Sample records for diverse point mutations

  1. The Impact of Mutation and Gene Conversion on the Local Diversification of Antigen Genes in African Trypanosomes

    PubMed Central

    Gjini, Erida; Haydon, Daniel T.; Barry, J. David; Cobbold, Christina A.

    2012-01-01

    Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair. PMID:22735079

  2. Computer-guided design, synthesis, and biological evaluation of quinoxalinebisarylureas as FLT3 inhibitors.

    PubMed

    Göring, Stefan; Bensinger, Dennis; Naumann, Eva C; Schmidt, Boris

    2015-03-01

    Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in ∼30 % of patients with acute myeloid leukemia (AML) and are associated with poor prognosis. Point mutations in the tyrosine kinase domain (TKD) are observed as primary mutations or are acquired as secondary mutations in FLT3 with internal tandem duplications (ITDs) after treatment with tyrosine kinase inhibitors (TKIs). Although dozens of potent inhibitors against FLT3 ITD have been reported, activating TKD point mutations, especially at residues F691 and D835, remain the leading cause for therapy resistance, highlighting the consistent need for new potent inhibitors. Herein we report the identification and characterization of novel quinoxaline-based FLT3 inhibitors. We used the pharmacophore features of diverse known inhibitors as a starting point for a new optimization algorithm for type II TKIs, starting from an in silico library pharmacophore search and induced-fit docking in the known FLT3 structure. This led to the design of a set of diverse quinoxalinebisarylureas, which were profiled in an FLT3 kinase activity assay. The most promising compounds were further evaluated in a zebrafish embryo phenotype assay. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High Inter-Individual Diversity of Point Mutations, Insertions, and Deletions in Human Influenza Virus Nucleoprotein-Specific Memory B Cells

    PubMed Central

    Bussmann, Bianca M.; Horn, Susanne; Sieg, Michael; Jassoy, Christian

    2015-01-01

    The diversity of virus-specific antibodies and of B cells among different individuals is unknown. Using single-cell cloning of antibody genes, we generated recombinant human monoclonal antibodies from influenza nucleoprotein-specific memory B cells in four adult humans with and without preceding influenza vaccination. We examined the diversity of the antibody repertoires and found that NP-specific B cells used numerous immunoglobulin genes. The heavy chains (HCs) originated from 26 and the kappa light chains (LCs) from 19 different germ line genes. Matching HC and LC chains gave rise to 43 genetically distinct antibodies that bound influenza NP. The median lengths of the CDR3 of the HC, kappa and lambda LC were 14, 9 and 11 amino acids, respectively. We identified changes at 13.6% of the amino acid positions in the V gene of the antibody heavy chain, at 8.4 % in the kappa and at 10.6 % in the lambda V gene. We identified somatic insertions or deletions in 8.1% of the variable genes. We also found several small groups of clonal relatives that were highly diversified. Our findings demonstrate broadly diverse memory B cell repertoires for the influenza nucleoprotein. We found extensive variation within individuals with a high number of point mutations, insertions, and deletions, and extensive clonal diversification. Thus, structurally conserved proteins can elicit broadly diverse and highly mutated B-cell responses. PMID:26086076

  4. Clonal evolution in breast cancer revealed by single nucleus genome sequencing.

    PubMed

    Wang, Yong; Waters, Jill; Leung, Marco L; Unruh, Anna; Roh, Whijae; Shi, Xiuqing; Chen, Ken; Scheet, Paul; Vattathil, Selina; Liang, Han; Multani, Asha; Zhang, Hong; Zhao, Rui; Michor, Franziska; Meric-Bernstam, Funda; Navin, Nicholas E

    2014-08-14

    Sequencing studies of breast tumour cohorts have identified many prevalent mutations, but provide limited insight into the genomic diversity within tumours. Here we developed a whole-genome and exome single cell sequencing approach called nuc-seq that uses G2/M nuclei to achieve 91% mean coverage breadth. We applied this method to sequence single normal and tumour nuclei from an oestrogen-receptor-positive (ER(+)) breast cancer and a triple-negative ductal carcinoma. In parallel, we performed single nuclei copy number profiling. Our data show that aneuploid rearrangements occurred early in tumour evolution and remained highly stable as the tumour masses clonally expanded. In contrast, point mutations evolved gradually, generating extensive clonal diversity. Using targeted single-molecule sequencing, many of the diverse mutations were shown to occur at low frequencies (<10%) in the tumour mass. Using mathematical modelling we found that the triple-negative tumour cells had an increased mutation rate (13.3×), whereas the ER(+) tumour cells did not. These findings have important implications for the diagnosis, therapeutic treatment and evolution of chemoresistance in breast cancer.

  5. Vibrio cholerae genomic diversity within and between patients

    PubMed Central

    Levade, Inès; Terrat, Yves; Leducq, Jean-Baptiste; Weil, Ana A.; Mayo-Smith, Leslie M.; Chowdhury, Fahima; Khan, Ashraful I.; Boncy, Jacques; Buteau, Josiane; Ivers, Louise C.; Ryan, Edward T.; Charles, Richelle C.; Calderwood, Stephen B.; Qadri, Firdausi; Harris, Jason B.; LaRocque, Regina C.

    2017-01-01

    Cholera is a severe, water-borne diarrhoeal disease caused by toxin-producing strains of the bacterium Vibrio cholerae. Comparative genomics has revealed ‘waves’ of cholera transmission and evolution, in which clones are successively replaced over decades and centuries. However, the extent of V. cholerae genetic diversity within an epidemic or even within an individual patient is poorly understood. Here, we characterized V. cholerae genomic diversity at a micro-epidemiological level within and between individual patients from Bangladesh and Haiti. To capture within-patient diversity, we isolated multiple (8 to 20) V. cholerae colonies from each of eight patients, sequenced their genomes and identified point mutations and gene gain/loss events. We found limited but detectable diversity at the level of point mutations within hosts (zero to three single nucleotide variants within each patient), and comparatively higher gene content variation within hosts (at least one gain/loss event per patient, and up to 103 events in one patient). Much of the gene content variation appeared to be due to gain and loss of phage and plasmids within the V. cholerae population, with occasional exchanges between V. cholerae and other members of the gut microbiota. We also show that certain intra-host variants have phenotypic consequences. For example, the acquisition of a Bacteroides plasmid and non-synonymous mutations in a sensor histidine kinase gene both reduced biofilm formation, an important trait for environmental survival. Together, our results show that V. cholerae is measurably evolving within patients, with possible implications for disease outcomes and transmission dynamics. PMID:29306353

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hraber, Peter; Korber, Bette; Wagh, Kshitij

    Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations ofmore » mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus “hot-spots” under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. Here, with well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Finally, practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent “cocktail” vaccines.« less

  7. Streptococcus pneumoniae Isolates with Reduced Susceptibility to Ciprofloxacin in Spain: Clonal Diversity and Appearance of Ciprofloxacin-Resistant Epidemic Clones

    PubMed Central

    Alou, Luis; Ramirez, Mario; García-Rey, César; Prieto, José; de Lencastre, Hermínia

    2001-01-01

    Analysis of the pulsed-field gel electrophoretic profiles of 82 pneumococcal isolates with reduced susceptibility to ciprofloxacin (RSC) and of 90 co-occurring susceptible isolates indicates a considerable genetic diversity among isolates with RCS and points to a close relation between the two groups. This finding suggests that pneumococci with RCS emerge through independent mutational events. PMID:11557501

  8. High mutation rates limit evolutionary adaptation in Escherichia coli

    PubMed Central

    Wagner, Andreas

    2018-01-01

    Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli’s genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild. PMID:29702649

  9. Population Genetics of Three Dimensional Range Expansions

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim; Nelson, David

    2014-03-01

    We develop a simple model of genetic diversity in growing spherical cell clusters, where the growth is confined to the cluster surface. This kind of growth occurs in cells growing in soft agar, and can also serve as a simple model of avascular tumors. Mutation-selection balance in these radial expansions is strongly influenced by scaling near a neutral, voter model critical point and by the inflating frontier. We develop a scaling theory to describe how the dynamics of mutation-selection balance is cut off by inflation. Genetic drift, i.e., local fluctuations in the genetic diversity, also plays an important role, and can lead to the extinction even of selectively advantageous strains. We calculate this extinction probability, taking into account the effect of rough population frontiers.

  10. Interpreting the Dependence of Mutation Rates on Age and Time

    PubMed Central

    Gao, Ziyue; Wyman, Minyoung J.; Sella, Guy; Przeworski, Molly

    2016-01-01

    Mutations can originate from the chance misincorporation of nucleotides during DNA replication or from DNA lesions that arise between replication cycles and are not repaired correctly. We introduce a model that relates the source of mutations to their accumulation with cell divisions, providing a framework for understanding how mutation rates depend on sex, age, and cell division rate. We show that the accrual of mutations should track cell divisions not only when mutations are replicative in origin but also when they are non-replicative and repaired efficiently. One implication is that observations from diverse fields that to date have been interpreted as pointing to a replicative origin of most mutations could instead reflect the accumulation of mutations arising from endogenous reactions or exogenous mutagens. We further find that only mutations that arise from inefficiently repaired lesions will accrue according to absolute time; thus, unless life history traits co-vary, the phylogenetic “molecular clock” should not be expected to run steadily across species. PMID:26761240

  11. HMG CoA lyase deficiency: identification of five causal point mutations in codons 41 and 42, including a frequent Saudi Arabian mutation, R41Q.

    PubMed Central

    Mitchell, G A; Ozand, P T; Robert, M F; Ashmarina, L; Roberts, J; Gibson, K M; Wanders, R J; Wang, S; Chevalier, I; Plöchl, E; Miziorko, H

    1998-01-01

    The hereditary deficiency of 3-hydroxy-3-methylglutaryl (HMG) CoA lyase (HL; OMIM 246450 [http://www3.ncbi.nlm.nih. gov:80/htbin-post/Omim/dispmim?246450]) results in episodes of hypoketotic hypoglycemia and coma and is reported to be frequent and clinically severe in Saudi Arabia. We found genetic diversity among nine Saudi HL-deficient probands: six were homozygous for the missense mutation R41Q, and two were homozygous for the frameshift mutation F305fs(-2). In 32 non-Saudi HL-deficient probands, we found three R41Q alleles and also discovered four other deleterious point mutations in codons 41 and 42: R41X, D42E, D42G, and D42H. In purified mutant recombinant HL, all four missense mutations in codons 41 and 42 cause a marked decrease in HL activity. We developed a screening procedure for HL missense mutations that yields residual activity at levels comparable to those obtained using purified HL peptides. Codons 41 and 42 are important for normal HL catalysis and account for a disproportionate 21 (26%) of 82 of mutant alleles in our group of HL-deficient probands. PMID:9463337

  12. The genetic landscape of a physical interaction

    PubMed Central

    Diss, Guillaume

    2018-01-01

    A key question in human genetics and evolutionary biology is how mutations in different genes combine to alter phenotypes. Efforts to systematically map genetic interactions have mostly made use of gene deletions. However, most genetic variation consists of point mutations of diverse and difficult to predict effects. Here, by developing a new sequencing-based protein interaction assay – deepPCA – we quantified the effects of >120,000 pairs of point mutations on the formation of the AP-1 transcription factor complex between the products of the FOS and JUN proto-oncogenes. Genetic interactions are abundant both in cis (within one protein) and trans (between the two molecules) and consist of two classes – interactions driven by thermodynamics that can be predicted using a three-parameter global model, and structural interactions between proximally located residues. These results reveal how physical interactions generate quantitatively predictable genetic interactions. PMID:29638215

  13. Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) identifies immune-selected HIV variants

    DOE PAGES

    Hraber, Peter; Korber, Bette; Wagh, Kshitij; ...

    2015-10-21

    Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations ofmore » mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus “hot-spots” under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. Here, with well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Finally, practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent “cocktail” vaccines.« less

  14. Multiple Origins of a Mitochondrial Mutation Conferring Deafness

    PubMed Central

    Hutchin, T. P.; Cortopassi, G. A.

    1997-01-01

    A point mutation (1555G) in the smaller ribosomal subunit of the mitochondrial DNA (mtDNA) has been associated with maternally inherited traits of hypersensitivity to streptomycin and sensorineural deafness in a number of families from China, Japan, Israel, and Africa. To determine whether this distribution was the result of a single or multiple mutational events, we carried out genetic distance analysis and phylogenetic analysis of 10 independent mtDNA D-loop sequences from Africa and Asia. The mtDNA sequence diversity was high (2.21%). Phylogenetic analysis assigned 1555G-bearing haplotypes at very divergent points in the human mtDNA evolutionary tree, and the 1555G mutations occur in many cases on race-specific mtDNA haplotypes, both facts are inconsistent with a recent introgression of the mutation into these races. The simplest interpretation of the available data is that there have been multiple origins of the 1555G mutation. The genetic distance among mtDNAs bearing the pathogenic 1555G mutation is much larger than among mtDNAs bearing either evolutionarily neutral or weakly deleterious nucleotide substitutions (such as the 4336G mutation). These results are consistent with the view that pathogenic mtDNA haplotypes such as 1555G arise on disparate mtDNA lineages which because of negative natural selection leave relatively few related descendants. The co-existence of the same mutation with deafness in individuals with very different nuclear and mitochondrial genetic backgrounds confirms the pathogenicity of the 1555G mutation. PMID:9055086

  15. Preliminary investigation of bottlenose dolphins (Tursiops truncatus) for hfe gene-related hemochromatosis.

    PubMed

    Phillips, Brianne E; Venn-Watson, Stephanie; Archer, Linda L; Nollens, Hendrik H; Wellehan, James F X

    2014-10-01

    Hemochromatosis (iron storage disease) has been reported in diverse mammals including bottlenose dolphins (Tursiops truncatus). The primary cause of excessive iron storage in humans is hereditary hemochromatosis. Most human hereditary hemochromatosis cases (up to 90%) are caused by a point mutation in the hfe gene, resulting in a C282Y substitution leading to iron accumulation. To evaluate the possibility of a hereditary hemochromatosis-like genetic predisposition in dolphins, we sequenced the bottlenose dolphin hfe gene, using reverse transcriptase-PCR and hfe primers designed from the dolphin genome, from liver of affected and healthy control dolphins. Sample size included two case animals and five control animals. Although isotype diversity was evident, no coding differences were identified in the hfe gene between any of the animals examined. Because our sample size was small, we cannot exclude the possibility that hemochromatosis in dolphins is due to a coding mutation in the hfe gene. Other potential causes of hemochromatosis, including mutations in different genes, diet, primary liver disease, and insulin resistance, should be evaluated.

  16. Coalescent Inference Using Serially Sampled, High-Throughput Sequencing Data from Intrahost HIV Infection

    PubMed Central

    Dialdestoro, Kevin; Sibbesen, Jonas Andreas; Maretty, Lasse; Raghwani, Jayna; Gall, Astrid; Kellam, Paul; Pybus, Oliver G.; Hein, Jotun; Jenkins, Paul A.

    2016-01-01

    Human immunodeficiency virus (HIV) is a rapidly evolving pathogen that causes chronic infections, so genetic diversity within a single infection can be very high. High-throughput “deep” sequencing can now measure this diversity in unprecedented detail, particularly since it can be performed at different time points during an infection, and this offers a potentially powerful way to infer the evolutionary dynamics of the intrahost viral population. However, population genomic inference from HIV sequence data is challenging because of high rates of mutation and recombination, rapid demographic changes, and ongoing selective pressures. In this article we develop a new method for inference using HIV deep sequencing data, using an approach based on importance sampling of ancestral recombination graphs under a multilocus coalescent model. The approach further extends recent progress in the approximation of so-called conditional sampling distributions, a quantity of key interest when approximating coalescent likelihoods. The chief novelties of our method are that it is able to infer rates of recombination and mutation, as well as the effective population size, while handling sampling over different time points and missing data without extra computational difficulty. We apply our method to a data set of HIV-1, in which several hundred sequences were obtained from an infected individual at seven time points over 2 years. We find mutation rate and effective population size estimates to be comparable to those produced by the software BEAST. Additionally, our method is able to produce local recombination rate estimates. The software underlying our method, Coalescenator, is freely available. PMID:26857628

  17. Rates and Genomic Consequences of Spontaneous Mutational Events in Drosophila melanogaster

    PubMed Central

    Schrider, Daniel R.; Houle, David; Lynch, Michael; Hahn, Matthew W.

    2013-01-01

    Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise. PMID:23733788

  18. HIV populations are large and accumulate high genetic diversity in a nonlinear fashion.

    PubMed

    Maldarelli, Frank; Kearney, Mary; Palmer, Sarah; Stephens, Robert; Mican, JoAnn; Polis, Michael A; Davey, Richard T; Kovacs, Joseph; Shao, Wei; Rock-Kress, Diane; Metcalf, Julia A; Rehm, Catherine; Greer, Sarah E; Lucey, Daniel L; Danley, Kristen; Alter, Harvey; Mellors, John W; Coffin, John M

    2013-09-01

    HIV infection is characterized by rapid and error-prone viral replication resulting in genetically diverse virus populations. The rate of accumulation of diversity and the mechanisms involved are under intense study to provide useful information to understand immune evasion and the development of drug resistance. To characterize the development of viral diversity after infection, we carried out an in-depth analysis of single genome sequences of HIV pro-pol to assess diversity and divergence and to estimate replicating population sizes in a group of treatment-naive HIV-infected individuals sampled at single (n = 22) or multiple, longitudinal (n = 11) time points. Analysis of single genome sequences revealed nonlinear accumulation of sequence diversity during the course of infection. Diversity accumulated in recently infected individuals at rates 30-fold higher than in patients with chronic infection. Accumulation of synonymous changes accounted for most of the diversity during chronic infection. Accumulation of diversity resulted in population shifts, but the rates of change were low relative to estimated replication cycle times, consistent with relatively large population sizes. Analysis of changes in allele frequencies revealed effective population sizes that are substantially higher than previous estimates of approximately 1,000 infectious particles/infected individual. Taken together, these observations indicate that HIV populations are large, diverse, and slow to change in chronic infection and that the emergence of new mutations, including drug resistance mutations, is governed by both selection forces and drift.

  19. The m.3291T>C mt-tRNALeu(UUR) mutation is definitely pathogenic and causes multisystem mitochondrial disease

    PubMed Central

    Yarham, John W.; Blakely, Emma L.; Alston, Charlotte L.; Roberts, Mark E.; Ealing, John; Pal, Piyali; Turnbull, Douglass M.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Mitochondrial tRNA point mutations are important causes of human disease, and have been associated with a diverse range of clinical phenotypes. Definitively proving the pathogenicity of any given mt-tRNA mutation requires combined molecular, genetic and functional studies. Subsequent evaluation of the mutation using a pathogenicity scoring system is often very helpful in concluding whether or not the mutation is causing disease. Despite several independent reports linking the m.3291T>C mutation to disease in humans, albeit in association with several different phenotypes, its pathogenicity remains controversial. A lack of conclusive functional evidence and an over-emphasis on the poor evolutionary conservation of the affected nucleotide have contributed to this controversy. Here we describe an adult patient who presented with deafness and lipomas and evidence of mitochondrial abnormalities in his muscle biopsy, who harbours the m.3291T > C mutation, providing conclusive evidence of pathogenicity through analysis of mutation segregation with cytochrome c oxidase (COX) deficiency in single muscle fibres, underlining the importance of performing functional studies when assessing pathogenicity. PMID:23273904

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rund, D.; Cohen, T.; Filon, D.

    {beta}-Thalassemia is a hereditary disease caused by any of 90 different point mutations in the {beta}-globin gene. Specific populations generally carry a small number of mutations, the most common of which are those that are widely distributed regionally. The present study constitutes an extensive molecular characterization of this disease in a small, highly inbred ethnic group with a high incidence of {beta}-thalassemia-the Jews of Kurdistan. An unusual mutational diversity was observed. In 42 sibships 13 different mutations were identified, of which 3 are newly discovered. Four of the mutations are unique to Kurdish Jews and have not been discovered inmore » any other population. A fifth was found outside Kurdish Jews only in an Iranian from Khuzistan, a region bordering Kurdistan. Two-thirds of the mutant chromosomes carry the mutations unique to Kurdish Jews. The authors traced the origin of the mutations to specific geographic regions within Kurdistan. This information, supported by haplotype analysis, suggests that thalassemia in central Kurdistan (northern Iraq) has evolved primarily from multiple mutational events. They conclude that several evolutionary mechanisms contributed to the evolution of {beta}-thalassemia in this small ethnic isolate.« less

  1. Does sex induce a phase transition?

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.; Moss de Oliveira, S.; Stauffer, D.; Cebrat, S.; Pękalski, A.

    2008-05-01

    We discovered a dynamic phase transition induced by sexual reproduction. The dynamics is a pure Darwinian rule applied to diploid bit-strings with both fundamental ingredients to drive Darwin's evolution: (1) random mutations and crossings which act in the sense of increasing the entropy (or diversity); and (2) selection which acts in the opposite sense by limiting the entropy explosion. Selection wins this competition if mutations performed at birth are few enough, and thus the wild genotype dominates the steady-state population. By slowly increasing the average number m of mutations, however, the population suddenly undergoes a mutational degradation precisely at a transition point mc. Above this point, the “bad” alleles (represented by 1-bits) spread over the genetic pool of the population, overcoming the selection pressure. Individuals become selectively alike, and evolution stops. Only below this point, m < mc, evolutionary life is possible. The finite-size-scaling behaviour of this transition is exhibited for large enough “chromosome” lengths L, through lengthy computer simulations. One important and surprising observation is the L-independence of the transition curves, for large L. They are also independent on the population size. Another is that mc is near unity, i.e. life cannot be stable with much more than one mutation per diploid genome, independent of the chromosome length, in agreement with reality. One possible consequence is that an eventual evolutionary jump towards larger L enabling the storage of more genetic information would demand an improved DNA copying machinery in order to keep the same total number of mutations per offspring.

  2. Genomic Diversity of Hepatitis B Virus Infection Associated With Fulminant Hepatitis B Development.

    PubMed

    Mina, Thomas; Amini Bavil Olyaee, Samad; Tacke, Frank; Maes, Piet; Van Ranst, Marc; Pourkarim, Mahmoud Reza

    2015-06-01

    After five decades of Hepatitis B Virus (HBV) vaccine discovery, HBV is still a major public health problem. Due to the high genetic diversity of HBV and selective pressure of the host immune system, intra-host evolution of this virus in different clinical manifestations is a hot topic of research. HBV infection causes a range of clinical manifestations from acute to chronic infection, cirrhosis and hepatocellular carcinoma. Among all forms of HBV infection manifestations, fulminant hepatitis B infection possesses the highest fatality rate. Almost 1% of the acutely infected patients develop fulminant hepatitis B, in which the mortality rate is around 70%. All published papers deposited in Genbank, on the topic of fulminant hepatitis were reviewed and their virological aspects were investigated. In this review, we highlight the genomic diversity of HBV reported from patients with fulminant HBV infection. The most commonly detected diversities affect regulatory motifs of HBV in the core and S region, indicating that these alterations may convert the virus to an aggressive strain. Moreover, mutations at T-cell and B-cell epitopes located in pre-S1 and pre-S2 proteins may lead to an immune evasion of the virus, likely favoring a more severe clinical course of infection. Furthermore, point and frame shift mutations in the core region increase the viral replication of HBV and help virus to evade from immune system and guarantee its persistence. Fulminant hepatitis B is associated with distinct mutational patterns of HBV, underlining that genomic diversity of the virus is an important factor determining its pathogenicity.

  3. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance.

    PubMed

    Manson, Abigail L; Cohen, Keira A; Abeel, Thomas; Desjardins, Christopher A; Armstrong, Derek T; Barry, Clifton E; Brand, Jeannette; Chapman, Sinéad B; Cho, Sang-Nae; Gabrielian, Andrei; Gomez, James; Jodals, Andreea M; Joloba, Moses; Jureen, Pontus; Lee, Jong Seok; Malinga, Lesibana; Maiga, Mamoudou; Nordenberg, Dale; Noroc, Ecaterina; Romancenco, Elena; Salazar, Alex; Ssengooba, Willy; Velayati, A A; Winglee, Kathryn; Zalutskaya, Aksana; Via, Laura E; Cassell, Gail H; Dorman, Susan E; Ellner, Jerrold; Farnia, Parissa; Galagan, James E; Rosenthal, Alex; Crudu, Valeriu; Homorodean, Daniela; Hsueh, Po-Ren; Narayanan, Sujatha; Pym, Alexander S; Skrahina, Alena; Swaminathan, Soumya; Van der Walt, Martie; Alland, David; Bishai, William R; Cohen, Ted; Hoffner, Sven; Birren, Bruce W; Earl, Ashlee M

    2017-03-01

    Multidrug-resistant tuberculosis (MDR-TB), caused by drug-resistant strains of Mycobacterium tuberculosis, is an increasingly serious problem worldwide. Here we examined a data set of whole-genome sequences from 5,310 M. tuberculosis isolates from five continents. Despite the great diversity of these isolates with respect to geographical point of isolation, genetic background and drug resistance, the patterns for the emergence of drug resistance were conserved globally. We have identified harbinger mutations that often precede multidrug resistance. In particular, the katG mutation encoding p.Ser315Thr, which confers resistance to isoniazid, overwhelmingly arose before mutations that conferred rifampicin resistance across all of the lineages, geographical regions and time periods. Therefore, molecular diagnostics that include markers for rifampicin resistance alone will be insufficient to identify pre-MDR strains. Incorporating knowledge of polymorphisms that occur before the emergence of multidrug resistance, particularly katG p.Ser315Thr, into molecular diagnostics should enable targeted treatment of patients with pre-MDR-TB to prevent further development of MDR-TB.

  4. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com; Felhi, Rahma; Tabebi, Mouna

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes ofmore » complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.« less

  5. Impact of Mutation Type and Amplicon Characteristics on Genetic Diversity Measures Generated Using a High-Resolution Melting Diversity Assay

    PubMed Central

    Cousins, Matthew M.; Donnell, Deborah; Eshleman, Susan H.

    2013-01-01

    We adapted high-resolution melting (HRM) technology to measure genetic diversity without sequencing. Diversity is measured as a single numeric HRM score. Herein, we determined the impact of mutation types and amplicon characteristics on HRM diversity scores. Plasmids were generated with single-base changes, insertions, and deletions. Different primer sets were used to vary the position of mutations within amplicons. Plasmids and plasmid mixtures were analyzed to determine the impact of mutation type, position, and concentration on HRM scores. The impact of amplicon length and G/C content on HRM scores was also evaluated. Different mutation types affected HRM scores to varying degrees (1-bp deletion < 1-bp change < 3-bp insertion < 9-bp insertion). The impact of mutations on HRM scores was influenced by amplicon length and the position of the mutation within the amplicon. Mutations were detected at concentrations of 5% to 95%, with the greatest impact at 50%. The G/C content altered melting temperature values of amplicons but had no impact on HRM scores. These data are relevant to the design of assays that measure genetic diversity using HRM technology. PMID:23178437

  6. Plasmodium falciparum Genetic Diversity in Continental Equatorial Guinea before and after Introduction of Artemisinin-Based Combination Therapy

    PubMed Central

    Guerra, Mónica; Neres, Rita; Salgueiro, Patrícia; Mendes, Cristina; Ndong-Mabale, Nicolas; Berzosa, Pedro; de Sousa, Bruno

    2016-01-01

    ABSTRACT Efforts to control malaria may affect malaria parasite genetic variability and drug resistance, the latter of which is associated with genetic events that promote mechanisms to escape drug action. The worldwide spread of drug resistance has been a major obstacle to controlling Plasmodium falciparum malaria, and thus the study of the origin and spread of associated mutations may provide some insights into the prevention of its emergence. This study reports an analysis of P. falciparum genetic diversity, focusing on antimalarial resistance-associated molecular markers in two socioeconomically different villages in mainland Equatorial Guinea. The present study took place 8 years after a previous one, allowing the analysis of results before and after the introduction of an artemisinin-based combination therapy (ACT), i.e., artesunate plus amodiaquine. Genetic diversity was assessed by analysis of the Pfmsp2 gene and neutral microsatellite loci. Pfdhps and Pfdhfr alleles associated with sulfadoxine-pyrimethamine (SP) resistance and flanking microsatellite loci were investigated, and the prevalences of drug resistance-associated point mutations of the Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps genes were estimated. Further, to monitor the use of ACT, we provide the baseline prevalences of K13 propeller mutations and Pfmdr1 copy numbers. After 8 years, noticeable differences occurred in the distribution of genotypes conferring resistance to chloroquine and SP, and the spread of mutated genotypes differed according to the setting. Regarding artemisinin resistance, although mutations reported as being linked to artemisinin resistance were not present at the time, several single nucleotide polymorphisms (SNPs) were observed in the K13 gene, suggesting that closer monitoring should be maintained to prevent the possible spread of artemisinin resistance in Africa. PMID:27795385

  7. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into emergence and spread of multidrug resistance

    PubMed Central

    Manson, Abigail L.; Cohen, Keira A.; Abeel, Thomas; Desjardins, Christopher A.; Armstrong, Derek T.; Barry, Clifton E.; Brand, Jeannette; Chapman, Sinéad B.; Cho, Sang-Nae; Gabrielian, Andrei; Gomez, James; Jodals, Andreea M.; Joloba, Moses; Jureen, Pontus; Lee, Jong Seok; Malinga, Lesibana; Maiga, Mamoudou; Nordenberg, Dale; Noroc, Ecaterina; Romancenco, Elena; Salazar, Alex; Ssengooba, Willy; Velayati, A. A.; Winglee, Kathryn; Zalutskaya, Aksana; Via, Laura E.; Cassell, Gail H.; Dorman, Susan E.; Ellner, Jerrold; Farnia, Parissa; Galagan, James E.; Rosenthal, Alex; Crudu, Valeriu; Homorodean, Daniela; Hsueh, Po-Ren; Narayanan, Sujatha; Pym, Alexander S.; Skrahina, Alena; Swaminathan, Soumya; Van der Walt, Martie; Alland, David; Bishai, William R.; Cohen, Ted; Hoffner, Sven; Birren, Bruce W.; Earl, Ashlee M.

    2017-01-01

    Multidrug-resistant tuberculosis (MDR-TB), caused by drug resistant strains of Mycobacterium tuberculosis, is an increasingly serious problem worldwide. In this study, we examined a dataset of 5,310 M. tuberculosis whole genome sequences from five continents. Despite great diversity with respect to geographic point of isolation, genetic background and drug resistance, patterns of drug resistance emergence were conserved globally. We have identified harbinger mutations that often precede MDR. In particular, the katG S315T mutation, conferring resistance to isoniazid, overwhelmingly arose before rifampicin resistance across all lineages, geographic regions, and time periods. Molecular diagnostics that include markers for rifampicin resistance alone will be insufficient to identify pre-MDR strains. Incorporating knowledge of pre-MDR polymorphisms, particularly katG S315, into molecular diagnostics will enable targeted treatment of patients with pre-MDR-TB to prevent further development of MDR-TB. PMID:28092681

  8. Computational Modeling of Molecular Effects of Mutations Causing Snyder-Robinson Syndrome

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Teng, Shaolei; Alexov, Emil

    2009-11-01

    Snyder-Robinson syndrome is an X-linked mental retardation disorder disease. The disease is associated with defects in a particular biomolecule, the spermine synthase (SMS) protein. Specifically, three missense mutations, G56S, I150T and V132G in SMS were identified to cause the disease, but molecular mechanism of their effect is unknown. We apply single-point energy calculations, molecular dynamics simulations and pKa calculations to reveal the effects of these mutations on SMS's stability, flexibility and interactions. It is demonstrated that even saddle changes as very conservative mutations can significantly affect wild type properties of SMS protein. While the mutations do not involve ionizable groups, still slight changes in the protonation of neighboring amino acids are suggested by the computational protocol. The dynamics of SMS was also affected by the mutations resulting in larger structural fluctuations in the mutant protein compared to the wild type. At the same time, the effect on SMS's stability was found to depend on the location of the mutation site with respect to the surface of the protein. Our investigation suggests that the disease is caused by diverse molecular mechanisms depending on the site of mutation and amino acid type substitution.

  9. The mutation profile of JAK2 and CALR in Chinese Han patients with Philadelphia chromosome-negative myeloproliferative neoplasms

    PubMed Central

    2014-01-01

    Mutations in JAK2, MPL and CALR are highly relevant to the Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms (MPNs). We performed high resolution melting analysis and Sanger sequencing together with T-A cloning to elucidate the unique mutation profile of these genes, in Chinese patients with MPNs. Peripheral blood DNA samples were obtained from 80 patients with polycythemia vera (PV), 80 patients with essential thrombocytosis (ET) and 50 patients with primary myelofibrosis (PMF). Ten PV patients were identified with diverse JAK2 exon 12 mutations. Five novel JAK2 Exon 12 mutation patterns (M532V/E543G, N533D, M535I/H538Y/K549I, E543G and D544N) were described. JAK2 V617F was detected in 140 samples (66 PV, 45 ET and 29 PMF). JAK2 Exon 12 mutations were prevalent (13%) and variable in the Chinese patients. Compared with PV patients with JAK2 V617F mutations, PV patients with JAK2 exon 12 mutations had an earlier median onset of disease (P = 0.0013). MPL W515L/K mutations were discerned in 4 ET and 3 PMF patients. Two kinds of CALR mutation, c. 1179_1230del and c. 1234_1235insTTGTC were detected in 20 ET and 16 PMF patients. A novel CALR mutation pattern (c. 1173_1223del/c. 1179_1230del) was identified in 2 PMF samples. In addition, 17 scattered point mutations in CALR c.1153 to c.1255 were also detected in 13 cases with CALR frame-shifting variations and 2 cases without CALR frame-shifting variations. Female patients showed a predisposition to CALR mutations (P = 0.0035). Chinese Ph-negative MPN patients have a unique mutation landscape in the common molecular markers of MPN diagnosis. Validation of the molecular diagnostic pipeline should be emphasized since there is a considerable ethnical diversity in the molecular profiles of Ph-negative MPNs. PMID:25023898

  10. Do HIV-1 non-B subtypes differentially impact resistance mutations and clinical disease progression in treated populations? Evidence from a systematic review

    PubMed Central

    Bhargava, Madhavi; Cajas, Jorge Martinez; Wainberg, Mark A; Klein, Marina B; Pai, Nitika Pant

    2014-01-01

    There are 31 million adults living with HIV-1 non-B subtypes globally, and about 10 million are on antiretroviral therapy (ART). Global evidence to guide clinical practice on ART response in HIV-1 non-B subtypes remains limited. We systematically searched 11 databases for the period 1996 to 2013 for evidence. Outcomes documented included time to development of AIDS and/or death, resistance mutations, opportunistic infections, and changes in CD4 cell counts and viral load. A lack of consistent reporting of all clinical end points precluded a meta-analysis. In sum, genetic diversity that precipitated differences in disease progression in ART-naïve populations was minimized in ART-experienced populations, although variability in resistance mutations persisted across non-B subtypes. To improve the quality of patient care in global settings, recording HIV genotypes at baseline and at virologic failure with targeted non-B subtype-based point-of-care resistance assays and timely phasing out of resistance-inducing ART regimens is recommended. PMID:24998532

  11. Diverse point mutations in the human gene for polymorphic N-acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsis, K.P.; Martell, K.J.; Weber, W.W.

    1991-07-15

    Classification of humans as rapid or slow acetylators is based on hereditary differences in rates of N-acetylation of therapeutic and carcinogenic agents, but N-acetylation of certain arylamine drugs displays no genetic variation. Two highly homologous human genes for N-acetyltransferase NAT1 and NAT2, presumably code for the genetically invariant and variant NAT proteins, respectively. In the present investigation, 1.9-kilobase human genomic EcoRI fragments encoding NAT2 were generated by the polymerase chain reaction with liver and leukocyte DNA from seven subjects phenotyped as homozygous and heterozygous acetylators. Direct sequencing revealed multiple point mutations in the coding region of two distinct NAT2 variants.more » One of these was derived from leukocytes of a slow acetylator and was distinguished by a silent mutation (coden 94) and a separate G {r arrow} A transition (position 590) leading to replacement of Arg-197 by Gln; the mutated guanine was part of a CpG dinucleotide and a Taq I site. The second NAT2 variant originated from liver with low N-acetylation activity. It was characterized by three nucleotide transitions giving rise to a silent mutation (codon 161), accompanied by obliteration of the sole Kpn I site, and two amino acid substitutions. The results show conclusively that the genetically variant NAT is encoded by NAT2.« less

  12. Mechanisms of viral mutation.

    PubMed

    Sanjuán, Rafael; Domingo-Calap, Pilar

    2016-12-01

    The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.

  13. Many private mutations originate from the first few divisions of a human colorectal adenoma.

    PubMed

    Kang, Haeyoun; Salomon, Matthew P; Sottoriva, Andrea; Zhao, Junsong; Toy, Morgan; Press, Michael F; Curtis, Christina; Marjoram, Paul; Siegmund, Kimberly; Shibata, Darryl

    2015-11-01

    Intratumoural mutational heterogeneity (ITH) or the presence of different private mutations in different parts of the same tumour is commonly observed in human tumours. The mechanisms generating such ITH are uncertain. Here we find that ITH can be remarkably well structured by measuring point mutations, chromosome copy numbers, and DNA passenger methylation from opposite sides and individual glands of a 6 cm human colorectal adenoma. ITH was present between tumour sides and individual glands, but the private mutations were side-specific and subdivided the adenoma into two major subclones. Furthermore, ITH disappeared within individual glands because the glands were clonal populations composed of cells with identical mutant genotypes. Despite mutation clonality, the glands were relatively old, diverse populations when their individual cells were compared for passenger methylation and by FISH. These observations can be organized into an expanding star-like ancestral tree with co-clonal expansion, where many private mutations and multiple related clones arise during the first few divisions. As a consequence, most detectable mutational ITH in the final tumour originates from the first few divisions. Much of the early history of a tumour, especially the first few divisions, may be embedded within the detectable ITH of tumour genomes. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. An autosomal recessive mutation in SCL24A4 causing enamel hypoplasia in Samoyed and its relationship to breed-wide genetic diversity.

    PubMed

    Pedersen, Niels C; Shope, Bonnie; Liu, Hongwei

    2017-01-01

    Pure breeding of dogs has led to over 700 heritable disorders, of which almost 300 are Mendelian in nature. Seventy percent of the characterized mutations have an autosomal recessive mode of inheritance, indicative of positive selection during bouts of inbreeding primarily for new desired conformational traits. Samoyed suffer from several common complex genetic disorders, but up to this time only two X-linked and one autosomal dominant disorder have been identified. Previous studies based on pedigrees and SNP arrays have concluded that Samoyed breeders have done a good job in maintaining genetic diversity and avoiding excessive inbreeding. This may explain why autosomal recessive disorders have not occurred to the extent observed in many other breeds. However, an enamel hypoplasia analogous to a form of autosomal recessive amelogenesis imperfecta (ARAI) in humans has been recently characterized in Samoyed, although the causative mutation appears to have existed for three or more decades. The rise of such a mutation indicates that bouts of inbreeding for desired conformational traits are still occurring despite an old and well-defined breed standard. Therefore, the present study has two objectives: 1) measure genetic diversity in the breed using DNA and short tandem repeats (STR), and 2) identify the exact mutation responsible for enamel hypoplasia in the breed, possible explanations for its recent spread, and the effect of eliminating the mutation on existing genetic diversity. The recent discovery of an autosomal recessive amelogenesis imperfecta (ARAI) in Samoyed provides an opportunity to study the mutation as well as genetic factors that favored its occurrence and subsequent spread. The first step in the study was to use 33 short tandem repeat (STR) loci on 25/38 autosomes and seven STRs across the dog leukocyte antigen (DLA) class I and II regions on CFA12 to determine the DNA-based genetic profile of 182 individuals from North America, Europe and Australia. Samoyed from the three continents constituted a single breed with only slight genetic differences. Breed-wide genetic diversity was low, most likely from a small founder population and subsequent artificial genetic bottlenecks. Two alleles at each autosome locus occurred in 70-95% of the dogs and 54% of alleles were homozygous. The number of DLA class I and II haplotypes was also low and three class I and two class II haplotypes occurred in 80-90% of individuals. Therefore, most Samoyed belong to two lines, with most dogs possessing a minority of existing genetic diversity and a minority of dogs containing a majority of diversity. Although contemporary Samoyed lack genetic diversity, the bulk of parents are as unrelated as possible with smaller subpopulations either more inbred or outbred than the total population. A familial disorder manifested by hypocalcification of enamel has been recently identified. A genome wide association study (GWAS) on seven affected and five unrelated healthy dogs pointed to a region of extended homozygosity on Canis familiaris autosome 8 (CFA8). The region contained a gene in the solute carrier 24 family ( SCL24A4) that encodes a protein involved in potassium dependent sodium/calcium exchange and transport. Mutations in this gene were recently found to cause a similar type of enamel hypoplasia in people. Sequencing of this candidate gene revealed a 21 bp duplication in exon 17. A test for the duplication was in concordance with the disease phenotype. The exact incidence of affected dogs is unknown, but 12% of the 168 healthy dogs tested were heterozygous for the mutation. This population was biased toward close relatives, so a liberal estimate of the incidence of affected dogs in the breed would be around 3.6/1000. Theoretical calculations based on the comparison of the whole population with a population devoid of carriers indicated that eliminating the trait would not affect existing genetic diversity at this time. The contemporary Samoyed, like many other breeds, has retained only a small portion of the genetic diversity that exists among all dogs. This limited genetic diversity along with positive genetic selection for desirable traits has led to at least three simple non-recessive genetic disorders and a low incidence of complex genetic traits such as autoimmune disease and hip dysplasia. Unlike many other pure breeds, the Samoyed has been spared the spate of deleterious autosomal recessive traits that have plagued many other pure breeds. However, ARAI due to a mutation in the SCL24A4 gene has apparently existed in the breed for several decades but is being increasingly diagnosed. The increase in diseased dogs is most likely due to a period of intensified positive selection for some desired conformational trait. A genetic test has been developed for identifying the mutation carriers which will enable the breeders to eliminate enamel hypoplasia in Samoyed by selective breeding and it appears that this mutation can be eliminated now without loss of genetic diversity.

  15. Polyploidy can drive rapid adaptation in yeast

    NASA Astrophysics Data System (ADS)

    Selmecki, Anna M.; Maruvka, Yosef E.; Richmond, Phillip A.; Guillet, Marie; Shoresh, Noam; Sorenson, Amber L.; de, Subhajyoti; Kishony, Roy; Michor, Franziska; Dowell, Robin; Pellman, David

    2015-03-01

    Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood. Polyploidy, usually whole-genome duplication, is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations. For example, in diverse cell types and organisms, immediately after a whole-genome duplication, newly formed polyploids missegregate chromosomes and undergo genetic instability. The instability following whole-genome duplications is thought to provide adaptive mutations in microorganisms and can promote tumorigenesis in mammalian cells. Polyploidy may also affect adaptation independently of beneficial mutations through ploidy-specific changes in cell physiology. Here we perform in vitro evolution experiments to test directly whether polyploidy can accelerate evolutionary adaptation. Compared with haploids and diploids, tetraploids undergo significantly faster adaptation. Mathematical modelling suggests that rapid adaptation of tetraploids is driven by higher rates of beneficial mutations with stronger fitness effects, which is supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provide large fitness gains. We identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation.

  16. Differential evolution enhanced with multiobjective sorting-based mutation operators.

    PubMed

    Wang, Jiahai; Liao, Jianjun; Zhou, Ying; Cai, Yiqiao

    2014-12-01

    Differential evolution (DE) is a simple and powerful population-based evolutionary algorithm. The salient feature of DE lies in its mutation mechanism. Generally, the parents in the mutation operator of DE are randomly selected from the population. Hence, all vectors are equally likely to be selected as parents without selective pressure at all. Additionally, the diversity information is always ignored. In order to fully exploit the fitness and diversity information of the population, this paper presents a DE framework with multiobjective sorting-based mutation operator. In the proposed mutation operator, individuals in the current population are firstly sorted according to their fitness and diversity contribution by nondominated sorting. Then parents in the mutation operators are proportionally selected according to their rankings based on fitness and diversity, thus, the promising individuals with better fitness and diversity have more opportunity to be selected as parents. Since fitness and diversity information is simultaneously considered for parent selection, a good balance between exploration and exploitation can be achieved. The proposed operator is applied to original DE algorithms, as well as several advanced DE variants. Experimental results on 48 benchmark functions and 12 real-world application problems show that the proposed operator is an effective approach to enhance the performance of most DE algorithms studied.

  17. Mutational Effects and Population Dynamics During Viral Adaptation Challenge Current Models

    PubMed Central

    Miller, Craig R.; Joyce, Paul; Wichman, Holly A.

    2011-01-01

    Adaptation in haploid organisms has been extensively modeled but little tested. Using a microvirid bacteriophage (ID11), we conducted serial passage adaptations at two bottleneck sizes (104 and 106), followed by fitness assays and whole-genome sequencing of 631 individual isolates. Extensive genetic variation was observed including 22 beneficial, several nearly neutral, and several deleterious mutations. In the three large bottleneck lines, up to eight different haplotypes were observed in samples of 23 genomes from the final time point. The small bottleneck lines were less diverse. The small bottleneck lines appeared to operate near the transition between isolated selective sweeps and conditions of complex dynamics (e.g., clonal interference). The large bottleneck lines exhibited extensive interference and less stochasticity, with multiple beneficial mutations establishing on a variety of backgrounds. Several leapfrog events occurred. The distribution of first-step adaptive mutations differed significantly from the distribution of second-steps, and a surprisingly large number of second-step beneficial mutations were observed on a highly fit first-step background. Furthermore, few first-step mutations appeared as second-steps and second-steps had substantially smaller selection coefficients. Collectively, the results indicate that the fitness landscape falls between the extremes of smooth and fully uncorrelated, violating the assumptions of many current mutational landscape models. PMID:21041559

  18. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene.

    PubMed

    Gonçalves, Ana; Oliveira, Jorge; Coelho, Teresa; Taipa, Ricardo; Melo-Pires, Manuel; Sousa, Mário; Santos, Rosário

    2017-10-03

    A broad mutational spectrum in the dystrophin ( DMD ) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD , adding to the diversity of mutational events that give rise to D/BMD.

  19. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity

    NASA Astrophysics Data System (ADS)

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2016-10-01

    Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.

  20. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity.

    PubMed

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2016-10-01

    Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.

  1. Genetic structure of farmer-managed varieties in clonally-propagated crops.

    PubMed

    Scarcelli, N; Tostain, S; Vigouroux, Y; Luong, V; Baco, M N; Agbangla, C; Daïnou, O; Pham, J L

    2011-08-01

    The relative role of sexual reproduction and mutation in shaping the diversity of clonally propagated crops is largely unknown. We analyzed the genetic diversity of yam-a vegetatively-propagated crop-to gain insight into how these two factors shape its diversity in relation with farmers' classifications. Using 15 microsatellite loci, we analyzed 485 samples of 10 different yam varieties. We identified 33 different genotypes organized in lineages supported by high bootstrap values. We computed the probability that these genotypes appeared by sexual reproduction or mutation within and between each lineage. This allowed us to interpret each lineage as a product of sexual reproduction that has evolved by mutation. Moreover, we clearly noted a similarity between the genetic structure and farmers' classifications. Each variety could thus be interpreted as being the product of sexual reproduction having evolved by mutation. This highly structured diversity of farmer-managed varieties has consequences for the preservation of yam diversity.

  2. Experimental Estimation of Mutation Rates in a Wheat Population With a Gene Genealogy Approach

    PubMed Central

    Raquin, Anne-Laure; Depaulis, Frantz; Lambert, Amaury; Galic, Nathalie; Brabant, Philippe; Goldringer, Isabelle

    2008-01-01

    Microsatellite markers are extensively used to evaluate genetic diversity in natural or experimental evolving populations. Their high degree of polymorphism reflects their high mutation rates. Estimates of the mutation rates are therefore necessary when characterizing diversity in populations. As a complement to the classical experimental designs, we propose to use experimental populations, where the initial state is entirely known and some intermediate states have been thoroughly surveyed, thus providing a short timescale estimation together with a large number of cumulated meioses. In this article, we derived four original gene genealogy-based methods to assess mutation rates with limited bias due to relevant model assumptions incorporating the initial state, the number of new alleles, and the genetic effective population size. We studied the evolution of genetic diversity at 21 microsatellite markers, after 15 generations in an experimental wheat population. Compared to the parents, 23 new alleles were found in generation 15 at 9 of the 21 loci studied. We provide evidence that they arose by mutation. Corresponding estimates of the mutation rates ranged from 0 to 4.97 × 10−3 per generation (i.e., year). Sequences of several alleles revealed that length polymorphism was only due to variation in the core of the microsatellite. Among different microsatellite characteristics, both the motif repeat number and an independent estimation of the Nei diversity were correlated with the novel diversity. Despite a reduced genetic effective size, global diversity at microsatellite markers increased in this population, suggesting that microsatellite diversity should be used with caution as an indicator in biodiversity conservation issues. PMID:18689900

  3. Experimental estimation of mutation rates in a wheat population with a gene genealogy approach.

    PubMed

    Raquin, Anne-Laure; Depaulis, Frantz; Lambert, Amaury; Galic, Nathalie; Brabant, Philippe; Goldringer, Isabelle

    2008-08-01

    Microsatellite markers are extensively used to evaluate genetic diversity in natural or experimental evolving populations. Their high degree of polymorphism reflects their high mutation rates. Estimates of the mutation rates are therefore necessary when characterizing diversity in populations. As a complement to the classical experimental designs, we propose to use experimental populations, where the initial state is entirely known and some intermediate states have been thoroughly surveyed, thus providing a short timescale estimation together with a large number of cumulated meioses. In this article, we derived four original gene genealogy-based methods to assess mutation rates with limited bias due to relevant model assumptions incorporating the initial state, the number of new alleles, and the genetic effective population size. We studied the evolution of genetic diversity at 21 microsatellite markers, after 15 generations in an experimental wheat population. Compared to the parents, 23 new alleles were found in generation 15 at 9 of the 21 loci studied. We provide evidence that they arose by mutation. Corresponding estimates of the mutation rates ranged from 0 to 4.97 x 10(-3) per generation (i.e., year). Sequences of several alleles revealed that length polymorphism was only due to variation in the core of the microsatellite. Among different microsatellite characteristics, both the motif repeat number and an independent estimation of the Nei diversity were correlated with the novel diversity. Despite a reduced genetic effective size, global diversity at microsatellite markers increased in this population, suggesting that microsatellite diversity should be used with caution as an indicator in biodiversity conservation issues.

  4. OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China.

    PubMed

    Fang, Zhi-Li; Zhang, Li-Yan; Huang, Ying-Min; Qing, Yun; Cao, Kai-Yuan; Tian, Guo-Bao; Huang, Xi

    2014-01-01

    To investigate the mechanisms involved in imipenem resistance of Pseudomonas aeruginosa in southern China, 61 imipenem-resistant P. aeruginosa clinical isolates were collected from 4 hospitals between October 2011 and June 2012. All isolates were resistant to imipenem, whereas 21.3% were susceptible or intermediate to meropenem. Variable degrees of resistance to other β-lactam and non-β-lactam antimicrobials were observed. PFGE revealed high-level of clonal diversity. Among the 61 isolates, 50 isolates had OprD loss by disrupted oprD mutations, including 43 with frameshift mutations of oprD and 7 with a premature stop codon by single point mutation. Six isolates were oprD-negative by PCR, suggestive of a major disruption of oprD genes. Five isolates had intact oprD but had reduced expression of oprD genes. In addition, only one isolate with disrupted oprD mutation by a premature stop codon was confirmed to be a metallo-β-lactamase producer (IMP-9). Our results show that the loss of OprD, as well as reduced expression of oprD and MBL production, were the predominant mechanisms of imipenem resistance in P. aeruginosa in southern China. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Hallermann-Streiff Syndrome: No Evidence for a Link to Laminopathies

    PubMed Central

    Kortüm, F.; Chyrek, M.; Fuchs, S.; Albrecht, B.; Gillessen-Kaesbach, G.; Mütze, U.; Seemanova, E.; Tinschert, S.; Wieczorek, D.; Rosenberger, G.; Kutsche, K.

    2011-01-01

    Hallermann-Streiff syndrome (HSS) is a rare inherited disorder characterized by malformations of the cranium and facial bones, congenital cataracts, microphthalmia, skin atrophy, hypotrichosis, proportionate short stature, teeth abnormalities, and a typical facial appearance with prominent forehead, small pointed nose, and micrognathia. The genetic cause of this developmental disorder is presently unknown. Here we describe 8 new patients with a phenotype of HSS. Individuals with HSS present with clinical features overlapping with some progeroid syndromes that belong to the laminopathies, such as Hutchinson-Gilford progeria syndrome (HGPS) and mandibuloacral dysplasia (MAD). HGPS is caused by de novo point mutations in the LMNA gene, coding for the nuclear lamina proteins lamin A and C. MAD with type A and B lipodystrophy are recessive disorders resulting from mutations in LMNA and ZMPSTE24, respectively. ZMPSTE24 in addition to ICMT encode proteins involved in posttranslational processing of lamin A. We hypothesized that HSS is an allelic disorder to HGPS and MAD. As the nuclear shape is often irregular in patients with LMNA mutations, we first analyzed the nuclear morphology in skin fibroblasts of patients with HSS, but could not identify any abnormality. Sequencing of the genes LMNA, ZMPSTE24 and ICMT in the 8 patients with HSS revealed the heterozygous missense mutation c.1930C>T (p.R644C) in LMNA in 1 female. Extreme phenotypic diversity and low penetrance have been associated with the p.R644C mutation. In ZMPSTE24 and ICMT, no pathogenic sequence change was detected in patients with HSS. Together, we found no evidence that HSS is another laminopathy. PMID:22570643

  6. Automatic extraction of protein point mutations using a graph bigram association.

    PubMed

    Lee, Lawrence C; Horn, Florence; Cohen, Fred E

    2007-02-02

    Protein point mutations are an essential component of the evolutionary and experimental analysis of protein structure and function. While many manually curated databases attempt to index point mutations, most experimentally generated point mutations and the biological impacts of the changes are described in the peer-reviewed published literature. We describe an application, Mutation GraB (Graph Bigram), that identifies, extracts, and verifies point mutations from biomedical literature. The principal problem of point mutation extraction is to link the point mutation with its associated protein and organism of origin. Our algorithm uses a graph-based bigram traversal to identify these relevant associations and exploits the Swiss-Prot protein database to verify this information. The graph bigram method is different from other models for point mutation extraction in that it incorporates frequency and positional data of all terms in an article to drive the point mutation-protein association. Our method was tested on 589 articles describing point mutations from the G protein-coupled receptor (GPCR), tyrosine kinase, and ion channel protein families. We evaluated our graph bigram metric against a word-proximity metric for term association on datasets of full-text literature in these three different protein families. Our testing shows that the graph bigram metric achieves a higher F-measure for the GPCRs (0.79 versus 0.76), protein tyrosine kinases (0.72 versus 0.69), and ion channel transporters (0.76 versus 0.74). Importantly, in situations where more than one protein can be assigned to a point mutation and disambiguation is required, the graph bigram metric achieves a precision of 0.84 compared with the word distance metric precision of 0.73. We believe the graph bigram search metric to be a significant improvement over previous search metrics for point mutation extraction and to be applicable to text-mining application requiring the association of words.

  7. High-Sequence Diversity and Rapid Virus Turnover Contribute to Higher Rates of Coreceptor Switching in Treatment-Experienced Subjects with HIV-1 Viremia.

    PubMed

    Nedellec, Rebecca; Herbeck, Joshua T; Hunt, Peter W; Deeks, Steven G; Mullins, James I; Anton, Elizabeth D; Reeves, Jacqueline D; Mosier, Donald E

    2017-03-01

    Coreceptor switching from CCR5 to CXCR4 is common during chronic HIV-1 infection, but is even more common in individuals who have failed antiretroviral therapy (ART). Prior studies have suggested rapid mutation and/or recombination of HIV-1 envelope (env) genes during coreceptor switching. We compared the functional and genotypic changes in env of viruses from viremic subjects who had failed ART just before and after coreceptor switching and compared those to viruses from matched subjects without coreceptor switching. Analysis of multiple unique functional env clones from each subject revealed extensive diversity at both sample time points and rapid diversification of sequences during the 4-month interval in viruses from both 9 subjects with coreceptor switching and 15 control subjects. Only two subjects had envs with evidence of recombination. Three findings distinguished env clones from subjects with coreceptor switching from controls: (1) lower entry efficiency via CCR5; (2) longer V1/V2 regions; and (3), lower nadir CD4 T cell counts during prior years of infection. Most of these subjects harbored virus with lower replicative capacity associated with protease (PR) and/or reverse transcriptase inhibitor resistance mutations, and the extensive diversification tended to lead either to improved entry efficiency via CCR5 or the gain of entry function via CXCR4. These results suggest that R5X4 or X4 variants emerge from a diverse, low-fitness landscape shaped by chronic infection, multiple ART resistance mutations, the availability of target cells, and reduced entry efficiency via CCR5.

  8. Mosquito bottlenecks alter viral mutant swarm in a tissue and time-dependent manner with contraction and expansion of variant positions and diversity.

    PubMed

    Patterson, Edward I; Khanipov, Kamil; Rojas, Mark M; Kautz, Tiffany F; Rockx-Brouwer, Dedeke; Golovko, Georgiy; Albayrak, Levent; Fofanov, Yuriy; Forrester, Naomi L

    2018-01-01

    Viral diversity is theorized to play a significant role during virus infections, particularly for arthropod-borne viruses (arboviruses) that must infect both vertebrate and invertebrate hosts. To determine how viral diversity influences mosquito infection and dissemination Culex taeniopus mosquitoes were infected with the Venezuelan equine encephalitis virus endemic strain 68U201. Bodies and legs/wings of the mosquitoes were collected individually and subjected to multi-parallel sequencing. Virus sequence diversity was calculated for each tissue. Greater diversity was seen in mosquitoes with successful dissemination versus those with no dissemination. Diversity across time revealed that bottlenecks influence diversity following dissemination to the legs/wings, but levels of diversity are restored by Day 12 post-dissemination. Specific minority variants were repeatedly identified across the mosquito cohort, some in nearly every tissue and time point, suggesting that certain variants are important in mosquito infection and dissemination. This study demonstrates that the interaction between the mosquito and the virus results in changes in diversity and the mutational spectrum and may be essential for successful transition of the bottlenecks associated with arbovirus infection.

  9. Revisiting the diffusion approximation to estimate evolutionary rates of gene family diversification.

    PubMed

    Gjini, Erida; Haydon, Daniel T; David Barry, J; Cobbold, Christina A

    2014-01-21

    Genetic diversity in multigene families is shaped by multiple processes, including gene conversion and point mutation. Because multi-gene families are involved in crucial traits of organisms, quantifying the rates of their genetic diversification is important. With increasing availability of genomic data, there is a growing need for quantitative approaches that integrate the molecular evolution of gene families with their higher-scale function. In this study, we integrate a stochastic simulation framework with population genetics theory, namely the diffusion approximation, to investigate the dynamics of genetic diversification in a gene family. Duplicated genes can diverge and encode new functions as a result of point mutation, and become more similar through gene conversion. To model the evolution of pairwise identity in a multigene family, we first consider all conversion and mutation events in a discrete manner, keeping track of their details and times of occurrence; second we consider only the infinitesimal effect of these processes on pairwise identity accounting for random sampling of genes and positions. The purely stochastic approach is closer to biological reality and is based on many explicit parameters, such as conversion tract length and family size, but is more challenging analytically. The population genetics approach is an approximation accounting implicitly for point mutation and gene conversion, only in terms of per-site average probabilities. Comparison of these two approaches across a range of parameter combinations reveals that they are not entirely equivalent, but that for certain relevant regimes they do match. As an application of this modelling framework, we consider the distribution of nucleotide identity among VSG genes of African trypanosomes, representing the most prominent example of a multi-gene family mediating parasite antigenic variation and within-host immune evasion. © 2013 Published by Elsevier Ltd. All rights reserved.

  10. Hybrid intelligent optimization methods for engineering problems

    NASA Astrophysics Data System (ADS)

    Pehlivanoglu, Yasin Volkan

    The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles.

  11. Clinical and laboratory survey of 65 Chinese patients with Leigh syndrome.

    PubMed

    Yang, Yan-ling; Sun, Fang; Zhang, Yao; Qian, Ning; Yuan, Yun; Wang, Zhao-xia; Qi, Yu; Xiao, Jiang-xi; Wang, Xiao-ying; Qi, Zhao-yue; Zhang, Yue-hua; Jiang, Yu-wu; Bao, Xin-hua; Qin, Jiong; Wu, Xi-ru

    2006-03-05

    Leigh syndrome is an inherited neurodegenerative disease that emerges in infancy and childhood and presents with a clinically heterogeneous variety of neuromuscular and non-neuromuscular disorders. It can result from the inheritance of mutations in either nuclear or mitochondrial DNA. In the current study, we performed a retrospective study in 65 patients in order to investigate the clinical and genetic characteristics of Leigh syndrome in Chinese patients. Sixty-five unrelated cases (35 men and 30 women) who were hospitalized in the past 12 years were reviewed. Diagnosis was based on both the clinical presentation and the characteristic neuropathologic findings of bilateral symmetric necrotizing lesions in the basal ganglia and brain stem as detected using cranial computed tomography (CT) scan or magnetic resonance imaging (MRI). The differential diagnosis of organic acidurias and fatty acid beta-oxidation defects were performed. Specific point mutations and deletions in mitochondrial DNA (T8993G, T8993C, T9176C, A8344G, A3243G) were screened by PCR-restriction analysis and Southern blot. The SURF1 gene was sequenced. Skeletal muscle biopsies were performed in 17 (26.2%) of the patients. The diagnosis was confirmed by autopsy in 6 (9.2%) patients. The patients had various forms of metabolic encephalomyopathy. Fifty-nine (90.8%) of the patients had the typical neuroradiological features of Leigh syndrome, including symmetrical necrotizing lesions scattered within the basal ganglia, thalamus and brain stem. Twenty (30.8%) patients were confirmed by genetic, biochemical analysis and autopsy. Specific point mutations in mitochondrial DNA were found in 5 cases (7.7%). Of these, the A8344G mutation was detected in 2 patients. The T8993G, T8993C, and A3243G point mutations were identified in 3 other patients, respectively. SURF1 mutations associated with cytochrome c oxidase deficiency were identified in 8 (12.3%) families by DNA sequencing. A G604C mutation was identified in 6 (9.2%) patients. The genotypes of 52 patients remained unknown. Leigh syndrome presents as a diverse array of clinical features and can result from specific mutations in nuclear or mitochondrial DNA. In this study, SURF1 mutations associated with cytochrome c oxidase deficiency were identified in 8 (12.3%) out of 65 patients with Leigh syndrome. It indicates that SURF1 mutations might be a common cause of Leigh syndrome in China. The etiology of Leigh syndrome in Chinese patients represents a persistent challenge to clinicians.

  12. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene

    PubMed Central

    Gonçalves, Ana; Coelho, Teresa; Melo-Pires, Manuel; Sousa, Mário

    2017-01-01

    A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD, adding to the diversity of mutational events that give rise to D/BMD. PMID:28972564

  13. Somatic mutations contribute to genotypic diversity in sterile and fertile populations of the threatened shrub, Grevillea rhizomatosa (Proteaceae).

    PubMed

    Gross, C L; Nelson, Penelope A; Haddadchi, Azadeh; Fatemi, Mohammad

    2012-02-01

    Grevillea rhizomatosa is a spreading shrub which exhibits multiple breeding strategies within a narrow area in the fire-prone heathlands of eastern Australia. Reproductive strategies include self-compatibility, self-incompatibility and clonality (with and without sterility). The close proximity of contrasting breeding systems provides an opportunity to explore the evolution of sterility and to compare and contrast the origins of genotypic diversity (recombinant or somatic) against degrees of sexual expression. ISSR markers for 120 band positions (putative loci) were used to compare genetic diversity among five populations at a macro-scale of 5 m between samples (n = 244 shrubs), and at a micro-scale of nearest neighbours for all plants in five 25-m(2) quadrats with contrasting fertilities (n = 162 shrubs). Nearest-neighbour sampling included several clusters of connected ramets. Matrix incompatibility (MIC) analyses were used to evaluate the relative contribution of recombination and somatic mutation to genotype diversity. High levels of genotypic diversity were found in all populations regardless of fertilities (fertile populations, G/N ≥ 0·94; sterile populations, G/N ≥ 0·97) and most sterile populations had a unique genetic profile. Somatic mutations were detected along connected ramets in ten out of 42 ramet clusters. MIC analyses showed that somatic mutations have contributed to diversity in all populations and particularly so in sterile populations. Somatic mutations contribute significantly to gene diversity in sterile populations of Grevillea rhizomatosa, the accumulation of which is the likely cause of male and female sterility. High levels of genetic diversity therefore may not always be synonymous with sexual fitness and genetic health. We hypothesize that frequent fires drive selection for clonal reproduction, at the cost of flowering such that sexual functions are not maintained through selection, and the build-up of somatic mutations in meristems results in high genotype diversity at the cost of pollen and ovule fertilities.

  14. Parent-progeny sequencing indicates higher mutation rates in heterozygotes.

    PubMed

    Yang, Sihai; Wang, Long; Huang, Ju; Zhang, Xiaohui; Yuan, Yang; Chen, Jian-Qun; Hurst, Laurence D; Tian, Dacheng

    2015-07-23

    Mutation rates vary within genomes, but the causes of this remain unclear. As many prior inferences rely on methods that assume an absence of selection, potentially leading to artefactual results, we call mutation events directly using a parent-offspring sequencing strategy focusing on Arabidopsis and using rice and honey bee for replication. Here we show that mutation rates are higher in heterozygotes and in proximity to crossover events. A correlation between recombination rate and intraspecific diversity is in part owing to a higher mutation rate in domains of high recombination/diversity. Implicating diversity per se as a cause, we find an ∼3.5-fold higher mutation rate in heterozygotes than in homozygotes, with mutations occurring in closer proximity to heterozygous sites than expected by chance. In a genome that is a patchwork of heterozygous and homozygous domains, mutations occur disproportionately more often in the heterozygous domains. If segregating mutations predispose to a higher local mutation rate, clusters of genes dominantly under purifying selection (more commonly homozygous) and under balancing selection (more commonly heterozygous), might have low and high mutation rates, respectively. Our results are consistent with this, there being a ten times higher mutation rate in pathogen resistance genes, expected to be under positive or balancing selection. Consequently, we do not necessarily need to evoke extremely weak selection on the mutation rate to explain why mutational hot and cold spots might correspond to regions under positive/balancing and purifying selection, respectively.

  15. Mutations, mutation rates, and evolution at the hypervariable VNTR loci of Yersinia pestis.

    PubMed

    Vogler, Amy J; Keys, Christine E; Allender, Christopher; Bailey, Ira; Girard, Jessica; Pearson, Talima; Smith, Kimothy L; Wagner, David M; Keim, Paul

    2007-03-01

    VNTRs are able to discriminate among closely related isolates of recently emerged clonal pathogens, including Yersinia pestis the etiologic agent of plague, because of their great diversity. Diversity is driven largely by mutation but little is known about VNTR mutation rates, factors affecting mutation rates, or the mutational mechanisms. The molecular epidemiological utility of VNTRs will be greatly enhanced when this foundational knowledge is available. Here, we measure mutation rates for 43 VNTR loci in Y. pestis using an in vitro generated population encompassing approximately 96,000 generations. We estimate the combined 43-locus rate and individual rates for 14 loci. A comparison of Y. pestis and Escherichia coli O157:H7 VNTR mutation rates and products revealed a similar relationship between diversity and mutation rate in these two species. Likewise, the relationship between repeat copy number and mutation rate is nearly identical between these species, suggesting a generalized relationship that may be applicable to other species. The single- versus multiple-repeat mutation ratios and the insertion versus deletion mutation ratios were also similar, providing support for a general model for the mutations associated with VNTRs. Finally, we use two small sets of Y. pestis isolates to show how this general model and our estimated mutation rates can be used to compare alternate phylogenies, and to evaluate the significance of genotype matches, near-matches, and mismatches found in empirical comparisons with a reference database.

  16. Similar Mutation Rates but Highly Diverse Mutation Spectra in Ascomycete and Basidiomycete Yeasts.

    PubMed

    Long, Hongan; Behringer, Megan G; Williams, Emily; Te, Ronald; Lynch, Michael

    2016-12-01

    Yeast species are extremely diverse and not monophyletic. Because the majority of yeast research focuses on ascomycetes, the mutational determinants of genetic diversity across yeast species are not well understood. By combining mutation-accumulation techniques with whole-genome sequencing, we resolved the genomic mutation rate and spectrum of the oleaginous (oil-producing) ‘red yeast’ Rhodotorula toruloides, the first such study in the fungal phylum Basidiomycota. We find that the mutation spectrum is quite different from what has been observed in all other studied unicellular eukaryotes, but similar to that in most bacteria—a predominance of transitions relative to transversions. Rhodotorula toruloides has a significantly higher A:T→G:C transition rate—possibly elevated by the abundant flanking G/C nucleotides in the GC-rich genome, as well as a much lower G:C→T:A transversion rate. In spite of these striking differences, there are substantial consistencies between R. toruloides and the ascomycete model yeasts: a spontaneous base-substitution mutation rate of 1.90 × 10 −10 per site per cell division as well as an elevated mutation rate at non-methylated 5'CpG3' sites. These results imply the evolution of variable mutation spectra in the face of similar mutation rates in yeasts.

  17. The Number of Point Mutations in Induced Pluripotent Stem Cells and Nuclear Transfer Embryonic Stem Cells Depends on the Method and Somatic Cell Type Used for Their Generation.

    PubMed

    Araki, Ryoko; Mizutani, Eiji; Hoki, Yuko; Sunayama, Misato; Wakayama, Sayaka; Nagatomo, Hiroaki; Kasama, Yasuji; Nakamura, Miki; Wakayama, Teruhiko; Abe, Masumi

    2017-05-01

    Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196. © 2017 AlphaMed Press.

  18. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host

    PubMed Central

    Timp, Winston; Feinberg, Andrew P.

    2015-01-01

    Although at the genetic level cancer is caused by diverse mutations, epigenetic modifications are characteristic of all cancers, from apparently normal precursor tissue to advanced metastatic disease, and these epigenetic modifications drive tumour cell heterogeneity. We propose a unifying model of cancer in which epigenetic dysregulation allows rapid selection for tumour cell survival at the expense of the host. Mechanisms involve both genetic mutations and epigenetic modifications that disrupt the function of genes that regulate the epigenome itself. Several exciting recent discoveries also point to a genome-scale disruption of the epigenome that involves large blocks of DNA hypomethylation, mutations of epigenetic modifier genes and alterations of heterochromatin in cancer (including large organized chromatin lysine modifications (LOCKs) and lamin-associated domains (LADs)), all of which increase epigenetic and gene expression plasticity. Our model suggests a new approach to cancer diagnosis and therapy that focuses on epigenetic dysregulation and has great potential for risk detection and chemoprevention. PMID:23760024

  19. An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions

    PubMed Central

    Churkin, Alexander; Barash, Danny

    2008-01-01

    Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm) for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3), for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure. A complete explanation of the application, called MultiRNAmute, is available at [1]. PMID:18445289

  20. Small-Cell Carcinomas of the Bladder and Lung Are Characterized by a Convergent but Distinct Pathogenesis.

    PubMed

    Chang, Matthew T; Penson, Alexander; Desai, Neil B; Socci, Nicholas D; Shen, Ronglai; Seshan, Venkatraman E; Kundra, Ritika; Abeshouse, Adam; Viale, Agnes; Cha, Eugene K; Hao, Xueli; Reuter, Victor E; Rudin, Charles M; Bochner, Bernard H; Rosenberg, Jonathan E; Bajorin, Dean F; Schultz, Nikolaus; Berger, Michael F; Iyer, Gopa; Solit, David B; Al-Ahmadie, Hikmat A; Taylor, Barry S

    2018-04-15

    Purpose: Small-cell carcinoma of the bladder (SCCB) is a rare and aggressive neuroendocrine tumor with a dismal prognosis and limited treatment options. As SCCB is histologically indistinguishable from small-cell lung cancer, a shared pathogenesis and cell of origin has been proposed. The aim of this study is to determine whether SCCBs arise from a preexisting urothelial carcinoma or share a molecular pathogenesis in common with small-cell lung cancer. Experimental Design: We performed an integrative analysis of 61 SCCB tumors to identify histology- and organ-specific similarities and differences. Results: SCCB has a high somatic mutational burden driven predominantly by an APOBEC-mediated mutational process. TP53, RB1 , and TERT promoter mutations were present in nearly all samples. Although these events appeared to arise early in all affected tumors and likely reflect an evolutionary branch point that may have driven small-cell lineage differentiation, they were unlikely the founding transforming event, as they were often preceded by diverse and less common driver mutations, many of which are common in bladder urothelial cancers, but not small-cell lung tumors. Most patient tumors (72%) also underwent genome doubling (GD). Although arising at different chronologic points in the evolution of the disease, GD was often preceded by biallelic mutations in TP53 with retention of two intact copies. Conclusions: Our findings indicate that small-cell cancers of the bladder and lung have a convergent but distinct pathogenesis, with SCCBs arising from a cell of origin shared with urothelial bladder cancer. Clin Cancer Res; 24(8); 1965-73. ©2017 AACR See related commentary by Oser and Jänne, p. 1775 . ©2017 American Association for Cancer Research.

  1. Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2.

    PubMed

    Kim, Hyo Jeong; Lv, Ping; Sihn, Choong-Ryoul; Yamoah, Ebenezer N

    2011-01-14

    Despite advances in identifying deafness genes, determination of the underlying cellular and functional mechanisms for auditory diseases remains a challenge. Mutations of the human K(+) channel hKv7.4 lead to post-lingual progressive hearing loss (DFNA2), which affects world-wide population with diverse racial backgrounds. Here, we have generated the spectrum of point mutations in the hKv7.4 that have been identified as diseased mutants. We report that expression of five point mutations in the pore region, namely L274H, W276S, L281S, G285C, and G296S, as well as the C-terminal mutant G321S in the heterologous expression system, yielded non-functional channels because of endoplasmic reticulum retention of the mutant channels. We mimicked the dominant diseased conditions by co-expressing the wild-type and mutant channels. As compared with expression of wild-type channel alone, the blend of wild-type and mutant channel subunits resulted in reduced currents. Moreover, the combinatorial ratios of wild type:mutant and the ensuing current magnitude could not be explained by the predictions of a tetrameric channel and a dominant negative effect of the mutant subunits. The results can be explained by the dependence of cell surface expression of the mutant on the wild-type subunit. Surprisingly, a transmembrane mutation F182L, which has been identified in a pre-lingual progressive hearing loss patient in Taiwan, yielded cell surface expression and functional features that were similar to that of the wild type, suggesting that this mutation may represent redundant polymorphism. Collectively, these findings provide traces of the cellular mechanisms for DFNA2.

  2. High-Sequence Diversity and Rapid Virus Turnover Contribute to Higher Rates of Coreceptor Switching in Treatment-Experienced Subjects with HIV-1 Viremia

    PubMed Central

    Nedellec, Rebecca; Herbeck, Joshua T.; Hunt, Peter W.; Deeks, Steven G.; Mullins, James I.; Anton, Elizabeth D.; Reeves, Jacqueline D.

    2017-01-01

    Abstract Coreceptor switching from CCR5 to CXCR4 is common during chronic HIV-1 infection, but is even more common in individuals who have failed antiretroviral therapy (ART). Prior studies have suggested rapid mutation and/or recombination of HIV-1 envelope (env) genes during coreceptor switching. We compared the functional and genotypic changes in env of viruses from viremic subjects who had failed ART just before and after coreceptor switching and compared those to viruses from matched subjects without coreceptor switching. Analysis of multiple unique functional env clones from each subject revealed extensive diversity at both sample time points and rapid diversification of sequences during the 4-month interval in viruses from both 9 subjects with coreceptor switching and 15 control subjects. Only two subjects had envs with evidence of recombination. Three findings distinguished env clones from subjects with coreceptor switching from controls: (1) lower entry efficiency via CCR5; (2) longer V1/V2 regions; and (3), lower nadir CD4 T cell counts during prior years of infection. Most of these subjects harbored virus with lower replicative capacity associated with protease (PR) and/or reverse transcriptase inhibitor resistance mutations, and the extensive diversification tended to lead either to improved entry efficiency via CCR5 or the gain of entry function via CXCR4. These results suggest that R5X4 or X4 variants emerge from a diverse, low-fitness landscape shaped by chronic infection, multiple ART resistance mutations, the availability of target cells, and reduced entry efficiency via CCR5. PMID:27604829

  3. Long range dynamic effects of point-mutations trap a response regulator in an active conformation

    PubMed Central

    Bobay, Benjamin G.; Thompson, Richele J.; Hoch, James A.; Cavanagh, John

    2010-01-01

    When a point-mutation in a protein elicits a functional change, it is most common to assign this change to local structural perturbations. Here we show that point-mutations, distant from an essential highly dynamic kinase recognition loop in the response regulator Spo0F, lock this loop in an active conformation. This ‘conformational trapping’ results in functionally hyperactive Spo0F. Consequently, point-mutations are seen to affect functionally critical motions both close to and far from the mutational site. PMID:20828564

  4. [MPLW515L point mutation in patients with myeloproliferative disease].

    PubMed

    Xia, Jun; Xu, Wei; Zhang, Su-Jiang; Fan, Lei; Qiao, Chun; Li, Jian-Yong

    2008-12-01

    In order to investigate the frequency of MPLW515L and JAK2V617F point mutations of the patients with myeloproliferative disease (MPD) in Nanjing area, MPLW515L and JAK2V617F point mutations were simultaneously detected by alleles specific polymerase chain reaction (AS-PCR) and sequencing in 190 MPD patients. The results showed that MPLW515L point mutation was detected in 1 out of 102 essential thrombocythemia (ET) patients (1.0%) and was not detected in 32 polycythemia vera (PV) patients, 13 idiopathic myelofibrosis (IMF) patients, 43 chronic myelogenous leukemia (CML) patients. JAK2V617F point mutation was detected in 20 out of 32 PV patients (62.5%), 43 out of 102 ET patients (42.2%), 5 out of 13 IMF patients (38.5%), and was not detected in 43 CML patients. It is concluded that MPLW515L point mutation exists in ET patient, but is not found in PV, IMF and CML. JAK2V617F point mutation exists in PV, ET and IMF, but not in CML.

  5. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

    PubMed

    Wu, Zhiyuan; Yuan, Hong; Zhang, Xinju; Liu, Weiwei; Xu, Jinhua; Zhang, Wei; Guan, Ming

    2011-01-01

    JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.

  6. Genetic Divergence and Chemotype Diversity in the Fusarium Head Blight Pathogen Fusarium poae.

    PubMed

    Vanheule, Adriaan; De Boevre, Marthe; Moretti, Antonio; Scauflaire, Jonathan; Munaut, Françoise; De Saeger, Sarah; Bekaert, Boris; Haesaert, Geert; Waalwijk, Cees; van der Lee, Theo; Audenaert, Kris

    2017-08-23

    Fusarium head blight is a disease caused by a complex of Fusarium species. F. poae is omnipresent throughout Europe in spite of its low virulence. In this study, we assessed a geographically diverse collection of F. poae isolates for its genetic diversity using AFLP (Amplified Fragment Length Polymorphism). Furthermore, studying the mating type locus and chromosomal insertions, we identified hallmarks of both sexual recombination and clonal spread of successful genotypes in the population. Despite the large genetic variation found, all F. poae isolates possess the nivalenol chemotype based on Tri7 sequence analysis. Nevertheless, Tri gene clusters showed two layers of genetic variability. Firstly, the Tri1 locus was highly variable with mostly synonymous mutations and mutations in introns pointing to a strong purifying selection pressure. Secondly, in a subset of isolates, the main trichothecene gene cluster was invaded by a transposable element between Tri5 and Tri6 . To investigate the impact of these variations on the phenotypic chemotype, mycotoxin production was assessed on artificial medium. Complex blends of type A and type B trichothecenes were produced but neither genetic variability in the Tri genes nor variability in the genome or geography accounted for the divergence in trichothecene production. In view of its complex chemotype, it will be of utmost interest to uncover the role of trichothecenes in virulence, spread and survival of F. poae .

  7. GFP-based fluorescence assay for CAG repeat instability in cultured human cells.

    PubMed

    Santillan, Beatriz A; Moye, Christopher; Mittelman, David; Wilson, John H

    2014-01-01

    Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries.

  8. GFP-Based Fluorescence Assay for CAG Repeat Instability in Cultured Human Cells

    PubMed Central

    Santillan, Beatriz A.; Moye, Christopher; Mittelman, David; Wilson, John H.

    2014-01-01

    Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries. PMID:25423602

  9. Statistical Methods for Identifying Sequence Motifs Affecting Point Mutations

    PubMed Central

    Zhu, Yicheng; Neeman, Teresa; Yap, Von Bing; Huttley, Gavin A.

    2017-01-01

    Mutation processes differ between types of point mutation, genomic locations, cells, and biological species. For some point mutations, specific neighboring bases are known to be mechanistically influential. Beyond these cases, numerous questions remain unresolved, including: what are the sequence motifs that affect point mutations? How large are the motifs? Are they strand symmetric? And, do they vary between samples? We present new log-linear models that allow explicit examination of these questions, along with sequence logo style visualization to enable identifying specific motifs. We demonstrate the performance of these methods by analyzing mutation processes in human germline and malignant melanoma. We recapitulate the known CpG effect, and identify novel motifs, including a highly significant motif associated with A→G mutations. We show that major effects of neighbors on germline mutation lie within ±2 of the mutating base. Models are also presented for contrasting the entire mutation spectra (the distribution of the different point mutations). We show the spectra vary significantly between autosomes and X-chromosome, with a difference in T→C transition dominating. Analyses of malignant melanoma confirmed reported characteristic features of this cancer, including statistically significant strand asymmetry, and markedly different neighboring influences. The methods we present are made freely available as a Python library https://bitbucket.org/pycogent3/mutationmotif. PMID:27974498

  10. A neutral theory for interpreting correlations between species and genetic diversity in communities.

    PubMed

    Laroche, Fabien; Jarne, Philippe; Lamy, Thomas; David, Patrice; Massol, Francois

    2015-01-01

    Spatial patterns of biological diversity have been extensively studied in ecology and population genetics, because they reflect the forces acting on biodiversity. A growing number of studies have found that genetic (within-species) and species diversity can be correlated in space (the so-called species-gene diversity correlation [SGDC]), which suggests that they are controlled by nonindependent processes. Positive SGDCs are generally assumed to arise from parallel responses of genetic and species diversity to variation in site size and connectivity. However, this argument implicitly assumes a neutral model that has yet to be developed. Here, we build such a model to predict SGDC in a metacommunity. We describe how SGDC emerges from competition within sites and variation in connectivity and carrying capacity among sites. We then introduce the formerly ignored mutation process, which affects genetic but not species diversity. When mutation rate is low, our model confirms that variation in the number of migrants among sites creates positive SGDCs. However, when considering high mutation rates, interactions between mutation, migration, and competition can produce negative SGDCs. Neutral processes thus do not always contribute positively to SGDCs. Our approach provides empirical guidelines for interpreting these novel patterns in natura with respect to evolutionary and ecological forces shaping metacommunities.

  11. Haplotype analysis of the 185delAG BRCA1 mutation in ethnically diverse populations

    PubMed Central

    Laitman, Yael; Feng, Bing-Jian; Zamir, Itay M; Weitzel, Jeffrey N; Duncan, Paul; Port, Danielle; Thirthagiri, Eswary; Teo, Soo-Hwang; Evans, Gareth; Latif, Ayse; Newman, William G; Gershoni-Baruch, Ruth; Zidan, Jamal; Shimon-Paluch, Shani; Goldgar, David; Friedman, Eitan

    2013-01-01

    The 185delAG* BRCA1 mutation is encountered primarily in Jewish Ashkenazi and Iraqi individuals, and sporadically in non-Jews. Previous studies estimated that this is a founder mutation in Jewish mutation carriers that arose before the dispersion of Jews in the Diaspora ∼2500 years ago. The aim of this study was to assess the haplotype in ethnically diverse 185delAG* BRCA1 mutation carriers, and to estimate the age at which the mutation arose. Ethnically diverse Jewish and non-Jewish 185delAG*BRCA1 mutation carriers and their relatives were genotyped using 15 microsatellite markers and three SNPs spanning 12.5 MB, encompassing the BRCA1 gene locus. Estimation of mutation age was based on a subset of 11 markers spanning a region of ∼5 MB, using a previously developed algorithm applying the maximum likelihood method. Overall, 188 participants (154 carriers and 34 noncarriers) from 115 families were included: Ashkenazi, Iraq, Kuchin-Indians, Syria, Turkey, Iran, Tunisia, Bulgaria, non-Jewish English, non-Jewish Malaysian, and Hispanics. Haplotype analysis indicated that the 185delAG mutation arose 750–1500 years ago. In Ashkenazim, it is a founder mutation that arose 61 generations ago, and with a small group of founder mutations was introduced into the Hispanic population (conversos) ∼650 years ago, and into the Iraqi–Jewish community ∼450 years ago. The 185delAG mutation in the non-Jewish populations in Malaysia and the UK arose at least twice independently. We conclude that the 185delAG* BRCA1 mutation resides on a common haplotype among Ashkenazi Jews, and arose about 61 generations ago and arose independently at least twice in non-Jews. PMID:22763381

  12. The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses.

    PubMed

    Idnurm, Alexander; Rodríguez-Romero, Julio; Corrochano, Luis M; Sanz, Catalina; Iturriaga, Enrique A; Eslava, Arturo P; Heitman, Joseph

    2006-03-21

    Phycomyces blakesleeanus is a filamentous zygomycete fungus that produces striking elongated single cells that extend up to 10 cm into the air, with each such sporangiophore supporting a sphere containing the spores for dispersal. This organism has served as a model for the detection of environmental signals as diverse as light, chemicals, touch, wind, gravity, and adjacent objects. In particular, sporangiophore growth is regulated by light, and it exhibits phototropism by bending toward near-UV and blue wavelengths and away from far-UV wavelengths in a manner that is physiologically similar to plant phototropic responses. The Phycomyces madA mutants were first isolated more than 40 years ago, and they exhibit reduced sensitivity to light. Here, we identify two (duplicated) homologs in the White Collar 1 family of blue-light photoreceptors in Phycomyces. We describe that the madA mutant strains contain point mutations in one of these genes and that these mutations cosegregate with a defect in phototropism after genetic crosses. Thus, the phototropic responses of fungi through madA and plants through phototropin rely on diverse proteins; however, these proteins share a conserved flavin-binding domain for photon detection.

  13. The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses

    PubMed Central

    Idnurm, Alexander; Rodríguez-Romero, Julio; Corrochano, Luis M.; Sanz, Catalina; Iturriaga, Enrique A.; Eslava, Arturo P.; Heitman, Joseph

    2006-01-01

    Phycomyces blakesleeanus is a filamentous zygomycete fungus that produces striking elongated single cells that extend up to 10 cm into the air, with each such sporangiophore supporting a sphere containing the spores for dispersal. This organism has served as a model for the detection of environmental signals as diverse as light, chemicals, touch, wind, gravity, and adjacent objects. In particular, sporangiophore growth is regulated by light, and it exhibits phototropism by bending toward near-UV and blue wavelengths and away from far-UV wavelengths in a manner that is physiologically similar to plant phototropic responses. The Phycomyces madA mutants were first isolated more than 40 years ago, and they exhibit reduced sensitivity to light. Here, we identify two (duplicated) homologs in the White Collar 1 family of blue-light photoreceptors in Phycomyces. We describe that the madA mutant strains contain point mutations in one of these genes and that these mutations cosegregate with a defect in phototropism after genetic crosses. Thus, the phototropic responses of fungi through madA and plants through phototropin rely on diverse proteins; however, these proteins share a conserved flavin-binding domain for photon detection. PMID:16537433

  14. Cystic fibrosis screening in assisted reproduction.

    PubMed

    Gazvani, Rafet; Lewis-Jones, Iwan

    2006-06-01

    The purpose of this review is to discuss the incidence of cystic fibrosis in the general population, in ethnically diverse populations and specifically in couples needing assisted reproduction caused by male factor subfertility. We review the current understanding of risks for reproductive couples and discuss ideal screening strategies. In ethnically diverse populations, a large difference in clinical sensitivity and birth prevalence exists between the broad racial/ethnic groups examined. Extensive data clearly demonstrate the cost-effectiveness of cystic fibrosis screening. Testing for cystic fibrosis gene mutations is reliable and, with a 26-mutation panel, nearly 90% of possible severe mutations can be detected. To halve the incidence of cystic fibrosis in the community, by offering genetic testing of the fetus if both partners are carrier positive, may also be possible. Recent guidelines suggest that all couples contemplating pregnancy should be informed of molecular screening for cystic fibrosis carrier status for purposes of genetic counselling. In ethnically diverse populations, ethnic-specific mutations should be included in the mutation panels.

  15. SSR allelic variation in almond (Prunus dulcis Mill.).

    PubMed

    Xie, Hua; Sui, Yi; Chang, Feng-Qi; Xu, Yong; Ma, Rong-Cai

    2006-01-01

    Sixteen SSR markers including eight EST-SSR and eight genomic SSRs were used for genetic diversity analysis of 23 Chinese and 15 international almond cultivars. EST- and genomic SSR markers previously reported in species of Prunus, mainly peach, proved to be useful for almond genetic analysis. DNA sequences of 117 alleles of six of the 16 SSR loci were analysed to reveal sequence variation among the 38 almond accessions. For the four SSR loci with AG/CT repeats, no insertions or deletions were observed in the flanking regions of the 98 alleles sequenced. Allelic size variation of these loci resulted exclusively from differences in the structures of repeat motifs, which involved interruptions or occurrences of new motif repeats in addition to varying number of AG/CT repeats. Some alleles had a high number of uninterrupted repeat motifs, indicating that SSR mutational patterns differ among alleles at a given SSR locus within the almond species. Allelic homoplasy was observed in the SSR loci because of base substitutions, interruptions or compound repeat motifs. Substitutions in the repeat regions were found at two SSR loci, suggesting that point mutations operate on SSRs and hinder the further SSR expansion by introducing repeat interruptions to stabilize SSR loci. Furthermore, it was shown that some potential point mutations in the flanking regions are linked with new SSR repeat motif variation in almond and peach.

  16. Comprehensive mutational profiling of core binding factor acute myeloid leukemia

    PubMed Central

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric

    2016-01-01

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. PMID:26980726

  17. Structural Analysis of Single-Point Mutations Given an RNA Sequence: A Case Study with RNAMute

    NASA Astrophysics Data System (ADS)

    Churkin, Alexander; Barash, Danny

    2006-12-01

    We introduce here for the first time the RNAMute package, a pattern-recognition-based utility to perform mutational analysis and detect vulnerable spots within an RNA sequence that affect structure. Mutations in these spots may lead to a structural change that directly relates to a change in functionality. Previously, the concept was tried on RNA genetic control elements called "riboswitches" and other known RNA switches, without an organized utility that analyzes all single-point mutations and can be further expanded. The RNAMute package allows a comprehensive categorization, given an RNA sequence that has functional relevance, by exploring the patterns of all single-point mutants. For illustration, we apply the RNAMute package on an RNA transcript for which individual point mutations were shown experimentally to inactivate spectinomycin resistance in Escherichia coli. Functional analysis of mutations on this case study was performed experimentally by creating a library of point mutations using PCR and screening to locate those mutations. With the availability of RNAMute, preanalysis can be performed computationally before conducting an experiment.

  18. Diverse mutational pathways converge on saturable chloroquine transport via the malaria parasite’s chloroquine resistance transporter

    PubMed Central

    Summers, Robert L.; Dave, Anurag; Dolstra, Tegan J.; Bellanca, Sebastiano; Marchetti, Rosa V.; Nash, Megan N.; Richards, Sashika N.; Goh, Valerie; Schenk, Robyn L.; Stein, Wilfred D.; Kirk, Kiaran; Sanchez, Cecilia P.; Lanzer, Michael; Martin, Rowena E.

    2014-01-01

    Mutations in the chloroquine resistance transporter (PfCRT) are the primary determinant of chloroquine (CQ) resistance in the malaria parasite Plasmodium falciparum. A number of distinct PfCRT haplotypes, containing between 4 and 10 mutations, have given rise to CQ resistance in different parts of the world. Here we present a detailed molecular analysis of the number of mutations (and the order of addition) required to confer CQ transport activity upon the PfCRT as well as a kinetic characterization of diverse forms of PfCRT. We measured the ability of more than 100 variants of PfCRT to transport CQ when expressed at the surface of Xenopus laevis oocytes. Multiple mutational pathways led to saturable CQ transport via PfCRT, but these could be separated into two main lineages. Moreover, the attainment of full activity followed a rigid process in which mutations had to be added in a specific order to avoid reductions in CQ transport activity. A minimum of two mutations sufficed for (low) CQ transport activity, and as few as four conferred full activity. The finding that diverse PfCRT variants are all limited in their capacity to transport CQ suggests that resistance could be overcome by reoptimizing the CQ dosage. PMID:24728833

  19. Change of point mutations in Helicobacter pylori rRNA associated with clarithromycin resistance in Italy.

    PubMed

    De Francesco, Vincenzo; Zullo, Angelo; Giorgio, Floriana; Saracino, Ilaria; Zaccaro, Cristina; Hassan, Cesare; Ierardi, Enzo; Di Leo, Alfredo; Fiorini, Giulia; Castelli, Valentina; Lo Re, Giovanna; Vaira, Dino

    2014-03-01

    Primary clarithromycin resistance is the main factor affecting the efficacy of Helicobacter pylori therapy. This study aimed: (i) to assess the concordance between phenotypic (culture) and genotypic (real-time PCR) tests in resistant strains; (ii) to search, in the case of disagreement between the methods, for point mutations other than those reported as the most frequent in Europe; and (iii) to compare the MICs associated with the single point mutations. In order to perform real-time PCR, we retrieved biopsies from patients in whom H. pylori infection was successful diagnosed by bacterial culture and clarithromycin resistance was assessed using the Etest. Only patients who had never been previously treated, and with H. pylori strains that were either resistant exclusively to clarithromycin or without any resistance, were included. Biopsies from 82 infected patients were analysed, including 42 strains that were clarithromycin resistant and 40 that were clarithromycin susceptible on culture. On genotypic analysis, at least one of the three most frequently reported point mutations (A2142C, A2142G and A2143G) was detected in only 23 cases (54.8%), with a concordance between the two methods of 0.67. Novel point mutations (A2115G, G2141A and A2144T) were detected in a further 14 out of 19 discordant cases, increasing the resistance detection rate of PCR to 88% (P<0.001; odds ratio 6.1, 95% confidence interval 2-18.6) and the concordance to 0.81. No significant differences in MIC values among different point mutations were observed. This study suggests that: (i) the prevalence of the usually reported point mutations may be decreasing, with a concomitant emergence of new mutations; (ii) PCR-based methods should search for at least six point mutations to achieve good accuracy in detecting clarithromycin resistance; and (iii) none of the tested point mutations is associated with significantly higher MIC values than the others.

  20. Stress-induced mutagenesis: Stress diversity facilitates the persistence of mutator genes

    PubMed Central

    2017-01-01

    Mutator strains are expected to evolve when the availability and effect of beneficial mutations are high enough to counteract the disadvantage from deleterious mutations that will inevitably accumulate. As the population becomes more adapted to its environment, both availability and effect of beneficial mutations necessarily decrease and mutation rates are predicted to decrease. It has been shown that certain molecular mechanisms can lead to increased mutation rates when the organism finds itself in a stressful environment. While this may be a correlated response to other functions, it could also be an adaptive mechanism, raising mutation rates only when it is most advantageous. Here, we use a mathematical model to investigate the plausibility of the adaptive hypothesis. We show that such a mechanism can be mantained if the population is subjected to diverse stresses. By simulating various antibiotic treatment schemes, we find that combination treatments can reduce the effectiveness of second-order selection on stress-induced mutagenesis. We discuss the implications of our results to strategies of antibiotic therapy. PMID:28719607

  1. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    PubMed

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  2. Simulating Phase Variation: A Practical Approach to Teaching Mutation and Diversity

    ERIC Educational Resources Information Center

    Wanford, Joe; Aidley, Jack; Bayliss, Chris; Ketley, Julian; Goodwin, Mark

    2018-01-01

    Mutation, diversity, natural selection and the biology of human pathogens (including antibiotic resistance) are key features of the biosciences curriculum at A Level and undergraduate study. Few resources exist to allow students to engage with these topics in an interactive manner. This paper describes an interactive, online simulation of mutation…

  3. Cryo-EM of the pathogenic VCP variant R155P reveals long-range conformational changes in the D2 ATPase ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mountassif, Driss; Fabre, Lucien; Zaid, Younes

    Single amino acid mutations in valosin containing protein (VCP/p97), a highly conserved member of the ATPases associated with diverse cellular activities (AAA) family of ATPases has been linked to a severe degenerative disease affecting brain, muscle and bone tissue. Previous studies have demonstrated the role of VCP mutations in altering the ATPase activity of the D2 ring; however the structural consequences of these mutations remain unclear. In this study, we report the three-dimensional (3D) map of the pathogenic VCP variant, R155P, as revealed by single-particle Cryo-Electron Microscopy (EM) analysis at 14 Å resolution. We show that the N-terminal R155P mutation inducesmore » a large structural reorganisation of the D2 ATPase ring. Results from docking studies using crystal structure data of available wild-type VCP in the EM density maps indicate that the major difference is localized at the interface between two protomers within the D2 ring. Consistent with a conformational change, the VCP R155P variant shifted the isoelectric point of the protein and reduced its interaction with its well-characterized cofactor, nuclear protein localization-4 (Npl4). Together, our results demonstrate that a single amino acid substitution in the N-terminal domain can relay long-range conformational changes to the distal D2 ATPase ring. Our results provide the first structural clues of how VCP mutations may influence the activity and function of the D2 ATPase ring. - Highlights: • p97{sub R155P} and p97{sub A232E} decrease the ability of p97 to bind to its co-factor Npl4. • p97{sub R155P} has a different isoelectric point than that of p97{sub R95G}, p97{sub A232E} and p97{sub WT}. • Mutation R155P changes principally the conformation of the D2 ring. • Mutation R155P modifies the interface between two protomers within the D2 ring.« less

  4. Evidence for mitochondrial DNA recombination in a human population of island Melanesia.

    PubMed Central

    Hagelberg, E; Goldman, N; Lió, P; Whelan, S; Schiefenhövel, W; Clegg, J B; Bowden, D K

    1999-01-01

    Mitochondrial DNA (mtDNA) analysis has proved useful in studies of recent human evolution and the genetic affinities of human groups of different geographical regions. As part of an extensive survey of mtDNA diversity in present-day Pacific populations, we obtained sequence information of the hypervariable mtDNA control region of 452 individuals from various localities in the western Pacific. The mtDNA types fell into three major groups which reflect the settlement history of the area. Interestingly, we detected an extremely rare point mutation at high frequency in the small island of Nguna in the Melanesian archipelago of Vanuatu. Phylogenetic analysis of the mtDNA data indicated that the mutation was present in individuals of separate mtDNA lineages. We propose that the multiple occurrence of a rare mutation event in one isolated locality is highly improbable, and that recombination between different mtDNA types is a more likely explanation for our observation. If correct, this conclusion has important implications for the use of mtDNA in phylogenetic and evolutionary studies. PMID:10189712

  5. Evidence for mitochondrial DNA recombination in a human population of island Melanesia.

    PubMed

    Hagelberg, E; Goldman, N; Lió, P; Whelan, S; Schiefenhövel, W; Clegg, J B; Bowden, D K

    1999-03-07

    Mitochondrial DNA (mtDNA) analysis has proved useful in studies of recent human evolution and the genetic affinities of human groups of different geographical regions. As part of an extensive survey of mtDNA diversity in present-day Pacific populations, we obtained sequence information of the hypervariable mtDNA control region of 452 individuals from various localities in the western Pacific. The mtDNA types fell into three major groups which reflect the settlement history of the area. Interestingly, we detected an extremely rare point mutation at high frequency in the small island of Nguna in the Melanesian archipelago of Vanuatu. Phylogenetic analysis of the mtDNA data indicated that the mutation was present in individuals of separate mtDNA lineages. We propose that the multiple occurrence of a rare mutation event in one isolated locality is highly improbable, and that recombination between different mtDNA types is a more likely explanation for our observation. If correct, this conclusion has important implications for the use of mtDNA in phylogenetic and evolutionary studies.

  6. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with I-131 radiation dose and other characteristics

    PubMed Central

    Leeman-Neill, Rebecca J.; Brenner, Alina V.; Little, Mark P.; Bogdanova, Tetiana I.; Hatch, Maureen; Zurnadzy, Liudmyla Y.; Mabuchi, Kiyohiko; Tronko, Mykola D.; Nikiforov, Yuri E.

    2012-01-01

    Background Childhood exposure to I-131 from the 1986 Chernobyl accident led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Methods We performed mutational analysis of 62 PTCs diagnosed in a Ukrainian cohort of patients who were <18 y.o. in 1986 and received 0.008-8.6 Gy of I-131 to the thyroid and explored associations between mutation types and I-131 dose and other characteristics. Results RET/PTC rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ rearrangement were identified. We found a significant negative association with I-131 dose for BRAF and RAS point mutations and a significant concave association with I-131 dose, with an inflection point at 1.6 Gy and odds ratio 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared to point mutations, rearrangements were associated with residence in the relatively iodine deficient Zhytomyr region, younger age at exposure or surgery, and male gender. Conclusions Our results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with I-131 dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and I-131 exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. PMID:23436219

  7. Activating ESR1 Mutations Differentially Affect the Efficacy of ER Antagonists.

    PubMed

    Toy, Weiyi; Weir, Hazel; Razavi, Pedram; Lawson, Mandy; Goeppert, Anne U; Mazzola, Anne Marie; Smith, Aaron; Wilson, Joanne; Morrow, Christopher; Wong, Wai Lin; De Stanchina, Elisa; Carlson, Kathryn E; Martin, Teresa S; Uddin, Sharmeen; Li, Zhiqiang; Fanning, Sean; Katzenellenbogen, John A; Greene, Geoffrey; Baselga, José; Chandarlapaty, Sarat

    2017-03-01

    Recent studies have identified somatic ESR1 mutations in patients with metastatic breast cancer and found some of them to promote estrogen-independent activation of the receptor. The degree to which all recurrent mutants can drive estrogen-independent activities and reduced sensitivity to ER antagonists like fulvestrant is not established. In this report, we characterize the spectrum of ESR1 mutations from more than 900 patients. ESR1 mutations were detected in 10%, with D538G being the most frequent (36%), followed by Y537S (14%). Several novel, activating mutations were also detected (e.g., L469V, V422del, and Y537D). Although many mutations lead to constitutive activity and reduced sensitivity to ER antagonists, only select mutants such as Y537S caused a magnitude of change associated with fulvestrant resistance in vivo Correspondingly, tumors driven by Y537S, but not D5358G, E380Q, or S463P, were less effectively inhibited by fulvestrant than more potent and bioavailable antagonists, including AZD9496. These data point to a need for antagonists with optimal pharmacokinetic properties to realize clinical efficacy against certain ESR1 mutants. Significance: A diversity of activating ESR1 mutations exist, only some of which confer resistance to existing ER antagonists that might be overcome by next-generation inhibitors such as AZD9496. Cancer Discov; 7(3); 277-87. ©2016 AACR. This article is highlighted in the In This Issue feature, p. 235 . ©2016 American Association for Cancer Research.

  8. Effect of mutation mechanisms on variant composition and distribution in Caenorhabditis elegans

    PubMed Central

    Wang, Jiou

    2017-01-01

    Genetic diversity is maintained by continuing generation and removal of variants. While examining over 800,000 DNA variants in wild isolates of Caenorhabditis elegans, we made a discovery that the proportions of variant types are not constant across the C. elegans genome. The variant proportion is defined as the fraction of a specific variant type (e.g. single nucleotide polymorphism (SNP) or indel) within a broader set of variants (e.g. all variants or all non-SNPs). The proportions of most variant types show a correlation with the recombination rate. These correlations can be explained as a result of a concerted action of two mutation mechanisms, which we named Morgan and Sanger mechanisms. The two proposed mechanisms act according to the distinct components of the recombination rate, specifically the genetic and physical distance. Regression analysis was used to explore the characteristics and contributions of the two mutation mechanisms. According to our model, ~20–40% of all mutations in C. elegans wild populations are derived from programmed meiotic double strand breaks, which precede chromosomal crossovers and thus may be the point of origin for the Morgan mechanism. A substantial part of the known correlation between the recombination rate and variant distribution appears to be caused by the mutations generated by the Morgan mechanism. Mathematically integrating the mutation model with background selection model gives a more complete depiction of how the variant landscape is shaped in C. elegans. Similar analysis should be possible in other species by examining the correlation between the recombination rate and variant landscape within the context of our mutation model. PMID:28135268

  9. Rate of de novo mutations and the importance of father's age to disease risk.

    PubMed

    Kong, Augustine; Frigge, Michael L; Masson, Gisli; Besenbacher, Soren; Sulem, Patrick; Magnusson, Gisli; Gudjonsson, Sigurjon A; Sigurdsson, Asgeir; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Wong, Wendy S W; Sigurdsson, Gunnar; Walters, G Bragi; Steinberg, Stacy; Helgason, Hannes; Thorleifsson, Gudmar; Gudbjartsson, Daniel F; Helgason, Agnar; Magnusson, Olafur Th; Thorsteinsdottir, Unnur; Stefansson, Kari

    2012-08-23

    Mutations generate sequence diversity and provide a substrate for selection. The rate of de novo mutations is therefore of major importance to evolution. Here we conduct a study of genome-wide mutation rates by sequencing the entire genomes of 78 Icelandic parent-offspring trios at high coverage. We show that in our samples, with an average father's age of 29.7, the average de novo mutation rate is 1.20 × 10(-8) per nucleotide per generation. Most notably, the diversity in mutation rate of single nucleotide polymorphisms is dominated by the age of the father at conception of the child. The effect is an increase of about two mutations per year. An exponential model estimates paternal mutations doubling every 16.5 years. After accounting for random Poisson variation, father's age is estimated to explain nearly all of the remaining variation in the de novo mutation counts. These observations shed light on the importance of the father's age on the risk of diseases such as schizophrenia and autism.

  10. Physical mode of bacteria and virus coevolution

    NASA Astrophysics Data System (ADS)

    Han, Pu; Niestemski, Liang; Deem, Michael

    2013-03-01

    Single-cell hosts such as bacteria or archaea possess an adaptive, heritable immune system that protects them from viral invasion. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences from viruses or plasmids. The sequences form what are called ``spacers'' in the CRISPR. Spacers in the CRISPR loci provide a record of the host and predator coevolution history. We develop a physical model to study the dynamics of this coevolution due to immune pressure. Hosts and viruses reproduce, die, and evolve due to viral infection pressure, host immune pressure, and mutation. We will discuss the differing effects of point mutation and recombination on CRISPR evolution. We will also discuss the effect of different spacer deletion mechanisms. We will describe population structure of hosts and viruses, how spacer diversity depends on position within CRISPR, and match of the CRISPR spacers to the virus population.

  11. Biological signatures of dynamic river networks from a coupled landscape evolution and neutral community model

    NASA Astrophysics Data System (ADS)

    Stokes, M.; Perron, J. T.

    2017-12-01

    Freshwater systems host exceptionally species-rich communities whose spatial structure is dictated by the topology of the river networks they inhabit. Over geologic time, river networks are dynamic; drainage basins shrink and grow, and river capture establishes new connections between previously separated regions. It has been hypothesized that these changes in river network structure influence the evolution of life by exchanging and isolating species, perhaps boosting biodiversity in the process. However, no general model exists to predict the evolutionary consequences of landscape change. We couple a neutral community model of freshwater organisms to a landscape evolution model in which the river network undergoes drainage divide migration and repeated river capture. Neutral community models are macro-ecological models that include stochastic speciation and dispersal to produce realistic patterns of biodiversity. We explore the consequences of three modes of speciation - point mutation, time-protracted, and vicariant (geographic) speciation - by tracking patterns of diversity in time and comparing the final result to an equilibrium solution of the neutral model on the final landscape. Under point mutation, a simple model of stochastic and instantaneous speciation, the results are identical to the equilibrium solution and indicate the dominance of the species-area relationship in forming patterns of diversity. The number of species in a basin is proportional to its area, and regional species richness reaches its maximum when drainage area is evenly distributed among sub-basins. Time-protracted speciation is also modeled as a stochastic process, but in order to produce more realistic rates of diversification, speciation is not assumed to be instantaneous. Rather, each new species must persist for a certain amount of time before it is considered to be established. When vicariance (geographic speciation) is included, there is a transient signature of increased regional diversity after river capture. The results indicate that the mode of speciation and the rate of speciation relative to the rate of divide migration determine the evolutionary signature of river capture.

  12. Decadal stability in genetic variation and structure in the intertidal seaweed Fucus serratus (Heterokontophyta: Fucaceae).

    PubMed

    Jueterbock, Alexander; Coyer, James A; Olsen, Jeanine L; Hoarau, Galice

    2018-06-15

    The spatial distribution of genetic diversity and structure has important implications for conservation as it reveals a species' strong and weak points with regard to stability and evolutionary capacity. Temporal genetic stability is rarely tested in marine species other than commercially important fishes, but is crucial for the utility of temporal snapshots in conservation management. High and stable diversity can help to mitigate the predicted northward range shift of seaweeds under the impact of climate change. Given the key ecological role of fucoid seaweeds along rocky shores, the positive effect of genetic diversity may reach beyond the species level to stabilize the entire intertidal ecosystem along the temperate North Atlantic. In this study, we estimated the effective population size, as well as temporal changes in genetic structure and diversity of the seaweed F. serratus using 22 microsatellite markers. Samples were taken across latitudes and a range of temperature regimes at seven locations with decadal sampling (2000 and 2010). Across latitudes, genetic structure and diversity remained stable over 5-10 generations. Stable small-scale structure enhanced regional diversity throughout the species' range. In accordance with its biogeographic history, effective population size and diversity peaked in the species' mid-range in Brittany (France), and declined towards its leading and trailing edge to the north and south. At the species' southern edge, multi-locus-heterozygosity displayed a strong decline from 1999 to 2010. Temporally stable genetic structure over small spatial scales is a potential driver for local adaptation and species radiation in the genus Fucus. Survival and adaptation of the low-diversity leading edge of F. serratus may be enhanced by regional gene flow and 'surfing' of favorable mutations or impaired by the accumulation of deleterious mutations. Our results have clear implications for the conservation of F. serratus at its genetically unique southern edge in Northwest Iberia, where increasing temperatures are likely the major cause for the decline not only of F. serratus, but also other intertidal and subtidal macroalgae. We expect that F. serratus will disappear from Northwest Iberia by 2100 if genetic rescue is not induced by the influx of genetic variation from Brittany.

  13. The challenges of tumor genetic diversity.

    PubMed

    Mroz, Edmund A; Rocco, James W

    2017-05-15

    The authors review and discuss the implications of genomic analyses documenting the diversity of tumors, both among patients and within individual tumors. Genetic diversity among solid tumors limits targeted therapies, because few mutations that drive tumors are both targetable and at high prevalence. Many more driver mutations and how they affect cellular signaling pathways must be identified if targeted therapy is to become widely useful. Genetic diversity within a tumor-intratumor genetic heterogeneity-makes the tumor a collection of subclones: related yet distinct cancers. Selection for pre-existing, resistant subclones by conventional or targeted therapies may explain many treatment failures. Immune therapy faces the same fundamental challenges. Nevertheless, the processes that generate and maintain heterogeneity might provide novel therapeutic targets. Addressing both types of diversity requires genomic tumor analyses linked to detailed clinical data. The trend toward sequencing restricted cancer gene panels, however, limits the ability to discover new driver mutations and assess intratumor heterogeneity. Clinical data currently collected with genomic analyses often lack critical information, substantially limiting their use in understanding tumor diversity. Now that diversity among and within tumors can no longer be ignored, research and clinical practice must adapt to take diversity into account. Cancer 2017;123:917-27. © 2016 American Cancer Society. © 2016 American Cancer Society.

  14. Label-free and high-sensitive detection for genetic point mutation based on hyperspectral interferometry

    NASA Astrophysics Data System (ADS)

    Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang

    2016-10-01

    Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.

  15. The Geographic Distribution of Human Y Chromosome Variation

    PubMed Central

    Hammer, M. F.; Spurdle, A. B.; Karafet, T.; Bonner, M. R.; Wood, E. T.; Novelletto, A.; Malaspina, P.; Mitchell, R. J.; Horai, S.; Jenkins, T.; Zegura, S. L.

    1997-01-01

    We examined variation on the nonrecombining portion of the human Y chromosome to investigate human evolution during the last 200,000 years. The Y-specific polymorphic sites included the Y Alu insertional polymorphism or ``YAP'' element (DYS287), the poly(A) tail associated with the YAP element, three point mutations in close association with the YAP insertion site, an A-G polymorphic transition (DYS271), and a tetranucleotide microsatellite (DYS19). Global variation at the five bi-allelic sites (DYS271, DYS287, and the three point mutations) gave rise to five ``YAP haplotypes'' in 60 populations from Africa, Europe, Asia, Australasia, and the New World (n = 1500). Combining the multi-allelic variation at the microsatellite loci (poly(A) tail and DYS19) with the YAP haplotypes resulted in a total of 27 ``combination haplotypes''. All five of the YAP haplotypes and 21 of the 27 combination haplotypes were found in African populations, which had greater haplotype diversity than did populations from other geographical locations. Only subsets of the five YAP haplotypes were found outside of Africa. Patterns of observed variation were compatible with a variety of hypotheses, including multiple human migrations and range expansions. PMID:9055088

  16. Genetic Diversity of the Hepatitis B Virus Strains in Cuba: Absence of West-African Genotypes despite the Transatlantic Slave Trade

    PubMed Central

    Rodríguez Lay, Licel A.; Corredor, Marité B.; Villalba, Maria C.; Frómeta, Susel S.; Wong, Meilin S.; Valdes, Lidunka; Samada, Marcia; Sausy, Aurélie; Hübschen, Judith M.; Muller, Claude P.

    2015-01-01

    Cuba is an HBsAg low-prevalence country with a high coverage of anti-hepatitis B vaccine. Its population is essentially the result of the population mix of Spanish descendants and former African slaves. Information about genetic characteristics of hepatitis B virus (HBV) strains circulating in the country is scarce. The HBV genotypes/subgenotypes, serotypes, mixed infections, and S gene mutations of 172 Cuban HBsAg and HBV-DNA positive patients were determined by direct sequencing and phylogenetic analysis. Phylogenetic analysis of HBV S gene sequences showed a predominance of genotype A (92.4%), subgenotype A2 (84.9%) and A1 (7.6%). Genotype D (7.0%) and subgenotype C1 (0.6%) were also detected but typical (sub)genotypes of contemporary West-Africa (E, A3) were conspicuously absent. All genotype A, D, and C strains exhibited sequence characteristics of the adw2, ayw2, and adrq serotypes, respectively. Thirty-three (19.1%) patients showed single, double, or multiple point mutations inside the Major Hydrophilic domain associated with vaccine escape; eighteen (10.5%) patients had mutations in the T-cell epitope (amino acids 28-51), and there were another 111 point mutations downstream of the S gene. One patient had an HBV A1/A2 mixed infection. This first genetic study of Cuban HBV viruses revealed only strains that were interspersed with strains from particularly Europe, America, and Asia. The absence of genotype E supports previous hypotheses about an only recent introduction of this genotype into the general population in Africa. The presence of well-known vaccine escape (3.5%) and viral resistance mutants (2.9%) warrants strain surveillance to guide vaccination and treatment strategies. PMID:25978398

  17. Enhancement of hypermutation frequency in the chicken B cell line DT40 for efficient diversification of the antibody repertoire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magari, Masaki; Kanehiro, Yuichi; Todo, Kagefumi

    Chicken B cell line DT40 continuously accumulates mutations in the immunoglobulin variable region (IgV) gene by gene conversion and point mutation, both of which are mediated by activation-induced cytidine deaminase (AID), thereby producing an antibody (Ab) library that is useful for screening monoclonal Abs (mAbs) in vitro. We previously generated an engineered DT40 line named DT40-SW, whose AID expression can be reversibly switched on or off, and developed an in vitro Ab generation system using DT40-SW cells. To efficiently create an Ab library with sufficient diversity, higher hypermutation frequency is advantageous. To this end, we generated a novel cell linemore » DT40-SW{Delta}C, which conditionally expresses a C-terminus-truncated AID mutant lacking the nuclear export signal. The transcription level of the mutant AID gene in DT40-SW{Delta}C cells was similar to that of the wild-type gene in DT40-SW cells. However, the protein level of the truncated AID mutant was less than that of the wild type. The mutant protein was enriched in the nuclei of DT40-SW{Delta}C cells, although the protein might be highly susceptible to degradation. In DT40-SW{Delta}C cells, both gene conversion and point mutation occurred in the IgV gene with over threefold higher frequency than in DT40-SW cells, suggesting that a lower level of the mutant AID protein was sufficient to increase mutation frequency. Thus, DT40-SW{Delta}C cells may be useful for constructing Ab libraries for efficient screening of mAbs in vitro.« less

  18. An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus.

    PubMed

    Etherton, Mark R; Tabuchi, Katsuhiko; Sharma, Manu; Ko, Jaewon; Südhof, Thomas C

    2011-06-03

    Neuroligins are evolutionarily conserved postsynaptic cell-adhesion molecules that function, at least in part, by forming trans-synaptic complexes with presynaptic neurexins. Different neuroligin isoforms perform diverse functions and exhibit distinct intracellular localizations, but contain similar cytoplasmic sequences whose role remains largely unknown. Here, we analysed the effect of a single amino-acid substitution (R704C) that targets a conserved arginine residue in the cytoplasmic sequence of all neuroligins, and that was associated with autism in neuroligin-4. We introduced the R704C mutation into mouse neuroligin-3 by homologous recombination, and examined its effect on synapses in vitro and in vivo. Electrophysiological and morphological studies revealed that the neuroligin-3 R704C mutation did not significantly alter synapse formation, but dramatically impaired synapse function. Specifically, the R704C mutation caused a major and selective decrease in AMPA receptor-mediated synaptic transmission in pyramidal neurons of the hippocampus, without similarly changing NMDA or GABA receptor-mediated synaptic transmission, and without detectably altering presynaptic neurotransmitter release. Our results suggest that the cytoplasmic tail of neuroligin-3 has a central role in synaptic transmission by modulating the recruitment of AMPA receptors to postsynaptic sites at excitatory synapses.

  19. Key Mutations Alter the Cytochrome P450 BM3 Conformational Landscape and Remove Inherent Substrate Bias*

    PubMed Central

    Butler, Christopher F.; Peet, Caroline; Mason, Amy E.; Voice, Michael W.; Leys, David; Munro, Andrew W.

    2013-01-01

    Cytochrome P450 monooxygenases (P450s) have enormous potential in the production of oxychemicals, due to their unparalleled regio- and stereoselectivity. The Bacillus megaterium P450 BM3 enzyme is a key model system, with several mutants (many distant from the active site) reported to alter substrate selectivity. It has the highest reported monooxygenase activity of the P450 enzymes, and this catalytic efficiency has inspired protein engineering to enable its exploitation for biotechnologically relevant oxidations with structurally diverse substrates. However, a structural rationale is lacking to explain how these mutations have such effects in the absence of direct change to the active site architecture. Here, we provide the first crystal structures of BM3 mutants in complex with a human drug substrate, the proton pump inhibitor omeprazole. Supported by solution data, these structures reveal how mutation alters the conformational landscape and decreases the free energy barrier for transition to the substrate-bound state. Our data point to the importance of such “gatekeeper” mutations in enabling major changes in substrate recognition. We further demonstrate that these mutants catalyze the same 5-hydroxylation reaction as performed by human CYP2C19, the major human omeprazole-metabolizing P450 enzyme. PMID:23828198

  20. Phenotypic diversity in patients with lipodystrophy associated with LMNA mutations.

    PubMed

    Mory, Patricia B; Crispim, Felipe; Freire, Maria Beatriz S; Salles, João Eduardo N; Valério, Cynthia M; Godoy-Matos, Amelio F; Dib, Sérgio A; Moisés, Regina S

    2012-09-01

    Mutations in LMNA have been linked to diverse disorders called laminopathies, which display heterogeneous phenotypes and include diseases affecting muscles, axonal neurons, progeroid syndromes, and lipodystrophies. Among the lipodystrophies, LMNA mutations have been reported most frequently in patients with familial partial lipodystrophy (FPLD) of the Dunnigan variety; however, phenotypic heterogeneity in the pattern of body fat loss has been observed. In this study, we searched for LMNA mutations in patients with various forms of lipodystrophy. We studied 21 unrelated individuals with lipodystrophy. Subjects underwent a complete clinical evaluation and were classified as typical FPLD (n=12), atypical partial lipodystrophy (n=7), or generalized lipodystrophy (n=2). Molecular analysis of LMNA gene, analysis of body fat by dual-energy X-ray absorptiometry, and biochemical measurements were performed. ALL PATIENTS WITH TYPICAL FPLD WERE FOUND TO CARRY LMNA MUTATIONS: seven patients harbored the heterozygous p.R482W (c.1444C>T), two patients harbored the p.R482Q (c.1445G>A), and two individuals harbored the novel heterozygous variant p.N466D (c.1396A>G), all in exon 8. Also, a homozygous p.R584H (c.1751 G>A) mutation in exon 11 was found. Among patients with atypical partial lipodystrophy, two of them were found to have LMNA mutations: a novel heterozygous p.R582C variation (c.1744 C>T) in exon 11 and a heterozygous substitution p.R349W (c.1045C>T) in exon 6. Among patients with generalized lipodystrophy, only one harbored LMNA mutation, a heterozygous p.T10I (c.29C>T) in exon 1. We have identified LMNA mutations in phenotypically diverse lipodystrophies. Also, our study broadens the spectrum of LMNA mutations in lipodystrophy.

  1. Single quantum dot analysis enables multiplexed point mutation detection by gap ligase chain reaction.

    PubMed

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2013-04-08

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The diversity of mutations and clinical outcomes for ELANE-associated neutropenia

    PubMed Central

    Makaryan, Vahagn; Zeidler, Cornelia; Bolyard, Audrey Anna; Skokowa, Julia; Rodger, Elin; Kelley, Merideth L.; Boxer, Laurence A.; Bonilla, Mary Ann; Newburger, Peter E.; Shimamura, Akiko; Zhu, Bin; Rosenberg, Philip S.; Link, Daniel C.; Welte, Karl; Dale, David C.

    2015-01-01

    Purpose of review Mutations in the gene for neutrophil elastase, ELANE, cause cyclic neutropenia (CyN) and severe congenital neutropenia (SCN). This study summarized data from the Severe Chronic Neutropenia International Registry (SCNIR) on genotype–phenotype relationships of ELANE mutations to important clinical outcomes. We also summarize findings for ELANE mutations not observed in SCNIR patients. Recent findings There were 307 SCNIR patients with 104 distinctive ELANE mutations who were followed longitudinally for up to 27 years. The ELANE mutations were diverse; there were 65 single amino acid substitutions; 61 of these mutations (94%) were ‘probably’ or ‘possibly damaging’ by PolyPhen-2 analysis, and one of the ‘benign’ mutations was associated with two cases of acute myeloid leukemia (AML). All frame-shift mutations (19/19) were associated with the SCN. The pattern of mutations in the SCN versus CyN was significantly different (P <10−4), but some mutations were observed in both groups (overlapping mutations). The cumulative incidence of severe adverse events, that is, myelodysplasia, AML, stem cell transplantation, or deaths was significantly greater for patients with SCN versus those with CyN or overlapping mutations. Specific mutations (i.e. G214R or C151Y) had a high risk for evolution to AML. Summary Sequencing is useful for predicting outcomes of ELANE-associated neutropenia. PMID:25427142

  3. Facile Affinity Maturation of Antibody Variable Domains Using Natural Diversity Mutagenesis

    PubMed Central

    Tiller, Kathryn E.; Chowdhury, Ratul; Li, Tong; Ludwig, Seth D.; Sen, Sabyasachi; Maranas, Costas D.; Tessier, Peter M.

    2017-01-01

    The identification of mutations that enhance antibody affinity while maintaining high antibody specificity and stability is a time-consuming and laborious process. Here, we report an efficient methodology for systematically and rapidly enhancing the affinity of antibody variable domains while maximizing specificity and stability using novel synthetic antibody libraries. Our approach first uses computational and experimental alanine scanning mutagenesis to identify sites in the complementarity-determining regions (CDRs) that are permissive to mutagenesis while maintaining antigen binding. Next, we mutagenize the most permissive CDR positions using degenerate codons to encode wild-type residues and a small number of the most frequently occurring residues at each CDR position based on natural antibody diversity. This mutagenesis approach results in antibody libraries with variants that have a wide range of numbers of CDR mutations, including antibody domains with single mutations and others with tens of mutations. Finally, we sort the modest size libraries (~10 million variants) displayed on the surface of yeast to identify CDR mutations with the greatest increases in affinity. Importantly, we find that single-domain (VHH) antibodies specific for the α-synuclein protein (whose aggregation is associated with Parkinson’s disease) with the greatest gains in affinity (>5-fold) have several (four to six) CDR mutations. This finding highlights the importance of sampling combinations of CDR mutations during the first step of affinity maturation to maximize the efficiency of the process. Interestingly, we find that some natural diversity mutations simultaneously enhance all three key antibody properties (affinity, specificity, and stability) while other mutations enhance some of these properties (e.g., increased specificity) and display trade-offs in others (e.g., reduced affinity and/or stability). Computational modeling reveals that improvements in affinity are generally not due to direct interactions involving CDR mutations but rather due to indirect effects that enhance existing interactions and/or promote new interactions between the antigen and wild-type CDR residues. We expect that natural diversity mutagenesis will be useful for efficient affinity maturation of a wide range of antibody fragments and full-length antibodies. PMID:28928732

  4. Diversification of Orientia tsutsugamushi genotypes by intragenic recombination and their potential expansion in endemic areas

    PubMed Central

    Kim, Gwanghun; Ha, Na-Young; Min, Chan-Ki; Kim, Hong-Il; Yen, Nguyen Thi Hai; Lee, Keun-Hwa; Oh, Inbo; Kang, Jae-Seung; Choi, Myung-Sik; Kim, Ik-Sang

    2017-01-01

    Background Scrub typhus is a mite-borne febrile disease caused by O. tsutsugamushi infection. Recently, emergence of scrub typhus has attracted considerable attention in several endemic countries in Asia and the western Pacific. In addition, the antigenic diversity of the intracellular pathogen has been a serious obstacle for developing effective diagnostics and vaccine. Methodology/Principal findings To understand the evolutionary pathway of genotypic diversification of O. tsutsugamushi and the environmental factors associated with the epidemiological features of scrub typhus, we analyzed sequence data, including spatiotemporal information, of the tsa56 gene encoding a major outer membrane protein responsible for antigenic variation. A total of 324 tsa56 sequences covering more than 85% of its open reading frame were analyzed and classified into 17 genotypes based on phylogenetic relationship. Extensive sequence analysis of tsa56 genes using diverse informatics tools revealed multiple intragenic recombination events, as well as a substantially higher mutation rate than other house-keeping genes. This suggests that genetic diversification occurred via frequent point mutations and subsequent genetic recombination. Interestingly, more diverse bacterial genotypes and dominant vector species prevail in Taiwan compared to other endemic regions. Furthermore, the co-presence of identical and sub-identical clones of tsa56 gene in geographically distant areas implies potential spread of O. tsutsugamushi genotypes. Conclusions/Significance Fluctuation and diversification of vector species harboring O. tsutsugamushi in local endemic areas may facilitate genetic recombination among diverse genotypes. Therefore, careful monitoring of dominant vector species, as well as the prevalence of O. tsutsugamushi genotypes may be advisable to enable proper anticipation of epidemiological changes of scrub typhus. PMID:28248956

  5. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants.

    PubMed

    Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.

  6. Identification of the mutation causing progressive retinal atrophy in Old Danish Pointing Dog.

    PubMed

    Karlskov-Mortensen, P; Proschowsky, H F; Gao, F; Fredholm, M

    2018-06-01

    Progressive retinal atrophy (PRA) is a common cause of blindness in many dog breeds. It is most often inherited as a simple Mendelian trait, but great genetic heterogeneity has been demonstrated both within and between breeds. In many breeds the genetic cause of the disease is not known, and until now, the Old Danish Pointing Dog (ODP) has been one of those breeds. ODP is one of the oldest dog breeds in Europe. Seventy years ago the breed almost vanished, but today a population still exists, primarily in Denmark but with some dogs in Germany and Sweden. PRA has been diagnosed in ODP since the late 1990s. It resembles late onset PRA in other dog breeds, and it is inherited as an autosomal recessive trait. In the present study, we performed whole-genome sequencing and identified a single base insertion (c.3149_3150insC) in exon 1 of C17H2orf71. This is the same mutation previously found to cause PRA in Gordon Setters and Irish Setters, and it was later found in Tibetan Terrier, Standard Poodle and the Polski Owczarek Nizinny. The presence of the mutation in such a diverse range of breeds indicates an origin preceding creation of modern dog breeds. Hence, we screened 262 dogs from 44 different breeds plus four crossbred dogs, and can subsequently add Miniature Poodle and another polish sheepdog, the Polski Owczarek Podhalanski, to the list of affected breeds. © 2018 Stichting International Foundation for Animal Genetics.

  7. A Computer Simulation Study of Vntr Population Genetics: Constrained Recombination Rules Out the Infinite Alleles Model

    PubMed Central

    Harding, R. M.; Boyce, A. J.; Martinson, J. J.; Flint, J.; Clegg, J. B.

    1993-01-01

    Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. We show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation model reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. We use sampling theory to confirm the intrinsically poor fit to the infinite alleles model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations. PMID:8293988

  8. A computer simulation study of VNTR population genetics: constrained recombination rules out the infinite alleles model.

    PubMed

    Harding, R M; Boyce, A J; Martinson, J J; Flint, J; Clegg, J B

    1993-11-01

    Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. We show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation model reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. We use sampling theory to confirm the intrinsically poor fit to the infinite alleles model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations.

  9. A computer simulation study of VNTR population genetics: Constrained recombination rules out the infinite alleles model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, R.M.; Martinson, J.J.; Flint, J.

    1993-11-01

    Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. The authors show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation modelmore » reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. The authors use sampling theory to confirm the intrinsically poor fit to the infinite model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations. 25 refs., 20 figs., 4 tabs.« less

  10. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information.

    PubMed

    Mallik, Saurav; Das, Smita; Kundu, Sudip

    2016-01-01

    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.

  11. Molecular Events for Promotion of Vancomycin Resistance in Vancomycin Intermediate Staphylococcus aureus

    PubMed Central

    Hu, Qiwen; Peng, Huagang; Rao, Xiancai

    2016-01-01

    Vancomycin has been used as the last resort in the clinical treatment of serious Staphylococcus aureus infections. Vancomycin-intermediate S. aureus (VISA) was discovered almost two decades ago. Aside from the vancomycin-intermediate phenotype, VISA strains from the clinic or laboratory exhibited common characteristics, such as thickened cell walls, reduced autolysis, and attenuated virulence. However, the genetic mechanisms responsible for the reduced vancomycin susceptibility in VISA are varied. The comparative genomics of vancomycin-susceptible S. aureus (VSSA)/VISA pairs showed diverse genetic mutations in VISA; only a small number of these mutations have been experimentally verified. To connect the diversified genotypes and common phenotypes in VISA, we reviewed the genetic alterations in the relative determinants, including mutations in the vraTSR, graSR, walKR, stk1/stp1, rpoB, clpP, and cmk genes. Especially, we analyzed the mechanism through which diverse mutations mediate vancomycin resistance. We propose a unified model that integrates diverse gene functions and complex biochemical processes in VISA upon the action of vancomycin. PMID:27790199

  12. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics.

    PubMed

    Leeman-Neill, Rebecca J; Brenner, Alina V; Little, Mark P; Bogdanova, Tetiana I; Hatch, Maureen; Zurnadzy, Liudmyla Y; Mabuchi, Kiyohiko; Tronko, Mykola D; Nikiforov, Yuri E

    2013-05-15

    Childhood exposure to iodine-131 from the 1986 nuclear accident in Chernobyl, Ukraine, led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Mutational analysis was performed on 62 PTCs diagnosed in a Ukrainian cohort of patients who were < 18 years old in 1986 and received 0.008 to 8.6 Gy of (131) I to the thyroid. Associations between mutation types and (131) I dose and other characteristics were explored. RET/PTC (ret proto-oncogene/papillary thyroid carcinoma) rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ (paired box 8/peroxisome proliferator-activated receptor gamma) rearrangement were identified. A significant negative association with (131) I dose for BRAF and RAS point mutations and a significant concave association with (131) I dose, with an inflection point at 1.6 Gy and odds ratio of 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements were found. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared with point mutations, rearrangements were associated with residence in the relatively iodine-deficient Zhytomyr region, younger age at exposure or surgery, and male sex. These results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with (131) I dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and (131) I exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. Copyright © 2013 American Cancer Society.

  13. Extensive de novo mutation rate variation between individuals and across the genome of Chlamydomonas reinhardtii

    PubMed Central

    Ness, Rob W.; Morgan, Andrew D.; Vasanthakrishnan, Radhakrishnan B.; Colegrave, Nick; Keightley, Peter D.

    2015-01-01

    Describing the process of spontaneous mutation is fundamental for understanding the genetic basis of disease, the threat posed by declining population size in conservation biology, and much of evolutionary biology. Directly studying spontaneous mutation has been difficult, however, because new mutations are rare. Mutation accumulation (MA) experiments overcome this by allowing mutations to build up over many generations in the near absence of natural selection. Here, we sequenced the genomes of 85 MA lines derived from six genetically diverse strains of the green alga Chlamydomonas reinhardtii. We identified 6843 new mutations, more than any other study of spontaneous mutation. We observed sevenfold variation in the mutation rate among strains and that mutator genotypes arose, increasing the mutation rate approximately eightfold in some replicates. We also found evidence for fine-scale heterogeneity in the mutation rate, with certain sequence motifs mutating at much higher rates, and clusters of multiple mutations occurring at closely linked sites. There was little evidence, however, for mutation rate heterogeneity between chromosomes or over large genomic regions of 200 kbp. We generated a predictive model of the mutability of sites based on their genomic properties, including local GC content, gene expression level, and local sequence context. Our model accurately predicted the average mutation rate and natural levels of genetic diversity of sites across the genome. Notably, trinucleotides vary 17-fold in rate between the most and least mutable sites. Our results uncover a rich heterogeneity in the process of spontaneous mutation both among individuals and across the genome. PMID:26260971

  14. [A study on the relationship between point mutation in pre-core region G1896A of hepatitis B virus and safety of breast feeding].

    PubMed

    Lu, Yin-ping; Cao, Wei; Hong, Mei; Zhu, Jian-fang; Liu, Zhao; Yang, Dong-liang

    2008-10-01

    To investigate the relationship between pre-core G1896A point mutation of hepatitis B virus (HBV) and safety of breast feeding. Serum and breast milk samples were collected from 62 pregnant women of HBV DNA positive/HBeAg negative. PCR-solid phase hybridization was used to detect the point mutation in pre-core region G1896A of HBV from pregnant women, and HBV DNA loads in sera and breast milk were determined by fluorescence quantitative PCR (FQ-PCR). The prevalence of point mutation was 61.3% (38/62) in 62 pregnant women with HBsAg positive/HBeAg negative. The positive rate of HBV DNA in breast milk of group with point mutation (28.9%) was similar to that of group without mutation (29.2%, chi2=0.0003, P>0.05). However, The positive rate of HBV DNA in breast milk of group with high HBV loads (56.0%) was significantly higher than that of group with low HBV loads (10.8%, chi2=14.79, P<0.01). The point mutation in pre-core region G1896A of HBV dose not affect the positive rate of HBV DNA in breast milk and higher HBV DNA loads in serum of pregnant women might increase the risk of mother-infant transmission.

  15. Sickle cell/β-thalassemia: Comparison of Sβ0 and Sβ+ Brazilian patients followed at a single institution.

    PubMed

    Benites, Bruno Deltreggia; Bastos, Stephany Oliveira; Baldanzi, Gabriel; Dos Santos, Allan de Oliveira; Ramos, Celso Dario; Costa, Fernando Ferreira; Gilli, Simone Cristina Olenscki; Saad, Sara Teresinha Olalla

    2016-12-01

    In sickle cell/β-thalassemia, mutations in the corresponding β-globin genes are responsible for complex pathological events resulting in diverse clinical complications. The objective of this study was to provide an overview of the clinical and laboratory characteristics of patients with the syndrome, and of the degree of severity of clinical manifestations resulting from the β-thalassemia mutation. A retrospective chart review was performed on 46 patients with sickle cell/β-thalassemia (31 Sβ° and 15 Sβ + ), evaluating hematological parameters and end organ damage. Statistical analyzes were carried out in order to highlight differences between the two groups according to the nature of the thalassemia mutation. As expected, patients with the Sβ 0 phenotype had a higher degree of hematological involvement in comparison to Sβ + patients; with lower hemoglobin levels, and signs of more intense chronic hemolysis. However, Sβ + patients were more prone to the occurrence of acute chest syndrome. The impact of the thalassemia mutation upon total body and bone composition was also evident, as Sβ 0 patients presented lower body mass index (BMI) and bone mineral density. The degree of bone damage correlated to lower BMI and hemoglobin levels, as well as plaquetosis, monocytosis and elevated lactate dehydrogenase, possibly reflecting the effects of hemolysis and inflammation upon bone metabolism and body constitution. This study identified significant differences among sickle cell/β-thalassemia patients according to the beta mutation involvement, pointing to an important predictor of disease severity.

  16. Pairwise contact energy statistical potentials can help to find probability of point mutations.

    PubMed

    Saravanan, K M; Suvaithenamudhan, S; Parthasarathy, S; Selvaraj, S

    2017-01-01

    To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β) 8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than i Mutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. A pilot study of mitochondrial DNA point mutation A3243G in a sample of Croatian patients having type 2 diabetes mellitus associated with maternal inheritance.

    PubMed

    Martin-Kleiner, I; Pape-Medvidović, E; Pavlić-Renar, I; Metelko, Z; Kusec, R; Gabrilovac, J; Boranić, M

    2004-12-01

    In this work, patients having type 2 diabetes mellitus and diabetic mothers were tested for the presence of mitochondrial DNA point mutation A3243G. This mutation is associated with the MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), diabetes and deafness. Twenty-two diabetic persons were screened. DNA was isolated from peripheral blood lymphocytes and from swabs of oral mucosa. The mitochondrial DNA point mutation A3243G was detected using PCR-RFLP test. The mutation was detected in oral mucosal DNA of two patients (but not from lymphocyte DNA). One patient was a man with hearing and visual impairments and proteinuria; the other was a woman having proteinuria but no hearing impairment. The mutation was not detectable in oral mucosal DNA from the control persons: 20 diabetic patients having diabetic fathers and 22 healthy, nondiabetic volunteers. The incidence of mitochondrial DNA point mutation A3243G in this study of Croatian diabetic patients is in line with data in the literature.

  18. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains.

    PubMed

    Satomura, Atsushi; Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-03-17

    Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction.

  19. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy.

    PubMed

    Guo, Ruolan; Zhu, Guosheng; Zhu, Huimin; Ma, Ruiyu; Peng, Ying; Liang, Desheng; Wu, Lingqian

    2015-08-01

    Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.

  20. Comprehensive mutational profiling of core binding factor acute myeloid leukemia.

    PubMed

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2016-05-19

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. © 2016 by The American Society of Hematology.

  1. Experimental evolution reveals hidden diversity in evolutionary pathways.

    PubMed

    Lind, Peter A; Farr, Andrew D; Rainey, Paul B

    2015-03-25

    Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans.

  2. Comparison of the efficacy of icotinib in patients with non-small-cell lung cancer according to the type of epidermal growth factor receptor mutation.

    PubMed

    Xue, Zhang Xiao; Wen, Wang Xiu; Zhuang, Yu; Hua, Zang Jian; Xia, Yang Ni

    2016-09-01

    Icotinib hydrochloride is a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with preclinical and clinical activity in non-small-cell lung cancer (NSCLC). Exon 19 deletion and L858R point mutation are the most commonly encountered EGFR mutations in NSCLC, and they predict improved clinical outcomes following treatment with icotinib. The objective of this study was to evaluate the differential clinical efficacy of icotinib in patients with exon 19 deletion or L858R point mutation of the EGFR gene. A total of 104 patients with advanced NSCLC, who harbored exon 19 deletion or L858R point mutation of EGFR and were treated with icotinib, were enrolled in this study. The tumor response and progression-free survival were evaluated. There were no significant differences between patients with EGFR exon 19 deletion and those with L858R point mutation who received treatment with icotinib.

  3. Genetic diversity of transmission-blocking vaccine candidate Pvs48/45 in Plasmodium vivax populations in China.

    PubMed

    Feng, Hui; Gupta, Bhavna; Wang, Meilian; Zheng, Wenqi; Zheng, Li; Zhu, Xiaotong; Yang, Yimei; Fang, Qiang; Luo, Enjie; Fan, Qi; Tsuboi, Takafumi; Cao, Yaming; Cui, Liwang

    2015-12-01

    The male gamete fertilization factor P48/45 in malaria parasites is a prime transmission-blocking vaccine (TBV) candidate. Efforts to develop antimalarial vaccines are often thwarted by genetic diversity of the target antigens. Here we evaluated the genetic diversity of Pvs48/45 gene in global Plasmodium vivax populations. We determined 200 Pvs48/45 sequences collected from temperate and subtropical parasite populations in China. Population genetic and evolutionary analyses were performed to determine the levels of genetic diversity, potential signature of selection, and population differentiation. Analysis of the Pvs48/45 sequences from 200 P. vivax parasites collected in a temperate and a tropical region revealed a low level of genetic diversity (π = 0.0012) with 14 single nucleotide polymorphisms, of which 11 were nonsynonymous. Analysis of 344 Pvs48/45 sequences from nine worldwide P. vivax populations detected a total of 38 haplotypes, of which 13 haplotypes were present only once. Multiple tests for selection confirmed a signature of positive selection on Pvs48/45 with selection skewed to the second cysteine domain. Haplotype network analysis and Wright's fixation index showed large geographical differentiation with the presence of continent-or region-specific mutations in this gene. Pvs48/45 displays low levels of genetic diversity with the presence of region-specific mutations. Some of the mutations may be potential epitope targets based on their positions in the predicted structure, highlighting the need for future evaluation of these mutations in designing Pvs48/45-based TBV.

  4. Role of conformational sampling in computing mutation-induced changes in protein structure and stability.

    PubMed

    Kellogg, Elizabeth H; Leaver-Fay, Andrew; Baker, David

    2011-03-01

    The prediction of changes in protein stability and structure resulting from single amino acid substitutions is both a fundamental test of macromolecular modeling methodology and an important current problem as high throughput sequencing reveals sequence polymorphisms at an increasing rate. In principle, given the structure of a wild-type protein and a point mutation whose effects are to be predicted, an accurate method should recapitulate both the structural changes and the change in the folding-free energy. Here, we explore the performance of protocols which sample an increasing diversity of conformations. We find that surprisingly similar performances in predicting changes in stability are achieved using protocols that involve very different amounts of conformational sampling, provided that the resolution of the force field is matched to the resolution of the sampling method. Methods involving backbone sampling can in some cases closely recapitulate the structural changes accompanying mutations but not surprisingly tend to do more harm than good in cases where structural changes are negligible. Analysis of the outliers in the stability change calculations suggests areas needing particular improvement; these include the balance between desolvation and the formation of favorable buried polar interactions, and unfolded state modeling. Copyright © 2010 Wiley-Liss, Inc.

  5. Diversity of ARSACS mutations in French-Canadians.

    PubMed

    Thiffault, I; Dicaire, M J; Tetreault, M; Huang, K N; Demers-Lamarche, J; Bernard, G; Duquette, A; Larivière, R; Gehring, K; Montpetit, A; McPherson, P S; Richter, A; Montermini, L; Mercier, J; Mitchell, G A; Dupré, N; Prévost, C; Bouchard, J P; Mathieu, J; Brais, B

    2013-01-01

    The growing number of spastic ataxia of Charlevoix-Saguenay (SACS) gene mutations reported worldwide has broadened the clinical phenotype of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). The identification of Quebec ARSACS cases without two known SACS mutation led to the development of a multi-modal genomic strategy to uncover mutations in this large gene and explore phenotype variability. Search for SACS mutations by combining various methods on 20 cases with a classical French-Canadian ARSACS phenotype without two mutations and a group of 104 sporadic or recessive spastic ataxia cases of unknown cause. Western blot on lymphoblast protein from cases with different genotypes was probed to establish if they still expressed sacsin. A total of 12 mutations, including 7 novels, were uncovered in Quebec ARSACS cases. The screening of 104 spastic ataxia cases of unknown cause for 98 SACS mutations did not uncover carriers of two mutations. Compounds heterozygotes for one missense SACS mutation were found to minimally express sacsin. The large number of SACS mutations present even in Quebec suggests that the size of the gene alone may explain the great genotypic diversity. This study does not support an expanding ARSACS phenotype in the French-Canadian population. Most mutations lead to loss of function, though phenotypic variability in other populations may reflect partial loss of function with preservation of some sacsin expression. Our results also highlight the challenge of SACS mutation screening and the necessity to develop new generation sequencing methods to ensure low cost complete gene sequencing.

  6. Genomic sequencing in cystic fibrosis newborn screening: what works best, two-tier predefined CFTR mutation panels or second-tier CFTR panel followed by third-tier sequencing?

    PubMed

    Currier, Robert J; Sciortino, Stan; Liu, Ruiling; Bishop, Tracey; Alikhani Koupaei, Rasoul; Feuchtbaum, Lisa

    2017-10-01

    PurposeThe purpose of this study was to model the performance of several known two-tier, predefined mutation panels and three-tier algorithms for cystic fibrosis (CF) screening utilizing the ethnically diverse California population.MethodsThe cystic fibrosis transmembrane conductance regulator (CFTR) mutations identified among the 317 CF cases in California screened between 12 August 2008 and 18 December 2012 were used to compare the expected CF detection rates for several two- and three-tier screening approaches, including the current California approach, which consists of a population-specific 40-mutation panel followed by third-tier sequencing when indicated.ResultsThe data show that the strategy of using third-tier sequencing improves CF detection following an initial elevated immunoreactive trypsinogen and detection of only one mutation on a second-tier panel.ConclusionIn a diverse population, the use of a second-tier panel followed by third-tier CFTR gene sequencing provides a better detection rate for CF, compared with the use of a second-tier approach alone, and is an effective way to minimize the referrals of CF carriers for sweat testing. Restricting screening to a second-tier testing to predefined mutation panels, even broad ones, results in some missed CF cases and demonstrates the limited utility of this approach in states that have diverse multiethnic populations.

  7. Evolutionary History of the Plant Pathogenic Bacterium Xanthomonas axonopodis

    PubMed Central

    Mhedbi-Hajri, Nadia; Hajri, Ahmed; Boureau, Tristan; Darrasse, Armelle; Durand, Karine; Brin, Chrystelle; Saux, Marion Fischer-Le; Manceau, Charles; Poussier, Stéphane; Pruvost, Olivier

    2013-01-01

    Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes – geographical and ecological speciation – that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25 000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar. PMID:23505513

  8. Broad Detection of Alterations Predicted to Confer Lack of Benefit From EGFR Antibodies or Sensitivity to Targeted Therapy in Advanced Colorectal Cancer.

    PubMed

    Rankin, Andrew; Klempner, Samuel J; Erlich, Rachel; Sun, James X; Grothey, Axel; Fakih, Marwan; George, Thomas J; Lee, Jeeyun; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M; Schrock, Alexa B

    2016-09-28

    A KRAS mutation represented the first genomic biomarker to predict lack of benefit from anti-epidermal growth factor receptor (EGFR) antibody therapy in advanced colorectal cancer (CRC). Expanded RAS testing has further refined the treatment approach, but understanding of genomic alterations underlying primary and acquired resistance is limited and further study is needed. We prospectively analyzed 4,422 clinical samples from patients with advanced CRC, using hybrid-capture based comprehensive genomic profiling (CGP) at the request of the individual treating physicians. Comparison with prior molecular testing results, when available, was performed to assess concordance. We identified a RAS/RAF pathway mutation or amplification in 62% of cases, including samples harboring KRAS mutations outside of the codon 12/13 hotspot region in 6.4% of cases. Among cases with KRAS non-codon 12/13 alterations for which prior test results were available, 79 of 90 (88%) were not identified by focused testing. Of 1,644 RAS/RAF wild-type cases analyzed by CGP, 31% harbored a genomic alteration (GA) associated with resistance to anti-EGFR therapy in advanced CRC including mutations in PIK3CA, PTEN, EGFR, and ERBB2. We also identified other targetable GA, including novel kinase fusions, receptor tyrosine kinase amplification, activating point mutations, as well as microsatellite instability. Extended genomic profiling reliably detects alterations associated with lack of benefit to anti-EGFR therapy in advanced CRC, while simultaneously identifying alterations potentially important in guiding treatment. The use of CGP during the course of clinical care allows for the refined selection of appropriate targeted therapies and clinical trials, increasing the chance of clinical benefit and avoiding therapeutic futility. Comprehensive genomic profiling (CGP) detects diverse genomic alterations associated with lack of benefit to anti-epidermal growth factor receptor therapy in advanced colorectal cancer (CRC), as well as targetable alterations in many other genes. This includes detection of a broad spectrum of activating KRAS alterations frequently missed by focused molecular hotspot testing, as well as other RAS/RAF pathway alterations, mutations shown to disrupt antibody binding, RTK activating point mutations, amplifications, and rearrangements, and activating alterations in downstream effectors including PI3K and MEK1. The use of CGP in clinical practice is critical to guide appropriate selection of targeted therapies for patients with advanced CRC. ©AlphaMed Press.

  9. Advances in radiation mutagenesis through studies on Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, H. J.

    The approximately linear relation between radiation dose and induced lethals, known for Drosophila spermatozoa, is now extended to spermatids. Data are included regarding oogonia. The linearity principle has been confirmed for minute structural changes in spermatozoa. The dependence of gross structural changes, as multi-hit events, on about the 1.5 power of the dose, long known for spermatozoa, is now extended to spermatids and late oocytes, for relatively short exposures. However, these stages unlike spermatozoa are found to allow union of broken chromosomes. Therefore, the frequencies are lower for more dispersed exposures of these stages, and the precise dose relation variesmore » with the timing. Part of the dominant and even recessive lethals induced in late oocytes follow the same frequency pattern and therefore are multi-hit events. Yet there is a much lower chance after oocytic than spermatozoan irradiation that two broken ends derived from different hits will unite, hence most such unions are nonreciprocal. The following is the order of decreasing radiation mutability of different stages found by ourselves and others: spermatids, spermatozoa in females, spermatozoa 0 to 1 day before ejaculation, earlier spermatozoa, late oocytes, gonia of either sex. Lethal frequencies for these stages range over approximately an order of magnitude, gross structural changes far more widely. Of potential usefulness is our extension of the principle of marked reduction of radiation mutagenesis by anoxia, known for spermatozoa in adult males, to those in pupal males and in females to spermatids and to oocytes. In spermatids this reduction is especially marked but the increase caused by substituting oxygen for air is less marked, perhaps because of enzymatic differences. In contrast, the induction of gross structural changes in oocytes, but not in spermatids, is markedly reduced by oxygen post-treatment; it is increased by dehydration. The efficacy of induction of structural changes by treatment of spermatozoa, whether with radiation or chemical mutagens, is correlated with the conditions of sperm utilization and egg production. Improving our perspective on radiation effects, some 800,000 offspring have been scored for spontaneous visible mutations of 13 specific loci. The average point-mutation rate was 0.5 to 1.0 per locus among 10/sup 5/ germ cells. Most mutations occurred in peri-fertilization stages. All loci studied mutated from one to nine times. Loci mutating oftener spontaneously also gave more radiation mutation, in other studies. Spectra of individual loci prove similar for spontaneous and induced mutation. Studies on back-mutations also showed similarity of spontaneous and radiation mutations. The doubling dose for back-mutations of forked induced in spermatozoa was several hundred roentgens, similar to that for direct point-mutations induced in gonia at diverse loci. Recent analyses of human mutational load lead to mutation-rate estimates like those earlier based on extrapolations from Drosophila, thus supporting the significance for man of the present studies. (auth)« less

  10. Investigating the Impact of Asp181 Point Mutations on Interactions between PTP1B and Phosphotyrosine Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.

  11. Ultra-deep sequencing reveals high prevalence and broad structural diversity of hepatitis B surface antigen mutations in a global population

    PubMed Central

    Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C. Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B.; Nauck, Markus; Kaminski, Wolfgang E.

    2017-01-01

    The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its “a” determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the “a” determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of “a” determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated. PMID:28472040

  12. Ultra-deep sequencing reveals high prevalence and broad structural diversity of hepatitis B surface antigen mutations in a global population.

    PubMed

    Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-Suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B; Nauck, Markus; Kaminski, Wolfgang E

    2017-01-01

    The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its "a" determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the "a" determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of "a" determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated.

  13. Natural selection reduced diversity on human y chromosomes.

    PubMed

    Wilson Sayres, Melissa A; Lohmueller, Kirk E; Nielsen, Rasmus

    2014-01-01

    The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area.

  14. Natural Selection Reduced Diversity on Human Y Chromosomes

    PubMed Central

    Wilson Sayres, Melissa A.; Lohmueller, Kirk E.; Nielsen, Rasmus

    2014-01-01

    The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area. PMID:24415951

  15. BRCA1 and BRCA2 mutations in women of different ethnicities undergoing testing for hereditary breast-ovarian cancer

    PubMed Central

    Hall, Michael J.; Reid, Julia E.; Burbidge, Lynn A.; Pruss, Dmitry; Deffenbaugh, Amie M.; Frye, Cynthia; Wenstrup, Richard J.; Ward, Brian E.; Scholl, Thomas A.; Noll, Walter W.

    2009-01-01

    Background In women at increased risk for breast and ovarian cancer, the identification of a BRCA1/2 mutation has important implications for screening and prevention counseling. Uncertainty regarding the role of BRCA1/2 testing in high-risk women from diverse ancestral backgrounds exists due to variability in prevalence estimates of deleterious (disease-associated) mutations in non-White populations. We examined the prevalence of BRCA1/2 mutations in an ethnically diverse group of women referred for genetic testing. Methods We conducted a cross-sectional analysis to assess the prevalence of BRCA1/2 mutations in a group of non-Ashkenazi Jewish women undergoing genetic testing. Results From 1996-2006, 46,276 women meeting study criteria underwent DNA full-sequence analysis of the BRCA1 and BRCA2 genes. Deleterious mutations were identified in 12.5% of subjects, and recurrent deleterious mutations (prevalence > 2%) were identified in all ancestral groups. Women of non-European descent were younger (45.9 yrs, SD11.6) than European (50.0 yrs, SD11.9)(p<0.001). Women of African (15.6%)[OR 1.3(1.1-1.5)] and Latin American (14.8%)[OR 1.2(1.1-1.4)] ancestries had a significantly higher prevalence of deleterious BRCA1/2 mutations compared to women of Western European ancestry (12.1%), primarily due to an increased prevalence of BRCA1 mutations in these two groups. Non-European ethnicity was strongly associated with having a variant of uncertain significance; however, re-classification decreased variant reporting (12.8%→5.9%), with women of African ancestry experiencing the largest decline (58%). Conclusions Mutation prevalence is high among women referred for clinical BRCA1/2 testing, and risk is similar across diverse ethnicities. BRCA1/2 testing is integral to cancer risk assessment in all high-risk women. PMID:19241424

  16. Engineering diverse changes in beta-turn propensities in the N-terminal beta-hairpin of ubiquitin reveals significant effects on stability and kinetics but a robust folding transition state.

    PubMed

    Simpson, Emma R; Meldrum, Jill K; Searle, Mark S

    2006-04-04

    Using the N-terminal 17-residue beta-hairpin of ubiquitin as a "host" for mutational studies, we have investigated the influence of the beta-turn sequence on protein stability and folding kinetics by replacing the native G-bulged turn (TLTGK) with more flexible analogues (TG3K and TG5K) and a series of four-residue type I' beta-turn sequences, commonly found in beta-hairpins. Although a statistical analysis of type I' turns demonstrates residue preferences at specific sites, the frequency of occurrence appears to only broadly correlate with experimentally determined protein stabilities. The subsequent engineering of context-dependent non-native tertiary contacts involving turn residues is shown to produce large changes in stability. Relatively few point mutations have been described that probe secondary structure formation in ubiquitin in a manner that is independent of tertiary contacts. To this end, we have used the more rigorous rate-equilibrium free energy relationship (Leffler analysis), rather than the two-point phi value analysis, to show for a family of engineered beta-turn mutants that stability (range of approximately 20 kJ/mol) and folding kinetics (190-fold variation in refolding rate) are linearly correlated (alpha(f) = 0.74 +/- 0.08). The data are consistent with a transition state that is robust with regard to a wide range of statistically favored and disfavored beta-turn mutations and implicate a loosely assembled beta-hairpin as a key template in transition state stabilization with the beta-turn playing a central role.

  17. Dynamic evolution of plant mitochondrial genomes: Mobile genes and introns and highly variable mutation rates

    PubMed Central

    Palmer, Jeffrey D.; Adams, Keith L.; Cho, Yangrae; Parkinson, Christopher L.; Qiu, Yin-Long; Song, Keming

    2000-01-01

    We summarize our recent studies showing that angiosperm mitochondrial (mt) genomes have experienced remarkably high rates of gene loss and concomitant transfer to the nucleus and of intron acquisition by horizontal transfer. Moreover, we find substantial lineage-specific variation in rates of these structural mutations and also point mutations. These findings mostly arise from a Southern blot survey of gene and intron distribution in 281 diverse angiosperms. These blots reveal numerous losses of mt ribosomal protein genes but, with one exception, only rare loss of respiratory genes. Some lineages of angiosperms have kept all of their mt ribosomal protein genes whereas others have lost most of them. These many losses appear to reflect remarkably high (and variable) rates of functional transfer of mt ribosomal protein genes to the nucleus in angiosperms. The recent transfer of cox2 to the nucleus in legumes provides both an example of interorganellar gene transfer in action and a starting point for discussion of the roles of mechanistic and selective forces in determining the distribution of genetic labor between organellar and nuclear genomes. Plant mt genomes also acquire sequences by horizontal transfer. A striking example of this is a homing group I intron in the mt cox1 gene. This extraordinarily invasive mobile element has probably been acquired over 1,000 times separately during angiosperm evolution via a recent wave of cross-species horizontal transfers. Finally, whereas all previously examined angiosperm mtDNAs have low rates of synonymous substitutions, mtDNAs of two distantly related angiosperms have highly accelerated substitution rates. PMID:10860957

  18. Tumor evolution: Linear, branching, neutral or punctuated?☆

    PubMed Central

    Davis, Alexander; Gao, Ruli; Navin, Nicholas

    2017-01-01

    Intratumor heterogeneity has been widely reported in human cancers, but our knowledge of how this genetic diversity emerges over time remains limited. A central challenge in studying tumor evolution is the difficulty in collecting longitudinal samples from cancer patients. Consequently, most studies have inferred tumor evolution from single time-point samples, providing very indirect information. These data have led to several competing models of tumor evolution: linear, branching, neutral and punctuated. Each model makes different assumptions regarding the timing of mutations and selection of clones, and therefore has different implications for the diagnosis and therapeutic treatment of cancer patients. Furthermore, emerging evidence suggests that models may change during tumor progression or operate concurrently for different classes of mutations. Finally, we discuss data that supports the theory that most human tumors evolve from a single cell in the normal tissue. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby. PMID:28110020

  19. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helixmore » bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).« less

  20. Small molecules enhance CRISPR genome editing in pluripotent stem cells.

    PubMed

    Yu, Chen; Liu, Yanxia; Ma, Tianhua; Liu, Kai; Xu, Shaohua; Zhang, Yu; Liu, Honglei; La Russa, Marie; Xie, Min; Ding, Sheng; Qi, Lei S

    2015-02-05

    The bacterial CRISPR-Cas9 system has emerged as an effective tool for sequence-specific gene knockout through non-homologous end joining (NHEJ), but it remains inefficient for precise editing of genome sequences. Here we develop a reporter-based screening approach for high-throughput identification of chemical compounds that can modulate precise genome editing through homology-directed repair (HDR). Using our screening method, we have identified small molecules that can enhance CRISPR-mediated HDR efficiency, 3-fold for large fragment insertions and 9-fold for point mutations. Interestingly, we have also observed that a small molecule that inhibits HDR can enhance frame shift insertion and deletion (indel) mutations mediated by NHEJ. The identified small molecules function robustly in diverse cell types with minimal toxicity. The use of small molecules provides a simple and effective strategy to enhance precise genome engineering applications and facilitates the study of DNA repair mechanisms in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Cytidine deamination induced HIV-1 drug resistance

    PubMed Central

    Mulder, Lubbertus C. F.; Harari, Ariana; Simon, Viviana

    2008-01-01

    The HIV-1 Vif protein is essential for overcoming the antiviral activity of DNA-editing apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) cytidine deaminases. We show that naturally occurring HIV-1 Vif point mutants with suboptimal anti-APOBEC3G activity induce the appearance of proviruses with lamivudine (3TC) drug resistance-associated mutations before any drug exposure. These mutations, ensuing from cytidine deamination events, were detected in >40% of proviruses with partially defective Vif mutants. Transfer of drug resistance from hypermutated proviruses via recombination allowed for 3TC escape under culture conditions prohibitive for any WT viral growth. These results demonstrate that defective hypermutated genomes can shape the phenotype of the circulating viral population. Partially active Vif alleles resulting in incomplete neutralization of cytoplasmic APOBEC3 molecules are directly responsible for the generation of a highly diverse, yet G-to-A biased, proviral reservoir, which can be exploited by HIV-1 to generate viable and drug-resistant progenies. PMID:18391217

  2. Multidrug-resistant Staphylococcus haemolyticus isolates from infected eyes and healthy conjunctivae in India.

    PubMed

    Panda, Sasmita; Kar, Sarita; Sharma, Savitri; Singh, Durg V

    2016-09-01

    This study aimed to determine the presence of antibiotic resistance genes (ARGs), SCCmec elements and genetic relatedness among Staphylococcus haemolyticus isolated from patients with a variety of eye infections (n=11) and from healthy conjunctiva (n=7). Minimum inhibitory concentrations were determined for 14 antimicrobials according to BSAC guidelines. PCR was used to identify the presence of mecA, mecC, SCCmec type and ARGs. Sequencing was used to determine mutations in gyrA, gyrB, topoisomerase IVA and IVB genes. Genetic relatedness was determined by PFGE. Of the 18 isolates, 17 showed resistance to at least one antibiotic, but none showed resistance to vancomycin or rifampicin. Ten isolates were oxacillin-resistant and carried the mecA gene, eight of which belonged to SCCmec type V. The presence of non-mec SCC elements in two meticillin-susceptible isolates and untypeable SCC elements in meticillin-resistant isolates suggests the involvement of S. haemolyticus in the diversification of SCC elements. Sequence analysis revealed point mutations in gyrA (Ser-84→Leu) and topoisomerase IVA genes (Ser-80→Leu) in 13 isolates, and additional variation in the QRDR (Asp-84→Asn) of two isolates, showing good correlation between mutations in gyrA and topoisomerase IV genes and the level of resistance to fluoroquinolones. PFGE analysis showed distinct pulsotypes forming two major clusters, indicating the existence of diversity among isolates, irrespective of the source of isolation. This study suggests that S. haemolyticus isolates from infected eyes and healthy conjunctivae invariably carried ARGs and SCCmec elements and showed diversity in their genomic content, irrespective of the source of isolation. Copyright © 2016 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  3. Origins and Divergence of the Roma (Gypsies)

    PubMed Central

    Gresham, David; Morar, Bharti; Underhill, Peter A.; Passarino, Giuseppe; Lin, Alice A.; Wise, Cheryl; Angelicheva, Dora; Calafell, Francesc; Oefner, Peter J.; Shen, Peidong; Tournev, Ivailo; de Pablo, Rosario; Kuĉinskas, Vaidutis; Perez-Lezaun, Anna; Marushiakova, Elena; Popov, Vesselin; Kalaydjieva, Luba

    2001-01-01

    The identification of a growing number of novel Mendelian disorders and private mutations in the Roma (Gypsies) points to their unique genetic heritage. Linguistic evidence suggests that they are of diverse Indian origins. Their social structure within Europe resembles that of the jatis of India, where the endogamous group, often defined by profession, is the primary unit. Genetic studies have reported dramatic differences in the frequencies of mutations and neutral polymorphisms in different Romani populations. However, these studies have not resolved ambiguities regarding the origins and relatedness of Romani populations. In this study, we examine the genetic structure of 14 well-defined Romani populations. Y-chromosome and mtDNA markers of different mutability were analyzed in a total of 275 individuals. Asian Y-chromosome haplogroup VI-68, defined by a mutation at the M82 locus, was present in all 14 populations and accounted for 44.8% of Romani Y chromosomes. Asian mtDNA-haplogroup M was also identified in all Romani populations and accounted for 26.5% of female lineages in the sample. Limited diversity within these two haplogroups, measured by the variation at eight short-tandem-repeat loci for the Y chromosome, and sequencing of the HVS1 for the mtDNA are consistent with a small group of founders splitting from a single ethnic population in the Indian subcontinent. Principal-components analysis and analysis of molecular variance indicate that genetic structure in extant endogamous Romani populations has been shaped by genetic drift and differential admixture and correlates with the migrational history of the Roma in Europe. By contrast, social organization and professional group divisions appear to be the product of a more recent restitution of the caste system of India. PMID:11704928

  4. Origins and divergence of the Roma (gypsies).

    PubMed

    Gresham, D; Morar, B; Underhill, P A; Passarino, G; Lin, A A; Wise, C; Angelicheva, D; Calafell, F; Oefner, P J; Shen, P; Tournev, I; de Pablo, R; Kuĉinskas, V; Perez-Lezaun, A; Marushiakova, E; Popov, V; Kalaydjieva, L

    2001-12-01

    The identification of a growing number of novel Mendelian disorders and private mutations in the Roma (Gypsies) points to their unique genetic heritage. Linguistic evidence suggests that they are of diverse Indian origins. Their social structure within Europe resembles that of the jatis of India, where the endogamous group, often defined by profession, is the primary unit. Genetic studies have reported dramatic differences in the frequencies of mutations and neutral polymorphisms in different Romani populations. However, these studies have not resolved ambiguities regarding the origins and relatedness of Romani populations. In this study, we examine the genetic structure of 14 well-defined Romani populations. Y-chromosome and mtDNA markers of different mutability were analyzed in a total of 275 individuals. Asian Y-chromosome haplogroup VI-68, defined by a mutation at the M82 locus, was present in all 14 populations and accounted for 44.8% of Romani Y chromosomes. Asian mtDNA-haplogroup M was also identified in all Romani populations and accounted for 26.5% of female lineages in the sample. Limited diversity within these two haplogroups, measured by the variation at eight short-tandem-repeat loci for the Y chromosome, and sequencing of the HVS1 for the mtDNA are consistent with a small group of founders splitting from a single ethnic population in the Indian subcontinent. Principal-components analysis and analysis of molecular variance indicate that genetic structure in extant endogamous Romani populations has been shaped by genetic drift and differential admixture and correlates with the migrational history of the Roma in Europe. By contrast, social organization and professional group divisions appear to be the product of a more recent restitution of the caste system of India.

  5. Molecular and Evolutionary History of Melanism in North American Gray Wolves

    PubMed Central

    Anderson, Tovi M.; vonHoldt, Bridgett M.; Candille, Sophie I.; Musiani, Marco; Greco, Claudia; Stahler, Daniel R.; Smith, Douglas W.; Padhukasahasram, Badri; Randi, Ettore; Leonard, Jennifer A.; Bustamante, Carlos D.; Ostrander, Elaine A.; Tang, Hua; Wayne, Robert K.; Barsh, Gregory S.

    2010-01-01

    Morphological diversity within closely related species is an essential aspect of evolution and adaptation. Mutations in the Melanocortin 1 receptor (Mc1r) gene contribute to pigmentary diversity in natural populations of fish, birds, and many mammals. However, melanism in the gray wolf, Canis lupus, is caused by a different melanocortin pathway component, the K locus, that encodes a beta-defensin protein that acts as an alternative ligand for Mc1r. We show that the melanistic K locus mutation in North American wolves derives from past hybridization with domestic dogs, has risen to high frequency in forested habitats, and exhibits a molecular signature of positive selection. The same mutation also causes melanism in the coyote, Canis latrans, and in Italian gray wolves, and hence our results demonstrate how traits selected in domesticated species can influence the morphological diversity of their wild relatives. PMID:19197024

  6. Molecular and evolutionary history of melanism in North American gray wolves.

    PubMed

    Anderson, Tovi M; vonHoldt, Bridgett M; Candille, Sophie I; Musiani, Marco; Greco, Claudia; Stahler, Daniel R; Smith, Douglas W; Padhukasahasram, Badri; Randi, Ettore; Leonard, Jennifer A; Bustamante, Carlos D; Ostrander, Elaine A; Tang, Hua; Wayne, Robert K; Barsh, Gregory S

    2009-03-06

    Morphological diversity within closely related species is an essential aspect of evolution and adaptation. Mutations in the Melanocortin 1 receptor (Mc1r) gene contribute to pigmentary diversity in natural populations of fish, birds, and many mammals. However, melanism in the gray wolf, Canis lupus, is caused by a different melanocortin pathway component, the K locus, that encodes a beta-defensin protein that acts as an alternative ligand for Mc1r. We show that the melanistic K locus mutation in North American wolves derives from past hybridization with domestic dogs, has risen to high frequency in forested habitats, and exhibits a molecular signature of positive selection. The same mutation also causes melanism in the coyote, Canis latrans, and in Italian gray wolves, and hence our results demonstrate how traits selected in domesticated species can influence the morphological diversity of their wild relatives.

  7. Gaucher disease: molecular heterogeneity and phenotype-genotype correlations.

    PubMed

    Theophilus, B; Latham, T; Grabowski, G A; Smith, F I

    1989-08-01

    Gaucher disease (GD) is the most prevalent lysosomal storage disease. This autosomal recessive trait results from the defective activity of acid beta-glucosidase (beta-Glc). Four different exonic point mutations have been identified as causal alleles for GD. To facilitate screening for these alleles, assays were developed using allele-specific oligonucleotide hybridization to amplified genomic DNA sequences. Specifically, intron bases flanking exons 5, 9, and 10 were determined, and conditions for PCR amplification of these exons were obtained. Two different procedures were developed to distinguish signals obtained from the structural beta-Glc gene exons and those from the pseudogene. These procedures were used to determine the distribution of all known GD alleles in a population of 44 affected patients of varying phenotypes and ethnicity. The high frequency of one of the exon 9 mutations in Ashkenazi Jewish GD type 1 patients was confirmed, and, in addition, this mutation was present in ethnically diverse non-Jewish type 1 GD patients. Homozygotes (N = 5) for this allele were midly affected older individuals, and this mutant allele was not found in any patient with neuronopathic disease. The exon 10 mutation was confirmed as the predominant allele in types 2 and 3 GD. However, several type 1 GD patients, including one of Ashkenazi-Jewish heritage, also were heterozygous for this allele. The presence of this allele in type 1 patients did not correlate with the severity of clinical symptoms. The second exon 9 mutation and the exon 5 mutation were rare, since they occurred only heterozygously either in one type 2 GD patient or in two related Ashkenazi-Jewish GD patients, respectively. Although most GD patients (38 of 44) had at least one of the known mutant alleles, 57% were heterozygotes for only one of these mutations. Fourteen percent of patients were negative for all mutations. A total of 73% of GD patients had at least one unknown allele. The varying clinical phenotypes and ethnic origins of these incompletely characterized patients suggest that multiple other GD alleles exist.

  8. Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING

    PubMed Central

    Till, Bradley J.; Reynolds, Steven H.; Greene, Elizabeth A.; Codomo, Christine A.; Enns, Linda C.; Johnson, Jessica E.; Burtner, Chris; Odden, Anthony R.; Young, Kim; Taylor, Nicholas E.; Henikoff, Jorja G.; Comai, Luca; Henikoff, Steven

    2003-01-01

    TILLING (Targeting Induced Local Lesions in Genomes) is a general reverse-genetic strategy that provides an allelic series of induced point mutations in genes of interest. High-throughput TILLING allows the rapid and low-cost discovery of induced point mutations in populations of chemically mutagenized individuals. As chemical mutagenesis is widely applicable and mutation detection for TILLING is dependent only on sufficient yield of PCR products, TILLING can be applied to most organisms. We have developed TILLING as a service to the Arabidopsis community known as the Arabidopsis TILLING Project (ATP). Our goal is to rapidly deliver allelic series of ethylmethanesulfonate-induced mutations in target 1-kb loci requested by the international research community. In the first year of public operation, ATP has discovered, sequenced, and delivered >1000 mutations in >100 genes ordered by Arabidopsis researchers. The tools and methodologies described here can be adapted to create similar facilities for other organisms. PMID:12618384

  9. Point mutations which should not be overlooked in Hb H disease.

    PubMed

    Farashi, Samaneh; Bayat, Nooshin; Vakili, Shadi; Faramarzi Garous, Negin; Ashki, Mehri; Imanian, Hashem; Najmabadi, Hossein; Azarkeivan, Azita

    2016-01-01

    Hb H disease is an alpha-thalassemia (α-thal) syndrome characterized by chronic hemolytic anemia that occurs when three of total four α-globin genes lost their function due to completely deletions or different kind of mutations. We here described 66 patients who have been diagnosed for Hb H disease during the last five years in our center. The genotypes involving point mutations present more severe phenotype than deletional forms that make them of primary important to health management. Hb H subjects carry different α-globin genotypes including deletional and non-deletional mutations showing heterogenous clinical manifestations. The Hb H patients presenting a wide range of phenotype carried different deletional, non-deletional mutations or compound heterozygosity of them. We emphasize the importance of some point mutations responsible for more severe form of Hb H disease in Iranian population and the necessity for consideration of prenatal diagnosis (PND) in high-risk couples.

  10. A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input-mutation output relationships.

    PubMed

    Maharjan, Ram P; Ferenci, Thomas

    2017-06-01

    Environmental stresses increase genetic variation in bacteria, plants, and human cancer cells. The linkage between various environments and mutational outcomes has not been systematically investigated, however. Here, we established the influence of nutritional stresses commonly found in the biosphere (carbon, phosphate, nitrogen, oxygen, or iron limitation) on both the rate and spectrum of mutations in Escherichia coli. We found that each limitation was associated with a remarkably distinct mutational profile. Overall mutation rates were not always elevated, and nitrogen, iron, and oxygen limitation resulted in major spectral changes but no net increase in rate. Our results thus suggest that stress-induced mutagenesis is a diverse series of stress input-mutation output linkages that is distinct in every condition. Environment-specific spectra resulted in the differential emergence of traits needing particular mutations in these settings. Mutations requiring transpositions were highest under iron and oxygen limitation, whereas base-pair substitutions and indels were highest under phosphate limitation. The unexpected diversity of input-output effects explains some important phenomena in the mutational biases of evolving genomes. The prevalence of bacterial insertion sequence transpositions in the mammalian gut or in anaerobically stored cultures is due to environmentally determined mutation availability. Likewise, the much-discussed genomic bias towards transition base substitutions in evolving genomes can now be explained as an environment-specific output. Altogether, our conclusion is that environments influence genetic variation as well as selection.

  11. A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input–mutation output relationships

    PubMed Central

    Maharjan, Ram P.

    2017-01-01

    Environmental stresses increase genetic variation in bacteria, plants, and human cancer cells. The linkage between various environments and mutational outcomes has not been systematically investigated, however. Here, we established the influence of nutritional stresses commonly found in the biosphere (carbon, phosphate, nitrogen, oxygen, or iron limitation) on both the rate and spectrum of mutations in Escherichia coli. We found that each limitation was associated with a remarkably distinct mutational profile. Overall mutation rates were not always elevated, and nitrogen, iron, and oxygen limitation resulted in major spectral changes but no net increase in rate. Our results thus suggest that stress-induced mutagenesis is a diverse series of stress input–mutation output linkages that is distinct in every condition. Environment-specific spectra resulted in the differential emergence of traits needing particular mutations in these settings. Mutations requiring transpositions were highest under iron and oxygen limitation, whereas base-pair substitutions and indels were highest under phosphate limitation. The unexpected diversity of input–output effects explains some important phenomena in the mutational biases of evolving genomes. The prevalence of bacterial insertion sequence transpositions in the mammalian gut or in anaerobically stored cultures is due to environmentally determined mutation availability. Likewise, the much-discussed genomic bias towards transition base substitutions in evolving genomes can now be explained as an environment-specific output. Altogether, our conclusion is that environments influence genetic variation as well as selection. PMID:28594817

  12. Molecular basis for the Kallmann syndrome-linked fibroblast growth factor receptor mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman, Ryan D.; Kathir, Karuppanan Muthusamy; Rajalingam, Dakshinamurthy

    Highlights: Black-Right-Pointing-Pointer The structural basis of the Kallmann syndrome is elucidated. Black-Right-Pointing-Pointer Kallmann syndrome mutation (A168S) induces a subtle conformational change(s). Black-Right-Pointing-Pointer Structural interactions mediated by beta-sheet G are most perturbed. Black-Right-Pointing-Pointer Ligand (FGF)-receptor interaction(s) is completely abolished by Kallmann mutation. Black-Right-Pointing-Pointer Kallmann mutation directly affects the FGF signaling process. -- Abstract: Kallmann syndrome (KS) is a developmental disease that expresses in patients as hypogonadotropic hypogonadism and anosmia. KS is commonly associated with mutations in the extracellular D2 domain of the fibroblast growth factor receptor (FGFR). In this study, for the first time, the molecular basis for the FGFR associatedmore » KS mutation (A168S) is elucidated using a variety of biophysical experiments, including multidimensional NMR spectroscopy. Secondary and tertiary structural analysis using far UV circular dichroism, fluorescence and limited trypsin digestion assays suggest that the KS mutation induces subtle tertiary structure change in the D2 domain of FGFR. Results of isothermal titration calorimetry experiments show the KS mutation causes a 10-fold decrease in heparin binding affinity and also a complete loss in ligand (FGF-1) binding. {sup 1}H-{sup 15}N chemical perturbation data suggest that complete loss in the ligand (FGF) binding affinity is triggered by a subtle conformational change that disrupts crucial structural interactions in both the heparin and the FGF binding sites in the D2 domain of FGFR. The novel findings reported in this study are expected to provide valuable clues toward a complete understanding of the other genetic diseases linked to mutations in the FGFR.« less

  13. In silico Analysis of Conformational Changes Induced by Mutation of Aromatic Binding Residues: Consequences for Drug Binding in the hERG K+ Channel

    PubMed Central

    Knape, Kirsten; Linder, Tobias; Wolschann, Peter; Beyer, Anton; Stary-Weinzinger, Anna

    2011-01-01

    Pharmacological inhibition of cardiac hERG K+ channels is associated with increased risk of lethal arrhythmias. Many drugs reduce hERG current by directly binding to the channel, thereby blocking ion conduction. Mutation of two aromatic residues (F656 and Y652) substantially decreases the potency of numerous structurally diverse compounds. Nevertheless, some drugs are only weakly affected by mutation Y652A. In this study we utilize molecular dynamics simulations and docking studies to analyze the different effects of mutation Y652A on a selected number of hERG blockers. MD simulations reveal conformational changes in the binding site induced by mutation Y652A. Loss of π-π-stacking between the two aromatic residues induces a conformational change of the F656 side chain from a cavity facing to cavity lining orientation. Docking studies and MD simulations qualitatively reproduce the diverse experimentally observed modulatory effects of mutation Y652A and provide a new structural interpretation for the sensitivity differences. PMID:22194911

  14. Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes

    PubMed Central

    Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia

    2013-01-01

    DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893

  15. Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas.

    PubMed

    Murua Escobar, Hugo; Günther, Kathrin; Richter, Andreas; Soller, Jan T; Winkler, Susanne; Nolte, Ingo; Bullerdiek, Jörn

    2004-01-01

    Point mutations within ras proto-oncogenes, particularly within the mutational hot-spot codons 12, 13 and 61, are frequently detected in human malignancies and in different types of experimentally-induced tumours in animals. So far little is known about ras mutations in naturally occurring canine fibrosarcomas or K-ras mutations in canine melanomas. To elucidate whether ras mutations exist in these naturally occurring tumours in dogs, in the present study we screened 13 canine fibrosarcomas, 2 feline fibrosarcomas and 11 canine melanomas for point mutations, particularly within the mutational hot-spots, making this the first study to investigate a large number of canine fibrosarcomas. None of the samples showed a K- or N-ras hot spot mutation. Thus, our data strongly suggest that ras mutations at the hot-spot loci are very rare and do not play a major role in the pathogenesis of the spontaneously occurring canine tumours investigated.

  16. Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions

    PubMed Central

    Zakirova, Zuchra; Fanutza, Tomas; Bonet, Justine; Readhead, Ben; Zhang, Weijia; Yi, Zhengzi; Beauvais, Genevieve; Zwaka, Thomas P.; Ozelius, Laurie J.; Blitzer, Robert D.; Gonzalez-Alegre, Pedro

    2018-01-01

    Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia. PMID:29364887

  17. Recursion-based depletion of human immunodeficiency virus-specific naive CD4(+) T cells may facilitate persistent viral replication and chronic viraemia leading to acquired immunodeficiency syndrome.

    PubMed

    Tsukamoto, Tetsuo; Yamamoto, Hiroyuki; Okada, Seiji; Matano, Tetsuro

    2016-09-01

    Although antiretroviral therapy has made human immunodeficiency virus (HIV) infection a controllable disease, it is still unclear how viral replication persists in untreated patients and causes CD4(+) T-cell depletion leading to acquired immunodeficiency syndrome (AIDS) in several years. Theorists tried to explain it with the diversity threshold theory in which accumulated mutations in the HIV genome make the virus so diverse that the immune system will no longer be able to recognize all the variants and fail to control the viraemia. Although the theory could apply to a number of cases, macaque AIDS models using simian immunodeficiency virus (SIV) have shown that failed viral control at the set point is not always associated with T-cell escape mutations. Moreover, even monkeys without a protective major histocompatibility complex (MHC) allele can contain replication of a super infected SIV following immunization with a live-attenuated SIV vaccine, while those animals are not capable of fighting primary SIV infection. Here we propose a recursion-based virus-specific naive CD4(+) T-cell depletion hypothesis through thinking on what may happen in individuals experiencing primary immunodeficiency virus infection. This could explain the mechanism for impairment of virus-specific immune response in the course of HIV infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. ASSOCIATIONS BETWEEN GENETIC DIVERSITY AND ANTHROPOGENIC DISTURBANCE IN MIDWESTERN STREAM-DWELLING MINNOWS

    EPA Science Inventory

    Anthropogenic disturbances may leave imprints on patterns of intraspecific genetic diversity through their effects on population size, adaptation, migration, and mutation. We examined patterns of genetic diversity for a stream-dwelling minnow (the central stoneroller, Campostoma...

  19. Experimental evolution reveals hidden diversity in evolutionary pathways

    PubMed Central

    Lind, Peter A; Farr, Andrew D; Rainey, Paul B

    2015-01-01

    Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans. DOI: http://dx.doi.org/10.7554/eLife.07074.001 PMID:25806684

  20. Mutational landscape of a chemically-induced mouse model of liver cancer.

    PubMed

    Connor, Frances; Rayner, Tim F; Aitken, Sarah J; Feig, Christine; Lukk, Margus; Santoyo-Lopez, Javier; Odom, Duncan T

    2018-06-26

    Carcinogen-induced mouse models of liver cancer are used extensively to study pathogenesis of the disease and have a critical role in validating candidate therapeutics. These models can recapitulate molecular and histological features of human disease. However, it is not known if the genomic alterations driving these mouse tumour genomes are comparable to those found in human tumours. Here, we provide a detailed genomic characterisation of tumours from a commonly used mouse model of hepatocellular carcinoma (HCC). We analysed whole exome sequences of liver tumours arising in mice exposed to diethylnitrosamine (DEN). DEN-initiated tumours had a high, uniform number of somatic single nucleotide variants (SNVs), with few insertions, deletions or copy number alterations, consistent with the known genotoxic action of DEN. Exposure of hepatocytes to DEN left a reproducible mutational imprint in resulting tumour exomes which we could computationally reconstruct using six known COSMIC mutational signatures. The tumours carried a high diversity of low-incidence, non-synonymous point mutations in many oncogenes and tumour suppressors, reflecting the stochastic introduction of SNVs into the hepatocyte genome by the carcinogen. We identified four recurrently mutated genes that were putative oncogenic drivers of HCC in this model. Every neoplasm carried activating hotspot mutations either in codon 61 of Hras, in codon 584 of Braf or in codon 254 of Egfr. Truncating mutations of Apc occurred in 21% of neoplasms, which were exclusively carcinomas supporting a role for deregulation of Wnt/β-catenin signalling in cancer progression. Our study provides detailed insight into the mutational landscape of tumours arising in a commonly-used carcinogen model of HCC, facilitating the future use of this model to understand the human disease. Mouse models are widely used to study the biology of cancer and to test potential therapies. Here, we have described the mutational landscape of tumours arising in a carcinogen-induced mouse model of liver cancer. Since cancer is a disease caused by genomic alterations, information about the patterns and types of mutations in the tumours in this mouse model should facilitate its use to study human liver cancer. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  1. Mutation Pattern of Paired Immunoglobulin Heavy and Light Variable Domains in Chronic Lymphocytic Leukemia B Cells

    PubMed Central

    Ghiotto, Fabio; Marcatili, Paolo; Tenca, Claudya; Calevo, Maria Grazia; Yan, Xiao-Jie; Albesiano, Emilia; Bagnara, Davide; Colombo, Monica; Cutrona, Giovanna; Chu, Charles C; Morabito, Fortunato; Bruno, Silvia; Ferrarini, Manlio; Tramontano, Anna; Fais, Franco; Chiorazzi, Nicholas

    2011-01-01

    B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV ) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hyper-mutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV–diversity-joining (IGHV-D-J ) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J ) rearrangements of 193 leukemic clones that displayed ≥2% mutations in at least one of the two immunoglobulin variable (IGV ) genes (IGHV and/or IGK/LV ). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation. PMID:21785810

  2. CFTR mutation distribution among U.S. Hispanic and African American individuals: evaluation in cystic fibrosis patient and carrier screening populations.

    PubMed

    Sugarman, Elaine A; Rohlfs, Elizabeth M; Silverman, Lawrence M; Allitto, Bernice A

    2004-01-01

    We reviewed CFTR mutation distribution among Hispanic and African American individuals referred for CF carrier screening and compared mutation frequencies to those derived from CF patient samples. Results from CFTR mutation analyses received from January 2001 through September 2003, were analyzed for four populations: Hispanic individuals with a CF diagnosis (n = 159) or carrier screening indication (n = 15,333) and African American individuals with a CF diagnosis (n = 108) or carrier screening indication (n = 8,973). All samples were tested for the same 87 mutation panel. In the Hispanic population, 42 mutations were identified: 30 in the patient population (77.5% detection rate) and 33 among carrier screening referrals. Five mutations not included in the ACMG/ACOG carrier screening panel (3876delA, W1089X, R1066C, S549N, 1949del84) accounted for 7.55% detection in patients and 5.58% among carriers. Among African American referrals, 33 different mutations were identified: 21 in the patient population (74.4% detection) and 23 in the carrier screening population. Together, A559T and 711+5G>A were observed at a detection rate of 3.71% in CF patients and 6.38% in carriers. The mutation distribution seen in both the carrier screening populations reflected an increased frequency of mutations with variable expression such as D1152H, R117H, and L206W. A detailed analysis of CFTR mutation distribution in the Hispanic and African American patient and carrier screening populations demonstrates that a diverse group of mutations is most appropriate for diagnostic and carrier screening in these populations. To best serve the increasingly diverse U.S. population, ethnic-specific mutations should be included in mutation panels.

  3. Diverse growth hormone receptor gene mutations in Laron syndrome.

    PubMed Central

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  4. Isolated growth hormone deficiency in two siblings because of paternal mosaicism for a mutation in the GH1 gene.

    PubMed

    Tsubahara, Mayuko; Hayashi, Yoshitaka; Niijima, Shin-ichi; Yamamoto, Michiyo; Kamijo, Takashi; Murata, Yoshiharu; Haruna, Hidenori; Okumura, Akihisa; Shimizu, Toshiaki

    2012-03-01

      Mutations in the GH1 gene have been identified in patients with isolated growth hormone deficiency (IGHD). Mutations causing aberrant splicing of exon 3 of GH1 that have been identified in IGHD are inherited in an autosomal dominant manner, whereas other mutations in GH1 that have been identified in IGHD are inherited in an autosomal recessive manner.   Two siblings born from nonconsanguineous healthy parents exhibited IGHD. To elucidate the cause, GH1 in all family members was analysed.   Two novel mutations in GH1, a point mutation in intron 3 and a 16-bp deletion in exon 3, were identified by sequence analyses. The intronic mutation was present in both siblings and was predicted to cause aberrant splicing. The deletion was present in one of the siblings as well as the mother with normal stature and was predicted to cause rapid degradation of mRNA through nonsense-mediated mRNA decay. The point mutation was not identified in the parents' peripheral blood DNA; however, it was detected in the DNA extracted from the father's sperms. As a trace of the mutant allele was detected in the peripheral blood of the father using PCR-RFLP, the mutation is likely to have occurred de novo at an early developmental stage before differentiation of somatic cells and germline cells.   This is the first report of mosaicism for a mutation in GH1 in a family with IGHD. It is clear that the intronic mutation plays a dominant role in the pathogenesis of IGHD in this family, as one of the siblings who had only the point mutation was affected. On the other hand, the other sibling was a compound heterozygote for the point mutation and the 16-bp deletion and it may be arguable whether IGHD in this patient should be regarded as autosomal dominant or recessive. © 2012 Blackwell Publishing Ltd.

  5. Neuroligin Trafficking Deficiencies Arising from Mutations in the α/β-Hydrolase Fold Protein Family*

    PubMed Central

    De Jaco, Antonella; Lin, Michael Z.; Dubi, Noga; Comoletti, Davide; Miller, Meghan T.; Camp, Shelley; Ellisman, Mark; Butko, Margaret T.; Tsien, Roger Y.; Taylor, Palmer

    2010-01-01

    Despite great functional diversity, characterization of the α/β-hydrolase fold proteins that encompass a superfamily of hydrolases, heterophilic adhesion proteins, and chaperone domains reveals a common structural motif. By incorporating the R451C mutation found in neuroligin (NLGN) and associated with autism and the thyroglobulin G2320R (G221R in NLGN) mutation responsible for congenital hypothyroidism into NLGN3, we show that mutations in the α/β-hydrolase fold domain influence folding and biosynthetic processing of neuroligin3 as determined by in vitro susceptibility to proteases, glycosylation processing, turnover, and processing rates. We also show altered interactions of the mutant proteins with chaperones in the endoplasmic reticulum and arrest of transport along the secretory pathway with diversion to the proteasome. Time-controlled expression of a fluorescently tagged neuroligin in hippocampal neurons shows that these mutations compromise neuronal trafficking of the protein, with the R451C mutation reducing and the G221R mutation virtually abolishing the export of NLGN3 from the soma to the dendritic spines. Although the R451C mutation causes a local folding defect, the G221R mutation appears responsible for more global misfolding of the protein, reflecting their sequence positions in the structure of the protein. Our results suggest that disease-related mutations in the α/β-hydrolase fold domain share common trafficking deficiencies yet lead to discrete congenital disorders of differing severity in the endocrine and nervous systems. PMID:20615874

  6. Neuroligin trafficking deficiencies arising from mutations in the alpha/beta-hydrolase fold protein family.

    PubMed

    De Jaco, Antonella; Lin, Michael Z; Dubi, Noga; Comoletti, Davide; Miller, Meghan T; Camp, Shelley; Ellisman, Mark; Butko, Margaret T; Tsien, Roger Y; Taylor, Palmer

    2010-09-10

    Despite great functional diversity, characterization of the alpha/beta-hydrolase fold proteins that encompass a superfamily of hydrolases, heterophilic adhesion proteins, and chaperone domains reveals a common structural motif. By incorporating the R451C mutation found in neuroligin (NLGN) and associated with autism and the thyroglobulin G2320R (G221R in NLGN) mutation responsible for congenital hypothyroidism into NLGN3, we show that mutations in the alpha/beta-hydrolase fold domain influence folding and biosynthetic processing of neuroligin3 as determined by in vitro susceptibility to proteases, glycosylation processing, turnover, and processing rates. We also show altered interactions of the mutant proteins with chaperones in the endoplasmic reticulum and arrest of transport along the secretory pathway with diversion to the proteasome. Time-controlled expression of a fluorescently tagged neuroligin in hippocampal neurons shows that these mutations compromise neuronal trafficking of the protein, with the R451C mutation reducing and the G221R mutation virtually abolishing the export of NLGN3 from the soma to the dendritic spines. Although the R451C mutation causes a local folding defect, the G221R mutation appears responsible for more global misfolding of the protein, reflecting their sequence positions in the structure of the protein. Our results suggest that disease-related mutations in the alpha/beta-hydrolase fold domain share common trafficking deficiencies yet lead to discrete congenital disorders of differing severity in the endocrine and nervous systems.

  7. SHOX mutations in idiopathic short stature and Leri-Weill dyschondrosteosis: frequency and phenotypic variability.

    PubMed

    Jorge, Alexander A L; Souza, Silvia C; Nishi, Miriam Y; Billerbeck, Ana E; Libório, Débora C C; Kim, Chong A; Arnhold, Ivo J P; Mendonca, Berenice B

    2007-01-01

    The frequency of SHOX mutations in children with idiopathic short stature (ISS) has been found to be variable. We analysed the SHOX gene in children with ISS and Leri-Weill dyschondrosteosis (LWD) and evaluated the phenotypic variability in patients harbouring SHOX mutations. Sixty-three ISS, nine LWD children and 21 affected relatives. SHOX gene deletion was evaluated by fluorescence in situ hybridization (FISH), Southern blotting and segregation study of polymorphic marker. Point mutations were assessed by direct DNA sequencing. None of the ISS patients presented SHOX deletions, but two (3.2%) presented heterozygous point mutations, including the novel R147H mutation. However, when ISS patients were selected by sitting height : height ratio (SH/H) for age > 2 SD, mutation frequency detection increased to 22%. Eight (89%) LWD patients had SHOX deletions, but none had point mutations. Analysis of the other relatives in the families carrying SHOX mutations identified 14 children and 17 adult patients. A broad phenotypic variability was observed in all families regarding short stature severity and Madelung deformities. However, the presence of disproportional height, assessed by SH/H, was observed in all children and 82% of adult patients, being the most common feature in our patients with SHOX mutations. Patients with SHOX mutations present a broad phenotypic variability. SHOX mutations are very frequent in LWD (89%), in opposition to ISS (3.2%) in our cohort. The use of SH/H SDS as a selection criterion increases the frequency of SHOX mutation detection to 22% and should be used for selecting ISS children to undergo SHOX mutation molecular studies.

  8. Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients.

    PubMed

    Stegen, James C; Ferriere, Regis; Enquist, Brian J

    2012-03-22

    In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed. Here, we establish such theory and model eco-evolutionary dynamics of trophic networks along a broad temperature gradient. In the model temperature can influence, via metabolism, resource supply, consumers' vital rates and mutation rate. Mutation causes heritable variation in consumer body size, which diversifies and governs consumer function in the ecological network. The model predicts diversity to increase with temperature if resource supply is temperature-dependent, whereas temperature-dependent consumer vital rates cause diversity to decrease with increasing temperature. When combining both thermal dependencies, a unimodal temperature-diversity pattern evolves, which is reinforced by temperature-dependent mutation rate. Studying coexistence criteria for two consumers showed that these outcomes are owing to temperature effects on mutual invasibility and facilitation. Our theory shows how and why metabolism can influence diversity, generates predictions useful for understanding biodiversity gradients and represents an extendable framework that could include factors such as colonization history and niche conservatism.

  9. New insights into the molecular epidemiology and population genetics of Schistosoma mansoni in Ugandan pre-school children and mothers.

    PubMed

    Betson, Martha; Sousa-Figueiredo, Jose C; Kabatereine, Narcis B; Stothard, J Russell

    2013-01-01

    Significant numbers of pre-school children are infected with Schistosoma mansoni in sub-Saharan Africa and are likely to play a role in parasite transmission. However, they are currently excluded from control programmes. Molecular phylogenetic studies have provided insights into the evolutionary origins and transmission dynamics of S. mansoni, but there has been no research into schistosome molecular epidemiology in pre-school children. Here, we investigated the genetic diversity and population structure of S. mansoni in pre-school children and mothers living in lakeshore communities in Uganda and monitored for changes over time after praziquantel treatment. Parasites were sampled from children (<6 years) and mothers enrolled in the longitudinal Schistosomiasis Mothers and Infants Study at baseline and at 6-, 12- and 18-month follow-up surveys. 1347 parasites from 35 mothers and 45 children were genotyped by direct sequencing of the cytochrome c oxidase (cox1) gene. The cox1 region was highly diverse with over 230 unique sequences identified. Parasite populations were genetically differentiated between lakes and non-synonymous mutations were more diverse at Lake Victoria than Lake Albert. Surprisingly, parasite populations sampled from children showed a similar genetic diversity to those sampled from mothers, pointing towards a non-linear relationship between duration of exposure and accumulation of parasite diversity. The genetic diversity six months after praziquantel treatment was similar to pre-treatment diversity. Our results confirm the substantial genetic diversity of S. mansoni in East Africa and provide significant insights into transmission dynamics within young children and mothers, important information for schistosomiasis control programmes.

  10. Understanding the complex evolution of rapidly mutating viruses with deep sequencing: Beyond the analysis of viral diversity.

    PubMed

    Leung, Preston; Eltahla, Auda A; Lloyd, Andrew R; Bull, Rowena A; Luciani, Fabio

    2017-07-15

    With the advent of affordable deep sequencing technologies, detection of low frequency variants within genetically diverse viral populations can now be achieved with unprecedented depth and efficiency. The high-resolution data provided by next generation sequencing technologies is currently recognised as the gold standard in estimation of viral diversity. In the analysis of rapidly mutating viruses, longitudinal deep sequencing datasets from viral genomes during individual infection episodes, as well as at the epidemiological level during outbreaks, now allow for more sophisticated analyses such as statistical estimates of the impact of complex mutation patterns on the evolution of the viral populations both within and between hosts. These analyses are revealing more accurate descriptions of the evolutionary dynamics that underpin the rapid adaptation of these viruses to the host response, and to drug therapies. This review assesses recent developments in methods and provide informative research examples using deep sequencing data generated from rapidly mutating viruses infecting humans, particularly hepatitis C virus (HCV), human immunodeficiency virus (HIV), Ebola virus and influenza virus, to understand the evolution of viral genomes and to explore the relationship between viral mutations and the host adaptive immune response. Finally, we discuss limitations in current technologies, and future directions that take advantage of publically available large deep sequencing datasets. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Programming adaptive control to evolve increased metabolite production.

    PubMed

    Chou, Howard H; Keasling, Jay D

    2013-01-01

    The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production.

  12. Coexistence and Within-Host Evolution of Diversified Lineages of Hypermutable Pseudomonas aeruginosa in Long-term Cystic Fibrosis Infections

    PubMed Central

    Feliziani, Sofía; Moyano, Alejandro J.; Di Rienzo, Julio A.; Krogh Johansen, Helle; Molin, Søren; Smania, Andrea M.

    2014-01-01

    The advent of high-throughput sequencing techniques has made it possible to follow the genomic evolution of pathogenic bacteria by comparing longitudinally collected bacteria sampled from human hosts. Such studies in the context of chronic airway infections by Pseudomonas aeruginosa in cystic fibrosis (CF) patients have indicated high bacterial population diversity. Such diversity may be driven by hypermutability resulting from DNA mismatch repair system (MRS) deficiency, a common trait evolved by P. aeruginosa strains in CF infections. No studies to date have utilized whole-genome sequencing to investigate within-host population diversity or long-term evolution of mutators in CF airways. We sequenced the genomes of 13 and 14 isolates of P. aeruginosa mutator populations from an Argentinian and a Danish CF patient, respectively. Our collection of isolates spanned 6 and 20 years of patient infection history, respectively. We sequenced 11 isolates from a single sample from each patient to allow in-depth analysis of population diversity. Each patient was infected by clonal populations of bacteria that were dominated by mutators. The in vivo mutation rate of the populations was ∼100 SNPs/year–∼40-fold higher than rates in normo-mutable populations. Comparison of the genomes of 11 isolates from the same sample showed extensive within-patient genomic diversification; the populations were composed of different sub-lineages that had coexisted for many years since the initial colonization of the patient. Analysis of the mutations identified genes that underwent convergent evolution across lineages and sub-lineages, suggesting that the genes were targeted by mutation to optimize pathogenic fitness. Parallel evolution was observed in reduction of overall catabolic capacity of the populations. These findings are useful for understanding the evolution of pathogen populations and identifying new targets for control of chronic infections. PMID:25330091

  13. Adaptability of non-genetic diversity in bacterial chemotaxis

    PubMed Central

    Frankel, Nicholas W; Pontius, William; Dufour, Yann S; Long, Junjiajia; Hernandez-Nunez, Luis; Emonet, Thierry

    2014-01-01

    Bacterial chemotaxis systems are as diverse as the environments that bacteria inhabit, but how much environmental variation can cells tolerate with a single system? Diversification of a single chemotaxis system could serve as an alternative, or even evolutionary stepping-stone, to switching between multiple systems. We hypothesized that mutations in gene regulation could lead to heritable control of chemotactic diversity. By simulating foraging and colonization of E. coli using a single-cell chemotaxis model, we found that different environments selected for different behaviors. The resulting trade-offs show that populations facing diverse environments would ideally diversify behaviors when time for navigation is limited. We show that advantageous diversity can arise from changes in the distribution of protein levels among individuals, which could occur through mutations in gene regulation. We propose experiments to test our prediction that chemotactic diversity in a clonal population could be a selectable trait that enables adaptation to environmental variability. DOI: http://dx.doi.org/10.7554/eLife.03526.001 PMID:25279698

  14. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Qing-lin; Xu, Jia; Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related genemore » with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.« less

  15. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We report the characterization of a four-generation large Chinese family with ADOA. Black-Right-Pointing-Pointer We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. Black-Right-Pointing-Pointer We do not find any mitochondrial DNA mutations associated with optic atrophy. Black-Right-Pointing-Pointer Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressivemore » visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.« less

  16. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma.

    PubMed

    Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S

    2016-10-01

    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies.

  17. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma

    PubMed Central

    Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S

    2016-01-01

    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies. PMID:27338637

  18. BRCA1 and BRCA2 mutations in women of different ethnicities undergoing testing for hereditary breast-ovarian cancer.

    PubMed

    Hall, Michael J; Reid, Julia E; Burbidge, Lynn A; Pruss, Dmitry; Deffenbaugh, Amie M; Frye, Cynthia; Wenstrup, Richard J; Ward, Brian E; Scholl, Thomas A; Noll, Walter W

    2009-05-15

    In women at increased risk for breast and ovarian cancer, the identification of a mutation in breast cancer gene 1 (BRCA1) and BRCA2 has important implications for screening and prevention counseling. Uncertainty regarding the role of BRCA1 and BRCA2 testing in high-risk women from diverse ancestral backgrounds exists because of variability in prevalence estimates of deleterious (disease-associated) mutations in non-white populations. In this study, the authors examined the prevalence of BRCA1 and BRCA2 mutations in an ethnically diverse group of women who were referred for genetic testing. In this cross-sectional analysis, the prevalence of BRCA1 and BRCA2 mutations was assessed in a group of non-Ashkenazi Jewish women who underwent genetic testing. From 1996 to 2006, 46,276 women who met study criteria underwent DNA full-sequence analysis of the BRCA1 and BRCA2 genes. Deleterious mutations were identified in 12.5% of women, and recurrent deleterious mutations (prevalence >2%) were identified in all ancestral groups. Women of non-European descent were younger (mean age, 45.9 years; standard deviation [SD], 11.6 years) than European women (mean age, 50 years; SD, 11.9 years; P < .001). Women of African (15.6%; odds ratio [OR], 1.3 [95% confidence interval (95% CI), 1.1-1.5]) and Latin American (14.8%; OR, 1.2 [95% CI, 1.1-1.4]) ancestries had a significantly higher prevalence of deleterious BRCA1 and BRCA2 mutations compared with women of Western European ancestry (12.1%), primarily because of an increased prevalence of BRCA1 mutations in those 2 groups. Non-European ethnicity was associated strongly with having a variant of uncertain significance; however, reclassification decreased variant reporting (from 12.8%-->5.9%), and women of African ancestry experienced the largest decline (58%). Mutation prevalence was found to be high among women who were referred for clinical BRCA1 and BRCA2 testing, and the risk was similar across diverse ethnicities. BRCA1 and BRCA2 testing is integral to cancer risk assessment in all high-risk women.

  19. Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses.

    PubMed

    Cieslarová, Jaroslava; Hanáček, Pavel; Fialová, Eva; Hýbl, Miroslav; Smýkal, Petr

    2011-11-01

    Microsatellites, or simple sequence repeats (SSRs) are widespread class of repetitive DNA sequences, used in population genetics, genetic diversity and mapping studies. In spite of the SSR utility, the genetic and evolutionary mechanisms are not fully understood. We have investigated three microsatellite loci with different position in the pea (Pisum sativum L.) genome, the A9 locus residing in LTR region of abundant retrotransposon, AD270 as intergenic and AF016458 located in 5'untranslated region of expressed gene. Comparative analysis of a 35 pair samples from seven pea varieties propagated by single-seed descent for ten generations, revealed single 4 bp mutation in 10th generation sample at AD270 locus corresponding to stepwise increase in one additional ATCT repeat unit. The estimated mutation rate was 4.76 × 10(-3) per locus per generation, with a 95% confidence interval of 1.2 × 10(-4) to 2.7 × 10(-2). The comparison of cv. Bohatýr accessions retrieved from different collections, showed intra-, inter-accession variation and differences in flanking and repeat sequences. Fragment size and sequence alternations were also found in long term in vitro organogenic culture, established at 1983, indicative of somatic mutation process. The evidence of homoplasy was detected across of unrelated pea genotypes, which adversaly affects the reliability of diversity estimates not only for diverse germplasm but also highly bred material. The findings of this study have important implications for Pisum phylogeny studies, variety identification and registration process in pea breeding where mutation rate influences the genetic diversity and the effective population size estimates.

  20. Pyrosequencing for Microbial Identification and Characterization

    PubMed Central

    Cummings, Patrick J.; Ahmed, Ray; Durocher, Jeffrey A.; Jessen, Adam; Vardi, Tamar; Obom, Kristina M.

    2013-01-01

    Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns. PMID:23995536

  1. Pyrosequencing for microbial identification and characterization.

    PubMed

    Cummings, Patrick J; Ahmed, Ray; Durocher, Jeffrey A; Jessen, Adam; Vardi, Tamar; Obom, Kristina M

    2013-08-22

    Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns.

  2. Geographic Structuring of the Plasmodium falciparum Sarco(endo)plasmic Reticulum Ca2+ ATPase (PfSERCA) Gene Diversity

    PubMed Central

    Pinto, João; Gribaldo, Simonetta; Legrand, Eric; Niang, Makhtar; Kim, Nimol; Pharath, Lim; Volnay, Béatrice; Ekala, Marie Therese; Bouchier, Christiane; Fandeur, Thierry; Berzosa, Pedro; Benito, Agustin; Ferreira, Isabel Dinis; Ferreira, Cynthia; Vieira, Pedro Paulo; Alecrim, Maria das Graças; Mercereau-Puijalon, Odile; Cravo, Pedro

    2010-01-01

    Artemisinin, a thapsigargin-like sesquiterpene has been shown to inhibit the Plasmodium falciparum sarco/endoplasmic reticulum calcium-ATPase PfSERCA. To collect baseline pfserca sequence information before field deployment of Artemisinin-based Combination therapies that may select mutant parasites, we conducted a sequence analysis of 100 isolates from multiple sites in Africa, Asia and South America. Coding sequence diversity was large, with 29 mutated codons, including 32 SNPs (average of one SNP/115 bp), of which 19 were novel mutations. Most SNP detected in this study were clustered within a region in the cytosolic head of the protein. The PfSERCA functional domains were very well conserved, with non synonymous mutations located outside the functional domains, except for the S769N mutation associated in French Guiana with elevated IC50 for artemether. The S769N mutation is located close to the hinge of the headpiece, which in other species modulates calcium affinity and in consequence efficacy of inhibitors, possibly linking calcium homeostasis to drug resistance. Genetic diversity was highest in Senegal, Brazil and French Guiana, and few mutations were identified in Asia. Population genetic analysis was conducted for a partial fragment of the gene encompassing nucleotide coordinates 87-2862 (unambiguous sequence available for 96 isolates). This supported a geographic clustering, with a separation between Old and New World samples and one dominant ancestral haplotype. Genetic drift alone cannot explain the observed polymorphism, suggesting that other evolutionary mechanisms are operating. One possible contributor could be the frequency of haemoglobinopathies that are associated with calcium dysregulation in the erythrocyte. PMID:20195531

  3. Aggresome–Autophagy Involvement in a Sarcopenic Patient with Rigid Spine Syndrome and a p.C150R Mutation in FHL1 Gene

    PubMed Central

    Sabatelli, Patrizia; Castagnaro, Silvia; Tagliavini, Francesca; Chrisam, Martina; Sardone, Francesca; Demay, Laurence; Richard, Pascale; Santi, Spartaco; Maraldi, Nadir M.; Merlini, Luciano; Sandri, Marco; Bonaldo, Paolo

    2014-01-01

    The four-and-half LIM domain protein 1 (FHL1) is highly expressed in skeletal and cardiac muscle. Mutations of the FHL1 gene have been associated with diverse chronic myopathies including reducing body myopathy, rigid spine syndrome (RSS), and Emery–Dreifuss muscular dystrophy. We investigated a family with a mutation (p.C150R) in the second LIM domain of FHL1. In this family, a brother and a sister were affected by RSS, and their mother had mild lower limbs weakness. The 34-year-old female had an early and progressive rigidity of the cervical spine and severe respiratory insufficiency. Muscle mass evaluated by DXA was markedly reduced, while fat mass was increased to 40%. CT scan showed an almost complete substitution of muscle by fibro-adipose tissue. Muscle biopsy showed accumulation of FHL1 throughout the cytoplasm and around myonuclei into multiprotein aggregates with aggresome/autophagy features as indicated by ubiquitin, p62, and LC3 labeling. DNA deposits, not associated with nuclear lamina components and histones, were also detected in the aggregates, suggesting nuclear degradation. Ultrastructural analysis showed the presence of dysmorphic nuclei, accumulation of tubulofilamentous and granular material, and perinuclear accumulation of autophagic vacuoles. These data point to involvement of the aggresome–autophagy pathway in the pathophysiological mechanism underlying the muscle pathology of FHL1 C150R mutation. PMID:25191266

  4. Mcl-1–Bim complexes accommodate surprising point mutations via minor structural changes

    PubMed Central

    Fire, Emiko; Gullá, Stefano V; Grant, Robert A; Keating, Amy E

    2010-01-01

    Mcl-1 is an antiapoptotic Bcl-2-family protein that protects cells against death. Structures of Mcl-1, and of other anti-apoptotic Bcl-2 proteins, reveal a surface groove into which the α-helical BH3 regions of certain proapoptotic proteins can bind. Despite high overall structural conservation, differences in this groove afford binding specificity that is important for the mechanism of Bcl-2 family function. We report the crystal structure of human Mcl-1 bound to a BH3 peptide derived from human Bim and the structures for three complexes that accommodate large physicochemical changes at conserved Bim sites. The mutations had surprisingly modest effects on complex stability, and the structures show that Mcl-1 can undergo small changes to accommodate the mutant ligands. For example, a shift in a leucine side chain fills a hole left by an isoleucine-to-alanine mutation at the first hydrophobic buried position of Bim BH3. Larger changes are also observed, with shifting of helix α3 accommodating an isoleucine-to-tyrosine mutation at this same position. We surveyed the variation in available Mcl-1 and Bcl-xL structures and observed moderate flexibility that is likely critical for facilitating interactions of diverse BH3-only proteins with Mcl-1. With the antiapoptotic Bcl-2 family members attracting significant attention as therapeutic targets, these structures contribute to our growing understanding of how specificity is achieved and can help to guide the design of novel inhibitors that target Mcl-1. PMID:20066663

  5. Colorectal adenomatous polyposis syndromes: Genetic determinism, clinical presentation and recommendations for care.

    PubMed

    Buecher, Bruno

    2016-02-01

    Colorectal adenomatous polyposis constitutes a diverse group of disorders with different modes of inheritance. Molecular diagnosis of this condition has become more complex. In fact, somatic mosaicism for APC mutations now appears to be more frequent than previously thought and rare germline alterations of this gene may be implicated in patients tested negative for "classical" APC mutations (point mutations and large genomic rearrangements). Moreover, the knowledge concerning several aspects of the MUTYH-associated polyposis has improved since its first description in 2002 and germline mutations in new genes have recently been implicated in some cases of unexplained adenomatous polyposis. Genetic testing in probands and their relatives should be conducted in the context of pre- and post-test genetic counseling. The recent advent of New Generation Sequencing (NGS) techniques affords the opportunity to rapidly screen patients for a comprehensive panel of colorectal cancer susceptibility genes in a cost-effective fashion. This type of approach will probably replace the classical sequential approach based on clinical presumptive diagnoses in the near future. The risk of colorectal cancer is very high in affected patients in the absence of appropriate care. Clinical management is complex and should be provided in centers with special expertise in these diseases. This review focuses on the various colorectal adenomatous polyposis syndromes with special attention to more innovative and important aspects. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  6. Multiplex KRASG12/G13 mutation testing of unamplified cell-free DNA from the plasma of patients with advanced cancers using droplet digital polymerase chain reaction.

    PubMed

    Janku, F; Huang, H J; Fujii, T; Shelton, D N; Madwani, K; Fu, S; Tsimberidou, A M; Piha-Paul, S A; Wheler, J J; Zinner, R G; Naing, A; Hong, D S; Karp, D D; Cabrilo, G; Kopetz, E S; Subbiah, V; Luthra, R; Kee, B K; Eng, C; Morris, V K; Karlin-Neumann, G A; Meric-Bernstam, F

    2017-03-01

    Cell-free DNA (cfDNA) from plasma offers easily obtainable material for KRAS mutation analysis. Novel, multiplex, and accurate diagnostic systems using small amounts of DNA are needed to further the use of plasma cfDNA testing in personalized therapy. Samples of 16 ng of unamplified plasma cfDNA from 121 patients with diverse progressing advanced cancers were tested with a KRASG12/G13 multiplex assay to detect the seven most common mutations in the hotspot of exon 2 using droplet digital polymerase chain reaction (ddPCR). The results were retrospectively compared to mutation analysis of archival primary or metastatic tumor tissue obtained at different points of clinical care. Eighty-eight patients (73%) had KRASG12/G13 mutations in archival tumor specimens collected on average 18.5 months before plasma analysis, and 78 patients (64%) had KRASG12/G13 mutations in plasma cfDNA samples. The two methods had initial overall agreement in 103 (85%) patients (kappa, 0.66; ddPCR sensitivity, 84%; ddPCR specificity, 88%). Of the 18 discordant cases, 12 (67%) were resolved by increasing the amount of cfDNA, using mutation-specific probes, or re-testing the tumor tissue, yielding overall agreement in 115 patients (95%; kappa 0.87; ddPCR sensitivity, 96%; ddPCR specificity, 94%). The presence of ≥ 6.2% of KRASG12/G13 cfDNA in the wild-type background was associated with shorter survival (P = 0.001). Multiplex detection of KRASG12/G13 mutations in a small amount of unamplified plasma cfDNA using ddPCR has good sensitivity and specificity and good concordance with conventional clinical mutation testing of archival specimens. A higher percentage of mutant KRASG12/G13 in cfDNA corresponded with shorter survival. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Somatic diversification of chicken immunoglobulin light chains by point mutations.

    PubMed

    Parvari, R; Ziv, E; Lantner, F; Heller, D; Schechter, I

    1990-04-01

    The light-chain locus of chicken has 1 functional V lambda 1 gene, 1 J gene, and 25 pseudo-V lambda-genes (where V = variable and J = joining). A major problem is which somatic mechanisms expand this extremely limited germ-line information to generate many different antibodies. Weill's group [Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. (1987) Cell 48, 379-388] has shown that the pseudo-V lambda-genes diversify the rearranged V lambda 1 by gene conversion. Here we demonstrate that chicken light chains are further diversified by somatic point mutations and by V lambda 1-J flexible joining. Somatic point mutations were identified in the J and 3' noncoding DNA of rearranged light-chain genes of chicken. These regions were analyzed because point mutations in V lambda 1 are obscured by gene conversion; the J and 3' noncoding DNA are presented in one copy per haploid genome and are not subject to gene conversion. In rodents point mutations occur as frequently in the V-J coding regions as in the adjacent flanking DNA. Therefore, we conclude that somatic point mutations diversify the V lambda 1 of chicken. The frequency (0-1%) and distribution of the mutations (decreasing in number with increased distance from the V lambda 1 segment) in chicken were as observed in rodents. Sequence variability at the V lambda 1-J junctions could be attributed to imprecise joining of the V lambda 1 and J genes. The modification by gene conversion of rearranged V lambda 1 genes in the bursa was similar in chicken aged 3 months (9.5%) or 3 weeks (9.1%)--i.e., gene conversion that generates the preimmune repertoire in the bursa seems to level off around 3 weeks of age. This preimmune repertoire can be further diversified by somatic point mutations that presumably lead to the formation of antibodies with increased affinity. A segment with structural features of a matrix association region [(A + T)-rich and four topoisomerase II binding sites] was identified in the middle of the J-C lambda intron (where C = constant).

  8. Within Host Evolution Selects for a Dominant Genotype of Mycobacterium tuberculosis while T Cells Increase Pathogen Genetic Diversity.

    PubMed

    Copin, Richard; Wang, Xueying; Louie, Eddie; Escuyer, Vincent; Coscolla, Mireia; Gagneux, Sebastien; Palmer, Guy H; Ernst, Joel D

    2016-12-01

    Molecular epidemiological assessments, drug treatment optimization, and development of immunological interventions all depend on understanding pathogen adaptation and genetic variation, which differ for specific pathogens. Mycobacterium tuberculosis is an exceptionally successful human pathogen, yet beyond knowledge that this bacterium has low overall genomic variation but acquires drug resistance mutations, little is known of the factors that drive its population genomic characteristics. Here, we compared the genetic diversity of the bacteria that established infection to the bacterial populations obtained from infected tissues during murine M. tuberculosis pulmonary infection and human disseminated M. bovis BCG infection. We found that new mutations accumulate during in vitro culture, but that in vivo, purifying selection against new mutations dominates, indicating that M. tuberculosis follows a dominant lineage model of evolution. Comparing bacterial populations passaged in T cell-deficient and immunocompetent mice, we found that the presence of T cells is associated with an increase in the diversity of the M. tuberculosis genome. Together, our findings put M. tuberculosis genetic evolution in a new perspective and clarify the impact of T cells on sequence diversity of M. tuberculosis.

  9. Sensitive and reliable detection of Kit point mutation Asp 816 to Val in pathological material

    PubMed Central

    Kähler, Christian; Didlaukat, Sabine; Feller, Alfred C; Merz, Hartmut

    2007-01-01

    Background Human mastocytosis is a heterogenous disorder which is linked to a gain-of-function mutation in the kinase domain of the receptor tyrosine kinase Kit. This D816V mutation leads to constitutive activation and phosphorylation of Kit with proliferative disorders of mast cells in the peripheral blood, skin, and spleen. Most PCR applications used so far are labour-intensive and are not adopted to daily routine in pathological laboratories. The method has to be robust and working on such different materials like archival formalin-fixed, paraffin-embedded tissue (FFPE) and blood samples. Such a method is introduced in this publication. Methods The Kit point mutation Asp 816 to Val is heterozygous which means a problem in detection by PCR because the wild-type allele is also amplified and the number of cells which bear the point mutation is in most of the cases low. Most PCR protocols use probes to block the wild-type allele during amplification with more or less satisfying result. This is why point-mutated forward primers were designed and tested for efficiency in amplification of the mutated allele. Results One primer combination (A) fits the most for the introduced PCR assay. It was able just to amplify the mutated allele with high specificity from different patient's materials (FFPE or blood) of varying quality and quantity. Moreover, the sensitivity for this assay was convincing because 10 ng of DNA which bears the point mutation could be detected in a total volume of 200 ng of DNA. Conclusion The PCR assay is able to deal with different materials (blood and FFPE) this means quality and quantity of DNA and can be used for high-througput screening because of its robustness. Moreover, the method is easy-to-use, not labour-intensive, and easy to realise in a standard laboratory. PMID:17900365

  10. Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome.

    PubMed

    Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette

    2009-06-01

    Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.

  11. Randomness and diversity matter in the maintenance of the public resources

    NASA Astrophysics Data System (ADS)

    Liu, Aizhi; Zhang, Yanling; Chen, Xiaojie; Sun, Changyin

    2017-03-01

    Most previous models about the public goods game usually assume two possible strategies, i.e., investing all or nothing. The real-life situation is rarely all or nothing. In this paper, we consider that multiple strategies are adopted in a well-mixed population, and each strategy represents an investment to produce the public goods. Past efforts have found that randomness matters in the evolution of fairness in the ultimatum game. In the framework involving no other mechanisms, we study how diversity and randomness influence the average investment of the population defined by the mean value of all individuals' strategies. The level of diversity is increased by increasing the strategy number, and the level of randomness is increased by increasing the mutation probability, or decreasing the population size or the selection intensity. We find that a higher level of diversity and a higher level of randomness lead to larger average investment and favor more the evolution of cooperation. Under weak selection, the average investment changes very little with the strategy number, the population size, and the mutation probability. Under strong selection, the average investment changes very little with the strategy number and the population size, but changes a lot with the mutation probability. Under intermediate selection, the average investment increases significantly with the strategy number and the mutation probability, and decreases significantly with the population size. These findings are meaningful to study how to maintain the public resource.

  12. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics.

    PubMed

    Hirsch, Rhoda Elison; Sibmooh, Nathawut; Fucharoen, Suthat; Friedman, Joel M

    2017-05-10

    Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The β E -globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.

  13. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics

    PubMed Central

    Sibmooh, Nathawut; Fucharoen, Suthat

    2017-01-01

    Abstract Significance: Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. Critical Issues: While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. Future Directions: Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794–813. PMID:27650096

  14. Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases.

    PubMed

    He, Xin; Chen, Zhigang; Jiang, Yangyan; Qiu, Xi; Zhao, Xiaoying

    2013-01-25

    The human c-mpl gene (MPL) plays an important role in the development of megakaryocytes and platelets as well as the self-renewal of haematopoietic stem cells. However, numerous MPL mutations have been identified in haematopoietic diseases. These mutations alter the normal regulatory mechanisms and lead to autonomous activation or signalling deficiencies. In this review, we summarise 59 different MPL mutations and classify these mutations into four different groups according to the associated diseases and mutation rates. Using this classification, we clearly distinguish four diverse types of MPL mutations and obtain a deep understand of their clinical significance. This will prove to be useful for both disease diagnosis and the design of individual therapy regimens based on the type of MPL mutations.

  15. Midostaurin and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia and FLT3 Mutation

    ClinicalTrials.gov

    2017-11-29

    Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Gene Mutations; FLT3 Tyrosine Kinase Domain Point Mutation; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Sequence variants of the DFNB31 gene among Usher syndrome patients of diverse origin

    PubMed Central

    Aller, Elena; Jaijo, Teresa; van Wijk, Erwin; Ebermann, Inga; Kersten, Ferry; García-García, Gema; Voesenek, Krysta; Aparisi, María José; Hoefsloot, Lies; Cremers, Cor; Díaz-Llopis, Manuel; Pennings, Ronald; Bolz, Hanno J.; Kremer, Hannie; Millán, José M.

    2010-01-01

    Purpose It has been demonstrated that mutations in deafness, autosomal recessive 31 (DFNB31), the gene encoding whirlin, is responsible for nonsyndromic hearing loss (NSHL; DFNB31) and Usher syndrome type II (USH2D). We screened DFNB31 in a large cohort of patients with different clinical subtypes of Usher syndrome (USH) to determine the prevalence of DFNB31 mutations among USH patients. Methods DFNB31 was screened in 149 USH2, 29 USH1, six atypical USH, and 11 unclassified USH patients from diverse ethnic backgrounds. Mutation detection was performed by direct sequencing of all coding exons. Results We identified 38 different variants among 195 patients. Most variants were clearly polymorphic, but at least two out of the 15 nonsynonymous variants (p.R350W and p.R882S) are predicted to impair whirlin structure and function, suggesting eventual pathogenicity. No putatively pathogenic mutation was found in the second allele of patients with these mutations. Conclusions DFNB31 is not a major cause of USH. PMID:20352026

  17. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution.

    PubMed

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A; Catenacci, Daniel V T; Hudson, Richard R; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-11-24

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 "polymorphic" SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors.

  18. Evolution of Ecological Diversity in Biofilms of Pseudomonas aeruginosa by Altered Cyclic Diguanylate Signaling

    PubMed Central

    Flynn, Kenneth M.; Dowell, Gabrielle; Johnson, Thomas M.; Koestler, Benjamin J.; Waters, Christopher M.

    2016-01-01

    ABSTRACT The ecological and evolutionary forces that promote and maintain diversity in biofilms are not well understood. To quantify these forces, three Pseudomonas aeruginosa populations were experimentally evolved from strain PA14 in a daily cycle of attachment, assembly, and dispersal for 600 generations. Each biofilm population evolved diverse colony morphologies and mutator genotypes defective in DNA mismatch repair. This diversity enhanced population fitness and biofilm output, owing partly to rare, early colonizing mutants that enhanced attachment of others. Evolved mutants exhibited various levels of the intracellular signal cyclic-di-GMP, which associated with their timing of adherence. Manipulating cyclic-di-GMP levels within individual mutants revealed a network of interactions in the population that depended on various attachment strategies related to this signal. Diversification in biofilms may therefore arise and be reinforced by initial colonists that enable community assembly. IMPORTANCE How biofilm diversity assembles, evolves, and contributes to community function is largely unknown. This presents a major challenge for understanding evolution during chronic infections and during the growth of all surface-associated microbes. We used experimental evolution to probe these dynamics and found that diversity, partly related to altered cyclic-di-GMP levels, arose and persisted due to the emergence of ecological interdependencies related to attachment patterns. Clonal isolates failed to capture population attributes, which points to the need to account for diversity in infections. More broadly, this study offers an experimental framework for linking phenotypic variation to distinct ecological strategies in biofilms and for studying eco-evolutionary interactions. PMID:27021563

  19. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution

    PubMed Central

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A.; Catenacci, Daniel V. T.; Hudson, Richard R.; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-01-01

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 “polymorphic” SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors. PMID:26561581

  20. Integrative Analysis of Brain Region-specific Shank3 Interactomes for Understanding the Heterogeneity of Neuronal Pathophysiology Related to SHANK3 Mutations

    PubMed Central

    Lee, Yeunkum; Kang, Hyojin; Lee, Bokyoung; Zhang, Yinhua; Kim, Yoonhee; Kim, Shinhyun; Kim, Won-Ki; Han, Kihoon

    2017-01-01

    Recent molecular genetic studies have identified 100s of risk genes for various neurodevelopmental and neuropsychiatric disorders. As the number of risk genes increases, it is becoming clear that different mutations of a single gene could cause different types of disorders. One of the best examples of such a gene is SHANK3, which encodes a core scaffold protein of the neuronal excitatory post-synapse. Deletions, duplications, and point mutations of SHANK3 are associated with autism spectrum disorders, intellectual disability, schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Nevertheless, how the different mutations of SHANK3 can lead to such phenotypic diversity remains largely unknown. In this study, we investigated whether Shank3 could form protein complexes in a brain region-specific manner, which might contribute to the heterogeneity of neuronal pathophysiology caused by SHANK3 mutations. To test this, we generated a medial prefrontal cortex (mPFC) Shank3 in vivo interactome consisting of 211 proteins, and compared this protein list with a Shank3 interactome previously generated from mixed hippocampal and striatal (HP+STR) tissues. Unexpectedly, we found that only 47 proteins (about 20%) were common between the two interactomes, while 164 and 208 proteins were specifically identified in the mPFC and HP+STR interactomes, respectively. Each of the mPFC- and HP+STR-specific Shank3 interactomes represents a highly interconnected network. Upon comparing the brain region-enriched proteomes, we found that the large difference between the mPFC and HP+STR Shank3 interactomes could not be explained by differential protein expression profiles among the brain regions. Importantly, bioinformatic pathway analysis revealed that the representative biological functions of the mPFC- and HP+STR-specific Shank3 interactomes were different, suggesting that these interactors could mediate the brain region-specific functions of Shank3. Meanwhile, the same analysis on the common Shank3 interactors, including Homer and GKAP/SAPAP proteins, suggested that they could mainly function as scaffolding proteins at the post-synaptic density. Lastly, we found that the mPFC- and HP+STR-specific Shank3 interactomes contained a significant number of proteins associated with neurodevelopmental and neuropsychiatric disorders. These results suggest that Shank3 can form protein complexes in a brain region-specific manner, which might contribute to the pathophysiological and phenotypic diversity of disorders related to SHANK3 mutations. PMID:28469556

  1. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation.

    PubMed

    Hiatt, Joseph B; Pritchard, Colin C; Salipante, Stephen J; O'Roak, Brian J; Shendure, Jay

    2013-05-01

    The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an estimated per-base error rate of 8.4 × 10(-6) in cell lines and 2.6 × 10(-5) in clinical specimens. False-positive mutations in the single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-frequency point mutations (0.2%-4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%-1.4%), and NRAS p.Q61R (colon, 4.7%). We anticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency mutations in both research and clinical settings.

  2. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation

    PubMed Central

    Hiatt, Joseph B.; Pritchard, Colin C.; Salipante, Stephen J.; O'Roak, Brian J.; Shendure, Jay

    2013-01-01

    The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an estimated per-base error rate of 8.4 × 10−6 in cell lines and 2.6 × 10−5 in clinical specimens. False-positive mutations in the single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-frequency point mutations (0.2%–4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%–1.4%), and NRAS p.Q61R (colon, 4.7%). We anticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency mutations in both research and clinical settings. PMID:23382536

  3. Viral evolution in HLA-B27-restricted CTL epitopes in human immunodeficiency virus type 1-infected individuals.

    PubMed

    Setiawan, Laurentia C; Gijsbers, Esther F; van Nuenen, Adrianus C; Kootstra, Neeltje A

    2015-08-01

    The HLA-B27 allele is over-represented among human immunodeficiency virus type 1-infected long-term non-progressors. In these patients, strong CTL responses targeting HLA-B27-restricted viral epitopes have been associated with long-term asymptomatic survival. Indeed, loss of control of viraemia in HLA-B27 patients has been associated with CTL escape at position 264 in the immunodominant KK10 epitope. This CTL escape mutation in the viral Gag protein has been associated with severe viral attenuation and may require the presence of compensatory mutations before emerging. Here, we studied sequence evolution within HLA-B27-restricted CTL epitopes in the viral Gag protein during the course of infection of seven HLA-B27-positive patients. Longitudinal gag sequences obtained at different time points around the time of AIDS diagnosis were obtained and analysed for the presence of mutations in epitopes restricted by HLA-B27, and for potential compensatory mutations. Sequence variations were observed in the HLA-B27-restricted CTL epitopes IK9 and DR11, and the immunodominant KK10 epitope. However, the presence of sequence variations in the HLA-B27-restricted CTL epitopes could not be associated with an increase in viraemia in the majority of the patients studied. Furthermore, we observed low genetic diversity in the gag region of the viral variants throughout the course of infection, which is indicative of low viral replication and corresponds to the low viral load observed in the HLA-B27-positive patients. These data indicated that control of viral replication can be maintained in HLA-B27-positive patients despite the emergence of viral mutations in HLA-B27-restricted epitopes.

  4. Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae.

    PubMed

    Stahlhut, Steen G; Chattopadhyay, Sujay; Struve, Carsten; Weissman, Scott J; Aprikian, Pavel; Libby, Stephen J; Fang, Ferric C; Krogfelt, Karen Angeliki; Sokurenko, Evgeni V

    2009-03-01

    FimH is an adhesive subunit of type 1 fimbriae expressed by different enterobacterial species. The enteric bacterium Klebsiella pneumoniae is an environmental organism that is also a frequent cause of sepsis, urinary tract infection (UTI), and liver abscess. Type 1 fimbriae have been shown to be critical for the ability of K. pneumoniae to cause UTI in a murine model. We show here that the K. pneumoniae fimH gene is found in 90% of strains from various environmental and clinical sources. The fimH alleles exhibit relatively low nucleotide and structural diversity but are prone to frequent horizontal-transfer events between different bacterial clones. Addition of the fimH locus to multiple-locus sequence typing significantly improved the resolution of the clonal structure of pathogenic strains, including the K1 encapsulated liver isolates. In addition, the K. pneumoniae FimH protein is targeted by adaptive point mutations, though not to the same extent as FimH from uropathogenic Escherichia coli or TonB from the same K. pneumoniae strains. Such adaptive mutations include a single amino acid deletion from the signal peptide that might affect the length of the fimbrial rod by affecting FimH translocation into the periplasm. Another FimH mutation (S62A) occurred in the course of endemic circulation of a nosocomial uropathogenic clone of K. pneumoniae. This mutation is identical to one found in a highly virulent uropathogenic strain of E. coli, suggesting that the FimH mutations are pathoadaptive in nature. Considering the abundance of type 1 fimbriae in Enterobacteriaceae, our present finding that fimH genes are subject to adaptive microevolution substantiates the importance of type 1 fimbria-mediated adhesion in K. pneumoniae.

  5. Peptide Nucleic Acid Array for Detection of Point Mutations in Hepatitis B Virus Associated with Antiviral Resistance ▿ †

    PubMed Central

    Jang, Hyunjung; Kim, Jihyun; Choi, Jae-jin; Son, Yeojin; Park, Heekyung

    2010-01-01

    The detection of antiviral-resistant hepatitis B virus (HBV) mutations is important for monitoring the response to treatment and for effective treatment decisions. We have developed an array using peptide nucleic acid (PNA) probes to detect point mutations in HBV associated with antiviral resistance. PNA probes were designed to detect mutations associated with resistance to lamivudine, adefovir, and entecavir. The PNA array assay was sensitive enough to detect 102 copies/ml. The PNA array assay was able to detect mutants present in more than 5% of the virus population when the total HBV DNA concentration was greater than 104 copies/ml. We analyzed a total of 68 clinical samples by this assay and validated its usefulness by comparing results to those of the sequencing method. The PNA array correctly identified viral mutants and has high concordance (98.3%) with direct sequencing in detecting antiviral-resistant mutations. Our results showed that the PNA array is a rapid, sensitive, and easily applicable assay for the detection of antiviral-resistant mutation in HBV. Thus, the PNA array is a useful and powerful diagnostic tool for the detection of point mutations or polymorphisms. PMID:20573874

  6. Similar Mutation Rates but Highly Diverse Mutation Spectra in Ascomycete and Basidiomycete Yeasts

    DTIC Science & Technology

    2016-12-24

    Te, and Michael Lynch Department of Biology , Indiana University, Bloomington, IN *Corresponding author: E-mail: longhongan@gmail.com. Accepted...GBE The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access...fungal mutation spectrum. Supplementary Material Supplementary data are available at Genome Biology and Evolution online. Acknowledgments This research

  7. Short linear motif acquisition, exon formation and alternative splicing determine a pathway to diversity for NCoR-family co-repressors

    PubMed Central

    Short, Stephen; Peterkin, Tessa; Guille, Matthew; Patient, Roger; Sharpe, Colin

    2015-01-01

    Vertebrate NCoR-family co-repressors play central roles in the timing of embryo and stem cell differentiation by repressing the activity of a range of transcription factors. They interact with nuclear receptors using short linear motifs (SLiMs) termed co-repressor for nuclear receptor (CoRNR) boxes. Here, we identify the pathway leading to increasing co-repressor diversity across the deuterostomes. The final complement of CoRNR boxes arose in an ancestral cephalochordate, and was encoded in one large exon; the urochordates and vertebrates then split this region between 10 and 12 exons. In Xenopus, alternative splicing is prevalent in NCoR2, but absent in NCoR1. We show for one NCoR1 exon that alternative splicing can be recovered by a single point mutation, suggesting NCoR1 lost the capacity for alternative splicing. Analyses in Xenopus and zebrafish identify that cellular context, rather than gene sequence, predominantly determines species differences in alternative splicing. We identify a pathway to diversity for the NCoR family beginning with the addition of a SLiM, followed by gene duplication, the generation of alternatively spliced isoforms and their differential deployment. PMID:26289800

  8. Virological Characteristics of Acute Hepatitis B in Eastern India: Critical Differences with Chronic Infection.

    PubMed

    Sarkar, Neelakshi; Pal, Ananya; Das, Dipanwita; Saha, Debraj; Biswas, Avik; Bandopadhayay, Bhaswati; Chakraborti, Mandira; Ghosh, Mrinmoy; Chakravarty, Runu

    2015-01-01

    Hepatitis B Virus (HBV) manifests high genetic variability and is classifiable into ten genotypes (A-J). HBV infection can lead to variable clinical outcomes, ranging from self-limiting acute hepatitis to active chronic hepatitis, cirrhosis and hepatocellular carcinoma. The present study characterizes HBV strains circulating among patients with acute (AHB) and chronic HBV infection (CHB). Among a total of 653 HBsAg positive cases, 40 manifested acute infection. After sequencing the surface(S), basal core promoter/pre-core(BCP/PC) and the X gene regions, phylogenetic tree was constructed using MEGA4 by neighbor-joining method. Statistical robustness was established with bootstrap analysis. Nucleotide diversity was determined by Shannon entropy per site using the Entropy program of the Los Alamos National Laboratories. Analyses of acute patients revealed that HBV/D2 is the major circulating sub-genotype and commonly associated with sexual promiscuity and the age group between15-30 years. Comparison of AHB and CHB patients revealed that HBeAg positivity, ALT levels and genotype D were significantly high in AHB, whereas CHB patients were predominantly male, had a high viral load, and were commonly associated with genotype C. The frequencies of mutations in the S, BCP/PC, and X gene were low in AHB as compared to CHB. Drug resistant mutations were not detectable in the polymerase gene of AHB. Average nucleotide diversity in AHB was considerably low as compared to CHB. Further, the highest average ΔH (average difference in entropy between chronic and acute infection) was observed in the BCP/PC region implying that this region was most vulnerable to mutations upon HBV persistence, especially in case of genotype C. Additionally, among all substitutions, the A1762T and G1764A BCP mutations were the strongest indicators of chronicity. In conclusion, the study exhibits a general portrait of HBV strains circulating among acute hepatitis B patients in Eastern India and their intricate differences with chronic patients which should be useful from the clinical point of view.

  9. Molecular spectrum of c-KIT and PDGFRA gene mutations in gastro intestinal stromal tumor: determination of frequency, distribution pattern and identification of novel mutations in Indian patients.

    PubMed

    Ahmad, Firoz; Lad, Purnima; Bhatia, Simi; Das, Bibhu Ranjan

    2015-01-01

    KIT and PDGFRA gene mutations are the major genetic alterations seen in gastrointestinal stromal tumors (GISTs) and are being used clinically for predicting response to imatinib therapy. In the current study, we set out to explore the frequency and distribution pattern of c-KIT (exons 9, 11 and 13) and PDGFRA (exons 12 and 18) by direct sequencing in a series of 70 Indian GIST cases. Overall, 27 (38.5 %) and 4 (5.7 %) of the cases had c-KIT and PDGFRA mutations, respectively. Majority of KIT mutations involved exon 11 (85.7 %), followed by exon 9 (14.3 %), while none showed exon 13 mutation. Most exon 9 mutations showed Ala503-Tyr504 duplication, while one had novel point mutation at codon 476 (S476G). In contrast to exon 9 mutations, most exon 11 mutations were in-frame deletions (79 %, 19/24), predominantly at codons 550-560, while remaining exon 11 mutant cases were point mutations at codons 559, 560, 568, 573 and 575. Interestingly, P573T, Q556_V560delinsH, Q575H and Q575_P577 were novel variations observed in exon 11. The PDGFRA mutations were seen mostly in exon 18, which showed point mutation at codon 842 (D842V), while exon 12 showed a novel indel variation (V561_H570delinsT). No significant correlation between c-KIT/PDGFRA mutations and clinicopathological data was observed. In conclusion, this study highlights the frequency and distribution pattern of c-KIT/PDGFRA mutation in Indian cohort. The current study identified novel variations that added new insights into the genetic heterogeneity of GIST patients. Furthermore, this is the first study to report the presence of PDGFRA mutation from Indian subcontinent.

  10. Comprehensive characterization of immunoglobulin gene rearrangements in patients with chronic lymphocytic leukaemia

    PubMed Central

    René, Céline; Prat, Nathalie; Thuizat, Audrey; Broctawik, Mélanie; Avinens, Odile; Eliaou, Jean-François

    2014-01-01

    Previous studies have suggested a geographical pattern of immunoglobulin rearrangement in chronic lymphocytic leukaemia (CLL), which could be as a result of a genetic background or an environmental antigen. However, the characteristics of Ig rearrangements in the population from the South of France have not yet been established. Here, we studied CLL B-cell repertoire and mutational pattern in a Southern French cohort of patients using an in-house protocol for whole sequencing of the rearranged immunoglobulin heavy-chain genes. Described biased usage of variable, diversity and joining genes between the mutated and unmutated groups was found in our population. However, variable gene frequencies are more in accordance with those observed in the Mediterranean patients. We found that the third complementary-determining region (CDR) length was higher in unmutated sequences, because of bias in the diversity and joining genes usage and not due to the N diversity. Mutations found in CLL followed the features of canonical somatic hypermutation mechanism: preference of targeting for activation-induced cytidine deaminase and polymerase motifs, base change bias for transitions and more replacement mutations occurring in CDRs than in framework regions. Surprisingly, localization of activation-induced cytidine deaminase motifs onto the variable gene showed a preference for framework regions. The study of the characteristics at the age of diagnosis showed no difference in clinical outcome, but suggested a tendency of increased replacement and transition-over-transversion mutations and a longer third CDR length in older patients. PMID:24725733

  11. Random mutagenesis by error-prone pol plasmid replication in Escherichia coli.

    PubMed

    Alexander, David L; Lilly, Joshua; Hernandez, Jaime; Romsdahl, Jillian; Troll, Christopher J; Camps, Manel

    2014-01-01

    Directed evolution is an approach that mimics natural evolution in the laboratory with the goal of modifying existing enzymatic activities or of generating new ones. The identification of mutants with desired properties involves the generation of genetic diversity coupled with a functional selection or screen. Genetic diversity can be generated using PCR or using in vivo methods such as chemical mutagenesis or error-prone replication of the desired sequence in a mutator strain. In vivo mutagenesis methods facilitate iterative selection because they do not require cloning, but generally produce a low mutation density with mutations not restricted to specific genes or areas within a gene. For this reason, this approach is typically used to generate new biochemical properties when large numbers of mutants can be screened or selected. Here we describe protocols for an advanced in vivo mutagenesis method that is based on error-prone replication of a ColE1 plasmid bearing the gene of interest. Compared to other in vivo mutagenesis methods, this plasmid-targeted approach allows increased mutation loads and facilitates iterative selection approaches. We also describe the mutation spectrum for this mutagenesis methodology in detail, and, using cycle 3 GFP as a target for mutagenesis, we illustrate the phenotypic diversity that can be generated using our method. In sum, error-prone Pol I replication is a mutagenesis method that is ideally suited for the evolution of new biochemical activities when a functional selection is available.

  12. A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype.

    PubMed

    Yimenicioğlu, Sevgi; Yakut, Ayten; Karaer, Kadri; Zenker, Martin; Ekici, Arzu; Carman, Kürşat Bora

    2012-12-01

    Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.

  13. [Analysis of prevalence of point mutations in codon 12 of oncogene K-ras from non-cancerous samples of cervical cytology positive for type 16 or 18 PVH].

    PubMed

    Golijow, C D; Mourón, S A; Gómez, M A; Dulout, F N

    1999-12-01

    Ninety-one non cancerous samples from genital specimens positives for VPH 16 or 18 and 27 non-infected samples as controls were studied. Mutations at codon 12 in K-ras gene was analyzed using enriched alelic PCR technique. Among the samples studied 17.58% showed mutations in this codon. Significant differences were observed between the control group (negative DNA-HPV) and positives DNA-HPV samples (p < 0.01). No differences were found between both viral types in relation to the mutation frequency. The presence of mutations in the K-ras gene in non cancerous cytological samples point out new questions about the role of mutations in proto-oncogenes and the development of cervical cancer.

  14. Functional Annotations of Paralogs: A Blessing and a Curse

    PubMed Central

    Zallot, Rémi; Harrison, Katherine J.; Kolaczkowski, Bryan; de Crécy-Lagard, Valérie

    2016-01-01

    Gene duplication followed by mutation is a classic mechanism of neofunctionalization, producing gene families with functional diversity. In some cases, a single point mutation is sufficient to change the substrate specificity and/or the chemistry performed by an enzyme, making it difficult to accurately separate enzymes with identical functions from homologs with different functions. Because sequence similarity is often used as a basis for assigning functional annotations to genes, non-isofunctional gene families pose a great challenge for genome annotation pipelines. Here we describe how integrating evolutionary and functional information such as genome context, phylogeny, metabolic reconstruction and signature motifs may be required to correctly annotate multifunctional families. These integrative analyses can also lead to the discovery of novel gene functions, as hints from specific subgroups can guide the functional characterization of other members of the family. We demonstrate how careful manual curation processes using comparative genomics can disambiguate subgroups within large multifunctional families and discover their functions. We present the COG0720 protein family as a case study. We also discuss strategies to automate this process to improve the accuracy of genome functional annotation pipelines. PMID:27618105

  15. Intrapatient Evolutionary Dynamics of Human Immunodeficiency Virus Type 1 in Individuals Undergoing Alternative Treatment Strategies with Reverse Transcriptase Inhibitors.

    PubMed

    Kayondo, Jonathan K; Ndembi, Nicaise; Parry, Chris M; Cane, Patricia A; Hué, Stephane; Goodall, Ruth; Dunn, David T; Kaleebu, Pontiano; Pillay, Deenan; Mbisa, Jean L

    2015-07-01

    Structured treatment interruption (STI) has been trialed as an alternative to lifelong antiretroviral therapy (ART). We retrospectively performed single genome sequencing of the HIV-1 pol region from three patients representing different scenarios. They were either failing on continuous therapy (CT-F), failing STI (STI-F), or suppressing on STI (STI-S). Over 460 genomes were generated from three to five different time points over a 2-year period. We found multiple-linked-resistant mutations in both treatment failures. However, the CT-F patient showed a stepwise accumulation of diverse, linked mutations whereas the STI-F patient had lineage turnover between treatment periods with recirculation of wild-type and resistant variants from reservoirs. The STI-F patient showed a 7-fold increase in the third codon position substitution rate relative to the first and second positions compared to a 2-fold increase for CT-F and increased purifying selection in the pol gene (62 vs. 22 sites, respectively). An understanding of intrapatient viral dynamics could guide the future direction of treatment interruption strategies.

  16. AlloRep: A Repository of Sequence, Structural and Mutagenesis Data for the LacI/GalR Transcription Regulators.

    PubMed

    Sousa, Filipa L; Parente, Daniel J; Shis, David L; Hessman, Jacob A; Chazelle, Allen; Bennett, Matthew R; Teichmann, Sarah A; Swint-Kruse, Liskin

    2016-02-22

    Protein families evolve functional variation by accumulating point mutations at functionally important amino acid positions. Homologs in the LacI/GalR family of transcription regulators have evolved to bind diverse DNA sequences and allosteric regulatory molecules. In addition to playing key roles in bacterial metabolism, these proteins have been widely used as a model family for benchmarking structural and functional prediction algorithms. We have collected manually curated sequence alignments for >3000 sequences, in vivo phenotypic and biochemical data for >5750 LacI/GalR mutational variants, and noncovalent residue contact networks for 65 LacI/GalR homolog structures. Using this rich data resource, we compared the noncovalent residue contact networks of the LacI/GalR subfamilies to design and experimentally validate an allosteric mutant of a synthetic LacI/GalR repressor for use in biotechnology. The AlloRep database (freely available at www.AlloRep.org) is a key resource for future evolutionary studies of LacI/GalR homologs and for benchmarking computational predictions of functional change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Selective gene amplification to detect the T790M mutation in plasma from patients with advanced non-small cell lung cancer (NSCLC) who have developed epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance.

    PubMed

    Nishikawa, Shingo; Kimura, Hideharu; Koba, Hayato; Yoneda, Taro; Watanabe, Satoshi; Sakai, Tamami; Hara, Johsuke; Sone, Takashi; Kasahara, Kazuo; Nakao, Shinji

    2018-03-01

    The epidermal growth factor receptor (EGFR) T790M mutation is associated with resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). However, tissues for the genotyping of the EGFR T790M mutation can be difficult to obtain in a clinical setting. The aims of this study were to evaluate a blood-based, non-invasive approach to detecting the EGFR T790M mutation in advanced NSCLC patients using the PointMan™ EGFR DNA enrichment kit, which is a novel method for the selective amplification of specific genotype sequences. Blood samples were collected from NSCLC patients who had activating EGFR mutations and who were resistant to EGFR-TKI treatment. Using cell-free DNA (cfDNA) from plasma, EGFR T790M mutations were amplified using the PointMan™ enrichment kit, and all the reaction products were confirmed using direct sequencing. The concentrations of plasma DNA were then determined using quantitative real-time PCR. Nineteen patients were enrolled, and 12 patients (63.2%) were found to contain EGFR T790M mutations in their cfDNA, as detected by the kit. T790M mutations were detected in tumor tissues in 12 cases, and 11 of these cases (91.7%) also exhibited the T790M mutation in cfDNA samples. The concentrations of cfDNA were similar between patients with the T790M mutation and those without the mutation. The PointMan™ kit provides a useful method for determining the EGFR T790M mutation status in cfDNA.

  18. Spectrum of somatic EGFR, KRAS, BRAF, PTEN mutations and TTF-1 expression in Brazilian lung cancer patients.

    PubMed

    Carneiro, Juliana G; Couto, Patricia G; Bastos-Rodrigues, Luciana; Bicalho, Maria Aparecida C; Vidigal, Paula V; Vilhena, Alyne; Amaral, Nilson F; Bale, Allen E; Friedman, Eitan; De Marco, Luiz

    2014-01-01

    Lung cancer is the leading global cause of cancer-related mortality. Inter-individual variability in treatment response and prognosis has been associated with genetic polymorphisms in specific genes: EGFR, KRAS, BRAF, PTEN and TTF-1. Somatic mutations in EGFR and KRAS genes are reported at rates of 15-40% in non-small cell lung cancer (NSCLC) in ethnically diverse populations. BRAF and PTEN are commonly mutated genes in various cancer types, including NSCLC, with PTEN mutations exerting an effect on the therapeutic response of EGFR/AKT/PI3K pathway inhibitors. TTF-1 is expressed in approximately 80% of lung adenocarcinomas and its positivity correlates with higher prevalence of EGFR mutation in this cancer type. To determine molecular markers for lung cancer in Brazilian patients, the rate of the predominant EGFR, KRAS, BRAF and PTEN mutations, as well as TTF-1 expression, was assessed in 88 Brazilian NSCLC patients. EGFR exon 19 deletions (del746-750) were detected in 3/88 (3·4%) patients. Activating KRAS mutations in codons 12 and 61 were noted in five (5·7%) and two (2·3%) patients, respectively. None of the common somatic mutations were detected in either the BRAF or PTEN genes. TTF-1 was overexpressed in 40·7% of squamous-cell carcinoma (SCC). Our findings add to a growing body of data that highlights the genetic heterogeneity of the abnormal EGFR pathway in lung cancer among ethnically diverse populations.

  19. Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases

    PubMed Central

    2013-01-01

    The human c-mpl gene (MPL) plays an important role in the development of megakaryocytes and platelets as well as the self-renewal of haematopoietic stem cells. However, numerous MPL mutations have been identified in haematopoietic diseases. These mutations alter the normal regulatory mechanisms and lead to autonomous activation or signalling deficiencies. In this review, we summarise 59 different MPL mutations and classify these mutations into four different groups according to the associated diseases and mutation rates. Using this classification, we clearly distinguish four diverse types of MPL mutations and obtain a deep understand of their clinical significance. This will prove to be useful for both disease diagnosis and the design of individual therapy regimens based on the type of MPL mutations. PMID:23351976

  20. Identifying and breeding drought tolerant cottons (gossypium spp.) treated with ems-mutant agent on the texas high plains

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium spp.), like many crop species worldwide, suffers from low levels of natural genetic diversity. Ethyl MethaneSulfonate (EMS) causes random mutations and has been used as a tool to increase genetic diversity. Therefore, this novel genetic diversity was used for identifying drought to...

  1. Genetics Home Reference: glycogen storage disease type III

    MedlinePlus

    ... thought to lead to the production of an enzyme with reduced function. All AGL gene mutations lead to storage of ... Saltiel AR. Distinct mutations in the glycogen debranching enzyme found in glycogen ... in diverse cellular functions. Hum Mol Genet. 2009 Jun 1;18(11): ...

  2. The Equilibrium Allele Frequency Distribution for a Population with Reproductive Skew

    PubMed Central

    Der, Ricky; Plotkin, Joshua B.

    2014-01-01

    We study the population genetics of two neutral alleles under reversible mutation in a model that features a skewed offspring distribution, called the Λ-Fleming–Viot process. We describe the shape of the equilibrium allele frequency distribution as a function of the model parameters. We show that the mutation rates can be uniquely identified from this equilibrium distribution, but the form of the offspring distribution cannot itself always be so identified. We introduce an estimator for the mutation rate that is consistent, independent of the form of reproductive skew. We also introduce a two-allele infinite-sites version of the Λ-Fleming–Viot process, and we use it to study how reproductive skew influences standing genetic diversity in a population. We derive asymptotic formulas for the expected number of segregating sites as a function of sample size and offspring distribution. We find that the Wright–Fisher model minimizes the equilibrium genetic diversity, for a given mutation rate and variance effective population size, compared to all other Λ-processes. PMID:24473932

  3. Role of the mismatch repair gene, Msh6, in suppressing genome instability and radiation-induced mutations

    PubMed Central

    Barrera-Oro, Julio; Liu, Tzu-Yang; Gorden, Erin; Kucherlapati, Raju; Shao, Changshun; Tischfield, Jay A

    2008-01-01

    Mismatch repair (MMR) is critical for preserving genomic integrity. Failure of this system can accelerate somatic mutation and increase the risk of developing cancer. MSH6, in complex with MSH2, is the MMR protein that mediates DNA repair through the recognition of 1- and 2-bp mismatches. To evaluate the effects of MSH6 deficiency on genomic stability we compared the frequency of in vivo loss of heterozygosity (LOH) between MSH6-proficient and deficient, 129S2 x C57BL/6 F1 hybrid mice that were heterozygous for our reporter gene Aprt. We recovered mutant cells that had functionally lost APRT protein activity and categorized the spectrum of mutations responsible for the LOH events. We also measured the mutant frequency at the X-linked gene, Hprt, as a second reporter for point mutation. In Msh6−/−Aprt+/− mice, mutation frequency at Aprt was elevated in both T cells and fibroblasts by 2.5-fold and 5.7-fold, respectively, over Msh6+/+Aprt+/− littermate controls. While a modest increase in mitotic recombination (MR) was observed in MSH6-deficient fibroblasts compared to wild type controls, point mutation was the predominant mechanism leading to APRT deficiency in both cell types. Base substitution, consisting of multiple types of transitions, accounted for all of the point mutations identified within the Aprt coding region. We also assessed the role of MSH6 in preventing mutations caused by a common environmental mutagen, ionizing radiation (IR). In Msh6−/−Aprt+/− mice, 4 Gy of X-irradiation induced a significant increase in point mutations at both Aprt and Hprt in T cells, but not in fibroblasts. These findings indicate that MutSα reduces spontaneous and IR-induced mutation in a cell-type dependant manner. PMID:18538799

  4. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression.

    PubMed

    Kawada, Hitoshi; Higa, Yukiko; Futami, Kyoko; Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H N; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K; Appawu, Maxwell; Ohta, Nobuo; Suzuki, Takashi; Minakawa, Noboru

    2016-06-01

    Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries.

  5. Survival of Patients with Cystic Fibrosis Depending on Mutation Type and Nutritional Status.

    PubMed

    Szwed, A; John, A; Goździk-Spychalska, J; Czaiński, W; Czerniak, W; Ratajczak, J; Batura-Gabryel, H

    2018-01-01

    The purpose of the study was to evaluate the influence of nutrition and of the severity of mutation type on survival rate in cystic fibrosis (CF) patients. Data were longitudinally collected from 60 hospitalized adult CF patients, aged 18-50. The variables consisted of body mass index (BMI) ratio, Cole's BMI cut-off points, severity of mutation type, and survival rate of CF patients. We found that the mean BMI was strongly associated with the severity of mutation type and was significantly lower in patients with severe mutations of grade I and II. The mutation type significantly affected the patients' survival rate; survival was greater in patients with mild and undefined mutation types. The BMI and Cole's cut-off points also had a significant influence on survival rate. CF patients, who suffered from malnutrition and emaciation, had a shorter survival rate than those with proper nutritional status. In conclusion, the study findings confirmed a significant effect of nutritional status and of mutation type on survival rate of CF patients.

  6. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    NASA Astrophysics Data System (ADS)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  7. The impact of p53 protein core domain structural alteration on ovarian cancer survival.

    PubMed

    Rose, Stephen L; Robertson, Andrew D; Goodheart, Michael J; Smith, Brian J; DeYoung, Barry R; Buller, Richard E

    2003-09-15

    Although survival with a p53 missense mutation is highly variable, p53-null mutation is an independent adverse prognostic factor for advanced stage ovarian cancer. By evaluating ovarian cancer survival based upon a structure function analysis of the p53 protein, we tested the hypothesis that not all missense mutations are equivalent. The p53 gene was sequenced from 267 consecutive ovarian cancers. The effect of individual missense mutations on p53 structure was analyzed using the International Agency for Research on Cancer p53 Mutational Database, which specifies the effects of p53 mutations on p53 core domain structure. Mutations in the p53 core domain were classified as either explained or not explained in structural or functional terms by their predicted effects on protein folding, protein-DNA contacts, or mutation in highly conserved residues. Null mutations were classified by their mechanism of origin. Mutations were sequenced from 125 tumors. Effects of 62 of the 82 missense mutations (76%) could be explained by alterations in the p53 protein. Twenty-three (28%) of the explained mutations occurred in highly conserved regions of the p53 core protein. Twenty-two nonsense point mutations and 21 frameshift null mutations were sequenced. Survival was independent of missense mutation type and mechanism of null mutation. The hypothesis that not all missense mutations are equivalent is, therefore, rejected. Furthermore, p53 core domain structural alteration secondary to missense point mutation is not functionally equivalent to a p53-null mutation. The poor prognosis associated with p53-null mutation is independent of the mutation mechanism.

  8. High prevalence of the point mutation in exon 6 of the xeroderma pigmentosum group A-complementing (XPAC) gene in xeroderma pigmentosum group A patients in Tunisia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishigori, Chikako; Imamura, Sadao; Yagi, Takashi

    1993-11-01

    Xeroderma pigmentosum (XP) patients in Tunisia who belong to the genetic complementation group A (XPA) have milder skin symptoms than do Japanese XPA patients. Such difference in the clinical features might be caused by the difference in the site of mutation in the XP A-complementing (XPAC) gene. The purpose of this study is to identify the genetic alterations in the XPAC gene in the Tunisian XPA patients and to investigate the relationship between the clinical symptoms and the genetic alterations. Three sites of mutation in the XPAC gene have been identified in the Japanese XPA patients, and about 85% ofmore » them have a G [yields] C point mutation at the splicing acceptor site of intron 3. The authors found that six (86%) of seven Tunisian XPA patients had a nonsense mutation in codon 228 in exon 6, because of a CGA [yields] TGA point mutation, which can be detected by the HphI RFLP. This type of mutation is the same as those found in two Japanese XPA patients with mild clinical RFLP. Milder skin symptoms in the XPA patients in Tunisia than in those in Japan, despite mostly sunny weather and the unsatisfactory sun protection in Tunisia, should be due to the difference in the mutation site. 11 refs., 2 figs., 2 tabs.« less

  9. Erythrocytosis and Pulmonary Hypertension in a Mouse Model of Human HIF2A Gain of Function Mutation*

    PubMed Central

    Tan, Qiulin; Kerestes, Heddy; Percy, Melanie J.; Pietrofesa, Ralph; Chen, Li; Khurana, Tejvir S.; Christofidou-Solomidou, Melpo; Lappin, Terence R. J.; Lee, Frank S.

    2013-01-01

    The central pathway for oxygen-dependent control of red cell mass is the prolyl hydroxylase domain protein (PHD):hypoxia inducible factor (HIF) pathway. PHD site specifically prolyl hydroxylates the transcription factor HIF-α, thereby targeting the latter for degradation. Under hypoxia, this modification is attenuated, allowing stabilized HIF-α to activate target genes, including that for erythropoietin (EPO). Studies employing genetically modified mice point to Hif-2α, one of two main Hif-α isoforms, as being the critical regulator of Epo in the adult mouse. More recently, erythrocytosis patients with heterozygous point mutations in the HIF2A gene have been identified; whether these mutations were polymorphisms unrelated to the phenotype could not be ruled out. In the present report, we characterize a mouse line bearing a G536W missense mutation in the Hif2a gene that corresponds to the first such human mutation identified (G537W). We obtained mice bearing both heterozygous and homozygous mutations at this locus. We find that these mice display, in a mutation dose-dependent manner, erythrocytosis and pulmonary hypertension with a high degree of penetrance. These findings firmly establish missense mutations in HIF-2α as a cause of erythrocytosis, highlight the importance of this HIF-α isoform in erythropoiesis, and point to physiologic consequences of HIF-2α dysregulation. PMID:23640890

  10. Rapid evolution of cis-regulatory sequences via local point mutations

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Wray, G. A.

    2001-01-01

    Although the evolution of protein-coding sequences within genomes is well understood, the same cannot be said of the cis-regulatory regions that control transcription. Yet, changes in gene expression are likely to constitute an important component of phenotypic evolution. We simulated the evolution of new transcription factor binding sites via local point mutations. The results indicate that new binding sites appear and become fixed within populations on microevolutionary timescales under an assumption of neutral evolution. Even combinations of two new binding sites evolve very quickly. We predict that local point mutations continually generate considerable genetic variation that is capable of altering gene expression.

  11. CD79B and MYD88 Mutations in Splenic Marginal Zone Lymphoma

    PubMed Central

    Trøen, Gunhild; Warsame, Abdirashid; Delabie, Jan

    2013-01-01

    The mutation status of genes involved in the NF-κB signaling pathway in splenic marginal zone lymphoma was examined. DNA sequence analysis of four genes was performed: CD79A, CD79B, CARD11, and MYD88 that are activated through BCR signaling or Toll-like and interleukin signaling. A single point mutation was detected in the CD79B gene (Y196H) in one of ten SMZL cases. Additionally, one point mutation was identified in the MYD88 gene (L265P) in another SMZL case. No mutations were revealed in CD79A or CARD11 genes in these SMZL cases. Neither were mutations detected in these four genes studied in 13 control MZL samples. Interestingly, the two cases with mutations of CD79B and MYD88 showed increased numbers of immunoblasts spread among the smaller and typical marginal zone lymphoma cells. Although SMZL shows few mutations of NF-κB signaling genes, our results indicate that the presence of these mutations is associated with a higher histological grade. PMID:23378931

  12. Scaling laws describe memories of host-pathogen riposte in the HIV population.

    PubMed

    Barton, John P; Kardar, Mehran; Chakraborty, Arup K

    2015-02-17

    The enormous genetic diversity and mutability of HIV has prevented effective control of this virus by natural immune responses or vaccination. Evolution of the circulating HIV population has thus occurred in response to diverse, ultimately ineffective, immune selection pressures that randomly change from host to host. We show that the interplay between the diversity of human immune responses and the ways that HIV mutates to evade them results in distinct sets of sequences defined by similar collectively coupled mutations. Scaling laws that relate these sets of sequences resemble those observed in linguistics and other branches of inquiry, and dynamics reminiscent of neural networks are observed. Like neural networks that store memories of past stimulation, the circulating HIV population stores memories of host-pathogen combat won by the virus. We describe an exactly solvable model that captures the main qualitative features of the sets of sequences and a simple mechanistic model for the origin of the observed scaling laws. Our results define collective mutational pathways used by HIV to evade human immune responses, which could guide vaccine design.

  13. HIV diversity and drug resistance from plasma and non-plasma analytes in a large treatment programme in western Kenya.

    PubMed

    Kantor, Rami; DeLong, Allison; Balamane, Maya; Schreier, Leeann; Lloyd, Robert M; Injera, Wilfred; Kamle, Lydia; Mambo, Fidelis; Muyonga, Sarah; Katzenstein, David; Hogan, Joseph; Buziba, Nathan; Diero, Lameck

    2014-01-01

    Antiretroviral resistance leads to treatment failure and resistance transmission. Resistance data in western Kenya are limited. Collection of non-plasma analytes may provide additional resistance information. We assessed HIV diversity using the REGA tool, transmitted resistance by the WHO mutation list and acquired resistance upon first-line failure by the IAS-USA mutation list, at the Academic Model Providing Access to Healthcare (AMPATH), a major treatment programme in western Kenya. Plasma and four non-plasma analytes, dried blood-spots (DBS), dried plasma-spots (DPS), ViveST(TM)-plasma (STP) and ViveST-blood (STB), were compared to identify diversity and evaluate sequence concordance. Among 122 patients, 62 were treatment-naïve and 60 treatment-experienced; 61% were female, median age 35 years, median CD4 182 cells/µL, median viral-load 4.6 log10 copies/mL. One hundred and ninety-six sequences were available for 107/122 (88%) patients, 58/62 (94%) treatment-naïve and 49/60 (82%) treated; 100/122 (82%) plasma, 37/78 (47%) attempted DBS, 16/45 (36%) attempted DPS, 14/44 (32%) attempted STP from fresh plasma and 23/34 (68%) from frozen plasma, and 5/42 (12%) attempted STB. Plasma and DBS genotyping success increased at higher VL and shorter shipment-to-genotyping time. Main subtypes were A (62%), D (15%) and C (6%). Transmitted resistance was found in 1.8% of plasma sequences, and 7% combining analytes. Plasma resistance mutations were identified in 91% of treated patients, 76% NRTI, 91% NNRTI; 76% dual-class; 60% with intermediate-high predicted resistance to future treatment options; with novel mutation co-occurrence patterns. Nearly 88% of plasma mutations were identified in DBS, 89% in DPS and 94% in STP. Of 23 discordant mutations, 92% in plasma and 60% in non-plasma analytes were mixtures. Mean whole-sequence discordance from frozen plasma reference was 1.1% for plasma-DBS, 1.2% plasma-DPS, 2.0% plasma-STP and 2.3% plasma-STB. Of 23 plasma-STP discordances, one mutation was identified in plasma and 22 in STP (p<0.05). Discordance was inversely significantly related to VL for DBS. In a large treatment programme in western Kenya, we report high HIV-1 subtype diversity; low plasma transmitted resistance, increasing when multiple analytes were combined; and high-acquired resistance with unique mutation patterns. Resistance surveillance may be augmented by using non-plasma analytes for lower-cost genotyping in resource-limited settings.

  14. Human mitochondrial DNA: roles of inherited and somatic mutations

    PubMed Central

    Schon, Eric A.; DiMauro, Salvatore; Hirano, Michio

    2014-01-01

    Mutations in the human mitochondrial genome are known to cause an array of diverse disorders, most of which are maternally inherited, and all of which are associated with defects in oxidative energy metabolism. It is now emerging that somatic mutations in mitochondrial DNA (mtDNA) are also linked to other complex traits, including neurodegenerative diseases, ageing and cancer. Here we discuss insights into the roles of mtDNA mutations in a wide variety of diseases, highlighting the interesting genetic characteristics of the mitochondrial genome and challenges in studying its contribution to pathogenesis. PMID:23154810

  15. Epistatic Interactions within the Influenza A Virus Polymerase Complex Mediate Mutagen Resistance and Replication Fidelity

    PubMed Central

    Pauly, Matthew D.; Lyons, Daniel M.; Fitzsimmons, William J.

    2017-01-01

    ABSTRACT Lethal mutagenesis is a broad-spectrum antiviral strategy that employs mutagenic nucleoside analogs to exploit the high mutation rate and low mutational tolerance of many RNA viruses. Studies of mutagen-resistant viruses have identified determinants of replicative fidelity and the importance of mutation rate to viral population dynamics. We have previously demonstrated the effective lethal mutagenesis of influenza A virus using three nucleoside analogs as well as the virus’s high genetic barrier to mutagen resistance. Here, we investigate the mutagen-resistant phenotypes of mutations that were enriched in drug-treated populations. We find that PB1 T123A has higher replicative fitness than the wild type, PR8, and maintains its level of genome production during 5-fluorouracil (2,4-dihydroxy-5-fluoropyrimidine) treatment. Surprisingly, this mutagen-resistant variant also has an increased baseline rate of C-to-U and G-to-A mutations. A second drug-selected mutation, PA T97I, interacts epistatically with PB1 T123A to mediate high-level mutagen resistance, predominantly by limiting the inhibitory effect of nucleosides on polymerase activity. Consistent with the importance of epistatic interactions in the influenza virus polymerase, our data suggest that nucleoside analog resistance and replication fidelity are strain dependent. Two previously identified ribavirin {1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-1,2,4-triazole-3-carboxamide} resistance mutations, PB1 V43I and PB1 D27N, do not confer drug resistance in the PR8 background, and the PR8-PB1 V43I polymerase exhibits a normal baseline mutation rate. Our results highlight the genetic complexity of the influenza A virus polymerase and demonstrate that increased replicative capacity is a mechanism by which an RNA virus can counter the negative effects of elevated mutation rates. IMPORTANCE RNA viruses exist as genetically diverse populations. This standing genetic diversity gives them the potential to adapt rapidly, evolve resistance to antiviral therapeutics, and evade immune responses. Viral mutants with altered mutation rates or mutational tolerance have provided insights into how genetic diversity arises and how it affects the behavior of RNA viruses. To this end, we identified variants within the polymerase complex of influenza virus that are able to tolerate drug-mediated increases in viral mutation rates. We find that drug resistance is highly dependent on interactions among mutations in the polymerase complex. In contrast to other viruses, influenza virus counters the effect of higher mutation rates primarily by maintaining high levels of genome replication. These findings suggest the importance of maintaining large population sizes for viruses with high mutation rates and show that multiple proteins can affect both mutation rate and genome synthesis. PMID:28815216

  16. PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study.

    PubMed

    Familiades, J; Bousquet, M; Lafage-Pochitaloff, M; Béné, M-C; Beldjord, K; De Vos, J; Dastugue, N; Coyaud, E; Struski, S; Quelen, C; Prade-Houdellier, N; Dobbelstein, S; Cayuela, J-M; Soulier, J; Grardel, N; Preudhomme, C; Cavé, H; Blanchet, O; Lhéritier, V; Delannoy, A; Chalandon, Y; Ifrah, N; Pigneux, A; Brousset, P; Macintyre, E A; Huguet, F; Dombret, H; Broccardo, C; Delabesse, E

    2009-11-01

    Adult and child B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) differ in terms of incidence and prognosis. These disparities are mainly due to the molecular abnormalities associated with these two clinical entities. A genome-wide analysis using oligo SNP arrays recently demonstrated that PAX5 (paired-box domain 5) is the main target of somatic mutations in childhood BCP-ALL being altered in 38.9% of the cases. We report here the most extensive analysis of alterations of PAX5 coding sequence in 117 adult BCP-ALL patients in the unique clinical protocol GRAALL-2003/GRAAPH-2003. Our study demonstrates that PAX5 is mutated in 34% of adult BCP-ALL, mutations being partial or complete deletion, partial or complete amplification, point mutation or fusion gene. PAX5 alterations are heterogeneous consisting in complete loss in 17%, focal deletions in 10%, point mutations in 7% and translocations in 1% of the cases. PAX5 complete loss and PAX5 point mutations differ. PAX5 complete loss seems to be a secondary event and is significantly associated with BCR-ABL1 or TCF3-PBX1 fusion genes and a lower white blood cell count.

  17. Quartz crystal microbalance detection of DNA single-base mutation based on monobase-coded cadmium tellurium nanoprobe.

    PubMed

    Zhang, Yuqin; Lin, Fanbo; Zhang, Youyu; Li, Haitao; Zeng, Yue; Tang, Hao; Yao, Shouzhuo

    2011-01-01

    A new method for the detection of point mutation in DNA based on the monobase-coded cadmium tellurium nanoprobes and the quartz crystal microbalance (QCM) technique was reported. A point mutation (single-base, adenine, thymine, cytosine, and guanine, namely, A, T, C and G, mutation in DNA strand, respectively) DNA QCM sensor was fabricated by immobilizing single-base mutation DNA modified magnetic beads onto the electrode surface with an external magnetic field near the electrode. The DNA-modified magnetic beads were obtained from the biotin-avidin affinity reaction of biotinylated DNA and streptavidin-functionalized core/shell Fe(3)O(4)/Au magnetic nanoparticles, followed by a DNA hybridization reaction. Single-base coded CdTe nanoprobes (A-CdTe, T-CdTe, C-CdTe and G-CdTe, respectively) were used as the detection probes. The mutation site in DNA was distinguished by detecting the decreases of the resonance frequency of the piezoelectric quartz crystal when the coded nanoprobe was added to the test system. This proposed detection strategy for point mutation in DNA is proved to be sensitive, simple, repeatable and low-cost, consequently, it has a great potential for single nucleotide polymorphism (SNP) detection. 2011 © The Japan Society for Analytical Chemistry

  18. Tumor progression: chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution.

    PubMed

    Huang, Sui

    2012-09-01

    Current investigation of cancer progression towards increasing malignancy focuses on the molecular pathways that produce the various cancerous traits of cells. Their acquisition is explained by the somatic mutation theory: tumor progression is the result of a neo-Darwinian evolution in the tissue. Herein cells are the units of selection. Random genetic mutations permanently affecting these pathways create malignant cell phenotypes that are selected for in the disturbed tissue. However, could it be that the capacity of the genome and its gene regulatory network to generate the vast diversity of cell types during development, i.e., to produce inheritable phenotypic changes without mutations, is harnessed by tumorigenesis to propel a directional change towards malignancy? Here we take an encompassing perspective, transcending the orthodoxy of molecular carcinogenesis and review mechanisms of somatic evolution beyond the Neo-Darwinian scheme. We discuss the central concept of "cancer attractors" - the hidden stable states of gene regulatory networks normally not occupied by cells. Noise-induced transitions into such attractors provide a source for randomness (chance) and regulatory constraints (necessity) in the acquisition of novel expression profiles that can be inherited across cell divisions, and hence, can be selected for. But attractors can also be reached in response to environmental signals - thus offering the possibility for inheriting acquired traits that can also be selected for. Therefore, we face the possibility of non-genetic (mutation-independent) equivalents to both Darwinian and Lamarckian evolution which may jointly explain the arrow of change pointing toward increasing malignancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fire, Emiko; Gullá, Stefano V.; Grant, Robert A.

    2010-06-25

    Mcl-1 is an antiapoptotic Bcl-2-family protein that protects cells against death. Structures of Mcl-1, and of other anti-apoptotic Bcl-2 proteins, reveal a surface groove into which the {alpha}-helical BH3 regions of certain proapoptotic proteins can bind. Despite high overall structural conservation, differences in this groove afford binding specificity that is important for the mechanism of Bcl-2 family function. We report the crystal structure of human Mcl-1 bound to a BH3 peptide derived from human Bim and the structures for three complexes that accommodate large physicochemical changes at conserved Bim sites. The mutations had surprisingly modest effects on complex stability, andmore » the structures show that Mcl-1 can undergo small changes to accommodate the mutant ligands. For example, a shift in a leucine side chain fills a hole left by an isoleucine-to-alanine mutation at the first hydrophobic buried position of Bim BH3. Larger changes are also observed, with shifting of helix {alpha}3 accommodating an isoleucine-to-tyrosine mutation at this same position. We surveyed the variation in available Mcl-1 and Bcl-x{sub L} structures and observed moderate flexibility that is likely critical for facilitating interactions of diverse BH3-only proteins with Mcl-1. With the antiapoptotic Bcl-2 family members attracting significant attention as therapeutic targets, these structures contribute to our growing understanding of how specificity is achieved and can help to guide the design of novel inhibitors that target Mcl-1.« less

  20. Polyphasic characterization and genetic relatedness of low-virulence and virulent Listeria monocytogenes isolates

    PubMed Central

    2012-01-01

    Background Currently, food regulatory authorities consider all Listeria monocytogenes isolates as equally virulent. However, an increasing number of studies demonstrate extensive variations in virulence and pathogenicity of L. monocytogenes strains. Up to now, there is no comprehensive overview of the population genetic structure of L. monocytogenes taking into account virulence level. We have previously demonstrated that different low-virulence strains exhibit the same mutations in virulence genes suggesting that they could have common evolutionary pathways. New low-virulence strains were identified and assigned to phenotypic and genotypic Groups using cluster analysis. Pulsed-field gel electrophoresis, virulence gene sequencing and multi-locus sequence typing analyses were performed to study the genetic relatedness and the population structure between the studied low-virulence isolates and virulent strains. Results These methods showed that low-virulence strains are widely distributed in the two major lineages, but some are also clustered according to their genetic mutations. These analyses showed that low-virulence strains initially grouped according to their lineage, then to their serotypes and after which, they lost their virulence suggesting a relatively recent emergence. Conclusions Loss of virulence in lineage II strains was related to point mutation in a few virulence genes (prfA, inlA, inlB, plcA). These strains thus form a tightly clustered, monophyletic group with limited diversity. In contrast, low-virulence strains of lineage I were more dispersed among the virulence strains and the origin of their loss of virulence has not been identified yet, even if some strains exhibited different mutations in prfA or inlA. PMID:23267677

  1. Advances in Radiation Mutagenesis through Studies on Drosophila

    DOE R&D Accomplishments Database

    Muller, H. J.

    1958-06-01

    The approximately linear relation between radiation dose and induced lethals known for Drosophila spermatozoa, is now extended to spermatids. Data are included regarding oogonia. The linearity principle has been confined for minute structural changes in sperm as multi-hit events, on about the 1.5 power of the dose, long known for spermatozoa, is now extended to spermatids and late oocytes, for relatively short exposures. are found to allow union of broken chromosomes. Therefore, the frequencies are lower for more dispersed exposures of varies with lethals induced in late oocytes follow the same frequency pattern and there fore are multi-hit events. Yet han spermatozoan irradiation that two broken ends derived from nonreciprocal. The following is the order of decreasing radiation mutability of different stages found by ourselves and others: spermatids, spermatozoa in females, spermatozoa 0 to 1 day before ejaculation, earlier spermatozoa, late oocytes, gonia of either sex. Lethal frequencies for these stages range over approximately an order of magnitude, gross structural changes far more widely. Of potential usefulness is our extension of genesis by anoxia, known for spermatozoa in adult males, to those in pupal males and in females, to sperion is especially marked but the increase caused by substituting oxygen for air is less marked, perhaps because of enzymatic differences. In contrast, the induction of gross structural changes in oocytes, but not in spermatids, is markedly reduced by oxygen post-treatment; it is increased by dehydration. The efficacy of induction of structural changes by treatment of spermatozoa, whether with radiation or chemical mutagen, is correlated with the conditions of sperm utilization and egg production. Improving our perspective on radiation effects, some 800,000 offspring have been scored for spontaneous visible mutations of 13 specific loci. The average point-mutation rate was 0.5 to 1.0 per locus among 10/sup 5/ germ cells. Most mutation occurred in peri- fertilization stages. All loci studied mutated from one to nine times. Loci mutating oftener spontaneously also gave more radiation mutation, in other studies, Spectra of individual loci prove similar for spontaneous and induced mutation. Studies on back-mutation also showed similarity of spontaneous and radiation mutations. The doubling dose for back-mutations of forked induced in spermatozoa was several hundred roentgens, gonia at diverse loci. Recent analyses of human mutational load lead to mutation-rate estimated like those earlier based on extrapolations from Drosophila, thus supporting the significance for man of the present studies. (auth)

  2. The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection.

    PubMed

    Payen, Celia; Di Rienzi, Sara C; Ong, Giang T; Pogachar, Jamie L; Sanchez, Joseph C; Sunshine, Anna B; Raghuraman, M K; Brewer, Bonita J; Dunham, Maitreya J

    2014-03-20

    Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.

  3. The Dynamics of Diverse Segmental Amplifications in Populations of Saccharomyces cerevisiae Adapting to Strong Selection

    PubMed Central

    Payen, Celia; Di Rienzi, Sara C.; Ong, Giang T.; Pogachar, Jamie L.; Sanchez, Joseph C.; Sunshine, Anna B.; Raghuraman, M. K.; Brewer, Bonita J.; Dunham, Maitreya J.

    2014-01-01

    Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another. PMID:24368781

  4. Extensive gene conversion at the PMS2 DNA mismatch repair locus.

    PubMed

    Hayward, Bruce E; De Vos, Michel; Valleley, Elizabeth M A; Charlton, Ruth S; Taylor, Graham R; Sheridan, Eamonn; Bonthron, David T

    2007-05-01

    Mutations of the PMS2 DNA repair gene predispose to a characteristic range of malignancies, with either childhood onset (when both alleles are mutated) or a partially penetrant adult onset (if heterozygous). These mutations have been difficult to detect, due to interference from a family of pseudogenes located on chromosome 7. One of these, the PMS2CL pseudogene, lies within a 100-kb inverted duplication (inv dup), 700 kb centromeric to PMS2 itself on 7p22. Here, we show that the reference genomic sequences cannot be relied upon to distinguish PMS2 from PMS2CL, because of sequence transfer between the two loci. The 7p22 inv dup occurred prior to the divergence of modern ape species (15 million years ago [Mya]), but has undergone extensive sequence homogenization. This process appears to be ongoing, since there is considerable allelic diversity within the duplicated region, much of it derived from sequence exchange between PMS2 and PMS2CL. This sequence diversity can result in both false-positive and false-negative mutation analysis at this locus. Great caution is still needed in the design and interpretation of PMS2 mutation screens. 2007 Wiley-Liss, Inc.

  5. Crystal Structure of Human [Beta]-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay-Sachs Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark, Brian L.; Mahuran, Don J.; Cherney, Maia M.

    2010-12-01

    In humans, two major {beta}-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits {alpha} and {beta} (60% identity), whereas Hex B is a homodimer of {beta}-subunits. Interest in human {beta}-hexosaminidase stems from its association with Tay-Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G{sub M2}-ganglioside (G{sub M2}). Hex A degrades G{sub M2} by removing a terminal N-acetyl-D-galactosamine ({beta}-GalNAc) residue, and this activity requires the G{sub M2}-activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hexmore » B, alone (2.4 {angstrom}) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2 {angstrom}) or NAG-thiazoline (2.5 {angstrom}). From these, and the known X-ray structure of the G{sub M2}-activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how {alpha} and {beta}-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease ({beta}-subunit mutations) and Tay-Sachs disease ({alpha}-subunit mutations).« less

  6. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions.

    PubMed

    Larrosa-Garcia, Maria; Baer, Maria R

    2017-06-01

    The receptor tyrosine kinase fms -like tyrosine kinase 3 (FLT3), involved in regulating survival, proliferation, and differentiation of hematopoietic stem/progenitor cells, is expressed on acute myeloid leukemia (AML) cells in most patients. Mutations of FLT3 resulting in constitutive signaling are common in AML, including internal tandem duplication (ITD) in the juxtamembrane domain in 25% of patients and point mutations in the tyrosine kinase domain in 5%. Patients with AML with FLT3-ITD have a high relapse rate and short relapse-free and overall survival after chemotherapy and after transplant. A number of inhibitors of FLT3 signaling have been identified and are in clinical trials, both alone and with chemotherapy, with the goal of improving clinical outcomes in patients with AML with FLT3 mutations. While inhibitor monotherapy produces clinical responses, they are usually incomplete and transient, and resistance develops rapidly. Diverse combination therapies have been suggested to potentiate the efficacy of FLT3 inhibitors and to prevent development of resistance or overcome resistance. Combinations with epigenetic therapies, proteasome inhibitors, downstream kinase inhibitors, phosphatase activators, and other drugs that alter signaling are being explored. This review summarizes the current status of translational and clinical research on FLT3 inhibitors in AML, and discusses novel combination approaches. Mol Cancer Ther; 16(6); 991-1001. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice

    PubMed Central

    Michaud, Edward J; Culiat, Cymbeline T; Klebig, Mitchell L; Barker, Paul E; Cain, KT; Carpenter, Debra J; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn W; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert E; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann M; Rinchik, Eugene M; Johnson, Dabney K

    2005-01-01

    Background Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations. PMID:16300676

  8. The evolution of HIV-1 group M genetic variability in Southern Cameroon is characterized by several emerging recombinant forms of CRF02_AG and viruses with drug resistance mutations.

    PubMed

    Agyingi, Lucy; Mayr, Luzia M; Kinge, Thompson; Orock, George Enow; Ngai, Johnson; Asaah, Bladine; Mpoame, Mbida; Hewlett, Indira; Nyambi, Phillipe

    2014-03-01

    The HIV epidemic in Cameroon is marked by a broad genetic diversity dominated by circulating recombinant forms (CRFs). Studies performed more than a decade ago in urban settings of Southern Cameroon revealed a dominance of the CRF02_AG and clade A variants in >90% of the infected subjects; however, little is known about the evolving viral variants circulating in this region. To document circulating HIV viral diversity, four regions of the viral genome (gag, PR, reverse transcriptase, env) in 116 HIV-1 positive individuals in Limbe, Southern Cameroon, were PCR-amplified. Sequences obtained at the RT and protease regions were analyzed for mutations that conferred drug resistance using the Stanford Drug Resistance Database. The present study reveals a broad genetic diversity characterized by several unique recombinant forms (URF) accounting for 36% of infections, 48.6% of patients infected with CRF02_AG, and the emergence of CRF22_01A1 in 7.2% of patients. Three out of 15 (20%) treated patients and 13 out of 93 (13.9%) drug naïve patients harbor drug resistance mutations to RT inhibitors, while 3.2% of drug naïve patients harbor drug resistance mutations associated with protease inhibitors. The high proportion (13.9%) of drug resistance mutations among the drug naïve patients reveals the ongoing transmission of these viruses in this region of Cameroon and highlights the need for drug resistance testing before starting treatment for patients infected with HIV-1. © 2013 Wiley Periodicals, Inc.

  9. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes.

    PubMed

    Fang, Mingyue; Jin, Lihua; Zhang, Chong; Tan, Yinyee; Jiang, Peixia; Ge, Nan; Heping Li; Xing, Xinhui

    2013-01-01

    In this paper, we aimed to improve the carbohydrate productivity of Spirulina platensis by generating mutants with increased carbohydrate content and growth rate. ARTP was used as a new mutagenesis tool to generate a mutant library of S. platensis with diverse phenotypes. Protocol for rapid mutation of S. platensis by 60 s treatment with helium driven ARTP and high throughput screening method of the mutants using the 96-well microplate and microplate reader was established. A mutant library of 62 mutants was then constructed and ideal mutants were selected out. The characteristics of the mutants after the mutagenesis inclined to be stable after around 9(th) subculture, where the total mutation frequency and positive mutation frequency in terms of specific growth rate reached 45% and 25%, respectively. The mutants in mutant library showed diverse phenotypes in terms of cell growth rate, carbohydrate content and flocculation intensity. The positive mutation frequency in terms of cellular carbohydrate content with the increase by more than 20% percent than the wild strain was 32.3%. Compared with the wild strain, the representative mutants 3-A10 and 3-B2 showed 40.3% and 78.0% increase in carbohydrate content, respectively, while the mutant 4-B3 showed 10.5% increase in specific growth rate. The carbohydrate contents of the representative mutants were stable during different subcultures, indicating high genetic stability. ARTP was demonstrated to be an effective and non-GMO mutagenesis tool to generate the mutant library for multicellular microalgae.

  10. Rapid Mutation of Spirulina platensis by a New Mutagenesis System of Atmospheric and Room Temperature Plasmas (ARTP) and Generation of a Mutant Library with Diverse Phenotypes

    PubMed Central

    Zhang, Chong; Tan, Yinyee; Jiang, Peixia; Ge, Nan; Heping Li; Xing, Xinhui

    2013-01-01

    In this paper, we aimed to improve the carbohydrate productivity of Spirulina platensis by generating mutants with increased carbohydrate content and growth rate. ARTP was used as a new mutagenesis tool to generate a mutant library of S. platensis with diverse phenotypes. Protocol for rapid mutation of S. platensis by 60 s treatment with helium driven ARTP and high throughput screening method of the mutants using the 96-well microplate and microplate reader was established. A mutant library of 62 mutants was then constructed and ideal mutants were selected out. The characteristics of the mutants after the mutagenesis inclined to be stable after around 9th subculture, where the total mutation frequency and positive mutation frequency in terms of specific growth rate reached 45% and 25%, respectively. The mutants in mutant library showed diverse phenotypes in terms of cell growth rate, carbohydrate content and flocculation intensity. The positive mutation frequency in terms of cellular carbohydrate content with the increase by more than 20% percent than the wild strain was 32.3%. Compared with the wild strain, the representative mutants 3-A10 and 3-B2 showed 40.3% and 78.0% increase in carbohydrate content, respectively, while the mutant 4-B3 showed 10.5% increase in specific growth rate. The carbohydrate contents of the representative mutants were stable during different subcultures, indicating high genetic stability. ARTP was demonstrated to be an effective and non-GMO mutagenesis tool to generate the mutant library for multicellular microalgae. PMID:24319517

  11. Insilico modeling and molecular dynamic simulation of claudin-1 point mutations in HCV infection.

    PubMed

    Vipperla, Bhavaniprasad; Dass, J Febin Prabhu; Jayanthi, S

    2014-01-01

    Claudin-1 (CLDN1) in association with envelope glycoprotein (CD81) mediates the fusion of HCV into the cytosol. Recent studies have indicated that point mutations in CLDN1 are important for the entry of hepatitis C virus (HCV). To validate these findings, we employed a computational platform to investigate the structural effect of two point mutations (I32M and E48K). Initially, three-dimensional co-ordinates for CLDN1 receptor sequence were generated. Then, three mutant models were built using the point mutation including a double mutant (I32M/E48K) model from the native model structure. Finally, all the four model structures including the native and three mutant models were subjected to molecular dynamics (MD) simulation for a period of 25 ns to appreciate their dynamic behavior. The MD trajectory files were analyzed using cluster and principal component method. The analysis suggested that either of the single mutation has negligible effect on the overall structure of CLDN1 compared to the double mutant form. However, the double mutant model of CLDN1 shows significant negative impact through the impairment of H-bonds and the simultaneous increase in solvent accessible surface area. Our simulation results are visibly consistent with the experimental report suggesting that the CLDN1 receptor distortion is prominent due to the double mutation with large surface accessibility. This increase in accessible surface area due to the coexistence of double mutation may be presumed as one of the key factor that results in permissive action of HCV attachment and infection.

  12. Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region.

    PubMed

    Morsomme, P; Dambly, S; Maudoux, O; Boutry, M

    1998-12-25

    The Nicotiana plumbaginifolia pma2 (plasma membrane H+-ATPase) gene is capable of functionally replacing the H+-ATPase genes of the yeast Saccharomyces cerevisiae, provided that the external pH is kept above 5.0. Single point mutations within the pma2 gene were previously identified that improved H+-ATPase activity and allowed yeast growth at pH 4.0. The aim of the present study was to identify most of the PMA2 positions, the mutation of which would lead to improved growth and to determine whether all these mutations result in similar enzymatic and structural modifications. We selected additional mutants in total 42 distinct point mutations localized in 30 codons. They were distributed in 10 soluble and membrane regions of the enzyme. Most mutant PMA2 H+-ATPases were characterized by a higher specific activity, lower inhibition by ADP, and lower stimulation by lysophosphatidylcholine than wild-type PMA2. The mutants thus seem to be constitutively activated. Partial tryptic digestion and immunodetection showed that the PMA2 mutants had a conformational change making the C-terminal region more accessible. These data therefore support the hypothesis that point mutations in various H+-ATPase parts displace the inhibitory C-terminal region, resulting in enzyme activation. The high density of mutations within the first half of the C-terminal region suggests that this part is involved in the interaction between the inhibitory C-terminal region and the rest of the enzyme.

  13. Spontaneous mutation during the sexual cycle of Neurospora crassa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watters, M.K.; Stadler, D.R.

    The DNA sequences of 42 spontaneous mutations of the mtr gene in Neurospora crassa have been determined. The mutants were selected among sexual spores to represent mutations arising in the sexual cycle. Three sexual-cycle-specific mutational classes are described: hotspot mutants, spontaneous repeat-induced point mutation (RIPs) and mutations occurring during a mutagenic phase of the sexual cycle. Together, these three sexual-cycle-specific mutational classes account for 50% of the mutations in the sexual-cycle mutational spectrum. One third of all mutations occurred at one of two mutational hotspots that predominantly produced tandem duplications of varying lengths with short repeats at their end-points. Neithermore » of the two hotspots are present in the vegetative spectrum, suggesting that sexual-cycle-specific mutational pathways are responsible for their presence in the spectrum. One mutant was observed that appeared to have been RIPed precociously. The usual prerequisite for RIP, a duplication of the affected region, was not present in the parent stocks and was not detected in this mutant. Finally, there is a phase early in the premeiotic sexual cycle that is overrepresented in the generation of mutations. This {open_quotes}peak{close_quotes} appears to represent a phase during which the mutation rate rises significantly. This phase produces a disproportionally high fraction of frame shift mutations. In divisions subsequent to this, the mutation rate appears to be constant. 26 refs., 6 figs., 2 tabs.« less

  14. Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines.

    PubMed Central

    Cheng, J; Haas, M

    1990-01-01

    Human T-cell leukemia and T-cell acute lymphoblastic leukemia cell lines were studied for alterations in the p53 tumor suppressor gene. Southern blot analysis of 10 leukemic T-cell lines revealed no gross genomic deletions or rearrangements. Reverse transcription-polymerase chain reaction analysis of p53 mRNA indicated that all 10 lines produced p53 mRNA of normal size. By direct sequencing of polymerase chain reaction-amplified cDNA, we detected 11 missense and nonsense point mutations in 5 of the 10 leukemic T-cell lines studied. The mutations are primarily located in the evolutionarily highly conserved regions of the p53 gene. One of the five cell lines in which a mutation was detected possesses a homozygous point mutation in both p53 alleles, while the other four cell lines harbor from two to four different point mutations. An allelic study of two of the lines (CEM, A3/Kawa) shows that the two missense mutations found in each line are located on separate alleles, thus both alleles of the p53 gene may have been functionally inactivated by two different point mutations. Since cultured leukemic T-cell lines represent a late, fully tumorigenic stage of leukemic T cells, mutation of both (or more) alleles of the p53 gene may reflect the selection of cells possessing an increasingly tumorigenic phenotype, whether the selection took place in vivo or in vitro. Previously, we have shown that the HSB-2 T-cell acute lymphoblastic leukemia cell line had lost both alleles of the retinoblastoma tumor suppressor gene. Taken together, our data show that at least 6 of 10 leukemic T-cell lines examined may have lost the normal function of a known tumor suppressor gene, suggesting that this class of genes serves a critical role in the generation of fully tumorigenic leukemic T cells. Images PMID:2144611

  15. Rapid polymerase chain reaction screening of Helicobacter pylori chromosomal point mutations.

    PubMed

    Ge, Z; Taylor, D E

    1997-09-01

    Microdiversity (within individual genes) in the genomes of different Helicobacter pylori strains has been demonstrated to be more frequent than that seen in other prokaryotes. Point mutations in some genes, such as the vacA and 23S ribosomal RNA genes could result in the alteration of pathogenicity or antibiotic susceptibility of individual H. pylori strains. Development of a simple, rapid, and reliable screening method would be useful in the molecular characterization of genetic variation among different H. pylori strains. The copP gene from H. pylori UA802 was used as a model for developing a mutation screening method. Four point mutations were introduced into the copP gene by in vitro site-directed mutagenesis and were verified by DNA sequencing. The mutated copP gene replaced the wild-type locus by natural transformation and homologous recombination. The site-specific mutants were screened by polymerase chain reaction (PCR) using 3'-end mismatched primers. The origins of the PCR fragments were demonstrated by Southern hybridization with the copP-derived DNA probe. Three of these four mutations were characterized by PCR with the specific primers that contained the 3'-terminal nucleotide complementary only to the mutated nucleotide on both plasmid and chromosomal DNA templates. One mutation was able to be identified with the foregoing primer containing an additional wild-type nucleotide at its 3'-end. Point mutant screening with these specific primers offers 100% sensitivity in the aforementioned conditions. To achieve optimal screening, the concentration of magnesium and the annealing temperature have to be adjusted. The procedure reported in this study is a simple, economical, rapid, and efficient approach in the identification of site-specific mutations on both plasmids and chromosomal DNA. Although the method was developed by using a specified H. pylori gene, it can be extended easily to other genes of interest in H. pylori or other organisms.

  16. Genome-Wide Biases in the Rate and Molecular Spectrum of Spontaneous Mutations in Vibrio cholerae and Vibrio fischeri.

    PubMed

    Dillon, Marcus M; Sung, Way; Sebra, Robert; Lynch, Michael; Cooper, Vaughn S

    2017-01-01

    The vast diversity in nucleotide composition and architecture among bacterial genomes may be partly explained by inherent biases in the rates and spectra of spontaneous mutations. Bacterial genomes with multiple chromosomes are relatively unusual but some are relevant to human health, none more so than the causative agent of cholera, Vibrio cholerae Here, we present the genome-wide mutation spectra in wild-type and mismatch repair (MMR) defective backgrounds of two Vibrio species, the low-%GC squid symbiont V. fischeri and the pathogen V. cholerae, collected under conditions that greatly minimize the efficiency of natural selection. In apparent contrast to their high diversity in nature, both wild-type V. fischeri and V. cholerae have among the lowest rates for base-substitution mutations (bpsms) and insertion-deletion mutations (indels) that have been measured, below 10 - 3 /genome/generation. Vibrio fischeri and V. cholerae have distinct mutation spectra, but both are AT-biased and produce a surprising number of multi-nucleotide indels. Furthermore, the loss of a functional MMR system caused the mutation spectra of these species to converge, implying that the MMR system itself contributes to species-specific mutation patterns. Bpsm and indel rates varied among genome regions, but do not explain the more rapid evolutionary rates of genes on chromosome 2, which likely result from weaker purifying selection. More generally, the very low mutation rates of Vibrio species correlate inversely with their immense population sizes and suggest that selection may not only have maximized replication fidelity but also optimized other polygenic traits relative to the constraints of genetic drift. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities.

    PubMed

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Germline mutations in genes encoding different members of the PIG family result in diverse conditions with (severe) developmental delay, (neonatal) seizures, hypotonia, CNS abnormalities, growth abnormalities, and congenital abnormalities as hallmark features. The variability of clinical features resembles the typical diversity of other glycosylation pathway deficiencies such as the congenital disorders of glycosylation. Here, we report the first germline missense mutation in the PIGA gene associated with accelerated linear growth, obesity, central hypotonia, severe refractory epilepsy, cardiac anomalies, mild facial dysmorphic features, mildly elevated alkaline phosphatase levels, and CNS anomalies consisting of progressive cerebral atrophy, insufficient myelinization, and cortical MRI signal abnormalities. X-exome sequencing in the proband identified a c.278C>T (p.Pro93Leu) mutation in the PIGA gene. The mother and maternal grandmother were unaffected carriers and the mother showed 100% skewing of the X-chromosome harboring the mutation. These results together with the clinical similarity of the patient reported here and the previously reported patients with a germline nonsense mutation in PIGA support the determination that this mutation caused the phenotype in this family. © 2013 Wiley Periodicals, Inc.

  18. Point mutations in the tumor suppressor Smad4/DPC4 enhance its phosphorylation by GSK3 and reversibly inactivate TGF-β signaling

    PubMed Central

    Demagny, Hadrien; De Robertis, Edward M

    2016-01-01

    The tumor suppressor Smad4/DPC4 is an essential transcription factor in the TGF-β pathway and is frequently mutated or deleted in prostate, colorectal, and pancreatic carcinomas. We recently discovered that Smad4 activity and stability are regulated by the FGF/EGF and Wnt signaling pathways through a series of MAPK and GSK3 phosphorylation sites located in its linker region. In the present study, we report that loss-of-function associated with 2 point mutations commonly found in colorectal and pancreatic cancers results from enhanced Smad4 phosphorylation by GSK3, generating a phosphodegron that leads to subsequent β-TrCP–mediated polyubiquitination and proteasomal degradation. Using chemical GSK3 inhibitors, we show that Smad4 point mutant proteins can be stabilized and TGF-β signaling restored in cancer cells harboring such mutations. PMID:27308538

  19. Mutations Derived from the Thermophilic Polyhydroxyalkanoate Synthase PhaC Enhance the Thermostability and Activity of PhaC from Cupriavidus necator H16

    PubMed Central

    Chen, Wen-Ming; Lai, Yung-Wei; Chang, Rey-Chang

    2012-01-01

    The thermophile Cupriavidus sp. strain S-6 accumulated polyhydroxybutyrate (PHB) from glucose at 50°C. A 9.0-kbp EcoRI fragment cloned from the genomic DNA of Cupriavidus sp. S-6 enabled Escherichia coli XL1-Blue to synthesize PHB at 45°C. Nucleotide sequence analysis showed a pha locus in the clone. The thermophilic polyhydroxyalkanoate (PHA) synthase (PhaCCsp) shared 81% identity with mesophilic PhaC of Cupriavidus necator H16. The diversity between these two strains was found dominantly on their N and C termini, while the middle regions were highly homologous (92% identity). We constructed four chimeras of mesophilic and thermophilic phaC genes to explore the mutations related to its thermostability. Among the chimeras, only PhaCH16β, which was PhaCH16 bearing 30 point mutations derived from the middle region of PhaCCsp, accumulated a high content of PHB (65% [dry weight]) at 45°C. The chimera phaCH16β and two parental PHA synthase genes were overexpressed in E. coli BLR(DE3) cells and purified. At 30°C, the specific activity of the chimera PhaCH16β (172 ± 17.8 U/mg) was 3.45-fold higher than that of the parental enzyme PhaCH16 (50 ± 5.2 U/mg). At 45°C, the half-life of the chimera PhaCH16β (11.2 h) was 127-fold longer than that of PhaCH16 (5.3 min). Furthermore, the chimera PhaCH16β accumulated 1.55-fold (59% [dry weight]) more PHA content than the parental enzyme PhaCH16 (38% [dry weight]) at 37°C. This study reveals a limited number of point mutations which enhance not only thermostability but also PhaCH16 activity. The highly thermostable and active PHA synthase will provide advantages for its promising applications to in vitro PHA synthesis and recombinant E. coli PHA fermentation. PMID:22408158

  20. Nonsensing residues in S3-S4 linker's C terminus affect the voltage sensor set point in K+ channels.

    PubMed

    Carvalho-de-Souza, Joao L; Bezanilla, Francisco

    2018-02-05

    Voltage sensitivity in ion channels is a function of highly conserved arginine residues in their voltage-sensing domains (VSDs), but this conservation does not explain the diversity in voltage dependence among different K + channels. Here we study the non-voltage-sensing residues 353 to 361 in Shaker K + channels and find that residues 358 and 361 strongly modulate the voltage dependence of the channel. We mutate these two residues into all possible remaining amino acids (AAs) and obtain Q-V and G-V curves. We introduced the nonconducting W434F mutation to record sensing currents in all mutants except L361R, which requires K + depletion because it is affected by W434F. By fitting Q-Vs with a sequential three-state model for two voltage dependence-related parameters ( V 0 , the voltage-dependent transition from the resting to intermediate state and V 1 , from the latter to the active state) and G-Vs with a two-state model for the voltage dependence of the pore domain parameter ( V 1/2 ), Spearman's coefficients denoting variable relationships with hydrophobicity, available area, length, width, and volume of the AAs in 358 and 361 positions could be calculated. We find that mutations in residue 358 shift Q-Vs and G-Vs along the voltage axis by affecting V 0 , V 1 , and V 1/2 according to the hydrophobicity of the AA. Mutations in residue 361 also shift both curves, but V 0 is affected by the hydrophobicity of the AA in position 361, whereas V 1 and V 1/2 are affected by size-related AA indices. Small-to-tiny AAs have opposite effects on V 1 and V 1/2 in position 358 compared with 361. We hypothesize possible coordination points in the protein that residues 358 and 361 would temporarily and differently interact with in an intermediate state of VSD activation. Our data contribute to the accumulating knowledge of voltage-dependent ion channel activation by adding functional information about the effects of so-called non-voltage-sensing residues on VSD dynamics. © 2018 Carvalho-de-Souza and Bezanilla.

  1. Evidence and age-related distribution of mtDNA D-loop point mutations in skeletal muscle from healthy subjects and mitochondrial patients.

    PubMed

    Del Bo, Roberto; Bordoni, Andreina; Martinelli Boneschi, Filippo; Crimi, Marco; Sciacco, Monica; Bresolin, Nereo; Scarlato, Guglielmo; Comi, Giacomo Pietri

    2002-10-15

    The progressive accumulation of mitochondrial DNA (mtDNA) alterations, ranging from single mutations to large-scale deletions, in both the normal ageing process and pathological conditions is a relevant phenomenon in terms of frequency and heteroplasmic degree. Recently, two point mutations (A189G and T408A) within the Displacement loop (D-loop) region, the control region for mtDNA replication, were shown to occur in skeletal muscles from aged individuals. We evaluated the presence and the heteroplasmy levels of these two mutations in muscle biopsies from 91 unrelated individuals of different ages (21 healthy subjects and 70 patients affected by mitochondrial encephalomyopathies). Overall, both mutations significantly accumulate with age. However, a different relationship was discovered among the different subgroups of patients: a higher number of A189G positive subjects younger than 53 years was detected in the subgroup of multiple-deleted patients; furthermore, a trend towards an increased risk for the mutations was evidenced among patients carrying multiple deletions when compared to healthy controls. These findings support the idea that a common biological mechanism determines the accumulation of somatic point mutations in the D-loop region, both in healthy subjects and in mitochondrial myopathy patients. At the same time, it appears that disorders caused by mutations of nuclear genes controlling mtDNA replication (the "mtDNA multiple deletions" syndromes) present a temporal advantage to mutate in the D-loop region. This observation may be relevant to the definition of the molecular pathogenesis of these latter syndromes. Copyright 2002 Elsevier Science B.V.

  2. Destabilization of the metal site as a hub for the pathogenic mechanism of five ALS-linked mutants of copper, zinc superoxide dismutase.

    PubMed

    Mera-Adasme, Raúl; Erdmann, Hannes; Bereźniak, Tomasz; Ochsenfeld, Christian

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease, with no effective pharmacological treatment. Its pathogenesis is unknown, although a subset of the cases is linked to genetic mutations. A significant fraction of the mutations occur in one protein, copper, zinc superoxide dismutase (SOD1). The toxic function of mutant SOD1 has not been elucidated, but damage to the metal site of the protein is believed to play a major role. In this work, we study the electrostatic loop of SOD1, which we had previously proposed to work as a "solvent seal" isolating the metal site from water molecules. Out of the five contact points identified between the electrostatic loop and its dock in the rest of the protein, three points were found to be affected by ALS-linked mutations, with a total of five mutations identified. The effect of the five mutations was studied using methods of computational chemistry. We found that four of the mutations destabilize the proposed solvent seal, while the fifth mutation directly affects the metal-site stability. In the two contact points unaffected by ALS-linked mutations, the side chains of the residues were not found to play a stabilizing role. Our results show that the docking of the electrostatic loop to the rest of SOD1 plays a role in ALS pathogenesis, in support of that structure acting as a solvent barrier for the metal site. The results provide a unified pathogenic mechanism for five different ALS-linked mutations of SOD1.

  3. Congenital heart defect causing mutation in Nkx2.5 displays in vivo functional deficit.

    PubMed

    Zakariyah, Abeer F; Rajgara, Rashida F; Veinot, John P; Skerjanc, Ilona S; Burgon, Patrick G

    2017-04-01

    The Nkx2.5 gene encodes a transcription factor that plays a critical role in heart development. In humans, heterozygous mutations in NKX2.5 result in congenital heart defects (CHDs). However, the molecular mechanisms by which these mutations cause the disease remain unknown. NKX2.5-R142C is a mutation that was reported to be associated with atrial septal defect (ASD) and atrioventricular (AV) block in 13-patients from one family. The R142C mutation is located within both the DNA-binding domain and the nuclear localization sequence of NKX2.5 protein. The pathogenesis of CHDs in humans with R142C point mutation is not well understood. To examine the functional deficit associated with this mutation in vivo, we generated and characterized a knock-in mouse that harbours the human mutation R142C. Systematic structural and functional examination of the embryonic, newborn, and adult mice revealed that the homozygous embryos Nkx2.5 R141C/R141C are developmentally arrested around E10.5 with delayed heart morphogenesis and downregulation of Nkx2.5 target genes, Anf, Mlc2v, Actc1 and Cx40. Histological examination of Nkx2.5 R141C/+ newborn hearts showed that 36% displayed ASD, with at least 80% 0f adult heterozygotes displaying a septal defect. Moreover, heterozygous Nkx2.5 R141C/+ newborn mice have downregulation of ion channel genes with 11/12 adult mice manifesting a prolonged PR interval that is indicative of 1st degree AV block. Collectively, the present study demonstrates that mice with the R141C point mutation in the Nkx2.5 allele phenocopies humans with the NKX2.5 R142C point mutation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mutations in the Norrie disease gene.

    PubMed

    Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B

    1995-01-01

    We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    NASA Astrophysics Data System (ADS)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  6. Efficient algorithms for probing the RNA mutation landscape.

    PubMed

    Waldispühl, Jérôme; Devadas, Srinivas; Berger, Bonnie; Clote, Peter

    2008-08-08

    The diversity and importance of the role played by RNAs in the regulation and development of the cell are now well-known and well-documented. This broad range of functions is achieved through specific structures that have been (presumably) optimized through evolution. State-of-the-art methods, such as McCaskill's algorithm, use a statistical mechanics framework based on the computation of the partition function over the canonical ensemble of all possible secondary structures on a given sequence. Although secondary structure predictions from thermodynamics-based algorithms are not as accurate as methods employing comparative genomics, the former methods are the only available tools to investigate novel RNAs, such as the many RNAs of unknown function recently reported by the ENCODE consortium. In this paper, we generalize the McCaskill partition function algorithm to sum over the grand canonical ensemble of all secondary structures of all mutants of the given sequence. Specifically, our new program, RNAmutants, simultaneously computes for each integer k the minimum free energy structure MFE(k) and the partition function Z(k) over all secondary structures of all k-point mutants, even allowing the user to specify certain positions required not to mutate and certain positions required to base-pair or remain unpaired. This technically important extension allows us to study the resilience of an RNA molecule to pointwise mutations. By computing the mutation profile of a sequence, a novel graphical representation of the mutational tendency of nucleotide positions, we analyze the deleterious nature of mutating specific nucleotide positions or groups of positions. We have successfully applied RNAmutants to investigate deleterious mutations (mutations that radically modify the secondary structure) in the Hepatitis C virus cis-acting replication element and to evaluate the evolutionary pressure applied on different regions of the HIV trans-activation response element. In particular, we show qualitative agreement between published Hepatitis C and HIV experimental mutagenesis studies and our analysis of deleterious mutations using RNAmutants. Our work also predicts other deleterious mutations, which could be verified experimentally. Finally, we provide evidence that the 3' UTR of the GB RNA virus C has been optimized to preserve evolutionarily conserved stem regions from a deleterious effect of pointwise mutations. We hope that there will be long-term potential applications of RNAmutants in de novo RNA design and drug design against RNA viruses. This work also suggests potential applications for large-scale exploration of the RNA sequence-structure network. Binary distributions are available at http://RNAmutants.csail.mit.edu/.

  7. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations.

    PubMed

    Yuan, Yuchen; Shi, Yi; Li, Changyang; Kim, Jinman; Cai, Weidong; Han, Zeguang; Feng, David Dagan

    2016-12-23

    With the developments of DNA sequencing technology, large amounts of sequencing data have become available in recent years and provide unprecedented opportunities for advanced association studies between somatic point mutations and cancer types/subtypes, which may contribute to more accurate somatic point mutation based cancer classification (SMCC). However in existing SMCC methods, issues like high data sparsity, small volume of sample size, and the application of simple linear classifiers, are major obstacles in improving the classification performance. To address the obstacles in existing SMCC studies, we propose DeepGene, an advanced deep neural network (DNN) based classifier, that consists of three steps: firstly, the clustered gene filtering (CGF) concentrates the gene data by mutation occurrence frequency, filtering out the majority of irrelevant genes; secondly, the indexed sparsity reduction (ISR) converts the gene data into indexes of its non-zero elements, thereby significantly suppressing the impact of data sparsity; finally, the data after CGF and ISR is fed into a DNN classifier, which extracts high-level features for accurate classification. Experimental results on our curated TCGA-DeepGene dataset, which is a reformulated subset of the TCGA dataset containing 12 selected types of cancer, show that CGF, ISR and DNN all contribute in improving the overall classification performance. We further compare DeepGene with three widely adopted classifiers and demonstrate that DeepGene has at least 24% performance improvement in terms of testing accuracy. Based on deep learning and somatic point mutation data, we devise DeepGene, an advanced cancer type classifier, which addresses the obstacles in existing SMCC studies. Experiments indicate that DeepGene outperforms three widely adopted existing classifiers, which is mainly attributed to its deep learning module that is able to extract the high level features between combinatorial somatic point mutations and cancer types.

  8. Combining isothermal rolling circle amplification and electrochemiluminescence for highly sensitive point mutation detection

    NASA Astrophysics Data System (ADS)

    Su, Qiang; Zhou, Xiaoming

    2008-12-01

    Many pathogenic and genetic diseases are associated with changes in the sequence of particular genes. We describe here a rapid and highly efficient assay for the detection of point mutation. This method is a combination of isothermal rolling circle amplification (RCA) and high sensitive electrochemluminescence (ECL) detection. In the design, a circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase using a biotinylated primer. The elongation products were hybridized with tris (bipyridine) ruthenium (TBR)-tagged probes and detected in a magnetic bead based ECL platform, indicating the mutation occurrence. P53 was chosen as a model for the identification of this method. The method allowed sensitive determination of the P53 mutation from wild-type and mutant samples. The main advantage of RCA-ECL is that it can be performed under isothermal conditions and avoids the generation of false-positive results. Furthermore, ECL provides a faster, more sensitive, and economical option to currently available electrophoresis-based methods.

  9. X-linked Charcot-Marie-Tooth disease predominates in a cohort of multiethnic Malaysian patients.

    PubMed

    Shahrizaila, Nortina; Samulong, Sarimah; Tey, Shelisa; Suan, Liaw Chiew; Meng, Lao Kah; Goh, Khean Jin; Ahmad-Annuar, Azlina

    2014-02-01

    Data regarding Charcot-Marie-Tooth disease is lacking in Southeast Asian populations. We investigated the frequency of the common genetic mutations in a multiethnic Malaysian cohort. Patients with features of Charcot-Marie-Tooth disease or hereditary liability to pressure palsies were investigated for PMP22 duplication, deletion, and point mutations and GJB1, MPZ, and MFN2 point mutations. Over a period of 3 years, we identified 25 index patients. A genetic diagnosis was reached in 60%. The most common were point mutations in GJB1, accounting for X-linked Charcot-Marie-Tooth disease (24% of the total patient population), followed by PMP22 duplication causing Charcot-Marie-Tooth disease type 1A (20%). We also discovered 2 novel GJB1 mutations, c.521C>T (Proline174Leucine) and c.220G>A (Valine74Methionine). X-linked Charcot-Marie-Tooth disease was found to predominate in our patient cohort. We also found a better phenotype/genotype correlation when applying a more recently recommended genetic approach to Charcot-Marie-Tooth disease. Copyright © 2013 Wiley Periodicals, Inc.

  10. Detection of KRAS G12D in colorectal cancer stool by droplet digital PCR

    PubMed Central

    Olmedillas-López, Susana; Lévano-Linares, Dennis César; Alexandre, Carmen Laura Aúz; Vega-Clemente, Luz; Sánchez, Edurne León; Villagrasa, Alejandro; Ruíz-Tovar, Jaime; García-Arranz, Mariano; García-Olmo, Damián

    2017-01-01

    AIM To assess KRAS G12D mutation detection by droplet digital PCR (ddPCR) in stool-derived DNA from colorectal cancer (CRC) patients. METHODS In this study, tumor tissue and stool samples were collected from 70 patients with stage I-IV CRC diagnosed by preoperative biopsy. KRAS mutational status was determined by pyrosequencing analysis of DNA obtained from formalin-fixed paraffin-embedded (FFPE) tumor tissues. The KRAS G12D mutation was then analyzed by ddPCR in FFPE tumors and stool-derived DNA from patients with this point mutation. Wild-type (WT) tumors, as determined by pyrosequencing, were included as controls; analysis of FFPE tissue and stool-derived DNA by ddPCR was performed for these patients as well. RESULTS Among the total 70 patients included, KRAS mutations were detected by pyrosequencing in 32 (45.71%), whereas 38 (54.29%) had WT tumors. The frequency of KRAS mutations was higher in left-sided tumors (11 located in the right colon, 15 in the left, and 6 in the rectum). The predominant point mutation was KRAS G12D (14.29%, n = 10), which was more frequent in early-stage tumors (I-IIA, n = 7). In agreement with pyrosequencing results, the KRAS G12D mutation was detected by ddPCR in FFPE tumor-derived DNA, and only a residual number of mutated copies was found in WT controls. The KRAS G12D mutation was also detected in stool-derived DNA in 80% of all fecal samples from CRC patients with this point mutation. CONCLUSION ddPCR is a reliable and sensitive method to analyze KRAS G12D mutation in stool-derived DNA from CRC patients, especially at early stages. This non-invasive approach is potentially applicable to other relevant biomarkers for CRC management. PMID:29093617

  11. Mapping mitochondrial heteroplasmy in a Leydig tumor by laser capture micro-dissection and cycling temperature capillary electrophoresis.

    PubMed

    Refinetti, Paulo; Arstad, Christian; Thilly, William G; Morgenthaler, Stephan; Ekstrøm, Per Olaf

    2017-01-01

    The growth of tumor cells is accompanied by mutations in nuclear and mitochondrial genomes creating marked genetic heterogeneity. Tumors also contain non-tumor cells of various origins. An observed somatic mitochondrial mutation would have occurred in a founding cell and spread through cell division. Micro-anatomical dissection of a tumor coupled with assays for mitochondrial point mutations permits new insights into this growth process. More generally, the ability to detect and trace, at a histological level, somatic mitochondrial mutations in human tissues and tumors, makes these mutations into markers for lineage tracing. A tumor was first sampled by a large punch biopsy and scanned for any significant degree of heteroplasmy in a set of sequences containing known mutational hotspots of the mitochondrial genome. A heteroplasmic tumor was sliced at a 12 μm thickness and placed on membranes. Laser capture micro-dissection was used to take 25000 μm 2 subsamples or spots. After DNA amplification, cycling temperature capillary electrophoresis (CTCE) was used on the laser captured samples to quantify mitochondrial mutant fractions. Of six testicular tumors studied, one, a Leydig tumor, was discovered to carry a detectable degree of heteroplasmy for two separate point mutations: a C → T mutation at bp 64 and a T → C mutation found at bp 152. From this tumor, 381 spots were sampled with laser capture micro-dissection. The ordered distribution of spots exhibited a wide range of fractions of the mutant sequences from 0 to 100% mutant copies. The two mutations co-distributed in the growing tumor indicating they were present on the same genome copies in the founding cell. Laser capture microdissection of sliced tumor samples coupled with CTCE-based point mutation assays provides an effective and practical means to obtain maps of mitochondrial mutational heteroplasmy within human tumors.

  12. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6.

    PubMed

    Evans, Ben A; Smith, Olivia L; Pickerill, Ethan S; York, Mary K; Buenconsejo, Kristen J P; Chambers, Antonio E; Bernstein, Douglas A

    2018-01-01

    Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn 2+ -binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans . Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest.

  13. How range shifts induced by climate change affect neutral evolution

    PubMed Central

    McInerny, G.J.; Turner, J.R.G.; Wong, H.Y.; Travis, J.M.J.; Benton, T.G.

    2009-01-01

    We investigate neutral evolution during range shifts in a strategic model of a metapopulation occupying a climate gradient. Using heritable, neutral markers, we track the spatio-temporal fate of lineages. Owing to iterated founder effects (‘mutation surfing’), survival of lineages derived from the leading range limit is enhanced. At trailing limits, where habitat suitability decreases, survival is reduced (mutations ‘wipe out’). These processes alter (i) the spatial spread of mutations, (ii) origins of persisting mutations and (iii) the generation of diversity. We show that large changes in neutral evolution can be a direct consequence of range shifting. PMID:19324824

  14. How range shifts induced by climate change affect neutral evolution.

    PubMed

    McInerny, G J; Turner, J R G; Wong, H Y; Travis, J M J; Benton, T G

    2009-04-22

    We investigate neutral evolution during range shifts in a strategic model of a metapopulation occupying a climate gradient. Using heritable, neutral markers, we track the spatio-temporal fate of lineages. Owing to iterated founder effects ('mutation surfing'), survival of lineages derived from the leading range limit is enhanced. At trailing limits, where habitat suitability decreases, survival is reduced (mutations 'wipe out'). These processes alter (i) the spatial spread of mutations, (ii) origins of persisting mutations and (iii) the generation of diversity. We show that large changes in neutral evolution can be a direct consequence of range shifting.

  15. A high proportion of ADA point mutations associated with a specific alanine-to-valine substitution.

    PubMed

    Markert, M L; Norby-Slycord, C; Ward, F E

    1989-09-01

    In 15%-20% of children with severe combined immunodeficiency (SCID), the underlying defect is adenosine deaminase (ADA) deficiency. The overall goal of our research has been to identify the precise molecular defects in patients with ADA-deficient SCID. In this study, we focused on a patient whom we found to have normal sized ADA mRNA by Northern analysis and an intact ADA structural gene by Southern analysis. By cloning and sequencing this patient's ADA cDNA, we found a C-to-T point mutation in exon 11. This resulted in the amino acid substitution of a valine for an alanine at position 329 of the ADA protein. Sequence analysis revealed that this mutation created a new BalI restriction site. Using Southern analyses, we were able to directly screen individuals to determine the frequency of this mutation. By combining data on eight families followed at our institution with data on five other families reported in the literature, we established that five of 13 patients (seven of 22 alleles) with known or suspected point mutations have this defect. This mutation was found to be associated with three different ADA haplotypes. This argues against a founder effect and suggests that the mutation is very old. In summary, a conservative amino acid substitution is found in a high proportion of patients with ADA deficiency; this can easily be detected by Southern analysis.

  16. Intra- and extracellular domains of the Helicoverpa armigera cadherin mediate Cry1Ac cytotoxicity

    USDA-ARS?s Scientific Manuscript database

    Diverse midgut cadherin mutations confer resistance to Cry1A toxins in at least three lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Most of these cadherin mutations are inherited as recessive alleles and result in changes within the cadherin repeat (CR) regions of the extr...

  17. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression

    PubMed Central

    Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H. N.; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K.; Appawu, Maxwell; Ohta, Nobuo; Minakawa, Noboru

    2016-01-01

    Background Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. Methodology/Principal Findings High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. Conclusions/Significance The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries. PMID:27304430

  18. Finding the factors of reduced genetic diversity on X chromosomes of Macaca fascicularis: male-driven evolution, demography, and natural selection.

    PubMed

    Osada, Naoki; Nakagome, Shigeki; Mano, Shuhei; Kameoka, Yosuke; Takahashi, Ichiro; Terao, Keiji

    2013-11-01

    The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian-Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome.

  19. Finding the Factors of Reduced Genetic Diversity on X Chromosomes of Macaca fascicularis: Male-Driven Evolution, Demography, and Natural Selection

    PubMed Central

    Osada, Naoki; Nakagome, Shigeki; Mano, Shuhei; Kameoka, Yosuke; Takahashi, Ichiro; Terao, Keiji

    2013-01-01

    The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian–Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome. PMID:24026095

  20. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation.

    PubMed

    Yagita, M; Huang, C L; Umehara, H; Matsuo, Y; Tabata, R; Miyake, M; Konaka, Y; Takatsuki, K

    2000-05-01

    We present the establishment of a natural killer (NK) leukemia cell line, designated KHYG-1, from the blood of a patient with aggressive NK leukemia, which both possessed the same p53 point mutation. The immunophenotype of the primary leukemia cells was CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16+, CD56+, CD57+ and HLA-DR+. A new cell line (KHYG-1) was established by culturing peripheral leukemia cells with 100 units of recombinant interleukin (IL)-2. The KHYG-1 cells showed LGL morphology with a large nucleus, coarse chromatin, conspicuous nucleoli, and abundant basophilic cytoplasm with many azurophilic granules. The immunophenotype of KHYG-1 cells was CD1-, CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16-, CD25-, CD33+, CD34-, CD56+, CD57-, CD122+, CD132+, and TdT-. Southern blot analysis of these cells revealed a normal germline configuration for the beta, delta, and gamma chains of the T cell receptor and the immunoglobulin heavy-chain genes. Moreover, the KHYG-1 cells displayed NK cell activity and IL-2-dependent proliferation in vitro, suggesting that they are of NK cell origin. Epstein-Barr virus (EBV) DNA was not detected in KHYG-1 cells by Southern blot analysis with a terminal repeat probe from an EBV genome. A point mutation in exon 7 of the p53 gene was detected in the KHYG-1 cells by PCR/SSCP analysis, and direct sequencing revealed the conversion of C to T at nucleotide 877 in codon 248. The primary leukemia cells also carried the same point mutation. Although the precise role of the p53 point mutation in leukemogenesis remains to be clarified, the establishment of an NK leukemia cell line with a p53 point mutation could be valuable in the study of leukemogenesis.

  1. Clonal heterogeneity as a driver of disease variability in the evolution of myeloproliferative neoplasms.

    PubMed

    Prick, Janine; de Haan, Gerald; Green, Anthony R; Kent, David G

    2014-10-01

    Myeloproliferative neoplasms (MPNs) are clonal hematological diseases in which cells of the myelo-erythroid lineage are overproduced and patients are predisposed to leukemic transformation. Hematopoietic stem cells are the suspected disease-initiating cells, and these cells must acquire a clonal advantage relative to nonmutant hematopoietic stem cells to perpetuate disease. In 2005, several groups identified a single gain-of-function point mutation in JAK2 that associated with the majority of MPNs, and subsequent studies have led to a comprehensive understanding of the mutational landscape in MPNs. However, confusion still exists as to how a single genetic aberration can be associated with multiple distinct disease entities. Many explanations have been proposed, including JAK2V617F homozygosity, individual patient heterogeneity, and the differential regulation of downstream JAK2 signaling pathways. Several groups have made knock-in mouse models expressing JAK2V617F and have observed divergent phenotypes, each recapitulating some aspects of disease. Intriguingly, most of these models do not observe a strong hematopoietic stem cell self-renewal advantage compared with wild-type littermate controls, raising the question of how a clonal advantage is established in patients with MPNs. This review summarizes the current molecular understanding of MPNs and the diversity of disease phenotypes and proposes that the increased proliferation induced by JAK2V617F applies a selection pressure on the mutant clone that results in highly diverse clonal evolution in individuals. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  2. Toward an Understanding of the Evolution of Staphylococcus aureus Strain USA300 during Colonization in Community Households

    PubMed Central

    Uhlemann, Anne-Catrin; Kennedy, Adam D.; Martens, Craig; Porcella, Stephen F.; DeLeo, Frank R.; Lowy, Franklin D.

    2012-01-01

    Staphylococcus aureus is a frequent cause of serious infections and also a human commensal. The emergence of community-associated methicillin-resistant S. aureus led to a dramatic increase in skin and soft tissue infections worldwide. This epidemic has been driven by a limited number of clones, such as USA300 in the United States. To better understand the extent of USA300 evolution and diversification within communities, we performed comparative whole-genome sequencing of three clinical and five colonizing USA300 isolates collected longitudinally from three unrelated households over a 15-month period. Phylogenetic analysis that incorporated additional geographically diverse USA300 isolates indicated that all but one likely arose from a common recent ancestor. Although limited genetic adaptation occurred over the study period, the greatest genetic heterogeneity occurred between isolates from different households and within one heavily colonized household. This diversity allowed for a more accurate tracking of interpersonal USA300 transmission. Sequencing of persisting USA300 isolates revealed mutations in genes involved in major aspects of S. aureus function: adhesion, cell wall biosynthesis, virulence, and carbohydrate metabolism. Genetic variations also included accumulation of multiple polymorphisms within select genes of two multigene operons, suggestive of small genome rearrangements rather than de novo single point mutations. Such rearrangements have been underappreciated in S. aureus and may represent novel means of strain variation. Subtle genetic changes may contribute to USA300 fitness and persistence. Elucidation of small genome rearrangements reveals a potentially new and intriguing mechanism of directed S. aureus genome diversification in environmental niches and during pathogen–host interactions. PMID:23104992

  3. Three new PAX6 mutations including one causing an unusual ophthalmic phenotype associated with neurodevelopmental abnormalities.

    PubMed

    Dansault, Anouk; David, Gabriel; Schwartz, Claire; Jaliffa, Carolina; Vieira, Véronique; de la Houssaye, Guillaume; Bigot, Karine; Catin, Françise; Tattu, Laurent; Chopin, Catherine; Halimi, Philippe; Roche, Olivier; Van Regemorter, Nicole; Munier, Francis; Schorderet, Daniel; Dufier, Jean-Louis; Marsac, Cécile; Ricquier, Daniel; Menasche, Maurice; Penfornis, Alfred; Abitbol, Marc

    2007-04-02

    The PAX6 gene was first described as a candidate for human aniridia. However, PAX6 expression is not restricted to the eye and it appears to be crucial for brain development. We studied PAX6 mutations in a large spectrum of patients who presented with aniridia phenotypes, Peters' anomaly, and anterior segment malformations associated or not with neurological anomalies. Patients and related families were ophthalmologically phenotyped, and in some cases neurologically and endocrinologically examined. We screened the PAX6 gene by direct sequencing in three groups of patients: those affected by aniridia; those with diverse ocular manifestations; and those with Peters' anomaly. Two mutations were investigated by generating crystallographic representations of the amino acid changes. Three novel heterozygous mutations affecting three unrelated families were identified: the g.572T>C nucleotide change, located in exon 5, and corresponding to the Leucine 46 Proline amino-acid mutation (L46P); the g.655A>G nucleotide change, located in exon 6, and corresponding to the Serine 74 Glycine amino-acid mutation (S74G); and the nucleotide deletion 579delG del, located in exon 6, which induces a frameshift mutation leading to a stop codon (V48fsX53). The L46P mutation was identified in affected patients presenting bilateral microphthalmia, cataracts, and nystagmus. The S74G mutation was found in a large family that had congenital ocular abnormalities, diverse neurological manifestations, and variable cognitive impairments. The 579delG deletion (V48fsX53) caused in the affected members of the same family bilateral aniridia associated with congenital cataract, foveal hypolasia, and nystagmus. We also detected a novel intronic nucleotide change, IVS2+9G>A (very likely a mutation) in an apparently isolated patient affected by a complex ocular phenotype, characterized primarily by a bilateral microphthalmia. Whether this nucleotide change is indeed pathogenic remains to be demonstrated. Two previously known heterozygous mutations of the PAX6 gene sequence were also detected in patients affected by aniridia: a de novo previously known nucleotide change, g.972C>T (Q179X), in exon 8, leading to a stop codon and a heterozygous g.555C>A (C40X) recurrent nonsense mutation in exon 5. No mutations were found in patients with Peters' anomaly. We identified three mutations associated with aniridia phenotypes (Q179X, C40X, and V48fsX53). The three other mutations reported here cause non-aniridia ocular phenotypes associated in some cases with neurological anomalies. The IVS2+9G>A nucleotide change was detected in a patient with a microphthalmia phenotype. The L46P mutation was detected in a family with microphthalmia, cataract, and nystagmus. This mutation is located in the DNA-binding paired-domain and the crystallographic representations of this mutation show that this mutation may affect the helix-turn-helix motif, and as a consequence the DNA-binding properties of the resulting mutated protein. Ser74 is located in the PAX6 PD linker region, essential for DNA recognition and DNA binding, and the side chain of the Ser74 contributes to DNA recognition by the linker domain through direct contacts. Crystallographic representations show that the S74G mutation results in no side chain and therefore perturbs the DNA-binding properties of PAX6. This study highlights the severity and diversity of the consequences of PAX6 mutations that appeared to result from the complexity of the PAX6 gene structure, and the numerous possibilities for DNA binding. This study emphasizes the fact that neurodevelopmental abnormalities may be caused by PAX6 mutations. The neuro-developmental abnormalities caused by PAX6 mutations are probably still overlooked in the current clinical examinations performed throughout the world in patients affected by PAX6 mutations.

  4. Three new PAX6 mutations including one causing an unusual ophthalmic phenotype associated with neurodevelopmental abnormalities

    PubMed Central

    Dansault, Anouk; David, Gabriel; Schwartz, Claire; Jaliffa, Carolina; Vieira, Véronique; de la Houssaye, Guillaume; Bigot, Karine; Catin, Françise; Tattu, Laurent; Chopin, Catherine; Halimi, Philippe; Roche, Olivier; Van Regemorter, Nicole; Munier, Francis; Schorderet, Daniel; Dufier, Jean-Louis; Marsac, Cécile; Ricquier, Daniel; Menasche, Maurice; Penfornis, Alfred

    2007-01-01

    Purpose The PAX6 gene was first described as a candidate for human aniridia. However, PAX6 expression is not restricted to the eye and it appears to be crucial for brain development. We studied PAX6 mutations in a large spectrum of patients who presented with aniridia phenotypes, Peters' anomaly, and anterior segment malformations associated or not with neurological anomalies. Methods Patients and related families were ophthalmologically phenotyped, and in some cases neurologically and endocrinologically examined. We screened the PAX6 gene by direct sequencing in three groups of patients: those affected by aniridia; those with diverse ocular manifestations; and those with Peters' anomaly. Two mutations were investigated by generating crystallographic representations of the amino acid changes. Results Three novel heterozygous mutations affecting three unrelated families were identified: the g.572T>C nucleotide change, located in exon 5, and corresponding to the Leucine 46 Proline amino-acid mutation (L46P); the g.655A>G nucleotide change, located in exon 6, and corresponding to the Serine 74 Glycine amino-acid mutation (S74G); and the nucleotide deletion 579delG del, located in exon 6, which induces a frameshift mutation leading to a stop codon (V48fsX53). The L46P mutation was identified in affected patients presenting bilateral microphthalmia, cataracts, and nystagmus. The S74G mutation was found in a large family that had congenital ocular abnormalities, diverse neurological manifestations, and variable cognitive impairments. The 579delG deletion (V48fsX53) caused in the affected members of the same family bilateral aniridia associated with congenital cataract, foveal hypolasia, and nystagmus. We also detected a novel intronic nucleotide change, IVS2+9G>A (very likely a mutation) in an apparently isolated patient affected by a complex ocular phenotype, characterized primarily by a bilateral microphthalmia. Whether this nucleotide change is indeed pathogenic remains to be demonstrated. Two previously known heterozygous mutations of the PAX6 gene sequence were also detected in patients affected by aniridia: a de novo previously known nucleotide change, g.972C>T (Q179X), in exon 8, leading to a stop codon and a heterozygous g.555C>A (C40X) recurrent nonsense mutation in exon 5. No mutations were found in patients with Peters' anomaly. Conclusions We identified three mutations associated with aniridia phenotypes (Q179X, C40X, and V48fsX53). The three other mutations reported here cause non-aniridia ocular phenotypes associated in some cases with neurological anomalies. The IVS2+9G>A nucleotide change was detected in a patient with a microphthalmia phenotype. The L46P mutation was detected in a family with microphthalmia, cataract, and nystagmus. This mutation is located in the DNA-binding paired-domain and the crystallographic representations of this mutation show that this mutation may affect the helix-turn-helix motif, and as a consequence the DNA-binding properties of the resulting mutated protein. Ser74 is located in the PAX6 PD linker region, essential for DNA recognition and DNA binding, and the side chain of the Ser74 contributes to DNA recognition by the linker domain through direct contacts. Crystallographic representations show that the S74G mutation results in no side chain and therefore perturbs the DNA-binding properties of PAX6. This study highlights the severity and diversity of the consequences of PAX6 mutations that appeared to result from the complexity of the PAX6 gene structure, and the numerous possibilities for DNA binding. This study emphasizes the fact that neurodevelopmental abnormalities may be caused by PAX6 mutations. The neuro-developmental abnormalities caused by PAX6 mutations are probably still overlooked in the current clinical examinations performed throughout the world in patients affected by PAX6 mutations. PMID:17417613

  5. Heparanase mRNA expression and point mutation in hepatocellular carcinoma

    PubMed Central

    Chen, Xiao-Peng; Liu, Yin-Bib; Rui, Jing; Peng, Shu-You; Peng, Cheng-Hong; Zhou, Zi-Yan; Shi, Liang-Hui; Shen, Hong-Wei; Xu, Bin

    2004-01-01

    AIM: To explore the expression of heparanase mRNA and point mutation in hepatocellular carcinoma (HCC). METHODS: Reverse transcription polymerase chain reaction was used to measure the expression of heparanase mRNA in the primary tumor tissues and surrounding liver tissues of 33 HCC patients. T-A cloning and sequencing were used to detect whether there was any mutation in the amplified PCR products. RESULTS: The expression of heparanase mRNA was positive in 16 primary tumor tissues of HCC, and the positive rate was 48.5%, which was significantly higher than that in the surrounding liver parenchyma (P < 0.01). The positive rate for heparanase gene in high-tendency to metastatic recurrence group (71.4%, 10/14) was obviously higher than that in low-tendency to metastatic recurrence group (31.6%, 6/19) (P = 0.023). The positive rate for heparanase gene in patients with metastatic recurrence during postoperative follow-up (78.6%, 11/14) was also significantly higher than that in those without metastatic recurrence (21.4%, 3/14) (P = 0.003). Sequence analysis of the HPA PCR products was made in 7 patients, and 2-point mutations were found in 4 patients, one of which was sense mutation, neither base insertion nor deletion was detected. The mutation rate was 57.1% (4/7). CONCLUSION: The expression rate of heparanase mRNA increases in HCC, and HPA mRNA may be one of the reliable markers for the metastatic activity gained by the liver tumor cells and could be used clinically in predicting metastatic recurrence of HCC. Point mutation may be one of the causes for enhanced heparanase mRNA expression. PMID:15334672

  6. Genomic diversity of the Avian leukosis virus subgroup J gp85 gene in different organs of an infected chicken.

    PubMed

    Meng, Fanfeng; Li, Xue; Fang, Jian; Gao, Yalong; Zhu, Lilong; Xing, Guiju; Tian, Fu; Gao, Yali; Dong, Xuan; Chang, Shuang; Zhao, Peng; Cui, Zhizhong; Liu, Zhihao

    2016-12-30

    The genomic diversity of Avian leukosis virus subgroup J (ALV-J) was investigated in an experimentally infected chicken. ALV-J variants in tissues from four different organs of the same bird were re-isolated in DF-1 cells, and their gp85 gene was amplified and cloned. Ten clones from each organ were sequenced and compared with the original inoculum strain, NX0101. The minimum homology of each organ ranged from 96.7 to 97.6%, and the lowest homology between organs was only 94.9%, which was much lower than the 99.1% homology of inoculum NX0101, indicating high diversity of ALV-J, even within the same bird. The gp85 mutations from the left kidney, which contained tumors, and the right kidney, which was tumor-free, had higher non-synonymous to synonymous mutation ratios than those in the tumor-bearing liver and lungs. Additionally, the mutational sites of gp85 gene in the kidney were similar, and they differed from those in the liver and lung, implying that organ- or tissue-specific selective pressure had a greater influence on the evolution of ALV-J diversity. These results suggest that more ALV-J clones from different organs and tissues should be sequenced and compared to better understand viral evolution and molecular epidemiology in the field.

  7. Technical approaches for mouse models of human disease.

    PubMed

    Justice, Monica J; Siracusa, Linda D; Stewart, A Francis

    2011-05-01

    The mouse is the leading organism for disease research. A rich resource of genetic variation occurs naturally in inbred and special strains owing to spontaneous mutations. However, one can also obtain desired gene mutations by using the following processes: targeted mutations that eliminate function in the whole organism or in a specific tissue; forward genetic screens using chemicals or transposons; or the introduction of exogenous transgenes as DNAs, bacterial artificial chromosomes (BACs) or reporter constructs. The mouse is the only mammal that provides such a rich resource of genetic diversity coupled with the potential for extensive genome manipulation, and is therefore a powerful application for modeling human disease. This poster review outlines the major genome manipulations available in the mouse that are used to understand human disease: natural variation, reverse genetics, forward genetics, transgenics and transposons. Each of these applications will be essential for understanding the diversity that is being discovered within the human population.

  8. Rare beneficial mutations can halt Muller's ratchet

    NASA Astrophysics Data System (ADS)

    Balick, Daniel; Goyal, Sidhartha; Jerison, Elizabeth; Neher, Richard; Shraiman, Boris; Desai, Michael

    2012-02-01

    In viral, bacterial, and other asexual populations, the vast majority of non-neutral mutations are deleterious. This motivates the application of models without beneficial mutations. Here we show that the presence of surprisingly few compensatory mutations halts fitness decay in these models. Production of deleterious mutations is balanced by purifying selection, stabilizing the fitness distribution. However, stochastic vanishing of fitness classes can lead to slow fitness decay (i.e. Muller's ratchet). For weakly deleterious mutations, production overwhelms purification, rapidly decreasing population fitness. We show that when beneficial mutations are introduced, a stable steady state emerges in the form of a dynamic mutation-selection balance. We argue this state is generic for all mutation rates and population sizes, and is reached as an end state as genomes become saturated by either beneficial or deleterious mutations. Assuming all mutations have the same magnitude selective effect, we calculate the fraction of beneficial mutations necessary to maintain the dynamic balance. This may explain the unexpected maintenance of asexual genomes, as in mitochondria, in the presence of selection. This will affect in the statistics of genetic diversity in these populations.

  9. Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased NaV1.5 current and mechanosensitivity.

    PubMed

    Strege, Peter R; Mazzone, Amelia; Bernard, Cheryl E; Neshatian, Leila; Gibbons, Simon J; Saito, Yuri A; Tester, David J; Calvert, Melissa L; Mayer, Emeran A; Chang, Lin; Ackerman, Michael J; Beyder, Arthur; Farrugia, Gianrico

    2018-04-01

    The SCN5A-encoded voltage-gated mechanosensitive Na + channel Na V 1.5 is expressed in human gastrointestinal smooth muscle cells and interstitial cells of Cajal. Na V 1.5 contributes to smooth muscle electrical slow waves and mechanical sensitivity. In predominantly Caucasian irritable bowel syndrome (IBS) patient cohorts, 2-3% of patients have SCN5A missense mutations that alter Na V 1.5 function and may contribute to IBS pathophysiology. In this study we examined a racially and ethnically diverse cohort of IBS patients for SCN5A missense mutations, compared them with IBS-negative controls, and determined the resulting Na V 1.5 voltage-dependent and mechanosensitive properties. All SCN5A exons were sequenced from somatic DNA of 252 Rome III IBS patients with diverse ethnic and racial backgrounds. Missense mutations were introduced into wild-type SCN5A by site-directed mutagenesis and cotransfected with green fluorescent protein into HEK-293 cells. Na V 1.5 voltage-dependent and mechanosensitive functions were studied by whole cell electrophysiology with and without shear force. Five of 252 (2.0%) IBS patients had six rare SCN5A mutations that were absent in 377 IBS-negative controls. Six of six (100%) IBS-associated Na V 1.5 mutations had voltage-dependent gating abnormalities [current density reduction (R225W, R433C, R986Q, and F1293S) and altered voltage dependence (R225W, R433C, R986Q, G1037V, and F1293S)], and at least one kinetic parameter was altered in all mutations. Four of six (67%) IBS-associated SCN5A mutations (R225W, R433C, R986Q, and F1293S) resulted in altered Na V 1.5 mechanosensitivity. In this racially and ethnically diverse cohort of IBS patients, we show that 2% of IBS patients harbor SCN5A mutations that are absent in IBS-negative controls and result in Na V 1.5 channels with abnormal voltage-dependent and mechanosensitive function. NEW & NOTEWORTHY The voltage-gated Na + channel Na V 1.5 contributes to smooth muscle physiology and electrical slow waves. In a racially and ethnically mixed irritable bowel syndrome cohort, 2% had mutations in the Na V 1.5 gene SCN5A. These mutations were absent in irritable bowel syndrome-negative controls. Most mutant Na V 1.5 channels were loss of function in voltage dependence or mechanosensitivity.

  10. Novel MSH2 splice-site mutation in a young patient with Lynch syndrome

    PubMed Central

    Liccardo, Raffaella; De Rosa, Marina; Izzo, Paola; Duraturo, Francesca

    2018-01-01

    Lynch Syndrome (LS) is associated with germline mutations in one of the mismatch repair (MMR) genes, including MutL homolog 1 (MLH1), MutS homolog 2 (MSH2), MSH6, PMS1 homolog 2, mismatch repair system component (PMS2), MLH3 and MSH3. The mutations identified in MMR genes are point mutations or large rearrangements. The point mutations are certainly pathogenetic whether they determine formation of truncated protein. The mutations that arise in splice sites are classified as ‘likely pathogenic’ variants. In the present study, a novel splicing mutation was identified, (named c.212-1g>a), in the MSH2 gene. This novel mutation in the consensus splice site of MSH2 exon 2 leads to the loss of the canonical splice site, without skipping in-frame of exon 2; also with the formation of 2 aberrant transcripts, due to the activation of novel splice sites in exon 2. This mutation was identified in a young patient who developed colon cancer at the age of 26 years and their belongs to family that met the ‘Revised Amsterdam Criteria’. The present study provided insight into the molecular mechanism determining the pathogenicity of this novel MSH2 mutation and it reaffirms the importance of genetic testing in LS. PMID:29568967

  11. The complex and specific pMHC interactions with diverse HIV-1 TCR clonotypes reveal a structural basis for alterations in CTL function

    NASA Astrophysics Data System (ADS)

    Xia, Zhen; Chen, Huabiao; Kang, Seung-Gu; Huynh, Tien; Fang, Justin W.; Lamothe, Pedro A.; Walker, Bruce D.; Zhou, Ruhong

    2014-02-01

    Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function.

  12. Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks.

    PubMed

    Billiard, Sylvain; Ferrière, Régis; Méléard, Sylvie; Tran, Viet Chi

    2015-11-01

    How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. Population dynamics are driven by births and deaths, mutations at birth, and competition between individuals. Trait values influence ecological processes (demographic events, competition), and competition generates selection on trait variation, thus closing the eco-evolutionary feedback loop. The demographic effects of the trait are also expected to influence the generation and maintenance of neutral variation. We consider a large population limit with rare mutation, under the assumption that the neutral marker mutates faster than the trait under selection. We prove the convergence of the stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process (SFVP). When restricted to the trait space this process is the Trait Substitution Sequence first introduced by Metz et al. (1996). During the invasion of a favorable mutation, a genetical bottleneck occurs and the marker associated with this favorable mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how the neutral diversity is restored afterwards, we obtain the condition for a time-scale separation; under this condition, we show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions. We discuss the implications of the SFVP for our understanding of the dynamics of neutral variation under eco-evolutionary feedbacks and illustrate the main phenomena with simulations. Our results highlight the joint importance of mutations, ecological parameters, and trait values in the restoration of neutral diversity after a selective sweep.

  13. Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.

    PubMed

    Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei

    2009-06-26

    Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.

  14. Development and validation of a whole-exome sequencing test for simultaneous detection of point mutations, indels and copy-number alterations for precision cancer care

    PubMed Central

    Rennert, Hanna; Eng, Kenneth; Zhang, Tuo; Tan, Adrian; Xiang, Jenny; Romanel, Alessandro; Kim, Robert; Tam, Wayne; Liu, Yen-Chun; Bhinder, Bhavneet; Cyrta, Joanna; Beltran, Himisha; Robinson, Brian; Mosquera, Juan Miguel; Fernandes, Helen; Demichelis, Francesca; Sboner, Andrea; Kluk, Michael; Rubin, Mark A; Elemento, Olivier

    2016-01-01

    We describe Exome Cancer Test v1.0 (EXaCT-1), the first New York State-Department of Health-approved whole-exome sequencing (WES)-based test for precision cancer care. EXaCT-1 uses HaloPlex (Agilent) target enrichment followed by next-generation sequencing (Illumina) of tumour and matched constitutional control DNA. We present a detailed clinical development and validation pipeline suitable for simultaneous detection of somatic point/indel mutations and copy-number alterations (CNAs). A computational framework for data analysis, reporting and sign-out is also presented. For the validation, we tested EXaCT-1 on 57 tumours covering five distinct clinically relevant mutations. Results demonstrated elevated and uniform coverage compatible with clinical testing as well as complete concordance in variant quality metrics between formalin-fixed paraffin embedded and fresh-frozen tumours. Extensive sensitivity studies identified limits of detection threshold for point/indel mutations and CNAs. Prospective analysis of 337 cancer cases revealed mutations in clinically relevant genes in 82% of tumours, demonstrating that EXaCT-1 is an accurate and sensitive method for identifying actionable mutations, with reasonable costs and time, greatly expanding its utility for advanced cancer care. PMID:28781886

  15. Mapping of protein- and chromatin-interactions at the nuclear lamina.

    PubMed

    Kubben, Nard; Voncken, Jan Willem; Misteli, Tom

    2010-01-01

    The nuclear envelope and the lamina define the nuclear periphery and are implicated in many nuclear processes including chromatin organization, transcription and DNA replication. Mutations in lamin A proteins, major components of the lamina, interfere with these functions and cause a set of phenotypically diverse diseases referred to as laminopathies. The phenotypic diversity of laminopathies is thought to be the result of alterations in specific protein- and chromatin interactions due to lamin A mutations. Systematic identification of lamin A-protein and -chromatin interactions will be critical to uncover the molecular etiology of laminopathies. Here we summarize and critically discuss recent technology to analyze lamina-protein and-chromatin interactions.

  16. Dynamic of mutational events in variable number tandem repeats of Escherichia coli O157:H7.

    PubMed

    Bustamante, A V; Sanso, A M; Segura, D O; Parma, A E; Lucchesi, P M A

    2013-01-01

    VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10(-05) to 1.8 × 10(-03) mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10(-03) mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study.

  17. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  18. A Library of Infectious Hepatitis C Viruses with Engineered Mutations in the E2 Gene Reveals Growth-Adaptive Mutations That Modulate Interactions with Scavenger Receptor Class B Type I.

    PubMed

    Zuiani, Adam; Chen, Kevin; Schwarz, Megan C; White, James P; Luca, Vincent C; Fremont, Daved H; Wang, David; Evans, Matthew J; Diamond, Michael S

    2016-12-01

    While natural hepatitis C virus (HCV) infection results in highly diverse quasispecies of related viruses over time, mutations accumulate more slowly in tissue culture, in part because of the inefficiency of replication in cells. To create a highly diverse population of HCV particles in cell culture and identify novel growth-enhancing mutations, we engineered a library of infectious HCV with all codons represented at most positions in the ectodomain of the E2 gene. We identified many putative growth-adaptive mutations and selected nine highly represented E2 mutants for further study: Q412R, T416R, S449P, T563V, A579R, L619T, V626S, K632T, and L644I. We evaluated these mutants for changes in particle-to-infectious-unit ratio, sensitivity to neutralizing antibody or CD81 large extracellular loop (CD81-LEL) inhibition, entry factor usage, and buoyant density profiles. Q412R, T416R, S449P, T563V, and L619T were neutralized more efficiently by anti-E2 antibodies and T416R, T563V, and L619T by CD81-LEL. Remarkably, all nine variants showed reduced dependence on scavenger receptor class B type I (SR-BI) for infection. This shift from SR-BI usage did not correlate with a change in the buoyant density profiles of the variants, suggesting an altered E2-SR-BI interaction rather than changes in the virus-associated lipoprotein-E2 interaction. Our results demonstrate that residues influencing SR-BI usage are distributed across E2 and support the development of large-scale mutagenesis studies to identify viral variants with unique functional properties. Characterizing variant viruses can reveal new information about the life cycle of HCV and the roles played by different viral genes. However, it is difficult to recapitulate high levels of diversity in the laboratory because of limitations in the HCV culture system. To overcome this limitation, we engineered a library of mutations into the E2 gene in the context of an infectious clone of the virus. We used this library of viruses to identify nine mutations that enhance the growth rate of HCV. These growth-enhancing mutations reduced the dependence on a key entry receptor, SR-BI. By generating a highly diverse library of infectious HCV, we mapped regions of the E2 protein that influence a key virus-host interaction and provide proof of principle for the generation of large-scale mutant libraries for the study of pathogens with great sequence variability. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions | Office of Cancer Genomics

    Cancer.gov

    We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Children’s Oncology Group (COG) AML trials. The COG–National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases.

  20. Genetic screening of non-classic CAH females with hyperandrogenemia identifies a novel CYP11B1 gene mutation.

    PubMed

    Shammas, Christos; Byrou, Stefania; Phelan, Marie M; Toumba, Meropi; Stylianou, Charilaos; Skordis, Nicos; Neocleous, Vassos; Phylactou, Leonidas A

    2016-04-01

    Congenital adrenal hyperplasia (CAH) is an endocrine autosomal recessive disorder with various symptoms of diverse severity. Mild hyperandrogenemia is the most commonclinical feature in non-classic CAH patients and 95% of the cases are identified by mutations in the CYP21A2 gene. In the present study, the second most common cause for non-classic CAH (NC-CAH), 11β-hydroxylase deficiency due to mutations in the CYP11B1 gene, is investigated. Screening of the CYP21A2 and CYP11B1 genes by direct sequencing was carried out for the detection of possible genetic defects in patients with suspected CAH. It wasobserved that CYP11B1 variants co-exist only in rare cases along with mutations in CYP21A2 in patients clinically diagnosed with CAH. A total of 23 NC-CAH female patients out of 75 were identified with only one mutation in the CYP21A2 gene. The novel CYP11B1 gene mutation, p.Val484Asp, was identified in a patient with CAH in the heterozygous state. The structural characterization of the novel p.Val484Asp was found to likely cause distortion of the surrounding beta sheet and indirect destabilization of the cavity that occurs on the opposite face of the structural elements, leading to partial impairment of the enzymatic activity. CYP21A2 gene mutations are the most frequent genetic defects in cases of NC-CAH even when these patients are in the heterozygous state. These mutations have a diverse phenotype giving rise to a variable extent of cortisol synthesis impairment; it is also clear that CYP11B1 mutants are a rare type of defects causing CAH.

  1. Discordance of somatic mutations between Asian and Caucasian patient populations with gastric cancer

    PubMed Central

    Jia, Feifei; Teer, Jamie K.; Knepper, Todd C.; Lee, Jae K.; Zhou, Hong-Hao; He, Yi-Jing; McLeod, Howard L.

    2017-01-01

    Background Differences in response to cancer treatments have been observed among racially and ethnically diverse gastric cancer patient populations. In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. Mapping driver gene mutations for the gastric cancer patient population as a whole has significant potential to advance precision therapy. Methods Gastric cancer patient cases with sequencing data (total n=473) were obtained from The Cancer Genome Atlas (TCGA; n=295), Moffitt Cancer Center Total Cancer Care™ (TCC; n=33), and three published studies (n=145). Relevant somatic mutation frequency data were obtained from cBioPortal, TCC database and in-house analysis tool, and relevant publication Results We have found somatic mutation rates of several driver genes significantly vary between gastric cancer patients of Asian and Caucasian descent, with substantial variation across different geographic regions. Non-parametric statistical tests were performed to examine significant differences in protein-altering somatic mutations between Asian and Caucasian gastric cancer patient groups. Frequencies of somatic mutations of 5 genes were APC(Asian: Caucasian 6.06% vs. 14.40%, p=0.0076) ARIDIA(20.7% vs. 32.1%, p=0.01) KMT2A(4.04% vs. 12.35%, p=0.003) PIK3CA(9.6% vs. 18.52%, p=0.01) PTEN(2.52% vs. 9.05%, p=0.008), showing significant differences between Asian and Caucasian gastric cancer patients. Conclusions Our study has found significant differences in protein-altering somatic mutation frequencies in diverse geographic populations. In particular, we found that the somatic patterns may offer better insight and important opportunities for both targeted drug development and precision therapeutic strategies between Asian and Caucasian gastric cancer patients. PMID:28039579

  2. Discordance of Somatic Mutations Between Asian and Caucasian Patient Populations with Gastric Cancer.

    PubMed

    Jia, Feifei; Teer, Jamie K; Knepper, Todd C; Lee, Jae K; Zhou, Hong-Hao; He, Yi-Jing; McLeod, Howard L

    2017-04-01

    Differences in response to cancer treatments have been observed among racially and ethnically diverse gastric cancer (GC) patient populations. In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. Mapping driver gene mutations for the GC patient population as a whole has significant potential to advance precision therapy. GC patients with sequencing data (N = 473) were obtained from The Cancer Genome Atlas (TCGA; n = 295), Moffitt Cancer Center Total Cancer Care™ (TCC; n = 33), and three published studies (n = 145). In addition, relevant somatic mutation frequency data were obtained from cBioPortal, the TCC database, and an in-house analysis tool, as well as relevant publications. We found that the somatic mutation rates of several driver genes vary significantly between GC patients of Asian and Caucasian descent, with substantial variation across different geographic regions. Non-parametric statistical tests were performed to examine the significant differences in protein-altering somatic mutations between Asian and Caucasian GC patient groups. The frequencies of somatic mutations of five genes were: APC (Asian: Caucasian 6.06 vs. 14.40%, p = 0.0076), ARIDIA (20.7 vs. 32.1%, p = 0.01), KMT2A (4.04 vs. 12.35%, p = 0.003), PIK3CA (9.6 vs. 18.52%, p = 0.01), and PTEN (2.52 vs. 9.05%, p = 0.008), showing significant differences between Asian and Caucasian GC patients. Our study found significant differences in protein-altering somatic mutation frequencies in diverse geographic populations. In particular, we found that the somatic patterns may offer better insight and important opportunities for both targeted drug development and precision therapeutic strategies between Asian and Caucasian GC patients.

  3. Dietary intake and breast cancer among carriers and noncarriers of BRCA mutations in the Korean Hereditary Breast Cancer Study.

    PubMed

    Ko, Kwang-Pil; Kim, Sung-Won; Ma, Sung Hyun; Park, Boyoung; Ahn, Younjhin; Lee, Jong Won; Lee, Min Hyuk; Kang, Eunyoung; Kim, Lee Su; Jung, Yongsik; Cho, Young Up; Lee, ByoungKil; Lin, Jennifer H; Park, Sue K

    2013-12-01

    Soy intake is associated with a lower risk of breast cancer. However, it is unclear whether the same reduction in risk associated with high soy intake is also applicable to familial or genetic breast cancer. The aim of this study was to assess the dietary factors among carriers and noncarriers of BRCA mutations in the Korean Hereditary Breast Cancer Study (KOHBRA). The KOHBRA Study is an ongoing project composed of affected breast cancer patients and familial members of breast cancer cases with BRCA mutations. To assess the association between dietary diversity and breast cancer risk, an HR was estimated by comparing affected subjects with their familial nonaffected members. To assess the interaction between the combination of BRCA mutation and diet diversity, the case-only OR (COR) was estimated by comparing BRCA mutation carriers and noncarriers only in affected subjects. Soy product intake was associated with a lower risk of breast cancer in carriers (HR: 0.39; 95% CI: 0.19, 0.79 for the highest quartile). The highest quartile of meat intake was associated with a higher risk of breast cancer regardless of BRCA mutation in carriers (HR: 1.97; 95% CI: 1.13, 3.44) and noncarriers (95% CI: 1.41; 1.12, 1.78). The associations of meat intake and soybean intake for breast cancer were more prominent in BRCA2 mutation carriers. In the analysis with only cases, the highest quartile of soy intake, but not meat intake, was associated with BRCA-related breast cancer (COR: 0.57; 95% CI: 0.36, 0.91). Our study suggests that soy product consumption is associated with lower breast cancer risk and it had an interaction with BRCA mutation.

  4. Within-host whole genome analysis of an antibiotic resistant Pseudomonas aeruginosa strain sub-type in cystic fibrosis.

    PubMed

    Sherrard, Laura J; Tai, Anna S; Wee, Bryan A; Ramsay, Kay A; Kidd, Timothy J; Ben Zakour, Nouri L; Whiley, David M; Beatson, Scott A; Bell, Scott C

    2017-01-01

    A Pseudomonas aeruginosa AUST-02 strain sub-type (M3L7) has been identified in Australia, infects the lungs of some people with cystic fibrosis and is associated with antibiotic resistance. Multiple clonal lineages may emerge during treatment with mutations in chromosomally encoded antibiotic resistance genes commonly observed. Here we describe the within-host diversity and antibiotic resistance of M3L7 during and after antibiotic treatment of an acute pulmonary exacerbation using whole genome sequencing and show both variation and shared mutations in important genes. Eleven isolates from an M3L7 population (n = 134) isolated over 3 months from an individual with cystic fibrosis underwent whole genome sequencing. A phylogeny based on core genome SNPs identified three distinct phylogenetic groups comprising two groups with higher rates of mutation (hypermutators) and one non-hypermutator group. Genomes were screened for acquired antibiotic resistance genes with the result suggesting that M3L7 resistance is principally driven by chromosomal mutations as no acquired mechanisms were detected. Small genetic variations, shared by all 11 isolates, were found in 49 genes associated with antibiotic resistance including frame-shift mutations (mexA, mexT), premature stop codons (oprD, mexB) and mutations in quinolone-resistance determining regions (gyrA, parE). However, whole genome sequencing also revealed mutations in 21 genes that were acquired following divergence of groups, which may also impact the activity of antibiotics and multi-drug efflux pumps. Comparison of mutations with minimum inhibitory concentrations of anti-pseudomonal antibiotics could not easily explain all resistance profiles observed. These data further demonstrate the complexity of chronic and antibiotic resistant P. aeruginosa infection where a multitude of co-existing genotypically diverse sub-lineages might co-exist during and after intravenous antibiotic treatment.

  5. The induction of mutation and recombination following UV irradiation during meiosis in Saccharomyces cerevisiae.

    PubMed

    Kelly, S L; Parry, J M

    1983-03-01

    Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment to recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.

  6. Exome sequencing identifies titin mutations causing hereditary myopathy with early respiratory failure (HMERF) in families of diverse ethnic origins.

    PubMed

    Toro, Camilo; Olivé, Montse; Dalakas, Marinos C; Sivakumar, Kumaraswami; Bilbao, Juan M; Tyndel, Felix; Vidal, Noemí; Farrero, Eva; Sambuughin, Nyamkhishig; Goldfarb, Lev G

    2013-03-20

    Hereditary myopathy with early respiratory failure (HMERF) was described in several North European families and recently linked to a titin gene (TTN) mutation. We independently studied HMERF-like diseases with the purpose to identify the cause, refine diagnostic criteria, and estimate the frequency of this disease among myopathy patients of various ethnic origins. Whole exome sequencing analysis was carried out in a large U.S. family that included seven members suffering from skeletal muscle weakness and respiratory failure. Subsequent mutation screening was performed in further 45 unrelated probands with similar phenotypes. Studies included muscle strength evaluation, nerve conduction studies and concentric needle EMG, respiratory function test, cardiologic examination, and muscle biopsy. A novel TTN p.Gly30150Asp mutation was identified in the highly conserved A-band of titin that co-segregated with the disease in the U.S. family. Screening of 45 probands initially diagnosed as myofibrillar myopathy (MFM) but excluded based on molecular screening for the known MFM genes led to the identification of a previously reported TTN p.Cys30071Arg mutation in one patient. This same mutation was also identified in a patient with suspected HMERF. The p.Gly30150Asp and p.Cys30071Arg mutations are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. Missense mutations in TTN are the cause of HMERF in families of diverse origins. A comparison of phenotypic features of HMERF caused by the three known TTN mutations in various populations allowed to emphasize distinct clinical/pathological features that can serve as the basis for diagnosis. The newly identified p.Gly30150Asp and the p.Cys30071Arg mutation are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin.

  7. The landscape of cancer genes and mutational processes in breast cancer

    PubMed Central

    Stephens, Philip J.; Tarpey, Patrick S.; Davies, Helen; Loo, Peter Van; Greenman, Chris; Wedge, David C.; Nik-Zainal, Serena; Martin, Sancha; Varela, Ignacio; Bignell, Graham R.; Yates, Lucy R.; Papaemmanuil, Elli; Beare, David; Butler, Adam; Cheverton, Angela; Gamble, John; Hinton, Jonathan; Jia, Mingming; Jayakumar, Alagu; Jones, David; Latimer, Calli; Lau, King Wai; McLaren, Stuart; McBride, David J.; Menzies, Andrew; Mudie, Laura; Raine, Keiran; Rad, Roland; Chapman, Michael Spencer; Teague, Jon; Easton, Douglas; Langerød, Anita; OSBREAC; Lee, Ming Ta Michael; Shen, Chen-Yang; Tee, Benita Tan Kiat; Huimin, Bernice Wong; Broeks, Annegien; Vargas, Ana Cristina; Turashvili, Gulisa; Martens, John; Fatima, Aquila; Miron, Penelope; Chin, Suet-Feung; Thomas, Gilles; Boyault, Sandrine; Mariani, Odette; Lakhani, Sunil R.; van de Vijver, Marc; van ’t Veer, Laura; Foekens, John; Desmedt, Christine; Sotiriou, Christos; Tutt, Andrew; Caldas, Carlos; Reis-Filho, Jorge S.; Aparicio, Samuel A. J. R.; Salomon, Anne Vincent; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Campbell, Peter J.; Futreal, P. Andrew; Stratton, Michael R.

    2012-01-01

    All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis1, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease. PMID:22722201

  8. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    PubMed Central

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  9. A Mitocentric View of Parkinson’s Disease

    PubMed Central

    Haelterman, Nele A.; Yoon, Wan Hee; Sandoval, Hector; Jaiswal, Manish; Shulman, Joshua M.; Bellen, Hugo J.

    2015-01-01

    Parkinson’s disease (PD) is a common neurodegenerative disease, yet the underlying causative molecular mechanisms are ill defined. Numerous observations based on drug studies and mutations in genes that cause PD point to a complex set of rather subtle mitochondrial defects that may be causative. Indeed, intensive investigation of these genes in model organisms has revealed roles in the electron transport chain, mitochondrial protein homeostasis, mitophagy, and the fusion and fission of mitochondria. Here, we attempt to synthesize results from experimental studies in diverse systems to define the precise function of these PD genes, as well as their interplay with other genes that affect mitochondrial function. We propose that subtle mitochondrial defects in combination with other insults trigger the onset and progression of disease, in both familial and idiopathic PD. PMID:24821430

  10. Population genomics of early events in the ecological differentiation of bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, Jesse B.; Friedman, Jonatan; Cordero, Otto X.

    Genetic exchange is common among bacteria, but its effect on population diversity during ecological differentiation remains controversial. A fundamental question is whether advantageous mutations lead to selection of clonal genomes or, as in sexual eukaryotes, sweep through populations on their own. Here, we show that in two recently diverged populations of ocean bacteria, ecological differentiation has occurred akin to a sexual mechanism: A few genome regions have swept through subpopulations in a habitat-specific manner, accompanied by gradual separation of gene pools as evidenced by increased habitat specificity of the most recent recombinations. These findings reconcile previous, seemingly contradictory empirical observationsmore » of the genetic structure of bacterial populations and point to a more unified process of differentiation in bacteria and sexual eukaryotes than previously thought.« less

  11. Algorithm to find distant repeats in a single protein sequence

    PubMed Central

    Banerjee, Nirjhar; Sarani, Rangarajan; Ranjani, Chellamuthu Vasuki; Sowmiya, Govindaraj; Michael, Daliah; Balakrishnan, Narayanasamy; Sekar, Kanagaraj

    2008-01-01

    Distant repeats in protein sequence play an important role in various aspects of protein analysis. A keen analysis of the distant repeats would enable to establish a firm relation of the repeats with respect to their function and three-dimensional structure during the evolutionary process. Further, it enlightens the diversity of duplication during the evolution. To this end, an algorithm has been developed to find all distant repeats in a protein sequence. The scores from Point Accepted Mutation (PAM) matrix has been deployed for the identification of amino acid substitutions while detecting the distant repeats. Due to the biological importance of distant repeats, the proposed algorithm will be of importance to structural biologists, molecular biologists, biochemists and researchers involved in phylogenetic and evolutionary studies. PMID:19052663

  12. Mediterranean Founder Mutation Database (MFMD): Taking Advantage from Founder Mutations in Genetics Diagnosis, Genetic Diversity and Migration History of the Mediterranean Population.

    PubMed

    Charoute, Hicham; Bakhchane, Amina; Benrahma, Houda; Romdhane, Lilia; Gabi, Khalid; Rouba, Hassan; Fakiri, Malika; Abdelhak, Sonia; Lenaers, Guy; Barakat, Abdelhamid

    2015-11-01

    The Mediterranean basin has been the theater of migration crossroads followed by settlement of several societies and cultures in prehistoric and historical times, with important consequences on genetic and genomic determinisms. Here, we present the Mediterranean Founder Mutation Database (MFMD), established to offer web-based access to founder mutation information in the Mediterranean population. Mutation data were collected from the literature and other online resources and systematically reviewed and assembled into this database. The information provided for each founder mutation includes DNA change, amino-acid change, mutation type and mutation effect, as well as mutation frequency and coalescence time when available. Currently, the database contains 383 founder mutations found in 210 genes related to 219 diseases. We believe that MFMD will help scientists and physicians to design more rapid and less expensive genetic diagnostic tests. Moreover, the coalescence time of founder mutations gives an overview about the migration history of the Mediterranean population. MFMD can be publicly accessed from http://mfmd.pasteur.ma. © 2015 WILEY PERIODICALS, INC.

  13. Spontaneous Mutation Rate in the Smallest Photosynthetic Eukaryotes

    PubMed Central

    Krasovec, Marc; Eyre-Walker, Adam; Sanchez-Ferandin, Sophie

    2017-01-01

    Abstract Mutation is the ultimate source of genetic variation, and knowledge of mutation rates is fundamental for our understanding of all evolutionary processes. High throughput sequencing of mutation accumulation lines has provided genome wide spontaneous mutation rates in a dozen model species, but estimates from nonmodel organisms from much of the diversity of life are very limited. Here, we report mutation rates in four haploid marine bacterial-sized photosynthetic eukaryotic algae; Bathycoccus prasinos, Ostreococcus tauri, Ostreococcus mediterraneus, and Micromonas pusilla. The spontaneous mutation rate between species varies from μ = 4.4 × 10−10 to 9.8 × 10−10 mutations per nucleotide per generation. Within genomes, there is a two-fold increase of the mutation rate in intergenic regions, consistent with an optimization of mismatch and transcription-coupled DNA repair in coding sequences. Additionally, we show that deviation from the equilibrium GC content increases the mutation rate by ∼2% to ∼12% because of a GC bias in coding sequences. More generally, the difference between the observed and equilibrium GC content of genomes explains some of the inter-specific variation in mutation rates. PMID:28379581

  14. Reduced noise susceptibility in littermate offspring from heterozygous animals of the German waltzing guinea pig.

    PubMed

    Skjönsberg, Åsa; Mannström, Paula

    2015-07-08

    The German waltzing guinea pig is a spontaneously mutated strain with severe auditory and vestibular impairment caused by a so far unknown genetic mutation. The animals are born deaf and show a circling behavior. The heterozygote animals of this guinea pig strain have functionally normal hearing and balance. However, these animals have, in earlier studies, shown an increased resistance to noise compared with normal wild-type guinea pigs. In the present study, we explored the functional hearing with auditory brainstem response thresholds before and at different time points after noise exposure. Symptom-free littermates from heterozygote couples of the German waltzing guinea pigs were exclusively used for the study, which, after the hearing test, were sent back for breeding to confirm their genotype (i.e. heterozygote or normal). The aim of this paper was to ascertain that the previously shown reduced susceptibility to noise trauma in the heterozygote animals of the German waltzing guinea pig was also evident when littermates were used as control animals. The findings are important for further analysis of the heterozygote animals of this strain and for future investigations of the underlying mechanisms behind the diverse susceptibility to exposures of loud sound.

  15. On the behavior of the leading eigenvalue of Eigen's evolutionary matrices.

    PubMed

    Semenov, Yuri S; Bratus, Alexander S; Novozhilov, Artem S

    2014-12-01

    We study general properties of the leading eigenvalue w¯(q) of Eigen's evolutionary matrices depending on the replication fidelity q. This is a linear algebra problem that has various applications in theoretical biology, including such diverse fields as the origin of life, evolution of cancer progression, and virus evolution. We present the exact expressions for w¯(q),w¯(')(q),w¯('')(q) for q = 0, 0.5, 1 and prove that the absolute minimum of w¯(q), which always exists, belongs to the interval (0, 0.5]. For the specific case of a single peaked landscape we also find lower and upper bounds on w¯(q), which are used to estimate the critical mutation rate, after which the distribution of the types of individuals in the population becomes almost uniform. This estimate is used as a starting point to conjecture another estimate, valid for any fitness landscape, and which is checked by numerical calculations. The last estimate stresses the fact that the inverse dependence of the critical mutation rate on the sequence length is not a generally valid fact. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Adenylosuccinate lyase (ADSL) and infantile autism: Absence of previously reported point mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fon, E.A.; Sarrazin, J.; Rouleau, G.A.

    Autism is a heterogeneous neuropsychiatric syndrome of unknown etiology. There is evidence that a deficiency in the enzyme adenylosuccinate lyase (ADSL), essential for de novo purine biosynthesis, could be involved in the pathogenesis of certain cases. A point mutation in the ADSL gene, resulting in a predicted serine-to-proline substitution and conferring structural instability to the mutant enzyme, has been reported previously in 3 affected siblings. In order to determine the prevalence of the mutation, we PCR-amplified the exon spanning the site of this mutation from the genomic DNA of patients fulfilling DSM-III-R criteria for autistic disorder. None of the 119more » patients tested were found to have this mutation. Furthermore, on preliminary screening using single-strand conformation polymorphism (SSCP), no novel mutations were detected in the coding sequence of four ADSL exons, spanning approximately 50% of the cDNA. In light of these findings, it appears that mutations in the ADSL gene represent a distinctly uncommon cause of autism. 12 refs., 2 figs.« less

  17. Quantitative Proteomics of Human Fibroblasts with I1061T Mutation in Niemann–Pick C1 (NPC1) Protein Provides Insights into the Disease Pathogenesis*

    PubMed Central

    Rauniyar, Navin; Subramanian, Kanagaraj; Lavallée-Adam, Mathieu; Martínez-Bartolomé, Salvador; Balch, William E.; Yates, John R.

    2015-01-01

    Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in the late endosomal/lysosomal compartments. Mutations in the NPC1 protein are implicated in 95% of patients with NPC disease. The most prevalent mutation is the missense mutation I1061T that occurs in ∼15–20% of the disease alleles. In our study, an isobaric labeling-based quantitative analysis of proteome of NPC1I1061T primary fibroblasts when compared with wild-type cells identified 281 differentially expressed proteins based on stringent data analysis criteria. Gene ontology enrichment analysis revealed that these proteins play important roles in diverse cellular processes such as protein maturation, energy metabolism, metabolism of reactive oxygen species, antioxidant activity, steroid metabolism, lipid localization, and apoptosis. The relative expression level of a subset of differentially expressed proteins (TOR4A, DHCR24, CLGN, SOD2, CHORDC1, HSPB7, and GAA) was independently and successfully substantiated by Western blotting. We observed that treating NPC1I1061T cells with four classes of seven different compounds that are potential NPC drugs increased the expression level of SOD2 and DHCR24. We have also shown an abnormal accumulation of glycogen in NPC1I1061T fibroblasts possibly triggered by defective processing of lysosomal alpha-glucosidase. Our study provides a starting point for future more focused investigations to better understand the mechanisms by which the reported dysregulated proteins triggers the pathological cascade in NPC, and furthermore, their effect upon therapeutic interventions. PMID:25873482

  18. Multiple cis-acting elements involved in up-regulation of a cytochrome P450 gene conferring resistance to deltamethrin in smal brown planthopper, Laodelphax striatellus (Fallén).

    PubMed

    Pu, Jian; Sun, Haina; Wang, Jinda; Wu, Min; Wang, Kangxu; Denholm, Ian; Han, Zhaojun

    2016-11-01

    As well as arising from single point mutations in binding sites or detoxifying enzymes, it is likely that insecticide resistance mechanisms are frequently controlled by multiple genetic factors, resulting in resistance being inherited as a quantitative trait. However, empirical evidence for this is still rare. Here we analyse the causes of up-regulation of CYP6FU1, a monoxygenase implicated in resistance to deltamethrin in the rice pest Laodelphax striatellus. The 5'-flanking region of this gene was cloned and sequenced from individuals of a susceptible and a resistant strain. A luminescent reporter assay was used to evaluate different 5'-flanking regions and their fragments for promoter activity. Mutations enhancing promoter activity in various fragments were characterized, singly and in combination, by site mutation recovery. Nucleotide diversity in flanking sequences was greatly reduced in deltamethrin-resistant insects compared to susceptible ones. Phylogenetic sequence analysis found that CYP6FU1 had five different types of 5'-flanking region. All five types were present in a susceptible strain but only a single type showing the highest promoter activity was present in a resistant strain. Four cis-acting elements were identified whose influence on up-regulation was much more pronounced in combination than when present singly. Of these, two were new transcription factor (TF) binding sites produced by mutations, another one was also a new TF binding site alternated from an existing one, and the fourth was a unique transcription start site. These results demonstrate that multiple cis-acting elements are involved in up-regulating CYP6FU1 to generate a resistance phenotype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Zinc finger point mutations within the WT1 gene in Wilms tumor patients.

    PubMed Central

    Little, M H; Prosser, J; Condie, A; Smith, P J; Van Heyningen, V; Hastie, N D

    1992-01-01

    A proposed Wilms tumor gene, WT1, which encodes a zinc finger protein, has previously been isolated from human chromosome 11p13. Chemical mismatch cleavage analysis was used to identify point mutations in the zinc finger region of this gene in a series of 32 Wilms tumors. Two exonic single base changes were detected. In zinc finger 3 of a bilateral Wilms tumor patient, a constitutional de novo C----T base change was found changing an arginine to a stop codon. One tumor from this patient showed allele loss leading to 11p hemizygosity of the abnormal allele. In zinc finger 2 of a sporadic Wilms tumor patient, a C----T base change resulted in an arginine to cysteine amino acid change. To our knowledge, a WT1 gene missense mutation has not been detected previously in a Wilms tumor. By comparison with a recent NMR and x-ray crystallographic analysis of an analogous zinc finger gene, early growth response gene 1 (EGR1), this amino acid change in WT1 occurs at a residue predicted to be critical for DNA binding capacity and site specificity. The detection of one nonsense point mutation and one missense WT1 gene point mutation adds to the accumulating evidence implicating this gene in a proportion of Wilms tumor patients. Images PMID:1317572

  20. Method for detecting point mutations in DNA utilizing fluorescence energy transfer

    DOEpatents

    Parkhurst, Lawrence J.; Parkhurst, Kay M.; Middendorf, Lyle

    2001-01-01

    A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

  1. Molecular diagnosis of α-thalassemia in a multiethnic population.

    PubMed

    Gilad, Oded; Shemer, Orna Steinberg; Dgany, Orly; Krasnov, Tanya; Nevo, Michal; Noy-Lotan, Sharon; Rabinowicz, Ron; Amitai, Nofar; Ben-Dor, Shifra; Yaniv, Isaac; Yacobovich, Joanne; Tamary, Hannah

    2017-06-01

    α-Thalassemia, one of the most common genetic diseases, is caused by deletions or point mutations affecting one to four α-globin genes. Molecular diagnosis is important to prevent the most severe forms of the disease. However, the diagnosis of α-thalassemia is complex due to a high variability of the genetic defects involved, with over 250 described mutations. We summarize herein the findings of genetic analyses of DNA samples referred to our laboratory for the molecular diagnosis of α-thalassemia, along with a detailed clinical description. We utilized a diagnostic algorithm including Gap-PCR, to detect known deletions, followed by sequencing of the α-globin gene, to identify known and novel point mutations, and multiplex ligation-dependent probe amplification (MLPA) for the diagnosis of rare or novel deletions. α-Thalassemia was diagnosed in 662 of 975 samples referred to our laboratory. Most commonly found were deletions (75.3%, including two novel deletions previously described by us); point mutations comprised 25.4% of the cases, including five novel mutations. Our population included mostly Jews (of Ashkenazi and Sephardic origin) and Muslim Arabs, who presented with a higher rate of point mutations and hemoglobin H disease. Overall, we detected 53 different genotype combinations causing a spectrum of clinical phenotypes, from asymptomatic to severe anemia. Our work constitutes the largest group of patients with α-thalassemia originating in the Mediterranean whose clinical characteristics and molecular basis have been determined. We suggest a diagnostic algorithm that leads to an accurate molecular diagnosis in multiethnic populations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Influenza A Virus Polymerase Is a Site for Adaptive Changes during Experimental Evolution in Bat Cells

    PubMed Central

    Poole, Daniel S.; Yú, Shuǐqìng; Caì, Yíngyún; Dinis, Jorge M.; Müller, Marcel A.; Jordan, Ingo; Friedrich, Thomas C.; Kuhn, Jens H.

    2014-01-01

    ABSTRACT The recent identification of highly divergent influenza A viruses in bats revealed a new, geographically dispersed viral reservoir. To investigate the molecular mechanisms of host-restricted viral tropism and the potential for transmission of viruses between humans and bats, we exposed a panel of cell lines from bats of diverse species to a prototypical human-origin influenza A virus. All of the tested bat cell lines were susceptible to influenza A virus infection. Experimental evolution of human and avian-like viruses in bat cells resulted in efficient replication and created highly cytopathic variants. Deep sequencing of adapted human influenza A virus revealed a mutation in the PA polymerase subunit not previously described, M285K. Recombinant virus with the PA M285K mutation completely phenocopied the adapted virus. Adaptation of an avian virus-like virus resulted in the canonical PB2 E627K mutation that is required for efficient replication in other mammals. None of the adaptive mutations occurred in the gene for viral hemagglutinin, a gene that frequently acquires changes to recognize host-specific variations in sialic acid receptors. We showed that human influenza A virus uses canonical sialic acid receptors to infect bat cells, even though bat influenza A viruses do not appear to use these receptors for virus entry. Our results demonstrate that bats are unique hosts that select for both a novel mutation and a well-known adaptive mutation in the viral polymerase to support replication. IMPORTANCE Bats constitute well-known reservoirs for viruses that may be transferred into human populations, sometimes with fatal consequences. Influenza A viruses have recently been identified in bats, dramatically expanding the known host range of this virus. Here we investigated the replication of human influenza A virus in bat cell lines and the barriers that the virus faces in this new host. Human influenza A and B viruses infected cells from geographically and evolutionarily diverse New and Old World bats. Viruses mutated during infections in bat cells, resulting in increased replication and cytopathic effects. These mutations were mapped to the viral polymerase and shown to be solely responsible for adaptation to bat cells. Our data suggest that replication of human influenza A viruses in a nonnative host drives the evolution of new variants and may be an important source of genetic diversity. PMID:25142579

  3. Genetic epidemiology of Charcot-Marie-Tooth disease.

    PubMed

    Braathen, G J

    2012-01-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited disorder of the peripheral nervous system. The frequency of different CMT genotypes has been estimated in clinic populations, but prevalence data from the general population is lacking. Point mutations in the mitofusin 2 (MFN2) gene has been identified exclusively in Charcot-Marie-Tooth disease type 2 (CMT2), and in a single family with intermediate CMT. MFN2 point mutations are probably the most common cause of CMT2. The CMT phenotype caused by mutation in the myelin protein zero (MPZ) gene varies considerably, from early onset and severe forms to late onset and milder forms. The mechanism is not well understood. The myelin protein zero (P(0) ) mediates adhesion in the spiral wraps of the Schwann cell's myelin sheath. X-linked Charcot-Marie Tooth disease (CMTX) is caused by mutations in the connexin32 (cx32) gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions. Estimate prevalence of CMT. Estimate frequency of Peripheral Myelin Protein 22 (PMP22) duplication and point mutations, insertions and deletions in Cx32, Early growth response 2 (EGR2), MFN2, MPZ, PMP22 and Small integral membrane protein of lysosome/late endosome (SIMPLE) genes. Description of novel mutations in Cx32, MFN2 and MPZ. Description of de novo mutations in MFN2. Our population based genetic epidemiological survey included persons with CMT residing in eastern Akershus County, Norway. The participants were interviewed and examined by one geneticist/neurologist, and classified clinically, neurophysiologically and genetically. Two-hundred and thirty-two consecutive unselected and unrelated CMT families with available DNA from all regions in Norway were included in the MFN2 study. We screened for point mutations in the MFN2 gene. We describe four novel mutations, two in the connexin32 gene and two in the MPZ gene. A total of 245 affected from 116 CMT families from the general population of eastern Akershus county were included in the genetic epidemiological survey. In the general population 1 per 1214 persons (95% CI 1062-1366) has CMT. Charcot-Marie-Tooth disease type 1 (CMT1), CMT2 and intermediate CMT were found in 48.2%, 49.4% and 2.4% of the families, respectively. A mutation in the investigated genes was found in 27.2% of the CMT families and in 28.6% of the affected. The prevalence of the PMP22 duplication and mutations in the Cx32, MPZ and MFN2 genes was found in 13.6%, 6.2%, 1.2%, 6.2% of the families, and in 19.6%, 4.8%, 1.1%, 3.2% of the affected, respectively. None of the families had point mutations, insertions or deletions in the EGR2, PMP22 or SIMPLE genes. Four known and three novel mitofusin 2 (MFN2) point mutations in 8 unrelated Norwegian CMT families were identified. The novel point mutations were not found in 100 healthy controls. This corresponds to 3.4% (8/232) of CMT families having point mutations in MFN2. The phenotypes were compatible with CMT1 in two families, CMT2 in four families, intermediate CMT in one family and distal hereditary motor neuronopathy (dHMN) in one family. A point mutation in the MFN2 gene was found in 2.3% of CMT1, 5.5% of CMT2, 12.5% of intermediate CMT and 6.7% of dHMN families. Two novel missense mutations in the MPZ gene were identified. Family 1 had a c.368G>A (Gly123Asp) transition while family 2 and 3 had a c.103G>A (Asp35Asn) transition. The affected in family 1 had early onset and severe symptoms compatible with Dejerine-Sottas syndrome (DSS), while affected in family 2 and 3 had late onset, milder symptoms and axonal neuropathy compatible with CMT2. Two novel connexin32 mutations that cause early onset X-linked CMT were identified. Family 1 had a deletion c.225delG (R75fsX83) which causes a frameshift and premature stop codon at position 247 while family 2 had a c.536G>A (Cys179Tyr) transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade and the nerve conduction velocities were in the intermediate range. Charcot-Marie-Tooth disease is the most common inherited neuropathy. At present 47 hereditary neuropathy genes are known, and an examination of all known genes would probably only identify mutations in approximately 50% of those with CMT. Thus, it is likely that at least 30-50 CMT genes are yet to be identified. The identified known and novel point mutations in the MFN2 gene expand the clinical spectrum from CMT2 and intermediate CMT to also include possibly CMT1 and the dHMN phenotypes. Thus, genetic analyses of the MFN2 gene should not be restricted to persons with CMT2. The phenotypic variation caused by different missense mutations in the MPZ gene is likely caused by different conformational changes of the MPZ protein which affects the functional tetramers. Severe changes of the MPZ protein cause dysfunctional tetramers and predominantly uncompacted myelin, i.e. the severe phenotypes congenital hypomyelinating neuropathy and DSS, while milder changes cause the phenotypes CMT1 and CMT2. The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode. Charcot-Marie-Tooth disease is the most common inherited disorder of the peripheral nervous system with an estimated prevalence of 1 in 1214. CMT1 and CMT2 are equally frequent in the general population. The prevalence of PMP22 duplication and of mutations in Cx32, MPZ and MFN2 is 19.6%, 4.8%, 1.1% and 3.2%, respectively. The ratio of probable de novo mutations in CMT families was estimated to be 22.7%. Genotype- phenotype correlations for seven novel mutations in the genes Cx32 (2), MFN2 (3) and MPZ (2) are described. Two novel phenotypes were ascribed to the MFN2 gene, however further studies are needed to confirm that MFN2 mutations can cause CMT1 and dHMN. © 2012 John Wiley & Sons A/S.

  4. Mutalisk: a web-based somatic MUTation AnaLyIS toolKit for genomic, transcriptional and epigenomic signatures.

    PubMed

    Lee, Jongkeun; Lee, Andy Jinseok; Lee, June-Koo; Park, Jongkeun; Kwon, Youngoh; Park, Seongyeol; Chun, Hyonho; Ju, Young Seok; Hong, Dongwan

    2018-05-22

    Somatic genome mutations occur due to combinations of various intrinsic/extrinsic mutational processes and DNA repair mechanisms. Different molecular processes frequently generate different signatures of somatic mutations in their own favored contexts. As a result, the regional somatic mutation rate is dependent on the local DNA sequence, the DNA replication/RNA transcription dynamics and epigenomic chromatin organization landscape in the genome. Here, we propose an online computational framework, termed Mutalisk, which correlates somatic mutations with various genomic, transcriptional and epigenomic features in order to understand mutational processes that contribute to the generation of the mutations. This user-friendly tool explores the presence of localized hypermutations (kataegis), dissects the spectrum of mutations into the maximum likelihood combination of known mutational signatures and associates the mutation density with numerous regulatory elements in the genome. As a result, global patterns of somatic mutations in any query sample can be efficiently screened, thus enabling a deeper understanding of various mutagenic factors. This tool will facilitate more effective downstream analyses of cancer genome sequences to elucidate the diversity of mutational processes underlying the development and clonal evolution of cancer cells. Mutalisk is freely available at http://mutalisk.org.

  5. Efficient Mutagenesis Independent of Ligation (EMILI).

    PubMed

    Füzik, Tibor; Ulbrich, Pavel; Ruml, Tomáš

    2014-11-01

    Site-directed mutagenesis is one of the most widely used techniques in life sciences. Here we describe an improved and simplified method for introducing mutations at desired sites. It consists of an inverse PCR using a plasmid template and two partially complementary primers. The synthesis step is followed by annealing of the PCR product's sticky ends, which are generated by exonuclease digestion. This method is fast, extremely efficient and cost-effective. It can be used to introduce large insertions and deletions, but also for multiple point mutations in a single step. To show the principle and to prove the efficiency of the method, we present a series of basic mutations (insertions, deletions, point mutations) on pUC19 plasmid DNA. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Analysis of mutational spectra by denaturant capillary electrophoresis

    PubMed Central

    Ekstrøm, Per O.; Khrapko, Konstantin; Li-Sucholeiki, Xiao-Cheng; Hunter, Ian W.; Thilly, William G.

    2009-01-01

    Numbers and kinds of point mutant within DNA from cells, tissues and human population may be discovered for nearly any 75–250bp DNA sequence. High fidelity DNA amplification incorporating a thermally stable DNA “clamp” is followed by separation by denaturing capillary electrophoresis (DCE). DCE allows for peak collection and verification sequencing. DCE in a mode of cycling temperature, e.g.+/− 5°C, CyDCE, permits high resolution of mutant sequences using computer defined analytes without preliminary optimization experiments. DNA sequencers have been modified to permit higher throughput CyDCE and a massively parallel,~25,000 capillary system, has been designed for pangenomic scans in large human populations. DCE has been used to define quantitative point mutational spectra for study a wide variety of genetic phenomena: errors of DNA polymerases, mutations induced in human cells by chemicals and irradiation, testing of human gene-common disease associations and the discovery of origins of point mutations in human development and carcinogenesis. PMID:18600220

  7. Gene Amplification and Point Mutations in Pyrimidine Metabolic Genes in 5-Fluorouracil Resistant Leishmania infantum

    PubMed Central

    Ritt, Jean-François; Raymond, Frédéric; Leprohon, Philippe; Légaré, Danielle; Corbeil, Jacques; Ouellette, Marc

    2013-01-01

    Background The human protozoan parasites Leishmania are prototrophic for pyrimidines with the ability of both de novo biosynthesis and uptake of pyrimidines. Methodology/Principal Findings Five independent L. infantum mutants were selected for resistance to the pyrimidine analogue 5-fluorouracil (5-FU) in the hope to better understand the metabolism of pyrimidine in Leishmania. Analysis of the 5-FU mutants by comparative genomic hybridization and whole genome sequencing revealed in selected mutants the amplification of DHFR-TS and a deletion of part of chromosome 10. Point mutations in uracil phosphorybosyl transferase (UPRT), thymidine kinase (TK) and uridine phosphorylase (UP) were also observed in three individual resistant mutants. Transfection experiments confirmed that these point mutations were responsible for 5-FU resistance. Transport studies revealed that one resistant mutant was defective for uracil and 5-FU import. Conclusion/Significance This study provided further insights in pyrimidine metabolism in Leishmania and confirmed that multiple mutations can co-exist and lead to resistance in Leishmania. PMID:24278495

  8. The Odyssey of the Ancestral Escherich Strain through Culture Collections: an Example of Allopatric Diversification.

    PubMed

    Desroches, M; Royer, G; Roche, D; Mercier-Darty, M; Vallenet, D; Médigue, C; Bastard, K; Rodriguez, C; Clermont, O; Denamur, E; Decousser, J-W

    2018-01-01

    More than a century ago, Theodor Escherich isolated the bacterium that was to become Escherichia coli , one of the most studied organisms. Not long after, the strain began an odyssey and landed in many laboratories across the world. As laboratory culture conditions could be responsible for major changes in bacterial strains, we conducted a genome analysis of isolates of this emblematic strain from different culture collections (England, France, the United States, Germany). Strikingly, many discrepancies between the isolates were observed, as revealed by multilocus sequence typing (MLST), the presence of virulence-associated genes, core genome MLST, and single nucleotide polymorphism/indel analyses. These differences are correlated with the phylogeographic history of the strain and were due to an unprecedented number of mutations in coding DNA repair functions such as mismatch repair (MutL) and oxidized guanine nucleotide pool cleaning (MutT), conferring a specific mutational spectrum and leading to a mutator phenotype. The mutator phenotype was probably acquired during subculturing and corresponded to second-order selection. Furthermore, all of the isolates exhibited hypersusceptibility to antibiotics due to mutations in efflux pump- and porin-encoding genes, as well as a specific mutation in the sigma factor-encoding gene rpoS . These defects reflect a self-preservation and nutritional competence tradeoff allowing survival under the starvation conditions imposed by storage. From a clinical point of view, dealing with such mutator strains can lead microbiologists to draw false conclusions about isolate relatedness and may impact therapeutic effectiveness. IMPORTANCE Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to identify its mutator status leading to tremendous genetic diversity among the isolates from various collections and allowing us to reconstruct the phylogeographic history of the strain. This mutator phenotype was probably acquired during the storage of the strain, promoting adaptation to a specific environment. Other mutations in rpoS and efflux pump- and porin-encoding genes highlight the acclimatization of the strain through self-preservation and nutritional competence regulation. This strain history can be viewed as unintentional experimental evolution in culture collections all over the word since 1885, mimicking the long-term experimental evolution of E. coli of Lenski et al. (O. Tenaillon, J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta, G. C. Wu, S. Wielgoss, S. Cruveiller, C. Médigue, D. Schneider, and R. E. Lenski, Nature 536:165-170, 2016, https://doi.org/10.1038/nature18959) that shares numerous molecular features.

  9. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6

    PubMed Central

    Evans, Ben A.; Smith, Olivia L.; Pickerill, Ethan S.; York, Mary K.; Buenconsejo, Kristen J.P.; Chambers, Antonio E.

    2018-01-01

    Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn2+-binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans. Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest. PMID:29892505

  10. Hypermutation In Pancreatic Cancer.

    PubMed

    Humphris, Jeremy L; Patch, Ann-Marie; Nones, Katia; Bailey, Peter J; Johns, Amber L; McKay, Skye; Chang, David K; Miller, David K; Pajic, Marina; Kassahn, Karin S; Quinn, Michael C J; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Stone, Andrew; Wilson, Peter J; Anderson, Matthew; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Mead, Ronald S; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Nagrial, Adnan M; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Chou, Angela; Scarlett, Christopher J; Pinho, Andreia V; Rooman, Ilse; Giry-Laterriere, Marc; Samra, Jaswinder S; Kench, James G; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B; McKay, Colin J; Carter, C Ross; Dickson, Euan J; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Morton, Jennifer P; Sansom, Owen J; Grützmann, Robert; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Rusev, Borislav; Corbo, Vincenzo; Salvia, Roberto; Cataldo, Ivana; Tortora, Giampaolo; Tempero, Margaret A; Hofmann, Oliver; Eshleman, James R; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A; Gill, Anthony J; Pearson, John V; Grimmond, Sean M; Waddell, Nicola; Biankin, Andrew V

    2017-01-01

    Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. IFITM5 mutations and osteogenesis imperfecta.

    PubMed

    Hanagata, Nobutaka

    2016-03-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5' untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

  12. Stabilizing multicellularity through ratcheting

    PubMed Central

    Libby, Eric; Conlin, Peter L.; Kerr, Ben; Ratcliff, William C.

    2016-01-01

    The evolutionary transition to multicellularity probably began with the formation of simple undifferentiated cellular groups. Such groups evolve readily in diverse lineages of extant unicellular taxa, suggesting that there are few genetic barriers to this first key step. This may act as a double-edged sword: labile transitions between unicellular and multicellular states may facilitate the evolution of simple multicellularity, but reversion to a unicellular state may inhibit the evolution of increased complexity. In this paper, we examine how multicellular adaptations can act as evolutionary ‘ratchets’, limiting the potential for reversion to unicellularity. We consider a nascent multicellular lineage growing in an environment that varies between favouring multicellularity and favouring unicellularity. The first type of ratcheting mutations increase cell-level fitness in a multicellular context but are costly in a single-celled context, reducing the fitness of revertants. The second type of ratcheting mutations directly decrease the probability that a mutation will result in reversion (either as a pleiotropic consequence or via direct modification of switch rates). We show that both types of ratcheting mutations act to stabilize the multicellular state. We also identify synergistic effects between the two types of ratcheting mutations in which the presence of one creates the selective conditions favouring the other. Ratcheting mutations may play a key role in diverse evolutionary transitions in individuality, sustaining selection on the new higher-level organism by constraining evolutionary reversion. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431522

  13. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex*

    PubMed Central

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E.; Jaspers, Nicolaas G. J.; Kaptein, Robert; Hoeijmakers, Jan H. J.; Boelens, Rolf

    2015-01-01

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe231, Leu231 lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. PMID:26085086

  14. The Role of MC1R in Speciation & Phylogeny

    ERIC Educational Resources Information Center

    Offner, Susan

    2013-01-01

    A point mutation in the MC1R gene, a G-protein-coupled receptor, has been found that could have led to the formation of two subspecies of Solomon Island flycatcher from a single ancestral population. I discuss the many roles that G-protein-coupled receptors play in vertebrate physiology and how one particular point mutation can have enormous…

  15. Investigation of a Large Collection of Pseudomonas aeruginosa Bacteriophages Collected from a Single Environmental Source in Abidjan, Côte d’Ivoire

    PubMed Central

    Essoh, Christiane; Latino, Libera; Midoux, Cédric; Blouin, Yann; Loukou, Guillaume; Nguetta, Simon-Pierre A.; Lathro, Serge; Cablanmian, Arsher; Kouassi, Athanase K.; Vergnaud, Gilles; Pourcel, Christine

    2015-01-01

    Twenty two distinct bacteriophages were isolated from sewage water from five locations in the city of Abidjan, Côte d'Ivoire over a two-year period, using a collection of Pseudomonas aeruginosa strains with diverse genotypes. The phages were characterized by their virulence spectrum on a panel of selected P. aeruginosa strains from cystic fibrosis patients and by whole genome sequencing. Twelve virions representing the observed diversity were visualised by electron microscopy. The combined observations showed that 17 phages, distributed into seven genera, were virulent, and that five phages were related to temperate phages belonging to three genera. Some showed similarity with known phages only at the protein level. The vast majority of the genetic variations among virulent phages from the same genus resulted from seemingly non-random horizontal transfer events, inside a population of P. aeruginosa phages with limited diversity. This suggests the existence of a single environmental reservoir or ecotype in which continuous selection is taking place. In contrast, mostly point mutations were observed among phages potentially capable of lysogenisation. This is the first study of P. aeruginosa phage diversity in an African city and it shows that a large variety of phage species can be recovered in a limited geographical site at least when different bacterial strains are used. The relative temporal and spatial stability of the Abidjan phage population might reflect equilibrium in the microbial community from which they are released. PMID:26115051

  16. Investigation of a Large Collection of Pseudomonas aeruginosa Bacteriophages Collected from a Single Environmental Source in Abidjan, Côte d'Ivoire.

    PubMed

    Essoh, Christiane; Latino, Libera; Midoux, Cédric; Blouin, Yann; Loukou, Guillaume; Nguetta, Simon-Pierre A; Lathro, Serge; Cablanmian, Arsher; Kouassi, Athanase K; Vergnaud, Gilles; Pourcel, Christine

    2015-01-01

    Twenty two distinct bacteriophages were isolated from sewage water from five locations in the city of Abidjan, Côte d'Ivoire over a two-year period, using a collection of Pseudomonas aeruginosa strains with diverse genotypes. The phages were characterized by their virulence spectrum on a panel of selected P. aeruginosa strains from cystic fibrosis patients and by whole genome sequencing. Twelve virions representing the observed diversity were visualised by electron microscopy. The combined observations showed that 17 phages, distributed into seven genera, were virulent, and that five phages were related to temperate phages belonging to three genera. Some showed similarity with known phages only at the protein level. The vast majority of the genetic variations among virulent phages from the same genus resulted from seemingly non-random horizontal transfer events, inside a population of P. aeruginosa phages with limited diversity. This suggests the existence of a single environmental reservoir or ecotype in which continuous selection is taking place. In contrast, mostly point mutations were observed among phages potentially capable of lysogenisation. This is the first study of P. aeruginosa phage diversity in an African city and it shows that a large variety of phage species can be recovered in a limited geographical site at least when different bacterial strains are used. The relative temporal and spatial stability of the Abidjan phage population might reflect equilibrium in the microbial community from which they are released.

  17. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  18. Dynamic of Mutational Events in Variable Number Tandem Repeats of Escherichia coli O157:H7

    PubMed Central

    Bustamante, A. V.; Sanso, A. M.; Segura, D. O.; Parma, A. E.; Lucchesi, P. M. A.

    2013-01-01

    VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10−05 to 1.8 × 10−03 mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10−03 mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study. PMID:24093095

  19. Role and Mechanism of Structural Variation in Progression of Breast Cancer

    DTIC Science & Technology

    2013-09-01

    mutations that occurred throughout tumor evolution, we identified 9 early nonsynonymous point mutations that occurred in cancer genes . Only five of...identified, are mutations in the TP53 gene suggesting its role as a driver mutation   5   • Our data also suggests that in the case of this one patient...generated by breakage-fusion- bridge cycles that promote repeated rounds of mutation within a chromosome arm, or from progressive amplification of genes that

  20. Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione.

    PubMed

    Dean, Melissa A; Olsen, Randall J; Long, S Wesley; Rosato, Adriana E; Musser, James M

    2014-04-01

    Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice.

  1. A Fluorescence Quenching Assay Based on Molecular Beacon Formation through a Ligase Detection Reaction for Facile and Rapid Detection of Point Mutations.

    PubMed

    Sawamura, Kensuke; Hashimoto, Masahiko

    2017-01-01

    A fluorescence quenching assay based on a ligase detection reaction was developed for facile and rapid detection of point mutations present in a mixed population of non-variant DNA. If the test DNA carried a targeted mutation, then the two allele-specific primers were ligated to form a molecular beacon resulting in the expected fluorescence quenching signatures. Using this method, we successfully detected as low as 5% mutant DNA in a mixture of wild-type DNA (t test at 99% confidence level).

  2. Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations

    PubMed Central

    Araya, Carlos L.; Cenik, Can; Reuter, Jason A.; Kiss, Gert; Pande, Vijay S.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    Cancer sequencing studies have primarily identified cancer-driver genes by the accumulation of protein-altering mutations. An improved method would be annotation-independent, sensitive to unknown distributions of functions within proteins, and inclusive of non-coding drivers. We employed density-based clustering methods in 21 tumor types to detect variably-sized significantly mutated regions (SMRs). SMRs reveal recurrent alterations across a spectrum of coding and non-coding elements, including transcription factor binding sites and untranslated regions mutated in up to ∼15% of specific tumor types. SMRs reveal spatial clustering of mutations at molecular domains and interfaces, often with associated changes in signaling. Mutation frequencies in SMRs demonstrate that distinct protein regions are differentially mutated among tumor types, as exemplified by a linker region of PIK3CA in which biophysical simulations suggest mutations affect regulatory interactions. The functional diversity of SMRs underscores both the varied mechanisms of oncogenic misregulation and the advantage of functionally-agnostic driver identification. PMID:26691984

  3. The Mutational Landscape of Adenoid Cystic Carcinoma

    PubMed Central

    Ho, Allen S.; Kannan, Kasthuri; Roy, David M.; Morris, Luc G.T.; Ganly, Ian; Katabi, Nora; Ramaswami, Deepa; Walsh, Logan A.; Eng, Stephanie; Huse, Jason T.; Zhang, Jianan; Dolgalev, Igor; Huberman, Kety; Heguy, Adriana; Viale, Agnes; Drobnjak, Marija; Leversha, Margaret A.; Rice, Christine E.; Singh, Bhuvanesh; Iyer, N. Gopalakrishna; Leemans, C. Rene; Bloemena, Elisabeth; Ferris, Robert L.; Seethala, Raja R.; Gross, Benjamin E.; Liang, Yupu; Sinha, Rileen; Peng, Luke; Raphael, Benjamin J.; Turcan, Sevin; Gong, Yongxing; Schultz, Nikolaus; Kim, Seungwon; Chiosea, Simion; Shah, Jatin P.; Sander, Chris; Lee, William; Chan, Timothy A.

    2013-01-01

    Adenoid cystic carcinomas (ACCs) are among the most enigmatic of human malignancies. These aggressive salivary cancers frequently recur and metastasize despite definitive treatment, with no known effective chemotherapy regimen. Here, we determined the ACC mutational landscape and report the exome or whole genome sequences of 60 ACC tumor/normal pairs. These analyses revealed a low exonic somatic mutation rate (0.31 non-silent events/megabase) and wide mutational diversity. Interestingly, mutations selectively involved chromatin state regulators, such as SMARCA2, CREBBP, and KDM6A, suggesting aberrant epigenetic regulation in ACC oncogenesis. Mutations in genes central to DNA damage and protein kinase A signaling also implicate these processes. We observed MYB-NFIB translocations and somatic mutations in MYB-associated genes, solidifying these aberrations as critical events. Lastly, we identified recurrent mutations in the FGF/IGF/PI3K pathway that may potentially offer new avenues for therapy (30%). Collectively, our observations establish a molecular foundation for understanding and exploring new treatments for ACC. PMID:23685749

  4. A Constant Rate of Spontaneous Mutation in DNA-Based Microbes

    NASA Astrophysics Data System (ADS)

    Drake, John W.

    1991-08-01

    In terms of evolution and fitness, the most significant spontaneous mutation rate is likely to be that for the entire genome (or its nonfrivolous fraction). Information is now available to calculate this rate for several DNA-based haploid microbes, including bacteriophages with single- or double-stranded DNA, a bacterium, a yeast, and a filamentous fungus. Their genome sizes vary by ≈6500-fold. Their average mutation rates per base pair vary by ≈16,000-fold, whereas their mutation rates per genome vary by only ≈2.5-fold, apparently randomly, around a mean value of 0.0033 per DNA replication. The average mutation rate per base pair is inversely proportional to genome size. Therefore, a nearly invariant microbial mutation rate appears to have evolved. Because this rate is uniform in such diverse organisms, it is likely to be determined by deep general forces, perhaps by a balance between the usually deleterious effects of mutation and the physiological costs of further reducing mutation rates.

  5. Deletion Mutagenesis Downstream of the 5′ Long Terminal Repeat of Human Immunodeficiency Virus Type 1 Is Compensated for by Point Mutations in both the U5 Region and gag Gene

    PubMed Central

    Liang, Chen; Rong, Liwei; Russell, Rodney S.; Wainberg, Mark A.

    2000-01-01

    We have studied the role of an RNA region at nucleotides (nt) +200 to +233, just downstream of the 5′ long terminal repeat, in encapsidation of human immunodeficiency virus type 1 genomic RNA. Three deletion mutations, namely, BH-D0, BH-D1, and BH-D2, were generated to eliminate sequences at positions nt +200 to +219, +200 to +226, and +200 to +233. The result in each case was decreased levels of packaging of viral RNA into the mutated viruses, with the BH-D2 virus being the most severely affected. Consistently, all three deletions resulted in impaired viral infectiousness and the BH-D2 mutation showed the most dramatic impact in this regard. Further analysis revealed additional defects in Gag precursor processing and in the extension efficiency of the tRNA3Lys primer in reverse transcription reactions performed with these mutated viruses. To shed further light on the function of these deleted sequences in viral replication, the mutated viruses were cultured in MT-2 cells over prolonged periods to enable them to reacquire wild-type replication kinetics. Sequencing of the reverted viruses revealed point mutations in both the noncoding region and the gag gene. In the case of the BH-D0 revertant, two mutations were observed at positions G112A in the U5 region, termed M1, and T24I in the nucleocapsid protein, termed MNC, respectively. Either of these two mutations was able to confer wild-type replication capacity on BH-D0. In the case of BH-D1, each of the M1 mutations, a mutation termed M2, i.e., C227T, just downstream of the primer binding site, a mutation termed MP2 (T12I) in the p2 protein, and the MNC mutation were observed. A combination of either M1 and M2 or MP2 and MNC was able to rescue BH-D1. In the case of the BH-D2 deletion-containing viruses, three point mutations, i.e., M1, MP2, and MNC, were observed and the presence of all three was required to restore viral replication to wild-type levels. PMID:10864634

  6. Analysis of Clinical Isolates of Helicobacter pylori in Pakistan Reveals High Degrees of Pathogenicity and High Frequencies of Antibiotic Resistance

    PubMed Central

    Rasheed, Faisal; Campbell, Barry James; Alfizah, Hanafiah; Varro, Andrea; Zahra, Rabaab; Yamaoka, Yoshio; Pritchard, David Mark

    2014-01-01

    Background Antibiotic resistance in Helicobacter pylori contributes to failure in eradicating the infection and is most often due to point and missense mutations in a few key genes. Methods The antibiotic susceptibility profiles of H. pylori isolates from 46 Pakistani patients were determined by Etest. Resistance and pathogenicity genes were amplified, and sequences were analyzed to determine the presence of mutations. Results A high percentage of isolates (73.9%) were resistant to metronidazole (MTZ), with considerable resistance to clarithromycin (CLR; 47.8%) and amoxicillin (AML; 54.3%) also observed. Relatively few isolates were resistant to tetracycline (TET; 4.3%) or to ciprofloxacin (CIP; 13%). However, most isolates (n = 43) exhibited resistance to one or more antibiotics. MTZ-resistant isolates contained missense mutations in oxygen-independent NADPH nitroreductase (RdxA; 8 mutations found) and NADH flavin oxidoreductase (FrxA; 4 mutations found). In the 23S rRNA gene, responsible for CLR resistance, a new point mutation (A2181G) and 4 previously reported mutations were identified. Pathogenicity genes cagA, dupA, and vacA s1a/m1 were detected frequently in isolates which were also found to be resistant to MTZ, CLR, and AML. A high percentage of CagA and VacA seropositivity was also observed in these patients. Phylogenetic analysis of partial sequences showed uniform distribution of the 3′ region of cagA throughout the tree. Conclusions We have identified H. pylori isolates in Pakistan which harbor pathogenicity genes and worrying antibiotic resistance profiles as a result of having acquired multiple point and missense mutations. H. pylori eradication regimens should therefore be reevaluated in this setting. PMID:24827414

  7. Analysis of clinical isolates of Helicobacter pylori in Pakistan reveals high degrees of pathogenicity and high frequencies of antibiotic resistance.

    PubMed

    Rasheed, Faisal; Campbell, Barry James; Alfizah, Hanafiah; Varro, Andrea; Zahra, Rabaab; Yamaoka, Yoshio; Pritchard, David Mark

    2014-10-01

    Antibiotic resistance in Helicobacter pylori contributes to failure in eradicating the infection and is most often due to point and missense mutations in a few key genes. The antibiotic susceptibility profiles of H. pylori isolates from 46 Pakistani patients were determined by Etest. Resistance and pathogenicity genes were amplified, and sequences were analyzed to determine the presence of mutations. A high percentage of isolates (73.9%) were resistant to metronidazole (MTZ), with considerable resistance to clarithromycin (CLR; 47.8%) and amoxicillin (AML; 54.3%) also observed. Relatively few isolates were resistant to tetracycline (TET; 4.3%) or to ciprofloxacin (CIP; 13%). However, most isolates (n = 43) exhibited resistance to one or more antibiotics. MTZ-resistant isolates contained missense mutations in oxygen-independent NADPH nitroreductase (RdxA; 8 mutations found) and NADH flavin oxidoreductase (FrxA; 4 mutations found). In the 23S rRNA gene, responsible for CLR resistance, a new point mutation (A2181G) and 4 previously reported mutations were identified. Pathogenicity genes cagA, dupA, and vacA s1a/m1 were detected frequently in isolates which were also found to be resistant to MTZ, CLR, and AML. A high percentage of CagA and VacA seropositivity was also observed in these patients. Phylogenetic analysis of partial sequences showed uniform distribution of the 3' region of cagA throughout the tree. We have identified H. pylori isolates in Pakistan which harbor pathogenicity genes and worrying antibiotic resistance profiles as a result of having acquired multiple point and missense mutations. H. pylori eradication regimens should therefore be reevaluated in this setting. © 2014 John Wiley & Sons Ltd.

  8. Full Mitogenomes in the Critically Endangered Kākāpō Reveal Major Post-Glacial and Anthropogenic Effects on Neutral Genetic Diversity.

    PubMed

    Dussex, Nicolas; von Seth, Johanna; Robertson, Bruce C; Dalén, Love

    2018-04-19

    Understanding how species respond to population declines is a central question in conservation and evolutionary biology. Population declines are often associated with loss of genetic diversity, inbreeding and accumulation of deleterious mutations, which can lead to a reduction in fitness and subsequently contribute to extinction. Using temporal approaches can help us understand the effects of population declines on genetic diversity in real time. Sequencing pre-decline as well as post-decline mitogenomes representing all the remaining mitochondrial diversity, we estimated the loss of genetic diversity in the critically endangered kākāpō ( Strigops habroptilus ). We detected a signal of population expansion coinciding with the end of the Pleistocene last glacial maximum (LGM). Also, we found some evidence for northern and southern lineages, supporting the hypothesis that the species may have been restricted to isolated northern and southern refugia during the LGM. We observed an important loss of neutral genetic diversity associated with European settlement in New Zealand but we could not exclude a population decline associated with Polynesian settlement in New Zealand. However, we did not find evidence for fixation of deleterious mutations. We argue that despite high pre-decline genetic diversity, a rapid and range-wide decline combined with the lek mating system, and life-history traits of kākāpō contributed to a rapid loss of genetic diversity following severe population declines.

  9. Population Genetic Analysis Infers Migration Pathways of Phytophthora ramorum in US Nurseries

    PubMed Central

    Goss, Erica M.; Larsen, Meg; Chastagner, Gary A.; Givens, Donald R.; Grünwald, Niklaus J.

    2009-01-01

    Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in the late 1990s, that is responsible for sudden oak death in California forests and ramorum blight of common ornamentals. The nursery trade has moved this pathogen from source populations on the West Coast to locations across the United States, thus risking introduction to other native forests. We examined the genetic diversity of P. ramorum in United States nurseries by microsatellite genotyping 279 isolates collected from 19 states between 2004 and 2007. Of the three known P. ramorum clonal lineages, the most common and genetically diverse lineage in the sample was NA1. Two eastward migration pathways were revealed in the clustering of NA1 isolates into two groups, one containing isolates from Connecticut, Oregon, and Washington and the other isolates from California and the remaining states. This finding is consistent with trace forward analyses conducted by the US Department of Agriculture's Animal and Plant Health Inspection Service. At the same time, genetic diversities in several states equaled those observed in California, Oregon, and Washington and two-thirds of multilocus genotypes exhibited limited geographic distributions, indicating that mutation was common during or subsequent to migration. Together, these data suggest that migration, rapid mutation, and genetic drift all play a role in structuring the genetic diversity of P. ramorum in US nurseries. This work demonstrates that fast-evolving genetic markers can be used to examine the evolutionary processes acting on recently introduced pathogens and to infer their putative migration patterns, thus showing promise for the application of forensics to plant pathogens. PMID:19774068

  10. Chloroplast DNA Diversity among Trees, Populations and Species in the California Closed-Cone Pines (Pinus Radiata, Pinus Muricata and Pinus Attenuata)

    PubMed Central

    Hong, Y. P.; Hipkins, V. D.; Strauss, S. H.

    1993-01-01

    The amount, distribution and mutational nature of chloroplast DNA polymorphisms were studied via analysis of restriction fragment length polymorphisms in three closely related species of conifers, the California closed-cone pines-knobcone pine: Pinus attenuata Lemm.; bishop pine: Pinus muricata D. Don; and Monterey pine: Pinus radiata D. Don. Genomic DNA from 384 trees representing 19 populations were digested with 9-20 restriction enzymes and probed with cloned cpDNA fragments from Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] that comprise 82% of the chloroplast genome. Up to 313 restriction sites were surveyed, and 25 of these were observed to be polymorphic among or within species. Differences among species accounted for the majority of genetic (haplotypic) diversity observed [G(st) = 84(+/-13)%]; nucleotide diversity among species was estimated to be 0.3(+/-0.1)%. Knobcone pine and Monterey pine displayed almost no genetic variation within or among populations. Bishop pine also showed little variability within populations, but did display strong population differences [G(st) = 87(+/-8)%] that were a result of three distinct geographic groups. Mean nucleotide diversity within populations was 0.003(+/-0.002)%; intrapopulation polymorphisms were found in only five populations. This pattern of genetic variation contrasts strongly with findings from study of nuclear genes (allozymes) in the group, where most genetic diversity resides within populations rather than among populations or species. Regions of the genome subject to frequent length mutations were identified; estimates of subdivision based on length variant frequencies in one region differed strikingly from those based on site mutations or allozymes. Two trees were identified with a major chloroplast DNA inversion that closely resembled one documented between Pinus and Pseudotsuga. PMID:7905846

  11. The Ying and Yang of STAT3 in Human Disease.

    PubMed

    Vogel, Tiphanie P; Milner, Joshua D; Cooper, Megan A

    2015-10-01

    The transcription factor signal transducer and activator of transcription 3 (STAT3) is a critical regulator of multiple, diverse cellular processes. Heterozgyous, germline, loss-of-function mutations in STAT3 lead to the primary immune deficiency Hyper-IgE syndrome. Heterozygous, somatic, gain-of-function mutations in STAT3 have been reported in malignancy. Recently, germline, heterozygous mutations in STAT3 that confer a gain-of-function have been discovered and result in early-onset, multi-organ autoimmunity. This review summarizes what is known about the role of STAT3 in human disease.

  12. Simulating evolution of protein complexes through gene duplication and co-option.

    PubMed

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iimori, Makoto; Ozaki, Kanako; Chikashige, Yuji

    2012-02-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, themore » mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: Black-Right-Pointing-Pointer We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. Black-Right-Pointing-Pointer The mutation enhances the activity to assemble microtubules. Black-Right-Pointing-Pointer Mal3 is phosphorylated in a microtubule-dependent manner. Black-Right-Pointing-Pointer The phosphorylation negatively regulates the Mal3 activity.« less

  14. Examining the Relationship between Pre-Malignant Breast Lesions, Carcinogenesis and Tumor Evolution in the Mammary Epithelium Using an Agent-Based Model.

    PubMed

    Chapa, Joaquin; An, Gary; Kulkarni, Swati A

    2016-01-01

    Breast cancer, the product of numerous rare mutational events that occur over an extended time period, presents numerous challenges to investigators interested in studying the transformation from normal breast epithelium to malignancy using traditional laboratory methods, particularly with respect to characterizing transitional and pre-malignant states. Dynamic computational modeling can provide insight into these pathophysiological dynamics, and as such we use a previously validated agent-based computational model of the mammary epithelium (the DEABM) to investigate the probabilistic mechanisms by which normal populations of ductal cells could transform into states replicating features of both pre-malignant breast lesions and a diverse set of breast cancer subtypes. The DEABM consists of simulated cellular populations governed by algorithms based on accepted and previously published cellular mechanisms. Cells respond to hormones, undergo mitosis, apoptosis and cellular differentiation. Heritable mutations to 12 genes prominently implicated in breast cancer are acquired via a probabilistic mechanism. 3000 simulations of the 40-year period of menstrual cycling were run in wild-type (WT) and BRCA1-mutated groups. Simulations were analyzed by development of hyperplastic states, incidence of malignancy, hormone receptor and HER-2 status, frequency of mutation to particular genes, and whether mutations were early events in carcinogenesis. Cancer incidence in WT (2.6%) and BRCA1-mutated (45.9%) populations closely matched published epidemiologic rates. Hormone receptor expression profiles in both WT and BRCA groups also closely matched epidemiologic data. Hyperplastic populations carried more mutations than normal populations and mutations were similar to early mutations found in ER+ tumors (telomerase, E-cadherin, TGFB, RUNX3, p < .01). ER- tumors carried significantly more mutations and carried more early mutations in BRCA1, c-MYC and genes associated with epithelial-mesenchymal transition. The DEABM generates diverse tumors that express tumor markers consistent with epidemiologic data. The DEABM also generates non-invasive, hyperplastic populations, analogous to atypia or ductal carcinoma in situ (DCIS), via mutations to genes known to be present in hyperplastic lesions and as early mutations in breast cancers. The results demonstrate that agent-based models are well-suited to studying tumor evolution through stages of carcinogenesis and have the potential to be used to develop prevention and treatment strategies.

  15. Association of a novel point mutation in MSH2 gene with familial multiple primary cancers.

    PubMed

    Hu, Hai; Li, Hong; Jiao, Feng; Han, Ting; Zhuo, Meng; Cui, Jiujie; Li, Yixue; Wang, Liwei

    2017-10-03

    Multiple primary cancers (MPC) have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing) that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR) genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.

  16. Phenotypic diversity identified by cardiac magnetic resonance in a large hypertrophic cardiomyopathy family with a single MYH7 mutation.

    PubMed

    Wang, Jie; Wan, Ke; Sun, Jiayu; Li, Weihao; Liu, Hong; Han, Yuchi; Chen, Yucheng

    2018-01-17

    Limited data is available on phenotypic variations with the same genotype in hypertrophic cardiomyopathy (HCM). The present study aims to explore the relationship between genotype and phenotype characterized by cardiovascular magnetic resonance (CMR) in a large Chinese family. A proband diagnosed with HCM from a multigenerational family underwent next-generation sequencing based on a custom sureSelect panel, including 117 candidate pathogenic genes associated with cardiomyopathies. All genetic results were confirmed by the Sanger sequencing method. All confirmed mutation carriers underwent CMR exam and myocardial tissue characterization using T1 mapping and late gadolinium enhancement (LGE) on a 3T scanner (Siemens Trio, Gemany). After clinical and genetic screening of 36 (including the proband) members of a large Chinese family, nineteen family members are determined to carry the single p.T1377M (c.4130C>T) mutation in the MYH7 gene. Of these 19 mutation carriers, eight are diagnosed with HCM, one was considered as borderline affected and ten are not clinically or phenotypically affected. Different HCM phenotypes are present in the nine affected individuals in this family. In addition, we have found different tissue characteristics assessed by T1 mapping and LGE in these individuals. We describe a family that demonstrates the diverse HCM phenotypes associated with a single MYH7 mutation.

  17. Clinical Sensitivity of Cystic Fibrosis Mutation Panels in a Diverse Population.

    PubMed

    Hughes, Erin E; Stevens, Colleen F; Saavedra-Matiz, Carlos A; Tavakoli, Norma P; Krein, Lea M; Parker, April; Zhang, Zhen; Maloney, Breanne; Vogel, Beth; DeCelie-Germana, Joan; Kier, Catherine; Anbar, Ran D; Berdella, Maria N; Comber, Paul G; Dozor, Allen J; Goetz, Danielle M; Guida, Louis; Kattan, Meyer; Ting, Andrew; Voter, Karen Z; van Roey, Patrick; Caggana, Michele; Kay, Denise M

    2016-02-01

    Infants are screened for cystic fibrosis (CF) in New York State (NYS) using an IRT-DNA algorithm. The purpose of this study was to validate and assess clinical validity of the US FDA-cleared Illumina MiSeqDx CF 139-Variant Assay (139-VA) in the diverse NYS CF population. The study included 439 infants with CF identified via newborn screening (NBS) from 2002 to 2012. All had been screened using the Abbott Molecular CF Genotyping Assay or the Hologic InPlex CF Molecular Test. All with CF and zero or one mutation were tested using the 139-VA. DNA extracted from dried blood spots was reliably and accurately genotyped using the 139-VA. Sixty-three additional mutations were identified. Clinical sensitivity of three panels ranged from 76.2% (23 mutations recommended for screening by ACMG/ACOG) to 79.7% (current NYS 39-mutation InPlex panel), up to 86.0% for the 139-VA. For all, sensitivity was highest in Whites and lowest in the Black population. Although the sample size was small, there was a nearly 20% increase in sensitivity for the Black CF population using the 139-VA (68.2%) over the ACMG/ACOG and InPlex panels (both 50.0%). Overall, the 139-VA is more sensitive than other commercially available panels, and could be considered for NBS, clinical, or research laboratories conducting CF screening. © 2015 WILEY PERIODICALS, INC.

  18. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors

    PubMed Central

    Chatzidaki, Anna; D'Oyley, Jarryl M.; Gill-Thind, JasKiran K.; Sheppard, Tom D.; Millar, Neil S.

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9′ position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22′ position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. PMID:25998276

  19. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors.

    PubMed

    Chatzidaki, Anna; D'Oyley, Jarryl M; Gill-Thind, JasKiran K; Sheppard, Tom D; Millar, Neil S

    2015-10-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9' position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22' position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. PHENOTYPIC VARIABILITY IN INDIVIDUALS WITH TYPE V OSTEOGENESIS IMPERFECTA WITH IDENTICAL IFITM5 MUTATIONS

    PubMed Central

    Fitzgerald, Jamie; Holden, Paul; Wright, Hollis; Wilmot, Beth; Hata, Abigail; Steiner, Robert D.; Basel, Don

    2016-01-01

    Background Osteogenesis imperfecta (OI) type V is a dominantly inherited skeletal dysplasia characterized by fractures and progressive deformity of long bones. In addition, patients often present with radial head dislocation, hyperplastic callus, and calcification of the forearm interosseous membrane. Recently, a specific mutation in the IFITM5 gene was found to be responsible for OI type V. This mutation, a C to T transition 14 nucleotides upstream from the endogenous start codon, creates a new start methionine that appears to be preferentially used by the translational machinery. However, the mechanism by which the lengthened protein results in a dominant type of OI is unknown. Methods and Results We report 7 ethnically diverse (African-American, Caucasian, Hispanic, and African) individuals with OI type V from 2 families and 2 sporadic cases. Exome sequencing failed to identify a causative mutation. Using Sanger sequencing, we found that all affected individuals in our cohort possess the c.−14 IFITM5 variant, further supporting the notion that OI type V is caused by a single, discrete mutation. Our patient cohort demonstrated inter-and intrafamilial phenotypic variability, including a father with classic OI type V whose daughter had a phenotype similar to OI type I. This clinical variability suggests that modifier genes influence the OI type V phenotype. We also confirm that the mutation creates an aberrant IFITM5 protein containing an additional 5 amino acids at the N-terminus. Conclusions The variable clinical signs in these cases illustrate the significant variability of the OI type V phenotype caused by the c.−14 IFITM5 mutation. The affected individuals are more ethnically diverse than previously reported. PMID:28824928

  1. Human Adenovirus Core Protein V Is Targeted by the Host SUMOylation Machinery To Limit Essential Viral Functions.

    PubMed

    Freudenberger, Nora; Meyer, Tina; Groitl, Peter; Dobner, Thomas; Schreiner, Sabrina

    2018-02-15

    Human adenoviruses (HAdV) are nonenveloped viruses containing a linear, double-stranded DNA genome surrounded by an icosahedral capsid. To allow proper viral replication, the genome is imported through the nuclear pore complex associated with viral core proteins. Until now, the role of these incoming virion proteins during the early phase of infection was poorly understood. The core protein V is speculated to bridge the core and the surrounding capsid. It binds the genome in a sequence-independent manner and localizes in the nucleus of infected cells, accumulating at nucleoli. Here, we show that protein V contains conserved SUMO conjugation motifs (SCMs). Mutation of these consensus motifs resulted in reduced SUMOylation of the protein; thus, protein V represents a novel target of the host SUMOylation machinery. To understand the role of protein V SUMO posttranslational modification during productive HAdV infection, we generated a replication-competent HAdV with SCM mutations within the protein V coding sequence. Phenotypic analyses revealed that these SCM mutations are beneficial for adenoviral replication. Blocking protein V SUMOylation at specific sites shifts the onset of viral DNA replication to earlier time points during infection and promotes viral gene expression. Simultaneously, the altered kinetics within the viral life cycle are accompanied by more efficient proteasomal degradation of host determinants and increased virus progeny production than that observed during wild-type infection. Taken together, our studies show that protein V SUMOylation reduces virus growth; hence, protein V SUMOylation represents an important novel aspect of the host antiviral strategy to limit virus replication and thereby points to potential intervention strategies. IMPORTANCE Many decades of research have revealed that HAdV structural proteins promote viral entry and mainly physical stability of the viral genome in the capsid. Our work over the last years showed that this concept needs expansion as the functions are more diverse. We showed that capsid protein VI regulates the antiviral response by modulation of the transcription factor Daxx during infection. Moreover, core protein VII interacts with SPOC1 restriction factor, which is beneficial for efficient viral gene expression. Here, we were able to show that core protein V also represents a novel substrate of the host SUMOylation machinery and contains several conserved SCMs; mutation of these consensus motifs reduced SUMOylation of the protein. Unexpectedly, we observed that introducing these mutations into HAdV promotes adenoviral replication. In conclusion, we offer novel insights into adenovirus core proteins and provide evidence that SUMOylation of HAdV factors regulates replication efficiency. Copyright © 2018 American Society for Microbiology.

  2. Efficient Knock-in of a Point Mutation in Porcine Fibroblasts Using the CRISPR/Cas9-GMNN Fusion Gene.

    PubMed

    Gerlach, Max; Kraft, Theresia; Brenner, Bernhard; Petersen, Björn; Niemann, Heiner; Montag, Judith

    2018-06-13

    During CRISPR/Cas9 mediated genome editing, site-specific double strand breaks are introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherited human diseases, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7 -gene in porcine fetal fibroblasts. We added a small molecule inhibitor of NHEJ, SCR7 (5,6-bis((E)-benzylideneamino)-2-mercaptopyrimidin-4-ol), during genome editing and screened cell cultures for the point mutation. However, this approach did not yield increased knock-in rates. In an alternative approach, we fused humanized Cas9 (hCas9) to the N-terminal peptide of the Geminin gene ( GMNN ). The fusion protein is degraded in NHEJ-dominated cell cycle phases, which should increase HDR-rates. Using hCas9- GMNN and point mutation-specific real time PCR screening, we found a two-fold increase in genome edited cell cultures. This increase of HDR by hCas9- GMNN provides a promising way to enrich specific knock-in in porcine fibroblast cultures for somatic cloning approaches.

  3. Fitness Costs and Diversity of the Cytotoxic T Lymphocyte (CTL) Response Determine the Rate of CTL Escape during Acute and Chronic Phases of HIV Infection▿†

    PubMed Central

    Ganusov, Vitaly V.; Goonetilleke, Nilu; Liu, Michael K. P.; Ferrari, Guido; Shaw, George M.; McMichael, Andrew J.; Borrow, Persephone; Korber, Bette T.; Perelson, Alan S.

    2011-01-01

    HIV-1 often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. We used single-genome amplification and sequencing of complete HIV genomes to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We found that the rate of viral escape from CTL responses in a given patient decreases dramatically from acute infection to the viral set point. Using a novel mathematical model that tracks the dynamics of viral escape at multiple epitopes, we show that a number of factors could potentially contribute to a slower escape in the chronic phase of infection, such as a decreased magnitude of epitope-specific CTL responses, an increased fitness cost of escape mutations, or an increased diversity of the CTL response. In the model, an increase in the number of epitope-specific CTL responses can reduce the rate of viral escape from a given epitope-specific CTL response, particularly if CD8+ T cells compete for killing of infected cells or control virus replication nonlytically. Our mathematical framework of viral escape from multiple CTL responses can be used to predict the breadth and magnitude of HIV-specific CTL responses that need to be induced by vaccination to reduce (or even prevent) viral escape following HIV infection. PMID:21835793

  4. Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection.

    PubMed

    Ganusov, Vitaly V; Goonetilleke, Nilu; Liu, Michael K P; Ferrari, Guido; Shaw, George M; McMichael, Andrew J; Borrow, Persephone; Korber, Bette T; Perelson, Alan S

    2011-10-01

    HIV-1 often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. We used single-genome amplification and sequencing of complete HIV genomes to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We found that the rate of viral escape from CTL responses in a given patient decreases dramatically from acute infection to the viral set point. Using a novel mathematical model that tracks the dynamics of viral escape at multiple epitopes, we show that a number of factors could potentially contribute to a slower escape in the chronic phase of infection, such as a decreased magnitude of epitope-specific CTL responses, an increased fitness cost of escape mutations, or an increased diversity of the CTL response. In the model, an increase in the number of epitope-specific CTL responses can reduce the rate of viral escape from a given epitope-specific CTL response, particularly if CD8+ T cells compete for killing of infected cells or control virus replication nonlytically. Our mathematical framework of viral escape from multiple CTL responses can be used to predict the breadth and magnitude of HIV-specific CTL responses that need to be induced by vaccination to reduce (or even prevent) viral escape following HIV infection.

  5. Long-term follow-up of chronic pancreatitis patients with K-ras mutation in the pancreatic juice.

    PubMed

    Kamisawa, Terumi; Takuma, Kensuke; Tabata, Taku; Egawa, Naoto; Yamaguchi, Toshikazu

    2011-01-01

    Pancreatic cancer is known to occur during the course of chronic pancreatitis in some patients. This study aimed to identify a high risk group for developing pancreatic cancer associated with chronic pancreatitis, particularly the presence of K-ras mutations in the pancreatic juice. K-ras mutation was analyzed by enriched polymerase chain reaction-enzyme linked mini-sequence assay in endoscopically-collected pancreatic juice of 21 patients with chronic pancreatitis between 1995 and 2000. All of them were followed-up for 6.0 +/- 3.8 (mean +/- SD) years (range, 2.1-14.2 years). K-ras point mutation was observed in the pancreatic juice of 11 patients with chronic pancreatitis (2+, n=2; 1+, n=6; +/-, n=3). Of these, 2 chronic pancreatitis patients with 2+K-ras point mutation developed pancreatic cancer 4.5 and 10.8 years, respectively, after the examination. Two chronic pancreatitis patients with K-ras mutation developed pancreatic cancer 4.5 and 10.8 years later. Semiquantitative analysis of K-ras mutation in endoscopically-collected pancreatic juice appears to be a useful tool for identifying chronic pancreatitis patients at high risk for developing pancreatic cancer.

  6. High frequency of AML1/RUNX1 point mutations in radiation-associated myelodysplastic syndrome around Semipalatinsk nuclear test site.

    PubMed

    Zharlyganova, Dinara; Harada, Hironori; Harada, Yuka; Shinkarev, Sergey; Zhumadilov, Zhaxybay; Zhunusova, Aigul; Tchaizhunusova, Naylya J; Apsalikov, Kazbek N; Kemaikin, Vadim; Zhumadilov, Kassym; Kawano, Noriyuki; Kimura, Akiro; Hoshi, Masaharu

    2008-09-01

    It is known that bone marrow is a sensitive organ to ionizing radiation, and many patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) have been diagnosed in radiation-treated cases and atomic bomb survivors in Hiroshima and Nagasaki. The AML1/RUNX1 gene has been known to be frequently mutated in MDS/AML patients among atomic bomb survivors and radiation therapy-related MDS/AML patients. In this study, we investigated the AML1 mutations in radiation-exposed patients with MDS/AML among the residents near the Semipalatinsk Nuclear Test Site (SNTS), where the risk of solid cancers and leukemias was increased due to the radiation effects. AML1 mutations were identified in 7 (39%) of 18 radiation-exposed MDS/AML patients. In contrast, no AML1 mutation was found in 13 unexposed MDS/AML cases. The frequency of AML1 mutations in radiation-exposed patients with MDS/AML was significantly higher compared with unexposed patients (p < 0.05).We also found a significant correlation between individual estimated doses and AML1 mutations (p < 0.05). Considering these results, AML1 point mutations might be a useful biomarker that differentiates radio-induced MDS/AML from spontaneous MDS/AML.

  7. Lethal mutagenesis: targeting the mutator phenotype in cancer.

    PubMed

    Fox, Edward J; Loeb, Lawrence A

    2010-10-01

    The evolution of cancer and RNA viruses share many similarities. Both exploit high levels of genotypic diversity to enable extensive phenotypic plasticity and thereby facilitate rapid adaptation. In order to accumulate large numbers of mutations, we have proposed that cancers express a mutator phenotype. Similar to cancer cells, many viral populations, by replicating their genomes with low fidelity, carry a substantial mutational load. As high levels of mutation are potentially deleterious, the viral mutation frequency is thresholded at a level below which viral populations equilibrate in a traditional mutation-selection balance, and above which the population is no longer viable, i.e., the population undergoes an error catastrophe. Because their mutation frequencies are fine-tuned just below this error threshold, viral populations are susceptible to further increases in mutational load and, recently this phenomenon has been exploited therapeutically by a concept that has been termed lethal mutagenesis. Here we review the application of lethal mutagenesis to the treatment of HIV and discuss how lethal mutagenesis may represent a novel therapeutic approach for the treatment of solid cancers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Visualization of tandem repeat mutagenesis in Bacillus subtilis.

    PubMed

    Dormeyer, Miriam; Lentes, Sabine; Ballin, Patrick; Wilkens, Markus; Klumpp, Stefan; Kohlheyer, Dietrich; Stannek, Lorena; Grünberger, Alexander; Commichau, Fabian M

    2018-03-01

    Mutations are crucial for the emergence and evolution of proteins with novel functions, and thus for the diversity of life. Tandem repeats (TRs) are mutational hot spots that are present in the genomes of all organisms. Understanding the molecular mechanism underlying TR mutagenesis at the level of single cells requires the development of mutation reporter systems. Here, we present a mutation reporter system that is suitable to visualize mutagenesis of TRs occurring in single cells of the Gram-positive model bacterium Bacillus subtilis using microfluidic single-cell cultivation. The system allows measuring the elimination of TR units due to growth rate recovery. The cultivation of bacteria carrying the mutation reporter system in microfluidic chambers allowed us for the first time to visualize the emergence of a specific mutation at the level of single cells. The application of the mutation reporter system in combination with microfluidics might be helpful to elucidate the molecular mechanism underlying TR (in)stability in bacteria. Moreover, the mutation reporter system might be useful to assess whether mutations occur in response to nutrient starvation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing.

    PubMed

    Nahar, Rahul; Zhai, Weiwei; Zhang, Tong; Takano, Angela; Khng, Alexis J; Lee, Yin Yeng; Liu, Xingliang; Lim, Chong Hee; Koh, Tina P T; Aung, Zaw Win; Lim, Tony Kiat Hon; Veeravalli, Lavanya; Yuan, Ju; Teo, Audrey S M; Chan, Cheryl X; Poh, Huay Mei; Chua, Ivan M L; Liew, Audrey Ann; Lau, Dawn Ping Xi; Kwang, Xue Lin; Toh, Chee Keong; Lim, Wan-Teck; Lim, Bing; Tam, Wai Leong; Tan, Eng-Huat; Hillmer, Axel M; Tan, Daniel S W

    2018-01-15

    EGFR-mutant lung adenocarcinomas (LUAD) display diverse clinical trajectories and are characterized by rapid but short-lived responses to EGFR tyrosine kinase inhibitors (TKIs). Through sequencing of 79 spatially distinct regions from 16 early stage tumors, we show that despite low mutation burdens, EGFR-mutant Asian LUADs unexpectedly exhibit a complex genomic landscape with frequent and early whole-genome doubling, aneuploidy, and high clonal diversity. Multiple truncal alterations, including TP53 mutations and loss of CDKN2A and RB1, converge on cell cycle dysregulation, with late sector-specific high-amplitude amplifications and deletions that potentially beget drug resistant clones. We highlight the association between genomic architecture and clinical phenotypes, such as co-occurring truncal drivers and primary TKI resistance. Through comparative analysis with published smoking-related LUAD, we postulate that the high intra-tumor heterogeneity observed in Asian EGFR-mutant LUAD may be contributed by an early dominant driver, genomic instability, and low background mutation rates.

  10. Non-cell-autonomous effects yield lower clonal diversity in expanding tumors.

    PubMed

    Tissot, Tazzio; Thomas, Frédéric; Roche, Benjamin

    2017-09-11

    Recent cancer research has investigated the possibility that non-cell-autonomous (NCA) driving tumor growth can support clonal diversity (CD). Indeed, mutations can affect the phenotypes not only of their carriers ("cell-autonomous", CA effects), but also sometimes of other cells (NCA effects). However, models that have investigated this phenomenon have only considered a restricted number of clones. Here, we designed an individual-based model of tumor evolution, where clones grow and mutate to yield new clones, among which a given frequency have NCA effects on other clones' growth. Unlike previously observed for smaller assemblages, most of our simulations yield lower CD with high frequency of mutations with NCA effects. Owing to NCA effects increasing competition in the tumor, clones being already dominant are more likely to stay dominant, and emergent clones not to thrive. These results may help personalized medicine to predict intratumor heterogeneity across different cancer types for which frequency of NCA effects could be quantified.

  11. Recombination and phenotype evolution dynamics of Helicobacter pylori in colonized hosts.

    PubMed

    Shafiee, Ahmad; Amini, Massoud; Emamirad, Hassan; Abadi, Amin Talebi Bezmin

    2016-07-01

    The ample genetic diversity and variability of Helicobater pylori, and therefore its phenotypic evolution, relate not only to frequent mutation and selection but also to intra-specific recombination. Webb and Blaser applied a mathematical model to distinguish the role of selection and mutation for Lewis antigen phenotype evolution during long-term gastric colonization in infected animal hosts (mice and gerbils). To investigate the role of recombination in Lewis antigen phenotype evolution, we have developed a prior population dynamic by adding recombination term to the model. We simulate and interpret the new model simulation's results with a comparative analysis of biological aspects. The main conclusions are as follows: (i) the models and consequently the hosts with higher recombination rate require a longer time for stabilization; and (ii) recombination and mutation have opposite effects on the size of H. pylori populations with phenotypes in the range of the most-fit ones (i.e. those that have a selective advantage) due to natural selection, although both can increase phenotypic diversity.

  12. Genetic Correction and Hepatic Differentiation of Hemophilia B-specific Human Induced Pluripotent Stem Cells.

    PubMed

    He, Qiong; Wang, Hui-Hui; Cheng, Tao; Yuan, Wei-Ping; Ma, Yu-Po; Jiang, Yong-Ping; Ren, Zhi-Hua

    2017-09-27

    Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay. Results The cell line bore a missense mutation in the 6 th coding exon (c.676 C>T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.

  13. Identification of a splicing enhancer in MLH1 using COMPARE a new assay for determination of relative RNA splicing efficiencies

    PubMed Central

    Xu, Dong-Qing; Mattox, William

    2006-01-01

    Exonic splicing enhancers (ESEs) are sequences that facilitate recognition of splice sites and prevent exon-skipping. Because ESEs are often embedded within proteincoding sequences, alterations in them can also often be interpreted as nonsense, missense or silent mutations. To correctly interpret exonic mutations and their roles in disease, it is important to develop strategies that identify ESE mutations. Potential ESEs can be found computationally in many exons but it has proven difficult to predict if a given mutation will have effects on splicing based on sequence alone. Here we describe a flexible in vitro method that can be used to functionally compare the effects of multiple sequence variants on ESE activity in a single in vitro splicing reaction. We have applied this method in parallel with conventional splicing assays to test for a splicing enhancer in exon 17 of the human MLH1 gene. Point mutations associated with hereditary nonpolyposis colorectal cancer (HNPCC) have previously been found to correlate with exon-skipping in both lymphocytes and tumors from patients. We show that sequences from this exon can replace an ESE from the mouse IgM gene to support RNA splicing in HeLa nuclear extracts. ESE activity was reduced by HNPCC point mutations in codon 659 indicating that their primary effect is on splicing. Surprisingly the strongest enhancer function mapped to a different region of the exon upstream of this codon. Together our results indicate that HNPCC point mutations in codon 659 affect an auxillary element that augments the enhancer function to ensure exon inclusion. PMID:16357104

  14. An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases.

    PubMed

    Huang, Shu-Hong; Chang, Yu-Shin; Juang, Jyh-Ming Jimmy; Chang, Kai-Wei; Tsai, Mong-Hsun; Lu, Tzu-Pin; Lai, Liang-Chuan; Chuang, Eric Y; Huang, Nien-Tsu

    2018-03-12

    In this study, we developed an automated microfluidic DNA microarray (AMDM) platform for point mutation detection of genetic variants in inherited arrhythmic diseases. The platform allows for automated and programmable reagent sequencing under precise conditions of hybridization flow and temperature control. It is composed of a commercial microfluidic control system, a microfluidic microarray device, and a temperature control unit. The automated and rapid hybridization process can be performed in the AMDM platform using Cy3 labeled oligonucleotide exons of SCN5A genetic DNA, which produces proteins associated with sodium channels abundant in the heart (cardiac) muscle cells. We then introduce a graphene oxide (GO)-assisted DNA microarray hybridization protocol to enable point mutation detection. In this protocol, a GO solution is added after the staining step to quench dyes bound to single-stranded DNA or non-perfectly matched DNA, which can improve point mutation specificity. As proof-of-concept we extracted the wild-type and mutant of exon 12 and exon 17 of SCN5A genetic DNA from patients with long QT syndrome or Brugada syndrome by touchdown PCR and performed a successful point mutation discrimination in the AMDM platform. Overall, the AMDM platform can greatly reduce laborious and time-consuming hybridization steps and prevent potential contamination. Furthermore, by introducing the reciprocating flow into the microchannel during the hybridization process, the total assay time can be reduced to 3 hours, which is 6 times faster than the conventional DNA microarray. Given the automatic assay operation, shorter assay time, and high point mutation discrimination, we believe that the AMDM platform has potential for low-cost, rapid and sensitive genetic testing in a simple and user-friendly manner, which may benefit gene screening in medical practice.

  15. Parkin dosage mutations have greater pathogenicity in familial PD than simple sequence mutations

    PubMed Central

    Pankratz, N; Kissell, D K.; Pauciulo, M W.; Halter, C A.; Rudolph, A; Pfeiffer, R F.; Marder, K S.; Foroud, T; Nichols, W C.

    2009-01-01

    Objective: Mutations in both alleles of parkin have been shown to result in Parkinson disease (PD). However, it is unclear whether haploinsufficiency (presence of a mutation in only 1 of the 2 parkin alleles) increases the risk for PD. Methods: We performed comprehensive dosage and sequence analysis of all 12 exons of parkin in a sample of 520 independent patients with familial PD and 263 controls. We evaluated whether presence of a single parkin mutation, either a sequence (point mutation or small insertion/deletion) or dosage (whole exon deletion or duplication) mutation, was found at increased frequency in cases as compared with controls. We then compared the clinical characteristics of cases with 0, 1, or 2 parkin mutations. Results: We identified 55 independent patients with PD with at least 1 parkin mutation and 9 controls with a single sequence mutation. Cases and controls had a similar frequency of single sequence mutations (3.1% vs 3.4%, p = 0.83); however, the cases had a significantly higher rate of dosage mutations (2.6% vs 0%, p = 0.009). Cases with a single dosage mutation were more likely to have an earlier age at onset (50% with onset at ≤45 years) compared with those with no parkin mutations (10%, p = 0.00002); this was not true for cases with only a single sequence mutation (25% with onset at ≤45 years, p = 0.06). Conclusions: Parkin haploinsufficiency, specifically for a dosage mutation rather than a point mutation or small insertion/deletion, is a risk factor for familial PD and may be associated with earlier age at onset. GLOSSARY ADL = Activities of Daily Living; GDS = Geriatric Depression Scale; MLPA = multiplex ligation-dependent probe amplification; MMSE = Mini-Mental State Examination; PD = Parkinson disease; UPDRS = Unified Parkinson’s Disease Rating Scale. PMID:19636047

  16. Estimating the age of Hb G-Coushatta [β22(B4)Glu→Ala] mutation by haplotypes of β-globin gene cluster in Denizli, Turkey.

    PubMed

    Ozturk, Onur; Arikan, Sanem; Atalay, Ayfer; Atalay, Erol O

    2018-05-01

    Hb G-Coushatta variant was reported from various populations' parts of the world such as Thai, Korea, Algeria, Thailand, China, Japan and Turkey. In our study, we aimed to discuss the possible historical relationships of the Hb G-Coushatta mutation with the possible migration routes of the world. For this purpose, associated haplotypes were determined using polymorphic loci in the beta globin gene cluster of hemoglobin G-Coushatta and normal populations in Denizli, Turkey. We performed statistical analysis such as haplotype analysis, Hardy-Weinberg equilibrium, measurement of genetic diversity and population differentiation parameters, analysis of molecular variance using F-statistics, historical-demographic analyses, mismatch distribution analysis of both populations and applied the test statistics in Arlequin ver. 3.5 software program. The diversity of haplotypes has been shown to indicate different genetic origins for two populations. However, AMOVA results, molecular diversity parameters and population demographic expansion times showed that the Hb G-Coushatta mutation develops on the normal population gene pool. Our estimated τ values showed the average time since the demographic expansion for normal and Hb G-Coushatta populations ranged from approximately 42,000 to 38,000 ybp, respectively. Our data suggest that Hb G-Coushatta population originate in normal population in Denizli, Turkey. These results support the hypothesis that the multiple origin of Hb G-Coushatta and indicate that mutation may have been triggered the formation of new variants on beta globin haplotypes. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  17. [Analysis of the parental origin of MECP2 mutations in patients with Rett syndrome].

    PubMed

    Zhang, Jing-jing; Bao, Xin-hua; Cao, Guang-na; Jiang, Sheng-ling; Zhu, Xing-wang; Lu, Hong-mei; Jia, Li-fang; Pan, Hong; Wu, Xi-ru

    2010-04-01

    To identify the parental origin of methyl-CpG-binding protein 2 (MECP2) gene mutations in Chinese patients with Rett syndrome. Single nucleotide polymorphisms (SNPs) in intron 3 of the MECP2 gene were analyzed by PCR and sequencing in 115 patients with Rett syndrome. Then sequencing of the SNP region was performed for the fathers of the patients who had at least one SNP, to determine which allele was from the father. Then allele-specific PCR was performed and the products were sequenced to see whether the allele from father or mother harbored the mutation. Seventy-six of the 115 patients had at least one SNP. Three hot SNPs were found in these patients. They were: IVS3+22C >G, IVS3+266C >T and IVS3+683C>T. Among the 76 cases, 73 had a paternal origin of MECP2 mutations, and the other 3 had a maternal origin. There were multiple types of MECP2 mutation of the paternal origin, including 4 frame shift, 2 deletion and 67 point (56C >T, 6C >G, 2A >G, 2G >T and 1A >T) mutations. The mutation types of the 3 patients with maternal origin included 2 frame shift and 1 point (C >T) mutation. In Chinese RTT patients, the MECP2 mutations are mostly of paternal origin.

  18. Leigh syndrome associated with a novel mutation in the COX15 gene.

    PubMed

    Miryounesi, Mohammad; Fardaei, Majid; Tabei, Seyed Mohammadbagher; Ghafouri-Fard, Soudeh

    2016-06-01

    Leigh syndrome (LS) is a subacute necrotizing encephalomyelopathy with a diverse range of symptoms, such as psychomotor delay or regression, weakness, hypotonia, truncal ataxia, intention tremor as well as lactic acidosis in the blood, cerebrospinal fluid or urine. Both nuclear gene defects and mutations of the mitochondrial genome have been detected in these patients. Here we report a 7-year-old girl with hypotonia, tremor, developmental delay and psychomotor regression. However, serum lactate level as well as brain magnetic resonance imaging were normal. Mutational analysis has revealed a novel mutation in exon 4 of COX15 gene (c.415C>G) which results in p.Leu139Val. Previous studies have demonstrated that COX15 mutations are associated with typical LS as well as fatal infantile hypertrophic cardiomyopathy. Consequently, clinical manifestations of COX15 mutations may be significantly different in patients. Such information is of practical importance in genetic counseling.

  19. Modeling Autism by SHANK Gene Mutations in Mice

    PubMed Central

    Jiang, Yong-hui; Ehlers, Michael D.

    2013-01-01

    Summary Shank family proteins (Shank1, Shank2, and Shank3) are synaptic scaffolding proteins that organize an extensive protein complex at the postsynaptic density (PSD) of excitatory glutamatergic synapses. Recent human genetic studies indicate that SHANK family genes (SHANK1, SHANK2, and SHANK3) are causative genes for idiopathic autism spectrum disorders (ASD). Neurobiological studies of Shank mutations in mice support a general hypothesis of synaptic dysfunction in the pathophysiology of ASD. However, the molecular diversity of SHANK family gene products, as well as the heterogeneity in human and mouse phenotypes, pose challenges to modeling human SHANK mutations. Here, we review the molecular genetics of SHANK mutations in human ASD and discuss recent findings where such mutations have been modeled in mice. Conserved features of synaptic dysfunction and corresponding behaviors in Shank mouse mutants may help dissect the pathophysiology of ASD, but also highlight divergent phenotypes that arise from different mutations in the same gene. PMID:23583105

  20. Immune monitoring and TCR sequencing of CD4 T cells in a long term responsive patient with metastasized pancreatic ductal carcinoma treated with individualized, neoepitope-derived multipeptide vaccines: a case report.

    PubMed

    Sonntag, Katja; Hashimoto, Hisayoshi; Eyrich, Matthias; Menzel, Moritz; Schubach, Max; Döcker, Dennis; Battke, Florian; Courage, Carolina; Lambertz, Helmut; Handgretinger, Rupert; Biskup, Saskia; Schilbach, Karin

    2018-02-06

    Cancer vaccines can effectively establish clinically relevant tumor immunity. Novel sequencing approaches rapidly identify the mutational fingerprint of tumors, thus allowing to generate personalized tumor vaccines within a few weeks from diagnosis. Here, we report the case of a 62-year-old patient receiving a four-peptide-vaccine targeting the two sole mutations of his pancreatic tumor, identified via exome sequencing. Vaccination started during chemotherapy in second complete remission and continued monthly thereafter. We tracked IFN-γ + T cell responses against vaccine peptides in peripheral blood after 12, 17 and 34 vaccinations by analyzing T-cell receptor (TCR) repertoire diversity and epitope-binding regions of peptide-reactive T-cell lines and clones. By restricting analysis to sorted IFN-γ-producing T cells we could assure epitope-specificity, functionality, and T H 1 polarization. A peptide-specific T-cell response against three of the four vaccine peptides could be detected sequentially. Molecular TCR analysis revealed a broad vaccine-reactive TCR repertoire with clones of discernible specificity. Four identical or convergent TCR sequences could be identified at more than one time-point, indicating timely persistence of vaccine-reactive T cells. One dominant TCR expressing a dual TCRVα chain could be found in three T-cell clones. The observed T-cell responses possibly contributed to clinical outcome: The patient is alive 6 years after initial diagnosis and in complete remission for 4 years now. Therapeutic vaccination with a neoantigen-derived four-peptide vaccine resulted in a diverse and long-lasting immune response against these targets which was associated with prolonged clinical remission. These data warrant confirmation in a larger proof-of concept clinical trial.

  1. Molecular Genetic Characterization of Mutagenesis Using a Highly Sensitive Single-Stranded DNA Reporter System in Budding Yeast.

    PubMed

    Chan, Kin

    2018-01-01

    Mutations are permanent alterations to the coding content of DNA. They are starting material for the Darwinian evolution of species by natural selection, which has yielded an amazing diversity of life on Earth. Mutations can also be the fundamental basis of serious human maladies, most notably cancers. In this chapter, I describe a highly sensitive reporter system for the molecular genetic analysis of mutagenesis, featuring controlled generation of long stretches of single-stranded DNA in budding yeast cells. This system is ~100- to ~1000-fold more susceptible to mutation than conventional double-stranded DNA reporters, and is well suited for generating large mutational datasets to investigate the properties of mutagens.

  2. STRUM: structure-based prediction of protein stability changes upon single-point mutation.

    PubMed

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-10-01

    Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon point mutations. http://zhanglab.ccmb.med.umich.edu/STRUM/ CONTACT: qiang@suda.edu.cn and zhng@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. STRUM: structure-based prediction of protein stability changes upon single-point mutation

    PubMed Central

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-01-01

    Motivation: Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. Results: We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon point mutations. Availability and Implementation: http://zhanglab.ccmb.med.umich.edu/STRUM/ Contact: qiang@suda.edu.cn and zhng@umich.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318206

  4. A point mutation of valine-311 to methionine in Bacillus subtilis protoporphyrinogen oxidase does not greatly increase resistance to the diphenyl ether herbicide oxyfluorfen.

    PubMed

    Jeong, Eunjoo; Houn, Thavrak; Kuk, Yongin; Kim, Eun-Seon; Chandru, Hema Kumar; Baik, Myunggi; Back, Kyoungwhan; Guh, Ja-Ock; Han, Oksoo

    2003-10-01

    In an effort to asses the effect of Val311Met point mutation of Bacillus subtilis protoporphyrinogen oxidase on the resistance to diphenyl ether herbicides, a Val311Met point mutant of B. subtilis protoporphyrinogen oxidase was prepared, heterologously expressed in Escherichia coli, and the purified recombinant Val311Met mutant protoporphyrinogen oxidase was kinetically characterized. The mutant protoporphyrinogen oxidase showed very similar kinetic patterns to wild type protoporphyrinogen oxidase, with slightly decreased activity dependent on pH and the concentrations of NaCl, Tween 20, and imidazole. When oxyfluorfen was used as a competitive inhibitor, the Val311Met mutant protoporphyrinogen oxidase showed an increased inhibition constant about 1.5 times that of wild type protoporphyrinogen oxidase. The marginal increase of the inhibition constant indicates that the Val311Met point mutation in B. subtilis protoporphyrinogen oxidase may not be an important determinant in the mechanism that protects protoporphyrinogen oxidase against diphenyl ether herbicides.

  5. Application of oligonucleotide array CGH to the simultaneous detection of a deletion in the nuclear TK2 gene and mtDNA depletion.

    PubMed

    Zhang, Shulin; Li, Fang-Yuan; Bass, Harold N; Pursley, Amber; Schmitt, Eric S; Brown, Blaire L; Brundage, Ellen K; Mardach, Rebecca; Wong, Lee-Jun

    2010-01-01

    Thymidine kinase 2 (TK2), encoded by the TK2 gene on chromosome 16q22, is one of the deoxyribonucleoside kinases responsible for the maintenance of mitochondrial deoxyribonucleotide pools. Defects in TK2 mainly cause a myopathic form of the mitochondrial DNA depletion syndrome (MDDS). Currently, only point mutations and small insertions and deletions have been reported in TK2 gene; gross rearrangements of TK2 gene and possible hepatic involvement in patients with TK2 mutations have not been described. We report a non-consanguineous Jordanian family with three deceased siblings due to mtDNA depletion. Sequence analysis of the father detected a heterozygous c.761T>A (p.I254N) mutation in his TK2 gene; however, point mutations in the mother were not detected. Subsequent gene dosage analysis using oligonucleotide array CGH identified an intragenic approximately 5.8-kb deletion encompassing the 5'UTR to intron 2 of her TK2 gene. Sequence analysis confirmed that the deletion spans c.1-495 to c.283-2899 of the TK2 gene (nucleotide 65,136,256-65,142,086 of chromosome 16). Analysis of liver and muscle specimens from one of the deceased infants in this family revealed compound heterozygosity for the paternal point mutation and maternal intragenic deletion. In addition, a significant reduction of the mtDNA content in liver and muscle was detected (10% and 20% of age- and tissue-matched controls, respectively). Prenatal diagnosis was performed in the third pregnancy. The fetus was found to carry both the point mutation and the deletion. This child died 6months after birth due to myopathy. A serum specimen demonstrated elevated liver transaminases in two of the infants from whom results were available. This report expands the mutation spectrum associated with TK2 deficiency. While the myopathic form of MDDS appears to be the main phenotype of TK2 mutations, liver dysfunction may also be a part of the mitochondrial depletion syndrome caused by TK2 gene defects.

  6. Widespread Distribution of a Newly Found Point Mutation in Voltage-Gated Sodium Channel in Pyrethroid-Resistant Aedes aegypti Populations in Vietnam

    PubMed Central

    Kawada, Hitoshi; Higa, Yukiko; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Thi Yen, Nguyen; Loan, Luu Lee; Sánchez, Rodrigo A. P.; Takagi, Masahiro

    2009-01-01

    Background Resistance of Aedes aegypti to photostable pyrethroid insecticides is a major problem for disease-vector control programs. Pyrethroids target the voltage-gated sodium channel on the insects' neurons. Single amino acid substitutions in this channel associated with pyrethroid resistance are one of the main factors that cause knockdown resistance in insects. Although kdr has been observed in several mosquito species, point mutations in the para gene have not been fully characterized in Ae. aegypti populations in Vietnam. The aim of this study was to determine the types and frequencies of mutations in the para gene in Ae. aegypti collected from used tires in Vietnam. Methods and Findings Several point mutations were examined that cause insensitivity of the voltage-gated sodium channel in the insect nervous system due to the replacement of the amino acids L1014F, the most commonly found point mutation in several mosquitoes; I1011M (or V) and V1016G (or I), which have been reported to be associated to knockdown resistance in Ae. aegypti located in segment 6, domain II; and a recently found amino acid replacement in F1269 in Ae. aegypti, located in segment 6, domain III. Among 756 larvae from 70 locations, no I1011M or I1011V nor L1014F mutations were found, and only two heterozygous V1016G mosquitoes were detected. However, F1269C mutations on domain III were distributed widely and with high frequency in 269 individuals among 757 larvae (53 collection sites among 70 locations surveyed). F1269C frequencies were low in the middle to north part of Vietnam but were high in the areas neighboring big cities and in the south of Vietnam, with the exception of the southern mountainous areas located at an elevation of 500–1000 m. Conclusions The overall percentage of homozygous F1269C seems to remain low (7.4%) in the present situation. However, extensive and uncontrolled frequent use of photostable pyrethroids might be a strong selection pressure for this mutation to cause serious problems in the control of dengue fever in Vietnam. PMID:19806205

  7. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis

    PubMed Central

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-01-01

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328

  8. Identification of Point Mutations in Clinical Staphylococcus aureus Strains That Produce Small-Colony Variants Auxotrophic for Menadione

    PubMed Central

    Dean, Melissa A.; Olsen, Randall J.; Long, S. Wesley; Rosato, Adriana E.

    2014-01-01

    Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice. PMID:24452687

  9. Studies on congenital hereditary cataract and microphthalmia of the miniature schnauzer dog.

    PubMed

    Shastry, B S; Reddy, V N

    1994-09-30

    Hereditary cataract in dogs occurs as an autosomal recessive trait. The opacity is primarily in the lens nucleus and posterior cortex. The affected animals also have other ocular abnormalities such as microphthalmia. To understand the genetic basis of this disorder, we have analyzed leukocyte DNA from affected and normal dogs for possible mutations in the homeobox containing gene and myotonic dystrophy locus. The results show that there are no signs of microdeletion, insertion, point mutation and rearrangements in these loci. Although these observations cannot completely rule out the possibility of point mutations, they suggest that the above loci are unlikely to be associated with the disease.

  10. Point Mutations in c-Myc Uncouple Neoplastic Transformation from Multiple Other Phenotypes in Rat Fibroblasts

    PubMed Central

    Graves, J. Anthony; Rothermund, Kristi; Wang, Tao; Qian, Wei; Van Houten, Bennett; Prochownik, Edward V.

    2010-01-01

    Deregulation of c-Myc (Myc) occurs in many cancers. In addition to transforming various cell types, Myc also influences additional transformation-associated cellular phenotypes including proliferation, survival, genomic instability, reactive oxygen species production, and metabolism. Although Myc is wild type in most cancers (wtMyc), it occasionally acquires point mutations in certain lymphomas. Some of these mutations confer a survival advantage despite partially attenuating proliferation and transformation. Here, we have evaluated four naturally-occurring or synthetic point mutations of Myc for their ability to affect these phenotypes, as well as to promote genomic instability, to generate reactive oxygen species and to up-regulate aerobic glycolysis and oxidative phosphorylation. Our findings indicate that many of these phenotypes are genetically and functionally independent of one another and are not necessary for transformation. Specifically, the higher rate of glucose metabolism known to be associated with wtMyc deregulation was found to be independent of transformation. One mutation (Q131R) was greatly impaired for nearly all of the studied Myc phenotypes, yet was able to retain some ability to transform. These findings indicate that, while the Myc phenotypes examined here make additive contributions to transformation, none, with the possible exception of increased reliance on extracellular glutamine for survival, are necessary for achieving this state. PMID:21060841

  11. Single-Molecule Counting of Point Mutations by Transient DNA Binding

    NASA Astrophysics Data System (ADS)

    Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan

    2017-03-01

    High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.

  12. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex.

    PubMed

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E; Jaspers, Nicolaas G J; Kaptein, Robert; Hoeijmakers, Jan H J; Boelens, Rolf

    2015-08-14

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe(231), Leu(231) lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. A valveless rotary microfluidic device for multiplex point mutation identification based on ligation-rolling circle amplification.

    PubMed

    Heo, Hyun Young; Chung, Soyi; Kim, Yong Tae; Kim, Do Hyun; Seo, Tae Seok

    2016-04-15

    Genetic variations such as single nucleotide polymorphism (SNP) and point mutations are important biomarkers to monitor disease prognosis and diagnosis. In this study, we developed a novel rotary microfluidic device which can perform multiplex SNP typing on the mutation sites of TP53 genes. The microdevice consists of three glass layers: a channel wafer, a Ti/Pt electrode-patterned resistance temperature detector (RTD) wafer, and a rotary plate in which twelve reaction chambers were fabricated. A series of sample injection, ligation-rolling circle amplification (L-RCA) reaction, and fluorescence detection of the resultant amplicons could be executed by rotating the top rotary plate, identifying five mutation points related with cancer prognosis. The use of the rotary plate eliminates the necessity of microvalves and micropumps to control the microfluidic flow in the channel, simplifying the chip design and chip operation for multiplex SNP detection. The proposed microdevice provides an advanced genetic analysis platform in terms of multiplexity, simplicity, and portability in the fields of biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Increasing thermal stability and catalytic activity of glutamate decarboxylase in E. coli: An in silico study.

    PubMed

    Tavakoli, Yasaman; Esmaeili, Abolghasem; Saber, Hossein

    2016-10-01

    Glutamate decarboxylase (GAD) is an enzyme that converts l-glutamate to gamma amino butyric acid (GABA) that is a widely used drug to treat mental disorders like Alzheimer's disease. In this study for the first time point mutation was performed virtually in the active site of the E. coli GAD in order to increase thermal stability and catalytic activity of the enzyme. Energy minimization and addition of water box were performed using GROMACS 5.4.6 package. PoPMuSiC 2.1 web server was used to predict potential spots for point mutation and Modeller software was used to perform point mutation on three dimensional model. Molegro virtual docker software was used for cavity detection and stimulated docking study. Results indicate that performing mutation separately at positions 164, 302, 304, 393, 396, 398 and 410 increase binding affinity to substrate. The enzyme is predicted to be more thermo- stable in all 7 mutants based on ΔΔG value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Death and population dynamics affect mutation rate estimates and evolvability under stress in bacteria

    PubMed Central

    Bonhoeffer, Sebastian

    2018-01-01

    The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the numbers of cell divisions are crucial but neglected parameters in the evolvability of a population, and we provide experimental and computational tools and methods to study evolvability under stress, leading to a reassessment of the magnitude and significance of the stress-induced mutagenesis paradigm. PMID:29750784

  16. Death and population dynamics affect mutation rate estimates and evolvability under stress in bacteria.

    PubMed

    Frenoy, Antoine; Bonhoeffer, Sebastian

    2018-05-01

    The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the numbers of cell divisions are crucial but neglected parameters in the evolvability of a population, and we provide experimental and computational tools and methods to study evolvability under stress, leading to a reassessment of the magnitude and significance of the stress-induced mutagenesis paradigm.

  17. Rates of spontaneous mutation.

    PubMed Central

    Drake, J W; Charlesworth, B; Charlesworth, D; Crow, J F

    1998-01-01

    Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates. PMID:9560386

  18. VNTR diversity in Yersinia pestis isolates from an animal challenge study reveals the potential for in vitro mutations during laboratory cultivation

    USGS Publications Warehouse

    Vogler, Amy J.; Nottingham, Roxanne; Busch, Joseph D.; Sahl, Jason W.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Smith, Susan; Rocke, Tonie E.; Klein, Paul; Wagner, David M.

    2016-01-01

    Underlying mutation rates and other evolutionary forces shape the population structure of bacteria in nature. Although easily overlooked, similar forces are at work in the laboratory and may influence observed mutations. Here, we investigated tissue samples and Yersinia pestis isolates from a rodent laboratory challenge with strain CO92 using whole genome sequencing and multi-locus variable-number tandem repeat (VNTR) analysis (MLVA). We identified six VNTR mutations that were found to have occurred in vitro during laboratory cultivation rather than in vivo during the rodent challenge. In contrast, no single nucleotide polymorphism (SNP) mutations were observed, either in vivo or in vitro. These results were consistent with previously published mutation rates and the calculated number of Y. pestis generations that occurred during the in vitro versus the in vivo portions of the experiment. When genotyping disease outbreaks, the potential for in vitro mutations should be considered, particularly when highly variable genetic markers such as VNTRs are used.

  19. Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I.

    PubMed

    Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Millán, José M; Kimberling, William J

    2012-01-01

    PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  20. Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I

    PubMed Central

    Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Kimberling, William J.

    2012-01-01

    Purpose PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Methods Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Results Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Conclusions Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment. PMID:22815625

  1. Genome Sequence Analysis of New Isolates of the Winona Strain of Plum pox virus and the First Definitive Evidence of Intrastrain Recombination Events.

    PubMed

    James, Delano; Sanderson, Dan; Varga, Aniko; Sheveleva, Anna; Chirkov, Sergei

    2016-04-01

    Plum pox virus (PPV) is genetically diverse with nine different strains identified. Mutations, indel events, and interstrain recombination events are known to contribute to the genetic diversity of PPV. This is the first report of intrastrain recombination events that contribute to PPV's genetic diversity. Fourteen isolates of the PPV strain Winona (W) were analyzed including nine new strain W isolates sequenced completely in this study. Isolates of other strains of PPV with more than one isolate with the complete genome sequence available in GenBank were included also in this study for comparison and analysis. Five intrastrain recombination events were detected among the PPV W isolates, one among PPV C strain isolates, and one among PPV M strain isolates. Four (29%) of the PPV W isolates analyzed are recombinants; one of which (P2-1) is a mosaic, with three recombination events identified. A new interstrain recombinant event was identified between a strain M isolate and a strain Rec isolate, a known recombinant. In silico recombination studies and pairwise distance analyses of PPV strain D isolates indicate that a threshold of genetic diversity exists for the detectability of recombination events, in the range of approximately 0.78×10(-2) to 1.33×10(-2) mean pairwise distance. RDP4 analyses indicate that in the case of PPV Rec isolates there may be a recombinant breakpoint distinct from the obvious transition point of strain sequences. Evidence was obtained that indicates that the frequency of PPV recombination is underestimated, which may be true for other RNA viruses where low genetic diversity exists.

  2. Discovery of Genomic Breakpoints Affecting Breast Cancer Progression and Prognosis

    DTIC Science & Technology

    2010-10-01

    mutations compared to those detected by the 5Kbp method alone. Fosmid diTag method also reveals much higher proportion of gene fusions and truncations...observed highly similar structural mutational spectra affecting different sets of genes , pointing to similar histories of genomic instability against... mutations have been identified in non-BRCA1/2 multiethnic breast cancer cases (45,46), no truncating mutation of the RAP80 gene in breast cancer has

  3. Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants.

    PubMed

    McNatty, Kenneth P; Lawrence, Stephen; Groome, Nigel P; Meerasahib, Mohammed F; Hudson, Norma L; Whiting, Lynda; Heath, Derek A; Juengel, Jennifer L

    2006-01-01

    Sheep (Ovis aries) are a highly diverse species, with more than 900 different breeds that vary significantly in their physiological characteristics, including ovulation rate and fecundity. From examination of inherited patterns of ovulation rate, several breeds have been identified with point mutations in two growth factor genes that are expressed in oocytes. Currently, five different point mutations have been identified in the BMP15 (GDF9b) gene and one in GDF9. Animals heterozygous for the GDF9 and/or the BMP15 mutations have higher ovulation rates than their wild-type counterparts. In contrast, those homozygous for any of the aforementioned BMP15 or GDF9 mutations are sterile owing to arrested follicular development. In bovine and ovine ovaries, GDF9 was expressed exclusively in oocytes throughout follicular growth from the primordial stage of development, whereas in sheep BMP15 was expressed exclusively in oocytes from the primary stage: no data for the ontogeny of BMP15 expression are currently available for cattle. In vitro, ovine growth differentiation factor 9 (oGDF9) has no effect on (3)H-thymidine incorporation by either bovine or ovine granulosa cells, whereas ovine bone morphogenetic protein 15 (oBMP15) has modest (1.2- to 1.6-fold; P < 0.05) stimulatory effects. Ovine GDF9 or oBMP15 alone inhibited progesterone production by bovine granulosa cells, whereas in ovine cells only oGDF9 was inhibitory. The effects of oGDF9 and oBMP15 together were often cooperative and not always the same as those observed for each factor alone. Active immunisation of ewes with BMP15 and/or GDF9 peptides affected ovarian follicular development and ovulation rate. Depending on the GDF9 and/or BMP15 vaccine formulation, ovulation rate was either increased or suppressed. A primary and single booster immunisation of ewes with a BMP15 peptide in a water-based adjuvant has led to 19-40% increases in lambs born per ewe lambing. Collectively, the evidence suggests that oocyte signalling molecules have profound effects on reproduction in mammals, including rodents, humans and ruminants. Moreover, in vivo manipulation of these oocyte signalling molecules provides new opportunities for the management of the fertility of ruminants.

  4. Mutation analysis of Australasian Gaucher disease patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, P.V.; Carey, W.F.; Morris, C.P.

    1995-09-25

    We have previously reported phenotype and genotype analyses in 28 Australasian Gaucher patients who were screened for several of the common Gaucher mutations: N370S, L444P, 84GG, and R463C. Horowitz and Zimran have reported that the complex alleles recNciI and recTL, which contain several point mutations including L444P, are relatively common, especially in non-Jewish Gaucher patients. Zimran and Horowitz have also stated that these recombinant alleles could easily be missed by laboratories testing only for the common Gaucher point mutations. Failure to correctly identify these mutations would influence any attempt to correlate genotype with phenotype. We have therefore retested our Gauchermore » patients for recNciI (L444P, A456P, and V46OV) and recTL (D409H, L444P, A456P, and V46OV) by PCR amplification, followed by hybridization with allele-specific oligonucleotides. 4 refs.« less

  5. Prevalence of GJB2 (connexin-26) and GJB6 (connexin-30) mutations in a cohort of 300 Brazilian hearing-impaired individuals: implications for diagnosis and genetic counseling.

    PubMed

    Batissoco, Ana Carla; Abreu-Silva, Ronaldo Serafim; Braga, Maria Cristina Célia; Lezirovitz, Karina; Della-Rosa, Valter; Alfredo, Tabith; Otto, Paulo Alberto; Mingroni-Netto, Regina Célia

    2009-02-01

    Hereditary nonsyndromic deafness is an autosomal recessive condition in about 80% of cases, and point mutations in the GJB2 gene (connexin 26) and two deletions in the GJB6 gene (connexin 30), del(GJB6-D13S1830) and del(GJB6-D13S1854), are reported to account for 50% of recessive deafness. Aiming at establishing the frequencies of GJB2 mutations and GJB6 deletions in the Brazilian population, we screened 300 unrelated individuals with hearing impairment, who were not affected by known deafness related syndromes. We firstly screened the most frequently reported mutations, c.35delG and c.167delT in the GJB2 gene, and del(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6 gene, through specific techniques. The detected c.35delG and c.167delT mutations were validated by sequencing. Other mutations in the GJB2 gene were screened by single-strand conformation polymorphism and the coding region was sequenced when abnormal patterns were found. Pathogenic mutations in GJB2 and GJB6 genes were detected in 41 individuals (13.7%), and 80.5% (33/41) presented these mutations in homozygosis or compound heterozygosis, thus explaining their hearing defect. The c.35delG in the GJB2 gene was the most frequent mutation (37/300; 12.4%), detected in 23% familial and 6.2% the sporadic cases. The second most frequent mutation (1%; 3/300) was the del(GJB6-D13S1830), always found associated with the c.35delG mutation. Nineteen different sequence variations were found in the GJB2 gene. In addition to the c.35delG mutation, nine known pathogenic alterations were detected c.167delT, p.Trp24X, p.Val37Ile, c.176_191del16, c.235delC, p.Leu90Pro, p.Arg127His, c.509insA, and p.Arg184Pro. Five substitutions had been previously considered benign polymorphisms: c.-15C>T, p.Val27Ile, p.Met34Thr, p.Ala40Ala, and p.Gly160Ser. Two previously reported mutations of unknown pathogenicity were found (p.Lys168Arg, and c.684C>A), and two novel substitutions, p.Leu81Val (c.G241C) and p.Met195Val (c.A583G), both in heterozygosis without an accompanying mutation in the other allele. None of these latter four variants of undefined status was present in a sample of 100 hearing controls. The present study demonstrates that mutations in the GJB2 gene and del(GJB6 D13S1830) are important causes of hearing impairment in Brazil, thus justifying their screening in a routine basis. The diversity of variants in our sample reflects the ethnic heterogeneity of the Brazilian population.

  6. A variant c-KIT mutation, D816H, fundamental to the sequential development of an ovarian mixed germ cell tumor and systemic mastocytosis with chronic myelomonocytic leukemia.

    PubMed

    Mitchell, Sarah G; Bunting, Silvia T; Saxe, Debra; Olson, Thomas; Keller, Frank G

    2017-04-01

    An activating point mutation of the c-KIT tyrosine kinase receptor gene, D816H, has been described in germ cell tumors (GCTs). We report an adolescent diagnosed with an ovarian mixed GCT and systemic mastocytosis with chronic myelomonocytic leukemia (SM-CMML). The teratoma and dysgerminoma differed by copy number aberrations via single nucleotide polymorphism (SNP) microarray, but were inclusive of the same c-KIT D816H point mutation (c.2446G>C) also identified in blood and bone marrow mast cells. These findings indicate not only a clonal origin of the GCT and hematologic malignancy, but also suggest a rare KIT mutation may be playing a fundamental role in malignancy development. © 2016 Wiley Periodicals, Inc.

  7. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hui-Yong; Ji, Feng-Qin, E-mail: fengqinji@mail.hzau.edu.cn; Center for Bioinformatics, Huazhong Agricultural University, Wuhan 430070

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. Black-Right-Pointing-Pointer C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. Black-Right-Pointing-Pointer The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism ofmore » steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.« less

  8. EPHA2 MUTATIONS CONTRIBUTE TO CONGENITAL CATARACT THROUGH DIVERSE MECHANISMS.

    PubMed

    Dave, Alpana; Martin, Sarah; Kumar, Raman; Craig, Jamie E; Burdon, Kathryn P; Sharma, Shiwani

    2016-01-01

    Congenital cataract is a leading cause of childhood blindness. Mutations in the EPHA2 gene are one of the causes of inherited congenital cataract. The EPHA2 gene encodes a membrane-bound tyrosine kinase receptor and is highly expressed in epithelial cells, including in the ocular lens. Signaling through the EPHA2 receptor plays a pivotal role in epithelial cell homeostasis. The aim of this study was to determine the effect of congenital cataract causing mutations in the EPHA2 gene on the encoded protein in epithelial cells. The effect of five disease-causing mutations, p.P584L (c.1751C>T), p.T940I (c.2819C>T), p.D942fsXC71 (c.2826-9G>A), p.A959T (c.2875G>A), and p.V972GfsX39 (c.2915_2916delTG), on localization of the protein was examined in two in vitro epithelial cell culture systems: Madin-Darby Canine Kidney (MDCK) and human colorectal adenocarcinoma (Caco-2) epithelial cells. Myc-tagged mutant constructs were generated by polymerase chain reaction (PCR)-based mutagenesis. The Myc-tagged wild-type construct was used as a control. The Myc-tagged wild-type and mutant proteins were ectopically expressed and detected by immunofluorescence labeling. Two of the mutations, p.T940I and p.D942fsXC71, located within the cytoplasmic sterile-α-motif (SAM) domain of EPHA2, led to mis-localization of the protein to the perinuclear space and co-localization with the cis-golgi apparatus, indicating sub-organellar/cellular retention of the mutant proteins. The mutant proteins carrying the remaining three mutations, similar to the wild-type EPHA2, localized to the cell membrane. Mis-localization of two of the mutant proteins in epithelial cells suggests that some disease-causing mutations in EPHA2 likely affect lens epithelial cell homeostasis and contribute to cataract. This study suggests that mutations in EPHA2 contribute to congenital cataract through diverse mechanisms.

  9. Extraordinary Genetic Diversity in a Wood Decay Mushroom.

    PubMed

    Baranova, Maria A; Logacheva, Maria D; Penin, Aleksey A; Seplyarskiy, Vladimir B; Safonova, Yana Y; Naumenko, Sergey A; Klepikova, Anna V; Gerasimov, Evgeny S; Bazykin, Georgii A; James, Timothy Y; Kondrashov, Alexey S

    2015-10-01

    Populations of different species vary in the amounts of genetic diversity they possess. Nucleotide diversity π, the fraction of nucleotides that are different between two randomly chosen genotypes, has been known to range in eukaryotes between 0.0001 in Lynx lynx and 0.16 in Caenorhabditis brenneri. Here, we report the results of a comparative analysis of 24 haploid genotypes (12 from the United States and 12 from European Russia) of a split-gill fungus Schizophyllum commune. The diversity at synonymous sites is 0.20 in the American population of S. commune and 0.13 in the Russian population. This exceptionally high level of nucleotide diversity also leads to extreme amino acid diversity of protein-coding genes. Using whole-genome resequencing of 2 parental and 17 offspring haploid genotypes, we estimate that the mutation rate in S. commune is high, at 2.0 × 10(-8) (95% CI: 1.1 × 10(-8) to 4.1 × 10(-8)) per nucleotide per generation. Therefore, the high diversity of S. commune is primarily determined by its elevated mutation rate, although high effective population size likely also plays a role. Small genome size, ease of cultivation and completion of the life cycle in the laboratory, free-living haploid life stages and exceptionally high variability of S. commune make it a promising model organism for population, quantitative, and evolutionary genetics. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. MUTANT FREQUENCY AND MUTATIONAL SPECTRA IN THETK AND HPRT GENES OF N-ETHYL-N-NITROSOUREA TREATED MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    Abstract

    The mouse lymphoma assay (MLA) utilizing the Tk locus is widely used to identify chemical mutagens. The autosomal location of the Tk locus allows for the detection of a wide range of mutational events, from point mutations to chromosome alterations. However, the ...

  11. Progranulin mutations as risk factors for Alzheimer disease.

    PubMed

    Perry, David C; Lehmann, Manja; Yokoyama, Jennifer S; Karydas, Anna; Lee, Jason Jiyong; Coppola, Giovanni; Grinberg, Lea T; Geschwind, Dan; Seeley, William W; Miller, Bruce L; Rosen, Howard; Rabinovici, Gil

    2013-06-01

    Mutations in the progranulin gene are known to cause diverse clinical syndromes, all attributed to frontotemporal lobar degeneration. We describe 2 patients with progranulin gene mutations and evidence of Alzheimer disease (AD) pathology. We also conducted a literature review. This study focused on case reports of 2 unrelated patients with progranulin mutations at the University of California, San Francisco, Memory and Aging Center. One patient presented at age 65 years with a clinical syndrome suggestive of AD and showed evidence of amyloid aggregation on positron emission tomography. Another patient presented at age 54 years with logopenic progressive aphasia and, at autopsy, showed both frontotemporal lobar degeneration with TDP-43 inclusions and AD. In addition to autosomal-dominant frontotemporal lobar degeneration, mutations in the progranulin gene may be a risk factor for AD clinical phenotypes and neuropathology.

  12. Biomarker Detection Using NAPPA Tumor Antigen Arrays: EDRN Supplement — EDRN Public Portal

    Cancer.gov

    The overall goal of this project application for the EDRN set-aside funds is to focus our collaborative efforts to identify p53 mutation-specific antibody biomarkers in breast, prostate, and ovarian cancer. P53-specific gene mutations are frequent in multiple cancer types. Of the common solid tumors, p53 mutations have been identified in 50% of lung and ovarian cancers, 45% of colon cancers, 20% of breast cancers, and 10-30% of prostate cancers (The p53 Mutation Handbook, T. Soussi, http://p53/free/fr). The most common mutations vary from cancer to cancer, with 50 point mutations covering the 10 most common mutations for all major solid tumors

  13. The complex and specific pMHC interactions with diverse HIV-1 TCR clonotypes reveal a structural basis for alterations in CTL function

    PubMed Central

    Xia, Zhen; Chen, Huabiao; Kang, Seung-gu; Huynh, Tien; Fang, Justin W.; Lamothe, Pedro A.; Walker, Bruce D.; Zhou, Ruhong

    2014-01-01

    Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function. PMID:24522437

  14. The complexity of epigenetic diseases.

    PubMed

    Brazel, Ailbhe Jane; Vernimmen, Douglas

    2016-01-01

    Over the past 30 years, a plethora of pathogenic mutations affecting enhancer regions and epigenetic regulators have been identified. Coupled with more recent genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) implicating major roles for regulatory mutations in disease, it is clear that epigenetic mechanisms represent important biomarkers for disease development and perhaps even therapeutic targets. Here, we discuss the diversity of disease-causing mutations in enhancers and epigenetic regulators, with a particular focus on cancer. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  15. Mutation testing in Treacher Collins Syndrome.

    PubMed

    Ellis, P E; Dawson, M; Dixon, M J

    2002-12-01

    To report on a study where 97 subjects were screened for mutations in the Treacher Collins syndrome (TCS) gene TCOF1. Ninety-seven subjects with a clinical diagnosis of TCS were screened for potential mutations in TCOF1, by means of single strand conformation polymorphism (SSCP) analysis. In those subjects where potential mutations were detected, sequence analysis was performed to determine the site and type of mutation present. Thirty-six TCS-specific mutations are reported including 27 deletions, six point mutations, two splice junction mutations, and one insertion/deletion. This brings the total number of mutations reported to date to 105. The importance of detection of these mutations is mainly in postnatal diagnosis and genetic counselling. Knowledge of the family specific mutation may also be used in prenatal diagnosis to confirm whether the foetus is affected or not, and give the parents the choice of whether to continue with the pregnancy.

  16. Personalized Oncology Through Integrative High-Throughput Sequencing: A Pilot Study

    PubMed Central

    Roychowdhury, Sameek; Iyer, Matthew K.; Robinson, Dan R.; Lonigro, Robert J.; Wu, Yi-Mi; Cao, Xuhong; Kalyana-Sundaram, Shanker; Sam, Lee; Balbin, O. Alejandro; Quist, Michael J.; Barrette, Terrence; Everett, Jessica; Siddiqui, Javed; Kunju, Lakshmi P.; Navone, Nora; Araujo, John C.; Troncoso, Patricia; Logothetis, Christopher J.; Innis, Jeffrey W.; Smith, David C.; Lao, Christopher D.; Kim, Scott Y.; Roberts, J. Scott; Gruber, Stephen B.; Pienta, Kenneth J.; Talpaz, Moshe; Chinnaiyan, Arul M.

    2012-01-01

    Individual cancers harbor a set of genetic aberrations that can be informative for identifying rational therapies currently available or in clinical trials. We implemented a pilot study to explore the practical challenges of applying high-throughput sequencing in clinical oncology. We enrolled patients with advanced or refractory cancer who were eligible for clinical trials. For each patient, we performed whole-genome sequencing of the tumor, targeted whole-exome sequencing of tumor and normal DNA, and transcriptome sequencing (RNA-Seq) of the tumor to identify potentially informative mutations in a clinically relevant time frame of 3 to 4 weeks. With this approach, we detected several classes of cancer mutations including structural rearrangements, copy number alterations, point mutations, and gene expression alterations. A multidisciplinary Sequencing Tumor Board (STB) deliberated on the clinical interpretation of the sequencing results obtained. We tested our sequencing strategy on human prostate cancer xenografts. Next, we enrolled two patients into the clinical protocol and were able to review the results at our STB within 24 days of biopsy. The first patient had metastatic colorectal cancer in which we identified somatic point mutations in NRAS, TP53, AURKA, FAS, and MYH11, plus amplification and overexpression of cyclin-dependent kinase 8 (CDK8). The second patient had malignant melanoma, in which we identified a somatic point mutation in HRAS and a structural rearrangement affecting CDKN2C. The STB identified the CDK8 amplification and Ras mutation as providing a rationale for clinical trials with CDK inhibitors or MEK (mitogenactivated or extracellular signal–regulated protein kinase kinase) and PI3K (phosphatidylinositol 3-kinase) inhibitors, respectively. Integrative high-throughput sequencing of patients with advanced cancer generates a comprehensive, individual mutational landscape to facilitate biomarker-driven clinical trials in oncology. PMID:22133722

  17. Epidermodysplasia verruciformis in lipoid proteinosis: case report and discussion of pathophysiology.

    PubMed

    O'Blenes, Catherine; Pasternak, Sylvia; Issekutz, Andrew; Gillis, Jane; Chowdhury, Dhiman; Finlayson, Laura

    2015-01-01

    Lipoid proteinosis (LP) is a rare autosomal recessive genodermatosis caused by mutations in extracellular matrix protein 1 (ECM1) that involves deposition of basement membrane-like material in the skin and other organs. Epidermodysplasia verruciformis (EV) is also a rare autosomal recessive genodermatosis involving susceptibility to human papillomavirus (HPV) infections and squamous cell carcinoma, caused in most cases by homozygous mutations in EVER1 or EVER2. We describe a case of EV in a patient with LP and discuss the pathophysiology. A 3-year-old Lebanese girl presented with hoarseness, beaded papules along the eyelid margins, waxy papules and plaques on her head and neck, and lichenoid verrucous papules on the forearms and hands. Histopathology of the waxy papules exhibited deposition of periodic acid Schiff-positive basement membrane-like material in the superficial dermis, characteristic of LP. The verruca plana-like lesions exhibited acanthosis and enlarged keratinocytes with pale blue-grey cytoplasm and a perinuclear halo, consistent with verrucae and EV. Polymerase chain reaction amplification and sequencing of ECM1, EVER1, and EVER2 demonstrated a homozygous point mutation, c.389C>T (p.Thr130Met), in exon 6 of ECM1 and a heterozygous point mutation, c.917 A>T (p.Asn306Ile), in exon 8 in EVER2, known to cause EV in homozygous patients. The homozygous point mutation c.389C>T in ECM1 may be a novel mutation causing LP. Verruca plana-like lesions seen in LP appear to represent a form of acquired EV. In this patient, a heterozygous mutation in EVER2 at c.917 A>T may also have conferred susceptibility to HPV infection. © 2013 Wiley Periodicals, Inc.

  18. Structural Basis of Glyphosate Resistance Resulting from the Double Mutation Thr97 → Ile and Pro101 → Ser in 5-Enolpyruvylshikimate-3-phosphate Synthase from Escherichia coli*S⃞

    PubMed Central

    Funke, Todd; Yang, Yan; Han, Huijong; Healy-Fried, Martha; Olesen, Sanne; Becker, Andreas; Schönbrunn, Ernst

    2009-01-01

    The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the target of the broad spectrum herbicide glyphosate. The genetic engineering of EPSPS led to the introduction of glyphosate-resistant crops worldwide. The genetically engineered corn lines NK603 and GA21 carry distinct EPSPS enzymes. CP4 EPSPS, expressed in NK603 corn and transgenic soybean, cotton, and canola, belongs to class II EPSPS, glyphosate-insensitive variants of this enzyme isolated from certain Gram-positive bacteria. GA21 corn, on the other hand, was created by point mutations of class I EPSPS, such as the enzymes from Zea mays or Escherichia coli, which are sensitive to low glyphosate concentrations. The structural basis of the glyphosate resistance resulting from these point mutations has remained obscure. We studied the kinetic and structural effects of the T97I/P101S double mutation, the molecular basis for GA21 corn, using EPSPS from E. coli. The T97I/P101S enzyme is essentially insensitive to glyphosate (Ki = 2.4 mm) but maintains high affinity for the substrate phosphoenolpyruvate (PEP) (Km = 0.1 mm). The crystal structure at 1.7-Å resolution revealed that the dual mutation causes a shift of residue Gly96 toward the glyphosate binding site, impairing efficient binding of glyphosate, while the side chain of Ile97 points away from the substrate binding site, facilitating PEP utilization. The single site T97I mutation renders the enzyme sensitive to glyphosate and causes a substantial decrease in the affinity for PEP. Thus, only the concomitant mutations of Thr97 and Pro101 induce the conformational changes necessary to produce catalytically efficient, glyphosate-resistant class I EPSPS. PMID:19211556

  19. Structural basis of glyphosate resistance resulting from the double mutation Thr97 -> Ile and Pro101 -> Ser in 5-enolpyruvylshikimate-3-phosphate synthase from Escherichia coli.

    PubMed

    Funke, Todd; Yang, Yan; Han, Huijong; Healy-Fried, Martha; Olesen, Sanne; Becker, Andreas; Schönbrunn, Ernst

    2009-04-10

    The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the target of the broad spectrum herbicide glyphosate. The genetic engineering of EPSPS led to the introduction of glyphosate-resistant crops worldwide. The genetically engineered corn lines NK603 and GA21 carry distinct EPSPS enzymes. CP4 EPSPS, expressed in NK603 corn and transgenic soybean, cotton, and canola, belongs to class II EPSPS, glyphosate-insensitive variants of this enzyme isolated from certain Gram-positive bacteria. GA21 corn, on the other hand, was created by point mutations of class I EPSPS, such as the enzymes from Zea mays or Escherichia coli, which are sensitive to low glyphosate concentrations. The structural basis of the glyphosate resistance resulting from these point mutations has remained obscure. We studied the kinetic and structural effects of the T97I/P101S double mutation, the molecular basis for GA21 corn, using EPSPS from E. coli. The T97I/P101S enzyme is essentially insensitive to glyphosate (K(i) = 2.4 mm) but maintains high affinity for the substrate phosphoenolpyruvate (PEP) (K(m) = 0.1 mm). The crystal structure at 1.7-A resolution revealed that the dual mutation causes a shift of residue Gly(96) toward the glyphosate binding site, impairing efficient binding of glyphosate, while the side chain of Ile(97) points away from the substrate binding site, facilitating PEP utilization. The single site T97I mutation renders the enzyme sensitive to glyphosate and causes a substantial decrease in the affinity for PEP. Thus, only the concomitant mutations of Thr(97) and Pro(101) induce the conformational changes necessary to produce catalytically efficient, glyphosate-resistant class I EPSPS.

  20. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye

    PubMed Central

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-01-01

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions. PMID:25199907

  1. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye

    NASA Astrophysics Data System (ADS)

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-09-01

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.

  2. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye.

    PubMed

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-09-09

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.

  3. The SHOX region and its mutations.

    PubMed

    Capone, L; Iughetti, L; Sabatini, S; Bacciaglia, A; Forabosco, A

    2010-06-01

    The short stature homeobox-containing (SHOX) gene lies in the pseudoautosomal region 1 (PAR1) that comprises 2.6 Mb of the short-arm tips of both the X and Y chromosomes. It is known that its heterozygous mutations cause Leri-Weill dyschondrosteosis (LWD) (OMIM #127300), while its homozygous mutations cause a severe form of dwarfism known as Langer mesomelic dysplasia (LMD) (OMIM #249700). The analysis of 238 LWD patients between 1998 and 2007 by multiple authors shows a prevalence of deletions (46.4%) compared to point mutations (21.2%). On the whole, deletions and point mutations account for about 67% of LWD patients. SHOX is located within a 1000 kb desert region without genes. The comparative genomic analysis of this region between genomes of different vertebrates has led to the identification of evolutionarily conserved non-coding DNA elements (CNE). Further functional studies have shown that one of these CNE downstream of the SHOX gene is necessary for the expression of SHOX; this is considered to be typical "enhancer" activity. Including the enhancer, the overall mutation of the SHOX region in LWD patients does not hold in 100% of cases. Various authors have demonstrated the existence of other CNE both downstream and upstream of SHOX regions. The resulting conclusion is that it is necessary to reanalyze all LWD/LMD patients without SHOX mutations for the presence of mutations in the 5'- and 3'-flanking SHOX regions.

  4. Development of a PCR/LDR/capillary electrophoresis assay with potential for the detection of a beta-thalassemia fetal mutation in maternal plasma.

    PubMed

    Yi, Ping; Chen, Zhuqin; Yu, Lili; Zheng, Yingru; Liu, Guodong; Xie, Haichang; Zhou, Yuanguo; Zheng, Xiuhui; Han, Jian; Li, Li

    2010-08-01

    Analysis of fetal DNA in maternal plasma has recently been introduced for non-invasive prenatal diagnosis. We have now investigated the feasibility of polymerase chain reaction (PCR)/ligase detection reaction (LDR)/capillary electrophoresis for the detection of fetal point mutations, such as the beta-thalassemia mutation, IVS2 654(C --> T), in maternal plasma DNA. The sensitivity of LDR/capillary electrophoresis was examined by quantifying the mutant PCR products in the presence of a vast excess of non-mutant competitor template, a situation that mimics the detection of rare fetal mutations in the presence of excess maternal DNA. PCR/LDR/capillary electrophoresis was applied to detect the mutation, IVS2 654(C --> T), in an experimental model at different sensitivity levels and from 10 maternal plasma samples. Our results demonstrated that this approach to detect a low abundance IVS2 654(C --> T) mutation achieved a sensitivity of approximately 1:10,000. The approach was applied to maternal plasma DNA to detect the paternally inherited fetal IVS2 654(C --> T) mutation, and the results were equivalent to those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. PCR/LDR/capillary electrophoresis has a very high sensitivity that can distinguish low abundance single nucleotide differences and can detect paternally inherited fetal point mutations in maternal plasma.

  5. [A preliminary study on p53 gene in lung cancer tissues of workers exposed to silica and welding fumes].

    PubMed

    Liu, B; Zhou, P; Miao, Q

    1997-05-01

    Mutations of suppressor gene p53 was studied in 36 cases of silica related lung cancer and 6 cases of welding fume related lung cancer with immunohistochemical and PCR-SSCP methods. Cancer tissues were embedded in paraffin and stored for 13.4 years in average. Results revealed that there was abnormal mobility shift of electrophoresis in 18 cases with 20 point mutations of 42 specimens tested, accounted for 42.9%, and 50% (10/20) of the mutations were clustered in exon 8. This finding differed from mutational spectrum of gene in non-occupational lung cancer, in which mutation frequency of exon 8 ranged from 17.5% to 23.5%. Gene mutation frequency in varied pathological categories of pneumoconiosis related lung cancer also differed from that in common lung cancer. In the latter, the highest one was in small cell lung cancer (70%) and the lowest in adenocarcinoma (33%), but in the former, the highest in adenocarcinoma (53.9%) and the lowest in small cell lung cancer (30.8%). Immunohistochemical observations also showed a very high prevalence of p53 gene mutation expression (46.9%). Sequencing, which was determined in two cases of this study, revealed that two point mutations all occurred in non-hotspot codon 144 of p53 gene. Difference in gene mutation spectrum suggests that there exist specific carcinogens and carcinogenesis in silica and welding fume related lung cancer.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koivisto, U.M.; Viikari, J.S.; Kontula, K.

    Two deletions of the low-density lipoprotein (LDL) receptor gene were previously shown to account for about two thirds of all mutations causing familial hypercholesterolemia (FH) in Finland. We screened the DNA samples from a cohort representing the remaining 30% of Finnish heterozygous FH patients by amplifying all the 18 exons of the receptor gene by PCR and searching for DNA variations with the SSCP technique. Ten novel mutations were identified, comprising two nonsense and seven missense mutations as well as one frameshift mutation caused by a 13-bp deletion. A single nucleotide change, substituting adenine for guanidine at position 2533 andmore » resulting in an amino acid change of glycine to aspartic acid at codon 823, was found in DNA samples from 14 unrelated FH probands. This mutation (FH-Turku) affects the sequence encoding the putative basolateral sorting signal of the LDL receptor protein; however, the exact functional consequences of this mutation are yet to be examined. The FH-Turku gene and another point mutation (Leu380{r_arrow}His or FH-Pori) together account for {approximately}8% of the FH-causing genes in Finland and are particularly common among FH patients from the southwestern part of the country (combined, 30%). Primer-introduced restriction analysis was applied for convenient assay of the FH-Turku and FH-Pori point mutations. In conclusion, this paper demonstrates the unique genetic background of FH in Finland and describes a commonly occurring FH gene with a missense mutation closest to the C terminus thus far reported. 32 refs., 5 figs., 2 tabs.« less

  7. Next-generation sequencing reveals the mutational landscape of clinically diagnosed Usher syndrome: copy number variations, phenocopies, a predominant target for translational read-through, and PEX26 mutated in Heimler syndrome.

    PubMed

    Neuhaus, Christine; Eisenberger, Tobias; Decker, Christian; Nagl, Sandra; Blank, Cornelia; Pfister, Markus; Kennerknecht, Ingo; Müller-Hofstede, Cornelie; Charbel Issa, Peter; Heller, Raoul; Beck, Bodo; Rüther, Klaus; Mitter, Diana; Rohrschneider, Klaus; Steinhauer, Ute; Korbmacher, Heike M; Huhle, Dagmar; Elsayed, Solaf M; Taha, Hesham M; Baig, Shahid M; Stöhr, Heidi; Preising, Markus; Markus, Susanne; Moeller, Fabian; Lorenz, Birgit; Nagel-Wolfrum, Kerstin; Khan, Arif O; Bolz, Hanno J

    2017-09-01

    Combined retinal degeneration and sensorineural hearing impairment is mostly due to autosomal recessive Usher syndrome (USH1: congenital deafness, early retinitis pigmentosa (RP); USH2: progressive hearing impairment, RP). Sanger sequencing and NGS of 112 genes (Usher syndrome, nonsyndromic deafness, overlapping conditions), MLPA, and array-CGH were conducted in 138 patients clinically diagnosed with Usher syndrome. A molecular diagnosis was achieved in 97% of both USH1 and USH2 patients, with biallelic mutations in 97% (USH1) and 90% (USH2), respectively. Quantitative readout reliably detected CNVs (confirmed by MLPA or array-CGH), qualifying targeted NGS as one tool for detecting point mutations and CNVs. CNVs accounted for 10% of identified USH2A alleles, often in trans to seemingly monoallelic point mutations. We demonstrate PTC124-induced read-through of the common p.Trp3955* nonsense mutation (13% of detected USH2A alleles), a potential therapy target. Usher gene mutations were found in most patients with atypical Usher syndrome, but the diagnosis was adjusted in case of double homozygosity for mutations in OTOA and NR2E3 , genes implicated in isolated deafness and RP. Two patients with additional enamel dysplasia had biallelic PEX26 mutations, for the first time linking this gene to Heimler syndrome. Targeted NGS not restricted to Usher genes proved beneficial in uncovering conditions mimicking Usher syndrome.

  8. Exploring environmental causes of altered ras effects: fragmentation plus integration?

    PubMed

    Porta, Miquel; Ayude, Daniel; Alguacil, Juan; Jariod, Manuel

    2003-02-01

    Mutations in ras genes are the most common abnormality of oncogenes in human cancer and a major example of activation by point mutation. Experimental and epidemiological studies support the notion that Ki-ras activation and expression may be chemically related. We discuss the potential role of several environmental compounds in the induction or promotion of ras mutations in humans, with a focus on exocrine pancreatic cancer, the human tumor with the highest prevalence at diagnosis of Ki-ras mutations. Organochlorine compounds, organic solvents, and coffee compounds may play an indirect role in causing Ki-ras mutations, rather than as direct inducers of the mutations. Although for some organochlorine compounds the induction of point mutations in ras oncogenes cannot be excluded, it seems more likely that the effects of these compounds are mediated through nongenomic or indirectly genotoxic mechanisms of action. Organic solvents also may act via enzymatic induction of ras mutagens or by providing a proliferation advantage to ras-mutated cell clones. In exocrine pancreatic cancer, caffeine, other coffee compounds, or other factors with which coffee drinking is associated could modulate Ki-ras activation by interfering with DNA repair, cell-cycle checkpoints, and apoptosis. Asbestos, cigarette smoking, and some dietary factors also may be involved in the initiation or the promotion of Ki-ras mutations in lung and colon cancers. Further development of the mechanistic scenarios proposed here could contribute to a meaningful integration of biological, clinical, and environmental knowledge on the causes of altered ras effects. Copyright 2003 Wiley-Liss, Inc.

  9. The proto-oncogene KRAS and BRAF profiles and some clinical characteristics in colorectal cancer in the Turkish population.

    PubMed

    Ozen, Filiz; Ozdemir, Semra; Zemheri, Ebru; Hacimuto, Gizem; Silan, Fatma; Ozdemir, Ozturk

    2013-02-01

    The aim of the current study was to investigate the prevalence and predictive significance of the KRAS and BRAF mutations in Turkish patients with colorectal cancer (CRC). Totally, 53 fresh tumoral tissue specimens were investigated in patients with CRC. All specimens were obtained during routine surgery of patients who were histopathologically diagnosed and genotyped for common KRAS and BRAF point mutations. After DNA extraction, the target mutations were analyzed using the AutoGenomics INFINITI(®) assay, and some samples were confirmed by quantitative real-time polymerase chain reaction fluorescence melting curve analyses. KRAS mutations were found in 26 (49.05%) CRC samples. Twenty-seven samples (50.95%) had wild-type profiles for KRAS codon 12, 13, and 61 in the current cohort. In 17 (65.38%) samples, codon 12; in 7 (26.93%) samples, codon 13; and in 2 (7.69%) samples, codon 61 were found to be mutated, particularly in grade 2 of tumoral tissues. No point mutation was detected in BRAF codon Val600Glu for the studied CRC patients. Our study, based on a representative collection of human CRC tumors, indicates that KRAS gene mutations were detected in 49.05% of the samples, and the most frequent mutation was in the G12D codon. Results also showed that codons 12 and 13 of KRAS are relatively frequently without BRAF mutation in a CRC cohort from the Turkish population.

  10. Relationship of body mass index with BRAF (V600E) mutation in papillary thyroid cancer.

    PubMed

    Shi, Rong-Liang; Qu, Ning; Liao, Tian; Wei, Wen-Jun; Lu, Zhong-Wu; Ma, Ben; Wang, Yu-Long; Ji, Qing-Hai

    2016-06-01

    Current evidences suggest an influence of overweight body mass index (BMI) on the carcinogenesis in malignancies. However, the role of BMI is unclear in papillary thyroid cancer (PTC). The aim of the present study is to investigate the relationship between BMI and BRAF (V600E) mutation status in PTC. BRAF (V600E) mutation in 108 patients with PTC was analyzed by Sanger sequencing. The cutoff point of BMI was identified by X-tile for predicting mutation by overweight. Odds ratios (OR) and 95 % confidence interval (CI) of BRAF (V600E) mutation according to BMI and clinicopathologic variables were calculated using logistic regression models. Fifty-one patients were positive for BRAF (V600E) mutation. A positive relationship existed between BRAF (V600E) mutation and BMI (p = 0.039). A 24.3 kg/m(2) was identified as cutoff point for differentiating greater than 52.0 % observed probability of mutation for BRAF (V600E) in entire cohort, which was similar to the midpoint between the upper limit of normal BMI and overweight defined by WHO (≥24 kg/m(2)). Multivariate analysis confirmed the association between BRAF (V600E) mutation with overweight BMI range (OR 7.645, 95 % CI 1.275-45.831, p = 0.026). This study suggests an influence of overweight BMI on the status of BRAF (V600E) in patients with PTC, whereas the underlying mechanism need to be further investigated.

  11. Computational Analysis of Epidermal Growth Factor Receptor Mutations Predicts Differential Drug Sensitivity Profiles toward Kinase Inhibitors.

    PubMed

    Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna

    2018-05-01

    A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  12. Determination of Wolbachia Diversity in Butterflies from Western Ghats, India, by a Multigene Approach

    PubMed Central

    Salunke, Bipinchandra K.; Salunkhe, Rahul C.; Dhotre, Dhiraj P.; Walujkar, Sandeep A.; Khandagale, Avinash B.; Chaudhari, Rahul; Chandode, Rakesh K.; Ghate, Hemant V.; Patole, Milind S.; Werren, John H.

    2012-01-01

    Members of the genus Wolbachia are intracellular bacteria that are widespread in arthropods and establish diverse symbiotic associations with their hosts, ranging from mutualism to parasitism. Here we present the first detailed analyses of Wolbachia in butterflies from India with screening of 56 species. Twenty-nine species (52%) representing five families were positive for Wolbachia. This is the first report of Wolbachia infection in 27 of the 29 species; the other two were reported previously. This study also provides the first evidence of infection in the family Papilionidae. A striking diversity was observed among Wolbachia strains in butterfly hosts based on five multilocus sequence typing (MLST) genes, with 15 different sequence types (STs). Thirteen STs are new to the MLST database, whereas ST41 and ST125 were reported earlier. Some of the same host species from this study carried distinctly different Wolbachia strains, whereas the same or different butterfly hosts also harbored closely related Wolbachia strains. Butterfly-associated STs in the Indian sample originated by recombination and point mutation, further supporting the role of both processes in generating Wolbachia diversity. Recombination was detected only among the STs in this study and not in those from the MLST database. Most of the strains were remarkably similar in their wsp genotype, despite divergence in MLST. Only two wsp alleles were found among 25 individuals with complete hypervariable region (HVR) peptide profiles. Although both wsp and MLST show variability, MLST gives better separation between the strains. Completely different STs were characterized for the individuals sharing the same wsp alleles. PMID:22504801

  13. Genetic Diversity of the Q Fever Agent, Coxiella burnetii, Assessed by Microarray-Based Whole-Genome Comparisons†

    PubMed Central

    Beare, Paul A.; Samuel, James E.; Howe, Dale; Virtaneva, Kimmo; Porcella, Stephen F.; Heinzen, Robert A.

    2006-01-01

    Coxiella burnetii, a gram-negative obligate intracellular bacterium, causes human Q fever and is considered a potential agent of bioterrorism. Distinct genomic groups of C. burnetii are revealed by restriction fragment-length polymorphisms (RFLP). Here we comprehensively define the genetic diversity of C. burnetii by hybridizing the genomes of 20 RFLP-grouped and four ungrouped isolates from disparate sources to a high-density custom Affymetrix GeneChip containing all open reading frames (ORFs) of the Nine Mile phase I (NMI) reference isolate. We confirmed the relatedness of RFLP-grouped isolates and showed that two ungrouped isolates represent distinct genomic groups. Isolates contained up to 20 genomic polymorphisms consisting of 1 to 18 ORFs each. These were mostly complete ORF deletions, although partial deletions, point mutations, and insertions were also identified. A total of 139 chromosomal and plasmid ORFs were polymorphic among all C. burnetii isolates, representing ca. 7% of the NMI coding capacity. Approximately 67% of all deleted ORFs were hypothetical, while 9% were annotated in NMI as nonfunctional (e.g., frameshifted). The remaining deleted ORFs were associated with diverse cellular functions. The only deletions associated with isogenic NMI variants of attenuated virulence were previously described large deletions containing genes involved in lipopolysaccharide (LPS) biosynthesis, suggesting that these polymorphisms alone are responsible for the lower virulence of these variants. Interestingly, a variant of the Australia QD isolate producing truncated LPS had no detectable deletions, indicating LPS truncation can occur via small genetic changes. Our results provide new insight into the genetic diversity and virulence potential of Coxiella species. PMID:16547017

  14. Dielectrophoretic Capture and Genetic Analysis of Single Neuroblastoma Tumor Cells

    PubMed Central

    Carpenter, Erica L.; Rader, JulieAnn; Ruden, Jacob; Rappaport, Eric F.; Hunter, Kristen N.; Hallberg, Paul L.; Krytska, Kate; O’Dwyer, Peter J.; Mosse, Yael P.

    2014-01-01

    Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here, we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells (WBCs). Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control WBCs. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples of patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here, we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients. PMID:25133137

  15. Functional diversity of Csk, Chk, and Src SH2 domains due to a single residue variation.

    PubMed

    Ayrapetov, Marina K; Nam, Nguyen Hai; Ye, Guofeng; Kumar, Anil; Parang, Keykavous; Sun, Gongqin

    2005-07-08

    The C-terminal Src kinase (Csk) family of protein tyrosine kinases contains two members: Csk and Csk homologous kinase (Chk). Both phosphorylate and inactivate Src family kinases. Recent reports suggest that the Src homology (SH) 2 domains of Csk and Chk may bind to different phosphoproteins, which provides a basis for different cellular functions for Csk and Chk. To verify and characterize such a functional divergence, we compared the binding properties of the Csk, Chk, and Src SH2 domains and investigated the structural basis for the functional divergence. First, the study demonstrated striking functional differences between the Csk and Chk SH2 domains and revealed functional similarities between the Chk and Src SH2 domains. Second, structural analysis and mutagenic studies revealed that the functional differences among the three SH2 domains were largely controlled by one residue, Glu127 in Csk, Ile167 in Chk, and Lys200 in Src. Mutating these residues in the Csk or Chk SH2 domain to the Src counterpart resulted in dramatic gain of function similar to Src SH2 domain, whereas mutating Lys200 in Src SH2 domain to Glu (the Csk counterpart) resulted in loss of Src SH2 function. Third, a single point mutation of E127K rendered Csk responsive to activation by a Src SH2 domain ligand. Finally, the optimal phosphopeptide sequence for the Chk SH2 domain was determined. These results provide a compelling explanation for the functional differences between two homologous protein tyrosine kinases and reveal a new structure-function relationship for the SH2 domains.

  16. Population data and mutation rate of nine Y-STRs in a mestizo Mexican population from Guadalajara, Jalisco, México.

    PubMed

    Padilla-Gutiérrez, Jorge Ramón; Valle, Yeminia; Quintero-Ramos, Antonio; Hernández, Guillermo; Rodarte, Katya; Ortiz, Rocío; Olivares, Norma; Rivas, Fernando

    2008-11-01

    Nine Y-STR (DYS19, DYS390, DYS391, DYS392, DYS446, DYS447, DYS448, DYS456 and DYS458) were analyzed in a male sample of 285 unrelated individuals from Guadalajara, Jalisco, México. The haplotype diversity (0.996) and discrimination capacity (0.986) were calculated. A family study of around 200 father/son pairs and among 1828 meiosis showed five mutational events. All mutations were single step. The overall mutation rate estimated across the nine Y-STRs was 2.7 x 10(-3) (95% CI 1.2-6.4 x 10(-3))/locus/meiosis. The results indicate that these nine loci are useful Y-linked markers for forensic applications.

  17. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies

    PubMed Central

    Lasserre, Jean-Paul; Dautant, Alain; Aiyar, Raeka S.; Kucharczyk, Roza; Glatigny, Annie; Tribouillard-Tanvier, Déborah; Rytka, Joanna; Blondel, Marc; Skoczen, Natalia; Reynier, Pascal; Pitayu, Laras; Rötig, Agnès; Delahodde, Agnès; Steinmetz, Lars M.; Dujardin, Geneviève; Procaccio, Vincent; di Rago, Jean-Paul

    2015-01-01

    ABSTRACT Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast. PMID:26035862

  18. Molecular characterization of allelic variants of (GATA)n microsatellite loci in parthenogenetic lizards Darevskia unisexualis (Lacertidae).

    PubMed

    Korchagin, V I; Badaeva, T N; Tokarskaya, O N; Martirosyan, I A; Darevsky, I S; Ryskov, A P

    2007-05-01

    Populations of parthenogenetic lizards of the genus Darevskia consist of genetically identical animals, and represent a unique model for studying the molecular mechanisms underlying the variability and evolution of hypervariable DNA repeats. As unisexual lineages, parthenogenetic lizards are characterized by some level of genetic diversity at microsatellite loci. We cloned and sequenced a number of (GATA)n microsatellite loci of Darevskia unisexualis. PCR products from these loci were also sequenced and the degree of intraspecific polymorphism was assessed. Among the five (GATA)n loci analysed, two (Du215 and Du281) were polymorphic. Cross-species analysis of Du215 and Du281 indicate that the priming sites at the D. unisexualis loci are conserved in the bisexual parental species, D. raddei and D. valentini. Sequencing the PCR products amplified from Du215 and Du281 and from monomorphic Du323 showed that allelic differences at the polymorphic loci are caused by microsatellite mutations and by point mutations in the flanking regions. The haplotypes identified among the allelic variants of Du281 and among its orthologues in the parental species provide new evidence of the cross-species origin of D. unisexualis. To our knowledge, these data are the first to characterize the nucleotide sequences of allelic variants at microsatellite loci within parthenogenetic vertebrate animals.

  19. Protein conformation and disease : pathological consequences of analogous mutations in homologous proteins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F. J.; Pokkuluri, P. R.; Schiffer, M.

    2000-12-19

    The antibody light chain variable domain (V{sub L}){sup 1} and myelin protein zero (MPZ) are representatives of the functionally diverse immunoglobulin superfamily. The V{sub L} is a subunit of the antigen-binding component of antibodies, while MPZ is the major membrane-linked constituent of the myelin sheaths that coat peripheral nerves. Despite limited amino acid sequence homology, the conformations of the core structures of the two proteins are largely superimposable. Amino acid variations in V{sub L} account for various conformational disease outcomes, including amyloidosis. However, the specific amino acid changes in V{sub L} that are responsible for disease have been obscured bymore » multiple concurrent primary structure alterations. Recently, certain demyelination disorders have been linked to point mutations and single amino acid polymorphisms in MPZ. We demonstrate here that some pathogenic variations in MPZ correspond to changes suspected of determining amyloidosis in V{sub L}. This unanticipated observation suggests that studies of the biophysical origin of conformational disease in one member of a superfamily of homologous proteins may have implications throughout the superfamily. In some cases, findings may account for overt disease; in other cases, due to the natural repertoire of inherited polymorphisms, variations in a representative protein may predict subclinical impairment of homologous proteins.« less

  20. Mini-review: Strategies for Variation and Evolution of Bacterial Antigens

    PubMed Central

    Foley, Janet

    2015-01-01

    Across the eubacteria, antigenic variation has emerged as a strategy to evade host immunity. However, phenotypic variation in some of these antigens also allows the bacteria to exploit variable host niches as well. The specific mechanisms are not shared-derived characters although there is considerable convergent evolution and numerous commonalities reflecting considerations of natural selection and biochemical restraints. Unlike in viruses, mechanisms of antigenic variation in most bacteria involve larger DNA movement such as gene conversion or DNA rearrangement, although some antigens vary due to point mutations or modified transcriptional regulation. The convergent evolution that promotes antigenic variation integrates various evolutionary forces: these include mutations underlying variant production; drift which could remove alleles especially early in infection or during life history phases in arthropod vectors (when the bacterial population size goes through a bottleneck); selection not only for any particular variant but also for the mechanism for the production of variants (i.e., selection for mutability); and overcoming negative selection against variant production. This review highlights the complexities of drivers of antigenic variation, in particular extending evaluation beyond the commonly cited theory of immune evasion. A deeper understanding of the diversity of purpose and mechanisms of antigenic variation in bacteria will contribute to greater insight into bacterial pathogenesis, ecology and coevolution with hosts. PMID:26288700

  1. A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome.

    PubMed

    Crotti, Lia; Lewandowska, Marzena A; Schwartz, Peter J; Insolia, Roberto; Pedrazzini, Matteo; Bussani, Erica; Dagradi, Federica; George, Alfred L; Pagani, Franco

    2009-02-01

    Genetic screening of long QT syndrome (LQTS) fails to identify disease-causing mutations in about 30% of patients. So far, molecular screening has focused mainly on coding sequence mutations or on substitutions at canonical splice sites. The purpose of this study was to explore the possibility that intronic variants not at canonical splice sites might affect splicing regulatory elements, lead to aberrant transcripts, and cause LQTS. Molecular screening was performed through DHPLC and sequence analysis. The role of the intronic mutation identified was assessed with a hybrid minigene splicing assay. A three-generation LQTS family was investigated. Molecular screening failed to identify an obvious disease-causing mutation in the coding sequences of the major LQTS genes but revealed an intronic A-to-G substitution in KCNH2 (IVS9-28A/G) cosegregating with the clinical phenotype in family members. In vitro analysis proved that the mutation disrupts the acceptor splice site definition by affecting the branch point (BP) sequence and promoting intron retention. We further demonstrated a tight functional relationship between the BP and the polypyrimidine tract, whose weakness is responsible for the pathological effect of the IVS9-28A/G mutation. We identified a novel BP mutation in KCNH2 that disrupts the intron 9 acceptor splice site definition and causes LQT2. The present finding demonstrates that intronic mutations affecting pre-mRNA processing may contribute to the failure of traditional molecular screening in identifying disease-causing mutations in LQTS subjects and offers a rationale strategy for the reduction of genotype-negative cases.

  2. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    PubMed Central

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Zou, Lihua; Gould, Joshua; Saksena, Gordon; Stransky, Nicolas; Rangel-Escareño, Claudia; Fernandez-Lopez, Juan Carlos; Hidalgo-Miranda, Alfredo; Melendez-Zajgla, Jorge; Hernández-Lemus, Enrique; Schwarz-Cruz y Celis, Angela; Imaz-Rosshandler, Ivan; Ojesina, Akinyemi I.; Jung, Joonil; Pedamallu, Chandra S.; Lander, Eric S.; Habermann, Thomas M.; Cerhan, James R.; Shipp, Margaret A.; Getz, Gad; Golub, Todd R.

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease. PMID:22343534

  3. Thiol peroxidase deficiency leads to increased mutational load and decreased fitness in Saccharomyces cerevisiae.

    PubMed

    Kaya, Alaattin; Lobanov, Alexei V; Gerashchenko, Maxim V; Koren, Amnon; Fomenko, Dmitri E; Koc, Ahmet; Gladyshev, Vadim N

    2014-11-01

    Thiol peroxidases are critical enzymes in the redox control of cellular processes that function by reducing low levels of hydroperoxides and regulating redox signaling. These proteins were also shown to regulate genome stability, but how their dysfunction affects the actual mutations in the genome is not known. Saccharomyces cerevisiae has eight thiol peroxidases of glutathione peroxidase and peroxiredoxin families, and the mutant lacking all these genes (∆8) is viable. In this study, we employed two independent ∆8 isolates to analyze the genome-wide mutation spectrum that results from deficiency in these enzymes. Deletion of these genes was accompanied by a dramatic increase in point mutations, many of which clustered in close proximity and scattered throughout the genome, suggesting strong mutational bias. We further subjected multiple lines of wild-type and ∆8 cells to long-term mutation accumulation, followed by genome sequencing and phenotypic characterization. ∆8 lines showed a significant increase in nonrecurrent point mutations and indels. The original ∆8 cells exhibited reduced growth rate and decreased life span, which were further reduced in all ∆8 mutation accumulation lines. Although the mutation spectrum of the two independent isolates was different, similar patterns of gene expression were observed, suggesting the direct contribution of thiol peroxidases to the observed phenotypes. Expression of a single thiol peroxidase could partially restore the growth phenotype of ∆8 cells. This study shows how deficiency in nonessential, yet critical and conserved oxidoreductase function, leads to increased mutational load and decreased fitness. Copyright © 2014 by the Genetics Society of America.

  4. Single-Step qPCR and dPCR Detection of Diverse CRISPR-Cas9 Gene Editing Events In Vivo.

    PubMed

    Falabella, Micol; Sun, Linqing; Barr, Justin; Pena, Andressa Z; Kershaw, Erin E; Gingras, Sebastien; Goncharova, Elena A; Kaufman, Brett A

    2017-10-05

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based technology is currently the most flexible means to create targeted mutations by recombination or indel mutations by nonhomologous end joining. During mouse transgenesis, recombinant and indel alleles are often pursued simultaneously. Multiple alleles can be formed in each animal to create significant genetic complexity that complicates the CRISPR-Cas9 approach and analysis. Currently, there are no rapid methods to measure the extent of on-site editing with broad mutation sensitivity. In this study, we demonstrate the allelic diversity arising from targeted CRISPR editing in founder mice. Using this DNA sample collection, we validated specific quantitative and digital PCR methods (qPCR and dPCR, respectively) for measuring the frequency of on-target editing in founder mice. We found that locked nucleic acid (LNA) probes combined with an internal reference probe (Drop-Off Assay) provide accurate measurements of editing rates. The Drop-Off LNA Assay also detected on-target CRISPR-Cas9 gene editing in blastocysts with a sensitivity comparable to PCR-clone sequencing. Lastly, we demonstrate that the allele-specific LNA probes used in qPCR competitor assays can accurately detect recombinant mutations in founder mice. In summary, we show that LNA-based qPCR and dPCR assays provide a rapid method for quantifying the extent of on-target genome editing in vivo , testing RNA guides, and detecting recombinant mutations. Copyright © 2017 Falabella et al.

  5. Mutation signatures of carcinogen exposure: genome-wide detection and new opportunities for cancer prevention

    PubMed Central

    2014-01-01

    Exposure to environmental mutagens is an important cause of human cancer, and measures to reduce mutagenic and carcinogenic exposures have been highly successful at controlling cancer. Until recently, it has been possible to connect the chemical characteristics of mutagens to actual mutations observed in human tumors only indirectly. Now, next-generation sequencing technology enables us to observe in detail the DNA-sequence-level effects of well-known mutagens, such as ultraviolet radiation and tobacco smoke, as well as endogenous mutagenic processes, such as those involving activated DNA cytidine deaminases (APOBECs). We can also observe the effects of less well-known but potent mutagens, including those recently found to be present in some herbal remedies. Crucially, we can now tease apart the superimposed effects of several mutational exposures and processes and determine which ones occurred during the development of individual tumors. Here, we review advances in detecting these mutation signatures and discuss the implications for surveillance and prevention of cancer. The number of sequenced tumors from diverse cancer types and multiple geographic regions is growing explosively, and the genomes of these tumors will bear the signatures of even more diverse mutagenic exposures. Thus, we envision development of wide-ranging compendia of mutation signatures from tumors and a concerted effort to experimentally elucidate the signatures of a large number of mutagens. This information will be used to link signatures observed in tumors to the exposures responsible for them, which will offer unprecedented opportunities for prevention. PMID:25031618

  6. Estimating the parameters of background selection and selective sweeps in Drosophila in the presence of gene conversion

    PubMed Central

    Campos, José Luis; Charlesworth, Brian

    2017-01-01

    We used whole-genome resequencing data from a population of Drosophila melanogaster to investigate the causes of the negative correlation between the within-population synonymous nucleotide site diversity (πS) of a gene and its degree of divergence from related species at nonsynonymous nucleotide sites (KA). By using the estimated distributions of mutational effects on fitness at nonsynonymous and UTR sites, we predicted the effects of background selection at sites within a gene on πS and found that these could account for only part of the observed correlation between πS and KA. We developed a model of the effects of selective sweeps that included gene conversion as well as crossing over. We used this model to estimate the average strength of selection on positively selected mutations in coding sequences and in UTRs, as well as the proportions of new mutations that are selectively advantageous. Genes with high levels of selective constraint on nonsynonymous sites were found to have lower strengths of positive selection and lower proportions of advantageous mutations than genes with low levels of constraint. Overall, background selection and selective sweeps within a typical gene reduce its synonymous diversity to ∼75% of its value in the absence of selection, with larger reductions for genes with high KA. Gene conversion has a major effect on the estimates of the parameters of positive selection, such that the estimated strength of selection on favorable mutations is greatly reduced if it is ignored. PMID:28559322

  7. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    PubMed

    Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri

    2015-11-01

    There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  8. Ras mutations are rare in solitary cold and toxic thyroid nodules.

    PubMed

    Krohn, K; Reske, A; Ackermann, F; Müller, A; Paschke, R

    2001-08-01

    Activation of ras proto-oncogenes as a result of point mutations is detectable in a significant percentage of most types of tumour. Similar to neoplasms of other organs, mutations of all three ras genes can be found in thyroid tumours. H-, K- and N-ras mutations have been detected in up to 20% of follicular adenomas and adenomatous nodules which were not functionally characterized. This raises the question as to whether ras mutations are specific for hypofunctional nodules and TSH receptor mutations for hyperfunctioning nodules. To investigate ras and TSH receptor mutations with respect to functional differentiation we studied 41 scintigraphically cold nodules and 47 toxic thyroid nodules. To address the likelihood of a somatic mutation we also studied the clonal origin of these tumours. Genomic DNA was extracted from nodular and surrounding tissue. Mutational hot spots in exons 1 and 2 of the H- and K-ras gene were PCR amplified and sequenced using big dye terminator chemistry. Denaturing gradient gel electrophoresis (DGGE) was used to verify sequencing results for the H-ras gene and to analyse the N-ras gene because its greater sensitivity in detecting somatic mutations. Clonality of nodular thyroid tissue was evaluated using X-Chromosome inactivation based on PCR amplification of the human androgen receptor locus. Monoclonal origin was detectable in 14 of 23 informative samples from cold thyroid nodules. In toxic thyroid nodules the frequency of clonal tissue was 20 in 30 informative cases. Only one point mutation could be found in the N-ras gene codon 61 (Gly to Arg) in a cold adenomatous nodule which was monoclonal. In toxic thyroid nodules no ras mutation was detectable. Our study suggests that ras mutations are rare in solitary cold and toxic thyroid nodules and that the frequent monoclonal origin of these tumours implies somatic mutations in genes other than H-, K- and N-ras.

  9. Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome

    PubMed Central

    Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita

    2009-01-01

    Purpose To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Methods Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. Results We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. Conclusions COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change. PMID:19390655

  10. Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome.

    PubMed

    Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita

    2009-01-01

    To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change.

  11. Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection.

    PubMed

    Singh, Om P; Dykes, Cherry L; Lather, Manila; Agrawal, Om P; Adak, Tridibes

    2011-03-14

    Knockdown resistance (kdr) in insects, resulting from mutation(s) in the voltage-gated sodium channel (vgsc) gene is one of the mechanisms of resistance against DDT and pyrethroid-group of insecticides. The most common mutation(s) associated with knockdown resistance in insects, including anophelines, has been reported to be present at residue Leu1014 in the IIS6 transmembrane segment of the vgsc gene. This study reports the presence of two alternative kdr-like mutations, L1014S and L1014F, at this residue in a major malaria vector Anopheles stephensi and describes new PCR assays for their detection. Part of the vgsc (IIS4-S5 linker-to-IIS6 transmembrane segment) of An. stephensi collected from Alwar (Rajasthan, India) was PCR-amplified from genomic DNA, sequenced and analysed for the presence of deduced amino acid substitution(s). Analysis of DNA sequences revealed the presence of two alternative non-synonymous point mutations at L1014 residue in the IIS6 transmembrane segment of vgsc, i.e., T>C mutation on the second position and A>T mutation on the third position of the codon, leading to Leu (TTA)-to-Ser (TCA) and -Phe (TTT) amino acid substitutions, respectively. Polymerase chain reaction (PCR) assays were developed for identification of each of these two point mutations. Genotyping of An. stephensi mosquitoes from Alwar by PCR assays revealed the presence of both mutations, with a high frequency of L1014S. The PCR assays developed for detection of the kdr mutations were specific as confirmed by DNA sequencing of PCR-genotyped samples. Two alternative kdr-like mutations, L1014S and L1014F, were detected in An. stephensi with a high allelic frequency of L1014S. The occurrence of L1014S is being reported for the first time in An. stephensi. Two specific PCR assays were developed for detection of two kdr-like mutations in An. stephensi.

  12. Mutational Spectrum of MYO15A and the Molecular Mechanisms of DFNB3 Human Deafness

    PubMed Central

    Rehman, Atteeq U.; Bird, Jonathan E.; Faridi, Rabia; Shahzad, Mohsin; Shah, Sujay; Lee, Kwanghyuk; Khan, Shaheen N.; Imtiaz, Ayesha; Ahmed, Zubair M.; Riazuddin, Saima; Santos-Cortez, Regie Lyn P.; Ahmad, Wasim; Leal, Suzanne M.; Riazuddin, Sheikh; Friedman, Thomas B.

    2016-01-01

    Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here. These mutations are distributed uniformly across MYO15A with one enigmatic exception; the alternatively spliced giant exon 2, encoding 1,233 residues, has 17 truncating mutations but no convincing deafness-causing missense mutations. MYO15A encodes three distinct isoform classes, one of which is 395 kDa (3,530 residues), the largest member of the myosin superfamily of molecular motors. Studies of Myo15 mouse models that recapitulate DFNB3 revealed two different pathogenic mechanisms of hearing loss. In the inner ear, myosin 15 is necessary both for the development and the long-term maintenance of stereocilia, mechanosensory sound-transducing organelles that extend from the apical surface of hair cells. The goal of this Mutation Update is to provide a comprehensive review of mutations and functions of MYO15A. PMID:27375115

  13. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    ERIC Educational Resources Information Center

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  14. Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing | Office of Cancer Genomics

    Cancer.gov

    Abstract: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer comprising at least two molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease.

  15. Point mutation in the MITF gene causing Waardenburg syndrome type II in a three-generation Indian family.

    PubMed

    Lalwani, A K; Attaie, A; Randolph, F T; Deshmukh, D; Wang, C; Mhatre, A; Wilcox, E

    1998-12-04

    Waardenburg syndrome (WS) is an autosomal-dominant neural crest cell disorder phenotypically characterized by hearing impairment and disturbance of pigmentation. A presence of dystopia canthorum is indicative of WS type 1, caused by loss of function mutation in the PAX3 gene. In contrast, type 2 WS (WS2) is characterized by normally placed medial canthi and is genetically heterogeneous; mutations in MITF (microphthalmia associated transcription factor) associated with WS2 have been identified in some but not all affected families. Here, we report on a three-generation Indian family with a point mutation in the MITF gene causing WS2. This mutation, initially reported in a Northern European family, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking the HLH-Zip or Zip structure necessary for normal interaction with its target DNA motif. Comparison of the phenotype between the two families demonstrates a significant difference in pigmentary disturbance of the eye. This family, with the first documented case of two unrelated WS2 families harboring identical mutations, provides additional evidence for the importance of genetic background on the clinical phenotype.

  16. A novel mutation of PAX3 in a Chinese family with Waardenburg syndrome.

    PubMed

    Qin, Wei; Shu, Anli; Qian, Xueqing; Gao, Jianjun; Xing, Qinghe; Zhang, Juan; Zheng, Yonglan; Li, Xingwang; Li, Sheng; Feng, Guoyin; He, Lin

    2006-08-28

    The molecular characterization of 34 members of a Chinese family, with 22 members in four generations, affected with Waardenburg syndrome (WS1). A detailed family history and clinical data were collected. A genome-wide scan by two-point linkage analysis using more than 400 microsatellite markers in combination with haplotype analysis was performed. Mutation screening was carried out in the candidate gene by sequencing of amplified products. A maximum two-point lod score of 6.53 at theta = 0.00 was obtained with marker D2S2248. Haplotype analysis placed the WS1 locus to a 45.74 cM region between D2S117 and D2S206, in close proximity to the PAX3 gene on chromosome 2q35. Mutation screening in PAX3 identified a 701T > C mutation which converted a highly conserved Leu to Pro. This nucleotide alteration was neither seen in unaffected members of the family nor found in 50 unrelated control subjects. The present study identified a novel 701T > C mutation in PAX3. The mutation observed in this family highlights the phenotypic heterogeneity of the disorder.

  17. Antimalarial drug susceptibility and point mutations associated with drug resistance in 248 Plasmodium falciparum isolates imported from Comoros to Marseille, France in 2004 2006.

    PubMed

    Parola, Philippe; Pradines, Bruno; Simon, Fabrice; Carlotti, Marie-Paule; Minodier, Philippe; Ranjeva, Marie-Pierre; Badiaga, Sékéné; Bertaux, Lionel; Delmont, Jean; Morillon, Marc; Silai, Ramatou; Brouqui, Philippe; Parzy, Daniel

    2007-09-01

    A total of 248 Plasmodium falciparum isolates were sampled in travelers with malaria who came to Marseille, France from Comoros to investigate in vitro activities of antimalarial drugs and molecular markers of drug resistance. Of the 248 isolates, 126 were maintained in culture. Of these, 53% were resistant to chloroquine, and 3% had reduced susceptibility to quinine, mefloquine, and atovaquone; 1% had reduced susceptibility to halofantrine and dihydroartemisinin; 7% had reduced susceptibility to monodesethylamodiaquine; 37% had reduced susceptibility to cycloguanil; and none had reduced susceptibility to lumefantrine. Resistance-associated point mutations were screened in 207 isolates. No mutations in the cytochrome b gene were found. Of the 207 isolates, 119 (58%) had a mutation in the P. falciparum dihydrofolate reductase (Pfdhfr) gene at codon 108, 6 (5%) had mutations in both Pfdhfr codon 108 and the P. falciparum dihydropteroate synthase codon 437, and 115 (56%) had the chloroquine resistance-associated K76T mutation in the P. falciparum chloroquine resistance transporter gene. This study represents a unique opportunity to improve surveillance of P. falciparum drug resistance in Comoros with consequences for treatment and chemoprophylaxis guidelines.

  18. De novo point mutations in patients diagnosed with ataxic cerebral palsy

    PubMed Central

    Parolin Schnekenberg, Ricardo; Perkins, Emma M.; Miller, Jack W.; Davies, Wayne I. L.; D’Adamo, Maria Cristina; Pessia, Mauro; Fawcett, Katherine A.; Sims, David; Gillard, Elodie; Hudspith, Karl; Skehel, Paul; Williams, Jonathan; O’Regan, Mary; Jayawant, Sandeep; Jefferson, Rosalind; Hughes, Sarah; Lustenberger, Andrea; Ragoussis, Jiannis

    2015-01-01

    Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies. PMID:25981959

  19. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.

    PubMed

    Liu, H X; Cartegni, L; Zhang, M Q; Krainer, A R

    2001-01-01

    Point mutations can generate defective and sometimes harmful proteins. The nonsense-mediated mRNA decay (NMD) pathway minimizes the potential damage caused by nonsense mutations. In-frame nonsense codons located at a minimum distance upstream of the last exon-exon junction are recognized as premature termination codons (PTCs), targeting the mRNA for degradation. Some nonsense mutations cause skipping of one or more exons, presumably during pre-mRNA splicing in the nucleus; this phenomenon is termed nonsense-mediated altered splicing (NAS), and its underlying mechanism is unclear. By analyzing NAS in BRCA1, we show here that inappropriate exon skipping can be reproduced in vitro, and results from disruption of a splicing enhancer in the coding sequence. Enhancers can be disrupted by single nonsense, missense and translationally silent point mutations, without recognition of an open reading frame as such. These results argue against a nuclear reading-frame scanning mechanism for NAS. Coding-region single-nucleotide polymorphisms (cSNPs) within exonic splicing enhancers or silencers may affect the patterns or efficiency of mRNA splicing, which may in turn cause phenotypic variability and variable penetrance of mutations elsewhere in a gene.

  20. Fukutin-related protein localizes to the Golgi apparatus and mutations lead to mislocalization in muscle in vivo.

    PubMed

    Keramaris-Vrantsis, Elizabeth; Lu, Pei J; Doran, Timothy; Zillmer, Allen; Ashar, Jignya; Esapa, Christopher T; Benson, Matthew A; Blake, Derek J; Rosenfeld, Jeffrey; Lu, Qi L

    2007-10-01

    Mutations in the fukutin-related protein gene (FKRP) are associated with a spectrum of diseases from mild limb-girdle muscular dystrophy type 2I to severe congenital muscular dystrophy type 1C, muscle-eye-brain disease (MEB), and Walker-Warburg syndrome (WWS). The effect of mutations on the transportation of the mutant proteins may constitute the underlying mechanisms for the pathogenesis of these diseases. Here we examined the subcellular localization of mouse and human normal and mutant FKRP proteins in cells and in muscle in vivo. Both normal human and mouse FKRPs localize in part of the Golgi apparatus in muscle fibers. Mutations in the FKRP gene invariably altered the localization of the protein, leading to endoplasmic reticulum retention within cells and diminished Golgi localization in muscle fibers. Our results therefore suggest that an individual missense point mutation can confer at least two independent effects on the protein, causing (1) reduction or loss of the presumed glycosyltransferase activity directly and (2) mislocalization that could further alter the function of the protein. The complexity of the effect of individual missense point mutations may partly explain the wide variation of the FKRP-related myopathies.

  1. Myelin protein zero gene mutated in Charcot-Marie-Tooth type 1B patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Ying; Li, Lanying; Lepercq, J.

    1993-11-15

    The autosomal dominant of Charcot-Marie-Tooth disease (CMT), whose gene is type 1B (CMT1B), has slow nerve conduction with demyelinated Schwann cells. In this study the abundant peripheral myelin protein zero (MPZ) gene, MPZ, was mapped 130 kb centromeric to the Fc receptor immunoglobulin gene cluster in band 1q22, and a major MPZ point mutation was found to cosegregate with CMT1B in one large CMT1B family. The MPZ point mutation in 18 of 18 related CMT1B pedigree 1 patients converts a positively charged lysine in codon 96 to a negatively charged glutamate. The same MPZ locus cosegregates with the CMT1B diseasemore » gene in a second CMT1B family [total multipoint logarithm of odds (lod) = 11.4 at [theta] = 0.00] with a splice junction mutation. Both mutations occur in MPZ protein regions otherwise conserved identically in human, rat, and cow since these species diverged 100 million years ago. MPZ protein, expressed exclusively in myelinated peripheral nerve Schwann cells, constitutes >50% of myelin protein. These mutations are anticipated to disrupt homophilic MPZ binding and result in CMT1B peripheral nerve demyelination.« less

  2. Development and application of loop-mediated isothermal amplification for detection of the F167Y mutation of carbendazim-resistant isolates in Fusarium graminearum

    PubMed Central

    Duan, Yabing; Zhang, Xiaoke; Ge, Changyan; Wang, Yong; Cao, Junhong; Jia, Xiaojing; Wang, Jianxin; Zhou, Mingguo

    2014-01-01

    Resistance of Fusarium graminearum to carbendazim is caused by point mutations in the β2-tubulin gene. The point mutation at codon 167 (TTT → TAT, F167Y) occurs in more than 90% of field resistant isolates in China. To establish a suitable method for rapid detection of the F167Y mutation in F. graminearum, an efficient and simple method with high specificity was developed based on loop-mediated isothermal amplification (LAMP). A set of four primers was designed and optimized to specially distinguish the F167Y mutation genotype. The LAMP reaction was optimal at 63°C for 60 min. When hydroxynaphthol blue dye (HNB) was added prior to amplification, samples with DNA of the F167Y mutation developed a characteristic sky blue color after the reaction but those without DNA or with different DNA did not. Results of HNB staining method were reconfirmed by gel electrophoresis. The developed LAMP had good specificity, stability and repeatability and was suitable for monitoring carbendazim-resistance populations of F. graminearum in agricultural production. PMID:25403277

  3. An Ethyl-Nitrosourea-Induced Point Mutation in Phex Causes Exon Skipping, X-Linked Hypophosphatemia, and Rickets

    PubMed Central

    Carpinelli, Marina R.; Wicks, Ian P.; Sims, Natalie A.; O’Donnell, Kristy; Hanzinikolas, Katherine; Burt, Rachel; Foote, Simon J.; Bahlo, Melanie; Alexander, Warren S.; Hilton, Douglas J.

    2002-01-01

    We describe the clinical, genetic, biochemical, and molecular characterization of a mouse that arose in the first generation (G1) of a random mutagenesis screen with the chemical mutagen ethyl-nitrosourea. The mouse was observed to have skeletal abnormalities inherited with an X-linked dominant pattern of inheritance. The causative mutation, named Skeletal abnormality 1 (Ska1), was shown to be a single base pair mutation in a splice donor site immediately following exon 8 of the Phex (phosphate-regulating gene with homologies to endopeptidases located on the X-chromosome) gene. This point mutation caused skipping of exon 8 from Phex mRNA, hypophosphatemia, and features of rickets. This experimentally induced phenotype mirrors the human condition X-linked hypophosphatemia; directly confirms the role of Phex in phosphate homeostasis, normal skeletal development, and rickets; and illustrates the power of mutagenesis in exploring animal models of human disease. PMID:12414538

  4. An ethyl-nitrosourea-induced point mutation in phex causes exon skipping, x-linked hypophosphatemia, and rickets.

    PubMed

    Carpinelli, Marina R; Wicks, Ian P; Sims, Natalie A; O'Donnell, Kristy; Hanzinikolas, Katherine; Burt, Rachel; Foote, Simon J; Bahlo, Melanie; Alexander, Warren S; Hilton, Douglas J

    2002-11-01

    We describe the clinical, genetic, biochemical, and molecular characterization of a mouse that arose in the first generation (G(1)) of a random mutagenesis screen with the chemical mutagen ethyl-nitrosourea. The mouse was observed to have skeletal abnormalities inherited with an X-linked dominant pattern of inheritance. The causative mutation, named Skeletal abnormality 1 (Ska1), was shown to be a single base pair mutation in a splice donor site immediately following exon 8 of the Phex (phosphate-regulating gene with homologies to endopeptidases located on the X-chromosome) gene. This point mutation caused skipping of exon 8 from Phex mRNA, hypophosphatemia, and features of rickets. This experimentally induced phenotype mirrors the human condition X-linked hypophosphatemia; directly confirms the role of Phex in phosphate homeostasis, normal skeletal development, and rickets; and illustrates the power of mutagenesis in exploring animal models of human disease.

  5. Transthyretin Amyloidosis: Chaperone Concentration Changes and Increased Proteolysis in the Pathway to Disease

    PubMed Central

    Ribeiro, Raquel; Gilberto, Samuel; Gomes, Ricardo A.; Ferreira, António; Mateus, Élia; Barroso, Eduardo; Coelho, Ana V.; Freire, Ana Ponces; Cordeiro, Carlos

    2015-01-01

    Transthyretin amyloidosis is a conformational pathology characterized by the extracellular formation of amyloid deposits and the progressive impairment of the peripheral nervous system. Point mutations in this tetrameric plasma protein decrease its stability and are linked to disease onset and progression. Since non-mutated transthyretin also forms amyloid in systemic senile amyloidosis and some mutation bearers are asymptomatic throughout their lives, non-genetic factors must also be involved in transthyretin amyloidosis. We discovered, using a differential proteomics approach, that extracellular chaperones such as fibrinogen, clusterin, haptoglobin, alpha-1-anti-trypsin and 2-macroglobulin are overrepresented in transthyretin amyloidosis. Our data shows that a complex network of extracellular chaperones are over represented in human plasma and we speculate that they act synergistically to cope with amyloid prone proteins. Proteostasis may thus be as important as point mutations in transthyretin amyloidosis. PMID:26147092

  6. Late-onset nonketotic hyperglycinemia with a heterozygous novel point mutation of the GLDC gene.

    PubMed

    Brenton, J Nicholas; Rust, Robert S

    2014-05-01

    Atypical nonketotic hyperglycinemia is characterized by heterogeneous phenotypes that often include nonspecific behavioral problems, cognitive deficits, and developmental delays. We describe a girl with late-onset nonketotic hyperglycinemia presenting at 5 years of age with hypotonia, chorea, ataxia, and alterations in consciousness in the setting of febrile illness. Serum amino acid analysis was mildly elevated; however, urine amino acid analysis was instrumental in demonstrating marked hyperglycinuria. Mutation testing showed a heterozygous novel sequence change/point mutation in the glycine decarboxylase gene. This patient illustrates the importance of obtaining urine amino acids in individuals whose clinical manifestations are suspicious for any form of nonketotic hyperglycinemia, because this testing may provide more prominent evidence of elevations in glycine. She also illustrates the potential for a heterozygous mutation to result in manifestations of an atypical form of nonketotic hyperglycinemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Analysis of ATP6 sequence diversity in the Triticum-Aegilops group of species reveals the crucial role of rearrangement in mitochondrial genome evolution

    USDA-ARS?s Scientific Manuscript database

    Mutation and chromosomal rearrangements are the two main forces of increasing genetic diversity for natural selection to act upon, and ultimately drive the evolutionary process. Although genome evolution is a function of both forces, simultaneously, the ratio of each can be varied among different ge...

  8. Use of Long-Term E. Coli Cultures: To Study Generation of Genetic Diversity & Teach General Microbiology Laboratory Skills

    ERIC Educational Resources Information Center

    Petrie, Angela; Finkel, Steven E.; Erbe, Jarrod

    2005-01-01

    A novel method of studying the generation of genetic diversity in an undergraduate microbiology laboratory is described. The basis of this approach is the accumulation of mutations that confer a competitive advantage, or growth advantage in stationary phase (GASP) phenotype, to E. coli grown in stationary phase for extended periods of time.

  9. Using diverse U.S. beef cattle genomes to identify missense mutations in EPAS1, a gene associated with pulmonary hypertension

    USDA-ARS?s Scientific Manuscript database

    The availability of whole genome sequence (WGS) data has made it possible to discover protein variants in silico. However, existing bovine WGS databases do not show data in a form conducive to protein variant analysis, and tend to under represent the breadth of genetic diversity in U.S. beef cattle...

  10. Using diverse U.S. beef cattle genomes to identify missense mutations in EPAS1, a gene associated with high-altitude pulmonary hypertension

    USDA-ARS?s Scientific Manuscript database

    The availability of whole genome sequence (WGS) data has made it possible to discover protein variants in silico. However, bovine WGS databases comprised of related influential sires from relatively few breeds tend to under represent the breadth of genetic diversity in U.S. beef cattle. Thus, our ...

  11. A Val85Met Mutation in Melanocortin-1 Receptor Is Associated with Reductions in Eumelanic Pigmentation and Cell Surface Expression in Domestic Rock Pigeons (Columba livia)

    PubMed Central

    Guernsey, Michael W.; Ritscher, Lars; Miller, Matthew A.; Smith, Daniel A.; Schöneberg, Torsten; Shapiro, Michael D.

    2013-01-01

    Variation in the melanocortin-1 receptor (Mc1r) is associated with pigmentation diversity in wild and domesticated populations of vertebrates, including several species of birds. Among domestic bird species, pigmentation variation in the rock pigeon ( Columba livia ) is particularly diverse. To determine the potential contribution of Mc1r variants to pigment diversity in pigeons, we sequenced Mc1r in a wide range of pigeon breeds and identified several single nucleotide polymorphisms, including a variant that codes for an amino acid substitution (Val85Met). In contrast to the association between Val85Met and eumelanism in other avian species, this change was associated with pheomelanism in pigeons. In vitro cAMP accumulation and protein expression assays revealed that Val85Met leads to decreased receptor function and reduced cell surface expression of the mutant protein. The reduced in vitro function is consistent with the observed association with reduced eumelanic pigmentation. Comparative genetic and cellular studies provide important insights about the range of mechanisms underlying diversity among vertebrates, including different phenotypic associations with similar mutations in different species. PMID:23977400

  12. Molecular evolution and emergence of avian gammacoronaviruses.

    PubMed

    Jackwood, Mark W; Hall, David; Handel, Andreas

    2012-08-01

    Coronaviruses, which are single stranded, positive sense RNA viruses, are responsible for a wide variety of existing and emerging diseases in humans and other animals. The gammacoronaviruses primarily infect avian hosts. Within this genus of coronaviruses, the avian coronavirus infectious bronchitis virus (IBV) causes a highly infectious upper-respiratory tract disease in commercial poultry. IBV shows rapid evolution in chickens, frequently producing new antigenic types, which adds to the multiple serotypes of the virus that do not cross protect. Rapid evolution in IBV is facilitated by strong selection, large population sizes and high genetic diversity within hosts, and transmission bottlenecks between hosts. Genetic diversity within a host arises primarily by mutation, which includes substitutions, insertions and deletions. Mutations are caused both by the high error rate, and limited proof reading capability, of the viral RNA-dependent RNA-polymerase, and by recombination. Recombination also generates new haplotype diversity by recombining existing variants. Rapid evolution of avian coronavirus IBV makes this virus extremely difficult to diagnose and control, but also makes it an excellent model system to study viral genetic diversity and the mechanisms behind the emergence of coronaviruses in their natural host. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans

    PubMed Central

    Tao, Hirotaka; Manak, J. Robert; Sowers, Levi; Mei, Xue; Kiyonari, Hiroshi; Abe, Takaya; Dahdaleh, Nader S.; Yang, Tian; Wu, Shu; Chen, Shan; Fox, Mark H.; Gurnett, Christina; Montine, Thomas; Bird, Thomas; Shaffer, Lisa G.; Rosenfeld, Jill A.; McConnell, Juliann; Madan-Khetarpal, Suneeta; Berry-Kravis, Elizabeth; Griesbach, Hilary; Saneto, Russell P.; Scott, Matthew P.; Antic, Dragana; Reed, Jordan; Boland, Riley; Ehaideb, Salleh N.; El-Shanti, Hatem; Mahajan, Vinit B.; Ferguson, Polly J.; Axelrod, Jeffrey D.; Lehesjoki, Anna-Elina; Fritzsch, Bernd; Slusarski, Diane C.; Wemmie, John; Ueno, Naoto; Bassuk, Alexander G.

    2011-01-01

    Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution. PMID:21276947

  14. Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker.

    PubMed

    Allio, Remi; Donega, Stefano; Galtier, Nicolas; Nabholz, Benoit

    2017-11-01

    It is commonly assumed that mitochondrial DNA (mtDNA) evolves at a faster rate than nuclear DNA (nuDNA) in animals. This has contributed to the popularity of mtDNA as a molecular marker in evolutionary studies. Analyzing 121 multilocus data sets and four phylogenomic data sets encompassing 4,676 species of animals, we demonstrate that the ratio of mitochondrial over nuclear mutation rate is highly variable among animal taxa. In nonvertebrates, such as insects and arachnids, the ratio of mtDNA over nuDNA mutation rate varies between 2 and 6, whereas it is above 20, on average, in vertebrates such as scaled reptiles and birds. Interestingly, this variation is sufficient to explain the previous report of a similar level of mitochondrial polymorphism, on average, between vertebrates and nonvertebrates, which was originally interpreted as reflecting the effect of pervasive positive selection. Our analysis rather indicates that the among-phyla homogeneity in within-species mtDNA diversity is due to a negative correlation between mtDNA per-generation mutation rate and effective population size, irrespective of the action of natural selection. Finally, we explore the variation in the absolute per-year mutation rate of both mtDNA and nuDNA using a reduced data set for which fossil calibration is available, and discuss the potential determinants of mutation rate variation across genomes and taxa. This study has important implications regarding DNA-based identification methods in predicting that mtDNA barcoding should be less reliable in nonvertebrates than in vertebrates. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Amino acid substitutions in random mutagenesis libraries: lessons from analyzing 3000 mutations.

    PubMed

    Zhao, Jing; Frauenkron-Machedjou, Victorine Josiane; Kardashliev, Tsvetan; Ruff, Anna Joëlle; Zhu, Leilei; Bocola, Marco; Schwaneberg, Ulrich

    2017-04-01

    The quality of amino acid substitution patterns in random mutagenesis libraries is decisive for the success in directed evolution campaigns. In this manuscript, we provide a detailed analysis of the amino acid substitutions by analyzing 3000 mutations of three random mutagenesis libraries (1000 mutations each; epPCR with a low-mutation and a high-mutation frequency and SeSaM-Tv P/P) employing lipase A from Bacillus subtilis (bsla). A comparison of the obtained numbers of beneficial variants in the mentioned three random mutagenesis libraries with a site saturation mutagenesis (SSM) (covering the natural diversity at each amino acid position of BSLA) concludes the diversity analysis. Seventy-six percent of the SeSaM-Tv P/P-generated substitutions yield chemically different amino acid substitutions compared to 64% (epPCR-low) and 69% (epPCR-high). Unique substitutions from one amino acid to others are termed distinct amino acid substitutions. In the SeSaM-Tv P/P library, 35% of all theoretical distinct amino acid substitutions were found in the 1000 mutation library compared to 25% (epPCR-low) and 26% (epPCR-high). Thirty-six percent of distinct amino acid substitutions found in SeSaM-Tv P/P were unobtainable by epPCR-low. Comparison with the SSM library showed that epPCR-low covers 15%, epPCR-high 18%, and SeSaM-Tv P/P 21% of obtainable beneficial amino acid positions. In essence, this study provides first insights on the quality of epPCR and SeSaM-Tv P/P libraries in terms of amino acid substitutions, their chemical differences, and the number of obtainable beneficial amino acid positions.

  16. Regulation of MDM2 Activity by Nucleolin

    DTIC Science & Technology

    2005-06-01

    tumorigenesis with -50% of human cancers showing mutation of the TP53 gene , often a loss of one gene copy and a point mutation within the second. p53...Sordat B, Gillet M, Schorderet D, Bosman FT, Chaubert P (2001) Methylation silencing and mutations of the p14ARF and pl6INK4a genes in colon cancer. Lab...for the first machinery (for example, see reference 53 and references step of pre-rRNA processing (22). Mutation of the genes en- therein). It is

  17. First Report of the 23S rRNA Gene A2058G Point Mutation Associated With Macrolide Resistance in Treponema pallidum From Syphilis Patients in Cuba.

    PubMed

    Noda, Angel A; Matos, Nelvis; Blanco, Orestes; Rodríguez, Islay; Stamm, Lola Virginia

    2016-05-01

    This study aimed to assess the presence of macrolide-resistant Treponema pallidum subtypes in Havana, Cuba. Samples from 41 syphilis patients were tested for T. pallidum 23S rRNA gene mutations. Twenty-five patients (61%) harbored T. pallidum with the A2058G mutation, which was present in all 8 subtypes that were identified. The A2059G mutation was not detected.

  18. Highly sensitive detection of mutations in CHO cell recombinant DNA using multi-parallel single molecule real-time DNA sequencing.

    PubMed

    Cartwright, Joseph F; Anderson, Karin; Longworth, Joseph; Lobb, Philip; James, David C

    2018-06-01

    High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ∼40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5 kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process. © 2018 Wiley Periodicals, Inc.

  19. Hypermutation in shark immunoglobulin light chain genes results in contiguous substitutions.

    PubMed

    Lee, Susan S; Tranchina, Daniel; Ohta, Yuko; Flajnik, Martin F; Hsu, Ellen

    2002-04-01

    Among 631 substitutions present in 90 nurse shark immunoglobulin light chain somatic mutants, 338 constitute 2-4 bp stretches of adjacent changes. An absence of mutations in perinatal sequences and the bias for one mutating V gene in adults suggest that the diversification is antigen dependent. The substitutions shared no patterns, and the absence of donor sequences, including from family members, supports the idea that most changes arose from nontemplated mutation. The tandem mutations as a group are distinguished by consistently fewer transition changes and an A bias. We suggest this is one of several pathways of hypermutation diversifying shark antigen-receptor genes--point mutations, tandem mutations, and mutations with a G-C preference--that coevolved with or preceded gene rearrangement.

  20. Excess of mutational jackpot events in expanding populations revealed by spatial Luria–Delbrück experiments

    PubMed Central

    Fusco, Diana; Gralka, Matti; Kayser, Jona; Anderson, Alex; Hallatschek, Oskar

    2016-01-01

    The genetic diversity of growing cellular populations, such as biofilms, solid tumours or developing embryos, is thought to be dominated by rare, exceptionally large mutant clones. Yet, the emergence of these mutational jackpot events is only understood in well-mixed populations, where they stem from mutations that arise during the first few cell divisions. To study jackpot events in spatially structured populations, we track mutant clones in microbial populations using fluorescence microscopy and population sequencing. High-frequency mutations are found to be massively enriched in microbial colonies compared with well-shaken liquid cultures, as a result of late-occurring mutations surfing at the edge of range expansions. Thus, jackpot events can be generated not only when mutations arise early but also when they occur at favourable locations, which exacerbates their role in adaptation and disease. In particular, because spatial competition with the wild type keeps most mutant clones in a quiescent state, strong selection pressures that kill the wild type promote drug resistance. PMID:27694797

  1. Excess of mutational jackpot events in expanding populations revealed by spatial Luria-Delbrück experiments.

    PubMed

    Fusco, Diana; Gralka, Matti; Kayser, Jona; Anderson, Alex; Hallatschek, Oskar

    2016-10-03

    The genetic diversity of growing cellular populations, such as biofilms, solid tumours or developing embryos, is thought to be dominated by rare, exceptionally large mutant clones. Yet, the emergence of these mutational jackpot events is only understood in well-mixed populations, where they stem from mutations that arise during the first few cell divisions. To study jackpot events in spatially structured populations, we track mutant clones in microbial populations using fluorescence microscopy and population sequencing. High-frequency mutations are found to be massively enriched in microbial colonies compared with well-shaken liquid cultures, as a result of late-occurring mutations surfing at the edge of range expansions. Thus, jackpot events can be generated not only when mutations arise early but also when they occur at favourable locations, which exacerbates their role in adaptation and disease. In particular, because spatial competition with the wild type keeps most mutant clones in a quiescent state, strong selection pressures that kill the wild type promote drug resistance.

  2. Genotypic and phenotypic characteristics of aminoglycoside-resistant Mycobacterium tuberculosis isolates in Latvia.

    PubMed

    Bauskenieks, Matiss; Pole, Ilva; Skenders, Girts; Jansone, Inta; Broka, Lonija; Nodieva, Anda; Ozere, Iveta; Kalvisa, Adrija; Ranka, Renate; Baumanis, Viesturs

    2015-03-01

    Mutations causing resistance to aminoglycosides, such as kanamycin (KAN), amikacin (AMK), and streptomycin, are not completely understood. In this study, polymorphisms of aminoglycoside resistance influencing genes such as rrs, eis, rpsL, and gidB in 41 drug-resistant and 17 pan-sensitive Mycobacterium tuberculosis clinical isolates in Latvia were analyzed. Mutation A1400G in rrs gene was detected in 92% isolates with high resistance level to KAN and diverse MIC level to AMK. Mutations in promoter region of eis were detected in 80% isolates with low-level MIC of KAN. The association of K43R mutation in rpsL gene, a mutation in the rrs gene at position 513, and various polymorphisms in gidB gene with distinct genetic lineages of M. tuberculosis was observed. The results of this study suggest that association of different controversial mutations of M. tuberculosis genes to the drug resistance phenotype should be done in respect to genetic lineages. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Random oligonucleotide mutagenesis: application to a large protein coding sequence of a major histocompatibility complex class I gene, H-2DP.

    PubMed Central

    Murray, R; Pederson, K; Prosser, H; Muller, D; Hutchison, C A; Frelinger, J A

    1988-01-01

    We have used random oligonucleotide mutagenesis (or saturation mutagenesis) to create a library of point mutations in the alpha 1 protein domain of a Major Histocompatibility Complex (MHC) molecule. This protein domain is critical for T cell and B cell recognition. We altered the MHC class I H-2DP gene sequence such that synthetic mutant alpha 1 exons (270 bp of coding sequence), which contain mutations identified by sequence analysis, can replace the wild type alpha 1 exon. The synthetic exons were constructed from twelve overlapping oligonucleotides which contained an average of 1.3 random point mutations per intact exon. DNA sequence analysis of mutant alpha 1 exons has shown a point mutant distribution that fits a Poisson distribution, and thus emphasizes the utility of this mutagenesis technique to "scan" a large protein sequence for important mutations. We report our use of saturation mutagenesis to scan an entire exon of the H-2DP gene, a cassette strategy to replace the wild type alpha 1 exon with individual mutant alpha 1 exons, and analysis of mutant molecules expressed on the surface of transfected mouse L cells. Images PMID:2903482

  4. Influence of the R823W mutation on the interaction of the ANKS6-ANKS3: insights from molecular dynamics simulation and free energy analysis.

    PubMed

    Kan, Wei; Fang, Fengqin; Chen, Lin; Wang, Ruige; Deng, Qigang

    2016-05-01

    The sterile alpha motif (SAM) domain of the protein ANKS6, a protein-protein interaction domain, is responsible for autosomal dominant polycystic kidney disease. Although the disease is the result of the R823W point mutation in the SAM domain of the protein ANKS6, the molecular details are still unclear. We applied molecular dynamics simulations, the principal component analysis, and the molecular mechanics Poisson-Boltzmann surface area binding free energy calculation to explore the structural and dynamic effects of the R823W point mutation on the complex ANKS6-ANKS3 (PDB ID: 4NL9) in comparison to the wild proteins. The energetic analysis presents that the wild type has a more stable structure than the mutant. The R823W point mutation not only disrupts the structure of the ANKS6 SAM domain but also negatively affects the interaction of the ANKS6-ANKS3. These results further clarify the previous experiments to understand the ANKS6-ANKS3 interaction comprehensively. In summary, this study would provide useful suggestions to understand the interaction of these proteins and their fatal action on mediating kidney function.

  5. Variation in genome-wide mutation rates within and between human families.

    PubMed

    Conrad, Donald F; Keebler, Jonathan E M; DePristo, Mark A; Lindsay, Sarah J; Zhang, Yujun; Casals, Ferran; Idaghdour, Youssef; Hartl, Chris L; Torroja, Carlos; Garimella, Kiran V; Zilversmit, Martine; Cartwright, Reed; Rouleau, Guy A; Daly, Mark; Stone, Eric A; Hurles, Matthew E; Awadalla, Philip

    2011-06-12

    J.B.S. Haldane proposed in 1947 that the male germline may be more mutagenic than the female germline. Diverse studies have supported Haldane's contention of a higher average mutation rate in the male germline in a variety of mammals, including humans. Here we present, to our knowledge, the first direct comparative analysis of male and female germline mutation rates from the complete genome sequences of two parent-offspring trios. Through extensive validation, we identified 49 and 35 germline de novo mutations (DNMs) in two trio offspring, as well as 1,586 non-germline DNMs arising either somatically or in the cell lines from which the DNA was derived. Most strikingly, in one family, we observed that 92% of germline DNMs were from the paternal germline, whereas, in contrast, in the other family, 64% of DNMs were from the maternal germline. These observations suggest considerable variation in mutation rates within and between families.

  6. [Cystic fibrosis gene mutations in the West of France: clinical application].

    PubMed

    Verlingue, C; Travert, G; Le Roux, M G; Laroche, D; Audrézet, M P; Mercier, B; Moisan, J P; Férec, C

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene, responsible for the cystic fibrosis phenotype when both alleles are mutated, was cloned and sequenced in 1989. Since then, more than 400 mutations have been reported in the gene, although most of these are rare. We have systematically analysed the entire coding sequence of the CFTR gene in a cohort of patients originating from the West of France (Caen, Brest and Nantes). More than 450 CF children, 914 chromosomes in all, have been exhaustively studied in the three centers. We have been able to characterize more than 90% of the mutations, respectively 93.5%, 99% and 95.8%. Despite the large diversity in the CFTR mutations occurring in CF patients from this area, these results can help to improve genetic counselling, prenatal diagnosis as well as our understanding of the molecular basis of the pathophysiology of cystic fibrosis.

  7. Bloom syndrome: a mendelian prototype of somatic mutational disease.

    PubMed

    German, J

    1993-11-01

    Spontaneous mutations in human somatic cells occur far more often than normal in individuals with Bloom syndrome. The basis for understanding these mutations and their developmental consequences emerges from examination of BS at the molecular, cellular, and clinical levels. The major clinical feature of BS, proportional dwarfism, as well as its major clinical complication, an exceptionally early emergence of neoplasia of the types and sites that affect the general population, are attributable to the excessive occurrence of mutations in somatic cells. Here, the following aspects of BS are discussed: (i) the BS phenotype; (ii) neoplasia in BS, including the means--the Bloom's Syndrome Registry--by which the significant risk for diverse sites and types of cancer in these patients was revealed; (iii) the biological basis for the cancer proneness of BS; and, finally, (iv) the significance for both basic human biology and clinical medicine of BS as the prototype of somatic mutational disease.

  8. Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in Cryptococcus deuterogattii.

    PubMed

    Billmyre, R Blake; Clancey, Shelly Applen; Heitman, Joseph

    2017-09-26

    Pathogenic microbes confront an evolutionary conflict between the pressure to maintain genome stability and the need to adapt to mounting external stresses. Bacteria often respond with elevated mutation rates, but little evidence exists of stable eukaryotic hypermutators in nature. Whole genome resequencing of the human fungal pathogen Cryptococcus deuterogattii identified an outbreak lineage characterized by a nonsense mutation in the mismatch repair component MSH2. This defect results in a moderate mutation rate increase in typical genes, and a larger increase in genes containing homopolymer runs. This allows facile inactivation of genes with coding homopolymer runs including FRR1 , which encodes the target of the immunosuppresive antifungal drugs FK506 and rapamycin. Our study identifies a eukaryotic hypermutator lineage spread over two continents and suggests that pathogenic eukaryotic microbes may experience similar selection pressures on mutation rate as bacterial pathogens, particularly during long periods of clonal growth or while expanding into new environments.

  9. Epilepsy caused by CDKL5 mutations.

    PubMed

    Castrén, Maija; Gaily, Eija; Tengström, Carola; Lähdetie, Jaana; Archer, Hayley; Ala-Mello, Sirpa

    2011-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been identified in female patients with early onset epileptic encephalopathy and severe mental retardation with a Rett-like phenotype. Subsequently CDKL5 mutations were shown to be associated with more diverse phenotypes including mild epilepsy and autism without epilepsy. Furthermore, CDKL5 mutations were found in patients with Angelman-like phenotype. The severity of epilepsy associated with CDKL5 mutations was recently shown to correlate with the type of CDKL5 mutations and epilepsy was identified to involve three distinct sequential stages. Here, we describe the phenotype of a severe form of neurodevelopmental disease in a female patient with a de novo nonsense mutation of the CDKL5 gene c.175C > T (p.R59X) affecting the catalytic domain of CDKL5 protein. Mutations in the CDKL5 gene are less common in males and can be associated with a genomic deletion as found in our male patient with a deletion of 0.3 Mb at Xp22.13 including the CDKL5 gene. We review phenotypes associated with CDKL5 mutations and examine putative relationships between the clinical epilepsy phenotype and the type of the mutation in the CDKL5 gene. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  10. Acquired initiating mutations in early hematopoietic cells of CLL patients.

    PubMed

    Damm, Frederik; Mylonas, Elena; Cosson, Adrien; Yoshida, Kenichi; Della Valle, Véronique; Mouly, Enguerran; Diop, M'boyba; Scourzic, Laurianne; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Kikushige, Yoshikane; Davi, Frederick; Lambert, Jérôme; Gautheret, Daniel; Merle-Béral, Hélène; Sutton, Laurent; Dessen, Philippe; Solary, Eric; Akashi, Koichi; Vainchenker, William; Mercher, Thomas; Droin, Nathalie; Ogawa, Seishi; Nguyen-Khac, Florence; Bernard, Olivier A

    2014-09-01

    Appropriate cancer care requires a thorough understanding of the natural history of the disease, including the cell of origin, the pattern of clonal evolution, and the functional consequences of the mutations. Using deep sequencing of flow-sorted cell populations from patients with chronic lymphocytic leukemia (CLL), we established the presence of acquired mutations in multipotent hematopoietic progenitors. Mutations affected known lymphoid oncogenes, including BRAF, NOTCH1, and SF3B1. NFKBIE and EGR2 mutations were observed at unexpectedly high frequencies, 10.7% and 8.3% of 168 advanced-stage patients, respectively. EGR2 mutations were associated with a shorter time to treatment and poor overall survival. Analyses of BRAF and EGR2 mutations suggest that they result in deregulation of B-cell receptor (BCR) intracellular signaling. Our data propose disruption of hematopoietic and early B-cell differentiation through the deregulation of pre-BCR signaling as a phenotypic outcome of CLL mutations and show that CLL develops from a pre-leukemic phase. The origin and pathogenic mechanisms of CLL are not fully understood. The current work indicates that CLL develops from pre-leukemic multipotent hematopoietic progenitors carrying somatic mutations. It advocates for abnormalities in early B-cell differentiation as a phenotypic convergence of the diverse acquired mutations observed in CLL. ©2014 American Association for Cancer Research.

  11. Brooke-Spiegler syndrome: report of 10 patients from 8 families with novel germline mutations: evidence of diverse somatic mutations in the same patient regardless of tumor type.

    PubMed

    Sima, Radek; Vanecek, Tomas; Kacerovska, Denisa; Trubac, Pavel; Cribier, Bernard; Rutten, Arno; Vazmitel, Marina; Spagnolo, Dominic V; Litvik, Radek; Vantuchova, Yvetta; Weyers, Wolfgang; Pearce, Robert L; Pearn, John; Michal, Michal; Kazakov, Dmitry V

    2010-06-01

    Brooke-Spiegler syndrome (BSS) is an inherited autosomal dominant disease characterized by the development of multiple adnexal cutaneous neoplasms including spiradenoma, cylindroma, spiradenocylindroma, and trichoepithelioma (cribriform trichoblastoma). BSS patients have various mutations in the CYLD gene, a tumor suppressor gene located on chromosome 16q. Our search of the literature revealed 51 germline CYLD mutations reported to date. Somatic CYLD mutations have rarely been investigated. We studied 10 patients from 8 families with BSS. Analysis of germline mutations of the CYLD gene was performed using either peripheral blood or nontumorous tissue. In addition, 19 formalin-fixed paraffin-embedded tumor samples were analyzed for somatic mutations, including loss of heterozygosity studies. A total of 38 tumors were available for histopathologic review. We have identified 8 novel germline mutations, all of which consisted of substitutions, deletions, and insertions/duplications and all except one led to premature stop codons. The substitution mutation in a single case was also predicted to disrupt protein function and seems causally implicated in tumor formation. We demonstrate for the first time that somatic events, loss of heterozygosity, or sequence mutations may differ among multiple neoplasms even of the same histologic type, occurring in the same patient.

  12. 8-oxoguanine causes spontaneous de novo germline mutations in mice.

    PubMed

    Ohno, Mizuki; Sakumi, Kunihiko; Fukumura, Ryutaro; Furuichi, Masato; Iwasaki, Yuki; Hokama, Masaaki; Ikemura, Toshimichi; Tsuzuki, Teruhisa; Gondo, Yoichi; Nakabeppu, Yusaku

    2014-04-15

    Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10(-7) mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.

  13. Efficient affinity maturation of antibody variable domains requires co-selection of compensatory mutations to maintain thermodynamic stability

    PubMed Central

    Julian, Mark C.; Li, Lijuan; Garde, Shekhar; Wilen, Rebecca; Tessier, Peter M.

    2017-01-01

    The ability of antibodies to accumulate affinity-enhancing mutations in their complementarity-determining regions (CDRs) without compromising thermodynamic stability is critical to their natural function. However, it is unclear if affinity mutations in the hypervariable CDRs generally impact antibody stability and to what extent additional compensatory mutations are required to maintain stability during affinity maturation. Here we have experimentally and computationally evaluated the functional contributions of mutations acquired by a human variable (VH) domain that was evolved using strong selections for enhanced stability and affinity for the Alzheimer’s Aβ42 peptide. Interestingly, half of the key affinity mutations in the CDRs were destabilizing. Moreover, the destabilizing effects of these mutations were compensated for by a subset of the affinity mutations that were also stabilizing. Our findings demonstrate that the accumulation of both affinity and stability mutations is necessary to maintain thermodynamic stability during extensive mutagenesis and affinity maturation in vitro, which is similar to findings for natural antibodies that are subjected to somatic hypermutation in vivo. These findings for diverse antibodies and antibody fragments specific for unrelated antigens suggest that the formation of the antigen-binding site is generally a destabilizing process and that co-enrichment for compensatory mutations is critical for maintaining thermodynamic stability. PMID:28349921

  14. Retinal phenotype-genotype correlation of pediatric patients expressing mutations in the Norrie disease gene.

    PubMed

    Wu, Wei-Chi; Drenser, Kimberly; Trese, Michael; Capone, Antonio; Dailey, Wendy

    2007-02-01

    To correlate the ophthalmic findings of patients with pediatric vitreoretinopathies with mutations occurring in the Norrie disease gene (NDP). One hundred nine subjects with diverse pediatric vitreoretinopathies and 54 control subjects were enrolled in the study. Diagnoses were based on retinal findings at each patient's first examination. Samples of DNA from each patient underwent polymerase chain reaction amplification and direct sequencing of the NDP gene. Eleven male patients expressing mutations in the NDP gene were identified in the test group, whereas the controls demonstrated wild-type NDP. All patients diagnosed as having Norrie disease had mutations in the NDP gene. Four of the patients with Norrie disease had mutations involving a cysteine residue in the cysteine-knot motif. Four patients diagnosed as having familial exudative vitreoretinopathy were found to have noncysteine mutations. One patient with retinopathy of prematurity had a 14-base deletion in the 5' untranslated region (exon 1), and 1 patient with bilateral persistent fetal vasculature syndrome expressed a noncysteine mutation in the second exon. Mutations disrupting the cysteine-knot motif corresponded to severe retinal dysgenesis, whereas patients with noncysteine mutations had varying degrees of avascular peripheral retina, extraretinal vasculature, and subretinal exudate. Patients exhibiting severe retinal dysgenesis should be suspected of carrying a mutation that disrupts the cysteine-knot motif in the NDP gene.

  15. Implications of segment mismatch for influenza A virus evolution

    PubMed Central

    White, Maria C.; Lowen, Anice C.

    2018-01-01

    Influenza A virus (IAV) is an RNA virus with a segmented genome. These viral properties allow for the rapid evolution of IAV under selective pressure, due to mutation occurring from error-prone replication and the exchange of gene segments within a co-infected cell, termed reassortment. Both mutation and reassortment give rise to genetic diversity, but constraints shape their impact on viral evolution: just as most mutations are deleterious, most reassortment events result in genetic incompatibilities. The phenomenon of segment mismatch encompasses both RNA- and protein-based incompatibilities between co-infecting viruses and results in the production of progeny viruses with fitness defects. Segment mismatch is an important determining factor of the outcomes of mixed IAV infections and has been addressed in multiple risk assessment studies undertaken to date. However, due to the complexity of genetic interactions among the eight viral gene segments, our understanding of segment mismatch and its underlying mechanisms remain incomplete. Here, we summarize current knowledge regarding segment mismatch and discuss the implications of this phenomenon for IAV reassortment and diversity. PMID:29244017

  16. Learning about evolution from sequence data

    NASA Astrophysics Data System (ADS)

    Dayarian, Adel; Shraiman, Boris

    2012-02-01

    Recent advances in sequencing and in laboratory evolution experiments have made possible to obtain quantitative data on genetic diversity of populations and on the dynamics of evolution. This dynamics is shaped by the interplay between selection acting on beneficial and deleterious mutations and recombination which reshuffles genotypes. Mounting evidence suggests that natural populations harbor extensive fitness diversity, yet most of the currently available tools for analyzing polymorphism data are based on the neutral theory. Our aim is to develop methods to analyze genomic data for populations in the presence of the above-mentioned factors. We consider different evolutionary regimes - Muller's ratchet, mutation-recombination-selection balance and positive adaption rate - and revisit a number of observables considered in the nearly-neutral theory of evolution. In particular, we examine the coalescent structure in the presence of recombination and calculate quantities such as the distribution of the coalescent times along the genome, the distribution of haplotype block sizes and the correlation between ancestors of different loci along the genome. In addition, we characterize the probability and time of fixation of mutations as a function of their fitness effect.

  17. Characterization of the mutant spectra of a fish RNA virus within individual hosts during natural infections

    USGS Publications Warehouse

    Emmenegger, Eveline J.; Troyer, Ryan M.; Kurath, Gael

    2003-01-01

    Infectious hematopoietic necrosis virus (IHNV) is an RNA virus that causes significant mortalities of salmonids in the Pacific Northwest of North America. RNA virus populations typically contain genetic variants that form a heterogeneous virus pool, referred to as a quasispecies or mutant spectrum. This study characterized the mutant spectra of IHNV populations within individual fish reared in different environmental settings by RT–PCR of genomic viral RNA and determination of partial glycoprotein gene sequences of molecular clones. The diversity of the mutant spectra from ten in vivo populations was low and the average mutation frequencies of duplicate populations did not significantly exceed the background mutation level expected from the methodology. In contrast, two in vitro populations contained variants with an identical mutational hot spot. These results indicated that the mutant spectra of natural IHNV populations is very homogeneous, and does not explain the different magnitudes of genetic diversity observed between the different IHNV genogroups. Overall the mutant frequency of IHNV within its host is one of the lowest reported for RNA viruses.

  18. Protein and Genetic Composition of Four Chromatin Types in Drosophila melanogaster Cell Lines.

    PubMed

    Boldyreva, Lidiya V; Goncharov, Fyodor P; Demakova, Olga V; Zykova, Tatyana Yu; Levitsky, Victor G; Kolesnikov, Nikolay N; Pindyurin, Alexey V; Semeshin, Valeriy F; Zhimulev, Igor F

    2017-04-01

    Recently, we analyzed genome-wide protein binding data for the Drosophila cell lines S2, Kc, BG3 and Cl.8 (modENCODE Consortium) and identified a set of 12 proteins enriched in the regions corresponding to interbands of salivary gland polytene chromosomes. Using these data, we developed a bioinformatic pipeline that partitioned the Drosophila genome into four chromatin types that we hereby refer to as aquamarine, lazurite, malachite and ruby. Here, we describe the properties of these chromatin types across different cell lines. We show that aquamarine chromatin tends to harbor transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of the genes, is enriched in diverse "open" chromatin proteins, histone modifications, nucleosome remodeling complexes and transcription factors. It encompasses most of the tRNA genes and shows enrichment for non-coding RNAs and miRNA genes. Lazurite chromatin typically encompasses gene bodies. It is rich in proteins involved in transcription elongation. Frequency of both point mutations and natural deletion breakpoints is elevated within lazurite chromatin. Malachite chromatin shows higher frequency of insertions of natural transposons. Finally, ruby chromatin is enriched for proteins and histone modifications typical for the "closed" chromatin. Ruby chromatin has a relatively low frequency of point mutations and is essentially devoid of miRNA and tRNA genes. Aquamarine and ruby chromatin types are highly stable across cell lines and have contrasting properties. Lazurite and malachite chromatin types also display characteristic protein composition, as well as enrichment for specific genomic features. We found that two types of chromatin, aquamarine and ruby, retain their complementary protein patterns in four Drosophila cell lines.

  19. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21.

    PubMed

    Preudhomme, C; Warot-Loze, D; Roumier, C; Grardel-Duflos, N; Garand, R; Lai, J L; Dastugue, N; Macintyre, E; Denis, C; Bauters, F; Kerckaert, J P; Cosson, A; Fenaux, P

    2000-10-15

    The AML1 gene, situated in 21q22, is often rearranged in acute leukemias through t(8;21) translocation, t(12;21) translocation, or less often t(3;21) translocation. Recently, point mutations in the Runt domain of the AML1 gene have also been reported in leukemia patients. Observations for mutations of the Runt domain of the AML1 gene in bone marrow cells were made in 300 patients, including 131 with acute myeloid leukemia (AML), 94 with myelodysplastic syndrome (MDS), 28 with blast crisis chronic myeloid leukemia (CML), 3 with atypical CML, 41 with acute lymphoblastic leukemia (ALL), and 3 with essential thrombocythemia (ET). Forty-one of the patients had chromosome 21 abnormalities, including t(8;21) in 6 of the patients with AML, t(12;21) in 8 patients with ALL, acquired trisomy 21 in 17 patients, tetrasomy 21 in 7 patients, and constitutional trisomy 21 (Down syndrome) in 3 patients. A point mutation was found in 14 cases (4.7%), including 9 (22%) of the 41 patients with AML of the Mo type (MoAML) (none of them had detectable chromosome 21 rearrangement) and 5 (38%) of the 13 myeloid malignancies with acquired trisomy 21 (1 M1AML, 2 M2AML, 1 ET, and 1 atypical CML). In at least 8 of 9 mutated cases of MoAML, both AML alleles were mutated: 3 patients had different stop codon mutations of the 2 AML1 alleles, and 5 patients had the same missense or stop codon mutation in both AML1 alleles, which resulted in at least 3 of the patients having duplication of the mutated allele and deletion of the normal residual allele, as shown by FISH analysis and by comparing microsatellite analyses of several chromosome 21 markers on diagnosis and remission samples. In the remaining mutated cases, with acquired trisomy 21, a missense mutation of AML1, which involved 2 of the 3 copies of the AML1 gene, was found. Four of the 7 mutated cases could be reanalyzed in complete remission, and no AML1 mutation was found, showing that mutations were acquired in the leukemic clone. In conclusion, these findings confirm the possibility of mutations of the Runt domain of the AML1 gene in leukemias, mainly in MoAML and in myeloid malignancies with acquired trisomy 21. AML1 mutations, in MoAML, involved both alleles and probably lead to nonfunctional AML1 protein. As AML1 protein regulates the expression of the myeloperoxidase gene, the relationship between AML1 mutations and Mo phenotype in AML will have to be further explored. (Blood. 2000;96:2862-2869)

  20. Dinitroanilines Bind α-Tubulin to Disrupt Microtubules

    PubMed Central

    Morrissette, Naomi S.; Mitra, Arpita; Sept, David; Sibley, L. David

    2004-01-01

    Protozoan parasites are remarkably sensitive to dinitroanilines such as oryzalin, which disrupt plant but not animal microtubules. To explore the basis of dinitroaniline action, we isolated 49 independent resistant Toxoplasma gondii lines after chemical mutagenesis. All 23 of the lines that we examined harbored single point mutations in α-tubulin. These point mutations were sufficient to confer resistance when transfected into wild-type parasites. Several mutations were in the M or N loops, which coordinate protofilament interactions in the microtubule, but most of the mutations were in the core of α-tubulin. Docking studies predict that oryzalin binds with an average affinity of 23 nM to a site located beneath the N loop of Toxoplasma α-tubulin. This binding site included residues that were mutated in several resistant lines. Moreover, parallel analysis of Bos taurus α-tubulin indicated that oryzalin did not interact with this site and had a significantly decreased, nonspecific affinity for vertebrate α-tubulin. We propose that the dinitroanilines act through a novel mechanism, by disrupting M-N loop contacts. These compounds also represent the first class of drugs that act on α-tubulin function. PMID:14742718

Top