Marharyta; Alexov, Emil

    2016-01-01

    Folding free energy is an important biophysical characteristic of proteins that reflects the overall stability of the 3D structure of macromolecules. Changes in the amino acid sequence, naturally occurring or made in vitro, may affect the stability of the corresponding protein and thus could be associated with disease. Several approaches that predict the changes of the folding free energy caused by mutations have been proposed, but there is no method that is clearly superior to the others. The optimal goal is not only to accurately predict the folding free energy changes, but also to characterize the structural changes induced by mutations and the physical nature of the predicted folding free energy changes. Here we report a new method to predict the Single Amino Acid Folding free Energy Changes (SAAFEC) based on a knowledge-modified Molecular Mechanics Poisson-Boltzmann (MM/PBSA) approach. The method is comprised of two main components: a MM/PBSA component and a set of knowledge based terms delivered from a statistical study of the biophysical characteristics of proteins. The predictor utilizes a multiple linear regression model with weighted coefficients of various terms optimized against a set of experimental data. The aforementioned approach yields a correlation coefficient of 0.65 when benchmarked against 983 cases from 42 proteins in the ProTherm database. Availability: the webserver can be accessed via http://compbio.clemson.edu/SAAFEC/. PMID:27070572

  8. Evolved Osmotolerant Escherichia coli Mutants Frequently Exhibit Defective N-Acetylglucosamine Catabolism and Point Mutations in Cell Shape-Regulating Protein MreB

    PubMed Central

    Winkler, James D.; Garcia, Carlos; Olson, Michelle; Callaway, Emily

    2014-01-01

    Biocatalyst robustness toward stresses imposed during fermentation is important for efficient bio-based production. Osmotic stress, imposed by high osmolyte concentrations or dense populations, can significantly impact growth and productivity. In order to better understand the osmotic stress tolerance phenotype, we evolved sexual (capable of in situ DNA exchange) and asexual Escherichia coli strains under sodium chloride (NaCl) stress. All isolates had significantly improved growth under selection and could grow in up to 0.80 M (47 g/liter) NaCl, a concentration that completely inhibits the growth of the unevolved parental strains. Whole genome resequencing revealed frequent mutations in genes controlling N-acetylglucosamine catabolism (nagC, nagA), cell shape (mrdA, mreB), osmoprotectant uptake (proV), and motility (fimA). Possible epistatic interactions between nagC, nagA, fimA, and proV deletions were also detected when reconstructed as defined mutations. Biofilm formation under osmotic stress was found to be decreased in most mutant isolates, coupled with perturbations in indole secretion. Transcriptional analysis also revealed significant changes in ompACGL porin expression and increased transcription of sulfonate uptake systems in the evolved mutants. These findings expand our current knowledge of the osmotic stress phenotype and will be useful for the rational engineering of osmotic tolerance into industrial strains in the future. PMID:24727267

  9. Coupling between fast and slow inactivation revealed by analysis of a point mutation (F1304Q) in mu 1 rat skeletal muscle sodium channels.

    PubMed Central

    Nuss, H B; Balser, J R; Orias, D W; Lawrence, J H; Tomaselli, G F; Marban, E

    1996-01-01

    1. We sought to elucidate the mechanism of the defective inactivation that characterizes sodium channels containing mutations in the cytoplasmic loop between the third and fourth domains (the III-IV linker). Specifically, we measured whole-cell and single-channel currents through wild-type and F1304Q mutant mu 1 rat skeletal muscle Na+ channels expressed in Xenopus laevis oocytes. 2. In wild-type channels, inactivation is complete and the faster of two decay components predominates. In F1304Q, inactivation is incomplete; the slow decay component is larger in amplitude and slower than in wild-type. The fraction of non-inactivating current is substantial (37 +/- 2% of peak current at -20 mV) in F1304Q. 3. Cell-attached patch recordings confirmed the profound kinetic differences and indicated that permeation was not altered by the F1304Q mutation. The F1304Q phenotype must be conferred entirely by changes in gating properties and is not remedied by coexpression with the beta 1-subunit. 4. Recovery from inactivation of F1304Q channels is faster than for wild-type channels and three exponentials are required to describe recovery adequately following long (5 s) depolarizations. Thus, there are three inactivated states even in 'inactivation-deficient' F1304Q channels. 5. The steady-state voltage dependence of F1304Q inactivation is right-shifted by 26 +/- 2 mV. 6. A gating model incorporating three inactivated states, all directly accessible from multiple closed states or the open state, was constrained to fit wild-type and F1304Q inactivation (h infinitive) data and repriming data simultaneously. While it was necessary to alter the rate constants entering and exiting all three inactivated states, the model accounted for the F1304Q-induced rightward shift in steady-state inactivation without imposing voltage dependence on the inactivation rate constants. 7. We conclude that the F1304Q mutation in mu 1 sodium channels modifies several inactivation processes simultaneously

  10. Validation of Next-Generation Sequencing of Entire Mitochondrial Genomes and the Diversity of Mitochondrial DNA Mutations in Oral Squamous Cell Carcinoma

    PubMed Central

    Kloss-Brandstätter, Anita; Weissensteiner, Hansi; Erhart, Gertraud; Schäfer, Georg; Forer, Lukas; Schönherr, Sebastian; Pacher, Dominic; Seifarth, Christof; Stöckl, Andrea; Fendt, Liane; Sottsas, Irma; Klocker, Helmut; Huck, Christian W.; Rasse, Michael; Kronenberg, Florian; Kloss, Frank R.

    2015-01-01

    Background Oral squamous cell carcinoma (OSCC) is mainly caused by smoking and alcohol abuse and shows a five-year survival rate of ~50%. We aimed to explore the variation of somatic mitochondrial DNA (mtDNA) mutations in primary oral tumors, recurrences and metastases. Methods We performed an in-depth validation of mtDNA next-generation sequencing (NGS) on an Illumina HiSeq 2500 platform for its application to cancer tissues, with the goal to detect low-level heteroplasmies and to avoid artifacts. Therefore we genotyped the mitochondrial genome (16.6 kb) from 85 tissue samples (tumors, recurrences, resection edges, metastases and blood) collected from 28 prospectively recruited OSCC patients applying both Sanger sequencing and high-coverage NGS (~35,000 reads per base). Results We observed a strong correlation between Sanger sequencing and NGS in estimating the mixture ratio of heteroplasmies (r = 0.99; p<0.001). Non-synonymous heteroplasmic variants were enriched among cancerous tissues. The proportions of somatic and inherited variants in a given gene region were strongly correlated (r = 0.85; p<0.001). Half of the patients shared mutations between benign and cancerous tissue samples. Low level heteroplasmies (<10%) were more frequent in benign samples compared to tumor samples, where heteroplasmies >10% were predominant. Four out of six patients who developed a local tumor recurrence showed mutations in the recurrence that had also been observed in the primary tumor. Three out of five patients, who had tumor metastases in the lymph nodes of their necks, shared mtDNA mutations between primary tumors and lymph node metastases. The percentage of mutation heteroplasmy increased from the primary tumor to lymph node metastases. Conclusions We conclude that Sanger sequencing is valid for heteroplasmy quantification for heteroplasmies ≥10% and that NGS is capable of reliably detecting and quantifying heteroplasmies down to the 1%-level. The finding of shared

  11. Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum.

    PubMed

    Yeam, Inhwa; Kang, Byoung-Cheorl; Lindeman, Wouter; Frantz, James D; Faber, Nanne; Jahn, Molly M

    2005-12-01

    Marker-assisted selection has been widely implemented in crop breeding and can be especially useful in cases where the traits of interest show recessive or polygenic inheritance and/or are difficult or impossible to select directly. Most indirect selection is based on DNA polymorphism linked to the target trait, resulting in error when the polymorphism recombines away from the mutation responsible for the trait and/or when the linkage between the mutation and the polymorphism is not conserved in all relevant genetic backgrounds. In this paper, we report the generation and use of molecular markers that define loci for selection using cleaved amplified polymorphic sequences (CAPS). These CAPS markers are based on nucleotide polymorphisms in the resistance gene that are perfectly correlated with disease resistance, the trait of interest. As a consequence, the possibility that the marker will not be linked to the trait in all backgrounds or that the marker will recombine away from the trait is eliminated. We have generated CAPS markers for three recessive viral resistance alleles used widely in pepper breeding, pvr1, pvr1 (1), and pvr1 (2). These markers are based on single nucleotide polymorphisms (SNPs) within the coding region of the pvr1 locus encoding an eIF4E homolog on chromosome 3. These three markers define a system of indirect selection for potyvirus resistance in Capsicum based on genomic sequence. We demonstrate the utility of this marker system using commercially significant germplasm representing two Capsicum species. Application of these markers to Capsicum improvement is discussed.

  12. A point mutation in the EGF-4 domain of β3 integrin is responsible for the formation of the Seca platelet alloantigen and affects receptor function

    PubMed Central

    Sachs, Ulrich J.; Bakchoul, Tamam; Eva, Olga; Giptner, Astrid; Bein, Gregor; Aster, Richard H.; Gitter, Maria; Peterson, Julie; Santoso, Sentot

    2013-01-01

    Summary Neonatal alloimmune thrombocytopenia (NAIT) is caused by fetomaternal platelet incompatibility with maternal antibodies crossing the placenta and destroying fetal platelets. Antibodies against human platelet antigen-1a (HPA-1a) and HPA-5b are responsible for the majority of NAIT cases. We observed a suspected NAIT in a newborn with a platelet count of 25 G/l and petechial haemorrhages. Serological analysis of maternal serum revealed an immunisation against αIIbβ3 on paternal platelets only, indicating the presence of an antibody against a new rare alloantigen (Seca) residing on αIIbβ3. The location of Seca on αIIbβ3 was confirmed by immunoprecipitation. Nucleotide sequence analysis of paternal β3 revealed a single nucleotide exchange (G1818T) in exon 11 of the β3 gene (ITGB3), changing Lys580 (wild-type) to Asn580 (Seca). Two additional members of the family Sec were typed Seca positive, but none of 300 blood donors. Chinese hamster ovary cells expressing Asn580, but not Lys580 αIIbβ3, bound anti-Seca, which was corroborated by immunoprecipitation. Adhesion of transfected cells onto immobilised fibrinogen showed reduced binding of the Asn580 variant compared to wild-type αIIbβ3. Analysis of transfected cells with anti-LIBS and PAC-1 antibody showed reduced binding when compared to the wild-type. No such effects were observed with Seca positive platelets, which, however, are heterozygous for the Lys580Asn mutation. In this study, we describe a NAIT case caused by maternal alloimmunisation against a new antigen on αIIbβ3. Analysis with mutant transfected cells showed that the Lys580Asn mutation responsible for the formation of the Seca antigenic determinant affects αIIbβ3 receptor function. PMID:22116617

  13. A Novel Point Mutation in Helix 10 of the Human Glucocorticoid Receptor Causes Generalized Glucocorticoid Resistance by Disrupting the Structure of the Ligand-Binding Domain

    PubMed Central

    Nader, Nancy; Bachrach, Bert E.; Hurt, Darrell E.; Gajula, Sonia; Pittman, Amy; Lescher, Rachel; Kino, Tomoshige

    2010-01-01

    Context: Generalized glucocorticoid resistance syndrome is a rare familial or sporadic condition characterized by partial insensitivity to glucocorticoids, caused by mutations in the glucocorticoid receptor (GR) gene. Most of the reported cases are adults, demonstrating symptoms associated with mineralocorticoid and/or adrenal androgen excess caused by compensatively increased secretion of the adrenocorticotropic hormone. Patient: We identified a new 2-yr-old female case of generalized glucocorticoid resistance syndrome. The patient (TJ) presented with a generalized seizure associated with hypoglycemia and hypokalemia. She also had hypertension and premature pubarche, whereas dexamethasone effectively suppressed these clinical manifestations. Results: The patient’s GR gene had a heterozygotic mutation (G→A) at nucleotide position 2141 (exon 8), which resulted in substitution of arginine by glutamine at amino acid position 714 in the ligand-binding domain (LBD) of the GRα. Molecular analysis revealed that the mutant receptor had significantly impaired transactivation activity with a 2-fold reduction in affinity to ligand. It showed attenuated transactivation of the activation function (AF)-2 and reduced binding to a p160 nuclear receptor coactivator. Computer-based structural analysis revealed that replacement of arginine by glutamine at position 714 transmitted a conformational change to the LBD and the AF-2 transactivation surface, resulting in a decreased binding affinity to ligand and to the LXXLL coactivator motif. Conclusions: Dexamethasone treatment is effective in controlling the premature pubarche, hypoglycemia, hypertension, and hypokalemia in this child case, wherein arginine 714 plays a key role in the proper formation of the ligand-binding pocket and the AF-2 surface of the GRα LBD. PMID:20335448

  14. Near Real-time Immuno-optical Sensor for Diagnosing Single Point Mutation (A model System: Sensor for Factor V Leiden Diagnosis)

    PubMed Central

    Kang, Kyung A.; Ren, Yongjie; Sharma, Vivek R.; Peiper, Stephen C.

    2009-01-01

    Factor V leiden (FVL) is an abnormality of factor V (FV), a blood coagulation factor. It is a hereditary blood coagulation disorder with a high frequency (3–7% of general population). The most common type of FVL is caused by a single amino acid mutation and, therefore, its diagnosis is currently done only by DNA analysis, which takes a long time and is expensive. We have developed a rapid, accurate, and cost-effective, sandwich immuno-optical sensing method. To produce monoclonal antibodies against FV or FVL, having minimal cross-reactivity with the other molecule, a 20 amino acid sequence (20-mer) of FV or FVL at around the mutation site was utilized. The antibodies were screened first with the 20-mers and then with native FV or FVL molecules and they showed some cross reactivity. Using two antibodies having strongest affinity to either FV or FVL molecule, a FV and a FVL preferred sensors, were produced. After verifying that the levels of the antibody affinity to the two different molecules remained constant with changes in analyte concentration, a two-sensor system is developed to quantify FV and FVL in plasma samples. The system quantified the levels of FV and FVL at the maximum error of 0.5 μg/ml-plasma, in their physiological concentration range of 0–12 μg/ml-plasma. The levels of both molecules may provide us whether the patient has FVL or not but also the seriousness level of the disease (homozygous and different level of heterozygous). PMID:19318242

  15. Genome destabilizing mutator alleles drive specific mutational trajectories in Saccharomyces cerevisiae.

    PubMed

    Stirling, Peter C; Shen, Yaoqing; Corbett, Richard; Jones, Steven J M; Hieter, Philip

    2014-02-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13-Stn1-Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes.

  16. Genome Destabilizing Mutator Alleles Drive Specific Mutational Trajectories in Saccharomyces cerevisiae

    PubMed Central

    Stirling, Peter C.; Shen, Yaoqing; Corbett, Richard; Jones, Steven J. M.; Hieter, Philip

    2014-01-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13–Stn1–Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes. PMID:24336748

  17. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations.

    PubMed

    Wang, Bo; Li, Liwei; Hurley, Thomas D; Meroueh, Samy O

    2013-10-28

    End-point free energy calculations using MM-GBSA and MM-PBSA provide a detailed understanding of molecular recognition in protein-ligand interactions. The binding free energy can be used to rank-order protein-ligand structures in virtual screening for compound or target identification. Here, we carry out free energy calculations for a diverse set of 11 proteins bound to 14 small molecules using extensive explicit-solvent MD simulations. The structure of these complexes was previously solved by crystallography and their binding studied with isothermal titration calorimetry (ITC) data enabling direct comparison to the MM-GBSA and MM-PBSA calculations. Four MM-GBSA and three MM-PBSA calculations reproduced the ITC free energy within 1 kcal·mol(-1) highlighting the challenges in reproducing the absolute free energy from end-point free energy calculations. MM-GBSA exhibited better rank-ordering with a Spearman ρ of 0.68 compared to 0.40 for MM-PBSA with dielectric constant (ε = 1). An increase in ε resulted in significantly better rank-ordering for MM-PBSA (ρ = 0.91 for ε = 10), but larger ε significantly reduced the contributions of electrostatics, suggesting that the improvement is due to the nonpolar and entropy components, rather than a better representation of the electrostatics. The SVRKB scoring function applied to MD snapshots resulted in excellent rank-ordering (ρ = 0.81). Calculations of the configurational entropy using normal-mode analysis led to free energies that correlated significantly better to the ITC free energy than the MD-based quasi-harmonic approach, but the computed entropies showed no correlation with the ITC entropy. When the adaptation energy is taken into consideration by running separate simulations for complex, apo, and ligand (MM-PBSAADAPT), there is less agreement with the ITC data for the individual free energies, but remarkably good rank-ordering is observed (ρ = 0.89). Interestingly, filtering MD snapshots by prescoring

  18. Concordance of a point mutation 5' to the A gamma-globin gene with A gamma beta + hereditary persistence of fetal hemoglobin in Greeks.

    PubMed

    Waber, P G; Bender, M A; Gelinas, R E; Kattamis, C; Karaklis, A; Sofroniadou, K; Stamatoyannopoulos, G; Collins, F S; Forget, B G; Kazazian, H H

    1986-02-01

    In the Greek A gamma beta + type of hereditary persistence of fetal hemoglobin (HPFH), adult heterozygotes produce about 20% fetal hemoglobin (HbF), which is predominantly of the A gamma chain variety. The affected beta-globin gene cluster produces near normal amounts of beta-like globin, but in a A gamma to beta ratio of 20:80 instead of 0.5:99.5. Gelinas et al and Collins et al have shown a G to A change 117 nucleotides 5' to the A gamma gene in two Greeks with A gamma beta + HPFH. To demonstrate that this change is not a neutral polymorphism, we carried out hybridization with oligonucleotide probes (19mers) specific for the normal and the mutant sequences. While normal probe identified the A gamma fragment in genomic DNA of all subjects studied, mutant probe was positive only in Greeks with A gamma beta + HPFH. In sum, 108 beta-globin gene clusters of individuals without HPFH were negative when tested with mutant probe, but all 11 affected individuals of six families with Greek A gamma beta + HPFH (two previously sequenced and four new families) were positive with mutant probe. These data support the conclusion that the -117 mutation is causative of A gamma beta + HPFH in Greeks.

  19. Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC.

    PubMed

    Chubukov, Victor; Mingardon, Florence; Schackwitz, Wendy; Baidoo, Edward E K; Alonso-Gutierrez, Jorge; Hu, Qijun; Lee, Taek Soon; Keasling, Jay D; Mukhopadhyay, Aindrila

    2015-07-01

    Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. In this study, we characterized a limonene-tolerant strain of Escherichia coli and found a mutation in ahpC, encoding alkyl hydroperoxidase, which alleviated limonene toxicity. We show that the acute toxicity previously attributed to limonene is largely due to the common oxidation product limonene hydroperoxide, which forms spontaneously in aerobic environments. The mutant AhpC protein with an L-to-Q change at position 177 (AhpC(L177Q)) was able to alleviate this toxicity by reducing the hydroperoxide to a more benign compound. We show that the degree of limonene toxicity is a function of its oxidation level and that nonoxidized limonene has relatively little toxicity to wild-type E. coli cells. Our results have implications for both the renewable production of limonene and the applications of limonene as an antimicrobial. PMID:25934627

  20. Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC

    PubMed Central

    Chubukov, Victor; Mingardon, Florence; Schackwitz, Wendy; Baidoo, Edward E. K.; Alonso-Gutierrez, Jorge; Hu, Qijun; Lee, Taek Soon; Keasling, Jay D.

    2015-01-01

    Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. In this study, we characterized a limonene-tolerant strain of Escherichia coli and found a mutation in ahpC, encoding alkyl hydroperoxidase, which alleviated limonene toxicity. We show that the acute toxicity previously attributed to limonene is largely due to the common oxidation product limonene hydroperoxide, which forms spontaneously in aerobic environments. The mutant AhpC protein with an L-to-Q change at position 177 (AhpCL177Q) was able to alleviate this toxicity by reducing the hydroperoxide to a more benign compound. We show that the degree of limonene toxicity is a function of its oxidation level and that nonoxidized limonene has relatively little toxicity to wild-type E. coli cells. Our results have implications for both the renewable production of limonene and the applications of limonene as an antimicrobial. PMID:25934627

  1. Amyloid transition of ubiquitin on silver nanoparticles produced by pulsed laser ablation in liquid as a function of stabilizer and single-point mutations.

    PubMed

    Mangini, Vincenzo; Dell'Aglio, Marcella; De Stradis, Angelo; De Giacomo, Alessandro; De Pascale, Olga; Natile, Giovanni; Arnesano, Fabio

    2014-08-18

    The interaction of nanoparticles with proteins has emerged as a key issue in addressing the problem of nanotoxicity. We investigated the interaction of silver nanoparticles (AgNPs), produced by laser ablation with human ubiquitin (Ub), a protein essential for degradative processes in cells. The surface plasmon resonance peak of AgNPs indicates that Ub is rapidly adsorbed on the AgNP surface yielding a protein corona; the Ub-coated AgNPs then evolve into clusters held together by an amyloid form of the protein, as revealed by binding of thioflavin T fluorescent dye. Transthyretin, an inhibitor of amyloid-type aggregation, impedes aggregate formation and disrupts preformed AgNP clusters. In the presence of sodium citrate, a common stabilizer that confers an overall negative charge to the NPs, Ub is still adsorbed on the AgNP surface, but no clustering is observed. Ub mutants bearing a single mutation at one edge β strand (i.e. Glu16Val) or in loop (Glu18Val) behave in a radically different manner.

  2. Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC.

    PubMed

    Chubukov, Victor; Mingardon, Florence; Schackwitz, Wendy; Baidoo, Edward E K; Alonso-Gutierrez, Jorge; Hu, Qijun; Lee, Taek Soon; Keasling, Jay D; Mukhopadhyay, Aindrila

    2015-07-01

    Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. In this study, we characterized a limonene-tolerant strain of Escherichia coli and found a mutation in ahpC, encoding alkyl hydroperoxidase, which alleviated limonene toxicity. We show that the acute toxicity previously attributed to limonene is largely due to the common oxidation product limonene hydroperoxide, which forms spontaneously in aerobic environments. The mutant AhpC protein with an L-to-Q change at position 177 (AhpC(L177Q)) was able to alleviate this toxicity by reducing the hydroperoxide to a more benign compound. We show that the degree of limonene toxicity is a function of its oxidation level and that nonoxidized limonene has relatively little toxicity to wild-type E. coli cells. Our results have implications for both the renewable production of limonene and the applications of limonene as an antimicrobial.

  3. Enhancement of the Chaperone Activity of Alkyl Hydroperoxide Reductase C from Pseudomonas aeruginosa PAO1 Resulting from a Point-Specific Mutation Confers Heat Tolerance in Escherichia coli

    PubMed Central

    Lee, Jae Taek; Lee, Seung Sik; Mondal, Suvendu; Tripathi, Bhumi Nath; Kim, Siu; Lee, Keun Woo; Hong, Sung Hyun; Bai, Hyoung-Woo; Cho, Jae-Young; Chung, Byung Yeoup

    2016-01-01

    Alkyl hydroperoxide reductase subunit C from Pseudomonas aeruginosa PAO1 (PaAhpC) is a member of the 2-Cys peroxiredoxin family. Here, we examined the peroxidase and molecular chaperone functions of PaAhpC using a site-directed mutagenesis approach by substitution of Ser and Thr residues with Cys at positions 78 and 105 located between two catalytic cysteines. Substitution of Ser with Cys at position 78 enhanced the chaperone activity of the mutant (S78C-PaAhpC) by approximately 9-fold compared with that of the wild-type protein (WT-PaAhpC). This increased activity may have been associated with the proportionate increase in the high-molecular-weight (HMW) fraction and enhanced hydrophobicity of S78C-PaAhpC. Homology modeling revealed that mutation of Ser78 to Cys78 resulted in a more compact decameric structure than that observed in WT-PaAhpC and decreased the atomic distance between the two neighboring sulfur atoms of Cys78 in the dimer-dimer interface of S78C-PaAhpC, which could be responsible for the enhanced hydrophobic interaction at the dimer-dimer interface. Furthermore, complementation assays showed that S78C-PaAhpC exhibited greatly improved the heat tolerance, resulting in enhanced survival under thermal stress. Thus, addition of Cys at position 78 in PaAhpC modulated the functional shifting of this protein from a peroxidase to a chaperone. PMID:27457208

  4. Enhancement of the Chaperone Activity of Alkyl Hydroperoxide Reductase C from Pseudomonas aeruginosa PAO1 Resulting from a Point-Specific Mutation Confers Heat Tolerance in Escherichia coli.

    PubMed

    Lee, Jae Taek; Lee, Seung Sik; Mondal, Suvendu; Tripathi, Bhumi Nath; Kim, Siu; Lee, Keun Woo; Hong, Sung Hyun; Bai, Hyoung-Woo; Cho, Jae-Young; Chung, Byung Yeoup

    2016-08-31

    Alkyl hydroperoxide reductase subunit C from Pseudomonas aeruginosa PAO1 (PaAhpC) is a member of the 2-Cys peroxiredoxin family. Here, we examined the peroxidase and molecular chaperone functions of PaAhpC using a site-directed mutagenesis approach by substitution of Ser and Thr residues with Cys at positions 78 and 105 located between two catalytic cysteines. Substitution of Ser with Cys at position 78 enhanced the chaperone activity of the mutant (S78C-PaAhpC) by approximately 9-fold compared with that of the wild-type protein (WT-PaAhpC). This increased activity may have been associated with the proportionate increase in the high-molecular-weight (HMW) fraction and enhanced hydrophobicity of S78C-PaAhpC. Homology modeling revealed that mutation of Ser(78) to Cys(78) resulted in a more compact decameric structure than that observed in WT-PaAhpC and decreased the atomic distance between the two neighboring sulfur atoms of Cys(78) in the dimer-dimer interface of S78C-PaAhpC, which could be responsible for the enhanced hydrophobic interaction at the dimer-dimer interface. Furthermore, complementation assays showed that S78C-PaAhpC exhibited greatly improved the heat tolerance, resulting in enhanced survival under thermal stress. Thus, addition of Cys at position 78 in PaAhpC modulated the functional shifting of this protein from a peroxidase to a chaperone. PMID:27457208

  5. Using diverse U.S. beef cattle genomes to identify missense mutations in EPAS1, a gene associated with high-altitude pulmonary hypertension

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of whole genome sequence (WGS) data has made it possible to discover protein variants in silico. However, bovine WGS databases comprised of related influential sires from relatively few breeds tend to under represent the breadth of genetic diversity in U.S. beef cattle. Thus, our ...

  6. Using diverse U.S. beef cattle genomes to identify missense mutations in EPAS1, a gene associated with pulmonary hypertension

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of whole genome sequence (WGS) data has made it possible to discover protein variants in silico. However, existing bovine WGS databases do not show data in a form conducive to protein variant analysis, and tend to under represent the breadth of genetic diversity in U.S. beef cattle...

  7. Hypothalamic-pituitary-ovarian axis during infancy, early and late prepuberty in an aromatase-deficient girl who is a compound heterocygote for two new point mutations of the CYP19 gene.

    PubMed

    Belgorosky, Alicia; Pepe, Carolina; Marino, Roxana; Guercio, Gabriela; Saraco, Nora; Vaiani, Elisa; Rivarola, Marco A

    2003-11-01

    A loss of function mutation of the CYP19 aromatase gene leads to excess circulating androgens in the fetus and in the mother, resulting in ambiguous genitalia in the female fetus. Later on, lack of aromatase is responsible for sexual infantilism, primary amenorrhea, tall stature, and multicystic ovaries, even in preadolescent girls. Up to now, 11 CYP19 aromatase point mutations and 10 well-documented cases have been reported. In the present case, we are reporting the clinical and hormonal follow-up, from birth to 7 yr of age, of an affected girl with ambiguous genitalia. Gene analysis showed that she was a compound heterozygote for two new CYP19 aromatase point mutations. In the father's allele, there was a consensus 5' splice donor sequence mutation, GAA-AAA at cDNA position bp 655 in exon 5, which probably results in a cryptic donor site. In the mother's allele, there was a base A deletion in exon 9 (Delta A GLU 412X), causing a frame shift mutation, and a stop codon after 98 bp (33 codons) downstream, altering the critical heme-binding region. Basal serum LH and FSH levels were high at 8 d of age (42.9 and 51.3 U/liter), 26 d of age (76.2 and 119 U/liter), and 60 d of age (58.7 and 150 U/liter, respectively). Both gonadotropins dropped dramatically between the second and fifth months of age (to 1.79 and 14.9 U/liter) but remained higher than in normal control girls (0.64 and 8.5 U/liter, respectively). Serum testosterone (T) and androstenedione (Delta(4)A) levels were high during the first month, but Delta(4)A was normal at 2 months of age. However, at 5 months of age, along with significant decrements of serum LH and FSH levels and increments in serum Delta(4)A and T levels, a large ovarian cyst was removed from each gonad. Relatively high levels of T [27.3 ng/ml (94.6 nmol/liter); control, 34.9 ng/ml (121 nmol/liter)], but not of estradiol [1.8 ng/ml (6.6 nmol/liter); control 62.9 ng/ml (231 nmol/liter)], and a high T/estradiol ratio [15.2; control < 1] were

  8. A Novel Point Mutation in the Amino Terminal Domain of the Human Glucocorticoid Receptor (hGR) Gene Enhancing hGR-Mediated Gene Expression

    PubMed Central

    Charmandari, Evangelia; Ichijo, Takamasa; Jubiz, William; Baid, Smita; Zachman, Keith; Chrousos, George P.; Kino, Tomoshige

    2008-01-01

    Context: Interindividual variations in glucocorticoid sensitivity have been associated with manifestations of cortisol excess or deficiency and may be partly explained by polymorphisms in the human glucocorticoid receptor (hGR) gene. We studied a 43-yr-old female, who presented with manifestations consistent with tissue-selective glucocorticoid hypersensitivity. We detected a novel, single, heterozygous nucleotide (G → C) substitution at position 1201 (exon 2) of the hGR gene, which resulted in aspartic acid to histidine substitution at amino acid position 401 in the amino-terminal domain of the hGRα. We investigated the molecular mechanisms of action of the natural mutant receptor hGRαD401H. Methods-Results: Compared with the wild-type hGRα, the mutant receptor hGRαD401H demonstrated a 2.4-fold increase in its ability to transactivate the glucocorticoid-inducible mouse mammary tumor virus promoter in response to dexamethasone but had similar affinity for the ligand (dissociation constant = 6.2 ± 0.6 vs. 6.1 ± 0.6 nm) and time to nuclear translocation (14.75 ± 0.25 vs. 14.25 ± 1.13 min). The mutant receptor hGRαD401H did not exert a dominant positive or negative effect upon the wild-type receptor, it preserved its ability to bind to glucocorticoid response elements, and displayed a normal interaction with the glucocorticoid receptor-interacting protein 1 coactivator. Conclusions: The mutant receptor hGRαD401H enhances the transcriptional activity of glucocorticoid-responsive genes. The presence of the D401H mutation may predispose subjects to obesity, hypertension, and other manifestations of the metabolic syndrome. PMID:18827003

  9. A point mutation in the [2Fe–2S] cluster binding region of the NAF-1 protein (H114C) dramatically hinders the cluster donor properties

    SciTech Connect

    Tamir, Sagi; Eisenberg-Domovich, Yael; Conlan, Andrea R.; Stofleth, Jason T.; Lipper, Colin H.; Paddock, Mark L.; Mittler, Ron; Jennings, Patricia A.; Livnah, Oded Nechushtai, Rachel

    2014-06-01

    NAF-1 has been shown to be related with human health and disease, is upregulated in epithelial breast cancer and suppression of its expression significantly suppresses tumor growth. It is shown that replacement of the single His ligand with Cys resulted in dramatic changes to the properties of its 2Fe-2S clusters without any global crystal structural changes. NAF-1 is an important [2Fe–2S] NEET protein associated with human health and disease. A mis-splicing mutation in NAF-1 results in Wolfram Syndrome type 2, a lethal childhood disease. Upregulation of NAF-1 is found in epithelial breast cancer cells, and suppression of NAF-1 expression by knockdown significantly suppresses tumor growth. Key to NAF-1 function is the NEET fold with its [2Fe–2S] cluster. In this work, the high-resolution structure of native NAF-1 was determined to 1.65 Å resolution (R factor = 13.5%) together with that of a mutant in which the single His ligand of its [2Fe–2S] cluster, His114, was replaced by Cys. The NAF-1 H114C mutant structure was determined to 1.58 Å resolution (R factor = 16.0%). All structural differences were localized to the cluster binding site. Compared with native NAF-1, the [2Fe–2S] clusters of the H114C mutant were found to (i) be 25-fold more stable, (ii) have a redox potential that is 300 mV more negative and (iii) have their cluster donation/transfer function abolished. Because no global structural differences were found between the mutant and the native (wild-type) NAF-1 proteins, yet significant functional differences exist between them, the NAF-1 H114C mutant is an excellent tool to decipher the underlying biological importance of the [2Fe–2S] cluster of NAF-1 in vivo.

  10. A point mutation in the [2Fe-2S] cluster binding region of the NAF-1 protein (H114C) dramatically hinders the cluster donor properties.

    PubMed

    Tamir, Sagi; Eisenberg-Domovich, Yael; Conlan, Andrea R; Stofleth, Jason T; Lipper, Colin H; Paddock, Mark L; Mittler, Ron; Jennings, Patricia A; Livnah, Oded; Nechushtai, Rachel

    2014-06-01

    NAF-1 is an important [2Fe-2S] NEET protein associated with human health and disease. A mis-splicing mutation in NAF-1 results in Wolfram Syndrome type 2, a lethal childhood disease. Upregulation of NAF-1 is found in epithelial breast cancer cells, and suppression of NAF-1 expression by knockdown significantly suppresses tumor growth. Key to NAF-1 function is the NEET fold with its [2Fe-2S] cluster. In this work, the high-resolution structure of native NAF-1 was determined to 1.65 Å resolution (R factor = 13.5%) together with that of a mutant in which the single His ligand of its [2Fe-2S] cluster, His114, was replaced by Cys. The NAF-1 H114C mutant structure was determined to 1.58 Å resolution (R factor = 16.0%). All structural differences were localized to the cluster binding site. Compared with native NAF-1, the [2Fe-2S] clusters of the H114C mutant were found to (i) be 25-fold more stable, (ii) have a redox potential that is 300 mV more negative and (iii) have their cluster donation/transfer function abolished. Because no global structural differences were found between the mutant and the native (wild-type) NAF-1 proteins, yet significant functional differences exist between them, the NAF-1 H114C mutant is an excellent tool to decipher the underlying biological importance of the [2Fe-2S] cluster of NAF-1 in vivo.

  11. Single Point Mutations Result in the Miss-Sorting of Glut4 to a Novel Membrane Compartment Associated with Stress Granule Proteins

    PubMed Central

    Song, XiaoMei; Lichti, Cheryl F.; Townsend, R. Reid; Mueckler, Mike

    2013-01-01

    Insulin increases cellular glucose uptake and metabolism in the postprandial state by acutely stimulating the translocation of the Glut4 glucose transporter from intracellular membrane compartments to the cell surface in muscle and fat cells. The intracellular targeting of Glut4 is dictated by specific structural motifs within cytoplasmic domains of the transporter. We demonstrate that two leucine residues at the extreme C-terminus of Glut4 are critical components of a motif (IRM, insulin responsive motif) involved in the sorting of the transporter to insulin responsive vesicles in 3T3L1 adipocytes. Light microscopy, immunogold electron microscopy, subcellular fractionation, and sedimentation analysis indicate that mutations in the IRM cause the aberrant targeting of Glut4 to large dispersed membrane vesicles that are not insulin responsive. Proteomic characterization of rapidly and slowly sedimenting membrane vesicles (RSVs and SSVs) that were highly enriched by immunoadsorption for either wild-type Glut4 or an IRM mutant revealed that the major vesicle fraction containing the mutant transporter (IRM-RSVs) possessed a relatively small and highly distinct protein population that was enriched for proteins associated with stress granules. We suggest that the IRM is critical for an early step in the sorting of Glut4 to insulin-responsive subcellular membrane compartments and that IRM mutants are miss-targeted to relatively large, amorphous membrane vesicles that may be involved in a degradation pathway for miss-targeted or miss-folded proteins or represent a transitional membrane compartment that Glut4 traverses en route to insulin responsive storage compartments. PMID:23874650

  12. Introducing point mutations into the ATGs of the putative open reading frames of the HSV-1 gene encoding the latency associated transcript (LAT) reduces its anti-apoptosis activity.

    PubMed

    Carpenter, Dale; Henderson, Gail; Hsiang, Chinhui; Osorio, Nelson; BenMohamed, Lbachir; Jones, Clinton; Wechsler, Steven L

    2008-02-01

    The herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) gene has anti-apoptosis activity that directly or indirectly enhances the virus's reactivation phenotype in small animal models. The first 1.5 kb of the primary 8.3 kb LAT is sufficient and some or all of it is necessary for LAT's anti-apoptosis in transient transfection assays and for LAT's ability to enhance the reactivation phenotype. Based on LAT's genomic sequence, the first 1.5 kb contains eight potential open reading frames (ORFs) defined as an ATG followed by an in frame termination codon. In this study, point mutations were introduced into the ATGs of ORFs present in the 1.5 kb fragment of LAT. Mutagenesis of all eight ATGs in LAT ORFs consistently reduced the anti-apoptotic activity of LAT in transiently transfected mouse neuroblastoma cells regardless of whether apoptosis was induced by caspase 8 or caspase 9. Mutation of the six ATGs located in the stable intron sequences within the 1.5 kb LAT had a dramatic effect on caspase 9, but not caspase 8, induced apoptosis. For both caspase 8 and caspase 9 induced apoptosis, mutating the two ATGs in the exon of the LAT 1.5 kb fragment reduced, but did not eliminate the anti-apoptotic activity of LAT. These studies suggest that altering the fine structure of regulatory RNA or expression of a putative LAT ORF regulates the anti-apoptosis activity of LAT. These studies also indicate that more than one function is present in the 1.5 kb LAT fragment.

  13. Investigation of genetic diversity of the bla(SHV) gene and development of an oligonucleotide microarray to detect mutations in the bla(SHV) gene.

    PubMed

    Dong, Yuanyuan; Sheng, Haihui; Zeng, Xainting; Yan, Jufen; Li, Haiyan; Xiao, Huasheng; Li, Xiaokun; Yang, Shulin

    2012-12-01

    SHV β-lactamases, including SHV extended-spectrum β-lactamases, are widespread throughout the world, and confer a broad spectrum of resistance to antibiotic drugs. Mutations ranging from single base-pair substitutions to small deletions within bla(SHV) often result in diminished activity and an increased susceptibility to β-lactamase inhibitors. Here, we collected 1,320 clinical isolates from three hospitals in Shanghai. We developed a novel oligonucleotide microarray to detect mutations in the bla(SHV) gene, and validated the array data by direct sequencing. Sixty-two of the 1,320 isolates carried the bla(SHV) gene. The genotypes of these 62 isolates were successfully called by the microarray and were consistent with the genotypes identified by bidirectional sequencing. Sixteen different bla(SHV) alleles were identified. The SHV-1 variant was the most frequent (32.26%), followed by SHV-11 (27.42%) and SHV-12 (25.81%). Of the 62 isolates, 12 contained two different bla(SHV) alleles. Our microarray significantly facilitated the identification of bla(SHV) variants, which makes it an attractive option for the detection of SHV variants in clinical laboratories. PMID:22897109

  14. Interaction of Hb Adana (HBA2: c.179G>A) with Deletional and Nondeletional α +-Thalassemia Mutations: Diverse Hematological and Clinical Features

    PubMed Central

    2013-01-01

    We describe 27 cases of mild-to-severe α-thalassemia (α-thal) syndrome caused by interaction of Hb Adana [α59(E8)Gly→Asp, GGC>GAC (α2)] with deletional and nondeletional α+-thal mutations in Indonesian patients. Hematological profiles and clinical manifestations of all patients were assessed by routine procedures. The genotypes were generated by a multiplex-polymerase chain reaction (m-PCR), PCR-RFLP (restriction fragment length polymorphism)-based method, and DNA sequencing. The α-thal patients who had Hb Adana in combination with the 3.7 kb deletion mostly have mild-to-moderate anemia. In contrast, patients who were compound heterozygotes for Hb Adana and nondeletional mutations, generally showed a more severe anemia and it mostly presented in childhood. Thus, accurate diagnosis of α-thal disorders is not only important for future management of these patients but also for providing proper genetic counseling to the family. PMID:23614625

  15. A point mutation (L1015F) of the voltage-sensitive sodium channel gene associated with lambda-cyhalothrin resistance in Apolygus lucorum (Meyer-Dür) population from the transgenic Bt cotton field of China.

    PubMed

    Zhen, Congai; Gao, Xiwu

    2016-02-01

    In China, the green mirid bug, Apolygus lucorum (Meyer-Dür), has caused severe economic damage to many kinds of crops, especially the cotton and jujubes. Pyrethroid insecticides have been widely used for controlling this pest in the transgenic Bt cotton field. Five populations of A. lucorum collected from cotton crops at different locations in China were evaluated for lambda-cyhalothrin resistance. The results showed that only the population collected from Shandong Province exhibited 30-fold of resistance to lambda-cyhalothrin. Neither PBO nor DEF had obvious synergism when compared the synergistic ratio between SS and RR strain which was originated from the Shandong population. Besides, there were no statistically significant differences (p>0.05) in the carboxylesterase, glutathione S-transferase, or 7-ethoxycoumarin O-deethylase activities between the Shandong population and the laboratory susceptible strain (SS). The full-length sodium channel gene named AlVSSC encoding 2028 amino acids was obtained by RT-PCR and rapid amplification of cDNA ends (RACE). One single point mutation L1015F in the AlVSSC was detected only in the Shandong population. Our results revealed that the L1015F mutation associated with pyrethroid resistance was identified in A. lucorum populations in China. These results will be useful for the rational chemical control of A. lucorum in the transgenic Bt cotton field. PMID:26821662

  16. A point mutation in the putative TATA box, detected in nondiseased individuals and patients with hereditary breast cancer, decreases promoter activity of the 17{beta}-hydroxysteroid dehydrogenase type 1 gene 2 (EDH17B2) in vitro

    SciTech Connect

    Peltoketo, H.; Piao, Y.; Isomaa, V.

    1994-09-01

    EDH17B2, the gene encoding 17{beta}-hydroxysteroid dehydrogenase type 1, has been suggested as a candidate for the familial breast cancer gene, BRCA1, located on 17q12-q21. We analyzed the promoter region of EDH17B2 in DNA from 20 control individuals and 40 patients with familial breast cancer. Two frequent (designated vI and vIII) and two rare (vII and vIV) nucleotide variations were present in both the breast cancer patients and the controls, except the alteration vII, which was found only in one patient. Although the data do not support the identification of EDH17B2 as the BRCA1 gene, it is of interest that point mutation vIV (A {yields} C) was located in the putative TATA box of the EDH17B2 gene. Reporter gene analysis showed that the mutation vIV decreases EDH17B2 promoter activity by an average of 45% in in vitro assays, suggesting that nucleotide A at position -27 is significant for efficient transcription. 12 refs., 2 figs., 1 tab.

  17. From de novo mutations to personalized therapeutic interventions in autism.

    PubMed

    Brandler, William M; Sebat, Jonathan

    2015-01-01

    The high heritability, early age at onset, and reproductive disadvantages of autism spectrum disorders (ASDs) are consistent with an etiology composed of dominant-acting de novo (spontaneous) mutations. Mutation detection by microarray analysis and DNA sequencing has confirmed that de novo copy-number variants or point mutations in protein-coding regions of genes contribute to risk, and some of the underlying causal variants and genes have been identified. As our understanding of autism genes develops, the spectrum of autism is breaking up into quanta of many different genetic disorders. Given the diversity of etiologies and underlying biochemical pathways, personalized therapy for ASDs is logical, and clinical genetic testing is a prerequisite.

  18. Addition of a UL5 helicase-primase subunit point mutation eliminates bursal-thymic atrophy of Marek's disease virus ∆Meq recombinant virus but reduces vaccinal protection.

    PubMed

    Hildebrandt, Evin; Dunn, John R; Cheng, Hans H

    2015-01-01

    Marek's disease virus (MDV) is an oncogenic alphaherpesvirus and the causative agent of Marek's disease (MD), characterized by immunosuppression, paralysis, nerve enlargement and induction of T-cell lymphomas in chickens. Despite widespread usage of vaccines since the 1970s to control MD, more virulent field strains of MDV have emerged that overcome vaccinal protection, necessitating the development of new and more protective MD vaccines. The ∆Meq virus, a recombinant Md5 strain MDV lacking the viral oncogene Meq, is one candidate MD vaccine with great potential but unfortunately it also causes bursal-thymic atrophy (BTA) in maternal antibody negative chickens, raising concerns that impede commercial use as a vaccine. Previously, we identified a point mutation within UL5 that reduced in vivo replication in attenuated viruses. We proposed that introduction of the UL5 point mutation into the ∆Meq virus would reduce in vivo replication and eliminate BTA yet potentially retain high protective abilities. In birds, the ∆Meq+UL5 recombinant MDV had reduced replication compared to the original ∆Meq virus, while weights of lymphoid organs indicated that ∆Meq+UL5 did not induce BTA, supporting the hypothesis that reduction of in vivo replication would also abolish BTA. Vaccine trials of the ∆Meq+UL5 virus compared to other ∆Meq-based viruses and commercial vaccines show that, while the ∆Meq+UL5 does provide vaccinal protection, this protection was also reduced compared to the original ∆Meq virus. Therefore, it appears that a very delicate balance is required between levels of replication able to induce high vaccinal protection, yet not so high as to induce BTA.

  19. Active-Site Engineering of Benzaldehyde Lyase Shows That a Point Mutation Can Confer Both New Reactivity and Susceptibility to Mechanism-Based Inhibition

    SciTech Connect

    Brandt, Gabriel S.; Kneen, Malea M.; Petsko, Gregory A.; Ringe, Dagmar; McLeish, Michael J.

    2010-02-11

    Benzaldehyde lyase (BAL) from Pseudomonas putida is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the breakdown of (R)-benzoin. Here we report that a point mutant, BAL A28S, not only catalyzes the decarboxylation of benzoylformate but, like benzoylformate decarboxylase (BFDC), is also inactivated by the benzoylformate analogues methyl benzoylphosphonate (MBP) and benzoylphosphonate (BP). The latter has no effect on wild-type BAL, and the inactivation of the A28S variant is shown to result from phosphorylation of the newly introduced serine residue. This lends support to the proposal that an appropriately placed nucleophile facilitates the expulsion of carbon dioxide from the active site in many ThDP-dependent decarboxylases.

  20. Nucleotide 1376 G-->T mutation in G6PD-deficient Chinese in Malaysia.

    PubMed

    Ainoon, O; Joyce, J; Boo, N Y; Cheong, S K; Hamidah, N H

    1995-12-01

    G6PD deficiency is the most common human enzymopathy and affects 200 million people worldwide. To date more than 400 biochemical variants and at least 60 different point mutations in the G6PD locus have been discovered. In Malaysia the overall incidence of G6PD deficiency among males is 3.1%, being more prevalent among the Chinese and Malays and less common among the Indians. As part of our initial effort to characterise G6PD deficiency in the Malaysian population, we investigated 18 G6PD deficient Chinese male neonates for the G6PD mutation G-->T at nt 1376, a common mutation seen among the Chinese in Taiwan and mainland China. The mutation was detected by a PCR-based technique using primers that artificially create a site for restriction enzyme Xho I. We found 61% (11 out of 18) of the Chinese G6PD deficient male neonates positive for this mutation. Study of enzyme electrophoretic mobility in 7 of the cases positive for this mutation revealed three different patterns of mobility. 107% (5 out of 7), 103% (1 out of 7) and 100% (1 out of 7). This study shows that mutation G-->T at nt 1376 is a common allele causing G6PD deficiency in Malaysians of Chinese origin. The finding of different patterns of electrophoretic mobility among the 7 cases positive for 1376 G-->T mutation supports the notion that diverse biochemical variants may share the same mutation. PMID:8935127

  1. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  2. Evolutionary Conserved Positions Define Protein Conformational Diversity.

    PubMed

    Saldaño, Tadeo E; Monzon, Alexander M; Parisi, Gustavo; Fernandez-Alberti, Sebastian

    2016-03-01

    Conformational diversity of the native state plays a central role in modulating protein function. The selection paradigm sustains that different ligands shift the conformational equilibrium through their binding to highest-affinity conformers. Intramolecular vibrational dynamics associated to each conformation should guarantee conformational transitions, which due to its importance, could possibly be associated with evolutionary conserved traits. Normal mode analysis, based on a coarse-grained model of the protein, can provide the required information to explore these features. Herein, we present a novel procedure to identify key positions sustaining the conformational diversity associated to ligand binding. The method is applied to an adequate refined dataset of 188 paired protein structures in their bound and unbound forms. Firstly, normal modes most involved in the conformational change are selected according to their corresponding overlap with structural distortions introduced by ligand binding. The subspace defined by these modes is used to analyze the effect of simulated point mutations on preserving the conformational diversity of the protein. We find a negative correlation between the effects of mutations on these normal mode subspaces associated to ligand-binding and position-specific evolutionary conservations obtained from multiple sequence-structure alignments. Positions whose mutations are found to alter the most these subspaces are defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. These positions are shown to be evolutionary conserved, mostly buried aliphatic residues localized in regular structural regions of the protein like β-sheets and α-helix. PMID:27008419

  3. Evolutionary Conserved Positions Define Protein Conformational Diversity

    PubMed Central

    Saldaño, Tadeo E.; Monzon, Alexander M.; Parisi, Gustavo; Fernandez-Alberti, Sebastian

    2016-01-01

    Conformational diversity of the native state plays a central role in modulating protein function. The selection paradigm sustains that different ligands shift the conformational equilibrium through their binding to highest-affinity conformers. Intramolecular vibrational dynamics associated to each conformation should guarantee conformational transitions, which due to its importance, could possibly be associated with evolutionary conserved traits. Normal mode analysis, based on a coarse-grained model of the protein, can provide the required information to explore these features. Herein, we present a novel procedure to identify key positions sustaining the conformational diversity associated to ligand binding. The method is applied to an adequate refined dataset of 188 paired protein structures in their bound and unbound forms. Firstly, normal modes most involved in the conformational change are selected according to their corresponding overlap with structural distortions introduced by ligand binding. The subspace defined by these modes is used to analyze the effect of simulated point mutations on preserving the conformational diversity of the protein. We find a negative correlation between the effects of mutations on these normal mode subspaces associated to ligand-binding and position-specific evolutionary conservations obtained from multiple sequence-structure alignments. Positions whose mutations are found to alter the most these subspaces are defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. These positions are shown to be evolutionary conserved, mostly buried aliphatic residues localized in regular structural regions of the protein like β-sheets and α-helix. PMID:27008419

  4. Point substitutions in Japanese alloalbumins.

    PubMed

    Arai, K; Madison, J; Huss, K; Ishioka, N; Satoh, C; Fujita, M; Neel, J V; Sakurabayashi, I; Putnam, F W

    1989-08-01

    We have completed the structural study of five rare types of inherited albumin variants (alloalbumins) discovered in the Biochemical Genetics Study of 15,581 unrelated children in Hiroshima and Nagasaki. We have also identified the structural change in five other alloalbumin specimens detected during clinical electrophoresis of sera from Japanese living near Tokyo. Each of the five albumin variants from Nagasaki and Hiroshima has a single amino acid substitution. All of these substitutions differ, and none has been reported in non-Japanese populations. No instances of proalbumin variants or of albumin B (the most frequent alloalbumins in Caucasians) were detected in the children in Hiroshima and Nagasaki. However, one instance of a variant proalbumin and two examples of albumin B occurred in Japanese from the vicinity of Tokyo. In addition a previously unreported point substitution was found in albumin Tochigi, which is present in two unrelated persons from Tochigi prefecture. Four of the point mutations in the Japanese alloalbumins are in close proximity in a short segment of the polypeptide chain (residues 354-382) in which three additional point substitutions have been reported in diverse populations. These results, combined with earlier data, suggest that point substitutions are grouped in certain segments of the albumin molecule.

  5. Allelic Expression Imbalance of JAK2 V617F Mutation in BCR-ABL Negative Myeloproliferative Neoplasms

    PubMed Central

    Kim, Yeo-Kyeoung; Kim, Hyeoung-Joon; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook; Shin, Myung-Geun

    2013-01-01

    The discovery of a single point mutation in the JAK2 gene in patients with BCR/ABL-negative myeloproliferative neoplasms (MPNs) has not only brought new insights and pathogenesis, but also has made the diagnosis of MPNs much easier. Although, to date, several mechanisms for the contribution of single JAK2V617F point mutation to phenotypic diversity of MPNs have been suggested in multiple studies, but it is not clear how a unique mutation can cause the phenotypic diversity of MPNs. In this study, our results show that allelic expression imbalance of JAK2 V617F mutant frequently occurs and contributes to phenotypic diversity of BCR-ABL-negative MPNs. The proportion of JAK2 V617F mutant allele was significantly augmented in RNA levels as compared with genomic DNA differently by distinct MPNs subtypes. In detail, preferential expression of JAK2 mutant allele showed threefold increase from the cDNA compared with the genomic DNA from patients with essential thrombocythemia and twofold increase in polycythemia vera. In conclusion, allelic expression imbalance of JAK2 V617F mutant proposes another plausible mechanism for the contribution of single JAK2 point mutation to phenotypic diversity of MPNs. PMID:23349688

  6. Genomic Analysis of Salmonella enterica Serovar Typhimurium Characterizes Strain Diversity for Recent U.S. Salmonellosis Cases and Identifies Mutations Linked to Loss of Fitness under Nitrosative and Oxidative Stress

    PubMed Central

    Hayden, Hillary S.; Matamouros, Susana; Hager, Kyle R.; Brittnacher, Mitchell J.; Rohmer, Laurence; Radey, Matthew C.; Weiss, Eli J.; Kim, Katie B.; Jacobs, Michael A.; Sims-Day, Elizabeth H.; Yue, Min; Zaidi, Mussaret B.; Schifferli, Dieter M.; Manning, Shannon D.; Walson, Judd L.

    2016-01-01

    ABSTRACT Salmonella enterica serovar Typhimurium is one of the most common S. enterica serovars associated with U.S. foodborne outbreaks. S. Typhimurium bacteria isolated from humans exhibit wide-ranging virulence phenotypes in inbred mice, leading to speculation that some strains are more virulent in nature. However, it is unclear whether increased virulence in humans is related to organism characteristics or initial treatment failure due to antibiotic resistance. Strain diversity and genetic factors contributing to differential human pathogenicity remain poorly understood. We reconstructed phylogeny, resolved genetic population structure, determined gene content and nucleotide variants, and conducted targeted phenotyping assays for S. Typhimurium strains collected between 1946 and 2012 from humans and animals in the United States and abroad. Strains from recent U.S. salmonellosis cases were associated with five S. Typhimurium lineages distributed within three phylogenetic clades, which are not restricted by geography, year of acquisition, or host. Notably, two U.S. strains and four Mexican strains are more closely related to strains associated with human immunodeficiency virus (HIV)-infected individuals in sub-Saharan Africa than to other North American strains. Phenotyping studies linked variants specific to these strains in hmpA and katE to loss of fitness under nitrosative and oxidative stress, respectively. These results suggest that U.S. salmonellosis is caused by diverse S. Typhimurium strains circulating worldwide. One lineage has mutations in genes affecting fitness related to innate immune system strategies for fighting pathogens and may be adapting to immunocompromised humans by a reduction in virulence capability, possibly due to a lack of selection for its maintenance as a result of the worldwide HIV epidemic. PMID:26956590

  7. Mutations, mutation rates, and evolution at the hypervariable VNTR loci of Yersinia pestis.

    PubMed

    Vogler, Amy J; Keys, Christine E; Allender, Christopher; Bailey, Ira; Girard, Jessica; Pearson, Talima; Smith, Kimothy L; Wagner, David M; Keim, Paul

    2007-03-01

    VNTRs are able to discriminate among closely related isolates of recently emerged clonal pathogens, including Yersinia pestis the etiologic agent of plague, because of their great diversity. Diversity is driven largely by mutation but little is known about VNTR mutation rates, factors affecting mutation rates, or the mutational mechanisms. The molecular epidemiological utility of VNTRs will be greatly enhanced when this foundational knowledge is available. Here, we measure mutation rates for 43 VNTR loci in Y. pestis using an in vitro generated population encompassing approximately 96,000 generations. We estimate the combined 43-locus rate and individual rates for 14 loci. A comparison of Y. pestis and Escherichia coli O157:H7 VNTR mutation rates and products revealed a similar relationship between diversity and mutation rate in these two species. Likewise, the relationship between repeat copy number and mutation rate is nearly identical between these species, suggesting a generalized relationship that may be applicable to other species. The single- versus multiple-repeat mutation ratios and the insertion versus deletion mutation ratios were also similar, providing support for a general model for the mutations associated with VNTRs. Finally, we use two small sets of Y. pestis isolates to show how this general model and our estimated mutation rates can be used to compare alternate phylogenies, and to evaluate the significance of genotype matches, near-matches, and mismatches found in empirical comparisons with a reference database. PMID:17161849

  8. Absolute quantification of the alleles in somatic point mutations by bioluminometric methods based on competitive polymerase chain reaction in the presence of a locked nucleic acid blocker or an allele-specific primer.

    PubMed

    Iliadi, Alexandra; Petropoulou, Margarita; Ioannou, Penelope C; Christopoulos, Theodore K; Anagnostopoulos, Nikolaos I; Kanavakis, Emmanuel; Traeger-Synodinos, Jan

    2011-09-01

    In somatic (acquired) point mutations, the challenge is to quantify minute amounts of the mutant allele in the presence of a large excess of the normal allele that differs only in a single base pair. We report two bioluminometric methods that enable absolute quantification of the alleles. The first method exploits the ability of a locked nucleic acid (LNA) oligonucleotide to bind to and inhibit effectively the polymerase chain reaction (PCR) amplification of the normal allele while the amplification of the mutant allele remains unaffected. The second method employs allele-specific PCR primers, thereby allowing the amplification of the corresponding allele only. DNA internal standards (competitors) are added to the PCR mixture to compensate for any sample-to-sample variation in the amplification efficiency. The amplification products from the two alleles and the internal standards are quantified by a microtiter well-based bioluminometric hybridization assay using the photoprotein aequorin as a reporter. The methods allow absolute quantification of less than 300 copies of the mutant allele even in samples containing less than 1% of the mutant allele.

  9. Signatures of mutational processes in human cancer

    PubMed Central

    Alexandrov, Ludmil B.; Nik-Zainal, Serena; Wedge, David C.; Aparicio, Samuel A.J.R.; Behjati, Sam; Biankin, Andrew V.; Bignell, Graham R.; Bolli, Niccolo; Borg, Ake; Børresen-Dale, Anne-Lise; Boyault, Sandrine; Burkhardt, Birgit; Butler, Adam P.; Caldas, Carlos; Davies, Helen R.; Desmedt, Christine; Eils, Roland; Eyfjörd, Jórunn Erla; Foekens, John A.; Greaves, Mel; Hosoda, Fumie; Hutter, Barbara; Ilicic, Tomislav; Imbeaud, Sandrine; Imielinsk, Marcin; Jäger, Natalie; Jones, David T.W.; Jones, David; Knappskog, Stian; Kool, Marcel; Lakhani, Sunil R.; López-Otín, Carlos; Martin, Sancha; Munshi, Nikhil C.; Nakamura, Hiromi; Northcott, Paul A.; Pajic, Marina; Papaemmanuil, Elli; Paradiso, Angelo; Pearson, John V.; Puente, Xose S.; Raine, Keiran; Ramakrishna, Manasa; Richardson, Andrea L.; Richter, Julia; Rosenstiel, Philip; Schlesner, Matthias; Schumacher, Ton N.; Span, Paul N.; Teague, Jon W.; Totoki, Yasushi; Tutt, Andrew N.J.; Valdés-Mas, Rafael; van Buuren, Marit M.; van ’t Veer, Laura; Vincent-Salomon, Anne; Waddell, Nicola; Yates, Lucy R.; Zucman-Rossi, Jessica; Futreal, P. Andrew; McDermott, Ultan; Lichter, Peter; Meyerson, Matthew; Grimmond, Sean M.; Siebert, Reiner; Campo, Elías; Shibata, Tatsuhiro; Pfister, Stefan M.; Campbell, Peter J.; Stratton, Michael R.

    2013-01-01

    All cancers are caused by somatic mutations. However, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here, we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer with potential implications for understanding of cancer etiology, prevention and therapy. PMID:23945592

  10. Signatures of mutational processes in human cancer.

    PubMed

    Alexandrov, Ludmil B; Nik-Zainal, Serena; Wedge, David C; Aparicio, Samuel A J R; Behjati, Sam; Biankin, Andrew V; Bignell, Graham R; Bolli, Niccolò; Borg, Ake; Børresen-Dale, Anne-Lise; Boyault, Sandrine; Burkhardt, Birgit; Butler, Adam P; Caldas, Carlos; Davies, Helen R; Desmedt, Christine; Eils, Roland; Eyfjörd, Jórunn Erla; Foekens, John A; Greaves, Mel; Hosoda, Fumie; Hutter, Barbara; Ilicic, Tomislav; Imbeaud, Sandrine; Imielinski, Marcin; Imielinsk, Marcin; Jäger, Natalie; Jones, David T W; Jones, David; Knappskog, Stian; Kool, Marcel; Lakhani, Sunil R; López-Otín, Carlos; Martin, Sancha; Munshi, Nikhil C; Nakamura, Hiromi; Northcott, Paul A; Pajic, Marina; Papaemmanuil, Elli; Paradiso, Angelo; Pearson, John V; Puente, Xose S; Raine, Keiran; Ramakrishna, Manasa; Richardson, Andrea L; Richter, Julia; Rosenstiel, Philip; Schlesner, Matthias; Schumacher, Ton N; Span, Paul N; Teague, Jon W; Totoki, Yasushi; Tutt, Andrew N J; Valdés-Mas, Rafael; van Buuren, Marit M; van 't Veer, Laura; Vincent-Salomon, Anne; Waddell, Nicola; Yates, Lucy R; Zucman-Rossi, Jessica; Futreal, P Andrew; McDermott, Ultan; Lichter, Peter; Meyerson, Matthew; Grimmond, Sean M; Siebert, Reiner; Campo, Elías; Shibata, Tatsuhiro; Pfister, Stefan M; Campbell, Peter J; Stratton, Michael R

    2013-08-22

    All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.

  11. Diverse phenotypic and genetic responses to short-term selection in evolving Escherichia coli populations.

    PubMed

    Dillon, Marcus M; Rouillard, Nicholas P; Van Dam, Brian; Gallet, Romain; Cooper, Vaughn S

    2016-03-01

    Beneficial mutations fuel adaptation by altering phenotypes that enhance the fit of organisms to their environment. However, the phenotypic effects of mutations often depend on ecological context, making the distribution of effects across multiple environments essential to understanding the true nature of beneficial mutations. Studies that address both the genetic basis and ecological consequences of adaptive mutations remain rare. Here, we characterize the direct and pleiotropic fitness effects of a collection of 21 first-step beneficial mutants derived from naïve and adapted genotypes used in a long-term experimental evolution of Escherichia coli. Whole-genome sequencing was able to identify the majority of beneficial mutations. In contrast to previous studies, we find diverse fitness effects of mutations selected in a simple environment and few cases of genetic parallelism. The pleiotropic effects of these mutations were predominantly positive but some mutants were highly antagonistic in alternative environments. Further, the fitness effects of mutations derived from the adapted genotypes were dramatically reduced in nearly all environments. These findings suggest that many beneficial variants are accessible from a single point on the fitness landscape, and the fixation of alternative beneficial mutations may have dramatic consequences for niche breadth reduction via metabolic erosion. PMID:26995338

  12. HIV-1 Genetic Diversity and Transmitted Drug Resistance Among Recently Infected Individuals at Men Who Have Sex with Men Sentinel Surveillance Points in Hebei Province, China.

    PubMed

    Lu, Xinli; Kang, Xianjiang; Chen, Suliang; Zhao, Hongru; Liu, Yongjian; Zhao, Cuiying; Zhang, Yuqi; Li, Jingyun; Cui, Ze; Wang, Xianfeng

    2015-10-01

    For this study, 50 HIV-1 plasma samples of recently infected men who have sex with men (MSM) were amplified and sequenced. Multiple subtypes were identified by phylogenetic analyses of HIV-1 gag, env, and pol gene regions, including CRF01_AE (56.0%), CRF07_BC (30.0%), subtype B (12.0%), and unique recombinant forms (URFs, 6.0%). CRF01_AE was the most frequent genotype in the epidemic. Three recombination patterns of URFs were identified: 01BC, 01B, and 01C. The rate of HIV-1 transmitted drug resistance (TDR) mutation (M46L) was 2.08% (1/48). URFs and TDR first identified in this study suggest that HIV-1 prevalence is more and more complicated, and HIV-1 drug-resistant strains have begun to spread among at risk populations in Hebei. Our findings can provide vital information for an efficient surveillance system and strategic HIV prevention and control measures in China by revealing the evolutionary status and HIV-1 TDR of HIV-1 strains among recently infected MSM in Hebei Province.

  13. HIV-1 Genetic Diversity and Transmitted Drug Resistance Among Recently Infected Individuals at Men Who Have Sex with Men Sentinel Surveillance Points in Hebei Province, China.

    PubMed

    Lu, Xinli; Kang, Xianjiang; Chen, Suliang; Zhao, Hongru; Liu, Yongjian; Zhao, Cuiying; Zhang, Yuqi; Li, Jingyun; Cui, Ze; Wang, Xianfeng

    2015-10-01

    For this study, 50 HIV-1 plasma samples of recently infected men who have sex with men (MSM) were amplified and sequenced. Multiple subtypes were identified by phylogenetic analyses of HIV-1 gag, env, and pol gene regions, including CRF01_AE (56.0%), CRF07_BC (30.0%), subtype B (12.0%), and unique recombinant forms (URFs, 6.0%). CRF01_AE was the most frequent genotype in the epidemic. Three recombination patterns of URFs were identified: 01BC, 01B, and 01C. The rate of HIV-1 transmitted drug resistance (TDR) mutation (M46L) was 2.08% (1/48). URFs and TDR first identified in this study suggest that HIV-1 prevalence is more and more complicated, and HIV-1 drug-resistant strains have begun to spread among at risk populations in Hebei. Our findings can provide vital information for an efficient surveillance system and strategic HIV prevention and control measures in China by revealing the evolutionary status and HIV-1 TDR of HIV-1 strains among recently infected MSM in Hebei Province. PMID:26200883

  14. Charcot-Marie-Tooth neuropathy type 2 and P0 point mutations: two novel amino acid substitutions (Asp61Gly; Tyr119Cys) and a possible "hotspot" on Thr124Met.

    PubMed

    Senderek, J; Hermanns, B; Lehmann, U; Bergmann, C; Marx, G; Kabus, C; Timmerman, V; Stoltenburg-Didinger, G; Schröder, J M

    2000-04-01

    Mutations in the gene for the major protein component of peripheral nerve myelin, myelin protein zero (MPZ, P0), cause hereditary disorders of Schwann cell myelin such as Charcot-Marie-Tooth neuropathy type 1B (CMT1B), Dejerine-Sottas syndrome (DSS), and congenital hypomyelinating neuropathy (CHN). More recently, P0 mutations were identified in the axonal type of CMT neuropathy, CMT2, which is different from the