Wroe, Stephen; Argot, Christine; Dickman, Christopher
2004-01-01
The hypothesis that low productivity has uniquely constrained Australia's large mammalian carnivore diversity, and by inference the biota in general, has become an influential backdrop to interpretations of ecology on the island continent. Whether low productivity has been primary impacts broadly on our understanding of mammalian biogeography, but investigation is complicated by two uniquely Australian features: isolation and the dominance of marsupials. However, until the great American biotic interchange (GABI), South America was also isolated and dominated by pouched carnivores. Here, we examine the low-productivity hypothesis empirically, by comparing large mammalian carnivore diversities in Australia and South America over the past 25 Myr. We find that pre-GABI diversity in Australia was generally comparable to or higher than diversity in South America. Post-GABI, South American diversity rose dramatically, pointing to isolation and phylogenetic constraint as primary influences. Landmass area is another important factor. Comparisons of diversity among the world's seven largest inhabited landmasses show that large mammalian hypercarnivore diversity in Australia approached levels predicted on the basis of landmass area in Late Pleistocene-Recent times, but large omnivore diversity was low. Large marsupial omnivores also appear to have been rare in South America. Isolation and competition with large terrestrial birds and cryptic omnivore taxa may have been more significant constraints in this respect. Relatively high diversity has been achieved in Late Quaternary America, possibly as a result of 'artificially' high immigration or origination rates, whereas that in contemporaneous Africa has been surprisingly poor. We conclude that isolation and landmass area, rather than productivity, are the primary constraints on large mammalian carnivore diversity. Our results quantify the rarity of large hypercarnivorous mammals worldwide. PMID:15306371
Wroe, Stephen; Argot, Christine; Dickman, Christopher
2004-06-07
The hypothesis that low productivity has uniquely constrained Australia's large mammalian carnivore diversity, and by inference the biota in general, has become an influential backdrop to interpretations of ecology on the island continent. Whether low productivity has been primary impacts broadly on our understanding of mammalian biogeography, but investigation is complicated by two uniquely Australian features: isolation and the dominance of marsupials. However, until the great American biotic interchange (GABI), South America was also isolated and dominated by pouched carnivores. Here, we examine the low-productivity hypothesis empirically, by comparing large mammalian carnivore diversities in Australia and South America over the past 25 Myr. We find that pre-GABI diversity in Australia was generally comparable to or higher than diversity in South America. Post-GABI, South American diversity rose dramatically, pointing to isolation and phylogenetic constraint as primary influences. Landmass area is another important factor. Comparisons of diversity among the world's seven largest inhabited landmasses show that large mammalian hypercarnivore diversity in Australia approached levels predicted on the basis of landmass area in Late Pleistocene-Recent times, but large omnivore diversity was low. Large marsupial omnivores also appear to have been rare in South America. Isolation and competition with large terrestrial birds and cryptic omnivore taxa may have been more significant constraints in this respect. Relatively high diversity has been achieved in Late Quaternary America, possibly as a result of 'artificially' high immigration or origination rates, whereas that in contemporaneous Africa has been surprisingly poor. We conclude that isolation and landmass area, rather than productivity, are the primary constraints on large mammalian carnivore diversity. Our results quantify the rarity of large hypercarnivorous mammals worldwide.
USDA-ARS?s Scientific Manuscript database
Cattle are the primary reservoir of Escherichia coli O157:H7, the most frequently isolated serotype of enterohemorrhagic E. coli infections among humans in North America. To evaluate the diversity of E. coli O157:H7 isolates within a single dairy herd the genomes of 30 isolates collected over a 7-ye...
Exometabolite niche partitioning among sympatric soil bacteria
Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; ...
2015-09-22
Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13-26% of available metabolites,more » with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. In conclusion, these results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.« less
Exometabolite niche partitioning among sympatric soil bacteria
Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.
2015-01-01
Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13−26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. These results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity. PMID:26392107
Leekitcharoenphon, Pimlapas; Raufu, Ibrahim; Nielsen, Mette T.; Rosenqvist Lund, Birthe S.; Ameh, James A.; Ambali, Abdul G.; Sørensen, Gitte; Le Hello, Simon; Aarestrup, Frank M.; Hendriksen, Rene S.
2016-01-01
Twenty-six Salmonella enterica serovar Eko isolated from various sources in Nigeria were investigated by whole genome sequencing to identify the source of human infections. Diversity among the isolates was observed and camel and cattle were identified as the primary reservoirs and the most likely source of the human infections. PMID:27228329
Bendary, M M; Solyman, S M; Azab, M M; Mahmoud, N F; Hanora, A M
2016-02-29
Staphylococcus aureus (S. aureus) has been one of the most problematic pathogens. Methicillin Resistant S. aureus (MRSA) has emerged as a major concern for both human and animal. Antibiotic resistance genes dissemination might be possible between human and animal bacteria. The aim of this study is to show phenotypic and genotypic diversity of human and animal MRSA isolates. Antibiogram typing and biofilm production were used as a primary phenotypic typing tool for the characterization of (40) animal and (38) human MRSA isolates. Genetic typing based on sequencing of 16S rRNA gene and virulence gene profiles were done. Antimicrobial resistance profiles of the animal isolates showed little evidence of widespread of resistance, although this was seen in many human isolates. The biofilm production was detected in higher percentage among animal isolates. Based on the genetic typing and multiple antibiotic resistance (MAR) index, the majority of animal isolates clustered into lineages that were not found in human isolates. Animal and human MRSA isolates showed diversity in antibiotic resistance and virulence gene profiles may be due to host adaptation or chances for contamination between the two hosts were not present in our study.
A Teaching Makeover Improves Learning for Diverse Learners
ERIC Educational Resources Information Center
Doubet, Kristina J.; Hockett, Jessica A.; Brighton, Catherine M.
2016-01-01
In many primary classrooms, the prospect of addressing standards threatens to rob young children of the joy of learning. Teachers who feel pressed to move students of all backgrounds toward mastery of increasingly complex standards may abandon rich curriculum and move toward isolated "skill drills." This may be counterproductive. The…
Yun, Ki Wook; Choi, Eun Hwa; Lee, Hoan Jong
2017-01-01
Pneumococcal surface protein A (PspA) is an important virulence factor of pneumococci and has been investigated as a primary component of a capsular serotype-independent pneumococcal vaccine. Thus, we sought to determine the genetic diversity of PspA to explore its potential as a vaccine candidate. Among the 190 invasive pneumococcal isolates collected from Korean children between 1991 and 2016, two (1.1%) isolates were found to have no pspA by multiple polymerase chain reactions. The full length pspA genes from 185 pneumococcal isolates were sequenced. The length of pspA varied, ranging from 1,719 to 2,301 base pairs with 55.7-100% nucleotide identity. Based on the sequences of the clade-defining regions, 68.7% and 49.7% were in PspA family 2 and clade 3/family 2, respectively. PspA clade types were correlated with genotypes using multilocus sequence typing and divided into several subclades based on diversity analysis of the N-terminal α-helical regions, which showed nucleotide sequence identities of 45.7-100% and amino acid sequence identities of 23.1-100%. Putative antigenicity plots were also diverse among individual clades and subclades. The differences in antigenicity patterns were concentrated within the N-terminal 120 amino acids. In conclusion, the N-terminal α-helical domain, which is known to be the major immunogenic portion of PspA, is genetically variable and should be further evaluated for antigenic differences and cross-reactivity between various PspA types from pneumococcal isolates.
Lv, K; Wang, J-R; Li, T-Q; Zhou, J; Gu, J-Q; Zhou, G-X; Xu, Z-H
2018-05-10
Thousand Island Lake (TIL) is a typical fragmented landscape and an ideal model to study ecological effects of fragmentation. Partial fragments of the mitochondrial cytochrome oxidase subunit I gene of 23 island populations of Dendrolimus punctatus in TIL were sequenced, 141 haplotypes being identified. The number of haplotypes increased significantly with the increase in island area and shape index, whereas no significant correlation was detected between three island attributes (area, shape and isolation) and haplotype diversity. However, the correlation with number of haplotypes was no longer significant when the 'outlier' island JSD (the largest island) was not included. Additionally, we found no significant relationship between geographic distance and genetic distance. Geographic isolation did not obstruct the gene flow among D. punctatus populations, which might be because of the high dispersal capacity of this pine moth. Fragmentation resulted in the conversion of large and continuous habitats into isolated, small and insular patches, which was the primary effect on the genetic diversity of D. punctatus in TIL. The conclusion to emphasize from our research is that habitat fragmentation reduced the biological genetic diversity to some extent, further demonstrating the importance of habitat continuity in biodiversity protection.
Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna
2014-01-01
Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system. PMID:25763031
Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna
2014-01-01
Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system.
Biology, status, and management of the yellowstone cutthroat trout
Gresswell, R.E.
2011-01-01
Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri were historically distributed in the Yellowstone River drainage (Montana and Wyoming) and the Snake River drainage (Wyoming, Idaho, Utah, Nevada, and probably Washington). Individual populations evolved distinct life history characteristics in response to the diverse environments in which they were isolated after the last glaciation. Anthropogenic activities have resulted in a substantial decline (42% of the historical range is currently occupied; 28% is occupied by core [genetically unaltered] populations), but the number of extant populations, especially in headwater streams, has precluded listing of this taxon under the Endangered Species Act. Primary threats to persistence of Yellowstone cutthroat trout include (1) invasive species, resulting in hybridization, predation, disease, and interspecific competition; (2) habitat degradation from human activities such as agricultural practices, water diversions, grazing, dam construction, mineral extraction, grazing, timber harvest, and road construction; and (3) climate change, including an escalating risk of drought, wildfire, winter flooding, and rising temperatures. Extirpation of individual populations or assemblages has led to increasing isolation and fragmentation of remaining groups, which in turn raises susceptibility to the demographic influences of disturbance (both human and stochastic) and genetic factors. Primary conservation strategies include (1) preventing risks associated with invasive species by isolating populations of Yellowstone cutthroat trout and (2) connecting occupied habitats (where possible) to preserve metapopulation function and the expression of multiple life histories. Because persistence of isolated populations may be greater in the short term, current management is focused on isolating individual populations and restoring habitats; however, this approach implies that humans will act as dispersal agents if a population is extirpated because of stochastic events. ?? American Fisheries Society 2011.
Saleh-Lakha, S.; Allen, V. G.; Li, J.; Pagotto, F.; Odumeru, J.; Taboada, E.; Lombos, M.; Tabing, K. C.; Blais, B.; Ogunremi, D.; Downing, G.; Lee, S.; Gao, A.; Nadon, C.
2013-01-01
Listeria monocytogenes is responsible for severe and often fatal food-borne infections in humans. A collection of 2,421 L. monocytogenes isolates originating from Ontario's food chain between 1993 and 2010, along with Ontario clinical isolates collected from 2004 to 2010, was characterized using an improved multilocus variable-number tandem-repeat analysis (MLVA). The MLVA method was established based on eight primer pairs targeting seven variable-number tandem-repeat (VNTR) loci in two 4-plex fluorescent PCRs. Diversity indices and amplification rates of the individual VNTR loci ranged from 0.38 to 0.92 and from 0.64 to 0.99, respectively. MLVA types and pulsed-field gel electrophoresis (PFGE) patterns were compared using Comparative Partitions analysis involving 336 clinical and 99 food and environmental isolates. The analysis yielded Simpson's diversity index values of 0.998 and 0.992 for MLVA and PFGE, respectively, and adjusted Wallace coefficients of 0.318 when MLVA was used as a primary subtyping method and 0.088 when PFGE was a primary typing method. Statistical data analysis using BioNumerics allowed for identification of at least 8 predominant and persistent L. monocytogenes MLVA types in Ontario's food chain. The MLVA method correctly clustered epidemiologically related outbreak strains and separated unrelated strains in a subset analysis. An MLVA database was established for the 2,421 L. monocytogenes isolates, which allows for comparison of data among historical and new isolates of different sources. The subtyping method coupled with the MLVA database will help in effective monitoring/prevention approaches to identify environmental contamination by pathogenic strains of L. monocytogenes and investigation of outbreaks. PMID:23956391
Consumer trophic diversity as a fundamental mechanism linking predation and ecosystem functioning.
Hines, Jes; Gessner, Mark O
2012-11-01
1. Primary production and decomposition, two fundamental processes determining the functioning of ecosystems, may be sensitive to changes in biodiversity and food web interactions. 2. The impacts of food web interactions on ecosystem functioning are generally quantified by experimentally decoupling these linked processes and examining either primary production-based (green) or decomposition-based (brown) food webs in isolation. This decoupling may strongly limit our ability to assess the importance of food web interactions on ecosystem processes. 3. To evaluate how consumer trophic diversity mediates predator effects on ecosystem functioning, we conducted a mesocosm experiment and a field study using an assemblage of invertebrates that naturally co-occur on North Atlantic coastal saltmarshes. We measured the indirect impact of predation on primary production and leaf decomposition as a result of prey communities composed of herbivores alone, detritivores alone or both prey in combination. 4. We find that primary consumers can influence ecosystem process rates not only within, but also across green and brown sub-webs. Moreover, by feeding on a functionally diverse consumer assemblage comprised of both herbivores and detritivores, generalist predators can diffuse consumer effects on decomposition, primary production and feedbacks between the two processes. 5. These results indicate that maintaining functional diversity among primary consumers can alter the consequences of traditional trophic cascades, and they emphasize the role of the detritus-based sub-web when seeking key biotic drivers of plant production. Clearly, traditional compartmentalization of empirical food webs can limit our ability to predict the influence of food web interactions on ecosystem functioning. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
USDA-ARS?s Scientific Manuscript database
Verticillium dahliae is a soil borne fungus and the primary causal agent of Verticillium wilt, which affects many crops worldwide. Many crops grown in the Salinas Valley (SV) of California, including strawberry and lettuce (Lactuca sativa), are susceptible to V. dahliae and severe outbreaks are comm...
USDA-ARS?s Scientific Manuscript database
Verticillium dahliae is the primary causal agent for Verticillium wilt disease on a diverse array of economically important crops, including cotton. In previous research, we screened a T-DNA insertional mutant library of the highly virulent isolate Vd080 derived from cotton. In this study, the targ...
USDA-ARS?s Scientific Manuscript database
Problem: Despite over 100 years of research to reduce the incidence and impact of bovine respiratory disease complex (BRDC) in North American feed yard cattle, outbreaks still occur accounting for up to 75% of feed yard cattle morbidity. BRDC is the primary driver of health-related antibiotic trea...
Ambroset, Chloé; Pau-Roblot, Corinne; Game, Yvette; Gaurivaud, Patrice; Tardy, Florence
2017-01-01
The genus Mycoplasma, a group of free-living, wall-less prokaryotes includes more than 100 species of which dozens are primary pathogens of humans and domesticated animals. Mycoplasma species isolated from wildlife are rarely investigated but could provide a fuller picture of the evolutionary history and diversity of this genus. In 2013 several isolates from wild Caprinae were tentatively assigned to a new species, Mycoplasma (M.) feriruminatoris sp. nov., characterized by an unusually rapid growth in vitro and close genetic proximity to ruminant pathogenic species. We suspected that atypical isolates recently collected from Alpine ibex in France belonged to this new species. The present study was undertaken to verify this hypothesis and to further characterize the French ibex isolates. Phylogenetic analyses were performed to identify the isolates and position them in trees containing several other mycoplasma species pathogenic to domesticated ruminants. Population diversity was characterized by genomic macrorestriction and by examining the capacity of different strains to produce capsular polysaccharides, a feature now known to vary amongst mycoplasma species pathogenic to ruminants. This is the first report of M. feriruminatoris isolation from Alpine ibex in France. Phylogenetic analyses further suggested that M. feriruminatoris might constitute a 4th species in a genetic cluster that so far contains only important ruminant pathogens, the so-called Mycoplasma mycoides cluster. A PCR assay for specific identification is proposed. These French isolates were not clonal, despite being collected in a restricted region of the Alps, which signifies a considerable diversity of the new species. Strains were able to concomitantly produce two types of capsular polysaccharides, β-(1→6)-galactan and β-(1→6)-glucan, with variation in their respective ratio, a feature never before described in mycoplasmas. PMID:28611743
Ambroset, Chloé; Pau-Roblot, Corinne; Game, Yvette; Gaurivaud, Patrice; Tardy, Florence
2017-01-01
The genus Mycoplasma , a group of free-living, wall-less prokaryotes includes more than 100 species of which dozens are primary pathogens of humans and domesticated animals. Mycoplasma species isolated from wildlife are rarely investigated but could provide a fuller picture of the evolutionary history and diversity of this genus. In 2013 several isolates from wild Caprinae were tentatively assigned to a new species, Mycoplasma ( M.) feriruminatoris sp. nov., characterized by an unusually rapid growth in vitro and close genetic proximity to ruminant pathogenic species. We suspected that atypical isolates recently collected from Alpine ibex in France belonged to this new species. The present study was undertaken to verify this hypothesis and to further characterize the French ibex isolates. Phylogenetic analyses were performed to identify the isolates and position them in trees containing several other mycoplasma species pathogenic to domesticated ruminants. Population diversity was characterized by genomic macrorestriction and by examining the capacity of different strains to produce capsular polysaccharides, a feature now known to vary amongst mycoplasma species pathogenic to ruminants. This is the first report of M. feriruminatoris isolation from Alpine ibex in France. Phylogenetic analyses further suggested that M. feriruminatoris might constitute a 4th species in a genetic cluster that so far contains only important ruminant pathogens, the so-called Mycoplasma mycoides cluster. A PCR assay for specific identification is proposed. These French isolates were not clonal, despite being collected in a restricted region of the Alps, which signifies a considerable diversity of the new species. Strains were able to concomitantly produce two types of capsular polysaccharides, β-(1→6)-galactan and β-(1→6)-glucan, with variation in their respective ratio, a feature never before described in mycoplasmas.
Dimareli-Malli, Z; Mazaraki, K; Stevenson, K; Tsakos, P; Zdragas, A; Giantzi, V; Petridou, E; Heron, I; Vafeas, G
2013-08-01
In this study the suitability of different solid media was investigated for the isolation of Mycobacterium avium subsp. paratuberculosis (Map) in order to identify the optimum single or combination of media to permit the isolation of all strain types from small ruminants. A subset of these Map strains was then further characterized by molecular typing methods to assess the genetic diversity of Map strains in the study area (Northern Greece). Map strains were isolated from tissues and faeces of infected goats (n=52) and sheep (n=8) and were analysed for polymorphisms in IS1311 to classify the strain type as Type C or S. The study found that M7H11 supplemented with mycobactin j, OADC and new born calf serum (M7H11+Mj) is the best single choice of medium for the primary isolation of Map of both Type C and S from small ruminants. The combination of M7H11+Mj and Herrolds egg yolk medium supplemented with mycobactin j and sodium pyruvate allowed the detection of all Map isolates in this study. Nineteen Map isolates were characterised by pulsed-field gel electrophoresis and the isolates demonstrated significant genetic diversity. Twelve different SnaBI and 16 distinct SpeI profiles were detected of which 25 have not been described previously and are new profiles. The combination of both enzyme profiles gave 13 different multiplex profiles. Ten different multiplex profiles were detected in goats and three in sheep. One ovine isolate gave the same multiplex profile as a caprine isolate and two different profiles were found within a single goat herd. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fardsanei, F; Nikkhahi, F; Bakhshi, B; Salehi, T Z; Tamai, I A; Soltan Dallal, M M
2016-11-01
In recent years, Salmonella enterica serovar Enteritidis has been a primary cause of human salmonellosis in many countries. The major objective of this study was to investigate genetic diversity among Salmonella Enteritidis strains from different origins (food and human) by Enterobacterial Repetitive Intergenic Consensus (ERIC) -PCR, as well as to assess their plasmid profiling and antimicrobial resistance. A total of 30 Salmonella Enteritidis isolates, 15 from food samples (chicken, lamb, beef and duck meats) and 15 from clinical samples were collected in Tehran. Identification of isolates as Salmonella was confirmed by using conventional standard biochemical and serological tests. Multiplex-PCR was used for serotyping of isolates to identify Salmonella Enteritidis. Antimicrobial susceptibility testing to 16 agents founds drug resistance patterns among Salmonella Enteritidis isolates. No resistance was observed to cephalexin, ceftriaxone, ceftazidime and cefotaxime, ciprofloxacin, imipenem or meropenem, chloramphenicol and gentamicin. The highest resistance (96.7%) was observed to nitrofurantoin. Seven plasmid profiles (P1-P7) were detected, and a 68-kb plasmid was found in all isolates. Two different primers; ERIC and (GTG)5 were used for genotyping, which each produced four profiles. The majority of clinical and food isolates fell into two separate common types (CTs) with a similar percentage of 95% by ERIC-PCR. Using primer (GTG)5, 29 isolates incorporated in three CTs with 70% of isolates showing a single banding pattern. Limited genetic diversity among human and food isolates of Salmonella Enteritidis may indicate that contaminated foods were possibly the source of human salmonellosis. These results confirmed that ERIC-PCR genotyping has limited discriminatory power for Salmonella Enteritidis of different origin.
Fígoli, Cecilia B; Rojo, Rodrigo; Gasoni, Laura A; Kikot, Gisele; Leguizamón, Mariana; Gamba, Raúl R; Bosch, Alejandra; Alconada, Teresa M
2017-03-06
Fusarium graminearum is the primary causal agent of Fusarium head blight of wheat in Argentina. This disease affects crop yields and grain quality also reducing the wheat end-use, and causing mycotoxin contamination. The aim of this work was to analyze the phenotypic characteristics associated with phenotypic diversity and aggressiveness of 34 F. graminearum sensu stricto isolates recovered from Argentinean fields in the 2008 growing season using the Fourier Transform Infrared (FTIR) dried film technology. We applied this technique also to search for spectral specific markers associated with aggressiveness. The combination of FTIR technology with hierarchical cluster analysis allowed us to determine that this population constitutes a highly diverse and heterogeneous group of fungi with significant phenotypic variance. Still, when the spectral features of a set of these isolates were compared against their aggressiveness, as measured by disease severity, thousand grains weight, and relative yield reduction, we found that the more aggressive isolates were richer in lipid content. Therefore, we could define several spectroscopic markers (>CH stretching modes in the 3000-2800 window, >CO and CO vibrational modes of esters at 1765-1707cm -1 and 1474-900cm -1 , respectively), mostly assigned to lipid content that could be associated with F. graminearum aggressiveness. All together, by the application of FTIR techniques and simple multivariate analyses, it was possible to gain significant insights into the phenotypic characterization of F. graminearum local isolates, and to establish the existence of a direct relationship between lipid content and fungal aggressiveness. Considering that lipids have a major role as mediators in the interaction between plants and fungi our results could represent an attractive outcome in the study of Fusarium pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Isolation and partial characterization of Brazilian samples of feline immunodeficiency virus.
Teixeira, B M; Logan, N; Samman, A; Miyashiro, S I; Brandão, P E; Willett, B J; Hosie, M J; Hagiwara, M K
2011-09-01
Feline immunodeficiency virus (FIV) causes a slow progressive degeneration of the immune system which eventually leads to a disease comparable to acquired immune deficiency syndrome (AIDS) in humans. FIV has extensive sequence variation, a typical feature of lentiviruses. Sequence analysis showed that diversity was not evenly distributed throughout the genome, but was greatest in the envelope gene, env. The virus enters host cells via a sequential interaction, initiated by the envelope glycoprotein (env) binding the primary receptor molecule CD134 and followed by a subsequent interaction with chemokine co-receptor CXCR4. The purpose of this study was to isolate and characterize isolates of FIV from an open shelter in São Paulo, Brazil. The separated PBMC from 11 positive cats were co-cultured with MYA-1 cells. Full-length viral env glycoprotein genes were amplified and determined. Chimeric feline × human CD134 receptors were used to investigate the receptor utilization of 17 clones from Brazilian isolates of FIV. Analyses of the sequence present of molecular clones showed that all clones grouped within subtype B. In contrast to the virulent primary isolate FIV-GL8, expression of the first cysteine-rich domain (CRD1) of feline CD134 in the context of human CD134 was sufficient for optimal receptor function for all Brazilian FIV isolates tested. Copyright © 2011 Elsevier B.V. All rights reserved.
Shahinyan, Grigor; Margaryan, Armine; Panosyan, Hovik; Trchounian, Armen
2017-05-02
Among the huge diversity of thermophilic bacteria mainly bacilli have been reported as active thermostable lipase producers. Geothermal springs serve as the main source for isolation of thermostable lipase producing bacilli. Thermostable lipolytic enzymes, functioning in the harsh conditions, have promising applications in processing of organic chemicals, detergent formulation, synthesis of biosurfactants, pharmaceutical processing etc. In order to study the distribution of lipase-producing thermophilic bacilli and their specific lipase protein primary structures, three lipase producers from different genera were isolated from mesothermal (27.5-70 °C) springs distributed on the territory of Armenia and Nagorno Karabakh. Based on phenotypic characteristics and 16S rRNA gene sequencing the isolates were identified as Geobacillus sp., Bacillus licheniformis and Anoxibacillus flavithermus strains. The lipase genes of isolates were sequenced by using initially designed primer sets. Multiple alignments generated from primary structures of the lipase proteins and annotated lipase protein sequences, conserved regions analysis and amino acid composition have illustrated the similarity (98-99%) of the lipases with true lipases (family I) and GDSL esterase family (family II). A conserved sequence block that determines the thermostability has been identified in the multiple alignments of the lipase proteins. The results are spreading light on the lipase producing bacilli distribution in geothermal springs in Armenia and Nagorno Karabakh. Newly isolated bacilli strains could be prospective source for thermostable lipases and their genes.
Skin microbiome: genomics-based insights into the diversity and role of skin microbes
Kong, Heidi H.
2011-01-01
Recent advances in DNA sequencing methodology have enabled studies of human skin microbes that circumvent difficulties in isolating and characterizing fastidious microbes. Sequence-based approaches have identified greater diversity of cutaneous bacteria than studies using traditional cultivation techniques. However, improved sequencing technologies and analytical methods are needed to study all skin microbes, including bacteria, archaea, fungi, viruses, and mites, and how they interact with each other and their human hosts. This review discusses current skin microbiome research, with a primary focus on bacteria, and the challenges facing investigators striving to understand how skin micro-organisms contribute to health and disease. PMID:21376666
Ostras, Konstantin S; Gorobets, Nikolay Yu; Desenko, Sergey M; Musatov, Vladimir I
2006-08-01
A new one-stage fast multicomponent synthesis of title compounds leads to products in 21-55% isolated yields under both conventional and microwave conditions. The primary amino group in the building blocks can be easily acylated by various usual electophilic agents that can be utilized in the synthesis of diverse heterocylic compounds libraries.
[Maintaining mechanism of species diversity of land plant communities].
Shang, Wenyan; Wu, Gang; Fu, Xiao; Liu, Yang
2005-03-01
The maintaining mechanism of species diversity of land plant communities is a key and advancing edge in biodiversity study. Botanists and ecologists have presented many hypotheses and theories with controversies, and no general theory system was available. In this paper, the problem was reviewed mainly on two scales. The first was big spatial scale, aiming at the physical and natural factors that affect the species diversity, including histories and ages of plant communities, gradient changes such as latitude gradient, water gradient, altitude gradient and soil nutrients gradient, area effect, and isolation; and the second was concentrated on a special plant community, and mainly discussed the relationships of biodiversity with biotic factors (primary productivity, relationship between species, and gap dynamics) and abiotic factors (succession, disturbance and spatial heterogeneity, and human activity).
Linking extinction-colonization dynamics to genetic structure in a salamander metapopulation.
Cosentino, Bradley J; Phillips, Christopher A; Schooley, Robert L; Lowe, Winsor H; Douglas, Marlis R
2012-04-22
Theory predicts that founder effects have a primary role in determining metapopulation genetic structure. However, ecological factors that affect extinction-colonization dynamics may also create spatial variation in the strength of genetic drift and migration. We tested the hypothesis that ecological factors underlying extinction-colonization dynamics influenced the genetic structure of a tiger salamander (Ambystoma tigrinum) metapopulation. We used empirical data on metapopulation dynamics to make a priori predictions about the effects of population age and ecological factors on genetic diversity and divergence among 41 populations. Metapopulation dynamics of A. tigrinum depended on wetland area, connectivity and presence of predatory fish. We found that newly colonized populations were more genetically differentiated than established populations, suggesting that founder effects influenced genetic structure. However, ecological drivers of metapopulation dynamics were more important than age in predicting genetic structure. Consistent with demographic predictions from metapopulation theory, genetic diversity and divergence depended on wetland area and connectivity. Divergence was greatest in small, isolated wetlands where genetic diversity was low. Our results show that ecological factors underlying metapopulation dynamics can be key determinants of spatial genetic structure, and that habitat area and isolation may mediate the contributions of drift and migration to divergence and evolution in local populations.
Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011.
Grad, Yonatan H; Lipsitch, Marc; Feldgarden, Michael; Arachchi, Harindra M; Cerqueira, Gustavo C; Fitzgerald, Michael; Godfrey, Paul; Haas, Brian J; Murphy, Cheryl I; Russ, Carsten; Sykes, Sean; Walker, Bruce J; Wortman, Jennifer R; Young, Sarah; Zeng, Qiandong; Abouelleil, Amr; Bochicchio, James; Chauvin, Sara; Desmet, Timothy; Gujja, Sharvari; McCowan, Caryn; Montmayeur, Anna; Steelman, Scott; Frimodt-Møller, Jakob; Petersen, Andreas M; Struve, Carsten; Krogfelt, Karen A; Bingen, Edouard; Weill, François-Xavier; Lander, Eric S; Nusbaum, Chad; Birren, Bruce W; Hung, Deborah T; Hanage, William P
2012-02-21
The degree to which molecular epidemiology reveals information about the sources and transmission patterns of an outbreak depends on the resolution of the technology used and the samples studied. Isolates of Escherichia coli O104:H4 from the outbreak centered in Germany in May-July 2011, and the much smaller outbreak in southwest France in June 2011, were indistinguishable by standard tests. We report a molecular epidemiological analysis using multiplatform whole-genome sequencing and analysis of multiple isolates from the German and French outbreaks. Isolates from the German outbreak showed remarkably little diversity, with only two single nucleotide polymorphisms (SNPs) found in isolates from four individuals. Surprisingly, we found much greater diversity (19 SNPs) in isolates from seven individuals infected in the French outbreak. The German isolates form a clade within the more diverse French outbreak strains. Moreover, five isolates derived from a single infected individual from the French outbreak had extremely limited diversity. The striking difference in diversity between the German and French outbreak samples is consistent with several hypotheses, including a bottleneck that purged diversity in the German isolates, variation in mutation rates in the two E. coli outbreak populations, or uneven distribution of diversity in the seed populations that led to each outbreak.
Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011
Grad, Yonatan H.; Lipsitch, Marc; Feldgarden, Michael; Arachchi, Harindra M.; Cerqueira, Gustavo C.; FitzGerald, Michael; Godfrey, Paul; Haas, Brian J.; Murphy, Cheryl I.; Russ, Carsten; Sykes, Sean; Walker, Bruce J.; Wortman, Jennifer R.; Young, Sarah; Zeng, Qiandong; Abouelleil, Amr; Bochicchio, James; Chauvin, Sara; DeSmet, Timothy; Gujja, Sharvari; McCowan, Caryn; Montmayeur, Anna; Steelman, Scott; Frimodt-Møller, Jakob; Petersen, Andreas M.; Struve, Carsten; Krogfelt, Karen A.; Bingen, Edouard; Weill, François-Xavier; Lander, Eric S.; Nusbaum, Chad; Birren, Bruce W.; Hung, Deborah T.; Hanage, William P.
2012-01-01
The degree to which molecular epidemiology reveals information about the sources and transmission patterns of an outbreak depends on the resolution of the technology used and the samples studied. Isolates of Escherichia coli O104:H4 from the outbreak centered in Germany in May–July 2011, and the much smaller outbreak in southwest France in June 2011, were indistinguishable by standard tests. We report a molecular epidemiological analysis using multiplatform whole-genome sequencing and analysis of multiple isolates from the German and French outbreaks. Isolates from the German outbreak showed remarkably little diversity, with only two single nucleotide polymorphisms (SNPs) found in isolates from four individuals. Surprisingly, we found much greater diversity (19 SNPs) in isolates from seven individuals infected in the French outbreak. The German isolates form a clade within the more diverse French outbreak strains. Moreover, five isolates derived from a single infected individual from the French outbreak had extremely limited diversity. The striking difference in diversity between the German and French outbreak samples is consistent with several hypotheses, including a bottleneck that purged diversity in the German isolates, variation in mutation rates in the two E. coli outbreak populations, or uneven distribution of diversity in the seed populations that led to each outbreak. PMID:22315421
He, Yingbo; Yao, Xiang; Taylor, Natalie; Bai, Yuchen; Lovenberg, Timothy; Bhattacharya, Anindya
2018-05-22
Microglia play key roles in neuron-glia interaction, neuroinflammation, neural repair, and neurotoxicity. Currently, various microglial in vitro models including primary microglia derived from distinct isolation methods and immortalized microglial cell lines are extensively used. However, the diversity of these existing models raises difficulty in parallel comparison across studies since microglia are sensitive to environmental changes, and thus, different models are likely to show widely varied responses to the same stimuli. To better understand the involvement of microglia in pathophysiological situations, it is critical to establish a reliable microglial model system. With postnatal mouse brains, we isolated microglia using three general methods including shaking, mild trypsinization, and CD11b magnetic-associated cell sorting (MACS) and applied RNA sequencing to compare transcriptomes of the isolated cells. Additionally, we generated a genome-wide dataset by RNA sequencing of immortalized BV2 microglial cell line to compare with primary microglia. Furthermore, based on the outcomes of transcriptional analysis, we compared cellular functions between primary microglia and BV2 cells including immune responses to LPS by quantitative RT-PCR and Luminex Multiplex Assay, TGFβ signaling probed by Western blot, and direct migration by chemotaxis assay. We found that although the yield and purity of microglia were comparable among the three isolation methods, mild trypsinization drove microglia in a relatively active state, evidenced by high amount of amoeboid microglia, enhanced expression of microglial activation genes, and suppression of microglial quiescent genes. In contrast, CD11b MACS was the most reliable and consistent method, and microglia isolated by this method maintained a relatively resting state. Transcriptional and functional analyses revealed that as compared to primary microglia, BV2 cells remain most of the immune functions such as responses to LPS but showed limited TGFβ signaling and chemotaxis upon chemoattractant C5a. Collectively, we determined the optimal isolation methods for quiescent microglia and characterized the limitations of BV2 cells as an alternative of primary microglia. Considering transcriptional and functional differences, caution should be taken when extrapolating data from various microglial models. In addition, our RNA sequencing database serves as a valuable resource to provide novel insights for appropriate application of microglia as in vitro models.
Ant and Mite Diversity Drives Toxin Variation in the Little Devil Poison Frog.
McGugan, Jenna R; Byrd, Gary D; Roland, Alexandre B; Caty, Stephanie N; Kabir, Nisha; Tapia, Elicio E; Trauger, Sunia A; Coloma, Luis A; O'Connell, Lauren A
2016-06-01
Poison frogs sequester chemical defenses from arthropod prey, although the details of how arthropod diversity contributes to variation in poison frog toxins remains unclear. We characterized skin alkaloid profiles in the Little Devil poison frog, Oophaga sylvatica (Dendrobatidae), across three populations in northwestern Ecuador. Using gas chromatography/mass spectrometry, we identified histrionicotoxins, 3,5- and 5,8-disubstituted indolizidines, decahydroquinolines, and lehmizidines as the primary alkaloid toxins in these O. sylvatica populations. Frog skin alkaloid composition varied along a geographical gradient following population distribution in a principal component analysis. We also characterized diversity in arthropods isolated from frog stomach contents and confirmed that O. sylvatica specialize on ants and mites. To test the hypothesis that poison frog toxin variability reflects species and chemical diversity in arthropod prey, we (1) used sequencing of cytochrome oxidase 1 to identify individual prey specimens, and (2) used liquid chromatography/mass spectrometry to chemically profile consumed ants and mites. We identified 45 ants and 9 mites in frog stomachs, including several undescribed species. We also showed that chemical profiles of consumed ants and mites cluster by frog population, suggesting different frog populations have access to chemically distinct prey. Finally, by comparing chemical profiles of frog skin and isolated prey items, we traced the arthropod source of four poison frog alkaloids, including 3,5- and 5,8-disubstituted indolizidines and a lehmizidine alkaloid. Together, the data show that toxin variability in O. sylvatica reflects chemical diversity in arthropod prey.
Wang, W; Qiao, Y; Li, S; Pan, W; Yao, M
2017-06-01
Habitat fragmentation may strongly impact population genetic structure and reduce the genetic diversity and viability of small and isolated populations. The white-headed langur (Trachypithecus leucocephalus) is a critically endangered primate species living in a highly fragmented and human-modified habitat in southern China. We examined the population genetic structure and genetic diversity of the species and investigated the environmental and anthropogenic factors that may have shaped its population structure. We used 214 unique multi-locus genotypes from 41 social groups across the main distribution area of T. leucocephalus, and found strong genetic structure and significant genetic differentiation among local populations. Our landscape genetic analyses using a causal modelling framework suggest that a large habitat gap and geographical distance represent the primary landscape elements shaping genetic structure, yet high levels of genetic differentiation also exist between patches separated by a small habitat gap or road. This is the first comprehensive study that has evaluated the population genetic structure and diversity of T. leucocephalus using nuclear markers. Our results indicate strong negative impacts of anthropogenic land modifications and habitat fragmentation on primate genetic connectivity between forest patches. Our analyses suggest that two management units of the species could be defined, and indicate that habitat continuity should be enforced and restored to reduce genetic isolation and enhance population viability.
Beaulieu, Justine; Ford, Blaine; Balci, Yilmaz
2017-06-01
Genetic diversity of two Phytophthora spp.-P. cinnamomi (102 isolates), commonly encountered in Maryland nurseries and forests in the Mid-Atlantic United States, and P. plurivora (186 isolates), a species common in nurseries-was characterized using amplified fragment length polymorphism. Expected heterozygosity and other indices suggested a lower level of diversity among P. cinnamomi than P. plurivora isolates. Hierarchical clustering showed P. cinnamomi isolates separated into four clusters, and two of the largest clusters were closely related, containing 80% of the isolates. In contrast, P. plurivora isolates separated into six clusters, one of which included approximately 40% of the isolates. P. plurivora isolates recovered from the environment (e.g., soil and water) were genotypically more diverse than those found causing lesions. For both species, isolate origin (forest versus nursery or among nurseries) was a significant factor of heterozygosity. Clonal groups existed within P. cinnamomi and P. plurivora and included isolates from both forest and nurseries, suggesting that a pathway from nurseries to forests or vice versa exists.
Cleary, Daniel F R
2003-04-01
The impact of disturbance on species diversity may be related to the spatial scales over which it occurs. Here I assess the impact of logging and ENSO (El Niño Southern Oscillation) -induced burning and forest isolation on the species richness (477 species out of more than 28,000 individuals) and community composition of butterflies and butterfly guilds using small (0.9 ha) plots nested within large (450 ha) landscapes. The landscapes were located in three habitat classes: (1) continuous, unburned forest; (2) unburned isolates surrounded by burned forest; and (3) burned forest. Plots with different logging histories were sampled within the two unburned habitat classes, allowing for independent assessment of the two disturbance factors (logging and burning). Disturbance within habitat classes (logging) had a very different impact on butterfly diversity than disturbance among habitat classes (due to ENSO-induced burning and isolation). Logging increased species richness, increased evenness, and lowered dominance. Among guilds based on larval food plants, the species richness of tree and herb specialists was higher in logged areas but their abundance was lower. Both generalist species richness and abundance was higher in logged areas. Among habitat classes, species richness was lower in burned forest and isolates than continuous forest but there was no overall difference in evenness or dominance. Among guilds, generalist species richness was significantly lower in burned forest and isolates than continuous forest. Generalist abundance was also very low in the isolates. There was no difference among disturbance classes in herb specialist species richness but abundance was significantly higher in the isolates and burned forest than in continuous forest. Tree specialist species richness was lower in burned forest than continuous forest but did not differ between continuous forest and isolates. The scale of assessment proved important in estimating the impact of disturbance on species richness. Within disturbance classes, the difference in species richness between primary and logged forest was more pronounced at the smaller spatial scale. Among disturbance classes, the difference in species richness between continuous forest and isolates or burned forest was more pronounced at the larger spatial scale. The lower levels of species richness in ENSO-affected areas and at the larger (landscape) spatial scale indicate that future severe ENSO events may prove one of the most serious threats to extant biodiversity.
Shen, Shuo
2017-04-04
I studied the community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan Salt Lake. I isolated and cultured the moderate halophilic bacteria on different selective media. After the 16S rRNA gene sequences was amplified and measured, I constructed the phylogenic tree, analyzed the community structure and calculated the diversity indexes according to the 16S rRNA gene information. A total of 421 moderate halophilic bacteria were isolated from water and mud samples in Qrhan Salt Lake. The 16S rRNA gene information showed that 4 potential novel species belonged to the family Bacillaceae. Eighty-three model strains belonged to 3 phylurms 6 families 16 genus. Among them, Bacillus sp., Oceanobacillus sp. and Halomonas sp. were dominant species. Diversity analysis showed that the diversity of strains isolated from water sample was higher than that from mud sample, but the dominance degree of strains isolated from mud sample was higher than that from water sample. The genetic diversity of moderate halophilic bacteria isolated from Qrhan Salt Lake was abundant. Also, there were dominant and novel species of culturable moderate halophilic bacteria in this lake.
Williamson, Thomas E.; Brusatte, Stephen L.
2014-01-01
Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian – Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately co-eval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost during the Maastrichtian in New Mexico. The same pattern seen in northern faunas, which may provide evidence for an abrupt dinosaur extinction. PMID:24709990
Williamson, Thomas E; Brusatte, Stephen L
2014-01-01
Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian - Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately coeval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost during the Maastrichtian in New Mexico. The same pattern seen in northern faunas, which may provide evidence for an abrupt dinosaur extinction.
No evidence for a bovine mastitis Escherichia coli pathotype.
Leimbach, Andreas; Poehlein, Anja; Vollmers, John; Görlich, Dennis; Daniel, Rolf; Dobrindt, Ulrich
2017-05-08
Escherichia coli bovine mastitis is a disease of significant economic importance in the dairy industry. Molecular characterization of mastitis-associated E. coli (MAEC) did not result in the identification of common traits. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype has been proposed suggesting virulence traits that differentiate MAEC from commensal E. coli. The present study was designed to investigate the MPEC pathotype hypothesis by comparing the genomes of MAEC and commensal bovine E. coli. We sequenced the genomes of eight E. coli isolated from bovine mastitis cases and six fecal commensal isolates from udder-healthy cows. We analyzed the phylogenetic history of bovine E. coli genomes by supplementing this strain panel with eleven bovine-associated E. coli from public databases. The majority of the isolates originate from phylogroups A and B1, but neither MAEC nor commensal strains could be unambiguously distinguished by phylogenetic lineage. The gene content of both MAEC and commensal strains is highly diverse and dominated by their phylogenetic background. Although individual strains carry some typical E. coli virulence-associated genes, no traits important for pathogenicity could be specifically attributed to MAEC. Instead, both commensal strains and MAEC have very few gene families enriched in either pathotype. Only the aerobactin siderophore gene cluster was enriched in commensal E. coli within our strain panel. This is the first characterization of a phylogenetically diverse strain panel including several MAEC and commensal isolates. With our comparative genomics approach we could not confirm previous studies that argue for a positive selection of specific traits enabling MAEC to elicit bovine mastitis. Instead, MAEC are facultative and opportunistic pathogens recruited from the highly diverse bovine gastrointestinal microbiota. Virulence-associated genes implicated in mastitis are a by-product of commensalism with the primary function to enhance fitness in the bovine gastrointestinal tract. Therefore, we put the definition of the MPEC pathotype into question and suggest to designate corresponding isolates as MAEC.
Diversity of halophilic archaea from six hypersaline environments in Turkey.
Ozcan, Birgul; Ozcengiz, Gulay; Coleri, Arzu; Cokmus, Cumhur
2007-06-01
The diversity of archaeal strains from six hypersaline environments in Turkey was analyzed by comparing their phenotypic characteristics and 16S rDNA sequences. Thirty-three isolates were characterized in terms of their phenotypic properties including morphological and biochemical characteristics, susceptibility to different antibiotics, and total lipid and plasmid contents, and finally compared by 16S rDNA gene sequences. The results showed that all isolates belong to the family Halobacteriaceae. Phylogenetic analyses using approximately 1,388 bp comparisions of 16S rDNA sequences demonstrated that all isolates clustered closely to species belonging to 9 genera, namely Halorubrum (8 isolates), Natrinema (5 isolates), Haloarcula (4 isolates), Natronococcus (4 isolates), Natrialba (4 isolates), Haloferax (3 isolates), Haloterrigena (3 isolates), Halalkalicoccus (1 isolate), and Halomicrobium (1 isolate). The results revealed a high diversity among the isolated halophilic strains and indicated that some of these strains constitute new taxa of extremely halophilic archaea.
Johansson, Anders; Aspan, Anna; Bagge, Elisabeth; Båverud, Viveca; Engström, Björn E; Johansson, Karl-Erik
2006-01-01
Background Clostridium perfringens, a serious pathogen, causes enteric diseases in domestic animals and food poisoning in humans. The epidemiological relationship between C. perfringens isolates from the same source has previously been investigated chiefly by pulsed-field gel electrophoresis (PFGE). In this study the genetic diversity of C. perfringens isolated from various animals, from food poisoning outbreaks and from sludge was investigated. Results We used PFGE to examine the genetic diversity of 95 C. perfringens type A isolates from eight different sources. The isolates were also examined for the presence of the beta2 toxin gene (cpb2) and the enterotoxin gene (cpe). The cpb2 gene from the 28 cpb2-positive isolates was also partially sequenced (519 bp, corresponding to positions 188 to 706 in the consensus cpb2 sequence). The results of PFGE revealed a wide genetic diversity among the C. perfringens type A isolates. The genetic relatedness of the isolates ranged from 58 to 100% and 56 distinct PFGE types were identified. Almost all clusters with similar patterns comprised isolates with a known epidemiological correlation. Most of the isolates from pig, horse and sheep carried the cpb2 gene. All isolates originating from food poisoning outbreaks carried the cpe gene and three of these also carried cpb2. Two evolutionary different populations were identified by sequence analysis of the partially sequenced cpb2 genes from our study and cpb2 sequences previously deposited in GenBank. Conclusion As revealed by PFGE, there was a wide genetic diversity among C. perfringens isolates from different sources. Epidemiologically related isolates showed a high genetic similarity, as expected, while isolates with no obvious epidemiological relationship expressed a lesser degree of genetic similarity. The wide diversity revealed by PFGE was not reflected in the 16S rRNA sequences, which had a considerable degree of sequence similarity. Sequence comparison of the partially sequenced cpb2 gene revealed two genetically different populations. This is to our knowledge the first study in which the genetic diversity of C. perfringens isolates both from different animals species, from food poisoning outbreaks and from sludge has been investigated. PMID:16737528
Niama, Fabien Roch; Vidal, Nicole; Diop-Ndiaye, Halimatou; Nguimbi, Etienne; Ahombo, Gabriel; Diakabana, Philippe; Bayonne Kombo, Édith Sophie; Mayengue, Pembe Issamou; Kobawila, Simon-Charles; Parra, Henri Joseph; Toure-Kane, Coumba
2017-07-05
In this work, we investigated the genetic diversity of HIV-1 and the presence of mutations conferring antiretroviral drug resistance in 50 drug-naïve infected persons in the Republic of Congo (RoC). Samples were obtained before large-scale access to HAART in 2002 and 2004. To assess the HIV-1 genetic recombination, the sequencing of the pol gene encoding a protease and partial reverse transcriptase was performed and analyzed with updated references, including newly characterized CRFs. The assessment of drug resistance was conducted according to the WHO protocol. Among the 50 samples analyzed for the pol gene, 50% were classified as intersubtype recombinants, charring complex structures inside the pol fragment. Five samples could not be classified (noted U). The most prevalent subtypes were G with 10 isolates and D with 11 isolates. One isolate of A, J, H, CRF05, CRF18 and CRF37 were also found. Two samples (4%) harboring the mutations M230L and Y181C associated with the TAMs M41L and T215Y, respectively, were found. This first study in the RoC, based on WHO classification, shows that the threshold of transmitted drug resistance before large-scale access to antiretroviral therapy is 4%.
Gohain, Anwesha; Gogoi, Animesh; Debnath, Rajal; Yadav, Archana; Singh, Bhim P; Gupta, Vijai K; Sharma, Rajeev; Saikia, Ratul
2015-10-01
Endophytic actinomycetes are one of the primary groups that share symbiotic relationships with medicinal plants and are key reservoir of biologically active compounds. In this study, six selective medicinal plants were targeted for the first time for endophytic actinomycetes isolation from Gibbon Wild Life Sanctuary, Assam, India, during winter and summer and 76 isolates were obtained. The isolates were found to be prevalent in roots followed by stem and leaves. 16S rRNA gene sequence analysis revealed 16 genera, including rare genera, Verrucosispora, Isoptericola and Kytococcus, which have never been previously reported as endophytic. The genus Streptomyces (66%) was dominant in both seasons. Shannon's diversity index showed that Azadirachta indica (1.49), Rauwolfia serpentina (1.43) and Emblica officinalis (1.24) were relatively good habitat for endophytic actinomycetes. Antimicrobial strains showed prevalence of polyketide synthase (PKS) type-II (85%) followed by PKS type-I (14%) encoded in the genomes. Expression studies showed 12-fold upregulation of PKSII gene in seventh day of incubation for Streptomyces antibioticus (EAAG90). Our results emphasize that the actinomycetes assemblages within plant tissue exhibited biosynthetic systems encoding for important biologically active compounds. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
This study was conducted to determine the genetic diversity of Salmonella isolates recovered from a variety of sources using pulsed-field gel electrophoresis (PFGE) to assess their possible relatedness. Salmonella was isolated from ca. 52% of samples from a pepper var. Bell production system. A to...
DNA Fingerprinting of Lactic Acid Bacteria in Sauerkraut Fermentations▿ † ‡
Plengvidhya, Vethachai; Breidt, Fredrick; Lu, Zhongjing; Fleming, Henry P.
2007-01-01
Previous studies using traditional biochemical identification methods to study the ecology of commercial sauerkraut fermentations revealed that four species of lactic acid bacteria, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis, were the primary microorganisms in these fermentations. In this study, 686 isolates were collected from four commercial fermentations and analyzed by DNA fingerprinting. The results indicate that the species of lactic acid bacteria present in sauerkraut fermentations are more diverse than previously reported and include Leuconostoc citreum, Leuconostoc argentinum, Lactobacillus paraplantarum, Lactobacillus coryniformis, and Weissella sp. The newly identified species Leuconostoc fallax was also found. Unexpectedly, only two isolates of P. pentosaceus and 15 isolates of L. brevis were recovered during this study. A better understanding of the microbiota may aid in the development of low-salt fermentations, which may have altered microflora and altered sensory characteristics. PMID:17921264
Loxterman, Janet L; Keeley, Ernest R
2012-03-19
For wide-ranging species, intraspecific variation can occur as a result of reproductive isolation from local adaptive differences or from physical barriers to movement. Cutthroat trout (Oncorhynchus clarkii), a widely distributed fish species from North America, has been divided into numerous putative subspecies largely based on its isolation in different watersheds. In this study, we examined mtDNA sequence variation of cutthroat trout to determine the major phylogenetic lineages of this polytypic species. We use these data as a means of testing whether geographic isolation by watershed boundaries can be a primary factor organizing intraspecific diversification. We collected cutthroat trout from locations spanning almost the entire geographic range of this species and included samples from all major subspecies of cutthroat trout. Based on our analyses, we reveal eight major lineages of cutthroat trout, six of which correspond to subspecific taxonomy commonly used to describe intraspecific variation in this species. The Bonneville cutthroat trout (O. c. utah) and Yellowstone cutthroat trout (O. c. bouvieri) did not form separate monophyletic lineages, but instead formed an intermixed clade. We also document the geographic distribution of a Great Basin lineage of cutthroat trout; a group typically defined as Bonneville cutthroat trout, but it appears more closely related to the Colorado River lineage of cutthroat trout. Our study indicates that watershed boundaries can be an organizing factor isolating genetic diversity in fishes; however, historical connections between watersheds can also influence the template of isolation. Widely distributed species, like cutthroat trout, offer an opportunity to assess where historic watershed connections may have existed, and help explain the current distribution of biological diversity across a landscape.
2012-01-01
Background For wide-ranging species, intraspecific variation can occur as a result of reproductive isolation from local adaptive differences or from physical barriers to movement. Cutthroat trout (Oncorhynchus clarkii), a widely distributed fish species from North America, has been divided into numerous putative subspecies largely based on its isolation in different watersheds. In this study, we examined mtDNA sequence variation of cutthroat trout to determine the major phylogenetic lineages of this polytypic species. We use these data as a means of testing whether geographic isolation by watershed boundaries can be a primary factor organizing intraspecific diversification. Results We collected cutthroat trout from locations spanning almost the entire geographic range of this species and included samples from all major subspecies of cutthroat trout. Based on our analyses, we reveal eight major lineages of cutthroat trout, six of which correspond to subspecific taxonomy commonly used to describe intraspecific variation in this species. The Bonneville cutthroat trout (O. c. utah) and Yellowstone cutthroat trout (O. c. bouvieri) did not form separate monophyletic lineages, but instead formed an intermixed clade. We also document the geographic distribution of a Great Basin lineage of cutthroat trout; a group typically defined as Bonneville cutthroat trout, but it appears more closely related to the Colorado River lineage of cutthroat trout. Conclusion Our study indicates that watershed boundaries can be an organizing factor isolating genetic diversity in fishes; however, historical connections between watersheds can also influence the template of isolation. Widely distributed species, like cutthroat trout, offer an opportunity to assess where historic watershed connections may have existed, and help explain the current distribution of biological diversity across a landscape. PMID:22429757
Prophage Integrase Typing Is a Useful Indicator of Genomic Diversity in Salmonella enterica
Colavecchio, Anna; D’Souza, Yasmin; Tompkins, Elizabeth; Jeukens, Julie; Freschi, Luca; Emond-Rheault, Jean-Guillaume; Kukavica-Ibrulj, Irena; Boyle, Brian; Bekal, Sadjia; Tamber, Sandeep; Levesque, Roger C.; Goodridge, Lawrence D.
2017-01-01
Salmonella enterica is a bacterial species that is a major cause of illness in humans and food-producing animals. S. enterica exhibits considerable inter-serovar diversity, as evidenced by the large number of host adapted serovars that have been identified. The development of methods to assess genome diversity in S. enterica will help to further define the limits of diversity in this foodborne pathogen. Thus, we evaluated a PCR assay, which targets prophage integrase genes, as a rapid method to investigate S. enterica genome diversity. To evaluate the PCR prophage integrase assay, 49 isolates of S. enterica were selected, including 19 clinical isolates from clonal serovars (Enteritidis and Heidelberg) that commonly cause human illness, and 30 isolates from food-associated Salmonella serovars that rarely cause human illness. The number of integrase genes identified by the PCR assay was compared to the number of integrase genes within intact prophages identified by whole genome sequencing and phage finding program PHASTER. The PCR assay identified a total of 147 prophage integrase genes within the 49 S. enterica genomes (79 integrase genes in the food-associated Salmonella isolates, 50 integrase genes in S. Enteritidis, and 18 integrase genes in S. Heidelberg). In comparison, whole genome sequencing and PHASTER identified a total of 75 prophage integrase genes within 102 intact prophages in the 49 S. enterica genomes (44 integrase genes in the food-associated Salmonella isolates, 21 integrase genes in S. Enteritidis, and 9 integrase genes in S. Heidelberg). Collectively, both the PCR assay and PHASTER identified the presence of a large diversity of prophage integrase genes in the food-associated isolates compared to the clinical isolates, thus indicating a high degree of diversity in the food-associated isolates, and confirming the clonal nature of S. Enteritidis and S. Heidelberg. Moreover, PHASTER revealed a diversity of 29 different types of prophages and 23 different integrase genes within the food-associated isolates, but only identified four different phages and integrase genes within clonal isolates of S. Enteritidis and S. Heidelberg. These results demonstrate the potential usefulness of PCR based detection of prophage integrase genes as a rapid indicator of genome diversity in S. enterica. PMID:28740489
Prophage Integrase Typing Is a Useful Indicator of Genomic Diversity in Salmonella enterica.
Colavecchio, Anna; D'Souza, Yasmin; Tompkins, Elizabeth; Jeukens, Julie; Freschi, Luca; Emond-Rheault, Jean-Guillaume; Kukavica-Ibrulj, Irena; Boyle, Brian; Bekal, Sadjia; Tamber, Sandeep; Levesque, Roger C; Goodridge, Lawrence D
2017-01-01
Salmonella enterica is a bacterial species that is a major cause of illness in humans and food-producing animals. S. enterica exhibits considerable inter-serovar diversity, as evidenced by the large number of host adapted serovars that have been identified. The development of methods to assess genome diversity in S. enterica will help to further define the limits of diversity in this foodborne pathogen. Thus, we evaluated a PCR assay, which targets prophage integrase genes, as a rapid method to investigate S. enterica genome diversity. To evaluate the PCR prophage integrase assay, 49 isolates of S. enterica were selected, including 19 clinical isolates from clonal serovars (Enteritidis and Heidelberg) that commonly cause human illness, and 30 isolates from food-associated Salmonella serovars that rarely cause human illness. The number of integrase genes identified by the PCR assay was compared to the number of integrase genes within intact prophages identified by whole genome sequencing and phage finding program PHASTER. The PCR assay identified a total of 147 prophage integrase genes within the 49 S. enterica genomes (79 integrase genes in the food-associated Salmonella isolates, 50 integrase genes in S . Enteritidis, and 18 integrase genes in S . Heidelberg). In comparison, whole genome sequencing and PHASTER identified a total of 75 prophage integrase genes within 102 intact prophages in the 49 S. enterica genomes (44 integrase genes in the food-associated Salmonella isolates, 21 integrase genes in S . Enteritidis, and 9 integrase genes in S . Heidelberg). Collectively, both the PCR assay and PHASTER identified the presence of a large diversity of prophage integrase genes in the food-associated isolates compared to the clinical isolates, thus indicating a high degree of diversity in the food-associated isolates, and confirming the clonal nature of S . Enteritidis and S . Heidelberg. Moreover, PHASTER revealed a diversity of 29 different types of prophages and 23 different integrase genes within the food-associated isolates, but only identified four different phages and integrase genes within clonal isolates of S. Enteritidis and S. Heidelberg. These results demonstrate the potential usefulness of PCR based detection of prophage integrase genes as a rapid indicator of genome diversity in S. enterica .
Genetic diversity of Kenyan native oyster mushroom (Pleurotus).
Otieno, Ojwang D; Onyango, Calvin; Onguso, Justus Mungare; Matasyoh, Lexa G; Wanjala, Bramwel W; Wamalwa, Mark; Harvey, Jagger J W
2015-01-01
Members of the genus Pleurotus, also commonly known as oyster mushroom, are well known for their socioeconomic and biotechnological potentials. Despite being one of the most important edible fungi, the scarce information about the genetic diversity of the species in natural populations has limited their sustainable utilization. A total of 71 isolates of Pleurotus species were collected from three natural populations: 25 isolates were obtained from Kakamega forest, 34 isolates from Arabuko Sokoke forest and 12 isolates from Mount Kenya forest. Amplified fragment length polymorphism (AFLP) was applied to thirteen isolates of locally grown Pleurotus species obtained from laboratory samples using five primer pair combinations. AFLP markers and internal transcribed spacer (ITS) sequences of the ribosomal DNA were used to estimate the genetic diversity and evaluate phylogenetic relationships, respectively, among and within populations. The five primer pair combinations generated 293 polymorphic loci across the 84 isolates. The mean genetic diversity among the populations was 0.25 with the population from Arabuko Sokoke having higher (0.27) diversity estimates compared to Mount Kenya population (0.24). Diversity between the isolates from the natural population (0.25) and commercial cultivars (0.24) did not differ significantly. However, diversity was greater within (89%; P > 0.001) populations than among populations. Homology search analysis against the GenBank database using 16 rDNA ITS sequences randomly selected from the two clades of AFLP dendrogram revealed three mushroom species: P. djamor, P. floridanus and P. sapidus; the three mushrooms form part of the diversity of Pleurotus species in Kenya. The broad diversity within the Kenyan Pleurotus species suggests the possibility of obtaining native strains suitable for commercial cultivation. © 2015 by The Mycological Society of America.
Effects of isolation on ant assemblages depend on microhabitat
Chen, Xuan; Adams, Benjamin; Layne, Michael; Swarzenski, Christopher M.; Norris, David O.; Hooper-Bui, Linda
2017-01-01
How isolation affects biological communities is a fundamental question in ecology and conservation biology. Local diversity (α) and regional diversity (γ) are consistently lower in insular areas. The pattern of species turnover (β diversity) and the influence of isolation on competitive interactions are less predictable. Differences in communities across microhabitats within an isolated patch could contribute to the variability in patterns related to isolation. Trees form characteristically dense and sparse patches (low vs. high isolation) in floating marshes in coastal Louisiana, and canopy and root areas around these trees could support distinct ant communities. Consequently, trees in floating marshes provide an ideal environment to study the effects of isolation on community assemblages in different microhabitats. We sampled ant communities in 120 trees during the summer of 2016. We found ant α diversity was not different between the canopy and roots, and the magnitude and directional effects of isolation on ants were inconsistent between the canopy and root areas. In the roots of sparse sites, ant diversity (α, β, and γ) was lower, species composition was changed, and the signature of interspecific competition was more prominent compared to dense sites. In the canopy, however, significant differences between dense and sparse sites were only detected in α and γ diversity, and ant species co‐occurrence was not significantly different from a random distribution. The inconsistent responses of ants in canopy and root areas to isolation may be due to the differences of species pool size, environmental harshness, and species interactions between strata. In addition, these findings indicate that communities in distinct microenvironments can respond differentially to habitat isolation. We suggest incorporating organisms from different microhabitats into future research to better understand the influence of isolation on the assembly of biological communities.
Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach.
Gagen, Emma J; Wang, Jiakun; Padmanabha, Jagadish; Liu, Jing; de Carvalho, Isabela Pena Carvalho; Liu, Jianxin; Webb, Richard I; Al Jassim, Rafat; Morrison, Mark; Denman, Stuart E; McSweeney, Christopher S
2014-12-11
Forestomach fermentation in Australian marsupials such as wallabies and kangaroos, though analogous to rumen fermentation, results in lower methane emissions. Insights into hydrogenotrophy in these systems could help in devising strategies to reduce ruminal methanogenesis. Reductive acetogenesis may be a significant hydrogen sink in these systems and previous molecular analyses have revealed a novel diversity of putative acetogens in the tammar wallaby forestomach. Methanogen-inhibited enrichment cultures prepared from tammar wallaby forestomach contents consumed hydrogen and produced primarily acetate. Functional gene (formyltetrahydrofolate synthetase and acetyl-CoA synthase) analyses revealed a restricted diversity of Clostridiales species as the putative acetogens in the cultures. A new acetogen (growth on H2/CO2 with acetate as primary end product) designated isolate TWA4, was obtained from the cultures. Isolate TWA4 classified within the Lachnospiraceae and demonstrated >97% rrs identity to previously isolated kangaroo acetogens. Isolate TWA4 was a potent hydrogenotroph and demonstrated excellent mixotrophic growth (concomitant consumption of hydrogen during heterotrophic growth) with glycerol. Mixotrophic growth of isolate TWA4 on glycerol resulted in increased cell densities and acetate production compared to autotrophic growth. Co-cultures with an autotrophic methanogen Methanobrevibacter smithii revealed that isolate TWA4 performed reductive acetogenesis under high hydrogen concentration (>5 mM), but not at low concentrations. Under heterotrophic growth conditions, isolate TWA4 did not significantly stimulate methanogenesis in a co-culture with M. smithii contrary to the expectation for organisms growing fermentatively. The unique properties of tammar wallaby acetogens might be contributing factors to reduced methanogen numbers and methane emissions from tammar wallaby forestomach fermentation, compared to ruminal fermentation. The macropod forestomach may be a useful source of acetogens for future strategies to reduce methane emissions from ruminants, particularly if these strategies also include some level of methane suppression and/or acetogen stimulation, for example by harnessing mixotrophic growth capabilities.
Smith, Natalie; Power, Ultan F; McKillen, John
2018-05-29
To investigate the genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) in Northern Ireland, the ORF5 gene from nine field isolates was sequenced and phylogenetically analysed. The results revealed relatively high diversity amongst isolates, with 87.6-92.2% identity between farms at the nucleotide level and 84.1-93.5% identity at the protein level. Phylogenetic analysis confirmed that all nine isolates belonged to the European (type 1) genotype and formed a cluster within the subtype 1 subgroup. This study provides the first report on PRRSV isolate diversity in Northern Ireland.
Bhattacharjee, Kaushik; Banerjee, Subhro; Joshi, Santa Ram
2012-01-01
Isolation and characterization of actinomycetes from soil samples from altitudinal gradient of North-East India were investigated for computational RNomics based phylogeny. A total of 52 diverse isolates of Streptomyces from the soil samples were isolated on four different media and from these 6 isolates were selected on the basis of cultural characteristics, microscopic and biochemical studies. Sequencing of 16S rDNA of the selected isolates identified them to belong to six different species of Streptomyces. The molecular morphometric and physico-kinetic analysis of 16S rRNA sequences were performed to predict the diversity of the genus. The computational RNomics study revealed the significance of the structural RNA based phylogenetic analysis in a relatively diverse group of Streptomyces. PMID:22829729
Prajapati, Surendra Kumar; Joshi, Hema; Valecha, Neena
2010-06-01
Malaria, an ancient human infectious disease caused by five species of Plasmodium, among them Plasmodium vivax is the most widespread human malaria species and causes huge morbidity to its host. Identification of genetic marker to resolve higher genetic diversity for an ancient origin organism is a crucial task. We have analyzed genetic diversity of P. vivax field isolates using highly polymorphic antigen gene merozoite surface protein-3 alpha (msp-3 alpha) and assessed its suitability as high-resolution genetic marker for population genetic studies. 27 P. vivax field isolates collected during chloroquine therapeutic efficacy study at Chennai were analyzed for genetic diversity. PCR-RFLP was employed to assess the genetic variations using highly polymorphic antigen gene msp-3 alpha. We observed three distinct PCR alleles at msp-3 alpha, and among them allele A showed significantly high frequency (53%, chi2 = 8.22, p = 0.001). PCR-RFLP analysis revealed 14 and 17 distinct RFLP patterns for Hha1 and Alu1 enzymes respectively. Further, RFLP analysis revealed that allele A at msp-3 alpha is more diverse in the population compared with allele B and C. Combining Hha1 and Alu1 RFLP patterns revealed 21 distinct genotypes among 22 isolates reflects higher diversity resolution power of msp-3 alpha in the field isolates. P. vivax isolates from Chennai region revealed substantial amount of genetic diversity and comparison of allelic diversity with other antigen genes and microsatellites suggesting that msp-3 alpha could be a high-resolution marker for genetic diversity studies among P. vivax field isolates.
Qin, Sheng; Li, Jie; Chen, Hua-Hong; Zhao, Guo-Zhen; Zhu, Wen-Yong; Jiang, Cheng-Lin; Xu, Li-Hua; Li, Wen-Jun
2009-10-01
Endophytic actinobacteria are relatively unexplored as potential sources of novel species and novel natural products for medical and commercial exploitation. Xishuangbanna is recognized throughout the world for its diverse flora, especially the rain forest plants, many of which have indigenous pharmaceutical histories. However, little is known about the endophytic actinobacteria of this tropical area. In this work, we studied the diversity of actinobacteria isolated from medicinal plants collected from tropical rain forests in Xishuangbanna. By the use of different selective isolation media and methods, a total of 2,174 actinobacteria were isolated. Forty-six isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The results showed an unexpected level of diversity, with 32 different genera. To our knowledge, this is the first report describing the isolation of Saccharopolyspora, Dietzia, Blastococcus, Dactylosporangium, Promicromonospora, Oerskovia, Actinocorallia, and Jiangella species from endophytic environments. At least 19 isolates are considered novel taxa by our current research. In addition, all 46 isolates were tested for antimicrobial activity and were screened for the presence of genes encoding polyketide synthetases and nonribosomal peptide synthetases. The results confirm that the medicinal plants of Xishuangbanna represent an extremely rich reservoir for the isolation of a significant diversity of actinobacteria, including novel species, that are potential sources for the discovery of biologically active compounds.
Kellie J. Carim; Lisa A. Eby; Craig A. Barfoot; Matthew C. Boyer
2016-01-01
Fragmentation and isolation of wildlife populations has reduced genetic diversity worldwide, leaving many populations vulnerable to inbreeding depression and local extinction. Nonetheless, isolation is protecting many native aquatic species from interactions with invasive species, often making reconnection an unrealistic conservation strategy. Isolation management is...
Zhang, Xiao-Yong; He, Fei; Wang, Guang-Hua; Bao, Jie; Xu, Xin-Ya; Qi, Shu-Hua
2013-06-01
This study describes the diversity and antibacterial activity of culturable actinobacteria isolated from five species of gorgonian corals (Echinogorgia aurantiaca, Melitodes squamata, Muricella flexuosa, Subergorgia suberosa, and Verrucella umbraculum) collected in shallow water of the South China Sea. A total of 123 actinobacterial isolates were recovered using ten different isolation media, and assigned to 11 genera, including Streptomyces and Micromonospora as the dominant genera, followed by Nocardia, Verrucosispora, Nocardiopsis, Rhodococcus, Pseudonocardia, Agrococcus, Saccharomonospora, Saccharopolyspora and Dietzia. Comparable analysis indicated that the numbers of actinobacterial genera and isolates from the five gorgonian coral species varied significantly. It was found that 72 isolates displayed antibacterial activity against at least one indicator bacterium, and the antibacterial strains isolated from different gorgonians had almost the same proportion (~50 %). These results provide direct evidence for the hypotheses that gorgonian coral species contain large and diverse communities of actinobacteria, and suggest that many gorgonian-associated actinobacteria could produce some antibacterial agents to protect their hosts against pathogens. To our knowledge, this is the first report about the diversity of culturable actinobacteria isolated from gorgonian corals.
Cyanobacterial diversity and halotolerance in a variable hypersaline environment.
Kirkwood, Andrea E; Buchheim, Julie A; Buchheim, Mark A; Henley, William J
2008-04-01
The Great Salt Plains (GSP) in north-central Oklahoma, USA is an expansive salt flat (approximately 65 km(2)) that is part of the federally protected Salt Plains National Wildlife Refuge. The GSP serves as an ideal environment to study the microbial diversity of a terrestrial, hypersaline system that experiences wide fluctuations in freshwater influx and diel temperature. Our study assessed cyanobacterial diversity at the GSP by focusing on the taxonomic and physiological diversity of GSP isolates, and the 16S rRNA phylogenetic diversity of isolates and environmental clones from three sites (north, central, and south). Taxonomic diversity of isolates was limited to a few genera (mostly Phormidium and Geitlerinema), but physiological diversity based on halotolerance ranges was strikingly more diverse, even between strains of the same phylotype. The phylogenetic tree revealed diversity that spanned a number of cyanobacterial lineages, although diversity at each site was dominated by only a few phylotypes. Unlike other hypersaline systems, a number of environmental clones from the GSP were members of the heterocystous lineage. Although a number of cyanobacterial isolates were close matches with prevalent environmental clones, it is not certain if these clones reflect the same halotolerance ranges of their matching isolates. This caveat is based on the notable disparities we found between strains of the same phylotype and their inherent halotolerance. Our findings support the hypothesis that variable or poikilotrophic environments promote diversification, and in particular, select for variation in ecotype more than phylotype.
James, Delano; Sanderson, Dan; Varga, Aniko; Sheveleva, Anna; Chirkov, Sergei
2016-04-01
Plum pox virus (PPV) is genetically diverse with nine different strains identified. Mutations, indel events, and interstrain recombination events are known to contribute to the genetic diversity of PPV. This is the first report of intrastrain recombination events that contribute to PPV's genetic diversity. Fourteen isolates of the PPV strain Winona (W) were analyzed including nine new strain W isolates sequenced completely in this study. Isolates of other strains of PPV with more than one isolate with the complete genome sequence available in GenBank were included also in this study for comparison and analysis. Five intrastrain recombination events were detected among the PPV W isolates, one among PPV C strain isolates, and one among PPV M strain isolates. Four (29%) of the PPV W isolates analyzed are recombinants; one of which (P2-1) is a mosaic, with three recombination events identified. A new interstrain recombinant event was identified between a strain M isolate and a strain Rec isolate, a known recombinant. In silico recombination studies and pairwise distance analyses of PPV strain D isolates indicate that a threshold of genetic diversity exists for the detectability of recombination events, in the range of approximately 0.78×10(-2) to 1.33×10(-2) mean pairwise distance. RDP4 analyses indicate that in the case of PPV Rec isolates there may be a recombinant breakpoint distinct from the obvious transition point of strain sequences. Evidence was obtained that indicates that the frequency of PPV recombination is underestimated, which may be true for other RNA viruses where low genetic diversity exists.
Initial results from the VPI&SU SIRIO diversity experiment
NASA Technical Reports Server (NTRS)
Towner, G. C.; Marshall, R. E.; Stutzman, W. L.; Bostian, C. W.; Pratt, T.; Manus, E. A.; Wiley, P. H.
1982-01-01
The first year of observations of the precipitation effects on the 11.6-GHz beacon signal from the SIRIO satellite are reported. This experiment is unique in that it uses dual-polarized receivers in a diversity configuration and a low path elevation angle. Rain rate, attenuation, and isolation statistics are presented for both sites. In addition, attenuation diversity gain is plotted and compared to current models. Isolation diversity gain is also discussed. It was found that little improvement in dual-channel isolation is obtained with site diversity at this low elevation angle. The influence of ice clouds was noted in the months of October and November.
Johnson, Jacklyn; Zhai, Yinjie; Salimi, Hamid; Espy, Nicole; Eichelberger, Noah; DeLeon, Orlando; O'Malley, Yunxia; Courter, Joel; Smith, Amos B; Madani, Navid; Sodroski, Joseph; Haim, Hillel
2017-08-01
The envelope glycoproteins (Envs) on the surfaces of HIV-1 particles are targeted by host antibodies. Primary HIV-1 isolates demonstrate different global sensitivities to antibody neutralization; tier-1 isolates are sensitive, whereas tier-2 isolates are more resistant. Single-site mutations in Env can convert tier-2 into tier-1-like viruses. We hypothesized that such global change in neutralization sensitivity results from weakening of intramolecular interactions that maintain Env integrity. Three strategies commonly applied to perturb protein structure were tested for their effects on global neutralization sensitivity: exposure to low temperature, Env-activating ligands, and a chaotropic agent. A large panel of diverse tier-2 isolates from clades B and C was analyzed. Incubation at 0°C, which globally weakens hydrophobic interactions, causes gradual and reversible exposure of the coreceptor-binding site. In the cold-induced state, Envs progress at isolate-specific rates to unstable forms that are sensitive to antibody neutralization and then gradually lose function. Agents that mimic the effects of CD4 (CD4Ms) also induce reversible structural changes to states that exhibit isolate-specific stabilities. The chaotropic agent urea (at low concentrations) does not affect the structure or function of native Env. However, urea efficiently perturbs metastable states induced by cold and CD4Ms and increases their sensitivity to antibody neutralization and their inactivation rates Therefore, chemical and physical agents can guide Env from the stable native state to perturbation-sensitive forms and modulate their stability to bestow tier-1-like properties on primary tier-2 strains. These concepts can be applied to enhance the potency of vaccine-elicited antibodies and microbicides at mucosal sites of HIV-1 transmission. IMPORTANCE An effective vaccine to prevent transmission of HIV-1 is a primary goal of the scientific and health care communities. Vaccine-elicited antibodies target the viral envelope glycoproteins (Envs) and can potentially inhibit infection. However, the potency of such antibodies is generally low. Single-site mutations in Env can enhance the global sensitivity of HIV-1 to neutralization by antibodies. We found that such a hypersensitivity phenotype can also be induced by agents that destabilize protein structure. Exposure to 0°C or low concentrations of Env-activating ligands gradually guides Env to metastable forms that expose cryptic epitopes and that are highly sensitive to neutralization. Low concentrations of the chaotropic agent urea do not affect native Env but destabilize perturbed states induced by cold or CD4Ms and increase their neutralization. The concept of enhancing antibody sensitivity by chemical agents that affect the structural stability of proteins can be applied to increase the potency of topical microbicides and vaccine-elicited antibodies. Copyright © 2017 American Society for Microbiology.
van der Meer, Sascha; Jacquemyn, Hans
2015-01-01
Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68), which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G” ST = 0.269 and 0.164 and D EST = 0.190 and 0.124, respectively) and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands. PMID:26079603
Phage display as a technology delivering on the promise of peptide drug discovery.
Hamzeh-Mivehroud, Maryam; Alizadeh, Ali Akbar; Morris, Michael B; Church, W Bret; Dastmalchi, Siavoush
2013-12-01
Phage display represents an important approach in the development pipeline for producing peptides and peptidomimetics therapeutics. Using randomly generated DNA sequences and molecular biology techniques, large diverse peptide libraries can be displayed on the phage surface. The phage library can be incubated with a target of interest and the phage which bind can be isolated and sequenced to reveal the displayed peptides' primary structure. In this review, we focus on the 'mechanics' of the phage display process, whilst highlighting many diverse and subtle ways it has been used to further the drug-development process, including the potential for the phage particle itself to be used as a drug carrier targeted to a particular pathogen or cell type in the body. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fang, Xiangling; Finnegan, Patrick M; Barbetti, Martin J
2013-01-01
Strawberry (Fragaria×ananassa) is one of the most important berry crops in the world. Root rot of strawberry caused by Rhizoctonia spp. is a serious threat to commercial strawberry production worldwide. However, there is no information on the genetic diversity and phylogenetic status of Rhizoctonia spp. associated with root rot of strawberry in Australia. To address this, a total of 96 Rhizoctonia spp. isolates recovered from diseased strawberry plants in Western Australia were characterized for their nuclear condition, virulence, genetic diversity and phylogenetic status. All the isolates were found to be binucleate Rhizoctonia (BNR). Sixty-five of the 96 BNR isolates were pathogenic on strawberry, but with wide variation in virulence, with 25 isolates having high virulence. Sequence analysis of the internal transcribed spacers of the ribosomal DNA separated the 65 pathogenic BNR isolates into six distinct clades. The sequence analysis also separated reference BNR isolates from strawberry or other crops across the world into clades that correspond to their respective anastomosis group (AG). Some of the pathogenic BNR isolates from this study were embedded in the clades for AG-A, AG-K and AG-I, while other isolates formed clades that were sister to the clades specific for AG-G, AG-B, AG-I and AG-C. There was no significant association between genetic diversity and virulence of these BNR isolates. This study demonstrates that pathogenic BNR isolates associated with root rot of strawberry in Western Australia have wide genetic diversity, and highlights new genetic groups not previously found to be associated with root rot of strawberry in the world (e.g., AG-B) or in Australia (e.g., AG-G). The wide variation in virulence and genetic diversity identified in this study will be of high value for strawberry breeding programs in selecting, developing and deploying new cultivars with resistance to these multi-genetic groups of BNR.
Cristóvão, Filipe; Alonso, Carla Andrea; Igrejas, Gilberto; Sousa, Margarida; Silva, Vanessa; Pereira, José Eduardo; Lozano, Carmen; Cortés-Cortés, Gerardo; Torres, Carmen; Poeta, Patrícia
2017-03-01
The clonal diversity of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli isolates from nine different species of wild animals from distinct regions of Portugal and Spain and their content in replicon plasmids were analyzed. Among the initial 53 ESBL-producing E. coli isolates that were studied (from previous studies), 28 were selected, corresponding to different animal origins with distinct ESBL types and pulsed-field gel electrophoresis (PFGE) patterns. These 28 isolates produced different ESBLs ascribed to the following families: CTX-M, SHV and TEM. The isolates were classified into three phylogenetic groups: B1 (n = 11), A (n = 10) and D (n = 7). The seven E. coli of phylogroup D were then typed by multilocus sequence typing and ascribed to four distinct sequence types: ST117, ST115, ST2001 and ST69. The clonal diversity and relationship between isolates was studied by PFGE. Lastly, the plasmids were analyzed according to their incompatibility group using the PCR-based-replicon-typing scheme. A great diversity of replicon types was identified, with up to five per isolate. Most of the CTX-M-1 and SHV-12 producing E. coli isolates carried IncI1 or IncN replicons. The diversity of ESBL-producing E. coli isolates in wild animals, which can be disseminated in the environment, emphasizes the environmental and health problems that we face nowadays. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Qin, Sheng; Li, Jie; Chen, Hua-Hong; Zhao, Guo-Zhen; Zhu, Wen-Yong; Jiang, Cheng-Lin; Xu, Li-Hua; Li, Wen-Jun
2009-01-01
Endophytic actinobacteria are relatively unexplored as potential sources of novel species and novel natural products for medical and commercial exploitation. Xishuangbanna is recognized throughout the world for its diverse flora, especially the rain forest plants, many of which have indigenous pharmaceutical histories. However, little is known about the endophytic actinobacteria of this tropical area. In this work, we studied the diversity of actinobacteria isolated from medicinal plants collected from tropical rain forests in Xishuangbanna. By the use of different selective isolation media and methods, a total of 2,174 actinobacteria were isolated. Forty-six isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The results showed an unexpected level of diversity, with 32 different genera. To our knowledge, this is the first report describing the isolation of Saccharopolyspora, Dietzia, Blastococcus, Dactylosporangium, Promicromonospora, Oerskovia, Actinocorallia, and Jiangella species from endophytic environments. At least 19 isolates are considered novel taxa by our current research. In addition, all 46 isolates were tested for antimicrobial activity and were screened for the presence of genes encoding polyketide synthetases and nonribosomal peptide synthetases. The results confirm that the medicinal plants of Xishuangbanna represent an extremely rich reservoir for the isolation of a significant diversity of actinobacteria, including novel species, that are potential sources for the discovery of biologically active compounds. PMID:19648362
Kato, Charles D; Mugasa, Claire M; Nanteza, Ann; Matovu, Enock; Alibu, Vincent P
2017-10-27
Human African trypanosomiasis (HAT) due to Trypanosoma brucei rhodesiense in East and southern Africa is reported to be clinically diverse. We tested the hypothesis that this clinical diversity is associated with a variation in trypanosome genotypes. Trypanosome DNA isolated from HAT patients was genotyped using 7 microsatellite markers directly from blood spotted FTA cards following a whole genome amplification. All markers were polymorphic and identified 17 multi-locus genotypes with 56% of the isolates having replicate genotypes. We did not observe any significant clustering between isolates and bootstrap values across major tree nodes were insignificant. When genotypes were compared among patients with varying clinical presentation or outcome, replicate genotypes were observed at both extremes showing no significant association between genetic diversity and clinical outcome. Our study shows that T. b. rhodesiense isolates are homogeneous within a focus and that observed clinical diversity may not be associated with parasite genetic diversity. Other factors like host genetics and environmental factors might be involved in determining clinical diversity. Our study may be important in designing appropriate control measures that target the parasite.
Isolation by Time During an Arctic Phytoplankton Spring Bloom.
Tammilehto, Anna; Watts, Phillip C; Lundholm, Nina
2017-03-01
The arctic phytoplankton spring bloom, which is often diatom-dominated, is a key event that provides the high latitude communities with a fundamental flux of organic carbon. During a bloom, phytoplankton may increase its biomass by orders of magnitude within days. Yet, very little is known about phytoplankton bloom dynamics, including for example how blooming affects genetic composition and diversity of a population. Here, we quantified the genetic composition and temporal changes of the diatom Fragilariopsis cylindrus, which is one of the most important primary producers in the Arctic, during the spring bloom in western Greenland, using 13 novel microsatellite markers developed for this study. We found that genetic differentiation (quantified using sample-specific F ST ) decreased between time points as the bloom progressed, with the most drastic changes in F ST occurring at the start of the bloom; thus the genetic structure of the bloom is characterized by isolation by time. There was little temporal variation in genetic diversity throughout the bloom (mean H E = 0.57), despite marked fluctuations in F. cylindrus cell concentrations and the temporal change in sample-specific F ST . On the basis of this novel pattern of genetic differentiation, we suggest that blooming behavior may promote genetic diversity of a phytoplankton population. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.
Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worden, Alexandra Z.; Lee, Jae-Hyeok; Mock, Thomas
Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90percent of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronicmore » repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.« less
Genetic diversity of Toxoplama gondii isolates from Ethiopian feral cats
USDA-ARS?s Scientific Manuscript database
Recent studies indicate greater genetic variability among isolates of Toxoplasma gondii worldwide than previously thought. However, there is no information on genetic diversity of T. gondii from any host in Ethiopia. In the present study, genotyping was performed on viable T. gondii isolates by bioa...
Sambrano, Dilcia; Correa, Ricardo; Almengor, Pedro; Domínguez, Amada; Vega, Silvio; Goodridge, Amador
2014-01-01
Understanding Mycobacterium tuberculosis biodiversity and transmission is significant for tuberculosis control. This short report aimed to determine the genetic diversity of M. tuberculosis isolates from an outpatient clinic in Panama City. A total of 62 M. tuberculosis isolates were genotyped by 12 loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) and Spoligotyping. Forty-five (72.6%) of the isolates showed unique MIRU-VNTR genotypes, and 13 (21%) of the isolates were grouped into four clusters. Four isolates showed polyclonal MIRU-VNTR genotypes. The MIRU-VNTR Hunter-Gaston discriminatory index reached 0.988. The Spoligotyping analysis revealed 16 M. tuberculosis families, including Latin American-Mediterranean, Harlem, and Beijing. These findings suggest a wide genetic diversity of M. tuberculosis isolates at one outpatient clinic. A detailed molecular epidemiology survey is now warranted, especially following second massive immigration for local Panama Canal expansion activities. PMID:24865686
Barony, G M; Tavares, G C; Assis, G B N; Luz, R K; Figueiredo, H C P; Leal, C A G
2015-11-17
Flavobacterium columnare is responsible for disease outbreaks in freshwater fish farms. Several Brazilian native fish have been commercially exploited or studied for aquaculture purposes, including Amazon catfish Leiarius marmoratus × Pseudoplatystoma fasciatum and pacamã Lophiosilurus alexandri. This study aimed to identify the aetiology of disease outbreaks in Amazon catfish and pacamã hatcheries and to address the genetic diversity of F. columnare isolates obtained from diseased fish. Two outbreaks in Amazon catfish and pacamã hatcheries took place in 2010 and 2011. Four F. columnare strains were isolated from these fish and identified by PCR. The disease was successfully reproduced under experimental conditions for both fish species, fulfilling Koch's postulates. The genomovar of these 4 isolates and of an additional 11 isolates from Nile tilapia Oreochromis niloticus was determined by 16S rRNA restriction fragment length polymorphism PCR. The genetic diversity was evaluated by phylogenetic analysis of the 16S rRNA gene and repetitive extragenic palindromic PCR (REP-PCR). Most isolates (n = 13) belonged to genomovar II; the remaining 2 isolates (both from Nile tilapia) were assigned to genomovar I. Phylogenetic analysis and REP-PCR were able to demonstrate intragenomovar diversity. This is the first report of columnaris in Brazilian native Amazon catfish and pacamã. The Brazilian F. columnare isolates showed moderate diversity, and REP-PCR was demonstrated to be a feasible method to evaluate genetic variability in this bacterium.
Analysis of Chromobacterium sp. natural isolates from different Brazilian ecosystems
Lima-Bittencourt, Cláudia I; Astolfi-Filho, Spartaco; Chartone-Souza, Edmar; Santos, Fabrício R; Nascimento, Andréa MA
2007-01-01
Background Chromobacterium violaceum is a free-living bacterium able to survive under diverse environmental conditions. In this study we evaluate the genetic and physiological diversity of Chromobacterium sp. isolates from three Brazilian ecosystems: Brazilian Savannah (Cerrado), Atlantic Rain Forest and Amazon Rain Forest. We have analyzed the diversity with molecular approaches (16S rRNA gene sequences and amplified ribosomal DNA restriction analysis) and phenotypic surveys of antibiotic resistance and biochemistry profiles. Results In general, the clusters based on physiological profiles included isolates from two or more geographical locations indicating that they are not restricted to a single ecosystem. The isolates from Brazilian Savannah presented greater physiologic diversity and their biochemical profile was the most variable of all groupings. The isolates recovered from Amazon and Atlantic Rain Forests presented the most similar biochemical characteristics to the Chromobacterium violaceum ATCC 12472 strain. Clusters based on biochemical profiles were congruent with clusters obtained by the 16S rRNA gene tree. According to the phylogenetic analyses, isolates from the Amazon Rain Forest and Savannah displayed a closer relationship to the Chromobacterium violaceum ATCC 12472. Furthermore, 16S rRNA gene tree revealed a good correlation between phylogenetic clustering and geographic origin. Conclusion The physiological analyses clearly demonstrate the high biochemical versatility found in the C. violaceum genome and molecular methods allowed to detect the intra and inter-population diversity of isolates from three Brazilian ecosystems. PMID:17584942
Hoveida, Laleh; Ataei, Behrooz; Amirmozafari, Nour; Noormohammadi, Zahra
2018-06-01
Confectionery is one of the potential sources of contamination and transmission of gastrointestinal infections to humans. Staphylococcus species, and particularly the coagulase-positive ones, have the remarkable capability to produce high amounts of enterotoxin in food. In the present study, the frequency and diversity of Staphylococcus in confectioneries in Iran were assessed by using a combination of conventional and molecular methods. A total of 55 confection samples were collected from 30 confectioneries of Isfahan. They were analyzed for the presence of Staphylococcus using standard protocols for isolation and characterization of the isolates. The conventional tests were used for primary identification and the sequence analysis of 16S rRNA was used for the species identification. A total of 47 out of 55 samples were gram-positive cocci (85.45%). They belonged to 39 Staphylococcus spp., 7 Macrococcus spp., and one Micrococcus spp. The most prevalent 11 various Staphylococcus species were S. aureus 30.8 %, S. warneri 20.5% and S. succinus 17.9. Identification and characterization of Staphylococcus species can be important for epidemiological investigations and assessment of virulence factors such as enterotoxin production and development of specific management practices to prevent staphylococcal food poisoning.
Yoder, Jay A; Jajack, Andrew J; Rosselot, Andrew E; Smith, Terrance J; Yerke, Mary Clare; Sammataro, Diana
2013-01-01
Fermentation by fungi converts stored pollen into bee bread that is fed to honey bee larvae, Apis mellifera, so the diversity of fungi in bee bread may be related to its food value. To explore the relationship between fungicide exposure and bee bread fungi, samples of bee bread collected from bee colonies pollinating orchards from 7 locations over 2 years were analyzed for fungicide residues and fungus composition. There were detectable levels of fungicides from regions that were sprayed before bloom. An organic orchard had the highest quantity and variety of fungicides, likely due to the presence of treated orchards within bees' flight range. Aspergillus, Penicillium, Rhizopus, and Cladosporium (beneficial fungi) were the primary fungal isolates found, regardless of habitat differences. There was some variation in fungal components amongst colonies, even within the same apiary. The variable components were Absidia, Alternaria, Aureobasidium, Bipolaris, Fusarium, Geotrichum, Mucor, Nigrospora, Paecilomyces, Scopulariopsis, and Trichoderma. The number of fungal isolates was reduced as an effect of fungicide contamination. Aspergillus abundance was particularly affected by increased fungicide levels, as indicated by Simpson's diversity index. Bee bread showing fungicide contamination originated from colonies, many of which showed chalkbrood symptoms.
Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion
Snedden, G.A.; Cable, J.E.; Swarzenski, C.; Swenson, E.
2007-01-01
Wetlands of the Mississippi River deltaic plain in southeast Louisiana have been hydrologically isolated from the Mississippi River by containment levees for nearly a century. The ensuing lack of fluvial sediment inputs, combined with natural submergence processes, has contributed to high coastal land loss rates. Controlled river diversions have since been constructed to reconnect the marshes of the deltaic plain with the river. This study examines the impact of a pulsed diversion management plan on sediment discharge into the Breton Sound estuary, in which duplicate 185 m3 s-1-diversions lasting two weeks each were conducted in the spring of 2002 and 2003. Sediment delivery during each pulse was highly variable (11,300-43,800 metric tons), and was greatest during rising limbs of Mississippi River flood events. Overland flow, a necessary transport mechanism for river sediments to reach the subsiding backmarsh regions, was induced only when diversion discharge exceeded 100 m3 s-1. These results indicate that timing and magnitude of diversion events are both important factors governing marsh sediment deposition in the receiving basins of river diversions. Though the diversion serves as the primary source of river sediments to the estuary, the inputs observed here were several orders of magnitude less than historical sediment discharge through crevasses and uncontrolled diversions in the region, and are insufficient to offset present rates of relative sea level rise. ?? 2006 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Tate, William F.; Hogrebe, Mark C.
2018-01-01
Our study examines patterns of spatial segregation using diversity and isolation indicators within and across Missouri school districts. Evaluating segregation from a critical spatial perspective emphasizes the importance of place when evaluating the quality of educational opportunity for diverse student populations. The methodology involves the…
Guy, T.J.; Gresswell, R.E.; Banks, M.A.
2008-01-01
Relationships among landscape structure, stochastic disturbance, and genetic diversity were assessed by examining interactions between watershed-scale environmental factors and genetic diversity of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in 27 barrier-isolated watersheds from western Oregon, USA. Headwater populations of coastal cutthroat trout were genetically differentiated (mean FST = 0.33) using data from seven microsatellite loci (2232 individuals), but intrapopulation microsatellite genetic diversity (mean number of alleles per locus = 5, mean He = 0.60) was only moderate. Genetic diversity of coastal cutthroat trout was greater (P = 0.02) in the Coast Range ecoregion (mean alleles = 47) than in the Cascades ecoregion (mean alleles = 30), and differences coincided with indices of regional within-watershed complexity and connectivity. Furthermore, regional patterns of diversity evident from isolation-by-distance plots suggested that retention of within-population genetic diversity in the Coast Range ecoregion is higher than that in the Cascades, where genetic drift is the dominant factor influencing genetic patterns. Thus, it appears that physical landscape features have influenced genetic patterns in these populations isolated from short-term immigration. ?? 2008 NRC.
Jang, Yeongseon; Jang, Seokyoon; Min, Mihee; Hong, Joo-Hyun; Lee, Hanbyul; Lee, Hwanhwi; Lim, Young Woon; Kim, Jae-Jin
2015-10-01
In this study, three different methods (fruiting body collection, mycelial isolation, and 454 sequencing) were implemented to determine the diversity of wood-inhabiting basidiomycetes from dead Manchurian fir (Abies holophylla). The three methods recovered similar species richness (26 species from fruiting bodies, 32 species from mycelia, and 32 species from 454 sequencing), but Fisher's alpha, Shannon-Wiener, Simpson's diversity indices of fungal communities indicated fruiting body collection and mycelial isolation displayed higher diversity compared with 454 sequencing. In total, 75 wood-inhabiting basidiomycetes were detected. The most frequently observed species were Heterobasidion orientale (fruiting body collection), Bjerkandera adusta (mycelial isolation), and Trichaptum fusco-violaceum (454 sequencing). Only two species, Hymenochaete yasudae and Hypochnicium karstenii, were detected by all three methods. This result indicated that Manchurian fir harbors a diverse basidiomycetous fungal community and for complete estimation of fungal diversity, multiple methods should be used. Further studies are required to understand their ecology in the context of forest ecosystems.
Diversity of halophilic bacteria isolated from Rambla Salada, Murcia (Spain).
Luque, Rocío; Béjar, Victoria; Quesada, Emilia; Llamas, Inmaculada
2014-12-01
In this study we analyzed the diversity of the halophilic bacteria community from Rambla Salada during the years 2006 and 2007. We collected a total of 364 strains, which were then identified by means of phenotypic tests and by the hypervariable V1-V3 region of the 16S rRNA sequences (around 500 bp). The ribosomal data showed that the isolates belonged to Proteobacteria (72.5%), Firmicutes (25.8%), Actinobacteria (1.4%), and Bacteroidetes (0.3%) phyla, with Gammaproteobacteria the predominant class. Halomonas was the most abundant genus (41.2% isolates) followed by Marinobacter (12.9% isolates) and Bacillus (12.6% isolates). In addition, 9 strains showed <97% sequence identity with validly described species and may well represent new taxa. The diversity of the bacterial community analyzed with the DOTUR package determined 139 operational taxonomic units at 3% genetic distance level. Rarefaction curves and diversity indexes demonstrated that our collection of isolates adequately represented all the bacterial community at Rambla Salada that can be grown under the conditions used in this work. We found that the sampling season influenced the composition of the bacterial community, and bacterial diversity was higher in 2007; this fact could be related to lower salinity at this sampling time.
Alonso-Vega, Pablo; Normand, Philippe; Bacigalupe, Rodrigo; Pujic, Petar; Lajus, Aurelie; Vallenet, David; Carro, Lorena; Coll, Pedro
2012-01-01
Micromonospora strains have been isolated from diverse niches, including soil, water, and marine sediments and root nodules of diverse symbiotic plants. In this work, we report the genome sequence of Micromonospora lupini Lupac 08 isolated from root nodules of the wild legume Lupinus angustifolious. PMID:22815450
Alou, Luis; Ramirez, Mario; García-Rey, César; Prieto, José; de Lencastre, Hermínia
2001-01-01
Analysis of the pulsed-field gel electrophoretic profiles of 82 pneumococcal isolates with reduced susceptibility to ciprofloxacin (RSC) and of 90 co-occurring susceptible isolates indicates a considerable genetic diversity among isolates with RCS and points to a close relation between the two groups. This finding suggests that pneumococci with RCS emerge through independent mutational events. PMID:11557501
Graham, Catherine H.; Brooks, Thomas M.; Rondinini, Carlo; Hedges, S. Blair; Davidson, Ana D.; Costa, Gabriel C.
2016-01-01
The taxonomic, phylogenetic and trait dimensions of beta diversity each provide us unique insights into the importance of historical isolation and environmental conditions in shaping global diversity. These three dimensions should, in general, be positively correlated. However, if similar environmental conditions filter species with similar trait values, then assemblages located in similar environmental conditions, but separated by large dispersal barriers, may show high taxonomic, high phylogenetic, but low trait beta diversity. Conversely, we expect lower phylogenetic diversity, but higher trait biodiversity among assemblages that are connected but are in differing environmental conditions. We calculated all pairwise comparisons of approximately 110 × 110 km grid cells across the globe for more than 5000 mammal species (approx. 70 million comparisons). We considered realms as units representing geographical distance and historical isolation and biomes as units with similar environmental conditions. While beta diversity dimensions were generally correlated, we highlight geographical regions of decoupling among beta diversity dimensions. Our analysis shows that assemblages from tropical forests in different realms had low trait dissimilarity while phylogenetic beta diversity was significantly higher than expected, suggesting potential convergent evolution. Low trait beta diversity was surprisingly not found between isolated deserts, despite harsh environmental conditions. Overall, our results provide evidence for parallel assemblage structure of mammal assemblages driven by environmental conditions at a global scale. PMID:27559061
Miller, Marisa E.; Zhang, Ying; Omidvar, Vahid; Sperschneider, Jana; Raley, Castle; Palmer, Jonathan M.; Garnica, Diana; Upadhyaya, Narayana; Rathjen, John; Taylor, Jennifer M.; Park, Robert F.; Dodds, Peter N.; Hirsch, Cory D.
2018-01-01
ABSTRACT Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae, is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenae. PMID:29463655
MULTILOCUS SEQUENCE TYPING OF BRUCELLA ISOLATES FROM THAILAND.
Chawjiraphan, Wireeya; Sonthayanon, Piengchan; Chanket, Phanita; Benjathummarak, Surachet; Kerdsin, Anusak; Kalambhaheti, Thareerat
2016-11-01
Although brucellosis outbreaks in Thailand are rare, they cause abortions and infertility in animals, resulting in significant economic loss. Because Brucella spp display > 90% DNA homology, multilocus sequence typing (MLST) was employed to categorize local Brucella isolates into sequence types (STs) and to determine their genetic relatedness. Brucella samples were isolated from vaginal secretion of cows and goats, and from blood cultures of infected individuals. Brucella species were determined by multiplex PCR of eight loci, in addition to MLST based on partial DNA sequences of nine house-keeping genes. MLST analysis of 36 isolates revealed 78 distinct novel allele types and 34 novel STs, while two isolates possessed the known ST8. Sequence alignments identified polymorphic sites in each allele, ranging from 2-6%, while overall genetic diversity was 3.6%. MLST analysis of the 36 Brucella isolates classified them into three species, namely, B. melitensis, B. abortus and B. suis, in agreement with multiplex PCR results. Genetic relatedness among ST members of B. melitensis and B. abortus determined by eBURST program revealed ST2 as founder of B. abortus isolates and ST8 the founder of B. melitensis isolates. ST 36, 41 and 50 of Thai Brucella isolates were identified as single locus variants of clonal cluster (CC) 8, while the majority of STs were diverse. The genetic diversity and relatedness identified using MLST revealed hitherto unexpected diversity among Thai Brucella isolates. Genetic classification of isolates could reveal the route of brucellosis transmission among humans and farm animals and also reveal their relationship with other isolates in the region and other parts of the world.
Brown, William R. A.; Liti, Gianni; Rosa, Carlos; James, Steve; Roberts, Ian; Robert, Vincent; Jolly, Neil; Tang, Wen; Baumann, Peter; Green, Carter; Schlegel, Kristina; Young, Jonathan; Hirchaud, Fabienne; Leek, Spencer; Thomas, Geraint; Blomberg, Anders; Warringer, Jonas
2011-01-01
The fission yeast Schizosaccharomyces pombe has been widely used to study eukaryotic cell biology, but almost all of this work has used derivatives of a single strain. We have studied 81 independent natural isolates and 3 designated laboratory strains of Schizosaccharomyces pombe. Schizosaccharomyces pombe varies significantly in size but shows only limited variation in proliferation in different environments compared with Saccharomyces cerevisiae. Nucleotide diversity, π, at a near neutral site, the central core of the centromere of chromosome II is approximately 0.7%. Approximately 20% of the isolates showed karyotypic rearrangements as detected by pulsed field gel electrophoresis and filter hybridization analysis. One translocation, found in 6 different isolates, including the type strain, has a geographically widespread distribution and a unique haplotype and may be a marker of an incipient speciation event. All of the other translocations are unique. Exploitation of this karyotypic diversity may cast new light on both the biology of telomeres and centromeres and on isolating mechanisms in single-celled eukaryotes. PMID:22384373
Hodel-Christian, S L; Murray, B E
1992-01-01
The genetic determinant encoding gentamicin resistance (Gmr) on the beta-lactamase encoding plasmid pBEM10 of Enterococcus faecalis HH22 is carried on a transposon, termed Tn5281, that is highly related to the staphylococcal Gmr transposons Tn4001 found in Australian isolates of Staphylococcus aureus and Tn4031 found in United States isolates of Staphylococcus epidermidis. We have now studied plasmid DNA from Gmr strains of E. faecalis isolated from diverse geographical locations (Houston, Pennsylvania, Thailand, and Chile) by using restriction endonuclease analysis and DNA-DNA hybridization to determine whether other Gmr E. faecalis carry Tn5281 or a similar type of element. We also compared these enterococci to several United States isolates of Staphylococcus aureus with nonmobile Gmr determinants. Three E. faecalis isolates (from Houston and Chile) carried Tn5281-like elements, whereas two isolates (from Houston and Pennsylvania) had restriction endonuclease and DNA-DNA hybridization patterns more similar to those of the Tn4001-IS257 hybrid found in the nonmobile Gmr determinants in United States isolates of S. aureus. A strain from Thailand had a third pattern unrelated to either Tn5281 or the nonmobile Gmr determinants present in United States isolates of S. aureus. Our results demonstrate that there is both similarity and diversity between the Gmr determinant of strains of E. faecalis isolated in diverse geographic locations. Images PMID:1332593
Congpuong, Kanungnit; Sukaram, Rungniran; Prompan, Yuparat; Dornae, Aibteesam
2014-08-01
To study the genetic diversity at the msp-1, msp-2, and glurp genes of Plasmodium falciparum (P. falciparum) isolates from 3 endemic areas in Thailand: Tak, Kanchanaburi and Ranong provinces. A total of 144 P. falciparum isolates collected prior to treatment during January, 2012 to June, 2013 were genotyped. DNA was extracted; allele frequency and diversity of msp-1, msp-2, and glurp genes were investigated by nested polymerase chain reaction. P. falciparum isolates in this study had high rate of multiple genotypes infection (96.5%) with an overall mean multiplicity of infection of 3.21. The distribution of allelic families of msp-1 was significantly different among isolates from Tak, Kanchanaburi, and Ranong but not for the msp-2. K1 and MAD20 were the predominant allelic families at the msp-1 gene, whereas alleles belonging to 3D7 were more frequent at the msp-2 gene. The glurp gene had the least diverse alleles. Population structure of P. falciparum isolates from Tak and Ranong was quite similar as revealed by the presence of similar proportions of MAD20 and K1 alleles at msp-1 loci, 3D7 and FC27 alleles at msp-2 loci as well as comparable mean MOI. Isolates from Kanchanaburi had different structures; the most prevalent alleles were K1 and RO33. The present study shows that P. falciparum isolates from Tak and Ranong provinces had similar allelic pattern of msp-1 and msp-2 and diversity but different from Kanchanaburi isolates. These allelic variant profiles are valuable baseline data for future epidemiological study of malaria transmission and for continued monitoring of polymorphisms associated with antimalarial drug resistance in these areas.
ERIC Educational Resources Information Center
Braddock, Jomills Henry, II; Gonzalez, Amaryllis Del Carmen
2010-01-01
Background/Context: The United States is becoming increasingly racially and ethnically diverse, and increasingly racially isolated across race-ethnic boundaries. Researchers have argued that both diversity and racial isolation serve to undermine the social cohesion needed to bind American citizens to one another and to society at large. Focus of…
USDA-ARS?s Scientific Manuscript database
Genetically diverse Newcastle disease virus (NDV) isolates circulate and cause disease in different geographic locations of the world. The differences found on the genome of distinct NDV isolates have been used to classify different isolates into genetic groups called genotypes or lineages. Both l...
CPm gene diversity in field isolates of Citrus tristeza virus from Colombia.
Oliveros-Garay, Oscar Arturo; Martinez-Salazar, Natalhie; Torres-Ruiz, Yanneth; Acosta, Orlando
2009-01-01
The nucleotide sequence diversity of the CPm gene from 28 field isolates of Citrus tristeza virus (CTV) was assessed by SSCP and sequence analyses. These isolates showed two major shared haplotypes, which differed in distribution: A1 was the major haplotype in 23 isolates from different geographic regions, whereas R1 was found in isolates from a discrete region. Phylogenetic reconstruction clustered A1 within an independent group, while R1 was grouped with mild isolates T30 from Florida and T385 from Spain. Some isolates contained several minor haplotypes, which were very similar to, and associated with, the major haplotype.
Strydom, Elrea; Pietersen, Gerhard
2018-05-01
Infection of soybean by the plant cytorhabdovirus soybean blotchy mosaic virus (SbBMV) results in significant yield losses in the temperate, lower-lying soybean production regions of South Africa. A 277 bp portion of the RNA-dependent RNA polymerase gene of 66 SbBMV isolates from different: hosts, geographical locations in South Africa, and times of collection (spanning 16 years) were amplified by RT-PCR and sequenced to investigate the genetic diversity of isolates. Phylogenetic reconstruction revealed three main lineages, designated Groups A, B and C, with isolates grouping primarily according to geographic origin. Pairwise nucleotide identities ranged between 85.7% and 100% among all isolates, with isolates in Group A exhibiting the highest degree of sequence identity, and isolates of Groups A and B being more closely related to each other than to those in Group C. This is the first study investigating the genetic diversity of SbBMV.
Sambrano, Dilcia; Correa, Ricardo; Almengor, Pedro; Domínguez, Amada; Vega, Silvio; Goodridge, Amador
2014-08-01
Understanding Mycobacterium tuberculosis biodiversity and transmission is significant for tuberculosis control. This short report aimed to determine the genetic diversity of M. tuberculosis isolates from an outpatient clinic in Panama City. A total of 62 M. tuberculosis isolates were genotyped by 12 loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) and Spoligotyping. Forty-five (72.6%) of the isolates showed unique MIRU-VNTR genotypes, and 13 (21%) of the isolates were grouped into four clusters. Four isolates showed polyclonal MIRU-VNTR genotypes. The MIRU-VNTR Hunter-Gaston discriminatory index reached 0.988. The Spoligotyping analysis revealed 16 M. tuberculosis families, including Latin American-Mediterranean, Harlem, and Beijing. These findings suggest a wide genetic diversity of M. tuberculosis isolates at one outpatient clinic. A detailed molecular epidemiology survey is now warranted, especially following second massive immigration for local Panama Canal expansion activities. © The American Society of Tropical Medicine and Hygiene.
Pathogenic diversity amongst serotype C VGIII and VGIV Cryptococcus gattii isolates
Rodrigues, Jéssica; Fonseca, Fernanda L.; Schneider, Rafael O.; Godinho, Rodrigo M. da C.; Firacative, Carolina; Maszewska, Krystyna; Meyer, Wieland; Schrank, Augusto; Staats, Charley; Kmetzsch, Livia; Vainstein, Marilene H.; Rodrigues, Marcio L.
2015-01-01
Cryptococcus gattii is one of the causative agents of human cryptococcosis. Highly virulent strains of serotype B C. gattii have been studied in detail, but little information is available on the pathogenic properties of serotype C isolates. In this study, we analyzed pathogenic determinants in three serotype C C. gattii isolates (106.97, ATCC 24066 and WM 779). Isolate ATCC 24066 (molecular type VGIII) differed from isolates WM 779 and 106.97 (both VGIV) in capsule dimensions, expression of CAP genes, chitooligomer distribution, and induction of host chitinase activity. Isolate WM 779 was more efficient than the others in producing pigments and all three isolates had distinct patterns of reactivity with antibodies to glucuronoxylomannan. This great phenotypic diversity reflected in differential pathogenicity. VGIV isolates WM 779 and 106.97 were similar in their ability to cause lethality and produced higher pulmonary fungal burden in a murine model of cryptococcosis, while isolate ATCC 24066 (VGIII) was unable to reach the brain and caused reduced lethality in intranasally infected mice. These results demonstrate a high diversity in the pathogenic potential of isolates of C. gattii belonging to the molecular types VGIII and VGIV. PMID:26153364
Estrin, Michael A; Hussein, Islam T M; Puryear, Wendy B; Kuan, Anne C; Artim, Stephen C; Runstadler, Jonathan A
2018-01-01
Influenza A virus infections are important causes of morbidity and mortality worldwide, and currently available prevention and treatment methods are suboptimal. In recent years, genome-wide investigations have revealed numerous host factors that are required for influenza to successfully complete its life cycle. However, only a select, small number of influenza strains were evaluated using this platform, and there was considerable variation in the genes identified across different investigations. In an effort to develop a universally efficacious therapeutic strategy with limited potential for the emergence of resistance, this study was performed to investigate the effect of combinatorial RNA interference (RNAi) on inhibiting the replication of diverse influenza A virus subtypes and strains. Candidate genes were selected for targeting based on the results of multiple previous independent genome-wide studies. The effect of single and combinatorial RNAi on the replication of 12 diverse influenza A viruses, including three strains isolated from birds and one strain isolated from seals, was then evaluated in primary normal human bronchial epithelial cells. After excluding overly toxic siRNA, two siRNA combinations were identified that reduced mean viral replication by greater than 79 percent in all mammalian strains, and greater than 68 percent in all avian strains. Host-directed combinatorial RNAi effectively prevents growth of a broad range of influenza virus strains in vitro, and is a potential therapeutic candidate for further development and future in vivo studies.
Tseren-Ochir, Erdene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Jeong, Jei-Hyun; Jeong, Sol; Kim, Kyu-Jik; Lee, Ji-Ho; Kim, Jun-Beom; Kim, Yu-Jin; Lee, Sun-Hak; Kim, Jun-Young; Song, Chang-Seon
2018-07-01
In recent years, avian paramyxovirus type 4 (APMV-4) frequently isolated from wild and domestic bird populations particularly waterfowls worldwide. However, molecular characteristics and genetic diversity of APMV-4 are uncertain, owing to the limited availability of sequence information. A total of 11 APMV-4 strains from 9850 fecal, swab, and environmental samples were isolated during the surveillance program in wintering seasons of 2013-2017 in South Korea. We performed genetic characterization and phylogenetic analysis to investigate the genetic diversity and relatedness between isolates from the region. We report high APMV-4 genetic diversity (multiple genotypes and sub-genotypes) among wild bird and poultry populations in Korea and that the potential virus exchange occurs between neighboring countries via wild bird migration. Furthermore, our study results suggest the possibility of transcontinental transmission of APMV-4 between Asia and Europe. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhao, Wei; Wang, Xiao-Ru
2013-01-01
Southwest China is a biodiversity hotspot characterized by complex topography, heterogeneous regional climates and rich flora. The processes and driving factors underlying this hotspot remain to be explicitly tested across taxa to gain a general understanding of the evolution of biodiversity and speciation in the region. In this study, we examined the role played by historically neutral processes, geography and environment in producing the current genetic diversity of the subtropical pine Pinus yunnanensis. We used genetic and ecological methods to investigate the patterns of genetic differentiation and ecological niche divergence across the distribution range of this species. We found both continuous genetic differentiation over the majority of its range, and discrete isolated local clusters. The discrete differentiation between two genetic groups in the west and east peripheries is consistent with niche divergence and geographical isolation of these groups. In the central area of the species’ range, population structure was shaped mainly by neutral processes and geography rather than by ecological selection. These results show that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, and illustrate the importance of ecological factors in forming or maintaining genetic divergence across a complex landscape. Our findings differ from other phylogenetic studies that identified the historical drainage system in the region as the primary factor shaping population structure, and highlight the heterogeneous contributions that geography and environment have made to genetic diversity among taxa in southwest China. PMID:23840668
Wang, Baosheng; Mao, Jian-Feng; Zhao, Wei; Wang, Xiao-Ru
2013-01-01
Southwest China is a biodiversity hotspot characterized by complex topography, heterogeneous regional climates and rich flora. The processes and driving factors underlying this hotspot remain to be explicitly tested across taxa to gain a general understanding of the evolution of biodiversity and speciation in the region. In this study, we examined the role played by historically neutral processes, geography and environment in producing the current genetic diversity of the subtropical pine Pinus yunnanensis. We used genetic and ecological methods to investigate the patterns of genetic differentiation and ecological niche divergence across the distribution range of this species. We found both continuous genetic differentiation over the majority of its range, and discrete isolated local clusters. The discrete differentiation between two genetic groups in the west and east peripheries is consistent with niche divergence and geographical isolation of these groups. In the central area of the species' range, population structure was shaped mainly by neutral processes and geography rather than by ecological selection. These results show that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, and illustrate the importance of ecological factors in forming or maintaining genetic divergence across a complex landscape. Our findings differ from other phylogenetic studies that identified the historical drainage system in the region as the primary factor shaping population structure, and highlight the heterogeneous contributions that geography and environment have made to genetic diversity among taxa in southwest China.
Jing, Chan Jer; Seman, Idris Abu; Zakaria, Latiffah
2015-12-01
Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber.
Jing, Chan Jer; Seman, Idris Abu; Zakaria, Latiffah
2015-01-01
Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber. PMID:26868709
2018-01-01
The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the genomes of 60 diverse F. graminearum isolates. We also assembled the first pan-genome for F. graminearum to clarify population-level differences in gene content potentially contributing to pathogen diversity. Bayesian and phylogenomic analyses revealed genetic structure associated with isolates that produce the novel NX-2 mycotoxin, suggesting a North American population that has remained genetically distinct from other endemic and introduced cereal-infecting populations. Genome scans uncovered distinct signatures of selection within populations, focused in high diversity, frequently recombining regions. These patterns suggested selection for genomic divergence at the trichothecene toxin gene cluster and thirteen additional regions containing genes potentially involved in pathogen specialization. Gene content differences further distinguished populations, in that 121 genes showed population-specific patterns of conservation. Genes that differentiated populations had predicted functions related to pathogenesis, secondary metabolism and antagonistic interactions, though a subset had unique roles in temperature and light sensitivity. Our results indicated that F. graminearum populations are distinguished by dozens of genes with signatures of selection and an array of dispensable accessory genes, suggesting that FHB pathogen populations may be equipped with different traits to exploit the agroecosystem. These findings provide insights into the evolutionary processes and genomic features contributing to population divergence in plant pathogens, and highlight candidate genes for future functional studies of pathogen specialization across evolutionarily and ecologically diverse fungi. PMID:29584736
Djordjevic, S P; Smith, L A; Forbes, W A; Hornitzky, M A
1999-04-15
Melissococcus pluton, the causative agent of European foulbrood is an economically significant disease of honey bees (Apis mellifera) across most regions of the world and is prevalent throughout most states of Australia. 49 Isolates of M. pluton recovered from diseased colonies or honey samples in New South Wales, Queensland, South Australia, Tasmania and Victoria were compared using SDS-PAGE, Western immunoblotting and restriction endonuclease analyses. DNA profiles of all 49 geographically diverse isolates showed remarkably similar AluI profiles although four isolates (one each from Queensland, South Australia, New South Wales and Victoria) displayed minor profile variations compared to AluI patterns of all other isolates. DNA from a subset of the 49 Australian and three isolates from the United Kingdom were digested separately with the restriction endonucleases CfoI, RsaI and DraI. Restriction endonuclease fragment patterns generated using these enzymes were also similar although minor variations were noted. SDS-PAGE of whole cell proteins from 13 of the 49 isolates from different states of Australia, including the four isolates which displayed minor profile variations (AluI) produced indistinguishable patterns. Major immunoreactive proteins of approximate molecular masses of 21, 24, 28, 30, 36, 40, 44, 56, 60, 71, 79 and 95 kDa were observed in immunoblots of whole cell lysates of 22 of the 49 isolates and reacted with rabbit hyperimmune antibodies raised against M. pluton whole cells. Neither SDS-PAGE or immunoblotting was capable of distinguishing differences between geographically diverse isolates of M. pluton. Collectively these data confirm that Australian isolates of M. pluton are genetically homogeneous and that this species may be clonal. Plasmid DNA was not detected in whole cell DNA profiles of any isolate resolved using agarose gel electrophoresis.
Jami, Mansooreh; Ghanbari, Mahdi; Kneifel, Wolfgang; Domig, Konrad J
2015-06-01
The diversity of Actinobacteria isolated from the gut microbiota of two freshwater fish species namely Schizothorax zarudnyi and Schizocypris altidorsalis was investigated employing classical cultivation techniques, repetitive sequence-based PCR (rep-PCR), partial and full 16S rDNA sequencing followed by phylogenetic analysis. A total of 277 isolates were cultured by applying three different agar media. Based on rep-PCR profile analysis a subset of 33 strains was selected for further phylogenetic investigations, antimicrobial activity testing and diversity analysis of secondary-metabolite biosynthetic genes. The identification based on 16S rRNA gene sequencing revealed that the isolates belong to eight genera distributed among six families. At the family level, 72% of the 277 isolates belong to the family Streptomycetaceae. Among the non-streptomycetes group, the most dominant group could be allocated to the family of Pseudonocardiaceae followed by the members of Micromonosporaceae. Phylogenetic analysis clearly showed that many of the isolates in the genera Streptomyces, Saccharomonospora, Micromonospora, Nocardiopsis, Arthrobacter, Kocuria, Microbacterium and Agromyces formed a single and distinct cluster with the type strains. Notably, there is no report so far about the occurrence of these Actinobacteria in the microbiota of freshwater fish. Of the 33 isolates, all the strains exhibited antibacterial activity against a set of tested human and fish pathogenic bacteria. Then, to study their associated potential capacity to synthesize diverse bioactive natural products, diversity of genes associated with secondary-metabolite biosynthesis including PKS I, PKS II, NRPS, the enzyme PhzE of the phenazine pathways, the enzyme dTGD of 6-deoxyhexoses glycosylation pathway, the enzyme Halo of halogenation pathway and the enzyme CYP in polyene polyketide biosynthesis were investigated among the isolates. All the strains possess at least two types of the investigated biosynthetic genes, one-fourth of them harbours more than four. This study demonstrates the significant diversity of Actinobacteria in the fish gut microbiota and it's potential to produce biologically active compounds. Copyright © 2015 Elsevier GmbH. All rights reserved.
Diversity of spoilage fungi associated with various French dairy products.
Garnier, Lucille; Valence, Florence; Pawtowski, Audrey; Auhustsinava-Galerne, Lizaveta; Frotté, Nicolas; Baroncelli, Riccardo; Deniel, Franck; Coton, Emmanuel; Mounier, Jérôme
2017-01-16
Yeasts and molds are responsible for dairy product spoilage, resulting in significant food waste and economic losses. Yet, few studies have investigated the diversity of spoilage fungi encountered in dairy products. In the present study, 175 isolates corresponding to 105 from various spoiled dairy products and 70 originating from dairy production environments, were identified using sequencing of the ITS region, the partial β-tubulin, calmodulin and/or EFα genes, and the D1-D2 domain of the 26S rRNA gene for filamentous fungi and yeasts, respectively. Among the 41 species found in spoiled products, Penicillium commune and Penicillium bialowiezense were the most common filamentous fungi, representing around 10% each of total isolates while Meyerozyma guilliermondii and Trichosporon asahii were the most common yeasts (4.8% each of total isolates). Several species (e.g. Penicillium antarcticum, Penicillium salamii and Cladosporium phyllophilum) were identified for the first time in dairy products or their environment. In addition, numerous species were identified in both spoiled products and their corresponding dairy production environment suggesting that the latter acts as a primary source of contamination. Secondly, the resistance to chemical preservatives (sodium benzoate, calcium propionate, potassium sorbate and natamycin) of 10 fungal isolates representative of the observed biodiversity was also evaluated. Independently of the fungal species, natamycin had the lowest minimum inhibitory concentration (expressed in gram of preservative/l), followed by potassium sorbate, sodium benzoate and calcium propionate. In the tested conditions, Cladosporium halotolerans and Didymella pinodella were the most sensitive fungi while Yarrowia lipolytica and Candida parapsilosis were the most resistant towards the tested preservatives. This study provides interesting information on the occurrence of fungal contaminants in dairy products and environments that may help developing adequate strategies for fungal spoilage control. Copyright © 2016 Elsevier B.V. All rights reserved.
Rónai, Z; Eszterbauer, E; Csivincsik, Á; Guti, C F; Dencső, L; Jánosi, S; Dán, Á
2016-07-01
Besides Mycobacterium avium numerous nontuberculous Mycobacterium (NTM) species exist, which pose constant health risk to both humans and animals. The aim of our study was to identify non-avium NTM isolates from veterinary origin in Hungary, and to detect the occurrence of rifampicin resistance among them. Two hundred and twenty-five strains isolated between 2006 and 2013 from domestic and wild animals and veterinary important samples were identified on the basis of partial DNA sequences of different structural or coding genes, besides commercial kits and multiplex PCR. From 14 different sources, 28 NTM strains and 8 hitherto unidentified strain types were detected. Mycobacterium nonchromogenicum was the most frequently occurring strain (25·78%). Besides, new hosts and mycobacteria-related pathological symptoms were detected. Noticeable rifampicin resistance (42·76%) was found among 159 strains from six different host species. Furthermore, we described the problematics of strain-misidentifications using commercial kits. Our study identified the most common non-avium NTM strains in Hungary, and provided account of their occurrence, host range, and pathogenicity. The detected high rifampicin resistance among the strains isolated mainly from fallow and red deer clearly shows that more attention should be paid to the examination of wild animals especially to those ones which may have contact or shared territory with farmed animals. In domestic animal husbandry the maintenance of tuberculosis free status is of primary importance. As immunological cross-reactions due to NTM hamper the diagnosis of bovine tuberculosis, the precise identification of NTM strains would be essential in the veterinary diagnostics, especially for potentially zoonotic strains. This is the first study investigating the strain diversity of non-avium NTM in Hungary. © 2016 The Society for Applied Microbiology.
Isolation and identification of oligomers from partial degradation of lime fruit cutin.
Tian, Shiying; Fang, Xiuhua; Wang, Weimin; Yu, Bingwu; Cheng, Xiaofang; Qiu, Feng; Mort, Andrew J; Stark, Ruth E
2008-11-12
Complementary degradative treatments with low-temperature hydrofluoric acid and methanolic potassium hydroxide have been used to investigate the protective biopolymer cutin from Citrus aurantifolia (lime) fruits, augmenting prior enzymatic and chemical strategies to yield a more comprehensive view of its molecular architecture. Analysis of the resulting soluble oligomeric fragments with one- and two-dimensional NMR and MS methods identified a new dimer and three trimeric esters of primary alcohols based on 10,16-dihydroxyhexadecanoic acid and 10-oxo-16-hydroxyhexadecanoic acid units. Whereas only 10-oxo-16-hydroxyhexadecanoic acid units were found in the oligomers from hydrofluoric acid treatments, the dimer and trimer products isolated to date using diverse degradative methods included six of the seven possible stoichiometric ratios of monomer units. A novel glucoside-linked hydroxyfatty acid tetramer was also identified provisionally, suggesting that the cutin biopolymer can be bound covalently to the plant cell wall. Although the current findings suggest that the predominant molecular architecture of this protective polymer in lime fruits involves esters of primary and secondary alcohols based on long-chain hydroxyfatty acids, the possibility of additional cross-linking to enhance structural integrity is underscored by these and related findings of nonstandard cutin molecular architectures.
Kermani, Firoozeh; Shams-Ghahfarokhi, Masoomeh; Gholami-Shabani, Mohammadhassan; Razzaghi-Abyaneh, Mehdi
2016-06-01
In the present study, diversity and phylogenetic relationship of Aspergillus species isolated from Tehran air was studied using random amplified polymorphic DNA (RAPD)-polymerase chain reaction (RAPD-PCR). Thirty-eight Aspergillus isolates belonging to 12 species i.e. A. niger (28.94 %, 11 isolates), A. flavus (18.42 %, 7 isolates), A. tubingensis (13.15 %, 5 isolates), A. japonicus (10.52 %, 4 isolates), A. ochraceus (10.52 %, 4 isolates), and 2.63 %, 1 isolate from each A. nidulans, A. amstelodami, A. oryzae, A. terreus, A. versicolor, A. flavipes and A. fumigatus were obtained by settle plate method which they were distributed in 18 out of 22 sampling sites examined. Fungal DNA was extracted from cultured mycelia of all Aspergillus isolates on Sabouraud Dextrose Agar and used for amplification of gene fragments in RAPD-PCR using 11 primers. RAPD-PCR data was analyzed using UPGMA software. Resulting dendrogram of combined selected primers including PM1, OPW-04, OPW-05, P160, P54, P10 and OPA14 indicated the distribution of 12 Aspergillus species in 8 major clusters. The similarity coefficient of all 38 Aspergillus isolates ranged from 0.02 to 0.40 indicating a wide degree of similarities and differences within and between species. Taken together, our results showed that various Aspergillus species including some important human pathogenic ones exist in the outdoor air of Tehran by different extents in distribution and diversity and suggested inter- and intra-species genetic diversity among Aspergillus species by RAPD-PCR as a rapid, sensitive and reproducible method.
Martins, Marilena A; Pappalardo, Mara C S M; Melhem, Márcia S C; Pereira-Chioccola, Vera L
2007-11-01
Despite highly active anti-retroviral therapy, cryptococcal meningoencephalitis is the second most prevalent neurological disease in Brazilian AIDS patients, being frequently a defining condition with several episodes. As knowledge of Cryptococcus neoformans isolates in the same episode is critical for understanding why some patients develop several episodes, we investigated the genotype characteristics of C. neoformans isolates in two different situations. By pulsed field gel electrophoresis and random amplified polymorphic DNA analysis, 54 isolates from 12 patients with AIDS and cryptococcosis were analyzed. Group 1 comprised 39 isolates from nine patients with a single episode and hospitalization. Group 2 comprised 15 isolates from three patients with two episodes and hospitalizations. Except for three patients from group 1 probably infected with a single C. neoformans isolate, the other nine patients probably were infected with multiple isolates selected in different collection periods, or the infecting isolate might have underwent mutation to adapt and survive the host immune system and/or the antifungal therapy. However, the three patients from group 2 presented genetic diversity among isolates collected in both hospitalizations, possibly having hosted the initial isolate in both periods. These data, emphasize that Cryptococcus diversity in infection can contribute to strategies of treatment and prevention of cryptococcosis.
Omaleki, Lida; Browning, Glenn F; Barber, Stuart R; Allen, Joanne L; Srikumaran, Subramaniam; Markham, Philip F
2014-11-07
Species within the genus Mannheimia are among the most important causes of ovine mastitis. Isolates of these species can express leukotoxin A (LktA), a primary virulence factor of these bacteria. To examine the significance of variation in the LktA, the sequences of the lktA genes in a panel of isolates from cases of ovine mastitis were compared. The cross-neutralising capacities of rat antisera raised against LktA of one Mannheimia glucosida, one haemolytic Mannheimia ruminalis, and two Mannheimia haemolytica isolates were also examined to assess the effect that variation in the lktA gene can have on protective immunity against leukotoxins with differing sequences. The lktA nucleotide distance between the M. haemolytica isolates was greater than between the M. glucosida isolates, with the M. haemolytica isolates divisible into two groups based on their lktA sequences. Comparison of the topology of phylogenetic trees of 16S rDNA and lktA sequences revealed differences in the relationships between some isolates, suggesting horizontal gene transfer. Cross neutralisation data obtained with monospecific anti-LktA rat sera were used to derive antigenic similarity coefficients for LktA from the four Mannheimia species isolates. Similarity coefficients indicated that LktA of the two M. haemolytica isolates were least similar, while LktA from M. glucosida was most similar to those for one of the M. haemolytica isolates and the haemolytic M. ruminalis isolate. The results suggested that vaccination with the M. glucosida leukotoxin would generate the greatest cross-protection against ovine mastitis caused by Mannheimia species with these alleles. Copyright © 2014 Elsevier B.V. All rights reserved.
Bhagwat, Basdeo; Dickison, Virginia; Ding, Xinlun; Walker, Melanie; Bernardy, Michael; Bouthillier, Michel; Creelman, Alexa; DeYoung, Robyn; Li, Yinzi; Nie, Xianzhou; Wang, Aiming; Xiang, Yu; Sanfaçon, Hélène
2016-06-01
In this study, we report the genome sequence of five isolates of strawberry mottle virus (family Secoviridae, order Picornavirales) from strawberry field samples with decline symptoms collected in Eastern Canada. The Canadian isolates differed from the previously characterized European isolate 1134 in that they had a longer RNA2, resulting in a 239-amino-acid extension of the C-terminal region of the polyprotein. Sequence analysis suggests that reassortment and recombination occurred among the isolates. Phylogenetic analysis revealed that the Canadian isolates are diverse, grouping in two separate branches along with isolates from Europe and the Americas.
Lee, Jeeyeon; Jeong, Jiyeon; Lee, Heeyoung; Ha, Jimyeong; Kim, Sejeong; Choi, Yukyung; Oh, Hyemin; Seo, Kunho; Yoon, Yohan; Lee, Soomin
2017-11-17
This study examined antibiotic susceptibility, genetic diversity, and characteristics of virulence genes in Campylobacter isolates from poultry. Chicken ( n = 152) and duck ( n = 154) samples were collected from 18 wet markets in Korea. Campylobacter spp. isolated from the carcasses were identified by PCR. The isolated colonies were analyzed for antibiotic susceptibility to chloramphenicol, amikacin, erythromycin, tetracycline, ciprofloxacin, nalidixic acid, and enrofloxacin. The isolates were also used to analyze genetic diversity using the DiversiLab TM system and were tested for the presence of cytolethal distending toxin ( cdt ) genes. Campylobacter spp. were isolated from 45 poultry samples out of 306 poultry samples (14.7%) and the average levels of Campylobacter contamination were 22.0 CFU/g and 366.1 CFU/g in chicken and duck samples, respectively. Moreover, more than 90% of the isolates showed resistance to nalidixic acid and ciprofloxacin. Genetic correlation analysis showed greater than 95% similarity between 84.4% of the isolates, and three cdt genes ( cdtA , cdtB , and cdtC ) were present in 71.1% of Campylobacter isolates. These results indicate that Campylobacter contamination should be decreased to prevent and treat Campylobacter foodborne illness.
Molecular diversity of Rice grassy stunt virus in Vietnam.
Ta, Hoang-Anh; Nguyen, Doan-Phuong; Causse, Sandrine; Nguyen, Thanh-Duc; Ngo, Vinh-Vien; Hébrard, Eugénie
2013-04-01
Rice grassy stunt virus (RGSV, Tenuivirus) recently emerged on rice in Vietnam, causing high yield losses during 2006-2009. The genetic diversity of RGSV is poorly documented. In this study, the two genes encoded by each ambisense segment RNA3 and RNA5 of RGSV isolates from six provinces of South Vietnam were sequenced. P3 and Pc3 (RNA3) have unknown function, P5 (RNA5) encodes the putative silencing suppressor, and Pc5 (RNA5) encodes the nucleocapsid protein (N). The sequences of 17 Vietnamese isolates were compared with reference isolates from North and South Philippines. The average nucleotide diversity among the isolates was low. We confirmed a higher variability of RNA3 than RNA5 and Pc3 than P3. No relationships between the genetic diversity and the geographic distribution of RGSV isolates could be ascertained, likely because of the long-distance migration of the insect vector. This data will contribute to a better understanding on the RGSV epidemiology in South Vietnam, a prerequisite for further management of the disease and rice breeding for resistance.
Genetic diversity of polysporic isolates of Moniliophthora perniciosa (Tricholomataceae).
Ferreira, L F R; Duarte, K M R; Gomes, L H; Carvalho, R S; Leal Junior, G A; Aguiar, M M; Armas, R D; Tavares, F C A
2012-08-16
The causal agent of witches' broom disease, Moniliophthora perniciosa is a hemibiotrophic and endemic fungus of the Amazon basin and the most important cocoa disease in Brazil. The purpose of this study was to analyze the genetic diversity of polysporic isolates of M. perniciosa to evaluate the adaptation of the pathogen from different Brazilian regions and its association with different hosts. Polysporic isolates obtained previously in potato dextrose agar cultures of M. perniciosa from different Brazilian states and different hosts (Theobroma cacao, Solanum cernuum, S. paniculatum, S. lycocarpum, Solanum sp, and others) were analyzed by somatic compatibility grouping where the mycelium interactions were distinguished after 4-8 weeks of confrontation between the different isolates of M. perniciosa based on the precipitation line in the transition zone and by protein electrophoresis through SDS-PAGE. The diversity of polysporic isolates of M. perniciosa was grouped according to geographic proximity and respective hosts. The great genetic diversity of M. perniciosa strains from different Brazilian states and hosts favored adaptation in unusual environments and dissemination at long distances generating new biotypes.
Daâssi, Dalel; Zouari-Mechichi, Héla; Belbahri, Lassaad; Barriuso, Jorge; Martínez, María Jesús; Nasri, Moncef; Mechichi, Tahar
2016-06-01
In this study, 51 fungal strains were isolated from decaying wood samples collected from forests located in the Northwest of Tunisia in the vicinity of Bousalem, Ain Draham and Kef. Phylogenetic analysis based on the sequences of the internal transcribed spacers of the ribosomal DNA showed a high diversity among the 51 fungal isolates collection. Representatives of 25 genera and 29 species were identified, most of which were members of one of the following phyla (Ascomycota, Basidiomycota and Zygomycota). In addition to the phylogenetic diversity, a high diversity of secreted enzyme profiles was also detected among the fungal isolates. All fungal strains produced at least one of the following enzymes: laccase, cellulase, protease and/or lipase.
Plant Biodiversity Change Across Scales During the Anthropocene.
Vellend, Mark; Baeten, Lander; Becker-Scarpitta, Antoine; Boucher-Lalonde, Véronique; McCune, Jenny L; Messier, Julie; Myers-Smith, Isla H; Sax, Dov F
2017-04-28
Plant communities have undergone dramatic changes in recent centuries, although not all such changes fit with the dominant biodiversity-crisis narrative used to describe them. At the global scale, future declines in plant species diversity are highly likely given habitat conversion in the tropics, although few extinctions have been documented for the Anthropocene to date (<0.1%). Nonnative species introductions have greatly increased plant species richness in many regions of the world at the same time that they have led to the creation of new hybrid polyploid species by bringing previously isolated congeners into close contact. At the local scale, conversion of primary vegetation to agriculture has decreased plant diversity, whereas other drivers of change-e.g., climate warming, habitat fragmentation, and nitrogen deposition-have highly context-dependent effects, resulting in a distribution of temporal trends with a mean close to zero. These results prompt a reassessment of how conservation goals are defined and justified.
Ruell, E.W.; Riley, S.P.D.; Douglas, M.R.; Antolin, M.F.; Pollinger, J.R.; Tracey, J.A.; Lyren, L.M.; Boydston, E.E.; Fisher, R.N.; Crooks, K.R.
2012-01-01
Although habitat fragmentation is recognized as a primary threat to biodiversity, the effects of urban development on genetic population structure vary among species and landscapes and are not yet well understood. Here we use non-invasive genetic sampling to compare the effects of fragmentation by major roads and urban development on levels of dispersal, genetic diversity, and relatedness between paired bobcat populations in replicate landscapes in coastal southern California. We hypothesized that bobcat populations in sites surrounded by urbanization would experience reduced functional connectivity relative to less isolated nearby populations. Our results show that bobcat genetic population structure is affected by roads and development but not always as predicted by the degree that these landscape features surround fragments. Instead, we suggest that urban development may affect functional connectivity between bobcat populations more by limiting the number and genetic diversity of source populations of migrants than by creating impermeable barriers to dispersal.
A novel method to scale up fungal endophyte isolations
USDA-ARS?s Scientific Manuscript database
Estimations of species diversity are influenced by sampling intensity which in turn is influenced by methodology. For fungal endophyte diversity studies, the methodology includes surface-sterilization prior to isolation of endophytes. Surface-sterilization is an essential component of fungal endophy...
Davis, Gregg S; Patel, May; Hammond, James; Zhang, Lixin; Dawid, Suzanne; Marrs, Carl F; Gilsdorf, Janet R
2014-12-01
Nontypeable Haemophilus influenzae (NTHi) are Gram-negative coccobacilli that colonize the human pharynx, their only known natural reservoir. Adherence to the host epithelium facilitates NTHi colonization and marks one of the first steps in NTHi pathogenesis. Epithelial cell attachment is mediated, in part, by a pair of high molecular weight (HMW) adhesins that are highly immunogenic, antigenically diverse, and display a wide range of amino acid diversity both within and between isolates. In this study, the prevalence of hmwA, which encodes the HMW adhesin, was determined for a collection of 170 NTHi isolates recovered from the middle ears of children with otitis media (OM isolates) or throats or nasopharynges of healthy children (commensal isolates) from Finland, Israel, and the U.S. Overall, hmwA was detected in 61% of NTHi isolates and was significantly more prevalent (P=0.004) among OM isolates than among commensal isolates; the prevalence ratio comparing hmwA prevalence among ear isolates with that of commensal isolates was 1.47 (95% CI (1.12, 1.92)). Ninety-five percent (98/103) of the hmwA-positive NTHi isolates possessed two hmw loci. To advance our understanding of hmwA binding sequence diversity, we determined the DNA sequence of the hmwA binding region of 33 isolates from this collection. The average amino acid identity across all hmwA sequences was 62%. Phylogenetic analyses of the hmwA binding revealed four distinct sequence clusters, and the majority of hmwA sequences (83%) belonged to one of two dominant sequence clusters. hmwA sequences did not cluster by chromosomal location, geographic region, or disease status. Copyright © 2014 Elsevier B.V. All rights reserved.
Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn M; Johnson, Courtney M; Martin, Stanton L; Land, Miriam L; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A
2012-11-01
To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated.
Diversity of Salmonella isolates from central Florida surface waters.
McEgan, Rachel; Chandler, Jeffrey C; Goodridge, Lawrence D; Danyluk, Michelle D
2014-11-01
Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608-3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:-. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Genotype diversity of Escherichia coli isolates in natural waters determined by PFGE and ERIC-PCR.
Casarez, Elizabeth A; Pillai, Suresh D; Di Giovanni, George D
2007-08-01
Most library-dependent bacterial source tracking studies using Escherichia coli (E. coli) have focused on strain diversity of isolates obtained from known human and animal faecal sources for library development. In contrast, this study evaluated the genotype variation of E. coli isolated from natural surface water using pulsed field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus sequence polymerase chain reaction (ERIC-PCR) to better understand these naturally occurring populations. A total of 650 water samples were collected over a nine month period from eleven sampling stations from Lake Waco and Belton Lake in Central Texas. Of the 650 water samples collected, 412 were positive for E. coli, yielding a total of 631 E. coli isolates (1-12 isolates collected per sample). PFGE and ERIC-PCR patterns were successfully generated for 555 isolates and were compared using the curve-based Pearson's product-moment correlation coefficient. The 555 E. coli isolates represented 461 PFGE genotypes, with 84% (386/461) of the genotypes being represented by individual isolates. The remaining 75 genotypes were represented by 2-5 isolates each. Using ERIC-PCR, the 555 E. coli isolates represented 175 genotypes, with 63% (109/175) of the genotypes being represented by individual isolates. In contrast to the PFGE results, two ERIC-PCR genotypes represented 37% of the E. coli isolates, (83 and 124 isolates, respectively), and were found throughout the watersheds both spatially and temporally. Based on the PFGE genotype diversity of water isolates, there is little evidence that a small number of environmentally-adapted E. coli represent dominant populations in the studied waterbodies. However, with the lower discriminatory power technique ERIC-PCR, an opposing conclusion might have been drawn. These results emphasize the importance of considering the resolving power of the source tracking technique being used when assessing strain diversity and geographical stability.
Diversity of Salmonella Isolates from Central Florida Surface Waters
McEgan, Rachel; Chandler, Jeffrey C.; Goodridge, Lawrence D.
2014-01-01
Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608–3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:−. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype. PMID:25172861
Ako-Nai, Kwashie Ajibade; Ebhodaghe, Blessing Itohan; Osho, Patrick; Adejuyigbe, Ebun; Adeyemi, Folasade Mubiat; Kassim, Olakunle O
2014-12-15
This study examined HIV and malaria co-infection as a risk factor for urinary tract infections (UTIs) in pregnancy. The study group included 74 pregnant women, 20 to 42 years of age, who attended the antenatal clinic at the Specialist Hospital at Akure, Ondo State, Nigeria. Forty-four of the pregnant women were either HIV seropositive with malaria infection (HIV+Mal+) or HIV seropositive without malaria (HIV+Mal-). The remaining thirty pregnant women served as controls and included women HIV seronegative but with malaria (HIV-Mal+) and women HIV seronegative without malaria. UTI was indicated by a bacterial colony count of greater than 10⁵/mL of urine, using cysteine lactose electrolyte deficient medium (CLED) as the primary isolation medium. Bacterial isolates were characterized using convectional bacteriological methods, and antibiotics sensitivity tests were carried out using the disk diffusion method. A total of 246 bacterial isolates were recovered from the cultures, with a mean of 3.53 isolates per subject. Women who were HIV+Mal+ had the most diverse group of bacterial isolates and the highest frequency of UTIs. The bacterial isolates from the HIV+Mal+ women also showed the highest degree of antibiotic resistance. While pregnancy and HIV infection may each represent a risk factor for UTI, HIV and malaria co-infection may increase its frequency in pregnancy. The higher frequency of multiple antibiotic resistance observed among the isolates, particularly isolates from HIV+Mal+ subjects, poses a serious public health concern as these strains may aggravate the prognosis of both UTI and HIV infection.
Characterization of Legionella Species from Watersheds in British Columbia, Canada
Peabody, Michael A.; Caravas, Jason A.; Morrison, Shatavia S.; Mercante, Jeffrey W.; Prystajecky, Natalie A.; Raphael, Brian H.
2017-01-01
ABSTRACT Legionella spp. present in some human-made water systems can cause Legionnaires’ disease in susceptible individuals. Although legionellae have been isolated from the natural environment, variations in the organism’s abundance over time and its relationship to aquatic microbiota are poorly understood. Here, we investigated the presence and diversity of legionellae through 16S rRNA gene amplicon and metagenomic sequencing of DNA from isolates collected from seven sites in three watersheds with varied land uses over a period of 1 year. Legionella spp. were found in all watersheds and sampling sites, comprising up to 2.1% of the bacterial community composition. The relative abundance of Legionella tended to be higher in pristine sites than in sites affected by agricultural activity. The relative abundance levels of Amoebozoa, some of which are natural hosts of legionellae, were similarly higher in pristine sites. Compared to other bacterial genera detected, Legionella had both the highest richness and highest alpha diversity. Our findings indicate that a highly diverse population of legionellae may be found in a variety of natural aquatic sources. Further characterization of these diverse natural populations of Legionella will help inform prevention and control efforts aimed at reducing the risk of Legionella colonization of built environments, which could ultimately decrease the risk of human disease. IMPORTANCE Many species of Legionella can cause Legionnaires’ disease, a significant cause of bacterial pneumonia. Legionella in human-made water systems such as cooling towers and building plumbing systems are the primary sources of Legionnaires’ disease outbreaks. In this temporal study of natural aquatic environments, Legionella relative abundance was shown to vary in watersheds associated with different land uses. Analysis of the Legionella sequences detected at these sites revealed highly diverse populations that included potentially novel Legionella species. These findings have important implications for understanding the ecology of Legionella and control measures for this pathogen that are aimed at reducing human disease. PMID:28776042
de Lucio, Aida; Amor-Aramendía, Aranzazu; Bailo, Begoña; Saugar, José M.; Anegagrie, Melaku; Arroyo, Ana; López-Quintana, Beatriz; Zewdie, Derjew; Ayehubizu, Zimmam; Yizengaw, Endalew; Abera, Bayeh; Yimer, Mulat; Mulu, Wondemagen; Hailu, Tadesse; Herrador, Zaida; Fuentes, Isabel; Carmena, David
2016-01-01
Backgroud Giardia duodenalis and Cryptosporidium spp. are enteric protozoan causing gastrointestinal illness in humans and animals. Giardiasis and cryptosporidiosis are not formally considered as neglected tropical diseases, but belong to the group of poverty-related infectious diseases that impair the development and socio-economic potential of infected individuals in developing countries. Methods We report here the prevalence and genetic diversity of G. duodenalis and Cryptosporidium spp. in children attending rural primary schools in the Bahir Dar district of the Amhara Region, Ethiopia. Stool samples were collected from 393 children and analysed by molecular methods. G. duodenalis was detected by real-time PCR, and the assemblages and sub-assemblages were determined by multilocus sequence-based genotyping of the glutamate dehydrogenase and β-giardin genes of the parasite. Detection and identification of Cryptosporidium species was carried out by sequencing of a partial fragment of the small-subunit ribosomal RNA gene. Principal Findings The PCR-based prevalences of G. duodenalis and Cryptosporidium spp. were 55.0% (216/393) and 4.6% (18/393), respectively. A total of 78 G. duodenalis isolates were successfully characterized, revealing the presence of sub-assemblages AII (10.3%), BIII (28.2%), and BIV (32.0%). Discordant typing results AII/AIII and BIII/BIV were identified in 7.7% and 15.4% of the isolates, respectively. An additional five (6.4%) isolates were assigned to assemblage B. No mixed infections of assemblages A+B were found. Extensive genetic variation at the nucleotide level was observed within assemblage B (but no within assemblage A), resulting in the identification of a large number of sub-types. Cryptosporidium diversity was demonstrated by the occurrence of C. hominis, C. parvum, and C. viatorum in the population under study. Conclusions Our data suggest an epidemiological scenario with an elevated transmission intensity of a wide range of G. duodenalis genetic variants. Importantly, the elevated degree of genetic diversity observed within assemblage B is consistent with the occurrence of intra-assemblage recombination in G. duodenalis. PMID:27466809
[Frequency of Candida in root canals of teeth with primary and persistent endodontic infections].
Bernal-Treviño, Angel; González-Amaro, Ana María; Méndez González, Verónica; Pozos-Guillen, Amaury
Microbiological identification in endodontic infections has focused mainly on bacteria without giving much attention to yeasts, which, due to their virulence factors, can affect the outcomes of root canal treatment. To determine the frequency of Candida in anaerobic conditions in root canals with primary and persistent endodontic infection, as well as to evaluate a microbiological sampling method using aspiration compared to the traditional absorption method with paper points. Fifty microbiological samples were obtained from teeth of 47 patients requiring endodontic treatments, due to either primary or persistent infections. Two microbiological sampling methods were used: an aspiration method, and the traditional paper point absorption method. In each of these methods, two types of medium were used (M 1 -M 4 ). Samples were cultured under anaerobic conditions until reaching 0.5 McFarland turbidity, and then inoculated on Sabouraud dextrose, as well as on anaerobic enriched blood agar plates. Macroscopic and microscopic observations of the colonies were performed. The germ-tube test, growth on CHROMagar, and biochemical identification were performed on the isolated yeasts. Fungal infection was found in 18 (36%) samples out of the 50 teeth evaluated. In the 18 samples positive for fungal infection, 15 out of 36 (41.6%) teeth were taken from a primary infection, and 3 out of 14 (21.4%) from a persistent infection. The aspiration method using Sabouraud dextrose medium recovered a greater diversity of species. Yeasts frequency was higher in teeth with primary infections compared to teeth with persistent infections. The predominant yeast species was Candida albicans. The aspirating sampling method was more efficient in the recovery of Candida isolates than the traditional absorption method. Copyright © 2018 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
Singh, A; Yi, Y; Isaacs, S N; Kolson, D L; Collman, R G
2001-07-01
There is considerable diversity among HIV-1 strains in terms of their ability to use entry coreceptors on macrophages, especially CXCR4, but it is not known whether virus-specific differences exist among related members of a viral swarm. Defining how entry coreceptors on primary target cells are utilized by the spectrum of HIV-1 variants that emerge in vivo is important for understanding the relationship between coreceptor selectivity and pathogenesis. HIV-1 89.6(PI) is a dual-tropic primary isolate, and the prototype 89.6-cloned R5X4 Env uses both CXCR4 and CCR5 on macrophages. We generated a panel of env clones from the 89.6(PI) quasispecies and found a mixture of R5, R5X4, and X4 variants on the basis of fusion and infection of coreceptor-transfected cell lines. Here we address the use of macrophage coreceptors by these related Envs by analyzing fusion and infection of primary monocyte-derived macrophages mediated specifically through each coreceptor. All R5X4 Envs utilized both CXCR4 and CCR5 on macrophages, while R5 variants used CCR5 only. One variant characterized in cell lines as X4 used both CXCR4 and CCR5 on macrophages. No Env variant fused with macrophages through alternative coreceptor pathways. Thus, there was heterogeneity in coreceptor use among the related Env variants, but use of each coreceptor specifically in macrophages was consistent among members of the viral swarm. Coreceptor use in transfected cells generally predicted use in primary macrophages, although for some Envs macrophages may be a more sensitive indicator of CCR5 use than transfected cell lines.
Lucero, Mary E.; Unc, Adrian; Cooke, Peter; Dowd, Scot; Sun, Shulei
2011-01-01
Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities. PMID:21437280
Ghosh, Suchismita; Ayayee, Paul A; Valverde-Barrantes, Oscar J; Blackwood, Christopher B; Royer, Todd V; Leff, Laura G
2017-04-04
The nitrogen (N) cycle consists of complex microbe-mediated transformations driven by a variety of factors, including diversity and concentrations of N compounds. In this study, we examined taxonomic diversity and N substrate utilization by heterotrophic bacteria isolated from streams under complex and simple N-enrichment conditions. Diversity estimates differed among isolates from the enrichments, but no significant composition were detected. Substrate utilization and substrate range of bacterial assemblages differed within and among enrichments types, and not simply between simple and complex N-enrichments. N substrate use patterns differed between isolates from some complex and simple N-enrichments while others were unexpectedly similar. Taxonomic composition of isolates did not differ among enrichments and was unrelated to N use suggesting strong functional redundancy. Ultimately, our results imply that the available N pool influences physiology and selects for bacteria with various abilities that are unrelated to their taxonomic affiliation.
HIV-1 sequence variation between isolates from mother-infant transmission pairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wike, C.M.; Daniels, M.R.; Furtado, M.
1991-12-31
To examine the sequence diversity of human immunodeficiency virus type 1 (HIV-1) between known transmission sets, sequences from the V3 and V4-V5 region of the env gene from 4 mother-infant pairs were analyzed. The mean interpatient sequence variation between isolates from linked mother-infant pairs was comparable to the sequence diversity found between isolates from other close contacts. The mean intrapatient variation was significantly less in the infants` isolates then the isolates from both their mothers and other characterized intrapatient sequence sets. In addition, a distinct and characteristic difference in the glycosylation pattern preceding the V3 loop was found between eachmore » linked transmission pair. These findings indicate that selection of specific genotypic variants, which may play a role in some direct transmission sets, and the duration of infection are important factors in the degree of diversity seen between the sequence sets.« less
USDA-ARS?s Scientific Manuscript database
Streptococcus agalactiae, Lancefield group B Streptococcus (GBS), is recognized for causing cattle mastitis, human neonatal meningitis, and fish meningo-encephalitis. We investigated the genomic diversity of GBS isolates from different phylogenetic hosts and geographical regions using serological t...
Mahjoubi, Mouna; Jaouani, Atef; Guesmi, Amel; Ben Amor, Sonia; Jouini, Ahlem; Cherif, Hanen; Najjari, Afef; Boudabous, Abdellatif; Koubaa, Nedra; Cherif, Ameur
2013-09-25
Petroleum hydrocarbons are important energy resources used by industry and in our daily life, whose production contributes highly to environmental pollution. To control such risk, bioremediation constitutes an environmentally friendly alternative technology that has been established and applied. It constitutes the primary mechanism for the elimination of hydrocarbons from contaminated sites by natural existing populations of microorganisms. In this work, a collection of 125 strains, adapted to grow on minimal medium supplemented with crude oil, was obtained from contaminated sediments and seawater from a refinery harbor of the Bizerte coast in the North of Tunisia. The diversity of the bacterial collection was analyzed by amplification of the internal transcribed spacers between the 16S and the 23S rRNA genes (ITS-PCR) and by 16S rRNA sequencing. A total of 36 distinct ITS haplotypes were detected on agarose matrix. Partial 16S rRNA gene sequencing performed on 50 isolates showed high level of identity with known sequences. Strains were affiliated to Ochrabactrum, Sphingobium, Acinetobacter, Gordonia, Microbacterium, Brevundimonas, Novosphingobium, Stenotrophomonas, Luteibacter, Rhodococcus, Agrobacterium, Achromobacter, Bacilllus, Kocuria and Pseudomonas genera. Acinetobacter and Stenotrophomons were found to be the most abundant species characterized by a marked microdiversity as shown through ITS typing. Culture-independent approach (DGGE) showed high diversity in the microbial community in all the studied samples with a clear correlation with the hydrocarbon pollution rate. Sequencing of the DGGE bands revealed a high proportion of Proteobacteria represented by the Alpha and Gamma subclasses. The predominant bacterial detected by both dependent and independent approaches were the Proteobacteria. The biotechnological potential of the isolates revealed a significant production of biosurfactants with important emulsification activities useful in bioremediation. The highest emulsification activity was detected in Pseudomonas geniculata with 52.77% of emulsification. Our overall results suggest that the obtained bacterial isolates may constitute potential candidates for bioremediation and can be useful for biotechnological applications. Copyright © 2013 Elsevier B.V. All rights reserved.
[Diversity of cultivable actinobacteria in Xinghu wetland sediments].
Xue, Dong; Zhao, Guozhen; Yao, Qing; Zhao, Haiquan; Zhu, Honghui
2015-11-04
To study the diversity of cultivable actinobacteria in Xinghu wetland and screen actinobacteria with a pharmaceutical potential for producing biologically active secondary metabolites. We studied the diversity of actinobacteria isolated from Xinghu wetland by using different selective isolation media and methods. The high bioactive actinobacteria were identified and further investigated for the presence of polyketide synthases (PKS-I, PKS-II), nonribosomal peptide synthetases (NRPS), 3-amino-5-hydroxybenzoic acid synthases (AHBA) and 3-hydroxy-3-methylglutaryl Coenzyme A (HMG CoA) sequences by specific amplification. More than 300 actinobacteria were isolated, and 135 isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The isolates belonged to 7 orders, 10 families, 13 genera, Streptomyces was the most frequently isolated genus, followed by the genera Micromonospora and Nocardia. Twenty-four isolates showed high activity against Staphylococcus aureus and Escherichia coli, but there no strain displaying antagonistic activity against Salmonella sp. High frequencies of positive PCR amplification were obtained for PKS-I (16.7%, 4/24), PKS-II (62.5%,15/24), NRPS (16.7%, 4/24), HMG CoA (29.2%, 7/24) and AHBA (12.5%, 3/24) biosynthetic systems. High Performance Liquid Chromatography showed that strain XD7, XD114, XD128 produce lots of secondary metabolites. This study indicated that actinobacteria isolated from Xinghu wetland are abundant and have potentially beneficial and diverse bioactivities which should be pursued for their biotechnical promise.
Conceição, Natália; da Silva, Lucas Emanuel Pinheiro; Darini, Ana Lúcia da Costa; Pitondo-Silva, André; de Oliveira, Adriana Gonçalves
2014-12-01
Despite the spread of penicillin-resistant, ampicillin-susceptible Enterococcus faecalis (PRASEF) isolates in diverse countries, the mechanisms leading to this unusual resistance phenotype have not yet been investigated. The aim of this study was to evaluate whether polymorphism in the pbp4 gene is associated with penicillin resistance in PRASEF isolates and to determine their genetic diversity. E. faecalis isolates were recovered from different clinical specimens of hospitalized patients from February 2006 to June 2010. The β-lactam minimal inhibitory concentrations (MICs) were determined by E-test®. The PCR-amplified pbp4 gene was sequenced with an automated sequencer. The genetic diversities of the isolates were established by PFGE (pulsed-field gel electrophoresis) and MLST (multilocus sequencing typing). Seventeen non-producing β-lactamase PRASEF and 10 penicillin-susceptible, ampicillin-susceptible E. faecalis (PSASEF) strains were analyzed. A single-amino-acid substitution (Asp-573→Glu) in the penicillin-binding domain was significantly found in all PRASEF isolates by sequencing of the pbp4 gene but not in the penicillin-susceptible isolates. In contrast to the PSASEF isolates, a majority of the PRASEFs had similar PFGE profiles. Six representative PRASEF isolates were resolved by MLST into ST9 and ST524 and belong to the globally dispersed clonal complex 9 (CC9). In conclusion, it appears quite likely that the amino acid alteration (Asp-573→Glu) found in the PBP4 of the Brazilian PRASEF isolates may account for their reduced susceptibility to penicillin, although other resistance mechanisms remain to be investigated. Copyright © 2014 Elsevier B.V. All rights reserved.
Rangel-Gamboa, Lucia; Martinez-Hernandez, Fernando; Maravilla, Pablo; Flisser, Ana
2018-02-02
Sporotrichosis is a subcutaneous mycosis that is caused by diverse species of Sporothrix. High levels of genetic diversity in Sporothrix isolates have been reported, but few population genetics analyses have been documented. To analyse the genetic variability and population genetics relations of Sporothrix schenckii Mexican clinical isolates and to compare them with other reported isolates. We studied the partial sequences of calmodulin and calcium/calmodulin-dependent kinase genes in 24 isolates; 22 from Mexico, one from Colombia, and one ATCC ® 6331™; the latter was used as a positive control. In total, 24 isolates were analysed. Phylogenetic, haplotype and population genetic analyses were performed with 24 sequences obtained by us and 345 sequences obtained from GenBank. The frequency of S. schenckii sensu stricto was 81% in the 22 Mexican isolates, while the remaining 19% were Sporothrix globosa. Mexican S. schenckii sensu stricto had high genetic diversity and was related to isolates from South America. In contrast, S. globosa showed one haplotype related to isolates from Asia, Brazil, Spain and the USA. In S. schenckii sensu stricto, S. brasiliensis and S. globosa, haplotype polymorphism (θ) values were higher than the nucleotide diversity data (π). In addition, Tajima's D plus Fu and Li's tests analyses displayed negative values, suggesting directional selection and arguing against the model of neutral evolution in these populations. In addition, analyses showed that calcium/calmodulin-dependent kinase was a suitable genetic marker to discriminate between common Sporothrix species. © 2018 Blackwell Verlag GmbH.
Genetic environment of metallo-β-lactamase genes in Pseudomonas aeruginosa isolates from the UK.
Wright, Laura L; Turton, Jane F; Hopkins, Katie L; Livermore, David M; Woodford, Neil
2015-12-01
We sought to characterize the genetic environment of blaVIM and blaIMP genes in Pseudomonas aeruginosa isolates from the UK; these included members of six previously described prevalent complexes, A-F, which correspond to international 'high-risk clones', along with diverse strains. Metallo-β-lactamase (MBL)-encoding class 1 integrons were amplified by PCR from 218 P. aeruginosa isolates producing VIM-type (n = 196) or IMP-type (n = 22) enzymes, referred from UK hospital laboratories between 2003 and 2012. The variable regions of selected integrons were sequenced using a primer walking method. One-hundred-and-nineteen isolates had an MBL-encoding integron with the 3' conserved sequence (3'CS), 65 had Tn5090-like 3' regions and 17 had the sul1 gene, but lacked the qacEΔ1 gene; the 3' region could not be amplified using any primer combinations for the remaining 17 isolates. Six integron profiles were each seen in more than five isolates. Predominant integron types were seen amongst isolates belonging to STs 111, 233, 654/964 and 773 (complexes A, C, D and F, respectively), whereas diverse integron profiles were seen in isolates belonging to ST235 (complex B) and ST357 (complex E). In UK P. aeruginosa isolates, MBL genes occur in diverse class 1 integron structures, though commonly with 3' regions containing the classical 3'CS or Tn5090-like regions. Four of the six main clonal complexes, referred from multiple laboratories, carried a predominant integron type, whereas the remaining two had more diverse types. © Crown copyright 2015.
PCR analysis of the viral complex associated with La France disease of Agaricus bisporus.
Romaine, C P; Schlagnhaufer, B
1995-01-01
Reverse transcription PCR analysis was used to investigate the involvement of two RNA-genome viruses, La France isometric virus (LIV) and mushroom bacilliform virus (MBV), in the etiology of La France disease of the cultivated mushroom Agaricus bisporus. Reverse transcription PCR amplification of sequences targeted to the genomes of LIV and MBV, with a sensitivity of detection of < 10 fg of viral RNA, showed diseased mushrooms to be either singly infected by LIV or doubly infected by LIV and MBV. Of 70 geographically diverse diseased mushroom isolates, 100% were infected by LIV, whereas almost 60% of these isolates were coinfected by MBV. Of 58 mushroom isolates determined to be free of infection by LIV, 3 were found to be infected by MBV. This represents the first documented report of the independent replication of these two viruses. Our data support the hypothesis that La France disease is associated with infection by two autonomously replicating viruses in which LIV is the primary causal agent and MBV, although possibly pathogenic and capable of modulating symptoms, is not required for pathogenesis. PMID:7793952
Utturkar, Sagar M.; Klingeman, Dawn M.; Johnson, Courtney M.; Martin, Stanton L.; Land, Miriam L.; Lu, Tse-Yuan S.; Schadt, Christopher W.; Doktycz, Mitchel J.
2012-01-01
To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated. PMID:23045501
Genotypic Diversity of Methicillin-Resistant Staphylococcus aureus Isolates in Korean Hospitals
Soo Ko, Kwan; Kim, Yeon-Sook; Song, Jae-Hoon; Yeom, Joon-Sup; Lee, Hyuck; Jung, Sook-In; Jeong, Doo-Ryun; Kim, Shin-Woo; Chang, Hyun-Ha; Ki, Hyun Kyun; Moon, Chisook; Oh, Won Sup; Peck, Kyong Ran; Lee, Nam Yong
2005-01-01
Ninety-six methicillin-resistant Staphylococcus aureus (MRSA) isolates from eight Korean hospitals were analyzed by multilocus sequence typing, SCCmec typing, and spa typing. The predominant genotype was ST5-MRSA-II of clonal complex 5, which was found in 36 isolates from six hospitals, but ST239-MRSA-III was also common. Overall, results showed a notable genotypic diversity of MRSA strains circulating in Korean hospitals. PMID:16048991
Genotypic diversity of methicillin-resistant Staphylococcus aureus isolates in Korean hospitals.
Soo Ko, Kwan; Kim, Yeon-Sook; Song, Jae-Hoon; Yeom, Joon-Sup; Lee, Hyuck; Jung, Sook-In; Jeong, Doo-Ryun; Kim, Shin-Woo; Chang, Hyun-Ha; Ki, Hyun Kyun; Moon, Chisook; Oh, Won Sup; Peck, Kyong Ran; Lee, Nam Yong
2005-08-01
Ninety-six methicillin-resistant Staphylococcus aureus (MRSA) isolates from eight Korean hospitals were analyzed by multilocus sequence typing, SCCmec typing, and spa typing. The predominant genotype was ST5-MRSA-II of clonal complex 5, which was found in 36 isolates from six hospitals, but ST239-MRSA-III was also common. Overall, results showed a notable genotypic diversity of MRSA strains circulating in Korean hospitals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn Marie
To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.
Mahmodi, Farshid; Kadir, J. B.; Puteh, A.; Pourdad, S. S.; Nasehi, A.; Soleimani, N.
2014-01-01
Genetic diversity and differentiation of 50 Colletotrichum spp. isolates from legume crops studied through multigene loci, RAPD and ISSR analysis. DNA sequence comparisons by six genes (ITS, ACT, Tub2, CHS-1, GAPDH, and HIS3) verified species identity of C. truncatum, C. dematium and C. gloeosporiodes and identity C. capsici as a synonym of C. truncatum. Based on the matrix distance analysis of multigene sequences, the Colletotrichum species showed diverse degrees of intera and interspecific divergence (0.0 to 1.4%) and (15.5–19.9), respectively. A multilocus molecular phylogenetic analysis clustered Colletotrichum spp. isolates into 3 well-defined clades, representing three distinct species; C. truncatum, C. dematium and C. gloeosporioides. The ISSR and RAPD and cluster analysis exhibited a high degree of variability among different isolates and permitted the grouping of isolates of Colletotrichum spp. into three distinct clusters. Distinct populations of Colletotrichum spp. isolates were genetically in accordance with host specificity and inconsistent with geographical origins. The large population of C. truncatum showed greater amounts of genetic diversity than smaller populations of C. dematium and C. gloeosporioides species. Results of ISSR and RAPD markers were congruent, but the effective maker ratio and the number of private alleles were greater in ISSR markers. PMID:25288981
Mather, Alison E.; Matthews, Louise; Mellor, Dominic J.; Reeve, Richard; Denwood, Matthew J.; Boerlin, Patrick; Reid-Smith, Richard J.; Brown, Derek J.; Coia, John E.; Browning, Lynda M.; Haydon, Daniel T.; Reid, Stuart W. J.
2012-01-01
We examined long-term surveillance data on antimicrobial resistance (AMR) in Salmonella Typhimurium DT104 (DT104) isolates from concurrently sampled and sympatric human and animal populations in Scotland. Using novel ecological and epidemiological approaches to examine diversity, and phenotypic and temporal relatedness of the resistance profiles, we assessed the more probable source of resistance of these two populations. The ecological diversity of AMR phenotypes was significantly greater in human isolates than in animal isolates, at the resolution of both sample and population. Of 5200 isolates, there were 65 resistance phenotypes, 13 unique to animals, 30 unique to humans and 22 were common to both. Of these 22, 11 were identified first in the human isolates, whereas only five were identified first in the animal isolates. We conclude that, while ecologically connected, animals and humans have distinguishable DT104 communities, differing in prevalence, linkage and diversity. Furthermore, we infer that the sympatric animal population is unlikely to be the major source of resistance diversity for humans. This suggests that current policy emphasis on restricting antimicrobial use in domestic animals may be overly simplistic. While these conclusions pertain to DT104 in Scotland, this approach could be applied to AMR in other bacteria–host ecosystems. PMID:22090389
Mather, Alison E; Matthews, Louise; Mellor, Dominic J; Reeve, Richard; Denwood, Matthew J; Boerlin, Patrick; Reid-Smith, Richard J; Brown, Derek J; Coia, John E; Browning, Lynda M; Haydon, Daniel T; Reid, Stuart W J
2012-04-22
We examined long-term surveillance data on antimicrobial resistance (AMR) in Salmonella Typhimurium DT104 (DT104) isolates from concurrently sampled and sympatric human and animal populations in Scotland. Using novel ecological and epidemiological approaches to examine diversity, and phenotypic and temporal relatedness of the resistance profiles, we assessed the more probable source of resistance of these two populations. The ecological diversity of AMR phenotypes was significantly greater in human isolates than in animal isolates, at the resolution of both sample and population. Of 5200 isolates, there were 65 resistance phenotypes, 13 unique to animals, 30 unique to humans and 22 were common to both. Of these 22, 11 were identified first in the human isolates, whereas only five were identified first in the animal isolates. We conclude that, while ecologically connected, animals and humans have distinguishable DT104 communities, differing in prevalence, linkage and diversity. Furthermore, we infer that the sympatric animal population is unlikely to be the major source of resistance diversity for humans. This suggests that current policy emphasis on restricting antimicrobial use in domestic animals may be overly simplistic. While these conclusions pertain to DT104 in Scotland, this approach could be applied to AMR in other bacteria-host ecosystems.
Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira
2015-01-01
Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America.
Thompson, T.M.; Batts, W.N.; Faisal, M.; Bowser, P.; Casey, J.W.; Phillips, K.; Garver, K.A.; Winton, J.; Kurath, G.
2011-01-01
Viral hemorrhagic septicemia virus (VHSV) is a fish rhabdovirus that causes disease in a broad range of marine and freshwater hosts. The known geographic range includes the Northern Atlantic and Pacific Oceans, and recently it has invaded the Great Lakes region of North America. The goal of this work was to characterize genetic diversity of Great Lakes VHSV isolates at the early stage of this viral emergence by comparing a partial glycoprotein (G) gene sequence (669 nt) of 108 isolates collected from 2003 to 2009 from 31 species and at 37 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVb within the major VHSV genetic group IV. Among these 108 isolates, genetic diversity was low, with a maximum of 1.05% within the 669 nt region. There were 11 unique sequences, designated vcG001 to vcG011. Two dominant sequence types, vcG001 and vcG002, accounted for 90% (97 of 108) of the isolates. The vcG001 isolates were most widespread. We saw no apparent association of sequence type with host or year of isolation, but we did note a spatial pattern, in which vcG002 isolates were more prevalent in the easternmost sub-regions, including inland New York state and the St. Lawrence Seaway. Different sequence types were found among isolates from single disease outbreaks, and mixtures of types were evident within 2 isolates from individual fish. Overall, the genetic diversity of VHSV in the Great Lakes region was found to be extremely low, consistent with an introduction of a new virus into a geographic region with previously naïve host populations.
Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R.; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira
2015-01-01
Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America. PMID:25695431
Thompson, Tarin M; Batts, William N; Faisal, Mohamed; Bowser, Paul; Casey, James W; Phillips, Kenneth; Garver, Kyle A; Winton, James; Kurath, Gael
2011-08-29
Viral hemorrhagic septicemia virus (VHSV) is a fish rhabdovirus that causes disease in a broad range of marine and freshwater hosts. The known geographic range includes the Northern Atlantic and Pacific Oceans, and recently it has invaded the Great Lakes region of North America. The goal of this work was to characterize genetic diversity of Great Lakes VHSV isolates at the early stage of this viral emergence by comparing a partial glycoprotein (G) gene sequence (669 nt) of 108 isolates collected from 2003 to 2009 from 31 species and at 37 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVb within the major VHSV genetic group IV. Among these 108 isolates, genetic diversity was low, with a maximum of 1.05% within the 669 nt region. There were 11 unique sequences, designated vcG001 to vcG011. Two dominant sequence types, vcG001 and vcG002, accounted for 90% (97 of 108) of the isolates. The vcG001 isolates were most widespread. We saw no apparent association of sequence type with host or year of isolation, but we did note a spatial pattern, in which vcG002 isolates were more prevalent in the easternmost sub-regions, including inland New York state and the St. Lawrence Seaway. Different sequence types were found among isolates from single disease outbreaks, and mixtures of types were evident within 2 isolates from individual fish. Overall, the genetic diversity of VHSV in the Great Lakes region was found to be extremely low, consistent with an introduction of a new virus into a geographic region with previously naive host populations.
Emmenegger, E.J.; Kurath, G.
2002-01-01
Infectious hematopoietic necrosis virus (IHNV) is a pathogen that infects many Pacific salmonid stocks from the watersheds of North America. Previous studies have thoroughly characterized the genetic diversity of IHNV isolates from Alaska and the Hagerman Valley in Idaho. To enhance understanding of the evolution and viral transmission patterns of IHNV within the Pacific Northwest geographic range, we analyzed the G gene of IHNV isolates from the coastal watersheds of Washington State by ribonuclease protection assay (RPA) and nucleotide sequencing. The RPA analysis of 23 isolates indicated that the Skagit basin IHNV isolates were relatively homogeneous as a result of the dominance of one G gene haplotype (S). Sequence analysis of 303 bases in the middle of the G gene (midG region) of 61 isolates confirmed the high frequency of a Skagit River basin sequence and identified another sequence commonly found in isolates from the Lake Washington basin. Overall, both the RPA and sequence analysis showed that the Washington coastal IHNV isolates are genetically homogeneous and have little genetic diversity. This is similar to the genetic diversity pattern of IHNV from Alaska and contrasts sharply with the high genetic diversity demonstrated for IHNV isolates from fish farms along the Snake River in Idaho. The high degree of sequence and haplotype similarity between the Washington coastal IHNV isolates and those from Alaska and British Columbia suggests that they have a common viral ancestor. Phylogenetic analyses of the isolates we studied and those from different regions throughout the virus's geographic range confirms a conserved pattern of evolution of the virus in salmonid stocks north of the Columbia River, which forms Washington's southern border.
Cho, Seongbeom; Boxrud, David J; Bartkus, Joanne M; Whittam, Thomas S; Saeed, Mahdi
2007-01-01
Simplified multiple-locus variable-number tandem repeat analysis (MLVA) was developed using one-shot multiplex PCR for seven variable-number tandem repeats (VNTR) markers with high diversity capacity. MLVA, phage typing, and PFGE methods were applied on 34 diverse Salmonella Enteritidis isolates from human and non-human sources. MLVA detected allelic variations that helped to classify the S. Enteritidis isolates into more evenly distributed subtypes than other methods. MLVA-based S. Enteritidis clonal groups were largely associated with sources of the isolates. Nei's diversity indices for polymorphism ranged from 0.25 to 0.70 for seven VNTR loci markers. Based on Simpson's and Shannon's diversity indices, MLVA had a higher discriminatory power than pulsed field gel electrophoresis (PFGE), phage typing, or multilocus enzyme electrophoresis. Therefore, MLVA may be used along with PFGE to enhance the effectiveness of the molecular epidemiologic investigation of S. Enteritidis infections. PMID:17692097
Rosado-Souza, Laise; Scossa, Federico; Chaves, Izabel S; Kleessen, Sabrina; Salvador, Luiz F D; Milagre, Jocimar C; Finger, Fernando; Bhering, Leonardo L; Sulpice, Ronan; Araújo, Wagner L; Nikoloski, Zoran; Fernie, Alisdair R; Nunes-Nesi, Adriano
2015-09-01
Collectively, the results presented improve upon the utility of an important genetic resource and attest to a complex genetic basis for differences in both leaf metabolism and fruit morphology between natural populations. Diversity of accessions within the same species provides an alternative method to identify physiological and metabolic traits that have large effects on growth regulation, biomass and fruit production. Here, we investigated physiological and metabolic traits as well as parameters related to plant growth and fruit production of 49 phenotypically diverse pepper accessions of Capsicum chinense grown ex situ under controlled conditions. Although single-trait analysis identified up to seven distinct groups of accessions, working with the whole data set by multivariate analyses allowed the separation of the 49 accessions in three clusters. Using all 23 measured parameters and data from the geographic origin for these accessions, positive correlations between the combined phenotypes and geographic origin were observed, supporting a robust pattern of isolation-by-distance. In addition, we found that fruit set was positively correlated with photosynthesis-related parameters, which, however, do not explain alone the differences in accession susceptibility to fruit abortion. Our results demonstrated that, although the accessions belong to the same species, they exhibit considerable natural intraspecific variation with respect to physiological and metabolic parameters, presenting diverse adaptation mechanisms and being a highly interesting source of information for plant breeders. This study also represents the first study combining photosynthetic, primary metabolism and growth parameters for Capsicum to date.
Mazumder, Asit
2014-01-01
Escherichia coli isolates (n = 658) obtained from drinking water intakes of Comox Lake (2011 to 2013) were screened for the following virulence genes (VGs): stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae and the adherence factor (EAF) gene (enteropathogenic E. coli [EPEC]), heat-stable (ST) enterotoxin (variants STh and STp) and heat-labile enterotoxin (LT) genes (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). The only genes detected were eae and stx2, which were carried by 37.69% (n = 248) of the isolates. Only eae was harbored by 26.74% (n = 176) of the isolates, representing potential atypical EPEC strains, while only stx2 was detected in 10.33% (n = 68) of the isolates, indicating potential STEC strains. Moreover, four isolates were positive for both the stx2 and eae genes, representing potential EHEC strains. The prevalence of VGs (eae or stx2) was significantly (P < 0.0001) higher in the fall season, and multiple genes (eae plus stx2) were detected only in fall. Repetitive element palindromic PCR (rep-PCR) fingerprint analysis of 658 E. coli isolates identified 335 unique fingerprints, with an overall Shannon diversity (H′) index of 3.653. Diversity varied among seasons over the years, with relatively higher diversity during fall. Multivariate analysis of variance (MANOVA) revealed that the majority of the fingerprints showed a tendency to cluster according to year, season, and month. Taken together, the results indicated that the diversity and population structure of E. coli fluctuate on a temporal scale, reflecting the presence of diverse host sources and their behavior over time in the watershed. Furthermore, the occurrence of potentially pathogenic E. coli strains in the drinking water intakes highlights the risk to human health associated with direct and indirect consumption of untreated surface water. PMID:25548059
Miller, Marisa E; Zhang, Ying; Omidvar, Vahid; Sperschneider, Jana; Schwessinger, Benjamin; Raley, Castle; Palmer, Jonathan M; Garnica, Diana; Upadhyaya, Narayana; Rathjen, John; Taylor, Jennifer M; Park, Robert F; Dodds, Peter N; Hirsch, Cory D; Kianian, Shahryar F; Figueroa, Melania
2018-02-20
Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae , is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenae IMPORTANCE Disease management strategies for oat crown rust are challenged by the rapid evolution of Puccinia coronata f. sp. avenae , which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding P. coronata f. sp. avenae , resources to study the molecular mechanisms underpinning pathogenicity and the emergence of new virulence traits are lacking. Such limitations are partly due to the obligate biotrophic lifestyle of P. coronata f. sp. avenae as well as the dikaryotic nature of the genome, features that are also shared with other important rust pathogens. This study reports the first release of a haplotype-phased genome assembly for a dikaryotic fungal species and demonstrates the amenability of using emerging technologies to investigate genetic diversity in populations of P. coronata f. sp. avenae . Copyright © 2018 Miller et al.
Peixoto-Junior, R F; Creste, S; Landell, M G A; Nunes, D S; Sanguino, A; Campos, M F; Vencovsky, R; Tambarussi, E V; Figueira, A
2014-09-26
Brown rust (causal agent Puccinia melanocephala) is an important sugarcane disease that is responsible for large losses in yield worldwide. Despite its importance, little is known regarding the genetic diversity of this pathogen in the main Brazilian sugarcane cultivation areas. In this study, we characterized the genetic diversity of 34 P. melanocephala isolates from 4 Brazilian states using loci identified from an enriched simple sequence repeat (SSR) library. The aggressiveness of 3 isolates from major sugarcane cultivation areas was evaluated by inoculating an intermediately resistant and a susceptible cultivar. From the enriched library, 16 SSR-specific primers were developed, which produced scorable alleles. Of these, 4 loci were polymorphic and 12 were monomorphic for all isolates evaluated. The molecular characterization of the 34 isolates of P. melanocephala conducted using 16 SSR loci revealed the existence of low genetic variability among the isolates. The average estimated genetic distance was 0.12. Phenetic analysis based on Nei's genetic distance clustered the isolates into 2 major groups. Groups I and II included 18 and 14 isolates, respectively, and both groups contained isolates from all 4 geographic regions studied. Two isolates did not cluster with these groups. It was not possible to obtain clusters according to location or state of origin. Analysis of disease severity data revealed that the isolates did not show significant differences in aggressiveness between regions.
Pal, Sujoy; Ghosh, Swapan Kumar
2014-12-01
Soil samples were collected from agricultural fields and gardens in North 24 Parganas, West Bengal, and fungi species were isolated from them. Thirty-one fungal species were isolated with 19 found in agricultural soil and 28 in garden soil. Twenty-eight out of 31 were identified using cultural and microscopic characters, and three were unidentified. The diversity of isolated fungi was calculated by Simpson's diversity index. The garden soil possessed more fungal colonies (750) than agricultural soil (477). In agricultural soil, the dominant fungi were Aspergillus niger, Rhizopus oryzae, and Penicillium expansum, and the dominant fungi of garden soil were A. niger and Fusarium moniliforme. Simpson's diversity index indicated that garden soil had more fungal diversity (0.939) than agricultural soil (0.896). The entomopathogenic capacity of the isolated fungi was tested against the brinjal shoot and fruit borer (Leucinodes orbonalis Guen) which is the major insect pest of brinjal. The isolated fungi were screened against larva of L. orbonalis for their entomopathogenic potential. Beauveria bassiana, A. niger, and P. expansum showed appreciable antagonism to L. orbonalis, and their lethal doses with 50 % mortality (LD50s) were 4.0 × 10(7), 9.06 × 10(7), and 1.50 × 10(8) spore/mL, respectively, and their times taken to reach 50 % mortality (LT50s) were 9.77, 10.56, and 10.60 days, respectively. This work suggests the restriction of chemical pesticide application in agricultural fields to increase fungal diversity. The entomopathogenic efficacy of B. bassiana could be used in agricultural fields to increase fugal diversity and protect the brinjal crop.
Obbard, Martyn E.; Harnden, Matthew; McConnell, Sabine; Howe, Eric J.; Burrows, Frank G.; White, Bradley N.; Kyle, Christopher J.
2017-01-01
The processes leading to genetic isolation influence a population’s local extinction risk, and should thus be identified before conservation actions are implemented. Natural or human-induced circumstances can result in historical or contemporary barriers to gene flow and/or demographic bottlenecks. Distinguishing between these hypotheses can be achieved by comparing genetic diversity and differentiation in isolated vs. continuous neighboring populations. In Ontario, American black bears (Ursus americanus) are continuously distributed, genetically diverse, and exhibit an isolation-by-distance structuring pattern, except on the Bruce Peninsula (BP). To identify the processes that led to the genetic isolation of BP black bears, we modelled various levels of historical and contemporary migration and population size reductions using forward simulations. We compared simulation results with empirical genetic indices from Ontario black bear populations under different levels of geographic isolation, and conducted additional simulations to determine if translocations could help achieve genetic restoration. From a genetic standpoint, conservation concerns for BP black bears are warranted because our results show that: i) a recent demographic bottleneck associated with recently reduced migration best explains the low genetic diversity on the BP; and ii) under sustained isolation, BP black bears could lose between 70% and 80% of their rare alleles within 100 years. Although restoring migration corridors would be the most effective method to enhance long-term genetic diversity and prevent inbreeding, it is unrealistic to expect connectivity to be re-established. Current levels of genetic diversity could be maintained by successfully translocating 10 bears onto the peninsula every 5 years. Such regular translocations may be more practical than landscape restoration, because areas connecting the peninsula to nearby mainland black bear populations have been irreversibly modified by humans, and form strong barriers to movement. PMID:28235066
Clinical and molecular epidemiology of veterinary blastomycosis in Wisconsin.
Anderson, Jennifer L; Sloss, Brian L; Meece, Jennifer K
2013-04-22
Several studies have shown that Blastomyces dermatitidis, the etiologic agent of blastomycosis, is a genetically diverse pathogen. Blastomycosis is a significant health issue in humans and other mammals. Veterinary and human isolates matched with epidemiological case data from the same geographic area and time period were used to determine: (i) if differences in genetic diversity and structure exist between clinical veterinary and human isolates of B. dermatitidis and (ii) if comparable epidemiologic features differ among veterinary and human blastomycosis cases. Genetic typing of 301 clinical B. dermatitidis isolates produced 196 haplotypes (59 unique to veterinary isolates, 134 unique to human isolates, and 3 shared between canine and human isolates). Private allelic richness was higher in veterinary (median 2.27) compared to human isolates (median 1.14) (p = 0.005). Concordant with previous studies, two distinct genetic groups were identified among all isolates. Genetic group assignment was different between human and veterinary isolates (p < 0.001), with more veterinary isolates assigned to Group 2. The mean age of dogs diagnosed with blastomycosis was 6 years. Thirty cases were in male dogs (52%) and 24 were females (41%). The breed of dog was able to be retrieved in 38 of 58 cases with 19 (50%) being sporting breeds. Three of four felines infected with blastomycosis were domestic shorthair males between ages 6-12, and presented with disseminated disease. The other was a lynx with pulmonary disease. The equine isolate was from an 11-year-old male Halflinger with disseminated disease. Disseminated disease was reported more often in veterinary (62%) than human cases (19%) (p < 0.001). Isolates from all hosts clustered largely into previously identified genetic groups, with 3 haplotypes being shared between human and canine isolates confirming that B. dermatitidis isolates capable of infecting both species occur in nature. Allelic diversity measures trended higher in veterinary samples, with a higher number of total alleles and private alleles. Veterinary isolates of B. dermatitidis contributed a substantial amount of diversity to the overall population genetic structure demonstrating the importance of including veterinary isolates in genetic studies of evolution and virulence in this organism.
Genetic and phenotypic diversity of geographically different isolates of Glomus mosseae.
Avio, Luciano; Cristani, Caterina; Strani, Patrizia; Giovannetti, Manuela
2009-03-01
In this work, we combined morphological taxonomy and molecular methods to investigate the intraspecific diversity of Glomus mosseae, whose global distribution has been reviewed by a survey of scientific literature and Web-available records from international germplasm collections (International Culture Collection of Vesicular Arbuscular Mycorrhizal Fungi and International Bank of Glomeromycota). We surveyed 186 publications reporting the occurrence of G. mosseae from at least 474 different sites from 55 countries throughout all continents, producing a geographical map of their distribution. The relationships among G. mosseae isolates originating from Europe (United Kingdom), the United States (Arizona, Florida, and Indiana), Africa (Namibia), and West Asia (Syria) were analyzed. The level of resolution of internal transcribed spacer (ITS) sequences strongly supports the morphological species definition of G. mosseae. An ITS - restriction fragment length polymorphism assay with the enzyme HinfI yielded a unique profile for all G. mosseae isolates, allowing a straightforward identification of this morphospecies. Genetic variability among G. mosseae isolates was revealed by the inter-simple-sequence repeat (ISSR) - polymerase chain reaction: the magnitude of genetic divergence shown by the investigated geographical isolates was higher than 50%, consistent with previous data on vegetative compatibility and functional diversity. The variability of ISSR patterns suggests that intraspecific diversity is much higher than that foreseen by morphology and rDNA regions, and should be further investigated by using other genes, such as those related to functional diversity.
Douanla-Meli, Clovis; Unger, Jens-Georg
2017-10-01
Colletotrichum species associated with citrus fruits are fragmentarily known and it lacks accordingly accurate information on the diversity carried alongside the trade of these commodities from producer countries to Europe. In this study, we investigated the molecular phylogenetic diversity, colonisation, and prevalence of Colletotrichum isolated from asymptomatic and diseased tissues of nine citrus fruit species from 17 geographically diverse countries. Totally 454 isolates were morphoculturally characterised, and multilocus analyses (ACT, ApMat, CHS-1, GAPDH, ITS, TUB2) was performed on a subset of representative morphotype isolates. Results led to the identification of three previously known species (Colletotrichum gloeosporioides, Colletotrichum karstii, Colletotrichum siamense) and one novel lineage comprising endophytic isolates from Citrus maxima. Based on this lineage, Colletotrichum citri-maximae is described as a new species in the Colletotrichum gigasporum complex, and is characterised by a long deletion in the GAPDH sequence, a character shared with three of its phylogenetic sister taxa. Prevalence of Colletotrichum varied among citrus species and was greatest on Citrus sinensis fruits. C. gloeosporioides was the most common species followed by C. siamense. Except for the new species, all other isolated Colletotrichum spp. also colonise citrus leaves, but the overall diversity on fruits may be lower than that of leaves. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Barrera-Mejía, Magda; Simón-Martínez, José; Ulloa-Arvizu, Raúl; Salgado-Miranda, Celene; Soriano-Vargas, Edgardo
2010-07-01
The presence of infectious pancreatic necrosis virus (IPNV) in salmonids predominantly produces a high mortality rate in first-feeding fry. Genomic analysis of the vp2 gene sequence is most commonly used to determine the genetic diversity of IPNV isolates. Recently, information obtained from the vp1 gene allowed for efficient analysis of the genetic diversity of IPNV. In this study, the vp1 gene from a Mexican IPNV isolate was characterized and compared with IPNV isolates from Europe, North America, and Asia. The results indicate that the Mexican isolate is most closely related genetically to the 2310 strain from Spain.
Manohar, Cathrine Sumathi; Menezes, Larissa Danielle; Ramasamy, Kesava Priyan; Meena, Ram M
2015-03-01
Reports on the active role of fungi as denitrifiers in terrestrial ecosystems have stimulated an interest in the study of the role of fungi in oxygen-deficient marine systems. In this study, the culturable diversity of fungi was investigated from 4 stations within the permanent, oceanic, oxygen minimum zone of the Arabian Sea. The isolated cultures grouped within the 2 major fungal phyla Ascomycota and Basidiomycota; diversity estimates in the stations sampled indicated that the diversity of the oxygen-depleted environments is less than that of mangrove regions and deep-sea habitats. Phylogenetic analyses of 18S rRNA sequences revealed a few divergent isolates that clustered with environmental sequences previously obtained by others. This is significant, as these isolates represent phylotypes that so far were known only from metagenomic studies and are of phylogenetic importance. Nitrate reduction activity, the first step in the denitrification process, was recorded for isolates under simulated anoxic, deep-sea conditions showing ecological significance of fungi in the oxygen-depleted habitats. This report increases our understanding of fungal diversity in unique, poorly studied habitats and underlines the importance of fungi in the oxygen-depleted environments.
Aung, Myo Nyein; Moolphate, Saiyud; Aung, Thin Nyein Nyein; Katonyoo, Chitima; Khamchai, Songyos; Wannakrairot, Pongsak
2016-01-01
Having a diverse social network is considered to be beneficial to a person's well-being. The significance, however, of social network diversity in the geriatric assessment of people aged ≥80 years has not been adequately investigated within the Southeast Asian context. This study explored the social networks belonging to the elderly aged ≥80 years and assessed the relation of social network and geriatric depression. This study was a community-based cross-sectional survey conducted in Chiang Mai Province, Northern Thailand. A representative sample of 435 community residents, aged ≥80 years, were included in a multistage sample. The participants' social network diversity was assessed by applying Cohen's social network index (SNI). The geriatric depression scale and activities of daily living measures were carried out during home visits. Descriptive analyses revealed the distribution of SNI, while the relationship between the SNI and the geriatric depression scale was examined by ordinal logistic regression models controlling possible covariants such as age, sex, and educational attainment. The median age of the sample was 83 years, with females comprising of 54.94% of the sample. The participants' children, their neighbors, and members of Buddhist temples were reported as the most frequent contacts of the study participants. Among the 435 participants, 25% were at risk of social isolation due to having a "limited" social network group (SNI 0-3), whereas 37% had a "medium" social network (SNI 4-5), and 38% had a "diverse" social network (SNI ≥6). The SNI was not different among the two sexes. Activities of daily living scores in the diverse social network group were significantly higher than those in the limited social network group. Multivariate ordinal logistic regression analysis models revealed a significant negative association between social network diversity and geriatric depression. Regular and frequent contact with various social contacts may safeguard common geriatric depression among persons aged ≥80 years. As a result, screening those at risk of social isolation is recommended to be integrated into routine primary health care-based geriatric assessment and intervention programs.
Stice, Shaun P; Stumpf, Spencer D; Gitaitis, Ron D; Kvitko, Brian H; Dutta, Bhabesh
2018-01-01
Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA) and repetitive extragenic palindrome repeat (rep)-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR) A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study.
Stice, Shaun P.; Stumpf, Spencer D.; Gitaitis, Ron D.; Kvitko, Brian H.; Dutta, Bhabesh
2018-01-01
Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA) and repetitive extragenic palindrome repeat (rep)-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR) A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study. PMID:29491851
Shrestha, Sandesh Kumar; Cochran, Alicia; Mengistu, Alemu; Castro-Rocha, Arturo; Young-Kelly, Heather
2017-01-01
Frogeye leaf spot (FLS), caused by Cercospora sojina, causes significant damage to soybean in the U.S. One control strategy is the use of quinone outside inhibitor (QoI) fungicides. QoI resistant isolates were first reported in Tennessee (TN) in 2010. To investigate the disease dynamics of C. sojina, we collected 437 C. sojina isolates in 2015 from Jackson and Milan, TN and used 40 historical isolates collected from 2006–2009 from TN and ten additional states for comparison. A subset of 186 isolates, including historical isolates, were genotyped for 49 single nucleotide polymorphism (SNP) markers and the QoI resistance locus, revealing 35 unique genotypes. The genotypes clustered into three groups with two groups containing only sensitive isolates and the remaining group containing all resistant isolates and a dominant clonal lineage of 130 isolates. All 477 C. sojina isolates were genotyped for the QoI locus revealing 344 resistant and 133 sensitive isolates. All isolates collected prior to 2015 were QoI sensitive. Both mating type alleles (MAT1-1-1 and MAT1-2) were found in Jackson and Milan, TN and recovered from single lesions suggesting sexual recombination may play a role in the epidemiology of field populations. Analysis of C. sojina isolates using SNP markers proved useful to investigate population diversity and to elaborate on diversity as it relates to QoI resistance and mating type. PMID:28486517
Characterization of the genetic diversity of Mycobacterium tuberculosis in São Paulo city, Brazil.
Mendes, Natália H; Melo, Fernando Af; Santos, Adolfo Cb; Pandolfi, José Rc; Almeida, Elisabete A; Cardoso, Rosilene F; Berghs, Henri; David, Suzana; Johansen, Faber K; Espanha, Lívia G; Leite, Sergio Ra; Leite, Clarice Qf
2011-07-29
Tuberculosis is a major health problem in São Paulo, Brazil, which is the most populous and one of the most cosmopolitan cities in South America. To characterize the genetic diversity of Mycobacterium tuberculosis in the population of this city, the genotyping techniques of spoligotyping and MIRU were applied to 93 isolates collected in two consecutive years from 93 different tuberculosis patients residing in São Paulo city and attending the Clemente Ferreira Institute (the reference clinic for the treatment of tuberculosis). Spoligotyping generated 53 different spoligotype patterns. Fifty-one isolates (54.8%) were grouped into 13 spoligotyping clusters. Seventy- two strains (77.4%) showed spoligotypes described in the international databases (SpolDB4, SITVIT), and 21 (22.6%) showed unidentified patterns. The most frequent spoligotype families were Latin American Mediterranean (LAM) (26 isolates), followed by the T family (24 isolates) and Haarlem (H) (11 isolates), which together accounted for 65.4% of all the isolates. These three families represent the major genotypes found in Africa, Central America, South America and Europe. Six Spoligo-International-types (designated SITs by the database) comprised 51.8% (37/72) of all the identified spoligotypes (SIT53, SIT50, SIT42, SIT60, SIT17 and SIT1). Other SITs found in this study indicated the great genetic diversity of M. tuberculosis, reflecting the remarkable ethnic diversity of São Paulo city inhabitants. The MIRU technique was more discriminatory and did not identify any genetic clusters with 100% similarity among the 93 isolates. The allelic analysis showed that MIRU loci 26, 40, 23 and 10 were the most discriminatory. When MIRU and spoligotyping techniques were combined, all isolates grouped in the 13 spoligotyping clusters were separated. Our data indicated the genomic stability of over 50% of spoligotypes identified in São Paulo and the great genetic diversity of M. tuberculosis isolates in the remaining SITs, reflecting the large ethnic mix of the São Paulo city inhabitants. The results also indicated that in this city, M. tuberculosis isolates acquired drug resistance independently of genotype and that resistance was more dependent on the selective pressure of treatment failure and the environmental circumstances of patients.
Genetic diversity of avian paramyxovirus type 1: defining Newcastle disease virus genotypes
USDA-ARS?s Scientific Manuscript database
All Newcastle disease virus (NDV) isolates belong to a single serotype of avian paramyxovirus type-1 (APMV-1); however, significant genetic diversity is recognized between different NDV isolates. Historically, two systems have been used to classify NDV into lineages or genotypes, with both systems ...
Molecular Diversity of Seed-borne Fusarium Species Associated with Maize in India
Aiyaz, Mohammed; Divakara, Shetty Thimmappa; Mudili, Venkataramana; Moore, Geromy George; Gupta, Vijai Kumar; Yli-Mattila, Tapani; Nayaka, Siddaiah Chandra; Niranjana, Siddapura Ramachandrappa
2016-01-01
A total of 106 maize seed samples were collected from different agro-climatic regions of India. Sixty-two Fusarium isolates were recovered, 90% of which were identified as Fusarium verticillioides based on morphological and molecular characters. Use of the tef-1α gene corrected/refined the morphological species identifications of 11 isolates, and confirmed those of the remaining isolates. Genetic diversity among the Fusarium isolates involved multilocus fingerprinting profiles by Inter Simple Sequence Repeats (ISSR) UPGMA and tef-1α gene phenetic analyses; for which, we observed no significant differences among the isolates based on geographic origin or fumonisin production; most of the subdivision related to species. Genotyping was performed on the F. verticillioides isolates, using 12 primer sets from the fumonisin pathway, to elucidate the molec-ular basis of fumonisin production or non-production. One fumonisin-negative isolate, UOMMF-16, was unable to amplify nine of the 12 fumonisin cluster genes tested. We also used the CD-ELISA method to confirm fumonisin production for our 62 Fusarium isolates. Only 15 isolates were found to be fumonisin-negative. Interestingly, genotypic characterization re-vealed six isolates with various gene deletion patterns that also tested positive for the production of fumonisins via CD-ELISA. Our findings confirm the importance of molecular studies for species delimitation, and for observing genetic and phenotypic diversity, among the Fusaria. PMID:27226769
Ahlstrom, Christina; Barkema, Herman W.; Stevenson, Karen; Zadoks, Ruth N.; Biek, Roman; Kao, Rowland; Trewby, Hannah; Haupstein, Deb; Kelton, David F.; Fecteau, Gilles; Labrecque, Olivia; Keefe, Greg P.; McKenna, Shawn L. B.; Tahlan, Kapil; De Buck, Jeroen
2016-01-01
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative bacterium of Johne’s disease (JD) in ruminants. The control of JD in the dairy industry is challenging, but can be improved with a better understanding of the diversity and distribution of MAP subtypes. Previously established molecular typing techniques used to differentiate MAP have not been sufficiently discriminatory and/or reliable to accurately assess the population structure. In this study, the genetic diversity of 182 MAP isolates representing all Canadian provinces was compared to the known global diversity, using single nucleotide polymorphisms identified through whole genome sequencing. MAP isolates from Canada represented a subset of the known global diversity, as there were global isolates intermingled with Canadian isolates, as well as multiple global subtypes that were not found in Canada. One Type III and six “Bison type” isolates were found in Canada as well as one Type II subtype that represented 86% of all Canadian isolates. Rarefaction estimated larger subtype richness in Québec than in other Canadian provinces using a strict definition of MAP subtypes and lower subtype richness in the Atlantic region using a relaxed definition. Significant phylogeographic clustering was observed at the inter-provincial but not at the intra-provincial level, although most major clades were found in all provinces. The large number of shared subtypes among provinces suggests that cattle movement is a major driver of MAP transmission at the herd level, which is further supported by the lack of spatial clustering on an intra-provincial scale. PMID:26871723
Characterization of Staphylococcus aureus isolates from raw milk sources in Victoria, Australia.
McMillan, Kate; Moore, Sean C; McAuley, Catherine M; Fegan, Narelle; Fox, Edward M
2016-07-29
Highly pathogenic strains of Staphylococcus aureus can cause disease in both humans and animals. In animal species, including ruminants, S. aureus may cause severe or sub-clinical mastitis. Dairy animals with mastitis frequently shed S. aureus into the milk supply which can lead to food poisoning in humans. The aim of this study was to use genotypic and immunological methods to characterize S. aureus isolates from milk-related samples collected from 7 dairy farms across Victoria. A total of 30 S. aureus isolates were collected from milk and milk filter samples from 3 bovine, 3 caprine and 1 ovine dairy farms across Victoria, Australia. Pulsed Field Gel Electrophoresis (PFGE) identified 11 distinct pulsotypes among isolates; all caprine and ovine isolates shared greater than 80 % similarity regardless of source. Conversely, bovine isolates showed higher diversity. Multi-Locus Sequence Typing (MLST) identified 5 different sequence types (STs) among bovine isolates, associated with human or ruminant lineages. All caprine and ovine isolates were ST133, or a single allele variant of ST133. Two new novel STs were identified among isolates in this study (ST3183 and ST3184). With the exception of these 2 new STs, eBURST analysis predicted all other STs to be founding members of their associated clonal complexes (CCs). Analysis of genetic markers revealed a diverse range of classical staphylococcal enterotoxins (SE) among isolates, with 11 different SEs identified among bovine isolates, compared with just 2 among caprine and ovine isolates. None of the isolates contained mecA, or were resistant to oxacillin. The only antibiotic resistance identified was that of a single isolate resistant to penicillin; this isolate also contained the penicillin resistance gene blaZ. Production of SE was observed at 16 °C and/or 37 °C in milk, however no SE production was detected at 12 °C. Although this study characterized a limited number of isolates, bovine-associated isolates showed higher genetic diversity than their caprine or ovine counterparts. This was also reflected in a more diverse SE repertoire among bovine isolates. Very little antibiotic resistance was identified among isolates in this study. These results suggest maintaining the milk cold chain will minimise any risk from SE production and highlights the need to prevent temperature abuse.
Song, Qifa; Wu, Junhua; Ruan, Peisen
2018-03-01
To investigate the distribution of molecular types of methicillin-resistant Staphylococcus aureus (MRSA) in a paediatric intensive care unit (PICU) according to their community-associated (CA) and hospital-associated (HA) source of acquisition, and thus assess the degree to which CA-MRSA has been introduced into the PICU. We implemented an MRSA surveillance in a PICU during 2013-2016 and investigated the genetic diversity of the isolates retrospectively using three genetic typing methods, as well as antibiograms and virulence factor profiles.Results/Key findings. From 2684 specimens, we identified 60 MRSA isolates, 43 of which were ST59 CA-MRSA. These 43 ST59 MRSA isolates could be further subtyped into 2 clusters and 7 sporadic isolates by pulsed-field gel electrophoresis, and 3 spa types, which demonstrated the genetic diversity in ST59 MRSA. Phenotypic diversity was also demonstrated among these ST59 MRSA isolates, with 12 virulence factor profiles and 4 antibiograms being identified. Epidemiological information showed that 43 ST59 MRSA isolates were both community-associated (15 isolates) and hospital-associated (28 isolates) and caused colonization and various types of infections in different age groups of children. Our results show that a predominant ST59 CA-MRSA has been introduced into the PICU to a significant extent. This has caused the ST59 HA-MRSA and CA-MRSA in the PICU to be indistinguishable. Our results also demonstrate that when we are interpreting situations where the causative agents of infections focus on very limited pathogenic clones, combined typing methods and epidemiological information are needed to investigate isolates' genetic and phenotypic diversity to distinguish an outbreak from endemic cases.
NASA Astrophysics Data System (ADS)
Zhai, Weiwei; Lim, Tony Kiat-Hon; Zhang, Tong; Phang, Su-Ting; Tiang, Zenia; Guan, Peiyong; Ng, Ming-Hwee; Lim, Jia Qi; Yao, Fei; Li, Zheng; Ng, Poh Yong; Yan, Jie; Goh, Brian K.; Chung, Alexander Yaw-Fui; Choo, Su-Pin; Khor, Chiea Chuen; Soon, Wendy Wei-Jia; Sung, Ken Wing-Kin; Foo, Roger Sik-Yin; Chow, Pierce Kah-Hoe
2017-02-01
Hepatocellular carcinoma (HCC) has one of the poorest survival rates among cancers. Using multi-regional sampling of nine resected HCC with different aetiologies, here we construct phylogenetic relationships of these sectors, showing diverse levels of genetic sharing, spanning early to late diversification. Unlike the variegated pattern found in colorectal cancers, a large proportion of HCC display a clear isolation-by-distance pattern where spatially closer sectors are genetically more similar. Two resected intra-hepatic metastases showed genetic divergence occurring before and after primary tumour diversification, respectively. Metastatic tumours had much higher variability than their primary tumours, suggesting that intra-hepatic metastasis is accompanied by rapid diversification at the distant location. The presence of co-existing mutations offers the possibility of drug repositioning for HCC treatment. Taken together, these insights into intra-tumour heterogeneity allow for a comprehensive understanding of the evolutionary trajectories of HCC and suggest novel avenues for personalized therapy.
Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras
2012-01-01
Background Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite’s circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. Methods Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. Results and conclusion A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77) for pvama-1; 23 (n = 84) for pvcsp; and 23 (n = 35) for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2) was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30) block 2 (K1, MAD20, and RO33), and both allelic families described for the central domain of pfmsp-2 (n = 11) (3D7 and FC27) were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission. PMID:23181845
Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras.
Lopez, Ana Cecilia; Ortiz, Andres; Coello, Jorge; Sosa-Ochoa, Wilfredo; Torres, Rosa E Mejia; Banegas, Engels I; Jovel, Irina; Fontecha, Gustavo A
2012-11-26
Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite's circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77) for pvama-1; 23 (n = 84) for pvcsp; and 23 (n = 35) for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2) was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30) block 2 (K1, MAD20, and RO33), and both allelic families described for the central domain of pfmsp-2 (n = 11) (3D7 and FC27) were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission.
Diversity of bacterial isolates from commercial and homemade composts.
Vaz-Moreira, Ivone; Silva, Maria E; Manaia, Célia M; Nunes, Olga C
2008-05-01
The diversity of heterotrophic bacterial isolates of three commercial and two homemade composts was studied. The commercial composts were produced from poultry litter (PC), sewage sludge (SC), municipal solid waste (MC), and homemade composts (thermal compost [DC] and vermicompost [VC]) from food wastes. The taxonomic and physiological diversity of the heterotrophic culturable bacteria was assessed using phenotypic and genotypic characterization and the analysis of the partial 16S rRNA gene sequence. Composts DC and SC presented the higher genotypic diversity, as could be inferred from the number of distinct genotypic patterns observed, 28 and 21, respectively. Gram-positive bacteria, mainly Firmicutes, were predominant in all the composts. Some organisms related with taxa rarely reported in composts, as Rhodanobacter spathiphylli, Moraxella osloensis, Lysobacter, Corynebacterium, Pigmentiphaga kullae, and new taxa were also isolated. The highest relative proportion of isolates able to degrade starch was found in compost SC (> 70%), to degrade gelatine in compost DC (> 70%), to degrade Tween 80 in compost PC (> 90%), and to degrade poly-epsilon-caprolactones in compost DC (> 80%). Compost MC presented the lowest relative proportions of isolates able to degrade starch (< 25%), gelatine (< 20%), and poly-epsilon-caprolactone (< 40%). When compared with the others, the homemade composts presented higher relative proportions of Gram-positive isolates able to inhibit the target organisms Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, or Pseudomonas aeruginosa. In compost MC, none of the Gram-positive isolates was able to inhibit those targets.
Prevalence and genetic diversity of Bartonella species in sika deer (Cervus nippon) in Japan.
Sato, Shingo; Kabeya, Hidenori; Yamazaki, Mari; Takeno, Shinako; Suzuki, Kazuo; Kobayashi, Shinichi; Souma, Kousaku; Masuko, Takayoshi; Chomel, Bruno B; Maruyama, Soichi
2012-12-01
We report the first description of Bartonella prevalence and genetic diversity in 64 Honshu sika deer (Cervus nippon centralis) and 18 Yezo sika deer (Cervus nippon yesoensis) in Japan. Overall, Bartonella bacteremia prevalence was 41.5% (34/82). The prevalence in wild deer parasitized with ticks and deer keds was 61.8% (34/55), whereas no isolates were detected in captive deer (0/27) free of ectoparasites. The isolates belonged to 11 genogroups based on a combination of the gltA and rpoB gene sequences. Phylogenetic analysis of concatenated sequences of the ftsZ, gltA, ribC, and rpoB genes of 11 representative isolates showed that Japanese sika deer harbor three Bartonella species, including B. capreoli and two novel Bartonella species. All Yezo deer's isolates were identical to B. capreoli B28980 strain isolated from an elk in the USA, based on the sequences of the ftsZ, gltA, and rpoB genes. In contrast, the isolates from Honshu deer showed a higher genetic diversity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gioffré, Andrea; Correa Muñoz, Magnolia; Alvarado Pinedo, María F.; Vaca, Roberto; Morsella, Claudia; Fiorentino, María Andrea; Paolicchi, Fernando; Ruybal, Paula; Zumárraga, Martín; Travería, Gabriel E.; Romano, María Isabel
2015-01-01
Multiple-locus variable number-tandem repeat analysis (MLVA) of Mycobacterium avium subspecies paratuberculosis (MAP) isolates may contribute to the knowledge of strain diversity in Argentina. Although the diversity of MAP has been previously investigated in Argentina using IS900-RFLP, a small number of isolates were employed, and a low discriminative power was reached. The aim of the present study was to test the genetic diversity among MAP isolates using an MLVA approach based on 8 repetitive loci. We studied 97 isolates from cattle, goat and sheep and could describe 7 different patterns: INMV1, INMV2, INMV11, INMV13, INMV16, INMV33 and one incomplete pattern. INMV1 and INMV2 were the most frequent patterns, grouping 76.3% of the isolates. We were also able to demonstrate the coexistence of genotypes in herds and co-infection at the organism level. This study shows that all the patterns described are common to those described in Europe, suggesting an epidemiological link between the continents. PMID:26273274
NASA Astrophysics Data System (ADS)
Zhang, Yi; Han, Jinyuan; Feng, Yan; Mu, Jun; Bao, Haiyan; Kulik, Andreas; Grond, Stephanie
2016-01-01
Until recently, little was known about the fungi found in shark gills and their biomedicinal potential. In this article, we described the isolation, bioactivity, diversity, and secondary metabolites of bioactive fungi from the gill of a shark ( Carcharodon carcharias). A total of 115 isolates were obtained and grown in 12 culture media. Fifty-eight of these isolates demonstrated significant activity in four antimicrobial, pesticidal, and cytotoxic bioassay models. Four randomly selected bioactive isolates inhibited human cancer cell proliferation during re-screening. These active isolates were segregated into 6 genera using the internal transcribed spacer-large subunit (ITS-LSU) rDNA-sequence BLAST comparison. Four genera, Penicillium, Aspergillus, Mucor, and Chaetomium were the dominant taxa. A phylogenic tree illustrated their intergenera and intragenera genetic diversity. HPLC-DAD-HRMS analysis and subsequent database searching revealed that nine representative strains produced diverse bioactive compound profiles. These results detail the broad range of bioactive fungi found in a shark's gills, revealing their biopharmaceutical potential. To the best of our knowledge, this is the first study characterizing shark gill fungi and their bioactivity.
Arunachalam Palaniyandi, Sasikumar; Yang, Seung Hwan; Damodharan, Karthiyaini; Suh, Joo-Won
2013-12-01
Actinobacteria were isolated from the rhizosphere of yam plants from agricultural fields from Yeoju, South Korea and analyzed for their genetic and plant-beneficial functional diversity. A total of 29 highly occurring actinobacterial isolates from the yam rhizosphere were screened for various plant-beneficial traits such as antimicrobial activity on fungi and bacteria; biocontrol traits such as production of siderophore, protease, chitinase, endo-cellulase, and β-glucanase. The isolates were also screened for plant growth-promoting (PGP) traits such as auxin production, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and in vitro Arabidopsis growth promotion. 16S rDNA sequence-based phylogenetic analysis was carried out on the actinobacterial isolates to determine their genetic relatedness to known actinobacteria. BOX-PCR analysis revealed high genetic diversity among the isolates. Several isolates were identified to belong to the genus Streptomyces and a few to Kitasatospora. The actinobacterial strains exhibited high diversity in their functionality and were identified as novel and promising candidates for future development into biocontrol and PGP agents. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huber, R; Huber, H; Stetter, K O
2000-12-01
Ecological studies have shown that water-containing terrestrial, subterranean and submarine high-temperature environments harbor a great diversity of hyperthermophilic prokaryotes, growing fastest at temperatures of 80 degrees C or above. The investigations included cultivation, isolation and detailed analysis of these hyperthermophiles as well as in situ 16S rRNA gene sequence analysis and in situ hybridization studies. For a safe and fast isolation of novel hyperthermophiles from mixed cultures, a new, plating-independent isolation technique was developed, based on the use of a laser microscope ('optical tweezers'). This method, combined with 16S rRNA gene sequence analysis and whole-cell hybridization using fluorescently labelled oligonucleotide probes, even allows the recovery of pure cultures of phylogenetically predicted organisms harboring novel 16S rRNA gene sequences. In their natural habitats, hyperthermophiles form complex food webs, consisting of primary producers and consumers of organic material. Their metabolic potential includes various types of aerobic and anaerobic respiration and different modes of fermentation. In hydrothermal and geothermal environments, hyperthermophiles have important ecological functions in biogeochemical processes. Members of the Sulfolobales are able to mobilize heavy metals from sulfidic ores like pyrite or chalcopyrite. Biomineralization processes of hyperthermophiles include the formation of magnetite from iron or the precipitation of arsenate as realgar, a reaction performed by a novel hyperthermophile that was isolated from Pisciarelli Solfatara, Naples, Italy.
Investigation of Biological Soil Crusts Metabolic Webs Using Exometabolomic Analysis
NASA Astrophysics Data System (ADS)
Northen, T.; Karaoz, U.; Jenkins, S.; Lau, R.; Bowen, B.; Cadillo-Quiroz, H.; Garcia-Pichel, F.; Brodie, E.; Richard, B.
2014-12-01
Desert biological soil crusts are simple cyanobacteria-dominated surface soil microbial communities found in areas with infrequent wetting, often extreme temperatures, low coverage of vascular plants and constitute the world's largest biofilm. They exist for extended periods in a desiccated dormant state, yet rapidly re-boot metabolism within minutes of wetting. These soil microbial communities are highly dependent on filamentous cyanobacteria such as Microcoleus vaginatusto stabilize the soil and to act as primary producers for the community through the release carbon sources to feed a diversity of heterotrophs. Exometabolomic analysis was performed using liquid chromatography coupled to tandem mass spectrometry on biological soil crust pore water and spent media of key soil bacterial isolates. Comparison of spent vs. fresh media was used to determine uptake or release of metabolites by specific microbes. To link pore water experiments with isolate studies, metabolite extracts of authentic soil were used as supplements for isolate exometabolomic profiling. Our soil metabolomics methods detected hundreds of metabolites from soils including may novel compounds. Only a small set of which being targeted by all isolates. Beyond these few metabolites, the individual bacteria examined showed specialization towards specific metabolites. Surprisingly, many of the most abundant oligosaccharides and other metabolites were ignored by these isolates. The observed specialization of biological soil crust bacteria may play a significant role in determining community structure.
Rundell, Susan M.; Spakowicz, Daniel J.; Narváez-Trujillo, Alexandra; Strobel, Scott A.
2015-01-01
Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sought to determine whether Ecuador’s fungal endophytes are hyperdiverse, and whether that biological diversity is reflected in the endophytes’ chemical diversity. To assess this chemical diversity, we analyzed a subset of isolates for their production of volatile organic compounds (VOCs), a representative class of natural products. This study yielded a total of 1526 fungal ITS sequences comprising some 315 operational taxonomic units (OTUs), resulting in a non-asymptotic OTU accumulation curve and characterized by a Fisher’s α of 120 and a Shannon Diversity score of 7.56. These figures suggest that the Ecuadorian endophytes are hyperdiverse. Furthermore, the 113 isolates screened for VOCs produced more than 140 unique compounds. These results present a mere snapshot of the remarkable biological and chemical diversity of stem-inhabiting endophytic fungi from a single neotropical country. PMID:29376917
Oyedeji, Segun Isaac; Awobode, Henrietta Oluwatoyin; Anumudu, Chiaka; Kun, Jürgen
2013-08-01
To characterize the genetic diversity of Plasmodium falciparum (P. falciparum) field isolates in children from Lafia, North-central Nigeria, using the highly polymorphic P. falciparum merozoite surface protein 2 (MSP-2) gene as molecular marker. Three hundred and twenty children were enrolled into the study between 2005 and 2006. These included 140 children who presented with uncomplicated malaria at the Dalhatu Araf Specialist Hospital, Lafia and another 180 children from the study area with asymptomatic infection. DNA was extracted from blood spot on filter paper and MSP-2 genes were genotyped using allele-specific nested PCR in order to analyze the genetic diversity of parasite isolates. A total of 31 and 34 distinct MSP-2 alleles were identified in the asymptomatic and uncomplicated malaria groups respectively. No difference was found between the multiplicity of infection in the asymptomatic group and that of the uncomplicated malaria group (P>0.05). However, isolates of the FC27 allele type were dominant in the asymptomatic group whereas isolates of the 3D7 allele type were dominant in the uncomplicated malaria group. This study showed a high genetic diversity of P. falciparum isolates in North-central Nigeria and is comparable to reports from similar areas with high malaria transmission intensity. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Genetic diversity of Brucella ovis isolates from Rio Grande do Sul, Brazil, by MLVA16
2014-01-01
Background Ovine epididymitis is predominantly associated with Brucella ovis infection. Molecular characterization of Brucella spp. achieved by multi-locus variable number of tandem repeats (VNTR) analyses (MLVA) have proved to be a powerful tool for epidemiological trace-back studies. Thus, the aim of this study was to evaluate the genetic diversity of Brucella ovis isolates from Rio Grande do Sul State, Brazil, by MLVA16. Findings MLVA16 genotyping identified thirteen distinct genotypes and a Hunter-Gaston diversity index of 0.989 among the fourteen B. ovis genotyped strains. All B. ovis MLVA16 genotypes observed in the present study represented non-previously described profiles. Analyses of the eight conserved loci included in panel 1 (MLVA8) showed three different genotypes, two new and one already described for B. ovis isolates. Among ten B. ovis isolates from same herd only two strains had identical pattern, whereas the four isolates with no epidemiologic information exhibited a single MLVA16 pattern each. Analysis of minimal spanning tree, constructed using the fourteen B. ovis strains typed in this study together with all nineteen B. ovis MLVA16 genotypes available in the MLVAbank 2014, revealed the existence of two clearly distinct major clonal complexes. Conclusions In conclusion, the results of the present study showed a high genetic diversity among B. ovis field isolates from Rio Grande do Sul State, Brazil, by MLVA16. PMID:25015223
Genetic diversity of Brucella ovis isolates from Rio Grande do Sul, Brazil, by MLVA16.
Dorneles, Elaine M S; Freire, Guilherme N; Dasso, Maurício G; Poester, Fernando P; Lage, Andrey P
2014-07-12
Ovine epididymitis is predominantly associated with Brucella ovis infection. Molecular characterization of Brucella spp. achieved by multi-locus variable number of tandem repeats (VNTR) analyses (MLVA) have proved to be a powerful tool for epidemiological trace-back studies. Thus, the aim of this study was to evaluate the genetic diversity of Brucella ovis isolates from Rio Grande do Sul State, Brazil, by MLVA16. MLVA16 genotyping identified thirteen distinct genotypes and a Hunter-Gaston diversity index of 0.989 among the fourteen B. ovis genotyped strains. All B. ovis MLVA16 genotypes observed in the present study represented non-previously described profiles. Analyses of the eight conserved loci included in panel 1 (MLVA8) showed three different genotypes, two new and one already described for B. ovis isolates. Among ten B. ovis isolates from same herd only two strains had identical pattern, whereas the four isolates with no epidemiologic information exhibited a single MLVA16 pattern each. Analysis of minimal spanning tree, constructed using the fourteen B. ovis strains typed in this study together with all nineteen B. ovis MLVA16 genotypes available in the MLVAbank 2014, revealed the existence of two clearly distinct major clonal complexes. In conclusion, the results of the present study showed a high genetic diversity among B. ovis field isolates from Rio Grande do Sul State, Brazil, by MLVA16.
Sun, Hong-Min; Zhang, Tao; Yu, Li-Yan; Sen, Keya; Zhang, Yu-Qin
2015-01-01
The goal of this study was to gain insight into the diversity of culturable actinobacteria in desert soil crusts and to determine the physiological characteristics of the predominant actinobacterial group in these crusts. Culture-dependent method was employed to obtain actinobacterial strains from desert soil samples collected from Shapotou National Desert Ecological Reserve (NDER) located in Tengger Desert, China. A total of 376 actinobacterial strains were isolated and 16S rRNA gene sequences analysis indicated that these isolates belonged to 29 genera within 18 families, among which the members of the family Geodermatophilaceae were predominant. The combination of 16S rRNA gene information and the phenotypic data allowed these newly-isolated Geodermatophilaceae members to be classified into 33 "species clusters," 11 of which represented hitherto unrecognized species. Fermentation broths from 19.7% of the isolated strains showed activity in at least one of the six screens for antibiotic activity. These isolates exhibited bio-diversity in enzymatic characteristics and carbon utilization profiles. The physiological characteristics of the isolates from different types of crusts or bare sand samples were specific to their respective micro-ecological environments. Our study revealed that members of the family Geodermatophilaceae were ubiquitous, abundant, and diverse in Shapotou NDER, and these strains may represent a new major group of potential functional actinobacteria in desert soil.
Guo, Xiaoxuan; Liu, Ning; Li, Xiaomin; Ding, Yun; Shang, Fei; Gao, Yongsheng; Ruan, Jisheng
2015-01-01
Red soils, which are widely distributed in tropical and subtropical regions of southern China, are characterized by low organic carbon, high content of iron oxides, and acidity and, hence, are likely to be ideal habitats for acidophilic actinomycetes. However, the diversity and biosynthetic potential of actinomycetes in such habitats are underexplored. Here, a total of 600 actinomycete strains were isolated from red soils collected in Jiangxi Province in southeast China. 16S rRNA gene sequence analysis revealed a high diversity of the isolates, which were distributed into 26 genera, 10 families, and 7 orders within the class Actinobacteria; these taxa contained at least 49 phylotypes that are likely to represent new species within 15 genera. The isolates showed good physiological potentials for biosynthesis and biocontrol. Chemical screening of 107 semirandomly selected isolates spanning 20 genera revealed the presence of at least 193 secondary metabolites from 52 isolates, of which 125 compounds from 39 isolates of 12 genera were putatively novel. Macrolides, polyethers, diketopiperazines, and siderophores accounted for most of the known compounds. The structures of six novel compounds were elucidated, two of which had a unique skeleton and represented characteristic secondary metabolites of a putative novel Streptomyces phylotype. These results demonstrate that red soils are rich reservoirs for diverse culturable actinomycetes, notably members of the families Streptomycetaceae, Pseudonocardiaceae, and Streptosporangiaceae, with the capacity to synthesize novel bioactive compounds. PMID:25724963
Molecular characterization of Vibrio cholerae isolates from Iran 2012 and 2013 outbreaks.
Bakhshi, B
2016-06-01
The aim of this study was to assess the genetic diversity of Vibrio cholerae isolated from 2012 and 2013 outbreaks in Iran, with regard to their virulence properties. A total of 20 V. cholerae strains were collected from Sistan-Baluchestan province of Iran during 2012 and 2013 outbreaks. Hybridization assays showed the presence of ctx, zot, ace and rstC genes related to CTX and RS1 phages in all of the isolates. PCR assay indicated the concomitant presence of ORFs within RTX (1448, 1451) and TLC (1465, 1469) elements within the genome of the isolates. ERIC-PCR analysis showed four homogeneous profiles among which strains from 2013 outbreak and 72·7% of 2012 outbreak uniformly showed a common ERIC-PCR fingerprint. Ribotyping assay showed a single dominant profile (ribotype A) among 77·7 and 72·7% of isolates recovered from 2013 and 2012 outbreaks respectively. In conclusion, this study reports high degree of homogeneity among isolates from 2012 and 2013 outbreaks in Iran and emphasizes on the primary application of ERIC-PCR to generate fingerprints and differentiate between V. cholerae isolates of clinical origin in a timely manner for epidemiological investigations and source tracking purposes, although ribotyping method was proved to be more discriminatory. The clonality of Vibrio cholerae isolates recovered from patients with Afghan nationality during 2012 and 2013 outbreaks in Iran emphasizes on the need for monitoring Iran boundaries. This highlights the demand for a simple, reproducible and time-saving typing method for rapid and reliable assessment of clonal correlation of isolates in outbreaks. In this regard, ERIC-PCR produced results comparable with those obtained by PFGE and ribotyping which is of great significance in public health and source tracking purposes. © 2016 The Society for Applied Microbiology.
Castillo-Rojas, Gonzalo; Mazari-Hiríart, Marisa; Ponce de León, Sergio; Amieva-Fernández, Rosa I; Agis-Juárez, Raúl A; Huebner, Johannes; López-Vidal, Yolanda
2013-01-01
Enterococci are part of the normal intestinal flora in a large number of mammals, and these microbes are currently used as indicators of fecal contamination in water and food for human consumption. These organisms are considered one of the primary causes of nosocomial and environmental infections due to their ability to survive in the environment and to their intrinsic resistance to antimicrobials. The aims of this study were to determine the biochemical patterns and antimicrobial susceptibilities of Enterococcus faecalis and E. faecium isolates from clinical samples and from water (groundwater, water from the Xochimilco wetland, and treated water from the Mexico City Metropolitan Area) and to determine the genetic relationships among these isolates. A total of 121 enterococcus strains were studied; 31 and 90 strains were isolated from clinical samples and water (groundwater, water from the Xochimilco wetland, and water for agricultural irrigation), respectively. Identification to the species level was performed using a multiplex PCR assay, and antimicrobial profiles were obtained using a commercial kit. Twenty-eight strains were analyzed by pulsed-field gel electrophoresis (PFGE). E. faecium strains isolated from water showed an atypical biochemical pattern. The clinical isolates showed higher resistance to antibiotics than those from water. Both the enterococci isolated from humans, and those isolated from water showed high genetic diversity according to the PFGE analysis, although some strains seemed to be closely related. In conclusion, enterococci isolated from humans and water are genetically different. However, water represents a potential route of transmission to the community and a source of antimicrobial resistance genes that may be readily transmitted to other, different bacterial species.
Castillo-Rojas, Gonzalo; Mazari-Hiríart, Marisa; Ponce de León, Sergio; Amieva-Fernández, Rosa I.; Agis-Juárez, Raúl A.; Huebner, Johannes; López-Vidal, Yolanda
2013-01-01
Enterococci are part of the normal intestinal flora in a large number of mammals, and these microbes are currently used as indicators of fecal contamination in water and food for human consumption. These organisms are considered one of the primary causes of nosocomial and environmental infections due to their ability to survive in the environment and to their intrinsic resistance to antimicrobials. The aims of this study were to determine the biochemical patterns and antimicrobial susceptibilities of Enterococcus faecalis and E. faecium isolates from clinical samples and from water (groundwater, water from the Xochimilco wetland, and treated water from the Mexico City Metropolitan Area) and to determine the genetic relationships among these isolates. A total of 121 enterococcus strains were studied; 31 and 90 strains were isolated from clinical samples and water (groundwater, water from the Xochimilco wetland, and water for agricultural irrigation), respectively. Identification to the species level was performed using a multiplex PCR assay, and antimicrobial profiles were obtained using a commercial kit. Twenty-eight strains were analyzed by pulsed-field gel electrophoresis (PFGE). E. faecium strains isolated from water showed an atypical biochemical pattern. The clinical isolates showed higher resistance to antibiotics than those from water. Both the enterococci isolated from humans, and those isolated from water showed high genetic diversity according to the PFGE analysis, although some strains seemed to be closely related. In conclusion, enterococci isolated from humans and water are genetically different. However, water represents a potential route of transmission to the community and a source of antimicrobial resistance genes that may be readily transmitted to other, different bacterial species. PMID:23560050
Jena, Smrutiti; Panda, Sasmita; Nayak, Kinshuk C.; Singh, Durg V.
2017-01-01
We examined the presence of virulence and antibiotic resistance genes, SCCmec types and determined the genomic diversity among ocular S. epidermidis isolates (patients-23, healthy controls-29). PCR determined the presence of antibiotic resistance genes, virulence genes and SCCmec types among all isolates. MLST and PFGE determined the genomic relatedness among them. All isolates of S. epidermidis showed resistance to at least one class of antibiotics of which 48 isolates were multidrug resistant and carried ARGs. Thirty-five isolates were methicillin resistant and carried mecA gene. Majority of the isolates were resistant to fluoroquinolones and showed mutation in gyrA, parC, and parE genes, however, few isolates showed additional novel mutations in parC gene. Of the MRSE strains, 17 strains carried SCCmec type IV, four type V, two type II, and two UT4. Seven strains carried novel combination of ccr complex and SCCmercury element, not reported earlier. All the S. epidermidis strains harbored icaA and icaD genes, 47 carried ACME operon, and 50 contained IS256. A noteworthy finding was the presence of ST179 among 43% of infected eye isolates an observation rarely reported among S. epidermidis. PFGE and MLST analysis showed genomic diversity among them. Statistical analysis suggests that few healthy conjunctiva isolates had characteristics similar to infected eye isolates. S. epidermidis strains carrying mecA gene are multidrug resistant, virulent and diverse irrespective of sources of isolation. IS256 cannot be used as marker to differentiate isolates of infected eye from healthy conjunctiva. PMID:28824564
Kim, Chang-Kyun; Eo, Ju-Kyeong; Eom, Ahn-Heum
2013-06-01
The needled leaves of three conifer species were collected in Mt. Taehwa during different seasons of the year. Total 59 isolates and 19 species of endophytic fungi were isolated from the leaves and identified using morphological and molecular characteristics. As a result, Shannon index was different in its host plant; Larix kaempferi had a highest value of species diversity. According to the sampling season, 9 species of 19 species were isolated during fall season. The results suggest that the existing of host plant and sampling season are major factors of distribution of endophytic fungi.
Fouda, E; Emile, S; Elfeki, H; Youssef, M; Ghanem, A; Fikry, A A; Elshobaky, A; Omar, W; Khafagy, W; Morshed, M
2016-08-01
Injuries of the colon are a serious sequel of abdominal trauma owing to the associated morbidity and mortality. This study aims to assess postoperative outcome and complications of faecal diversion and primary repair of colon injuries when applied according to established guidelines for the management of colon injuries. This retrospective study was conducted on 110 patients with colon injuries. Guided by estimation of risk factors, patients were managed either by primary repair alone, repair with proximal diversion or diversion alone. There were 102 (92.7%) male patients and 8 (7.3%) female patients of median age 38 years. Thirty-seven were managed by primary repair and 73 by faecal diversion. Colon injuries were caused by penetrating abdominal trauma in 65 and blunt trauma in 45 patients. Forty-three patients were in shock on admission, and were all managed by faecal diversion. Forty patients developed 84 complications after surgery. Primary repair had a significantly lower complication rate than faecal diversion (P = 0.037). Wound infection was the commonest complication. The overall mortality rate was 3.6%. Primary repair, when employed properly, resulted in a significantly lower complication rate than faecal diversion. Significant predictive factors associated with a higher complication rate were faecal diversion, severe faecal contamination, multiple colon injuries, an interval of more than 12 h after colon injury and shock. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.
Sharma, Mamta; Nagavardhini, Avuthu; Thudi, Mahendar; Ghosh, Raju; Pande, Suresh; Varshney, Rajeev K
2014-06-10
Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt of chickpea is highly variable and frequent recurrence of virulent forms have affected chickpea production and exhausted valuable genetic resources. The severity and yield losses of Fusarium wilt differ from place to place owing to existence of physiological races among isolates. Diversity study of fungal population associated with a disease plays a major role in understanding and devising better disease control strategies. The advantages of using molecular markers to understand the distribution of genetic diversity in Foc populations is well understood. The recent development of Diversity Arrays Technology (DArT) offers new possibilities to study the diversity in pathogen population. In this study, we developed DArT markers for Foc population, analysed the genetic diversity existing within and among Foc isolates, compared the genotypic and phenotypic diversity and infer the race scenario of Foc in India. We report the successful development of DArT markers for Foc and their utility in genotyping of Foc collections representing five chickpea growing agro-ecological zones of India. The DArT arrays revealed a total 1,813 polymorphic markers with an average genotyping call rate of 91.16% and a scoring reproducibility of 100%. Cluster analysis, principal coordinate analysis and population structure indicated that the different isolates of Foc were partially classified based on geographical source. Diversity in Foc population was compared with the phenotypic variability and it was found that DArT markers were able to group the isolates consistent with its virulence group. A number of race-specific unique and rare alleles were also detected. The present study generated significant information in terms of pathogenic and genetic diversity of Foc which could be used further for development and deployment of region-specific resistant cultivars of chickpea. The DArT markers were proved to be a powerful diagnostic tool to study the genotypic diversity in Foc. The high number of DArT markers allowed a greater resolution of genetic differences among isolates and enabled us to examine the extent of diversity in the Foc population present in India, as well as provided support to know the changing race scenario in Foc population.
ERIC Educational Resources Information Center
de Freitas, Elizabeth; McAuley, Alexander
2008-01-01
This paper explores strategies to help prepare pre-service teachers from a predominantly white, relatively isolated island in Atlantic Canada to teach for diversity. The paper proposes a modified framework for "teacher identity development" that pivots around three foci for enhancing teacher awareness and commitment to action: (1)…
Allana K. Welsh; Jeffrey O. Dawson; Gerald J. Gottfried; Dittmar Hahn
2009-01-01
The diversity of uncultured Frankia populations in root nodules of Alnus oblongifolia trees geographically isolated on mountaintops of central Arizona was analyzed by comparative sequence analyses of nifH gene fragments. Sequences were retrieved from Frankia populations in nodules of four trees from each of...
Xu, Hongxiu; Jiang, Lijing; Li, Shaoneng; Zhong, Tianhua; Lai, Qiliang; Shao, Zongze
2016-01-04
To investigate the diversity of culturable sulfur-oxidizing bacteria in hydrothermal vent environments of the South Atlantic, and analyze their characteristics of sulfur oxidation. We enriched and isolated sulfur-oxidizing bacteria from hydrothermal vent samples collected from the South Atlantic. The microbial diversity in enrichment cultures was analyzed using the Denatural Gradient Gel Electrophoresis method. Sulfur-oxidizing characteristics of the isolates was further studied by using ion chromatography. A total of 48 isolates were obtained from the deep-sea hydrothermal vent samples, which belonged to 23 genera and mainly grouped into alpha-Proteobacteria (58.3%), Actinobacteria (22.9%) and gama-Proteobacteria (18.8%). Among them, the genus Thalassospira, Martelella and Microbacterium were dominant. About 60% of the isolates exibited sulfur-oxidizing ability and strain L6M1-5 had a higher sulfur oxidation rate by comparison analysis. The diversity of sulfur-oxidizing bacteria in hydrothermal environments of the South Atlantic was reported for the first time based on culture-dependent methods. The result will help understand the biogechemical process of sulfur compounds in the deep-sea hydrothermal environments.
Lv, Ya-li; Zhang, Fu-sheng; Chen, Juan; Cui, Jin-long; Xing, Yong-mei; Li, Xiang-dong; Guo, Shun-xing
2010-01-01
Endophytic fungi are rich in species diversity and may play an important role in the fitness of their host plants. This study investigated the diversity and antimicrobial potential of endophytic fungi obtained from Saussurea involucrata KAR. et KIR. A total of 49 endophytic fungi were isolated from S. involucrata and identified using morphological and molecular techniques. Extracts of fermentation broth from the 49 fungi were tested for antimicrobial activity against pathogenic microorganisms using the agar diffusion method. Forty-eight out of the 49 endophytic fungi were identified and grouped into 14 taxa. Cylindrocarpon sp. was the dominant species isolated from S. involucrata, followed by Phoma sp. and Fusarium sp. Among the 49 endophytic fungi, 9 root isolates having darkly pigmented, septate hyphae were identified as dark septate endophytic (DSE) fungus, and 12 fungi inhibited at least one test microorganism. Moreover, 5 strains showed a broader spectrum of antimicrobial activity and 4 strains displayed strong inhibition (+++) against pathogenic fungi. The results indicate that endophytic fungi isolated from S. involucrata are diverse in species and a potential source of antimicrobial agents.
Diversity of the Cronobacter Genus as Revealed by Multilocus Sequence Typing
Joseph, S.; Sonbol, H.; Hariri, S.; Desai, P.; McClelland, M.
2012-01-01
Cronobacter (previously known as Enterobacter sakazakii) is a diverse bacterial genus consisting of seven species: C. sakazakii, C. malonaticus, C. turicensis, C. universalis, C. muytjensii, C. dublinensis, and C. condimenti. In this study, we have used a multilocus sequence typing (MLST) approach employing the alleles of 7 genes (atpD, fusA, glnS, gltB, gyrB, infB, and ppsA; total length, 3,036 bp) to investigate the phylogenetic relationship of 325 Cronobacter species isolates. Strains were chosen on the basis of their species, geographic and temporal distribution, source, and clinical outcome. The earliest strain was isolated from milk powder in 1950, and the earliest clinical strain was isolated in 1953. The existence of seven species was supported by MLST. Intraspecific variation ranged from low diversity in C. sakazakii to extensive diversity within some species, such as C. muytjensii and C. dublinensis, including evidence of gene conversion between species. The predominant species from clinical sources was found to be C. sakazakii. C. sakazakii sequence type 4 (ST4) was the predominant sequence type of cerebral spinal fluid isolates from cases of meningitis. PMID:22785185
Arora, Naveen Kumar; Khare, Ekta; Singh, Sachin; Tewari, Sakshi
2018-01-01
Pigeon pea ( Cajanus cajan ) is one of the most important legumes grown in the northern province of Uttar Pradesh, India. However, its productively in Uttar Pradesh is lower than the average yield of adjoining states. During the course of the present study, a survey of pigeon pea growing agricultural fields was carried out and it was found that 80% of plants were inadequately nodulated. The study was aimed to evaluate the pigeon pea symbiotic compatibility and nodulation efficiency of root nodulating bacteria isolated from various legumes, and to explore the phenetic and genetic diversity of rhizobial population nodulating pigeon pea growing in fields of Uttar Pradesh. Amongst all the 96 isolates, 40 isolates showed nodulation in pigeon pea. These 40 isolates were further characterized by phenotypic, biochemical and physiological tests. Intrinsic antibiotic resistance pattern was taken to generate similarity matrix revealing 10 phenons. The study shows that most of the isolates nodulating pigeon pea in this region were rapid growers. The dendrogram generated using the NTSYSpc software grouped RAPD patterns into 19 clusters. The high degree of phenetic and genetic diversity encountered is probably because of a history of mixed cropping of legumes. The assessment of diversity is a very important tool and can be used to improve the nodulation and quality of pigeon pea crop. It is also concluded that difference between phenetic and RAPD clustering pattern is an indication that rhizobial diversity of pigeon pea is not as yet completely understood and settled.
Marcellino, N.; Beuvier, E.; Grappin, R.; Guéguen, M.; Benson, D. R.
2001-01-01
The diversity of French fungus-ripened cheeses is due partly to the succession of fungi that colonize the cheese during ripening. Geotrichum candidum appears in the early stages of ripening on soft cheeses such as Camembert and semihard cheeses such as St. Nectaire and Reblochon. Its lipases and proteases promote flavor development, and its aminopeptidases reduce bitterness imparted by low-molecular-weight peptides in cheese. We assessed the genetic diversity of G. candidum strains by using random amplification of polymorphic DNA (RAPD)-PCR correlated with phenotypic tests for carbon assimilation and salt tolerance. Strains were isolated from milk, curd, and cheese collected in seven major cheesemaking regions of France. Sixty-four isolates were characterized. We found high genetic diversity of G. candidum even within the same cheesemaking regions. Strains did not group according to region. All of the strains from the Haute-Savoie were able to assimilate lactate as the sole source of carbon, while lactate assimilation varied among strains from the Auvergne. Strains varied in d-mannitol assimilation, and none used citrate as the sole source of carbon. Yeast-like colony morphology predominated in Reblochon, while all of the strains isolated from St. Nectaire were filamentous. The RAPD-PCR technique readily differentiated Geotrichum fragrans isolated from milk and curd in a St. Nectaire cheesemaking facility. This study reveals an enormous diversity of G. candidum that has been empirically selected through the centuries by the cheesemakers of France. PMID:11571181
Marcellino, N; Beuvier, E; Grappin, R; Guéguen, M; Benson, D R
2001-10-01
The diversity of French fungus-ripened cheeses is due partly to the succession of fungi that colonize the cheese during ripening. Geotrichum candidum appears in the early stages of ripening on soft cheeses such as Camembert and semihard cheeses such as St. Nectaire and Reblochon. Its lipases and proteases promote flavor development, and its aminopeptidases reduce bitterness imparted by low-molecular-weight peptides in cheese. We assessed the genetic diversity of G. candidum strains by using random amplification of polymorphic DNA (RAPD)-PCR correlated with phenotypic tests for carbon assimilation and salt tolerance. Strains were isolated from milk, curd, and cheese collected in seven major cheesemaking regions of France. Sixty-four isolates were characterized. We found high genetic diversity of G. candidum even within the same cheesemaking regions. Strains did not group according to region. All of the strains from the Haute-Savoie were able to assimilate lactate as the sole source of carbon, while lactate assimilation varied among strains from the Auvergne. Strains varied in D-mannitol assimilation, and none used citrate as the sole source of carbon. Yeast-like colony morphology predominated in Reblochon, while all of the strains isolated from St. Nectaire were filamentous. The RAPD-PCR technique readily differentiated Geotrichum fragrans isolated from milk and curd in a St. Nectaire cheesemaking facility. This study reveals an enormous diversity of G. candidum that has been empirically selected through the centuries by the cheesemakers of France.
Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties.
Park, Myung Soo; Fong, Jonathan J; Oh, Seung-Yoon; Kwon, Kae Kyoung; Sohn, Jae Hak; Lim, Young Woon
2014-08-01
The diversity of marine-derived Penicillium from Korea was investigated using morphological and multigene phylogenetic approaches, analyzing sequences of the internal transcribed spacer region, β-tubulin gene, and RNA polymerase subunit II gene. In addition, the biological activity of all isolated strains was evaluated. We tested for the extracellular enzyme activity of alginase, endoglucanase, and β-glucosidase, and antifungal activity against two plant pathogens (Colletotrichum acutatum and Fusarium oxysporum). A total of 184 strains of 36 Penicillium species were isolated, with 27 species being identified. The most common species were Penicillium polonicum (19.6 %), P. rubens (11.4 %), P. chrysogenum (11.4 %), and P. crustosum (10.9 %). The diversity of Penicillium strains isolated from soil (foreshore soil and sand) and marine macroorganisms was higher than the diversity of strains isolated from seawater. While many of the isolated strains showed alginase and β-glucosidase activity, no endoglucanase activity was found. More than half the strains (50.5 %) showed antifungal activity against at least one of the plant pathogens tested. Compared with other strains in this study, P. citrinum (strain SFC20140101-M662) showed high antifungal activity against both plant pathogens. The results reported here expand our knowledge of marine-derived Penicillium diversity. The relatively high proportion of strains that showed antifungal and enzyme activity demonstrates that marine-derived Penicillium have great potential to be used in the production of natural bioactive products for pharmaceutical and/or industrial use.
Ding, Bo; Yin, Ying; Zhang, Fengli; Li, Zhiyong
2011-08-01
Sponge-associated fungi represent an important source of marine natural products, but little is known about the fungal diversity and the relationship of sponge-fungal association, especially no research on the fungal diversity in the South China Sea sponge has been reported. In this study, a total of 111 cultivable fungi strains were isolated from two South China Sea sponges Clathrina luteoculcitella and Holoxea sp. using eight different media. Thirty-two independent representatives were selected for analysis of phylogenetic diversity according to ARDRA and morphological characteristics. The culturable fungal communities consisted of at least 17 genera within ten taxonomic orders of two phyla (nine orders of the phylum Ascomycota and one order of the phylum Basidiomycota) including some potential novel marine fungi. Particularly, eight genera of Apiospora, Botryosphaeria, Davidiella, Didymocrea, Lentomitella, Marasmius, Pestalotiopsis, and Rhizomucor were isolated from sponge for the first time. Sponge C. luteoculcitella has greater culturable fungal diversity than sponge Holoxea sp. Five genera of Aspergillus, Davidiella, Fusarium, Paecilomyces, and Penicillium were isolated from both sponges, while 12 genera of Apiospora, Botryosphaeria, Candida, Marasmius, Cladosporium, Didymocrea, Hypocrea, Lentomitella, Nigrospora, Pestalotiopsis, Rhizomucor, and Scopulariopsis were isolated from sponge C. luteoculcitella only. Order Eurotiales especially genera Penicillium, Aspergillus, and order Hypocreales represented the dominant culturable fungi in these two South China Sea sponges. Nigrospora oryzae strain PF18 isolated from sponge C. luteoculcitella showed a strong and broad spectrum antimicrobial activities suggesting the potential for antimicrobial compounds production.
Murray, Lee; Mobegi, Victor A; Duffy, Craig W; Assefa, Samuel A; Kwiatkowski, Dominic P; Laman, Eugene; Loua, Kovana M; Conway, David J
2016-05-12
In regions where malaria is endemic, individuals are often infected with multiple distinct parasite genotypes, a situation that may impact on evolution of parasite virulence and drug resistance. Most approaches to studying genotypic diversity have involved analysis of a modest number of polymorphic loci, although whole genome sequencing enables a broader characterisation of samples. PCR-based microsatellite typing of a panel of ten loci was performed on Plasmodium falciparum in 95 clinical isolates from a highly endemic area in the Republic of Guinea, to characterize within-isolate genetic diversity. Separately, single nucleotide polymorphism (SNP) data from genome-wide short-read sequences of the same samples were used to derive within-isolate fixation indices (F ws), an inverse measure of diversity within each isolate compared to overall local genetic diversity. The latter indices were compared with the microsatellite results, and also with indices derived by randomly sampling modest numbers of SNPs. As expected, the number of microsatellite loci with more than one allele in each isolate was highly significantly inversely correlated with the genome-wide F ws fixation index (r = -0.88, P < 0.001). However, the microsatellite analysis revealed that most isolates contained mixed genotypes, even those that had no detectable genome sequence heterogeneity. Random sampling of different numbers of SNPs showed that an F ws index derived from ten or more SNPs with minor allele frequencies of >10 % had high correlation (r > 0.90) with the index derived using all SNPs. Different types of data give highly correlated indices of within-infection diversity, although PCR-based analysis detects low-level minority genotypes not apparent in bulk sequence analysis. When whole-genome data are not obtainable, quantitative assay of ten or more SNPs can yield a reasonably accurate estimate of the within-infection fixation index (F ws).
Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island.
Park, Myung Soo; Lee, Seobihn; Oh, Seung-Yoon; Cho, Ga Youn; Lim, Young Woon
2016-10-01
A total of 28 strains of 19 Penicillium species were isolated in a survey of extracellular enzyme-producing fungi from macroalgae along the coast of Jeju Island of Korea. Penicillium species were identified based on morphological and β-tubulin sequence analyses. In addition, the halo-tolerance and enzyme activity of all strains were evaluated. The diversity of Penicillium strains isolated from brown algae was higher than the diversity of strains isolated from green and red algae. The commonly isolated species were Penicillium antarcticum, P. bialowiezense, P. brevicompactum, P. crustosum, P. oxalicum, P. rubens, P. sumatrense, and P. terrigenum. While many strains showed endoglucanase, β-glucosidase, and protease activity, no alginase activity was detected. There was a positive correlation between halo-tolerance and endoglucanase activity within Penicillium species. Among 19 Penicillium species, three species-P. kongii, P. olsonii, and P. viticola-have not been previously recorded in Korea.
Liu, Xiao Yun; Wu, Wei; Wang, En Tao; Zhang, Bin; Macdermott, Jomo; Chen, Wen Xin
2011-02-01
In order to investigate the genetic diversity of rhizobia associated with various exotic and invasive species in tropical mainland China, 116 bacterial isolates were obtained from Mimosa root nodules collected from Sishuangbanna and Yuanjiang districts of Yunnan province. Isolated rhizobia were characterized by RFLP analysis of 16S rRNA genes, SDS-PAGE of whole-cell proteins and BOX-PCR. Most of the isolated strains were identified as β-rhizobia belonging to diverse populations of Burkholderia and Cupriavidus, and the phylogenetic relationships of their 16S rRNA gene sequences showed that they were closely related to one of four β-rhizobia species: Burkholderia phymatum, B. mimosarum, B. caribensis or Cupriavidus taiwanensis. Additionally, among the 116 isolates, 53 different whole-cell SDS-PAGE profiles and 30 distinct BOX-PCR genotypic patterns were detected, which demonstrated the genetic and phenotypic diversity found within these Burkholderia and Cupriavidus strains. To the best of our knowledge, this is the first report that β-rhizobia are extant and possibly widespread on the Chinese mainland and nodulate easily with Mimosa plants. We also find it especially interesting that this appears to be the first report from mainland China of Cupriavidus symbionts of Mimosa. These records enrich our knowledge and understanding of the geographical distribution and diversity of these bacteria.
Gambero, Maria Laura; Blarasin, Monica; Bettera, Susana; Giuliano Albo, Jesica
2017-10-01
The genetic characteristics among Escherichia coli strains can be grouped by origin of isolation. Then, it is possible to use the genotypes as a tool to determine the source of water contamination. The aim of this study was to define water aptitude for human consumption in a rural basin and to assess the diversity of E. coli water populations. Thus, it was possible to identify the main sources of fecal contamination and to explore linkages with the hydrogeological environment and land uses. The bacteriological analysis showed that more than 50% of samples were unfit for human consumption. DNA fingerprinting analysis by BOX-PCR indicated low genotypic diversity of E. coli isolates taken from surface water and groundwater. The results suggested the presence of a dominant source of fecal contamination. The relationship between low genotypic diversity and land use would prove that water contamination comes from livestock. The genetic diversity of E. coli isolated from surface water was less than that identified in groundwater because of the different hydraulic features of both environments. Furthermore, each one of the two big strain groups identified in this basin is located in different sub-basins, showing that hydrological dynamics exerts selective pressure on bacteria DNA.
Raja, Huzefa A.; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H.; Cech, Nadja B.; Oberlies, Nicholas H.
2015-01-01
Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid–substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity. PMID:26000195
Raja, Huzefa A; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H; Cech, Nadja B; Oberlies, Nicholas H
2015-01-02
Use of the herb milk thistle ( Silybum marianum ) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid-substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity.
Hsueh, Wen-Chi; He, Qimei; Willcox, D. Craig; Nievergelt, Caroline M.; Donlon, Timothy A.; Kwok, Pui-Yan; Suzuki, Makoto; Willcox, Bradley J.
2014-01-01
Isolated populations have advantages for genetic studies of longevity from decreased haplotype diversity and long-range linkage disequilibrium. This permits smaller sample sizes without loss of power, among other utilities. Little is known about the genome of the Okinawans, a potential population isolate, recognized for longevity. Therefore, we assessed genetic diversity, structure, and admixture in Okinawans, and compared this with Caucasians, Chinese, Japanese, and Africans from HapMap II, genotyped on the same Affymetrix GeneChip Human Mapping 500K array. Principal component analysis, haplotype coverage, and linkage disequilibrium decay revealed a distinct Okinawan genome—more homogeneity, less haplotype diversity, and longer range linkage disequilibrium. Population structure and admixture analyses utilizing 52 global reference populations from the Human Genome Diversity Cell Line Panel demonstrated that Okinawans clustered almost exclusively with East Asians. Sibling relative risk (λs) analysis revealed that siblings of Okinawan centenarians have 3.11 times (females) and 3.77 times (males) more likelihood of centenarianism. These findings suggest that Okinawans are genetically distinct and share several characteristics of a population isolate, which are prone to develop extreme phenotypes (eg, longevity) from genetic drift, natural selection, and population bottlenecks. These data support further exploration of genetic influence on longevity in the Okinawans. PMID:24444611
Genetic diversity of Aspergillus fumigatus in indoor hospital environments.
Araujo, Ricardo; Amorim, António; Gusmão, Leonor
2010-09-01
Environmental isolates of Aspergillus fumigatus are less studied than those recovered from clinical sources. In the present study, the genetic diversity among such environmental isolates was assessed, as well as their dispersion ability and the acquisition of new strains in 19 medical units of the same hospital. A. fumigatus isolates were genotyped using a single multiplex PCR-based reaction with eight microsatellite markers and an insertion/deletion polymorphism. A total of 130 unique genotypes were found among a total of 250 A. fumigatus isolates. Genotypic diversity ranged from 0.86 to 1 in samples from hospital rooms, and there was no correlation between these samples and the presence of high-efficiency particulate air filters or any other air filtration system. Four of the six most prevalent A. fumigatus strains were recovered from water samples. The occurrence of microvariation was common among environmental isolates, which affected each of the microsatellite markers. The assessment of the genetic diversity of A. fumigatus is a useful tool for illustrating the presence or absence of specific clonal populations in a clinical setting. A. fumigatus populations were highly dynamic indoors, and new populations were found in just a few months. Due to the high indoor dispersion capability of A. fumigatus, more attention should be given to strains with increased pathogenic potential or reduced susceptibility to anti-fungal drugs.
Aegisdóttir, Hafdís Hanna; Kuss, Patrick; Stöcklin, Jürg
2009-12-01
Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. High within-population genetic diversity (H(E) = 0.76) and a relatively low inbreeding coefficient (F(IS) = 0.022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G'(ST) = 0.53). A significant isolation-by-distance relationship was found (r = 0.62, P < 0.001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western-eastern differentiation in this species merits consideration in future conservation efforts.
Everhart, S E; Scherm, H
2015-04-01
The purpose of this study was to determine the fine-scale genetic structure of populations of the brown rot pathogen Monilinia fructicola within individual peach tree canopies to better understand within-tree plant pathogen diversity and to complement previous work on spatiotemporal development of brown rot disease at the canopy level. Across 3 years in a total of six trees, we monitored disease development, collected isolates from every M. fructicola symptom during the course of the season, and created high-resolution three-dimensional maps of all symptom and isolate locations within individual canopies using an electromagnetic digitizer. Each canopy population (65 to 173 isolates per tree) was characterized using a set of 13 microsatellite markers and analyzed for evidence of spatial genetic autocorrelation among isolates during the epidemic phase of the disease. Results showed high genetic diversity (average uh=0.529) and high genotypic diversity (average D=0.928) within canopies. The percentage of unique multilocus genotypes within trees was greater for blossom blight isolates (78.2%) than for fruit rot isolates (51.3%), indicating a greater contribution of clonal reproduction during the preharvest epidemic. For fruit rot isolates, between 54.2 and 81.7% of isolates were contained in one to four dominant clonal genotypes per tree having at least 10 members. All six fruit rot populations showed positive and significant spatial genetic autocorrelation for distance classes between 0.37 and 1.48 m. Despite high levels of within-tree pathogen diversity, the contribution of locally available inoculum combined with short-distance dispersal is likely the main factor generating clonal population foci and associated spatial genetic clustering within trees.
Park, Miseon; Deck, Joanna; Foley, Steven L; Nayak, Rajesh; Songer, J Glenn; Seibel, Janice R; Khan, Saeed A; Rooney, Alejandro P; Hecht, David W; Rafii, Fatemeh
2016-04-01
Clostridium perfringens is an important pathogen, causing food poisoning and other mild to severe infections in humans and animals. Some strains of C. perfringens contain conjugative plasmids, which may carry antimicrobial resistance and toxin genes. We studied genomic and plasmid diversity of 145 C. perfringens type A strains isolated from soils, foods, chickens, clinical samples, and domestic animals (porcine, bovine and canine), from different geographic areas in the United States between 1994 and 2006, using multiple-locus variable-number tandem repeat analysis (MLVA) and/or pulsed-field gel electrophoresis (PFGE). MLVA detected the genetic diversity in a majority of the isolates. PFGE, using SmaI and KspI, confirmed the MLVA results but also detected differences among the strains that could not be differentiated by MLVA. All of the PFGE profiles of the strains were different, except for a few of the epidemiologically related strains, which were identical. The PFGE profiles of strains isolated from the same domestic animal species were clustered more closely with each other than with other strains. However, a variety of C. perfringens strains with distinct genetic backgrounds were found among the clinical isolates. Variation was also observed in the size and number of plasmids in the strains. Primers for the internal fragment of a conjugative tcpH gene of C. perfringens plasmid pCPF4969 amplified identical size fragments from a majority of strains tested; and this gene hybridized to the various-sized plasmids of these strains. The sequences of the PCR-amplified tcpH genes from 12 strains showed diversity among the tcpH genes. Regardless of the sources of the isolates, the genetic diversity of C. perfringens extended to the plasmids carrying conjugative genes. Published by Elsevier Ltd.
Stoesser, N; Sheppard, A E; Moore, C E; Golubchik, T; Parry, C M; Nget, P; Saroeun, M; Day, N P J; Giess, A; Johnson, J R; Peto, T E A; Crook, D W; Walker, A S
2015-07-01
Studies of the transmission epidemiology of antimicrobial-resistant Escherichia coli, such as strains harboring extended-spectrum beta-lactamase (ESBL) genes, frequently use selective culture of rectal surveillance swabs to identify isolates for molecular epidemiological investigation. Typically, only single colonies are evaluated, which risks underestimating species diversity and transmission events. We sequenced the genomes of 16 E. coli colonies from each of eight fecal samples (n = 127 genomes; one failure), taken from different individuals in Cambodia, a region of high ESBL-producing E. coli prevalence. Sequence data were used to characterize both the core chromosomal diversity of E. coli isolates and their resistance/virulence gene content as a proxy measure of accessory genome diversity. The 127 E. coli genomes represented 31 distinct sequence types (STs). Seven (88%) of eight subjects carried ESBL-positive isolates, all containing blaCTX-M variants. Diversity was substantial, with a median of four STs/individual (range, 1 to 10) and wide genetic divergence at the nucleotide level within some STs. In 2/8 (25%) individuals, the same blaCTX-M variant occurred in different clones, and/or different blaCTX-M variants occurred in the same clone. Patterns of other resistance genes and common virulence factors, representing differences in the accessory genome, were also diverse within and between clones. The substantial diversity among intestinally carried ESBL-positive E. coli bacteria suggests that fecal surveillance, particularly if based on single-colony subcultures, will likely underestimate transmission events, especially in high-prevalence settings. Copyright © 2015, Stoesser et al.
Characterisation of Phytophthora capsici isolates from black pepper in Vietnam.
Truong, Nguyen V; Liew, Edward C Y; Burgess, Lester W
2010-01-01
Phytophthora foot rot of black pepper caused by Phytophthora capsici is a major disease of black pepper (Piper nigrum) throughout Vietnam. To understand the population structure of P. capsici, a large collection of P. capsici isolates from black pepper was studied on the basis of mating type, random amplified microsatellites (RAMS) and repetitive extragenic palindromic (REP) fingerprinting. Two mating types A1 and A2 were detected in four provinces in two climatic regions, with A1:A2 ratios ranging from 1:3 to 1:5. In several instances A1 and A2 mating types were found to co-exist in the same farm or black pepper pole, suggesting the potential for sexual reproduction of P. capsici in the field in Vietnam although its contribution to disease epidemics is uncertain. RAMS and REP DNA fingerprinting analysis of 118 isolates of P. capsici from black pepper showed that the population was genetically more diverse where two mating types were found, although the overall genetic diversity was low with most of the isolates belonging to one clonal group. The implication of these findings is discussed. The low diversity among isolates suggests that the P. capsici population may have originated from a single source. There was no genetic differentiation of isolates from different climatic regions. In addition to the large clonal group, several isolates with unique RAMS/REP phenotypes were also detected. Most of these unique phenotypes belonged to the minority A1 mating type. This may have significant implications for a gradual increase in overall genetic diversity.
Beare, Paul A.; Samuel, James E.; Howe, Dale; Virtaneva, Kimmo; Porcella, Stephen F.; Heinzen, Robert A.
2006-01-01
Coxiella burnetii, a gram-negative obligate intracellular bacterium, causes human Q fever and is considered a potential agent of bioterrorism. Distinct genomic groups of C. burnetii are revealed by restriction fragment-length polymorphisms (RFLP). Here we comprehensively define the genetic diversity of C. burnetii by hybridizing the genomes of 20 RFLP-grouped and four ungrouped isolates from disparate sources to a high-density custom Affymetrix GeneChip containing all open reading frames (ORFs) of the Nine Mile phase I (NMI) reference isolate. We confirmed the relatedness of RFLP-grouped isolates and showed that two ungrouped isolates represent distinct genomic groups. Isolates contained up to 20 genomic polymorphisms consisting of 1 to 18 ORFs each. These were mostly complete ORF deletions, although partial deletions, point mutations, and insertions were also identified. A total of 139 chromosomal and plasmid ORFs were polymorphic among all C. burnetii isolates, representing ca. 7% of the NMI coding capacity. Approximately 67% of all deleted ORFs were hypothetical, while 9% were annotated in NMI as nonfunctional (e.g., frameshifted). The remaining deleted ORFs were associated with diverse cellular functions. The only deletions associated with isogenic NMI variants of attenuated virulence were previously described large deletions containing genes involved in lipopolysaccharide (LPS) biosynthesis, suggesting that these polymorphisms alone are responsible for the lower virulence of these variants. Interestingly, a variant of the Australia QD isolate producing truncated LPS had no detectable deletions, indicating LPS truncation can occur via small genetic changes. Our results provide new insight into the genetic diversity and virulence potential of Coxiella species. PMID:16547017
De Vita, A; Bernardo, L; Gargano, D; Palermo, A M; Peruzzi, L; Musacchio, A
2009-11-01
Many factors have contributed to the richness of narrow endemics in the Mediterranean, including long-lasting human impact on pristine landscapes. The abandonment of traditional land-use practices is causing forest recovery throughout the Mediterranean mountains, by increasing reduction and fragmentation of open habitats. We investigated the population genetic structure and habitat dynamics of Plantago brutia Ten., a narrow endemic in mountain pastures of S Italy. Some plants were cultivated in the botanical garden to explore the species' breeding system. Genetic diversity was evaluated based on inter-simple sequence repeat (ISSR) polymorphisms in 150 individuals from most of known stands. Recent dynamics in the species habitat were checked over a 14-year period. Flower phenology, stigma receptivity and experimental pollinations revealed protogyny and self-incompatibility. With the exception of very small and isolated populations, high genetic diversity was found at the species and population level. amova revealed weak differentiation among populations, and the Mantel test suggested absence of isolation-by-distance. Multivariate analysis of population and genetic data distinguished the populations based on genetic richness, size and isolation. Landscape analyses confirmed recent reduction and isolation of potentially suitable habitats. Low selfing, recent isolation and probable seed exchange may have preserved P. brutia populations from higher loss of genetic diversity. Nonetheless, data related to very small populations suggest that this species may suffer further fragmentation and isolation. To preserve most of the species' genetic richness, future management efforts should consider the large and isolated populations recognised in our analyses.
Jarvi, S.I.; Farias, M.E.M.; Atkinson, C.T.
2008-01-01
Background: The relatively recent introduction of a highly efficient mosquito vector and an avian pathogen (Plasmodium relictum) to an isolated island ecosystem with nai??ve, highly susceptible avian hosts provides a unique opportunity to investigate evolution of virulence in a natural system. Mixed infections can significantly contribute to the uncertainty in host-pathogen dynamics with direct impacts on virulence. Toward further understanding of how host-parasite and parasite-parasite relationships may impact virulence, this study characterizes within-host diversity of malaria parasite populations based on genetic analysis of the trap (thrombospondin-related anonymous protein) gene in isolates originating from Hawaii, Maui and Kauai Islands. Methods: A total of 397 clones were produced by nested PCR amplification and cloning of a 1664 bp fragment of the trap gene from two malarial isolates, K1 (Kauai) and KV115 (Hawaii) that have been used for experimental studies, and from additional isolates from wild birds on Kauai, Maui and Hawaii Islands. Diversity of clones was evaluated initially by RFLP-based screening, followed by complete sequencing of 33 selected clones. Results: RFLP analysis of trap revealed a minimum of 28 distinct RFLP haplotypes among the 397 clones from 18 birds. Multiple trap haplotypes were detected in every bird evaluated, with an average of 5.9 haplotypes per bird. Overall diversity did not differ between the experimental isolates, however, a greater number of unique haplotypes were detected in K1 than in KV115. We detected high levels of clonal diversity with clear delineation between isolates K1 and KV115 in a haplotype network. The patterns of within-host haplotype clustering are consistent with the possibility of a clonal genetic structure and rapid within-host mutation after infection. Conclusion: Avian malaria (P. relictum) and Avipoxvirus are the significant infectious diseases currently affecting the native Hawaiian avifauna. This study shows that clonal diversity of Hawaiian isolates of P. relictum is much higher than previously recognized. Mixed infections can significantly contribute to the uncertainty in host-pathogen dynamics with direct implications for host demographics, disease management strategies, and evolution of virulence. The results of this study indicate a widespread presence of multiple-genotype malaria infections with high clonal diversity in native birds of Hawaii, which when coupled with concurrent infection with Avipoxvirus, may significantly influence evolution of virulence. ?? 2008 Jarvi et al; licensee BioMed Central Ltd.
NASA Astrophysics Data System (ADS)
Li, Guangyue; Yao, Peiyuan; Cong, Peiqian; Ren, Jie; Wang, Lei; Feng, Jinhui; Lau, Peter C. K.; Wu, Qiaqing; Zhu, Dunming
2016-05-01
To further expand the substrate range of the cyclohexylamine oxidase (CHAO) from Brevibacterium oxydans, a library of diverse mutants was created and assayed toward a group of structurally diverse substrates. Among them, mutants T198A and M226A exhibited enhanced activity relative to wt CHAO for most (S)-enantiomers of primary amines and some secondary amines. While mutants T198I, L199I, L199F, M226I and M226T were more active than wt CHAO toward the primary amines, mutants T198F, L199T, Y321A, Y321T, Y321I and Y321F enhanced the enzyme activity toward the secondary amines. In particular, mutant Y321I displayed an enhanced catalytic efficiency toward 1-(4-methoxybenzyl)-1, 2, 3, 4, 5, 6, 7, 8-octahydroisoquinoline (13). Whereas a double mutant, Y321I/M226T, acted on (S)-N-(prop-2-yn-1-yl)-2, 3-dihydro-1H-inden-1-amine [(S)-8]. Since (R)-8 is an irreversible inhibitor of monoamine oxidase and (S)-13 is an intermediate of dextromethorphan, a cough suppressant drug, deracemizations of 8 and 13 were carried out with crude enzyme extracts of the respective mutants. This resulted in 51% and 78% isolated yields of (R)-8 and (S)-13, respectively, each with high enantiomeric excess (93% and 99% ee). The results demonstrated the application potential of the evolved CHAO mutants in drug synthesis requiring chiral secondary amines.
Li, Guangyue; Yao, Peiyuan; Cong, Peiqian; Ren, Jie; Wang, Lei; Feng, Jinhui; Lau, Peter C.K.; Wu, Qiaqing; Zhu, Dunming
2016-01-01
To further expand the substrate range of the cyclohexylamine oxidase (CHAO) from Brevibacterium oxydans, a library of diverse mutants was created and assayed toward a group of structurally diverse substrates. Among them, mutants T198A and M226A exhibited enhanced activity relative to wt CHAO for most (S)-enantiomers of primary amines and some secondary amines. While mutants T198I, L199I, L199F, M226I and M226T were more active than wt CHAO toward the primary amines, mutants T198F, L199T, Y321A, Y321T, Y321I and Y321F enhanced the enzyme activity toward the secondary amines. In particular, mutant Y321I displayed an enhanced catalytic efficiency toward 1-(4-methoxybenzyl)-1, 2, 3, 4, 5, 6, 7, 8-octahydroisoquinoline (13). Whereas a double mutant, Y321I/M226T, acted on (S)-N-(prop-2-yn-1-yl)-2, 3-dihydro-1H-inden-1-amine [(S)-8]. Since (R)-8 is an irreversible inhibitor of monoamine oxidase and (S)-13 is an intermediate of dextromethorphan, a cough suppressant drug, deracemizations of 8 and 13 were carried out with crude enzyme extracts of the respective mutants. This resulted in 51% and 78% isolated yields of (R)-8 and (S)-13, respectively, each with high enantiomeric excess (93% and 99% ee). The results demonstrated the application potential of the evolved CHAO mutants in drug synthesis requiring chiral secondary amines. PMID:27138090
Multilocus Sequence Types of Campylobacter jejuni Isolates from Different Sources in Eastern China.
Zhang, Gong; Zhang, Xiaoyan; Hu, Yuanqing; Jiao, Xin-An; Huang, Jinlin
2015-09-01
Campylobacter jejuni is a major food-borne pathogen that causes human gastroenteritis in many developed countries. In our study, we applied multilocus sequence typing (MLST) technology to 167 C. jejuni isolates from diverse sources in Eastern China to examine their genetic diversity. MLST defined 94 sequence types (STs) belonging to 18 clonal complexes (CCs). Forty-five STs from 60 isolates (36%) and 22 alleles have not been previously documented in an international database. One hundred and two isolates, accounting for 61.1% of all isolates, belonged to eight clonal complexes. The eight major CCs were also the most common complexes from different sources. The most common ST type of isolates from human and food was ST-353. The dominant ST type in chicken and foods was ST-354. Among 21 STs that contained two or more different sources isolates, 15 STs contained human isolates and isolates from other sources, suggesting that potentially pathogenic strains are not restricted to specific lineages.
Genetic diversity and population structure of Plasmodium vivax in Central China
2014-01-01
Background In Central China the declining incidence of Plasmodium vivax has been interrupted by epidemic expansions and imported cases. The impact of these changes on the local parasite population, and concurrent risks of future resurgence, was assessed. Methods Plasmodium vivax isolates collected from Anhui and Jiangsu provinces, Central China between 2007 and 2010 were genotyped using capillary electrophoresis at seven polymorphic short tandem repeat markers. Spatial and temporal analyses of within-host and population diversity, population structure, and relatedness were conducted on these isolates. Results Polyclonal infections were infrequent in the 94 isolates from Anhui (4%) and 25 from Jiangsu (12%), with a trend for increasing frequency from 2008 to 2010 (2 to 19%) when combined. Population diversity was high in both provinces and across the years tested (HE = 0.8 – 0.85). Differentiation between Anhui and Jiangsu was modest (F’ ST = 0.1). Several clusters of isolates with identical multi-locus haplotypes were observed across both Anhui and Jiangsu. Linkage disequilibrium was strong in both populations and in each year tested (IAS = 0.2 – 0.4), but declined two- to four-fold when identical haplotypes were accounted for, indicative of occasional epidemic transmission dynamics. None of five imported isolates shared identical haplotypes to any of the central Chinese isolates. Conclusions The population genetic structure of P. vivax in Central China highlights unstable transmission, with limited barriers to gene flow between the central provinces. Despite low endemicity, population diversity remained high, but the reservoirs sustaining this diversity remain unclear. The challenge of imported cases and risks of resurgence emphasize the need for continued surveillance to detect early warning signals. Although parasite genotyping has potential to inform the management of outbreaks, further studies are required to identify suitable marker panels for resolving local from imported P. vivax isolates. PMID:25008859
Comparative isolation and genetic diversity of Arcobacter sp. from fish and the coastal environment.
Rathlavath, S; Kumar, S; Nayak, B B
2017-07-01
Arcobacter species are emerging food-borne and water-borne human pathogens associated mostly with food animals and their environment. The present study was aimed to isolate Arcobacter species from fish, shellfish and coastal water samples using two methods and to determine their genetic diversity. Of 201 samples of fish, shellfish and water samples analysed, 66 (32·8%) samples showed the presence of Arcobacter DNA from both Arcobacter enrichment broth and Bolton broth. Arcobacters were isolated from 58 (87·8%) and 38 (57·5%) of Arcobacter DNA-positive samples using Arcobacter blood agar and Preston blood agar, respectively. Arcobacter sp. identified by biochemical tests were further analysed by a genus-specific PCR, followed by a multiplex-PCR and 16S rRNA-RFLP. From both the methods, four different Arcobacter species namely Arcobacter butzleri, Arcobacter skirrowii, Arcobacter mytili and Arcobacter defluvii were isolated, of which A. butzleri was the predominant species. Enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprint analysis revealed that the arcobacters isolated in this study were genetically very diverse and no specific genotype was found associated with a specific source (seafood or water). Since pathogenic arcobacters are not known to be natural inhabitants of coastal marine environment, identifying the sources of contamination will be crucial for effective management of this problem. Arcobacter sp. are emerging food- and water-borne human pathogens. In this study, comparison of two selective media suggested Arcobacter blood agar to be more efficient in yielding Arcobacter sp. from seafood. Furthermore, the isolation of Arcobacter sp. such as Arcobacter butzleri, A. skirrowii, A. mytili and A. defluvii from seafood suggests diverse sources of contamination of seafood by Arcobacter sp. Analysis of enterobacterial repetitive intergenic consensus sequence-PCR patterns of A. butzleri showed high genetic diversity and lack of clonality among the isolates. Arcobacter contamination of seafood is an emerging issue both from seafood safety and seafood trade point of view. © 2017 The Society for Applied Microbiology.
Cha, J O; Yoo, J I; Kim, H K; Kim, H S; Yoo, J S; Lee, Y S; Jung, Y H
2013-10-01
To investigate diversity in the vanA cluster in Enterococcus faecium isolates from nontertiary hospitals. We identified 43 vanA-positive Ent. faecium isolates, including two vancomycin-susceptible isolates, from hospitals between 2003 and 2006. Of these isolates, >85% were resistant to ampicillin, erythromycin and ciprofloxacin. The vanA cluster was classified into six types using overlapping PCR, but the prototype transposon Tn1546 was not found. Most vanA-positive vancomycin-resistant Enterococcus (VRE) carried IS1216V and belonged to Type III (58·1%) or Type II (20·9%). vanY, vanZ and IS1216V were observed in the left and right ends of Type III with long-range PCR. IS1216V was also observed within vanS and vanX in the two vancomycin-susceptible isolates and in two vancomycin-resistant isolates. No VRE isolates with VanB and VanD phenotypes contained point mutations in vanS, unlike in previous reports. Sequence types (STs) of all isolates belonged to clonal complex 17, and ST78 was predominant. Insertion sequences, especially IS1216V, cause structural variation in the vanA cluster. We report the first observation of vanY and vanZ at the left end of Tn1546 in clinical isolates. This is the first report of the frequency of vancomycin resistance and diversity of Tn1546 in vanA-positive Ent. faecium isolates from nontertiary hospitals. © 2013 The Society for Applied Microbiology.
[Diversity of endophytic fungi associated with Ferula sinkiangensis K. M. Shen].
Sun, Li; Zhu, Jun; Li, Xiaojin; Shi, Shubing; Guo, Shunxing
2014-08-04
We studied the diversity of endophytic fungi associated with Ferula sinkiangensis K. M. Shen. Endophytic fungi from different years (1-2 years, 3-4 years and > 5 years) and different parts (root, stemand leaf) of Ferula sinkiangensis K. M. Shen were isolated by tissue expand method. Strains were classified by morphology and similarity of internal transcribed spacer (ITS) sequence by Clustal X method. Composition, diversity and preference of endophytic fungal community were analyzed by the isolation rate (IR), isolation frequency (IF), Shannon-Wiener biodiversity index (H'), Margalef Richness index (R). In total 140 endophytic fungi were isolated from F. sinkiangensis K. M. Shen and classified into 18 genera. Among the 140 isolates, Aureobasidium (25.7%), Alternaria (16.4%) and Phyllosticta (15.7%) were the dominant genera. The isolation results show that there were some notable differences between distribution and composition of the endophytic fungi isolated from different years and different parts of Ferula sinkiangensis K. M. Shen. Meanwhile, a certain degree of years and tissue preference were also obvious. The results obtained in this study will be helpful to exploit the endophytic fungal resources of Ferula sinkiangensis K. M. Shen, which can also provide a new way for the realization of the artificial breeding of Ferula sinkiangensis K. M. Shen.
Rong, R; Rao, S; Scott, S W; Tainter, F H
2001-02-01
DsRNAs were detected in 85/108 isolates of Discula destructiva, the cause of dogwood anthracnose, collected in South Carolina, Idaho, and Alabama. The eastern isolates contained a greater diversity of dsRNA than did Idaho isolates, but most isolates, irrespective of state of origin, contained two small bands (ca. 1.5-2.5 kb) with sequence homology indicated by Northern hybridization. Differences in the banding patterns suggest that genetic diversity of dsRNA in D. destructiva is generated rapidly and that D. destructiva can be simultaneously infected by multiple dsRNA viruses.
Abdalla, Osama A; Ali, Akhtar
2012-03-01
The 3'-terminal region (1191 nt) containing part of the NIb gene, complete coat protein (CP) and poly-A tail of 64 papaya ringspot virus (PRSV-W) isolates collected during 2008-2009 from watermelon in commercial fields of four different counties of Oklahoma were cloned and sequenced. Nucleotide and amino acid sequence identities ranged from 95.2-100% and 97.1-100%, respectively, among the Oklahoman PRSV-W isolates. Phylogenetic analysis showed that PRSW-W isolates clustered according to the locations where they were collected within Oklahoma, and each cluster contained two subgroups. All subgroups of Oklahoman PRSV-W isolates were on separate branches when compared to 35 known isolates originating from other parts of the world, including the one reported previously from the USA. This study helps in our understanding about the genetic diversity of PRSV-W isolates infecting cucurbits in Oklahoma.
Xi, Meili; Feng, Yuqing; Li, Qiong; Yang, Qinnan; Zhang, Baigang; Li, Guanghui; Shi, Chao; Xia, Xiaodong
2015-04-01
The aim of the study was to investigate the prevalence, distribution, and diversity of Escherichia coli in goat-milk-powder plants in Shaanxi, China. Three plants manufacturing goat milk powder in Shaanxi province were visited once for sampling during 2012 and 2013. Samples were taken for isolation of E. coli. Isolates were characterized by antimicrobial susceptibility testing and detection of virulence genes. All isolates were further examined by pulsed-field gel electrophoresis analysis. In total, 53 E. coli strains were isolated from 32 positive samples out of 534 samples. Among E. coli isolates, resistance was most frequently observed to trimethoprim-sulfamethoxazole (75.5%), whereas all isolates were sensitive to gatifloxacin, kanamycin, amikacin, and amoxicillin-clavulanate. The 6 virulence genes of pathogenic E. coli were not detected. Pulsed-field gel electrophoresis results showed that E. coli strains in plants were genetically diverse and milk storage tank could be an important contamination source. This study could provide useful information for plants manufacturing goat milk powder to establish proper management practices that help minimize the chance of microbial contamination. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Characterization of the genetic diversity of Mycobacterium tuberculosis in São Paulo city, Brazil
2011-01-01
Background Tuberculosis is a major health problem in São Paulo, Brazil, which is the most populous and one of the most cosmopolitan cities in South America. To characterize the genetic diversity of Mycobacterium tuberculosis in the population of this city, the genotyping techniques of spoligotyping and MIRU were applied to 93 isolates collected in two consecutive years from 93 different tuberculosis patients residing in São Paulo city and attending the Clemente Ferreira Institute (the reference clinic for the treatment of tuberculosis). Findings Spoligotyping generated 53 different spoligotype patterns. Fifty-one isolates (54.8%) were grouped into 13 spoligotyping clusters. Seventy- two strains (77.4%) showed spoligotypes described in the international databases (SpolDB4, SITVIT), and 21 (22.6%) showed unidentified patterns. The most frequent spoligotype families were Latin American Mediterranean (LAM) (26 isolates), followed by the T family (24 isolates) and Haarlem (H) (11 isolates), which together accounted for 65.4% of all the isolates. These three families represent the major genotypes found in Africa, Central America, South America and Europe. Six Spoligo-International-types (designated SITs by the database) comprised 51.8% (37/72) of all the identified spoligotypes (SIT53, SIT50, SIT42, SIT60, SIT17 and SIT1). Other SITs found in this study indicated the great genetic diversity of M. tuberculosis, reflecting the remarkable ethnic diversity of São Paulo city inhabitants. The MIRU technique was more discriminatory and did not identify any genetic clusters with 100% similarity among the 93 isolates. The allelic analysis showed that MIRU loci 26, 40, 23 and 10 were the most discriminatory. When MIRU and spoligotyping techniques were combined, all isolates grouped in the 13 spoligotyping clusters were separated. Conclusions Our data indicated the genomic stability of over 50% of spoligotypes identified in São Paulo and the great genetic diversity of M. tuberculosis isolates in the remaining SITs, reflecting the large ethnic mix of the São Paulo city inhabitants. The results also indicated that in this city, M. tuberculosis isolates acquired drug resistance independently of genotype and that resistance was more dependent on the selective pressure of treatment failure and the environmental circumstances of patients. PMID:21801364
Genetic structure of populations of Legionella pneumophila.
Selander, R K; McKinney, R M; Whittam, T S; Bibb, W F; Brenner, D J; Nolte, F S; Pattison, P E
1985-01-01
The genetic structure of populations of Legionella pneumophila was defined by an analysis of electrophoretically demonstrable allelic variation at structural genes encoding 22 enzymes in 292 isolates from clinical and environmental sources. Nineteen of the loci were polymorphic, and 62 distinctive electrophoretic types (ETs), representing multilocus genotypes, were identified. Principal coordinates and clustering analyses demonstrated that isolates received as L. pneumophila were a heterogeneous array of genotypes that included two previously undescribed species. For 50 ETs of L. pneumophila (strict sense), mean genetic diversity per locus was 0.312, and diversity was equivalent in ETs represented by isolates recovered from clinical sources and those collected from environmental sources. Cluster analysis revealed four major groups or lineages of ETs in L. pneumophila. Genetic diversity among ETs of the same serotype was, on average, 93% of that in the total sample of ETs. Isolates marked by particular patterns of reactivity to a panel of nine monoclonal antibodies were also genetically heterogeneous, mean diversity within patterns being about 75% of the total. Both Pontiac fever and the pneumonic form of legionellosis may be caused by isolates of the same ET. The genetic structure of L. pneumophila is clonal, and many clones apparently are worldwide in distribution. The fact that L. pneumophila is only 60% as variable as Escherichia coli raises the possibility that isolates recovered from clinical cases and man-made environments are a restricted subset of all clones in the species as a whole. PMID:4030689
Magnússon, S H; Guðmundsdóttir, S; Reynisson, E; Rúnarsson, A R; Harðardóttir, H; Gunnarson, E; Georgsson, F; Reiersen, J; Marteinsson, V Th
2011-10-01
Campylobacter jejuni isolates from various sources in Iceland were genotyped with the aim of assessing the genetic diversity, population structure, source distribution and campylobacter transmission routes to humans. A collection of 584 Campylobacter isolates were collected from clinical cases, food, animals and environment in Iceland in 1999-2002, during a period of national Campylobacter epidemic in Iceland. All isolates were characterized by pulse field gel electrophoresis (PFGE), and selected subset of 52 isolates representing the diversity of the identified PFGE types was further genotyped using multilocus sequence typing (MLST) and fla-SVR sequencing to gain better insight into the population structure. The results show a substantial diversity within the Icelandic Campylobacter population. Majority of the human Campylobacter infections originated from domestic chicken and cattle isolates. MLST showed the isolates to be distributed among previously reported and common sequence type complexes in the MLST database. The genotyping of Campylobacter from various sources has not previously been reported from Iceland, and the results of the study gave a valuable insight into the population structure of Camp. jejuni in Iceland, source distribution and transmission routes to humans. The geographical isolation of Iceland in the north Atlantic provides new information on Campylobacter population dynamics on a global scale. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology No claim to Icelandic Government works.
MILAZZO, MARY L.; CAJIMAT, MARIA N. B.; HANSON, J. DELTON; BRADLEY, ROBERT D.; QUINTANA, MIGUEL; SHERMAN, CATALINA; VELÁSQUEZ, REINA T.; FULHORST, CHARLES F.
2006-01-01
The primary objective of this study was to extend our knowledge of the geographical distribution, genetic diversity, and natural host associations of the hantaviruses indigenous to North America. Antibody to a hantavirus was found in 5 (20.8%) of 24 Coues' oryzomys (Oryzomys couesi) and none of 41 other rodents captured near the town of Catacamas in eastern Honduras, and a hantavirus was isolated from one of the antibody-positive Coues' oryzomys. Analyses of nucleotide and amino acid sequence data indicated that the viral isolate is a strain of a novel hantaviral species (proposed species name “Catacamas virus”) that is phylogenetically most closely related to Bayou virus, a hantaviral species that is principally associated with Oryzomys palustris (marsh oryzomys) in the southeastern United States. Catacamas virus is the first evidence for the occurrence of a hantaviral species in Honduras and the first evidence that a hantaviral species is naturally associated with an Oryzomys species other than O. palustis. PMID:17124003
Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites
Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark
2011-01-01
Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source. PMID:22163194
Smith, Scott A; de Alwis, A Ruklanthi; Kose, Nurgun; Jadi, Ramesh S; de Silva, Aravinda M; Crowe, James E
2014-11-01
Natural dengue virus (DENV) infection in humans induces antibodies (Abs) that neutralize the serotype of infection in a potent and type-specific manner; however, most Abs generated in response to infection are serotype cross-reactive and poorly neutralizing. Such cross-reactive Abs may enhance disease during subsequent infection with a virus of a different DENV serotype. Previous screening assays for DENV-specific human B cells and antibodies, using viral and recombinant antigens, mainly led to the isolation of dominant nonneutralizing B cell clones. To improve upon our ability to recover and study rare but durable and potently neutralizing DENV-specific Abs, we isolated human DENV-specific B cells by using a primary screen of binding to live virus, followed by a secondary screen with a high-throughput, flow cytometry-based neutralization assay to identify DENV-specific B cell lines prior to generation of hybridomas. Using this strategy, we identified several new classes of serotype-specific and serotype-cross-neutralizing anti-DENV monoclonal Abs (MAbs), including ultrapotent inhibitory antibodies with neutralizing activity concentrations of <10 ng/ml. We isolated serotype-specific neutralizing Abs that target diverse regions of the E protein, including epitopes present only on the intact, fully assembled viral particle. We also isolated a number of serotype-cross-neutralizing MAbs, most of which recognized a region in E protein domain I/II containing the fusion loop. These data provide insights into targets of the protective Ab-mediated immune response to natural DENV infection, which will prove valuable in the design and testing of new experimental DENV vaccines. Dengue virus infection is one of the most common mosquito-borne diseases and occurs in most countries of the world. Infection of humans with dengue virus induces a small number of antibodies that inhibit the infecting strain but also induces a large number of antibodies that can bind but do not inhibit dengue virus strains of other serotypes. We used a focused screening strategy to discover a large number of rare potently inhibiting antibodies, and we mapped the regions on the virus that were recognized by such antibodies. Our studies revealed that humans have the potential to generate very potent antibodies directed to diverse regions of the dengue virus surface protein. These studies provide important new information about protection from dengue virus infection that will be useful in the design and testing of new experimental dengue vaccines for humans. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Smith, Scott A.; de Alwis, A. Ruklanthi; Kose, Nurgun; Jadi, Ramesh S.; de Silva, Aravinda M.
2014-01-01
ABSTRACT Natural dengue virus (DENV) infection in humans induces antibodies (Abs) that neutralize the serotype of infection in a potent and type-specific manner; however, most Abs generated in response to infection are serotype cross-reactive and poorly neutralizing. Such cross-reactive Abs may enhance disease during subsequent infection with a virus of a different DENV serotype. Previous screening assays for DENV-specific human B cells and antibodies, using viral and recombinant antigens, mainly led to the isolation of dominant nonneutralizing B cell clones. To improve upon our ability to recover and study rare but durable and potently neutralizing DENV-specific Abs, we isolated human DENV-specific B cells by using a primary screen of binding to live virus, followed by a secondary screen with a high-throughput, flow cytometry-based neutralization assay to identify DENV-specific B cell lines prior to generation of hybridomas. Using this strategy, we identified several new classes of serotype-specific and serotype-cross-neutralizing anti-DENV monoclonal Abs (MAbs), including ultrapotent inhibitory antibodies with neutralizing activity concentrations of <10 ng/ml. We isolated serotype-specific neutralizing Abs that target diverse regions of the E protein, including epitopes present only on the intact, fully assembled viral particle. We also isolated a number of serotype-cross-neutralizing MAbs, most of which recognized a region in E protein domain I/II containing the fusion loop. These data provide insights into targets of the protective Ab-mediated immune response to natural DENV infection, which will prove valuable in the design and testing of new experimental DENV vaccines. IMPORTANCE Dengue virus infection is one of the most common mosquito-borne diseases and occurs in most countries of the world. Infection of humans with dengue virus induces a small number of antibodies that inhibit the infecting strain but also induces a large number of antibodies that can bind but do not inhibit dengue virus strains of other serotypes. We used a focused screening strategy to discover a large number of rare potently inhibiting antibodies, and we mapped the regions on the virus that were recognized by such antibodies. Our studies revealed that humans have the potential to generate very potent antibodies directed to diverse regions of the dengue virus surface protein. These studies provide important new information about protection from dengue virus infection that will be useful in the design and testing of new experimental dengue vaccines for humans. PMID:25100837
Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.
Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert
2016-01-01
Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard ecosystem, which contains yeasts from different species. The description of this yeast diversity will lead to the selection of native microbiota that can be used to produce quality wines with the characteristics of the Priorat.
Yazdankhah, Siamak P.; Kriz, Paula; Tzanakaki, Georgina; Kremastinou, Jenny; Kalmusova, Jitka; Musilek, Martin; Alvestad, Torill; Jolley, Keith A.; Wilson, Daniel J.; McCarthy, Noel D.; Caugant, Dominique A.; Maiden, Martin C. J.
2004-01-01
The distribution of serogroups and multilocus sequence types (STs) in collections of disease-associated and carried meningococci from the period 1991 to 2000 in three European countries (the Czech Republic, Greece, and Norway) was investigated. A total of 314 patient isolates and 353 isolates from asymptomatic carriers were characterized. The frequency distributions of serogroups and clone complexes differed among countries and between disease and carrier isolate collections. Highly significant differentiation was seen at each housekeeping locus. A marked positive association of serogroup C with disease was evidenced. The ST-11 complex was strongly positively associated with disease; associations for other clone complexes were weaker. The genetic diversity of the clone complexes differed. A single ST dominated the ST-11 clone complex, while the ST-41/44 complex exhibited greater levels of diversity. These data robustly demonstrated differences in the distribution of meningococcal genotypes in disease and carrier isolates and among countries. Further, they indicated that differences in genotype diversity and pathogenicity exist between meningococcal clone complexes. PMID:15528708
Sanad, Mohamed; Hassan, Noha
2014-01-01
A dual resonant antenna configuration is developed for multistandard multifunction mobile handsets and portable computers. Only two wideband resonant antennas can cover most of the LTE spectrums in portable communication equipment. The bandwidth that can be covered by each antenna exceeds 70% without using any matching or tuning circuits, with efficiencies that reach 80%. Thus, a dual configuration of them is capable of covering up to 39 LTE (4G) bands besides the existing 2G and 3G bands. 2×2 MIMO configurations have been also developed for the two wideband antennas with a maximum isolation and a minimum correlation coefficient between the primary and the diversity antennas.
Kassi, Fulgence K; Drakulovski, Pascal; Bellet, Virginie; Krasteva, Donika; Gatchitch, François; Doumbia, Adama; Kouakou, Gisèle A; Delaporte, Eric; Reynes, Jacques; Mallié, Michèle; Menan, Hervé I E; Bertout, Sebastien
2016-12-01
Cryptococcal meningitis is a severe opportunistic infection in HIV-infected patients. In Ivory Coast, despite the availability of antiretroviral treatment (ART), this infection is still prevalent. The study investigates the genetic diversity of 363 clinical isolates of Cryptococcus from 61 Ivorian HIV-positive patients, the occurrence of mixed infections and the in vitro antifungal susceptibility of the isolates. Serotyping was performed via LAC1 and CAP64 gene amplification. Genotyping was performed using the phage M13 core (GACA) 4 and (GTG) 5 primers and restriction fragment length polymorphism analysis of the URA5 gene. By PCR fingerprinting, the presence of the three serotypes were demonstrated among the 363 isolates in the population studied: A (n=318; 87.6%), AD (n=40; 11%) and B (n=4; 1.1%). Using PCR fingerprinting with primers M13 (GACA) 4 and (GTG) 5 , we grouped the isolates into 56 molecular subtypes. We observed a high frequency (39.3%) of mixed infections, with up to two different genotypes per sample. None of the isolates were resistant to amphotericin B. Only 0.3% and 1.1% of the isolates were resistant to fluconazole and flucytosine respectively. This study revealed the high genetic diversity among Cryptococcus isolates, the occurrence of mixed infections and a high antifungal susceptibility for the majority of Ivorian cryptococcal isolates. © 2016 Blackwell Verlag GmbH.
Demers, Jill E.; Gugino, Beth K.
2014-01-01
The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. PMID:25304514
Chávez-Galarza, Julio; Henriques, Dora; Johnston, J Spencer; Carneiro, Miguel; Rufino, José; Patton, John C; Pinto, M Alice
2015-06-01
Dissecting diversity patterns of organisms endemic to Iberia has been truly challenging for a variety of taxa, and the Iberian honey bee is no exception. Surveys of genetic variation in the Iberian honey bee are among the most extensive for any honey bee subspecies. From these, differential and complex patterns of diversity have emerged, which have yet to be fully resolved. Here, we used a genome-wide data set of 309 neutrally tested single nucleotide polymorphisms (SNPs), scattered across the 16 honey bee chromosomes, which were genotyped in 711 haploid males. These SNPs were analysed along with an intergenic locus of the mtDNA, to reveal historical patterns of population structure across the entire range of the Iberian honey bee. Overall, patterns of population structure inferred from nuclear loci by multiple clustering approaches and geographic cline analysis were consistent with two major clusters forming a well-defined cline that bisects Iberia along a northeastern-southwestern axis, a pattern that remarkably parallels that of the mtDNA. While a mechanism of primary intergradation or isolation by distance could explain the observed clinal variation, our results are more consistent with an alternative model of secondary contact between divergent populations previously isolated in glacial refugia, as proposed for a growing list of other Iberian taxa. Despite current intense honey bee management, human-mediated processes have seemingly played a minor role in shaping Iberian honey bee genetic structure. This study highlights the complexity of the Iberian honey bee patterns and reinforces the importance of Iberia as a reservoir of Apis mellifera diversity. © 2015 John Wiley & Sons Ltd.
Genotypic analysis of Mucor from the platypus in Australia.
Connolly, J H; Stodart, B J; Ash, G J
2010-01-01
Mucor amphibiorum is the only pathogen known to cause significant morbidity and mortality in the free-living platypus (Ornithorhynchus anatinus) in Tasmania. Infection has also been reported in free-ranging cane toads (Bufo marinus) and green tree frogs (Litoria caerulea) from mainland Australia but has not been confirmed in platypuses from the mainland. To date, there has been little genotyping specifically conducted on M. amphibiorum. A collection of 21 Mucor isolates representing isolates from the platypus, frogs and toads, and environmental samples were obtained for genotypic analysis. Internal transcribed spacer (ITS) region sequencing and GenBank comparison confirmed the identity of most of the isolates. Representative isolates from infected platypuses formed a clade containing the reference isolates of M. amphibiorum from the Centraal Bureau voor Schimmelcultures repository. The M. amphibiorum isolates showed a close sequence identity with Mucor indicus and consisted of two haplotypes, differentiated by single nucleotide polymorphisms within the ITS1 and ITS2 regions. With the exception of isolate 96-4049, all isolates from platypuses were in one haplotype. Multilocus fingerprinting via the use of intersimple sequence repeats polymerase chain reaction identified 19 genotypes. Two major clusters were evident: 1) M. amphibiorum and Mucor racemosus; and 2) Mucor circinelloides, Mucor ramosissimus, and Mucor fragilis. Seven M. amphibiorum isolates from platypuses were present in two subclusters, with isolate 96-4053 appearing genetically distinct from all other isolates. Isolates classified as M. circinelloides by sequence analysis formed a separate subcluster, distinct from other Mucor spp. The combination of sequencing and multilocus fingerprinting has the potential to provide the tools for rapid identification of M. amphibiorum. Data presented on the diversity of the pathogen and further work in linking genetic diversity to functional diversity will provide critical information for its management in Tasmanian river systems.
Ferreira, V.; Barbosa, J.; Stasiewicz, M.; Vongkamjan, K.; Moreno Switt, A.; Hogg, T.; Gibbs, P.; Teixeira, P.; Wiedmann, M.
2011-01-01
The persistence of Listeria monocytogenes in food-associated environments represents a key factor in transmission of this pathogen. To identify persistent and transient strains associated with production of fermented meat sausages in northern Portugal, 1,723 L. monocytogenes isolates from raw material and finished products from 11 processors were initially characterized by random amplification of polymorphic DNA (RAPD), PCR-based molecular serotyping, and epidemic clone characterization, as well as cadmium, arsenic, and tetracycline resistance typing. Pulsed-field gel electrophoresis (PFGE) typing of 240 representative isolates provided evidence for persistence of L. monocytogenes for periods of time ranging from 10 to 32 months for all seven processors for which isolates from different production dates were available. Among 50 L. monocytogenes isolates that included one representative for each PFGE pattern obtained from a given sample, 12 isolates showed reduced invasion efficiency in Caco-2 cells, including 8 isolates with premature stop codons in inlA. Among 41 isolates representing sporadic and persistent PFGE types, 22 isolates represented lysogens. Neither strains with reduced invasion nor lysogens were overrepresented among persistent isolates. While the susceptibility of isolates to lysogenic phages also did not correlate with persistence, it appeared to be associated with molecular serotype. Our data show the following. (i) RAPD may not be suitable for analysis of large sets of L. monocytogenes isolates. (ii) While a large diversity of L. monocytogenes subtypes is found in Portuguese fermented meat sausages, persistence of L. monocytogenes in this food chain is common. (iii) Persistent L. monocytogenes strains are diverse and do not appear to be characterized by unique genetic or phenotypic characteristics. PMID:21378045
Larsen, Rikke Friis; Boysen, Lene; Jessen, Lisbeth Rem; Guardabassi, Luca; Damborg, Peter
2018-05-21
Staphylococcus pseudintermedius is genotypically diverse within the canine population and multiple strains may colonize individual dogs at any given time. If multiple strains with distinct antimicrobial resistance profiles are present in superficial bacterial folliculitis (SBF), sampling a single skin lesion for culture and antimicrobial susceptibility testing (AST) might be inadequate to select effective therapy. To investigate S. pseudintermedius diversity in carriage sites and lesions of dogs with SBF. Fourteen dogs with SBF. Staphylococcus pseudintermedius isolates obtained from perineum, gingiva and four to six skin lesions per dog were subjected to pulsed-field gel electrophoresis (PFGE) and AST to assess diversity between lesions. For two dogs, 14-16 isolates per lesion were included in the analysis to assess diversity within lesions. Analysis of one isolate per lesion revealed one to four strains displaying unique PFGE profiles, and up to three unique antimicrobial resistance (AMR) profiles for each dog. Multiple pustules from the same dog always harboured the same strain, whereas papules, crusts and collarettes did not. Up to four strains with distinct AMR profiles were isolated from the same lesion in two dogs. In 12 dogs, at least one carriage site strain also was represented in lesions. Lesions of SBF may harbour multiple S. pseudintermedius strains with distinct antimicrobial resistance profiles. Pustules are the best target for bacterial culture. It remains unclear whether isolation of different strains from other lesion types is a consequence of contamination or co-infection by multiple strains. © 2018 ESVD and ACVD.
Phylogenetics of a Fungal Invasion: Origins and Widespread Dispersal of White-Nose Syndrome.
Drees, Kevin P; Lorch, Jeffrey M; Puechmaille, Sebastien J; Parise, Katy L; Wibbelt, Gudrun; Hoyt, Joseph R; Sun, Keping; Jargalsaikhan, Ariunbold; Dalannast, Munkhnast; Palmer, Jonathan M; Lindner, Daniel L; Marm Kilpatrick, A; Pearson, Talima; Keim, Paul S; Blehert, David S; Foster, Jeffrey T
2017-12-12
Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans , a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has exhibited few genetic polymorphisms in previous studies, presenting challenges for both epizoological tracking of the spread of this fungus and for determining its evolutionary history. We used single nucleotide polymorphisms (SNPs) from whole-genome sequencing and microsatellites to construct high-resolution phylogenies of P. destructans Shallow genetic diversity and the lack of geographic structuring among North American isolates support a recent introduction followed by expansion via clonal reproduction across the epizootic zone. Moreover, the genetic relationships of isolates within North America suggest widespread mixing and long-distance movement of the fungus. Genetic diversity among isolates of P. destructans from Europe was substantially higher than in those from North America. However, genetic distance between the North American isolates and any given European isolate was similar to the distance between the individual European isolates. In contrast, the isolates we examined from Asia were highly divergent from both European and North American isolates. Although the definitive source for introduction of the North American population has not been conclusively identified, our data support the origin of the North American invasion by P. destructans from Europe rather than Asia. IMPORTANCE This phylogenetic study of the bat white-nose syndrome agent, P. destructans , uses genomics to elucidate evolutionary relationships among populations of the fungal pathogen to understand the epizoology of this biological invasion. We analyze hypervariable and abundant genetic characters (microsatellites and genomic SNPs, respectively) to reveal previously uncharacterized diversity among populations of the pathogen from North America and Eurasia. We present new evidence supporting recent introduction of the fungus to North America from a diverse Eurasian population, with limited increase in genetic variation in North America since that introduction. Copyright © 2017 Drees et al.
Genetic diversity and epidemiology of infectious hematopoietic necrosis virus in Alaska
Emmenegger, E.G; Meyers, T.R.; Burton, T.O.; Kurath, G.
2000-01-01
Forty-two infectious hematopoietic necrosis virus (IHNV) isolates from Alaska were analyzed using the ribonuclease protection assay (RPA) and nucleotide sequencing. RPA analyses, utilizing 4 probes, N5, N3 (N gene), GF (G gene), and NV (NV gene), determined that the haplotypes of all 3 genes demonstrated a consistent spatial pattern. Virus isolates belonging to the most common haplotype groups were distributed throughout Alaska, whereas isolates in small haplotype groups were obtained from only 1 site (hatchery, lake, etc.). The temporal pattern of the GF haplotypes suggested a 'genetic acclimation' of the G gene, possibly due to positive selection on the glycoprotein. A pairwise comparison of the sequence data determined that the maximum nucleotide diversity of the isolates was 2.75% (10 mismatches) for the NV gene, and 1.99% (6 mismatches) for a 301 base pair region of the G gene, indicating that the genetic diversity of IHNV within Alaska is notably lower than in the more southern portions of the IHNV North American range. Phylogenetic analysis of representative Alaskan sequences and sequences of 12 previously characterized IHNV strains from Washington, Oregon, Idaho, California (USA) and British Columbia (Canada) distinguished the isolates into clusters that correlated with geographic origin and indicated that the Alaskan and British Columbia isolates may have a common viral ancestral lineage. Comparisons of multiple isolates from the same site provided epidemiological insights into viral transmission patterns and indicated that viral evolution, viral introduction, and genetic stasis were the mechanisms involved with IHN virus population dynamics in Alaska. The examples of genetic stasis and the overall low sequence heterogeneity of the Alaskan isolates suggested that they are evolutionarily constrained. This study establishes a baseline of genetic fingerprint patterns and sequence groups representing the genetic diversity of Alaskan IHNV isolates. This information could be used to determine the source of an IHN outbreak and to facilitate decisions in fisheries management of Alaskan salmonid stocks.
Hur, Byung-ung; Yoon, Jae-bong; Liu, Li-Kun; Cha, Sang-hoon
2010-11-30
Specific antibodies that possess a subnanomolar affinity are very difficult to obtain from human naïve immunoglobulin repertoires without the use of lengthy affinity optimization procedures. Here, we designed a hierarchical phage-displayed antibody library system to generate an enormous diversity of combinatorial Fab fragments (6×10(17)) and attempted to isolate high-affinity Fabs against the human epidermal growth factor receptor (EGFR). A primary antibody library, designated HuDVFab-8L, comprising 4.5×10(9) human naïve heavy chains and eight unspecified human naïve light chains was selected against the EGFR-Fc protein by biopanning, and four anti-EGFR Fab clones were isolated. Because one of the Fab clones, denoted EG-L2-11, recognized a native EGFR expressed on A431 cells, the heavy chain of the Fab was shuffled with a human naïve light chain repertoire with a diversity of 1.4×10(8) and selected a second time against the EGFR-Fc protein again. One EG-L2-11 variant, denoted EG-19-11, recognized an EGFR epitope that was almost the same as that bound by cetuximab and had a K(D) of approximately 540 pM for soluble EGFR, which is about 7-fold higher than that of the FabC225 derived from cetuximab. This variant was also internalized by A431 cells, likely via receptor-mediated endocytosis, and it efficiently inhibited EGF-mediated tyrosine phosphorylation of the EGFR. These results demonstrate that the use of our hierarchical antibody library system is advantageous in generating fully human antibodies especially with a therapeutic purpose. Copyright © 2010 Elsevier B.V. All rights reserved.
Sloan, Derek D.; Lam, Chia-Ying Kao; Irrinki, Alivelu; Liu, Liqin; Tsai, Angela; Pace, Craig S.; Kaur, Jasmine; Murry, Jeffrey P.; Balakrishnan, Mini; Moore, Paul A.; Johnson, Syd; Nordstrom, Jeffrey L.; Cihlar, Tomas; Koenig, Scott
2015-01-01
HIV reservoirs and production of viral antigens are not eliminated in chronically infected participants treated with combination antiretroviral therapy (cART). Novel therapeutic strategies aiming at viral reservoir elimination are needed to address chronic immune dysfunction and non-AIDS morbidities that exist despite effective cART. The HIV envelope protein (Env) is emerging as a highly specific viral target for therapeutic elimination of the persistent HIV-infected reservoirs via antibody-mediated cell killing. Dual-Affinity Re-Targeting (DART) molecules exhibit a distinct mechanism of action via binding the cell surface target antigen and simultaneously engaging CD3 on cytotoxic T lymphocytes (CTLs). We designed and evaluated Env-specific DARTs (HIVxCD3 DARTs) derived from known antibodies recognizing diverse Env epitopes with or without broadly neutralizing activity. HIVxCD3 DARTs derived from PGT121, PGT145, A32, and 7B2, but not VRC01 or 10E8 antibodies, mediated potent CTL-dependent killing of quiescent primary CD4 T cells infected with diverse HIV isolates. Similar killing activity was also observed with DARTs structurally modified for in vivo half-life extension. In an ex vivo model using cells isolated from HIV-infected participants on cART, combinations of the most potent HIVxCD3 DARTs reduced HIV expression both in quiescent and activated peripheral blood mononuclear cell cultures isolated from HIV-infected participants on suppressive cART. Importantly, HIVxCD3 DARTs did not induce cell-to-cell virus spread in resting or activated CD4 T cell cultures. Collectively, these results provide support for further development of HIVxCD3 DARTs as a promising therapeutic strategy for targeting HIV reservoirs. PMID:26539983
Xiong, Shengwen; Borrego, Pedro; Ding, Xiaohui; Zhu, Yuanmei; Martins, Andreia; Chong, Huihui
2016-01-01
ABSTRACT Human immunodeficiency virus type 2 (HIV-2) has already spread to different regions worldwide, and currently about 1 to 2 million people have been infected, calling for new antiviral agents that are effective on both HIV-1 and HIV-2 isolates. T20 (enfuvirtide), a 36-mer peptide derived from the C-terminal heptad repeat region (CHR) of gp41, is the only clinically approved HIV-1 fusion inhibitor, but it easily induces drug resistance and is not active on HIV-2. In this study, we first demonstrated that the M-T hook structure was also vital to enhancing the binding stability and inhibitory activity of diverse CHR-based peptide inhibitors. We then designed a novel short peptide (23-mer), termed 2P23, by introducing the M-T hook structure, HIV-2 sequences, and salt bridge-forming residues. Promisingly, 2P23 was a highly stable helical peptide with high binding to the surrogate targets derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV). Consistent with this, 2P23 exhibited potent activity in inhibiting diverse subtypes of HIV-1 isolates, T20-resistant HIV-1 mutants, and a panel of primary HIV-2 isolates, HIV-2 mutants, and SIV isolates. Therefore, we conclude that 2P23 has high potential to be further developed for clinical use, and it is also an ideal tool for exploring the mechanisms of HIV-1/2- and SIV-mediated membrane fusion. IMPORTANCE The peptide drug T20 is the only approved HIV-1 fusion inhibitor, but it is not active on HIV-2 isolates, which have currently infected 1 to 2 million people and continue to spread worldwide. Recent studies have demonstrated that the M-T hook structure can greatly enhance the binding and antiviral activities of gp41 CHR-derived inhibitors, especially for short peptides that are otherwise inactive. By combining the hook structure, HIV-2 sequence, and salt bridge-based strategies, the short peptide 2P23 has been successfully designed. 2P23 exhibits prominent advantages over many other peptide fusion inhibitors, including its potent and broad activity on HIV-1, HIV-2, and even SIV isolates, its stability as a helical, oligomeric peptide, and its high binding to diverse targets. The small size of 2P23 would benefit its synthesis and significantly reduce production cost. Therefore, 2P23 is an ideal candidate for further development, and it also provides a novel tool for studying HIV-1/2- and SIV-mediated cell fusion. PMID:27795437
Youenou, Benjamin; Brothier, Elisabeth; Nazaret, Sylvie
2014-01-01
The results of a multiple locus variable number of tandem repeat (VNTR) analysis (MLVA)-based study designed to understand the genetic diversity of soil and manure-borne Pseudomonas aeruginosa isolates, and the relationship between these isolates and a set of clinical and environmental isolates, are hereby reported. Fifteen described VNTR markers were first selected, and 62 isolates recovered from agricultural and industrial soils in France and Burkina Faso, and from cattle and horse manure, along with 26 snake-related isolates and 17 environmental and clinical isolates from international collections, were genotyped. Following a comparison with previously published 9-marker MLVA schemes, an optimal 13-marker MLVA scheme (MLVA13-Lyon) was identified that was found to be the most efficient, as it showed high typability (90%) and high discriminatory power (0.987). A comparison of MLVA with PFGE for typing of the snake-related isolates confirmed the MLVA13-Lyon scheme to be a robust method for quickly discriminating and inferring genetic relatedness among environmental isolates. The 62 isolates displayed wide diversity, since 41 MLVA types (i.e. MTs) were observed, with 26 MTs clustered in 10 MLVA clonal complexes (MCs). Three and eight MCs were found among soil and manure isolates, respectively. Only one MC contained both soil and manure-borne isolates. No common MC was observed between soil and manure-borne isolates and the snake-related or environmental and clinical isolates. Antibiotic resistance profiles were performed to determine a potential link between resistance properties and the selective pressure that might be present in the various habitats. Except for four soil and manure isolates resistant to ticarcillin and ticarcillin/clavulanic acid and one isolate from a hydrocarbon-contaminated soil resistant to imipenem, all environmental isolates showed wild-type antibiotic profiles. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Davies, S J; Cavers, S; Finegan, B; White, A; Breed, M F; Lowe, A J
2015-08-01
In forests with gap disturbance regimes, pioneer tree regeneration is typically abundant following stand-replacing disturbances, whether natural or anthropogenic. Differences in pioneer tree density linked to disturbance regime can influence pollinator behaviour and impact on mating patterns and genetic diversity of pioneer populations. Such mating pattern shifts can manifest as higher selfing rates and lower pollen diversity in old growth forest populations. In secondary forest, where more closely related pollen donors occur, an increase in biparental inbreeding is a potential problem. Here, we investigate the consequences of secondary forest colonisation on the mating patterns and genetic diversity of open-pollinated progeny arrays for the long-lived, self-compatible pioneer tree, Vochysia ferruginea, at two Costa Rican sites. Five microsatellite loci were screened across adult and seed cohorts from old growth forest with lower density, secondary forest with higher density, and isolated individual trees in pasture. Progeny from both old growth and secondary forest contexts were predominantly outcrossed (tm=1.00) and experienced low levels of biparental inbreeding (tm-ts=0.00-0.04). In contrast to predictions, our results indicated that the mating patterns of V. ferruginea are relatively robust to density differences between old growth and secondary forest stands. In addition, we observed that pollen-mediated gene flow possibly maintained the genetic diversity of open-pollinated progeny arrays in stands of secondary forest adults. As part of a natural resource management strategy, we suggest that primary forest remnants should be prioritised for conservation to promote restoration of genetic diversity during forest regeneration.
Pagaling, Eulyn; Gatica, Joao; Yang, Kun; Cytryn, Eddie; Yan, Tao
2016-09-01
The aim of this study was to determine the phylogenetic diversity of ceftriaxone resistance and the presence of known extended-spectrum β-lactamase (ESBL) genes in culturable soil resistomes. Libraries of soil bacterial isolates resistant to ceftriaxone were established from six physicochemically diverse soils collected in Hawaii (USA) and Israel. The phylogenetic affiliation, ceftriaxone and multidrug resistance levels, and presence of known ESBL genes of the isolates were determined. The soil bacterial isolates were phylogenetically grouped with the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. Ceftriaxone minimum inhibitory concentrations (MICs) largely followed the phylogeny structure and higher levels of ceftriaxone resistance corresponded to higher multidrug resistance. Three distinct blaTEM variants were detected in soil bacterial isolates belonging to nine different genera. In conclusion, the culturable soil resistomes for ceftriaxone exhibited high phylogenetic diversity and multidrug resistance. blaTEM was the only known ESBL detected in the soil resistomes, and its distribution in different phylogenetic groups suggests its ubiquitous presence and/or possible horizontal gene transfer within the soil microbiomes. Copyright © 2016 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Rezaei Riabi, Tahereh; Mirjalali, Hamed; Haghighi, Ali; Rostami Nejad, Mohammad; Pourhoseingholi, Mohammad Amin; Poirier, Philippe; Delbac, Frederic; Wawrzyniak, Ivan; Zali, Mohammad Reza
2018-07-01
Blastocystis is the most prevalent protozoa found in human stool samples. This study aimed to evaluate genetic diversity among Blastocystis subtypes isolated from both symptomatic and asymptomatic subjects as well as the potential correlation between subtypes and symptoms. A total of 55 Blastocystis-positive isolates were included in this study. A barcoding region of the small subunit rDNA was amplified and genetically assessed using MEGA6 and DnaSP regarding the presence of symptoms. BLAST analyses revealed the presence of 5 different subtypes (ST1, ST2, ST3, ST6 and ST7) among the samples. ST3 was the most prevalent subtype (25/55, 45%) while only one ST7 isolate was detected. Moreover, alleles 4 and 86 for ST1; alleles 9, 11 and 12 for ST2; alleles 31, 34, 36, 37 and 52 for ST3; allele 122 for ST6 and allele 137 for ST7 were detected. No statistically significant association was found between gender and symptoms with certain subtypes. Analysis of the intra-subtype variability in both symptomatic and asymptomatic subjects revealed highest similarity among ST1 isolates while lowest similarity was seen among ST3 isolates. Neutrality indices, Tajima's D and Fu's Fs, were negative but only statistically significant for ST3. Furthermore, highest values of Hd, π and S were observed among ST1, ST2 and ST3 isolated from symptomatic patients indicating high level of diversity among isolates obtained from these subjects. In addition, inter-subtype analysis showed the highest similarity between ST1 and ST2 isolates and the lowest similarity between ST2 and ST7 isolates. This is the first study revealing the presence of both ST6 and ST7 isolates in human from Iran. Phylogenetic analysis did not suggest any significant correlation between clinical manifestations and certain subtypes although genetic analysis showed highest value of diversity and significant neutrality indices among ST3 isolates obtained from symptomatic patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Patterns of bird functional diversity on land-bridge island fragments.
Ding, Zhifeng; Feeley, Kenneth J; Wang, Yanping; Pakeman, Robin J; Ding, Ping
2013-07-01
The loss of species diversity due to habitat fragmentation has been extensively studied. In contrast, the impacts of habitat fragmentation on functional diversity remains relatively poorly understood. We conducted bird functional diversity studies on a set of 41 recently isolated land-bridge islands in the Thousand Island Lake, China. We analysed differences in bird species richness and a recently developed suite of complementary functional diversity indices (FRic, volume of functional space occupied; FEve, evenness of abundance distribution in the functional trait space; FDiv, divergence in the distribution of abundance in the trait volume) across different gradients (island area and isolation). We found no correlations between FRic and FEve or FEve and FDiv, but negative correlations between FRic and FDiv. As predicted, island area accounted for most of the variation in bird species richness, whereas isolation explained most of the variation in species evenness (decreasing species evenness with increasing isolation). Functional diversity appears to be more strongly influenced by habitat filtering as opposed to limiting similarity. More specifically, across all islands, both FRic and FEve were significantly lower than expected for randomly assembled communities, but FDiv showed no clear patterns. FRic increased with island area, FEve decreased with island area and FDiv showed no clear patterns. Our finding that FEve decreases with island area at TIL may indicate low functional stability on such islands, and as such large islands and habitat patches may deserve extra attention and/or protection. These results help to demonstrate the importance of considering the effects of fragmentation on functional diversity in habitat management and reserve design plans. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Álvarez-Pérez, Sergio; Blanco, José L; Peláez, Teresa; Martínez-Nevado, Eva; García, Marta E
2016-11-01
The presence of Clostridium perfringens in water is generally regarded as an indicator of fecal contamination, and exposure to waterborne spores is considered a possible source of infection for animals. We assessed the presence and genetic diversity of C. perfringens in water sources in a zoological park located in Madrid (Spain). A total of 48 water samples from 24 different sources were analyzed, and recovered isolates were toxinotyped, genotyped by fluorophore-enhanced repetitive polymerase chain reaction (rep-PCR) fingerprinting and tested for antimicrobial susceptibility. C. perfringens was recovered from 43.8 % of water samples and 50 % of water sources analyzed. All isolates (n = 70) were type A and 42.9 % were β2-toxigenic (i.e., cpb2+), but none contained the enterotoxin-encoding gene (cpe). Isolates belonged to 15 rep-PCR genotypes and most genetic diversity (88 %) was distributed among isolates obtained from the same sample. Most isolates displayed intermediate susceptibility (57.1 %; MIC = 16 μg ml -1 ) or resistance (5.7 %; MIC ≥ 32 μg ml -1 ) to metronidazole. No resistance to other antimicrobials was detected, although some isolates showed elevated MICs to erythromycin and/or linezolid. Finally, a marginally significant association between absence of cpb2 and decreased susceptibility to metronidazole (MIC ≥ 16 μg ml -1 ) was detected. In conclusion, our results reveal a high prevalence of C. perfringens type A in the studied water reservoirs, which constitutes a health risk for zoo animals. The elevated MICs to metronidazole observed for genetically diverse isolates is a cause of additional concern, but more work is required to clarify the significance of reduced metronidazole susceptibility in environmental strains.
Huynh, Tien T.; Thomson, Richard; Mclean, Cassandra B.; Lawrie, Ann C.
2009-01-01
Background and Aims Mycorrhizal associations are essential to the plant kingdom. The largest flowering plant family, the Orchidaceae, relies on mycorrhizal fungi for germination, growth and survival. Evidence suggests varying degrees of fungal-host specificity based on a single fungal isolate from a single plant. This paper shows for the first time the diversity of endophytes colonizing in a single plant over consecutive years and the functional significance of this diversity. Methods Stem-collars of Caladenia formosa were collected in different seasons and years. Mycorrhizal fungi isolated were tested for their efficacy to induce leafing and genetically determined using ITS-RFLP and sequencing. Results Multiple mycorrhizal fungi were repeatedly isolated from a single collar that displayed varying effectiveness in germination percentages and adult leaf length. Additional factors contributed to the isolation of effective mycorrhizal fungi; fungal collection season, year of collection and individual isolates. Surface sterilization only improved the number of isolated mycorrhizal fungi. Dual inoculation did not increase germination. All 59 mycorrhizal fungi effective in germinating seed belonged to one clearly defined ITS (internal transcribed spacer) clade and clustered close to Sebacina vermifera (79–89 % homology). Isolates resulting in the greatest germination were not necessarily those resulting in the greatest survival and growth 1 year after germination. Conclusion Single orchid plants contained multiple mycorrhizal fungal strains of one species that had diverse functional differences. These results suggest that our current knowledge of fungal–host specificity may be incomplete due to experimental and analytical limitations. It also suggests that the long-term effectiveness of a mycorrhizal fungus or fungi could only be found by germination and longer-term growth tests rather than genetically. PMID:19561011
Salazar-Cerezo, Sonia; Martinez-Montiel, Nancy; Cruz-Lopez, Maria del Carmen; Martinez-Contreras, Rebeca D.
2018-01-01
Stanhopea tigrina is a Mexican endemic orchid reported as a threatened species. The naturally occurring microorganisms present in S. tigrina are unknown. In this work, we analyzed the diversity of endophytic and epiphytic culturable fungi in S. tigrina according to morphological and molecular identification. Using this combined approach, in this study we retrieved a total of 634 fungal isolates that presented filamentous growth, which were grouped in 134 morphotypes that were associated to 63 genera, showing that S. tigrina harbors a rich diversity of both endophytic and epiphytic fungi. Among these, the majority of the isolates corresponded to Ascomycetes, with Trichoderma and Penicillium as the most frequent genera followed by Fusarium and Aspergillus. Non-ascomycetes isolated were associated only to the genus Mucor (Mucoromycota) and Schizophyllum (Basidiomycota). Identified genera showed a differential distribution considering their epiphytic or endophytic origin, the tissue from which they were isolated, and the ability of the orchid to grow on different substrates. To our knowledge, this work constitutes the first study of the mycobiome of S. tigrina. Interestingly, 21 fungal isolates showed the ability to produce gibberellins. Almost half of the isolates were related to the gibberellin-producer genus Penicillium based on morphological and molecular identification. However, the rest of the isolates were related to the following genera, which have not been reported as gibberellin producers so far: Bionectria, Macrophoma, Nectria, Neopestalotiopsis, Talaromyces, Trichoderma, and Diplodia. Taken together, we found that S. tigrina possess a significant fungal diversity that could be a rich source of fungal metabolites with the potential to develop biotechnological approaches oriented to revert the threatened state of this orchid in the near future. PMID:29670591
Ellington, Matthew J; Yearwood, Lianne; Ganner, Mark; East, Claire; Kearns, Angela M
2008-01-01
The ST8-SCCmecIVa (USA300) methicillin-resistant Staphylococcus aureus (MRSA) clone can harbour the arginine catabolic mobile element (ACME). The arc gene cluster within the ACME may function as a virulence or strain survival factor. We determined the distribution of the ACME-associated arcA gene among genetically diverse MRSA from around England and Wales. MRSA isolates (n = 203) of diverse genetic types, referred to the England and Wales Staphylococcus reference laboratory, were tested for the presence of the ACME-arcA gene. ACME-arcA-positive isolates were characterized by toxin gene profiling, PFGE and spa sequence typing. MICs of a range of antimicrobials were also determined. The ACME-arcA gene was detected in 17 isolates. Twelve were related to known ST8-MRSA-SCCmecIVa isolates of the USA300 lineage by pulsotype and were resistant to oxacillin, with variable ciprofloxacin and erythromycin resistance. Outside the USA300 lineage, four of the remaining five ACME-arcA isolates were closely related ST97-MRSA-SCCmecV, Panton-Valentine leucocidin (PVL)-negative, resistant to oxacillin and variously resistant to erythromycin, ciprofloxacin, clindamycin, gentamicin, tetracycline and fusidic acid. The remaining isolate was ST1, PVL-positive and resistant to fusidic acid as well as oxacillin. Thirteen out of the 17 isolates were associated with skin and soft tissue infections. The detection of ACME-arcA in diverse MRSA types highlights the mobility of the elements encoding ACME-arcA genes. The diversity of strain types and resistance profiles among ACME-arcA-encoding MRSA is a cause for public-health concern and demands continued surveillance and close monitoring.
Salazar-Cerezo, Sonia; Martinez-Montiel, Nancy; Cruz-Lopez, Maria Del Carmen; Martinez-Contreras, Rebeca D
2018-01-01
Stanhopea tigrina is a Mexican endemic orchid reported as a threatened species. The naturally occurring microorganisms present in S. tigrina are unknown. In this work, we analyzed the diversity of endophytic and epiphytic culturable fungi in S. tigrina according to morphological and molecular identification. Using this combined approach, in this study we retrieved a total of 634 fungal isolates that presented filamentous growth, which were grouped in 134 morphotypes that were associated to 63 genera, showing that S. tigrina harbors a rich diversity of both endophytic and epiphytic fungi. Among these, the majority of the isolates corresponded to Ascomycetes, with Trichoderma and Penicillium as the most frequent genera followed by Fusarium and Aspergillus . Non-ascomycetes isolated were associated only to the genus Mucor (Mucoromycota) and Schizophyllum (Basidiomycota). Identified genera showed a differential distribution considering their epiphytic or endophytic origin, the tissue from which they were isolated, and the ability of the orchid to grow on different substrates. To our knowledge, this work constitutes the first study of the mycobiome of S. tigrina . Interestingly, 21 fungal isolates showed the ability to produce gibberellins. Almost half of the isolates were related to the gibberellin-producer genus Penicillium based on morphological and molecular identification. However, the rest of the isolates were related to the following genera, which have not been reported as gibberellin producers so far: Bionectria, Macrophoma, Nectria, Neopestalotiopsis, Talaromyces, Trichoderma , and Diplodia . Taken together, we found that S. tigrina possess a significant fungal diversity that could be a rich source of fungal metabolites with the potential to develop biotechnological approaches oriented to revert the threatened state of this orchid in the near future.
Hargreaves, Katherine R; Otieno, James R; Thanki, Anisha; Blades, Matthew J; Millard, Andrew D; Browne, Hilary P; Lawley, Trevor D; Clokie, Martha R J
2015-05-27
The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile "mobilome," which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Hargreaves, Katherine R.; Otieno, James R.; Thanki, Anisha; Blades, Matthew J.; Millard, Andrew D.; Browne, Hilary P.; Lawley, Trevor D.; Clokie, Martha R.J.
2015-01-01
The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile “mobilome,” which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics. PMID:26019165
NASA Astrophysics Data System (ADS)
Thorrold, S.; McMahon, K.; Braun, C.; Berumen, M. L.; Houghton, L. A.
2016-02-01
Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world's oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column or benthic primary production and recycled detrital carbon. We coupled analyses of stable carbon isotopes in essential amino acids with Bayesian mixing models to quantify carbon flow from pelagic primary producers, benthic macroalgae and autotrophic symbionts in corals, along with detrital carbon, to coral reef fishes across several feeding guilds and trophic positions, including apex predators (gray reef and black tip reef sharks), on reefs in the Phoenix Islands Protected Area. Excellent separation in multivariate isotope space among end-members at the base of the food web allowed us to quantify the relative proportion of carbon produced by each of the end-members that is assimilated by focal reef fish species. Low local human impacts on the study reefs provided the opportunity to examine carbon fluxs in fully functioning reef food webs, thereby providing an important baseline for examingn human impacts in food webs on stressed reefs in more populated regions in the tropics. Moreover the study reefs are located along a significant gradient in dissolved N concentrations, allowing us to test if end-member proportions vary as a function of pelagic primary productivity levels. Our work provides insights into the roles that diverse carbon sources may play in the structure, function and resilience of coral reef ecosystems.
Dielectrophoretic Capture and Genetic Analysis of Single Neuroblastoma Tumor Cells
Carpenter, Erica L.; Rader, JulieAnn; Ruden, Jacob; Rappaport, Eric F.; Hunter, Kristen N.; Hallberg, Paul L.; Krytska, Kate; O’Dwyer, Peter J.; Mosse, Yael P.
2014-01-01
Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here, we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells (WBCs). Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control WBCs. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples of patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here, we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients. PMID:25133137
Galland, John C.; Hyatt, Doreene R.; Crupper, Scott S.; Acheson, David W.
2001-01-01
Prevalence, antibiotic susceptibility, and genetic diversity were determined for Escherichia coli O157:H7 isolated over 11 months from four beef cattle feedlots in southwest Kansas. From the fecal pat (17,050) and environmental (7,134) samples collected, 57 isolates of E. coli O157:H7 were identified by use of bacterial culture and latex agglutination (C/LA). PCR showed that 26 isolates were eaeA gene positive. Escherichia coli O157:H7 was identified in at least one of the four feedlots in 14 of the 16 collections by C/LA and in 9 of 16 collections by PCR, but consecutive positive collections at a single feedlot were rare. Overall prevalence in fecal pat samples was low (0.26% by C/LA, and 0.08% by PCR). No detectable differences in prevalence or antibiotic resistance were found between isolates collected from home pens and those from hospital pens, where antibiotic use is high. Resistant isolates were found for six of the eight antibiotics that could be used to treat E. coli infections in food animals, but few isolates were multidrug resistant. The high diversity of isolates as measured by random amplification of polymorphic DNA and other characteristics indicates that the majority of isolates were unique and did not persist at a feedlot, but probably originated from incoming cattle. The most surprising finding was the low frequency of virulence markers among E. coli isolates identified initially by C/LA as E. coli O157:H7. These results demonstrate that better ways of screening and confirming E. coli O157:H7 isolates are required for accurate determination of prevalence. PMID:11282614
Singer, Lisa M; Meyer, Wieland; Firacative, Carolina; Thompson, George R; Samitz, Eileen; Sykes, Jane E
2014-06-01
Molecular types of the Cryptococcus neoformans/Cryptococcus gattii species complex that infect dogs and cats differ regionally and with host species. Antifungal drug susceptibility can vary with molecular type, but the susceptibility of Cryptococcus isolates from dogs and cats is largely unknown. Cryptococcus isolates from 15 dogs and 27 cats were typed using URA5 restriction fragment length polymorphism analysis (RFLP), PCR fingerprinting, and multilocus sequence typing (MLST). Susceptibility was determined using a microdilution assay (Sensititre YeastOne; Trek Diagnostic Systems). MICs were compared among groups. The 42 isolates studied comprised molecular types VGI (7%), VGIIa (7%), VGIIb (5%), VGIIc (5%), VGIII (38%), VGIV (2%), VNI (33%), and VNII (2%), as determined by URA5 RFLP. The VGIV isolate was more closely related to VGIII according to MLST. All VGIII isolates were from cats. All sequence types identified from veterinary isolates clustered with isolates from humans. VGIII isolates showed considerable genetic diversity compared with other Cryptococcus molecular types and could be divided into two major subgroups. Compared with C. neoformans MICs, C. gattii MICs were lower for flucytosine, and VGIII MICs were lower for flucytosine and itraconazole. For all drugs except itraconazole, C. gattii isolates exhibited a wider range of MICs than C. neoformans. MICs varied with Cryptococcus species and molecular type in dogs and cats, and MICs of VGIII isolates were most variable and may reflect phylogenetic diversity in this group. Because sequence types of dogs and cats reflect those infecting humans, these observations may also have implications for treatment of human cryptococcosis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Kuesap, Jiraporn; Chaijaroenkul, Wanna; Ketprathum, Kanchanok; Tattiyapong, Puntanat; Na-Bangchang, Kesara
2014-02-01
Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.
High genetic variability of HIV-1 in female sex workers from Argentina.
Pando, María A; Eyzaguirre, Lindsay M; Carrion, Gladys; Montano, Silvia M; Sanchez, José L; Carr, Jean K; Avila, María M
2007-08-13
A cross-sectional study on 625 Female Sex Workers (FSWs) was conducted between 2000 and 2002 in 6 cities in Argentina. This study describes the genetic diversity and the resistance profile of the HIV-infected subjects. Seventeen samples from HIV positive FSWs were genotyped by env HMA, showing the presence of 9 subtype F, 6 subtype B and 2 subtype C. Sequence analysis of the protease/RT region on 16 of these showed that 10 were BF recombinants, three were subtype B, two were subtype C, and one sample presented a dual infection with subtype B and a BF recombinant. Full-length genomes of five of the protease/RT BF recombinants were also sequenced, showing that three of them were CRF12_BF. One FSW had a dual HIV-1 infection with subtype B and a BF recombinant. The B sections of the BF recombinant clustered closely with the pure B sequence isolated from the same patient. Major resistance mutations to antiretroviral drugs were found in 3 of 16 (18.8%) strains. The genetic diversity of HIV strains among FSWs in Argentina was extensive; about three-quarters of the samples were infected with diverse BF recombinants, near twenty percent had primary ART resistance and one sample presented a dual infection. Heterosexual transmission of genetically diverse, drug resistant strains among FSWs and their clients represents an important and underestimated threat, in Argentina.
Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment.
Barns, S M; Fundyga, R E; Jeffries, M W; Pace, N R
1994-01-01
Of the three primary phylogenetic domains--Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes)--Archaea is the least understood in terms of its diversity, physiologies, and ecological panorama. Although many species of Crenarchaeota (one of the two recognized archaeal kingdoms sensu Woese [Woese, C. R., Kandler, O. & Wheelis, M. L. (1990) Proc. Natl. Acad. Sci. USA 87, 4576-4579]) have been isolated, they constitute a relatively tight-knit cluster of lineages in phylogenetic analyses of rRNA sequences. It seemed possible that this limited diversity is merely apparent and reflects only a failure to culture organisms, not their absence. We report here phylogenetic characterization of many archaeal small subunit rRNA gene sequences obtained by polymerase chain reaction amplification of mixed population DNA extracted directly from sediment of a hot spring in Yellowstone National Park. This approach obviates the need for cultivation to identify organisms. The analyses document the existence not only of species belonging to well-characterized crenarchaeal genera or families but also of crenarchaeal species for which no close relatives have so far been found. The large number of distinct archaeal sequence types retrieved from this single hot spring was unexpected and demonstrates that Crenarchaeota is a much more diverse group than was previously suspected. The results have impact on our concepts of the phylogenetic organization of Archaea. PMID:7510403
Growth Responses of Three Dominant Wetland Plant Species to Various Flooding and Nutrient Levels
NASA Astrophysics Data System (ADS)
Barrett, S.; Shaffer, G. P.
2017-12-01
Coastal Louisiana is experiencing a greater rate of wetland loss than any other wetland system in the United States. This is primarily due to anthropogenic stressors such as flood control levees, backfilling and development of wetlands, and other hydrologic modifications. Methods employed to mitigate wetland loss include the construction of river diversions and assimilation wetlands, which can provide consistent sources of freshwater influx and nutrients to impounded swamps and marshes. It is well known that prolonged flooding causes strain on wetland plant communities and facilitates or exacerbates wetland degradation. However, because river diversions and assimilation wetlands bring high nutrient loads along with freshwater, there is debate over whether prolonged flooding or high influx of nutrients is the primary cause of stress in river diversion and assimilation wetland discharge areas. This mesocosm experiment addresses this question by isolating the effects of flooding and nutrients on the biomass of baldcypress (Taxodium distichum), maidencane (Panicum hemitomon), and cordgrass (Spartina patens) over the course of a growing season. The results of this study provide clarity as to whether flooding stress, high nutrient loads, or both cause a reduction in wetland plant productivity. By evaluating the growth responses of T. distichum, P. hemitomon, and S. patens at varying nutrient regimes, we gain insight on how these more dominant species will react to high nutrient discharges from large river diversions, such as those proposed in Louisiana's 2017 Master Plan.
Genetic diversity of Trichomonas vaginalis clinical isolates from Henan province in central China.
Mao, Meng; Liu, Hui Li
2015-07-01
Trichomonas vaginalis is a flagellated protozoan parasite that infects the human urogenital tract, causing the most common non-viral, sexually transmitted disease worldwide. In this study, genetic variants of T. vaginalis were identified in Henan Province, China. Fragments of the small subunit of nuclear ribosomal RNA (18S rRNA) were amplified from 32 T. vaginalis isolates obtained from seven regions of Henan Province. Overall, 18 haplotypes were determined from the 18S rRNA sequences. Each sampled population and the total population displayed high haplotype diversity (Hd), accompanied by very low nucleotide diversity (Pi). In these molecular genetic variants, 91.58% genetic variation was derived from intra-regions. Phylogenetic analysis revealed no correlation between phylogeny and geographic distribution. Demographic analysis supported population expansion of T. vaginalis isolates from central China. Our findings showing moderate-to-high genetic variations in the 32 isolates of T. vaginalis provide useful knowledge for monitoring changes in parasite populations for the development of future control strategies.
Eevers, N; Gielen, M; Sánchez-López, A; Jaspers, S; White, J C; Vangronsveld, J; Weyens, N
2015-01-01
Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001–1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media. PMID:25997013
Teixeira, Marcus M.
2016-01-01
During the past 20 years, a general picture of the genetic diversity and population structure of Coccidioides, the causal agent of coccidioidomycosis (Valley fever), has emerged. The genus consists of 2 genetically diverse species, C. immitis and C. posadasii, each of which contains 1 or more distinct populations with limited gene flow. Genotypic data indicate that C. immitis is divided into 2 subpopulations (central and southern California populations) and C. posadasii is divided into 3 subpopulations (Arizona, Mexico, and Texas/South America populations). However, admixture within and among these populations and the current paucity of environmental isolates limit our understanding of the population genetics of Coccidioides. We assessed population structure of Coccidioides in Arizona by analyzing 495 clinical and environmental isolates. Our findings confirm the population structure as previously described and indicate a finer scale population structure in Arizona. Environmental isolates appear to have higher genetic diversity than isolates from human patients. PMID:27191589
Diversity of Culturable Soil Micro-fungi along Altitudinal Gradients of Eastern Himalayas
Devi, Lamabam Sophiya; Khaund, Polashree; Nongkhlaw, Fenella M. W.
2012-01-01
Very few studies have addressed the phylogenetic diversity of fungi from Northeast India under the Eastern Himalayan range. In the present study, an attempt has been made to study the phylogenetic diversity of culturable soil fungi along the altitudinal gradients of eastern Himalayas. Soil samples from 24 m above sea level to 2,000 m above sea level altitudes of North-East India were collected to investigate soil micro-fungal community structure and diversity. Molecular characterization of the isolates was done by PCR amplification of 18S rDNA using universal primers. Phylogenetic analysis using BLAST revealed variation in the distribution and richness of different fungal biodiversity over a wide range of altitudes. A total of 107 isolates were characterized belonging to the phyla Ascomycota and Zygomycota, corresponding to seven orders (Eurotiales, Hypocreales, Calosphaeriales, Capnodiales, Pleosporales, Mucorales, and Mortierellales) and Incertae sedis. The characterized isolates were analysed for richness, evenness and diversity indices. Fungal diversity had significant correlation with soil physico-chemical parameters and the altitude. Eurotiales and Hypocreales were most diverse and abundant group of fungi along the entire altitudinal stretch. Species of Penicillium (D = 1.44) and Aspergillus (D = 1.288) were found to have highest diversity index followed by Talaromyces (D = 1.26) and Fusarium (D = 1.26). Fungal distribution showed negative correlation with altitude and soil moisture content. Soil temperature, pH, humidity and ambient temperature showed positive correlation with fungal distribution. PMID:23115506
ERIC Educational Resources Information Center
Aquino, Katherine C.
2016-01-01
Disability is often viewed as an obstacle to postsecondary inclusion, but not a characteristic of student diversity. Additionally, current theoretical frameworks isolate disability from other student diversity characteristics. In response, a new conceptual framework, the Disability-Diversity (Dis)Connect Model (DDDM), was created to address…
Diversity and cold adaptation of microorganisms isolated from the Schirmacher Oasis, Antarctica
NASA Astrophysics Data System (ADS)
Mojib, Nazia; Bej, Asim K.; Hoover, Richard
2008-08-01
We have investigated the feasibility of the PCR amplification of the 16S rRNA genes from eubacteria and Archea on samples collected on Whatman FTA filters from Schirmacher Oasis for the study of culture-independent analysis of the microbial diversity. Both conventional PCR and real-time TaqmaTM PCR successfully amplified the targeted genes. A number of diverse groups of psychrotolerant microorganisms with various pigments have been isolated when cultured on agar medium. 16S rRNA gene analysis of these isolates helped us to identify closest taxonomic genus Pseudomonas, Frigoribacterium, Arthrobacter, Flavobacterium, and Janthinobacterium. It is possible that the pigments play protective role from solar UV radiation, which is prevalent in Antarctic continent especially during Austral summer months. Study of the expression of cold adaptive protein CapB and ice-binding protein IBP using western blots showed positive detection of both or either of these proteins in 6 out of 8 isolates. Since the CapB and IBP protein structure greatly varies in microorganisms, it is possible that the 2 isolates with negative results could have a different class of these proteins. The expression of the CapB and the IBP in these isolates suggest that these proteins are essential for the survival in the Antarctic cold and subzero temperatures and protect themselves from freeze-damage. The current study provided sufficient data to further investigate the rich and diverse biota of psychrotolerant extremophiles in the Antarctic Schirmacher Oasis using both culture-independent and culture-based approaches; and understand the mechanisms of cold tolerance.
Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese.
Henri-Dubernet, Ségolène; Desmasures, Nathalie; Guéguen, Micheline
2008-03-01
The diversity and dynamics of Lactobacillus populations in traditional raw milk Camembert cheese were monitored throughout the manufacturing process in 3 dairies. Culture-dependent analysis was carried out on isolates grown on acidified de Man - Rogosa - Sharpe agar and Lactobacillus anaerobic de Man Rogosa Sharpe agar supplemented with vancomycin and bromocresol green media. The isolates were identified by polymerase chain reaction - temperature gradient gel electrophoresis (PCR-TGGE) and (or) species-specific PCR and (or) sequencing, and Lactobacillus paracasei and Lactobacillus plantarum isolates were characterized by pulsed field gel electrophoresis (PFGE). Milk and cheese were subjected to culture-independent analysis by PCR-TGGE. Presumed lactobacilli were detected by plate counts throughout the ripening process. However, molecular analysis of total DNA and DNA of isolates failed to detect Lactobacillus spp. in certain cases. The dominant species in the 3 dairies was L. paracasei. PFGE analysis revealed 21 different profiles among 39 L. paracasei isolates. Lactobacillus plantarum was the second most isolated species, but it occurred nearly exclusively in one dairy. The other species isolated were Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus acidophilus, Lactobacillus helveticus, a Lactobacillus psittaci/delbrueckii subsp. bulgaricus/gallinarum/crispatus group, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, Lactobacillus brevis, Lactobacillus kefiri, and Lactobacillus perolens. Lactobacilli diversity at the strain level was high. Dynamics varied among dairies, and each cheese exhibited a specific picture of species and strains.
Jurado-Tarifa, E; Torralbo, A; Borge, C; Cerdà-Cuéllar, M; Ayats, T; Carbonero, A; García-Bocanegra, I
2016-10-01
Infections caused by thermotolerant Campylobacter spp. and Salmonella spp. are the leading causes of human gastroenteritis worldwide. Wild birds can act as reservoirs of both pathogens. A survey was carried out to determine the prevalence, genetic diversity and antimicrobial resistance of thermotolerant Campylobacter and Salmonella in waterfowl used as decoys and wild raptors in Andalusia (Southern Spain). The overall prevalence detected for Campylobacter was 5.9% (18/306; CI95%: 3.25-8.52) in decoys and 2.3% (9/387; CI95%: 0.82-3.83) in wild raptors. Isolates were identified as C. jejuni, C. coli and C. lari in both bird groups. Salmonella was isolated in 3.3% (10/306; CI95%: 2.3-4.3) and 4.6% (18/394; CI95%: 3.5-5.6) of the decoys and raptors, respectively. Salmonella Enteritidis and Typhimurium were the most frequently identified serovars, although Salmonella serovars Anatum, Bredeney, London and Mikawasima were also isolated. Pulsed-field gel electrophoresis analysis of isolates showed higher genetic diversity within Campylobacter species compared to Salmonella serovars. Campylobacter isolates showed resistance to gentamicin, ciprofloxacin and tetracycline, while resistance to erythromycin and tetracycline was found in Salmonella isolates. The results indicate that both decoys and raptors can act as natural carriers of Campylobacter and Salmonella in Spain, which may have important implications for public and animal health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nougairède, Antoine; Joffret, Marie-Line; Deshpande, Jagadish M.; Dubot-Pérès, Audrey; Héraud, Jean-Michel
2014-01-01
Most circulating strains of Human enterovirus 71 (EV-A71) have been classified primarily into three genogroups (A to C) on the basis of genetic divergence between the 1D gene, which encodes the VP1 capsid protein. The aim of the present study was to provide further insights into the diversity of the EV-A71 genogroups following the recent description of highly divergent isolates, in particular those from African countries, including Madagascar. We classified recent EV-A71 isolates by a large comparison of 3,346 VP1 nucleotidic sequences collected from GenBank. Analysis of genetic distances and phylogenetic investigations indicated that some recently-reported isolates did not fall into the genogroups A-C and clustered into three additional genogroups, including one Indian genogroup (genogroup D) and 2 African ones (E and F). Our Bayesian phylogenetic analysis provided consistent data showing that the genogroup D isolates share a recent common ancestor with the members of genogroup E, while the isolates of genogroup F evolved from a recent common ancestor shared with the members of the genogroup B. Our results reveal the wide diversity that exists among EV-A71 isolates and suggest that the number of circulating genogroups is probably underestimated, particularly in developing countries where EV-A71 epidemiology has been poorly studied. PMID:24598878
New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade.
Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun
2017-05-05
Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007.
USDA-ARS?s Scientific Manuscript database
Most T. gondii strains in North America and Europe belong to three archetypal clonal lineages including the Type I, II and III but, isolates from Brazil are highly diverse. Here, we analyzed 164 T. gondii isolates from three countries in Central America (Guatemala, Nicaragua, Costa Rica), from one c...
NASA Technical Reports Server (NTRS)
Miteva, V. I.; Sheridan, P. P.; Brenchley, J. E.
2004-01-01
We studied a sample from the GISP 2 (Greenland Ice Sheet Project) ice core to determine the diversity and survival of microorganisms trapped in the ice at least 120,000 years ago. Previously, we examined the phylogenetic relationships among 16S ribosomal DNA (rDNA) sequences in a clone library obtained by PCR amplification from genomic DNA extracted from anaerobic enrichments. Here we report the isolation of nearly 800 aerobic organisms that were grouped by morphology and amplified rDNA restriction analysis patterns to select isolates for further study. The phylogenetic analyses of 56 representative rDNA sequences showed that the isolates belonged to four major phylogenetic groups: the high-G+C gram-positives, low-G+C gram-positives, Proteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group. The most abundant and diverse isolates were within the high-G+C gram-positive cluster that had not been represented in the clone library. The Jukes-Cantor evolutionary distance matrix results suggested that at least 7 isolates represent new species within characterized genera and that 49 are different strains of known species. The isolates were further categorized based on the isolation conditions, temperature range for growth, enzyme activity, antibiotic resistance, presence of plasmids, and strain-specific genomic variations. A significant observation with implications for the development of novel and more effective cultivation methods was that preliminary incubation in anaerobic and aerobic liquid prior to plating on agar media greatly increased the recovery of CFU from the ice core sample.
Genotypic and phenotypic diversity of Alicyclobacillus acidocaldarius isolates.
Félix-Valenzuela, L; Guardiola-Avila, I; Burgara-Estrella, A; Ibarra-Zavala, M; Mata-Haro, V
2015-10-01
The fruit juice industry recognizes Alicyclobacillus as a major quality control target micro-organism. In this study, we analysed 19 bacterial isolates to identify Alicyclobacillus species by polymerase chain reaction (PCR) and sequencing analyses. Phenotypic and genomic diversity among isolates were investigated by API 50CHB system and ERIC-PCR (enterobacterial repetitive intergenic consensus-PCR) respectively. All bacterial isolates were identified as Alicyclobacillus acidocaldarius, and almost all showed identical DNA sequences according to their 16S rRNA (rDNA) gene partial sequences. Only few carbohydrates were fermented by A. acidocaldarius isolates, and there was little variability in the biochemical profile. Genotypic fingerprinting of the A. acidocaldarius isolates showed high diversity, and clusters by ERIC-PCR were distinct to those obtained from the 16S rRNA gene phylogenetic tree. There was no correlation between phenotypic and genotypic variability in the A. acidocaldarius isolates analysed in this study. Detection of Alicyclobacillus strains is imperative in fruit concentrates and juices due to the production of guaiacol. Identification of the genera originates rejection of the product by processing industry. However, not all the Alicyclobacillus species are deteriorative and hence the importance to differentiate among them. In this study, partial 16S ribosomal RNA sequence alignment allowed the differentiation of species. In addition, ERIC-PCR was introduced for the genotypic characterization of Alicyclobacillus, as an alternative for differentiation among isolates from the same species. © 2015 The Society for Applied Microbiology.
Rayu, Smriti; Nielsen, Uffe N.; Nazaries, Loïc; Singh, Brajesh K.
2017-01-01
Chlorpyrifos (CP) is one of the most widely used organophosphate pesticides in agriculture worldwide, but its extensive use has led to the contamination of various soil and water systems. Microbial bioremediation is considered to be one of the most viable options for the removal of CP from the environment; however, little is known about the soil bacterial diversity that degrade CP. Sequential soil and liquid culture enrichments enabled the isolation of bacterial CP degraders with sequence homologies to Xanthomonas sp., Pseudomonas sp., and Rhizobium sp. The efficacy of the three isolated strains: Xanthomonas sp. 4R3-M1, Pseudomonas sp. 4H1-M3, and Rhizobium sp. 4H1-M1 was further investigated for biodegradation of CP and its primary metabolic product, 3,5,6-trichloro-2-pyridinol (TCP). The results indicate that all three bacterial strains almost completely metabolized CP (10 mg/L) and TCP, occurring as a metabolic degradation product, in mineral salt media as a sole source of carbon and nitrogen. The isolated bacterial strains Xanthomonas sp. 4R3-M1 and Pseudomonas sp. 4H1-M3 could also degrade TCP (10 mg/L) as a sole carbon and nitrogen source, when provided externally. Thus, these bacterial strains may be effective in practical application of bioremediation of both CP and TCP. PMID:28421040
Ondieki, Damaris K; Nyaboga, Evans N; Wagacha, John M; Mwaura, Francis B
2017-01-01
Limited nitrogen (N) content in the soil is a major challenge to sustainable and high crop production in many developing countries. The nitrogen fixing symbiosis of legumes with rhizobia plays an important role in supplying sufficient N for legumes and subsequent nonleguminous crops. To identify rhizobia strains which are suitable for bioinoculant production, characterization of rhizobia is a prerequisite. The objective of this study was to assess the morphological and genetic diversity of rhizobia that nodulates cowpea in agricultural soils of lower eastern Kenya. Twenty-eight rhizobia isolates were recovered from soil samples collected from farmers' fields in Machakos, Makueni, and Kitui counties in lower eastern Kenya and characterized based on morphological characteristics. Thirteen representative isolates were selected and characterized using BOX repetitive element PCR fingerprinting. Based on the dendrogram generated from morphological characteristics, the test isolates were distributed into two major clusters at a similarity of 75%. Phylogenetic tree, based on BOX repetitive element PCR, grouped the isolates into two clusters at 90% similarity level. The clustering of the isolates did not show a relationship to the origin of soil samples, although the isolates were genetically diverse. This study is a prerequisite to the selection of suitable cowpea rhizobia to develop bioinoculants for sustainable crop production in Kenya.
Komínková, Eva; Dreiseitl, Antonín; Malečková, Eva; Doležel, Jaroslav
2016-01-01
Population surveys of Blumeria graminis f. sp. hordei (Bgh), a causal agent of more than 50% of barley fungal infections in the Czech Republic, have been traditionally based on virulence tests, at times supplemented with non-specific Restriction fragment length polymorphism or Random amplified polymorphic DNA markers. A genomic sequence of Bgh, which has become available recently, enables identification of potential markers suitable for population genetics studies. Two major strategies relying on transposable elements and microsatellites were employed in this work to develop a set of Repeat junction markers, Single sequence repeat and Single nucleotide polymorphism markers. A resolution power of the new panel of markers comprising 33 polymorphisms was demonstrated by a phylogenetic analysis of 158 Bgh isolates. A core set of 97 Czech isolates was compared to a set 50 Australian isolates on the background of 11 diverse isolates collected throughout the world. 73.2% of Czech isolates were found to be genetically unique. An extreme diversity of this collection was in strong contrast with the uniformity of the Australian one. This work paves the way for studies of population structure and dynamics based on genetic variability among different Bgh isolates originating from geographically limited regions. PMID:27875588
Proença, Diogo Neves; Francisco, Romeu; Santos, Clara Vieira; Lopes, André; Fonseca, Luís; Abrantes, Isabel M O; Morais, Paula V
2010-12-09
The pinewood nematode (PWN), Bursaphelenchus xylophilus, has been thought to be the only causal agent of pine wilt disease (PWD), however, since bacteria have been suggested to play a role in PWD, it is important to know the diversity of the microbial community associated to it. This study aimed to assess the microbial community associated with B. xylophilus and with other nematodes isolated from pine trees, Pinus pinaster, with PWD from three different affected forest areas in Portugal. One hundred and twenty three bacteria strains were isolated from PWN and other nematodes collected from 14 P. pinaster. The bacteria strains were identified by comparative analysis of the 16S rRNA gene partial sequence. All except one gram-positive strain (Actinobacteria) belonged to the gram-negative Beta and Gammaproteobacteria. Most isolates belonged to the genus Pseudomonas, Burkholderia and to the family Enterobacteriaceae. Species isolated in higher percentage were Pseudomonas lutea, Yersinia intermedia and Burkholderia tuberum. The major bacterial population associated to the nematodes differed according to the forest area and none of the isolated bacterial species was found in all different forest areas. For each of the sampled areas, 60 to 100% of the isolates produced siderophores and at least 40% produced lipases. The ability to produce siderophores and lipases by most isolates enables these bacteria to have a role in plant physiological response. This research showed a high diversity of the microbial community associated with B. xylophilus and other nematodes isolated from P. pinaster with PWD.
Proença, Diogo Neves; Francisco, Romeu; Santos, Clara Vieira; Lopes, André; Fonseca, Luís; Abrantes, Isabel M. O.; Morais, Paula V.
2010-01-01
The pinewood nematode (PWN), Bursaphelenchus xylophilus, has been thought to be the only causal agent of pine wilt disease (PWD), however, since bacteria have been suggested to play a role in PWD, it is important to know the diversity of the microbial community associated to it. This study aimed to assess the microbial community associated with B. xylophilus and with other nematodes isolated from pine trees, Pinus pinaster, with PWD from three different affected forest areas in Portugal. One hundred and twenty three bacteria strains were isolated from PWN and other nematodes collected from 14 P. pinaster. The bacteria strains were identified by comparative analysis of the 16S rRNA gene partial sequence. All except one Gram-positive strain (Actinobacteria) belonged to the Gram-negative Beta and Gammaproteobacteria. Most isolates belonged to the genus Pseudomonas, Burkholderia and to the family Enterobacteriaceae. Species isolated in higher percentage were Pseudomonas lutea, Yersinia intermedia and Burkholderia tuberum. The major bacterial population associated to the nematodes differed according to the forest area and none of the isolated bacterial species was found in all different forest areas. For each of the sampled areas, 60 to 100% of the isolates produced siderophores and at least 40% produced lipases. The ability to produce siderophores and lipases by most isolates enables these bacteria to have a role in plant physiological response. This research showed a high diversity of the microbial community associated with B. xylophilus and other nematodes isolated from P. pinaster with PWD. PMID:21151611
Isolating a functionally relevant guild of fungi from the root microbiome of Populus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonito, Gregory; Hameed, Khalid; Ventura, Rafael
Plant roots interact with a bewilderingly complex community of microbes, including root-associated fungi that are essential for maintaining plant health. To improve understanding of the diversity of fungi in the rhizobiome of Populus deltoides, Populus trichocarpa and co-occurring plant hosts Quercus alba and Pinus taeda, we conducted field and greenhouse studies and sampled, isolated, and characterized the diversity of culturable root-associated fungi on these hosts. Using both general and selective isolation media we obtained more than 1800 fungal isolates from individual surface sterilized root tips. Sequences from the ITS and/or D1– D2 regions of the LSU rDNA were obtained frommore » 1042 of the >1800 pure culture isolates and were compared to accessions in the NCBI nucleotide database and analyzed through phylogenetics for preliminary taxonomic identification. Sequences from these isolates were also compared to 454 sequence datasets obtained directly from the Populus rhizosphere and endosphere. Although most of the ectomycorrhizal taxa known to associate with Populus evaded isolation, many of the abundant sequence types from rhizosphere and endosphere 454 datasets were isolated, including novel species belonging to the Atractiellales. Isolation and identification of key endorrhizal fungi will enable more targeted study of plant-fungal interactions. Genome sequencing is currently underway for a subset of our culture library with the aim of understanding the mechanisms involved in host-endophyte establishment and function. As a result, this diverse culture library of fungal root associates will be a valuable resource for metagenomic research, experimentation and further studies on plant-fungal interactions.« less
Isolating a functionally relevant guild of fungi from the root microbiome of Populus
Bonito, Gregory; Hameed, Khalid; Ventura, Rafael; ...
2016-05-27
Plant roots interact with a bewilderingly complex community of microbes, including root-associated fungi that are essential for maintaining plant health. To improve understanding of the diversity of fungi in the rhizobiome of Populus deltoides, Populus trichocarpa and co-occurring plant hosts Quercus alba and Pinus taeda, we conducted field and greenhouse studies and sampled, isolated, and characterized the diversity of culturable root-associated fungi on these hosts. Using both general and selective isolation media we obtained more than 1800 fungal isolates from individual surface sterilized root tips. Sequences from the ITS and/or D1– D2 regions of the LSU rDNA were obtained frommore » 1042 of the >1800 pure culture isolates and were compared to accessions in the NCBI nucleotide database and analyzed through phylogenetics for preliminary taxonomic identification. Sequences from these isolates were also compared to 454 sequence datasets obtained directly from the Populus rhizosphere and endosphere. Although most of the ectomycorrhizal taxa known to associate with Populus evaded isolation, many of the abundant sequence types from rhizosphere and endosphere 454 datasets were isolated, including novel species belonging to the Atractiellales. Isolation and identification of key endorrhizal fungi will enable more targeted study of plant-fungal interactions. Genome sequencing is currently underway for a subset of our culture library with the aim of understanding the mechanisms involved in host-endophyte establishment and function. As a result, this diverse culture library of fungal root associates will be a valuable resource for metagenomic research, experimentation and further studies on plant-fungal interactions.« less
Jarvi, Susan I; Farias, Margaret EM; Atkinson, Carter T
2008-01-01
Background The relatively recent introduction of a highly efficient mosquito vector and an avian pathogen (Plasmodium relictum) to an isolated island ecosystem with naïve, highly susceptible avian hosts provides a unique opportunity to investigate evolution of virulence in a natural system. Mixed infections can significantly contribute to the uncertainty in host-pathogen dynamics with direct impacts on virulence. Toward further understanding of how host-parasite and parasite-parasite relationships may impact virulence, this study characterizes within-host diversity of malaria parasite populations based on genetic analysis of the trap (thrombospondin-related anonymous protein) gene in isolates originating from Hawaii, Maui and Kauai Islands. Methods A total of 397 clones were produced by nested PCR amplification and cloning of a 1664 bp fragment of the trap gene from two malarial isolates, K1 (Kauai) and KV115 (Hawaii) that have been used for experimental studies, and from additional isolates from wild birds on Kauai, Maui and Hawaii Islands. Diversity of clones was evaluated initially by RFLP-based screening, followed by complete sequencing of 33 selected clones. Results RFLP analysis of trap revealed a minimum of 28 distinct RFLP haplotypes among the 397 clones from 18 birds. Multiple trap haplotypes were detected in every bird evaluated, with an average of 5.9 haplotypes per bird. Overall diversity did not differ between the experimental isolates, however, a greater number of unique haplotypes were detected in K1 than in KV115. We detected high levels of clonal diversity with clear delineation between isolates K1 and KV115 in a haplotype network. The patterns of within-host haplotype clustering are consistent with the possibility of a clonal genetic structure and rapid within-host mutation after infection. Conclusion Avian malaria (P. relictum) and Avipoxvirus are the significant infectious diseases currently affecting the native Hawaiian avifauna. This study shows that clonal diversity of Hawaiian isolates of P. relictum is much higher than previously recognized. Mixed infections can significantly contribute to the uncertainty in host-pathogen dynamics with direct implications for host demographics, disease management strategies, and evolution of virulence. The results of this study indicate a widespread presence of multiple-genotype malaria infections with high clonal diversity in native birds of Hawaii, which when coupled with concurrent infection with Avipoxvirus, may significantly influence evolution of virulence. Reviewers This article was reviewed by Joseph Schall (nominated by Laura Landweber), Daniel Jeffares (nominated by Anthony Poole) and Susan Perkins (nominated by Eugene Koonin). PMID:18578879
Genetic diversity of subgenotype 2.1 isolates of classical swine fever virus.
Gong, Wenjie; Wu, Jianmin; Lu, Zongji; Zhang, Li; Qin, Shaomin; Chen, Fenglian; Peng, Zhicheng; Wang, Qin; Ma, Ling; Bai, Anbin; Guo, Huancheng; Shi, Jishu; Tu, Changchun
2016-07-01
As the causative agent of classical swine fever, the economically devastating swine disease worldwide, classical swine fever virus (CSFV) is currently classified into the 11 subgenotypes, of which subgenotype 2.1 is distributed worldwide and showing more genetic diversity than other subgenotypes. Prior to this report, subgenotype 2.1 was divided into three sub-subgenotypes (2.1a-2.1c). To further analyze the genetic diversity of CSFV isolates in China, 39 CSFV isolates collected between 2004 and 2012 in two Chinese provinces Guangxi and Guangdong were sequenced and subjected to phylogenetic analysis together with reference sequences retrieved from GenBank. Phylogenetic analyses based on the 190-nt and/or 1119-nt full length E2 gene fragments showed that current CSFV subgenotype 2.1 virus isolates in the world could be divided into 10 sub-subgenotypes (2.1a-2.1j) and the 39 isolates collected in this study were grouped into 7 of them (2.1a-2.1c and 2.1g-2.1j). Among the 10 sub-subgenotypes, 2.1d-2.1j were newly identified. Sub-subgenotype 2.1d isolates were circulated only in India, however the rest 9 sub-subgenotypes were from China with some of them closely related to isolates from European and neighboring Asian countries. According to the temporal and spatial distribution of CSFV subgenotype 2.1 isolates, the newly classified 10 sub-subgenotypes were further categorized into three groups: dominant sub-subgenotype, minor sub-subgenotype and silent sub-subgenotype, and each sub-subgenotype can be found only in certain geographical areas. Taken together, this study reveals the complex genetic diversity of CSFV subgenotype 2.1 and improves our understanding about the epidemiological trends of CSFV subgenotype 2.1 in the world, particularly in China. Copyright © 2016 Elsevier B.V. All rights reserved.
Further insight into genetic variation and haplotype diversity of Cherry virus A from China
Candresse, Thierry; He, Zhen; Li, Shifang; Ma, Yuxin
2017-01-01
Cherry virus A (CVA) infection appears to be prevalent in cherry plantations worldwide. In this study, the diversity of CVA isolates from 31 cherry samples collected from different orchards around Bohai Bay in northeastern China was analyzed. The complete genome of one of these isolates, ChYT52, was found to be 7,434 nt in length excluding the poly (A) tail. It shares between 79.9–98.7% identity with CVA genome sequences in GenBank, while its RdRp core is more divergent (79.1–90.7% nt identity), likely as a consequence of a recombination event. Phylogenetic analysis of ChYT52 genome with CVA genomes in Genbank resulted in at least 7 major clusters plus additional 5 isolates alone at the end of long branches suggesting the existence of further phylogroups diversity in CVA. The genetic diversity of Chinese CVA isolates from 31 samples and GenBank sequences were analyzed in three genomic regions that correspond to the coat protein, the RNA-dependent RNA polymerase core region, and the movement protein genes. With few exceptions likely representing further recombination impact, the trees various trees are largely congruent, indicating that each region provides valuable phylogenetic information. In all cases, the majority of the Chinese CVA isolates clustering in phylogroup I, together with the X82547 reference sequence from Germany. Statistically significant negative values were obtained for Tajima’s D in the three genes for phylogroup I, suggesting that it may be undergoing a period of expansion. There was considerable haplotype diversity in the individual samples and more than half samples contained genetically diverse haplotypes belonging to different phylogroups. In addition, a number of statistically significant recombination events were detected in CVA genomes or in the partial genomic sequences indicating an important contribution of recombination to CVA evolution. This work provides a foundation for elucidation of the epidemiological characteristics and evolutionary history of CVA populations. PMID:29020049
Primary isolation of Shiga toxigenic Escherichia coli from environmental sources
USDA-ARS?s Scientific Manuscript database
Since the time of the first microbe hunters, primary culture and isolation of bacteria has been a foundation of microbiology. Like other microbial methods, bacterial culture and isolation methodologies continue to develop. Although fundamental concepts like selection and enrichment are as relevant t...
Vongkamjan, Kitiya; Switt, Andrea Moreno; den Bakker, Henk C.; Fortes, Esther D.
2012-01-01
Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools. PMID:23042180
Impact of enumeration method on diversity of Escherichia coli genotypes isolated from surface water.
Martin, E C; Gentry, T J
2016-11-01
There are numerous regulatory-approved Escherichia coli enumeration methods, but it is not known whether differences in media composition and incubation conditions impact the diversity of E. coli populations detected by these methods. A study was conducted to determine if three standard water quality assessments, Colilert ® , USEPA Method 1603, (modified mTEC) and USEPA Method 1604 (MI), detect different populations of E. coli. Samples were collected from six watersheds and analysed using the three enumeration approaches followed by E. coli isolation and genotyping. Results indicated that the three methods generally produced similar enumeration data across the sites, although there were some differences on a site-by-site basis. The Colilert ® method consistently generated the least diverse collection of E. coli genotypes as compared to modified mTEC and MI, with those two methods being roughly equal to each other. Although the three media assessed in this study were designed to enumerate E. coli, the differences in the media composition, incubation temperature, and growth platform appear to have a strong selective influence on the populations of E. coli isolated. This study suggests that standardized methods of enumeration and isolation may be warranted if researchers intend to obtain individual E. coli isolates for further characterization. This study characterized the impact of three USEPA-approved Escherichia coli enumeration methods on observed E. coli population diversity in surface water samples. Results indicated that these methods produced similar E. coli enumeration data but were more variable in the diversity of E. coli genotypes observed. Although the three methods enumerate the same species, differences in media composition, growth platform, and incubation temperature likely contribute to the selection of different cultivable populations of E. coli, and thus caution should be used when implementing these methods interchangeably for downstream applications which require cultivated isolates. © 2016 The Society for Applied Microbiology.
Pulsotype Diversity of Clostridium botulinum Strains Containing Serotypes A and/or B Genes
Halpin, Jessica L.; Joseph, Lavin; Dykes, Janet K.; McCroskey, Loretta; Smith, Elise; Toney, Denise; Stroika, Steven; Hise, Kelley; Maslanka, Susan; Lúquez, Carolina
2017-01-01
Clostridium botulinum strains are prevalent in the environment and produce a potent neurotoxin that causes botulism, a rare but serious paralytic disease. In 2010, a national PulseNet database was established to curate C. botulinum pulsotypes and facilitate epidemiological investigations, particularly for serotypes A and B strains frequently associated with botulism cases in the United States. Between 2010 and 2014 we performed pulsed-field gel electrophoresis (PFGE) using a PulseNet protocol, uploaded the resulting PFGE patterns into a national database, and analyzed data according to PulseNet criteria (UPGMA clustering, Dice coefficient, 1.5% position tolerance, and 1.5% optimization). A retrospective data analysis was undertaken on 349 entries comprised of type A and B strains isolated from foodborne and infant cases to determine epidemiological relevance, resolution of the method, and the diversity of the database. Most studies to date on the pulsotype diversity of C. botulinum have encompassed very small sets of isolates; this study, with over 300 isolates, is more comprehensive than any published to date. Epidemiologically linked isolates had indistinguishable patterns, except in four instances and there were no obvious geographic trends noted. Simpson’s Index of Diversity (D) has historically been used to demonstrate species diversity and abundance within a group, and is considered a standard descriptor for PFGE databases. Simpson’s Index was calculated for each restriction endonuclease (SmaI, XhoI), the pattern combination SmaI-XhoI, as well as for each toxin serotype. The D values indicate that both enzymes provided better resolution for serotype B isolates than serotype A. XhoI as the secondary enzyme provided little additional discrimination for C. botulinum. SmaI patterns can be used to exclude unrelated isolates during a foodborne outbreak, but pulsotypes should always be considered concurrently with available epidemiological data. PMID:28692343
Foster, John L.; Molina, Rene P.; Luo, Tianci; Arora, Vivek K.; Huang, Yaoxing; Ho, David D.; Garcia, J. Victor
2001-01-01
We have characterized the functional integrity of seven primary Nef isolates: five from a long-term nonprogressing human immunodeficiency virus (HIV)-infected individual and one each from two patients with AIDS. One of the seven Nefs was defective for CD4 downregulation, two others were defective for PAK-2 activation, and one Nef was defective for PAK-2 activation and major histocompatibility complex (MHC) class I downregulation. Five of the Nefs were tested and found to be functional for the enhancement of virus particle infectivity. The structural basis for each of the functional defects has been analyzed by constructing a consensus nef, followed by mutational analysis of the variant amino acid residues. Mutations A29V and F193I were deleterious to CD4 downregulation and PAK-2 activation, respectively, while S189R rendered Nef defective for both MHC class I downregulation and PAK-2 activation. A search of the literature identified HIVs from five patients with Nefs predominantly mutated at F193 and from one patient with Nefs predominantly mutated at A29. A29 is highly conserved in all HIV subtypes except for subtype E. F193 is conserved in subtype B (and possibly in the closely related subtype D), but none of the other HIV group M subtypes. Our results suggest that functional distinctions may exist between HIV subtypes. PMID:11160665
Rademaker, Jan L. W.; Herbet, Hélène; Starrenburg, Marjo J. C.; Naser, Sabri M.; Gevers, Dirk; Kelly, William J.; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E. T.
2007-01-01
The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)5-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene. PMID:17890345
Rademaker, Jan L W; Herbet, Hélène; Starrenburg, Marjo J C; Naser, Sabri M; Gevers, Dirk; Kelly, William J; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E T
2007-11-01
The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)(5)-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene.
Lowell, Jennifer L; Zhansarina, Aigul; Yockey, Brook; Meka-Mechenko, Tatyana; Stybayeva, Gulnaz; Atshabar, Bakyt; Nekrassova, Larissa; Tashmetov, Rinat; Kenghebaeva, Kuralai; Chu, May C; Kosoy, Michael; Antolin, Michael F; Gage, Kenneth L
2007-01-01
Recent interest in characterizing infectious agents associated with bioterrorism has resulted in the development of effective pathogen genotyping systems, but this information is rarely combined with phenotypic data. Yersinia pestis, the aetiological agent of plague, has been well defined genotypically on local and worldwide scales using multi-locus variable number tandem repeat analysis (MLVA), with emphasis on evolutionary patterns using old isolate collections from countries where Y. pestis has existed the longest. Worldwide MLVA studies are largely based on isolates that have been in long-term laboratory culture and storage, or on field material from parts of the world where Y. pestis has potentially circulated in nature for thousands of years. Diversity in these isolates suggests that they may no longer represent the wild-type organism phenotypically, including the possibility of altered pathogenicity. This study focused on the phenotypic and genotypic properties of 48 Y. pestis isolates collected from 10 plague foci in and bordering Kazakhstan. Phenotypic characterization was based on diagnostic tests typically performed in reference laboratories working with Y. pestis. MLVA was used to define the genotypic relationships between the central-Asian isolates and a group of North American isolates, and to examine Kazakh Y. pestis diversity according to predefined plague foci and on an intermediate geographical scale. Phenotypic properties revealed that a large portion of this collection lacks one or more plasmids necessary to complete the blocked flea/mammal transmission cycle, has lost Congo red binding capabilities (Pgm-), or both. MLVA analysis classified isolates into previously identified biovars, and in some cases groups of isolates collected within the same plague focus formed a clade. Overall, MLVA did not distinguish unique phylogeographical groups of Y. pestis isolates as defined by plague foci and indicated higher genetic diversity among older biovars.
Banerjee, Ritu; Johnston, Brian; Lohse, Christine; Chattopadhyay, Sujay; Tchesnokova, Veronika; Sokurenko, Evgeni V; Johnson, James R
2013-12-01
The clonal distribution of Escherichia coli across an unselected population in the current era of widespread antimicrobial resistance is incompletely defined. In this study, we used a newly described clonal typing strategy based on sequencing of fumC and fimH (i.e., CH typing) to infer multilocus sequence types (STs) for 299 consecutive, nonduplicate extraintestinal E. coli isolates from all cultures submitted to Olmsted County, MN, laboratories in February and March 2011 and then compared STs with epidemiological data. Forty-seven different STs were identified, most commonly ST131 (27%), ST95 (11%), ST73 (8%), ST127 (6%), and ST69 (5%). Isolates from these five STs comprised two-thirds of health care-associated (HA) isolates but only half of community-associated (CA) isolates. ST131 was represented overwhelmingly (88%) by a single recently expanded H30 subclone, which was the most extensively antimicrobial-resistant subclone overall and was especially predominant in HA infections and among adults >50 years old. In contrast, among patients 11 to 50 years old, ST69, -95, and -73 were more common. Because of the preponderance of the H30 subclone of ST131, ST diversity was lower among HA than CA isolates, and among antimicrobial-resistant than antimicrobial-susceptible isolates, which otherwise had similar ST distributions. In conclusion, in this U.S. Midwest region, the distribution and diversity of STs among extraintestinal E. coli clinical isolates vary by patient age, type of infection, and resistance phenotype. ST131 predominates among young children and the elderly, HA infections, and antimicrobial-resistant isolates, whereas other well-known pathogenic lineages are more common among adolescents and young adults, CA infections, and antimicrobial-susceptible isolates.
Zhai, Weiwei; Lim, Tony Kiat-Hon; Zhang, Tong; Phang, Su-Ting; Tiang, Zenia; Guan, Peiyong; Ng, Ming-Hwee; Lim, Jia Qi; Yao, Fei; Li, Zheng; Ng, Poh Yong; Yan, Jie; Goh, Brian K.; Chung, Alexander Yaw-Fui; Choo, Su-Pin; Khor, Chiea Chuen; Soon, Wendy Wei-Jia; Sung, Ken Wing-Kin; Foo, Roger Sik-Yin; Chow, Pierce Kah-Hoe
2017-01-01
Hepatocellular carcinoma (HCC) has one of the poorest survival rates among cancers. Using multi-regional sampling of nine resected HCC with different aetiologies, here we construct phylogenetic relationships of these sectors, showing diverse levels of genetic sharing, spanning early to late diversification. Unlike the variegated pattern found in colorectal cancers, a large proportion of HCC display a clear isolation-by-distance pattern where spatially closer sectors are genetically more similar. Two resected intra-hepatic metastases showed genetic divergence occurring before and after primary tumour diversification, respectively. Metastatic tumours had much higher variability than their primary tumours, suggesting that intra-hepatic metastasis is accompanied by rapid diversification at the distant location. The presence of co-existing mutations offers the possibility of drug repositioning for HCC treatment. Taken together, these insights into intra-tumour heterogeneity allow for a comprehensive understanding of the evolutionary trajectories of HCC and suggest novel avenues for personalized therapy. PMID:28240289
Prevalence and clonal analysis of Porphyromonas gingivalis in primary endodontic infections.
Siqueira, José F; Rôças, Isabela N; Silva, Marlei G
2008-11-01
This study investigated the prevalence of Porphyromonas gingivalis in 62 teeth with primary endodontic infections by using a species-specific 16S rRNA gene-based nested polymerase chain reaction assay. P. gingivalis isolates recovered from 2 infected root canals were also analyzed for clonal diversity by using arbitrarily primed PCR. Overall, P. gingivalis was found in 48% of the samples. This species was specifically detected in 36% of canals of teeth with chronic apical periodontitis, in 46% of the cases of acute apical periodontitis, and in 67% of acute apical abscesses. P. gingivalis was significantly more frequent in abscess aspirates than in canals of teeth with chronic apical periodontitis (P < .05). Typing of colonies retrieved from 2 infected canals revealed 2 clones per individual. These findings confirmed that P. gingivalis can be an important endodontic pathogen, mostly associated with acute abscesses, and demonstrated that different clonal types of this species can colonize the root canal in the same individual.
Rhizobial characterization in revegetated areas after bauxite mining.
Borges, Wardsson Lustrino; Prin, Yves; Ducousso, Marc; Le Roux, Christine; de Faria, Sergio Miana
2016-01-01
Little is known regarding how the increased diversity of nitrogen-fixing bacteria contributes to the productivity and diversity of plants in complex communities. However, some authors have shown that the presence of a diverse group of nodulating bacteria is required for different plant species to coexist. A better understanding of the plant symbiotic organism diversity role in natural ecosystems can be extremely useful to define recovery strategies of environments that were degraded by human activities. This study used ARDRA, BOX-PCR fingerprinting and sequencing of the 16S rDNA gene to assess the diversity of root nodule nitrogen-fixing bacteria in former bauxite mining areas that were replanted in 1981, 1985, 1993, 1998, 2004 and 2006 and in a native forest. Among the 12 isolates for which the 16S rDNA gene was partially sequenced, eight, three and one isolate(s) presented similarity with sequences of the genera Bradyrhizobium, Rhizobium and Mesorhizobium, respectively. The richness, Shannon and evenness indices were the highest in the area that was replanted the earliest (1981) and the lowest in the area that was replanted most recently (2006). Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Diversity of bacteria isolated from crustacea larvae and their rearing water
NASA Astrophysics Data System (ADS)
Haryanti; Sugama, Ketut; Nishijima, Toshitaka
2003-04-01
The bacteria in the genus Vibrio are heterothrophic, which exist in the larval rearing water of Crustacea and often show diverse pathogenicities to marine animals. In order to assess the bacterial diversity associated with Crustacean seed production, 32 strains were isolated from black tiger shrimp (Penaeus monodon) and mangrove crab (Scylla paramamosain) larvae and their rearing-water and characterized using biochemical and molecular approaches. Two or more genotypically different species were identified. The vibriosis of black tiger shrimp was causes by V. harveyi, V. alginolyticus and Vibrio spp. predominantly, while that of crab by V. harveyi and V. alginolyticus only.
[Mycorrhizal fungi diversity of Vaccinium uliginosum L].
Yang, Xiuli; Yan, Wei
2015-02-04
The diversity of mycorrhizal fungi isolated from Vaccinium uliginosum L in the northern region of Daxing' anling mountains was examined for the first time. Morphology and ITS sequence analysis were used to identify the fungal communities. Six groups of fungi were isolated from Vaccinium uliginosum root samples: one belongs to Hymenoscyphus; one to Phialocephala; one to Lachnum; one to Cadophora; one to Marasmius and one to Mycena. Among them, 87. 10% belong to ascomycetes and 12.90% belong to Basidiomycotina. The diversity of fungi associated with Vaccinium uliginosum is abundant and the fungi are from heterogenous group.
Isolation of Genetically Diverse Marburg Viruses from Egyptian Fruit Bats
Towner, Jonathan S.; Amman, Brian R.; Sealy, Tara K.; Carroll, Serena A. Reeder; Comer, James A.; Kemp, Alan; Swanepoel, Robert; Paddock, Christopher D.; Balinandi, Stephen; Khristova, Marina L.; Formenty, Pierre B. H.; Albarino, Cesar G.; Miller, David M.; Reed, Zachary D.; Kayiwa, John T.; Mills, James N.; Cannon, Deborah L.; Greer, Patricia W.; Byaruhanga, Emmanuel; Farnon, Eileen C.; Atimnedi, Patrick; Okware, Samuel; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W.; Zaki, Sherif R.; Ksiazek, Thomas G.; Nichol, Stuart T.; Rollin, Pierre E.
2009-01-01
In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans. PMID:19649327
Isolation of genetically diverse Marburg viruses from Egyptian fruit bats.
Towner, Jonathan S; Amman, Brian R; Sealy, Tara K; Carroll, Serena A Reeder; Comer, James A; Kemp, Alan; Swanepoel, Robert; Paddock, Christopher D; Balinandi, Stephen; Khristova, Marina L; Formenty, Pierre B H; Albarino, Cesar G; Miller, David M; Reed, Zachary D; Kayiwa, John T; Mills, James N; Cannon, Deborah L; Greer, Patricia W; Byaruhanga, Emmanuel; Farnon, Eileen C; Atimnedi, Patrick; Okware, Samuel; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W; Zaki, Sherif R; Ksiazek, Thomas G; Nichol, Stuart T; Rollin, Pierre E
2009-07-01
In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.
High Incidence of Escherichia coli Strains Coharboring mcr-1 and blaNDM from Chickens.
Liu, Bao-Tao; Song, Feng-Jing; Zou, Ming; Zhang, Qi-Di; Shan, Hu
2017-03-01
This study investigated the characteristics of Escherichia coli isolates carrying mcr-1-bla NDM from a chicken farm in China. Of the 78 E. coli isolates, 21 clonally unrelated isolates carried mcr-1-bla NDM Diverse IncI2 plasmids disseminated mcr-1 , while the dissemination of bla NDM was mediated by diverse IncB/O plasmids. More striking was the colocalization of resistance genes mcr-1 and bla NDM-4 in an IncHI2/ST3 plasmid, which might pose a great challenge for public health. Copyright © 2017 American Society for Microbiology.
Leroy, Sabine; Giammarinaro, Philippe; Chacornac, Jean-Paul; Lebert, Isabelle; Talon, Régine
2010-04-01
The staphylococcal community of the environments of nine French small-scale processing units and their naturally fermented meat products was identified by analyzing 676 isolates. Fifteen species were accurately identified using validated molecular methods. The three prevalent species were Staphylococcus equorum (58.4%), Staphylococcus saprophyticus (15.7%) and Staphylococcus xylosus (9.3%). S. equorum was isolated in all the processing units in similar proportion in meat and environmental samples. S. saprophyticus was also isolated in all the processing units with a higher percentage in environmental samples. S. xylosus was present sporadically in the processing units and its prevalence was higher in meat samples. The genetic diversity of the strains within the three species isolated from one processing unit was studied by PFGE and revealed a high diversity for S. equorum and S. saprophyticus both in the environment and the meat isolates. The genetic diversity remained high through the manufacturing steps. A small percentage of the strains of the two species share the two ecological niches. These results highlight that some strains, probably introduced by the meat, will persist in the manufacturing environment, while other strains are more adapted to the meat products.
Genetic diversity of Plasmodium falciparum histidine-rich protein 2 in the China-Myanmar border area
Li, Peipei; Xing, Hua; Zhao, Zhenjun; Yang, Zhaoqing; Cao, Yaming; Yan, Guiyun; Sattabongkot, Jetsumon; Cui, Liwang; Fan, Qi
2016-01-01
Deletion of the Plasmodium falciparum histidine-rich protein 2 (pfhrp2) gene may affect the performance of PfHRP2-based rapid diagnostic tests (RDTs). Here we investigated the genetic diversity of the pfhrp2 gene in clinical parasite isolates collected in recent years from the China-Myanmar border area. Deletion of pfhrp2 has been identified in 4 out of 97 parasite isolates. Sequencing of the pfhrp2 exon 2 from 67 isolates revealed a high level of genetic diversity in pfhrp2, which is reflected in the presence of many repeat types and their variants, as well as variable copy numbers and different arrangements of these repeats in parasite isolates. In addition, we observed pfhrp3 deletion in three of the four parasites harboring pfhrp2 deletion, suggesting of double deletions of both genes in these three isolates. Analysis of two cases, which were P. falciparum-positive by microscopy and PCR but failed by two PfHRP2-based RDTs, did not find pfhrp2 deletion. Further correlational studies of pfhrp2 polymorphisms with detection sensitivity are needed to identify factors influencing the performance of RDTs in malaria-endemic areas. PMID:26297799
Population Structure in Nontypeable Haemophilus influenzae
LaCross, Nathan C.; Marrs, Carl F.; Gilsdorf, Janet R.
2013-01-01
Nontypeable Haemophilus influenzae (NTHi) frequently colonize the human pharynx asymptomatically, and are an important cause of otitis media in children. Past studies have identified typeable H. influenzae as being clonal, but the population structure of NTHi has not been extensively characterized. The research presented here investigated the diversity and population structure in a well-characterized collection of NTHi isolated from the middle ears of children with otitis media or the pharynges of healthy children in three disparate geographic regions. Multilocus sequence typing identified 109 unique sequence types among 170 commensal and otitis media-associated NTHi isolates from Finland, Israel, and the US. The largest clonal complex contained only five sequence types, indicating a high level of genetic diversity. The eBURST v3, ClonalFrame 1.1, and structure 2.3.3 programs were used to further characterize diversity and population structure from the sequence typing data. Little clustering was apparent by either disease state (otitis media or commensalism) or geography in the ClonalFrame phylogeny. Population structure was clearly evident, with support for eight populations when all 170 isolates were analyzed. Interestingly, one population contained only commensal isolates, while two others consisted solely of otitis media isolates, suggesting associations between population structure and disease. PMID:23266487
Mizukoshi, Fuminori; Miyoshi-Akiyama, Tohru; Iwai, Hiroki; Suzuki, Takako; Kiritani, Reiko; Kirikae, Teruo; Funatogawa, Keiji
2017-05-25
Foreign-born patients with tuberculosis (TB) may introduce globally disseminated isolates of Mycobacterium tuberculosis into large cities in Japan. The risk of dissemination of these isolates into local regions, however, has not been determined. This study analyzed the molecular epidemiology of M. tuberculosis isolates obtained from TB patients living in a local region of Japan. Whole genome sequences of 169 M. tuberculosis isolates, obtained from 148 Japanese-born and 21 foreign-born patients living in Tochigi, Japan, were analyzed using the Comprehensive analysis server for the Mycobacterium t u b erculosis complex (CASTB). The 169 isolates were clustered into four clades; Lineage 2 (111 isolates 65.7%), Lineage 4 (43 isolates, 25.4%), Lineage 1 (13 isolates, 7.7%), and Lineage 3 (2 isolates, 1.2%). Of the 111 isolates belonging to Lineage 2, 79 (71.2%) were of the atypical Beijing sub-genotype. Of the 13 Lineage 1 isolates, nine (69.2%) were from foreign-born patients. The isolates belonging to Lineage 4 were further clustered into three clades, two containing isolates shared by both Japanese- and foreign-born patients. The two isolates belonging to Lineage 3 were obtained from foreign-born patients. The genotypic diversity of M. tuberculosis in a local region of Japan is increased primarily by the presence of isolates obtained from foreign-born patients.
Bazhanov, Dmitry P; Li, Chengyun; Li, Hongmei; Li, Jishun; Zhang, Xinjian; Chen, Xiangfeng; Yang, Hetong
2016-11-08
Soil populations of bacteria rapidly degrading atrazine are critical to the environmental fate of the herbicide. An enrichment bias from the routine isolation procedure prevents studying the diversity of atrazine degraders. In the present work, we analyzed the occurrence, diversity and community structure of soil atrazine-degrading bacteria based on their direct isolation. Atrazine-degrading bacteria were isolated by direct plating on a specially developed SM agar. The atrazine degradation genes trzN and atzABC were detected by multiplex PCR. The diversity of atrazine degraders was characterized by enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) genotyping followed by 16S rRNA gene phylogenetic analysis. The occurrence of atrazine-degrading bacteria was also assessed by conventional PCR targeting trzN and atzABC in soil DNA. A total of 116 atrazine-degrading isolates were recovered from bulk and rhizosphere soils sampled near an atrazine factory and from geographically distant maize fields. Fifteen genotypes were distinguished among 56 industrial isolates, with 13 of them representing eight phylogenetic groups of the genus Arthrobacter. The remaining two were closely related to Pseudomonas alcaliphila and Gulosibacter molinativorax and constituted major components of the atrazine-degrading community in the most heavily contaminated industrial plantless soil. All isolates from the adjacent sites inhabited by cogon grass or common reed were various Arthrobacter spp. with a strong prevalence of A. aurescens group. Only three genotypes were distinguished among 60 agricultural strains. Genetically similar Arthrobacter ureafaciens bacteria which occurred as minor inhabitants of cogon grass roots in the industrial soil were ubiquitous and predominant atrazine degraders in the maize rhizosphere. The other two genotypes represented two distant Nocardioides spp. that were specific to their geographic origins. Direct plating on SM agar enabled rapid isolation of atrazine-degrading bacteria and analysis of their natural diversity in soil. The results obtained provided evidence that contaminated soils harbored communities of genetically distinct bacteria capable of individually degrading and utilizing atrazine. The community structures of culturable atrazine degraders were habitat-specific. Bacteria belonging to the genus Arthrobacter were the predominant degraders of atrazine in the plant rhizosphere.
Chen, Yijian; Rashid, Mamun Ur; Huang, Haihui; Fang, Hong; Nord, Carl Erik; Wang, Minggui; Weintraub, Andrej
2017-08-01
Nearly all published studies of recurrent Clostridium difficile infections (CDI) report recurrent CDI within 8 weeks after the primary infection. This study explored the molecular characteristics of C. difficile isolates from the first recurrent CDI more than 8 weeks after the primary infection. Consecutive hospitalized patients with a recurrent CDI more than 8 weeks after a primary infection were enrolled prospectively from January 2008 to February 2011. All C. difficile isolates of the primary and recurrent infections were collected and subjected to polymerase chain reaction ribotyping and antimicrobial susceptibility testing. There were 62 cases of CDI in this study, which included 32 cases (51.6%) of recurrence due to the same ribotype of C. difficile, 26 (41.9%) cases due to a different ribotype, and four (6.5%) cases with 2-4 recurrences due to the same or different strains. One hundred and forty C. difficile isolates were obtained, which included 62 primary CDI isolates and 78 recurrent isolates. Ribotype 020 was the most common C. difficile strain in primary and recurrent infections. Ribotype 001 accounted for 15.4% (10/78) of recurrent infections and 3.2% (2/62) of primary infections (p = 0.0447). The minimum inhibitory concentration at 90% (MIC 90 ) values of linezolid, moxifloxacin, and clindamycin against type 001 strains were much higher, compared to the three other common ribotypes. Recurrent CDI more than 8 weeks after a primary infection can be caused by the same or different C. difficile ribotype at similar percentages. Ribotype 001 C. difficile strains, which have a lower susceptibility to antimicrobials, were isolated more frequently in patients with a recurrent CDI. Copyright © 2015. Published by Elsevier B.V.
Isolated primary lymphedema tarda of the upper limb.
Shariati, Farzaneh; Ravari, Hasan; Kazemzadeh, Gholamhossein; Sadeghi, Ramin
2013-03-01
Primary lymphedema tarda is considered as a congenital disease with late presentation. Primary lymphedema tarda usually affects lower limbs, and primary lymphedema tarda of the upper limbs usually accompanies lower limb lymphedema. In the current case report, we present an 80-year-old male patient with isolated left upper limb swelling that lymphoscintigraphy imaging proved to be lymphedema.
Marinelli, Laura J.; Fitz-Gibbon, Sorel; Hayes, Clarmyra; Bowman, Charles; Inkeles, Megan; Loncaric, Anya; Russell, Daniel A.; Jacobs-Sera, Deborah; Cokus, Shawn; Pellegrini, Matteo; Kim, Jenny; Miller, Jeff F.; Hatfull, Graham F.; Modlin, Robert L.
2012-01-01
ABSTRACT Investigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne. PMID:23015740
New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade
Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun
2017-01-01
Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007. PMID:28475149
Besaury, Ludovic; Marty, Florence; Buquet, Sylvaine; Mesnage, Valérie; Muyzer, Gerard; Quillet, Laurent
2013-02-01
Cultivation and molecular-based approaches were used to study microbial diversity in two Chilean marine sediments contaminated with high (835 ppm) and very high concentrations of copper (1,533 ppm). The diversity of cultivable bacteria resistant to copper was studied at oxic and anoxic conditions, focusing on sulfate-, thiosulfate-, and iron-reducing bacteria. For both sediments, the cultivable bacteria isolated at oxic conditions were mostly affiliated to the genus Bacillus, while at anoxic conditions the majority of the cultivable bacteria found were closely related to members of the genera Desulfovibrio, Sphingomonas, and Virgibacillus. Copper resistance was between 100 and 400 ppm, with the exception of a strain affiliated to members of the genus Desulfuromonas, which was resistant up to 1,000 ppm of copper. In parallel, cloning and sequencing of 16S rRNA was performed to study the total bacterial diversity in the sediments. A weak correlation was observed between the isolated strains and the 16S rRNA operational taxonomic units detected. The presence of copper resistance genes (copA, cusA, and pcoA) was tested for all the strains isolated; only copA was detected in a few isolates, suggesting that other copper resistance mechanisms could be used by the bacteria in those highly copper-contaminated sediments.
Okubo, Takashi; Ikeda, Seishi; Kaneko, Takakazu; Eda, Shima; Mitsui, Hisayuki; Sato, Shusei; Tabata, Satoshi; Minamisawa, Kiwamu
2009-01-01
Endophytic bacteria (247 isolates) were randomly isolated from surface-sterilized stems of non-nodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans (Glycine max [L.] Merr) on three agar media (R2A, nutrient agar, and potato dextrose agar). Their diversity was compared on the basis of 16S rRNA gene sequences. The phylogenetic composition depended on the soybean nodulation phenotype, although diversity indexes were not correlated with nodulation phenotype. The most abundant phylum throughout soybean lines tested was Proteobacteria (58-79%). Gammaproteobacteria was the dominant class (21-72%) with a group of Pseudomonas sp. significantly abundant in Nod(+) soybeans. A high abundance of Alphaproteobacteria was observed in Nod(-) soybeans, which was explained by the increase in bacterial isolates of the families Rhizobiaceae and Sphingomonadaceae. A far greater abundance of Firmicutes was observed in Nod(-) and Nod(++) mutant soybeans than in Nod(+) soybeans. An impact of culture media on the diversity of isolated endophytic bacteria was also observed: The highest diversity indexes were obtained on the R2A medium, which enabled us to access Alphaproteobacteria and other phyla more frequently. The above results indicated that the extent of nodulation changes the phylogenetic composition of culturable bacterial endophytes in soybean stems.
Sandberg, Dustin C.; Battista, Lorna J.; Arnold, A. Elizabeth
2014-01-01
Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host- and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales. PMID:24402358
Function and diversity of P0 proteins among cotton leafroll dwarf virus isolates.
Cascardo, Renan S; Arantes, Ighor L G; Silva, Tatiane F; Sachetto-Martins, Gilberto; Vaslin, Maité F S; Corrêa, Régis L
2015-08-12
The RNA silencing pathway is an important anti-viral defense mechanism in plants. As a counter defense, some members of the viral family Luteoviridae are able to evade host immunity by encoding the P0 RNA silencing suppressor protein. Here we explored the functional diversity of P0 proteins among eight cotton leafroll dwarf virus (CLRDV) isolates, a virus associated with a worldwide cotton disease known as cotton blue disease (CBD). CLRDV-infected cotton plants of different varieties were collected from five growing fields in Brazil and their P0 sequences compared to three previously obtained isolates. P0's silencing suppression activities were scored based on transient expression experiments in Nicotiana benthamiana leaves. High sequence diversity was observed among CLRDV P0 proteins, indicating that some isolates found in cotton varieties formerly resistant to CLRDV should be regarded as new genotypes within the species. All tested proteins were able to suppress local and systemic silencing, but with significantly variable degrees. All P0 proteins were able to mediate the decay of ARGONAUTE proteins, a key component of the RNA silencing machinery. The sequence diversity observed in CLRDV P0s is also reflected in their silencing suppression capabilities. However, the strength of local and systemic silencing suppression was not correlated for some proteins.
Chaillou, Stéphane; Daty, Marie; Baraige, Fabienne; Dudez, Anne-Marie; Anglade, Patricia; Jones, Rhys; Alpert, Carl-Alfred; Champomier-Vergès, Marie-Christine; Zagorec, Monique
2009-01-01
Lactobacillus sakei is a food-borne bacterium naturally found in meat and fish products. A study was performed to examine the intraspecies diversity among 73 isolates sourced from laboratory collections in several different countries. Pulsed-field gel electrophoresis analysis demonstrated a 25% variation in genome size between isolates, ranging from 1,815 kb to 2,310 kb. The relatedness between isolates was then determined using a PCR-based method that detects the possession of 60 chromosomal genes belonging to the flexible gene pool. Ten different strain clusters were identified that had noticeable differences in their average genome size reflecting the natural population structure. The results show that many different genotypes may be isolated from similar types of meat products, suggesting a complex ecological habitat in which intraspecies diversity may be required for successful adaptation. Finally, proteomic analysis revealed a slight difference between the migration patterns of highly abundant GapA isoforms of the two prevailing L. sakei subspecies (sakei and carnosus). This analysis was used to affiliate the genotypic clusters with the corresponding subspecies. These findings reveal for the first time the extent of intraspecies genomic diversity in L. sakei. Consequently, identification of molecular subtypes may in the future prove valuable for a better understanding of microbial ecosystems in food products. PMID:19114527
Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle
2015-01-01
Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk. PMID:26236294
Fardsanei, Fatemeh; Soltan Dallal, Mohammad Mehdi; Douraghi, Masoumeh; Zahraei Salehi, Taghi; Mahmoodi, Mahmood; Memariani, Hamed; Nikkhahi, Farhad
2017-06-01
Salmonella enterica subspecies enterica serotype Enteritidis (S. Enteritidis) is one of the leading causes of food-borne gastroenteritis associated with the consumption of contaminated food products of animal origin. Little is known about the genetic diversity and virulence content of S. Enteritidis isolated from poultry meats and eggs in Iran. A total of 34 S. Enteritidis strains were collected from different food sources of animal origin in Tehran from May 2015 to July 2016. All of the S. Enteritidis strains were serotyped, antimicrobial susceptibility tested, and characterized for virulence genes. Pulsed-field gel electrophoresis (PFGE) was also applied for comparison of genetic relatedness. All of the strains harbored invA, hilA, ssrA, sefA, spvC, and sipA genes. A high prevalence of resistance against certain antibiotics such as cefuroxime (79.4%), nalidixic acid (47%), and ciprofloxacin (44.2%) was also observed. Regarding PFGE, S. Enteritidis strains from different sources showed considerable overlap, suggesting the lack of diversity among these isolates. Moreover, no correlation between virulence profiles or antibiotypes and PFGE clusters was observed. In conclusion, our study provided valuable information on virulence gene content, antibiotic resistance, and genetic diversity of S. Enteritidis isolated from food sources. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chaillou, Stéphane; Daty, Marie; Baraige, Fabienne; Dudez, Anne-Marie; Anglade, Patricia; Jones, Rhys; Alpert, Carl-Alfred; Champomier-Vergès, Marie-Christine; Zagorec, Monique
2009-02-01
Lactobacillus sakei is a food-borne bacterium naturally found in meat and fish products. A study was performed to examine the intraspecies diversity among 73 isolates sourced from laboratory collections in several different countries. Pulsed-field gel electrophoresis analysis demonstrated a 25% variation in genome size between isolates, ranging from 1,815 kb to 2,310 kb. The relatedness between isolates was then determined using a PCR-based method that detects the possession of 60 chromosomal genes belonging to the flexible gene pool. Ten different strain clusters were identified that had noticeable differences in their average genome size reflecting the natural population structure. The results show that many different genotypes may be isolated from similar types of meat products, suggesting a complex ecological habitat in which intraspecies diversity may be required for successful adaptation. Finally, proteomic analysis revealed a slight difference between the migration patterns of highly abundant GapA isoforms of the two prevailing L. sakei subspecies (sakei and carnosus). This analysis was used to affiliate the genotypic clusters with the corresponding subspecies. These findings reveal for the first time the extent of intraspecies genomic diversity in L. sakei. Consequently, identification of molecular subtypes may in the future prove valuable for a better understanding of microbial ecosystems in food products.
Naegele, R P; Tomlinson, A J; Hausbeck, M K
2015-01-01
Pepper is the third most important solanaceous crop in the United States and fourth most important worldwide. To identify sources of resistance for commercial breeding, 170 pepper genotypes from five continents and 45 countries were evaluated for Phytophthora fruit rot resistance using two isolates of Phytophthora capsici. Genetic diversity and population structure were assessed on a subset of 157 genotypes using 23 polymorphic simple sequence repeats. Partial resistance and isolate-specific interactions were identified in the population at both 3 and 5 days postinoculation (dpi). Plant introductions (PIs) 640833 and 566811 were the most resistant lines evaluated at 5 dpi to isolates 12889 and OP97, with mean lesion areas less than Criollo de Morelos. Genetic diversity was moderate (0.44) in the population. The program STRUCTURE inferred four genetic clusters with moderate to very great differentiation among clusters. Most lines evaluated were susceptible or moderately susceptible at 5 dpi, and no lines evaluated were completely resistant to Phytophthora fruit rot. Significant population structure was detected when pepper varieties were grouped by predefined categories of disease resistance, continent, and country of origin. Moderately resistant or resistant PIs to both isolates of P. capsici at 5 dpi were in genetic clusters one and two.
Prieto-Davó, Alejandra; Dias, Tiago; Gomes, Sofia E.; Rodrigues, Sara; Parera-Valadez, Yessica; Borralho, Pedro M.; Pereira, Florbela; Rodrigues, Cecilia M. P.; Santos-Sanches, Ilda; Gaudêncio, Susana P.
2016-01-01
Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (< 100 m from shore) populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry. PMID:27774089
Leite, Laura; Jude-Lemeilleur, Florence; Raymond, Natalie; Henriques, Isabel; Garabetian, Frédéric; Alves, Artur
2017-09-01
According to the hologenome theory, the microbiota contributes to the fitness of the holobiont having an important role in its adaptation, survival, development, health, and evolution. Environmental stress also affects the microbiota and its capability to assist the holobiont in coping with stress factors. Here, we analyzed the diversity of cultivable bacteria associated with Manila clam tissues (mantle, gills, hemolymph) in two non-contaminated sites (Portugal and France) and one metal-contaminated site (Portugal). A total of 240 isolates were obtained. Representative isolates (n = 198) of the overall diversity were identified by 16S rDNA sequencing and subjected to functional characterization. Isolates affiliated with Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Proteobacteria (mostly Pseudoalteromonadaceae and Vibrionaceae) were dominant in non-contaminated sites while Actinobacteria (mostly Microbacteriaceae) dominated in the metal-contaminated site. The main factor affecting the microbiota composition was contamination. No significant differences were observed between clam tissues and geographic regions. Several isolates tested positive for antibacterial activity, biofilm formation, protease, and siderophore production. The results show that the Manila clam harbors a diverse microbiota that may contribute to clam protection and overall fitness, as well as to its adaptation to stressful environments. In addition, the Manila clam microbiota is revealed as a promising source of novel probiotics with potential application in aquaculture.
Ploidy Variation in Kluyveromyces marxianus Separates Dairy and Non-dairy Isolates
Ortiz-Merino, Raúl A.; Varela, Javier A.; Coughlan, Aisling Y.; Hoshida, Hisashi; da Silveira, Wendel B.; Wilde, Caroline; Kuijpers, Niels G. A.; Geertman, Jan-Maarten; Wolfe, Kenneth H.; Morrissey, John P.
2018-01-01
Kluyveromyces marxianus is traditionally associated with fermented dairy products, but can also be isolated from diverse non-dairy environments. Because of thermotolerance, rapid growth and other traits, many different strains are being developed for food and industrial applications but there is, as yet, little understanding of the genetic diversity or population genetics of this species. K. marxianus shows a high level of phenotypic variation but the only phenotype that has been clearly linked to a genetic polymorphism is lactose utilisation, which is controlled by variation in the LAC12 gene. The genomes of several strains have been sequenced in recent years and, in this study, we sequenced a further nine strains from different origins. Analysis of the Single Nucleotide Polymorphisms (SNPs) in 14 strains was carried out to examine genome structure and genetic diversity. SNP diversity in K. marxianus is relatively high, with up to 3% DNA sequence divergence between alleles. It was found that the isolates include haploid, diploid, and triploid strains, as shown by both SNP analysis and flow cytometry. Diploids and triploids contain long genomic tracts showing loss of heterozygosity (LOH). All six isolates from dairy environments were diploid or triploid, whereas 6 out 7 isolates from non-dairy environment were haploid. This also correlated with the presence of functional LAC12 alleles only in dairy haplotypes. The diploids were hybrids between a non-dairy and a dairy haplotype, whereas triploids included three copies of a dairy haplotype. PMID:29619042
The biological features and genetic diversity of novel fish rhabdovirus isolates in China.
Fu, Xiaozhe; Lin, Qiang; Liang, Hongru; Liu, Lihui; Huang, Zhibin; Li, Ningqiu; Su, Jianguo
2017-09-01
The Rhabdoviridae is a diverse family of negative-sense single-stranded RNA viruses which infects mammals, birds, reptiles, fish, insects and plants. Herein, we reported the isolation and characterization of 6 novel viruses from diseased fish collected from China including SCRV-QY, SCRV-SS, SCRV-GM, CmRV-FS, MsRV-SS, OmbRV-JM. The typical clinical symptom of diseased fish was hemorrhaging. Efficient propagation of these isolates in a Chinese perch brain cell line was determined by means of observation of cytopathic effect, RT-PCR and electron microscopy. Sequence alignment and phylogenetic analysis of the complete G protein sequences revealed that these isolates were clustered into one monophyletic lineage belonging to the species Siniperca chuatsi rhabdovirus.
Teachers' Views about Pupil Diversity in the Primary School Classroom
ERIC Educational Resources Information Center
Kaldi, Stavroula; Govaris, Christos; Filippatou, Diamanto
2018-01-01
The present study explores Greek primary school teachers' perceptions and views on pupil diversity in the classroom environment. A large-scale survey was carried out in order to examine teachers' perceptions about pupil diversity and to identify personal and/or educational characteristics that can influence or predict these perceptions. The…
Distinct cagA EPIYA motifs are associated with ethnic diversity in Malaysia and Singapore.
Schmidt, Heather-Marie A; Goh, Khean-Lee; Fock, Kwong Ming; Hilmi, Ida; Dhamodaran, Subbiah; Forman, David; Mitchell, Hazel
2009-08-01
In vitro studies have shown that the biologic activity of CagA is influenced by the number and class of EPIYA motifs present in its variable region as these motifs correspond to the CagA phosphorylation sites. It has been hypothesized that strains possessing specific combinations of these motifs may be responsible for gastric cancer development. This study investigated the prevalence of cagA and the EPIYA motifs with regard to number, class, and patterns in strains from the three major ethnic groups within the Malaysian and Singaporean populations in relation to disease development. Helicobacter pylori isolates from 49 Chinese, 43 Indian, and 14 Malay patients with functional dyspepsia (FD) and 21 gastric cancer (GC) cases were analyzed using polymerase chain reaction for the presence of cagA and the number, type, and pattern of EPIYA motifs. Additionally, the EPIYA motifs of 47 isolates were sequenced. All 126 isolates possessed cagA, with the majority encoding EPIYA-A (97.6%) and all encoding EPIYA-B. However, while the cagA of 93.0% of Indian FD isolates encoded EPIYA-C as the third motif, 91.8% of Chinese FD isolates and 81.7% of Chinese GC isolates encoded EPIYA-D (p < .001). Of Malay FD isolates, 61.5% and 38.5% possessed EPIYA-C and EPIYA-D, respectively. The majority of isolates possessed three EPIYA motifs; however, Indian isolates were significantly more likely to have four or more (p < .05). Although, H. pylori strains with distinct cagA-types are circulating within the primary ethnic groups resident in Malaysia and Singapore, these genotypes appear unassociated with the development of GC in the ethnic Chinese population. The phenomenon of distinct strains circulating within different ethnic groups, in combination with host and certain environmental factors, may help to explain the rates of GC development in Malaysia.
Lusso, Paolo; Earl, Patricia L; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A; Burastero, Samuele E
2005-06-01
The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on coreceptor usage phenotype. These results provide the first evidence of a correlation between HIV-1 biological phenotype and neutralization sensitivity, raising the possibility that the in vivo evolution of HIV-1 coreceptor usage may be influenced by the selective pressure of specific host antibodies.
Effective Primary Schools in Geographically Isolated Areas of Vietnam
ERIC Educational Resources Information Center
Ikeda, Miyako
2010-01-01
This study identifies the major characteristics of "effective" primary schools in isolated areas in Vietnam. It suggests areas in which the implementation of beneficial changes can occur. Pupils in isolated areas of Vietnam are, in many respects, educationally disadvantaged. Usually, these pupils are in schools that have fewer…
Hou, Yan; Lou, Anru
2011-01-01
Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations.
Hou, Yan; Lou, Anru
2011-01-01
Aims Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Methods Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. Important Findings The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations. PMID:21909437
Sanad, Mohamed; Hassan, Noha
2014-01-01
A dual resonant antenna configuration is developed for multistandard multifunction mobile handsets and portable computers. Only two wideband resonant antennas can cover most of the LTE spectrums in portable communication equipment. The bandwidth that can be covered by each antenna exceeds 70% without using any matching or tuning circuits, with efficiencies that reach 80%. Thus, a dual configuration of them is capable of covering up to 39 LTE (4G) bands besides the existing 2G and 3G bands. 2 × 2 MIMO configurations have been also developed for the two wideband antennas with a maximum isolation and a minimum correlation coefficient between the primary and the diversity antennas. PMID:24558322
Antimicrobial resistance of Esherichia coli urinary isolates from primary care patients in Greece.
Falagas, Matthew E; Polemis, Michael; Alexiou, Vangelis G; Marini-Mastrogiannaki, Alexandra; Kremastinou, Jeni; Vatopoulos, Alkiviadis C
2008-02-01
Most of antimicrobial susceptibility surveillance studies focus on isolates from hospitalized patients. A retrospective analysis of microbiological data of the antimicrobial susceptibility of Escherichia coli urinary isolates from primary care patients in Greece was performed here. The in vitro susceptibility to ampicillin, amoxicillin/clavulanate, cefaclor, cefprozil, trimethoprim-sulfamethoxazole (cotrimoxazole), amikacin, and norfloxacin of 2460 E. coli isolates (01/2005-06/2005) from the urine specimens of patients tested at the laboratories of three Greek primary care diagnostic centers were analyzed. Only the first isolate per patient (2074 females and 386 males) were included in the analysis. The proportion of E. coli urinary isolates that were resistant to cotrimoxazole was 20.8% and 26.4% for females and males, respectively. There were noteworthy differences between age groups; 37.8% isolates from females <15 years old were resistant to cotrimoxazole compared with 18.9%, 17%, and 23.3% for the 15-35, 35-45, and >55-year-old females, respectively (P<0.001). The proportion of isolates resistant to ampicillin was very high (from 32.1% to 45.3% and 38% to 63% for the urinary isolates from females and males, respectively, in the different age groups examined), while it was relatively low for amikacin (up to 4.1%); 17.8% and 5.5% of the isolates from males and females, respectively, were resistant to norfloxacin (18.2% for males >55 years old). These findings offer help to clinicians in deciding the appropriate empirical treatment for primary care patients with urinary tract infection and emphasize the increasing problem of antimicrobial resistance even in the primary care setting in Greece.
Herbivory enhances the diversity of primary producers in pond ecosystems.
Leibold, Mathew A; Hall, Spencer R; Smith, Val H; Lytle, David A
2017-01-01
Diversity of primary producer is often surprisingly high, despite few limiting factors such as nutrients and light to facilitate species coexistence. In theory, the presence of herbivores could increase the diversity of primary producers, resolving this "paradox of the plankton." Little experimental evidence supports this natural enemies hypothesis, but previous tests suffer from several deficiencies. Previous experiments often did not allow for multigeneration effects; utilized low diversity assemblages of herbivores; and limited opportunities for new primary producer and herbivore species to colonize and undergo species sorting that favors some species over others. Using pond plankton, we designed a mesocosm experiment that overcame these problems by allowing more time for interactions over multiple generations, openness to allow new colonists, and manipulated higher diversity of primary producers and grazers than have previous studies. With this design, the presence of zooplankton grazers doubled phytoplankton richness. The additional phytoplankton species in grazed mesocosms were larger, and therefore likely more grazer resistant. Furthermore, phytoplankton richness in grazed mesocosms was similar to that observed in natural ponds whereas it was much lower in mesocosms without grazers. However, stoichiometric imbalance caused by variation in nitrogen : phosphorus ratios and light supply did not alter phytoplankton richness. Therefore, grazers enhanced primary producer richness more strongly than ratios of nutrient supply (even though both grazing and ratios of resource supply altered composition of primary producer assemblages). Taken together, these experimental and field data show that grazing from a diverse assemblage of herbivores greatly elevated richness of phytoplankton producers in pond ecosystems. © 2016 by the Ecological Society of America.
Seth-Smith, H M B; Busó, Leonor Sánchez; Livingstone, M; Sait, M; Harris, S R; Aitchison, K D; Vretou, Evangelia; Siarkou, V I; Laroucau, K; Sachse, K; Longbottom, D; Thomson, N R
2017-05-04
Chlamydia abortus (formerly Chlamydophila abortus) is an economically important livestock pathogen, causing ovine enzootic abortion (OEA), and can also cause zoonotic infections in humans affecting pregnancy outcome. Large-scale genomic studies on other chlamydial species are giving insights into the biology of these organisms but have not yet been performed on C. abortus. Our aim was to investigate a broad collection of European isolates of C. abortus, using next generation sequencing methods, looking at diversity, geographic distribution and genome dynamics. Whole genome sequencing was performed on our collection of 57 C. abortus isolates originating primarily from the UK, Germany, France and Greece, but also from Tunisia, Namibia and the USA. Phylogenetic analysis of a total of 64 genomes shows a deep structural division within the C. abortus species with a major clade displaying limited diversity, in addition to a branch carrying two more distantly related Greek isolates, LLG and POS. Within the major clade, seven further phylogenetic groups can be identified, demonstrating geographical associations. The number of variable nucleotide positions across the sampled isolates is significantly lower than those published for C. trachomatis and C. psittaci. No recombination was identified within C. abortus, and no plasmid was found. Analysis of pseudogenes showed lineage specific loss of some functions, notably with several Pmp and TMH/Inc proteins predicted to be inactivated in many of the isolates studied. The diversity within C. abortus appears to be much lower compared to other species within the genus. There are strong geographical signatures within the phylogeny, indicating clonal expansion within areas of limited livestock transport. No recombination has been identified within this species, showing that different species of Chlamydia may demonstrate different evolutionary dynamics, and that the genome of C. abortus is highly stable.
Seth-Smith, Helena M B; Wanninger, Sabrina; Bachmann, Nathan; Marti, Hanna; Qi, Weihong; Donati, Manuela; di Francesco, Antonietta; Polkinghorne, Adam; Borel, Nicole
2017-03-01
Chlamydia suis is an endemic pig pathogen, belonging to a fascinating genus of obligate intracellular pathogens. Of particular interest, this is the only chlamydial species to have naturally acquired genes encoding for tetracycline resistance. To date, the distribution and mobility of the Tet-island are not well understood. Our study focused on whole genome sequencing of 29 C. suis isolates from a recent porcine cohort within Switzerland, combined with data from USA tetracycline-resistant isolates. Our findings show that the genome of C. suis is very plastic, with unprecedented diversity, highly affected by recombination and plasmid exchange. A large diversity of isolates circulates within Europe, even within individual Swiss farms, suggesting that C. suis originated around Europe. New World isolates have more restricted diversity and appear to derive from European isolates, indicating that historical strain transfers to the United States have occurred. The architecture of the Tet-island is variable, but the tetA(C) gene is always intact, and recombination has been a major factor in its transmission within C. suis. Selective pressure from tetracycline use within pigs leads to a higher number of Tet-island carrying isolates, which appear to be lost in the absence of such pressure, whereas the loss or gain of the Tet-island from individual strains is not observed. The Tet-island appears to be a recent import into the genome of C. suis, with a possible American origin. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
A Comprehensive Epidemiological Research for Clinical Vibrio parahaemolyticus in Shanghai
Li, Huan; Tang, Rong; Lou, Yang; Cui, Zelin; Chen, Wenjing; Hong, Qing; Zhang, Zhaohuan; Malakar, Pradeep K.; Pan, Yingjie; Zhao, Yong
2017-01-01
Vibrio parahaemolyticus is one of the most important pathogen for seafood-borne gastroenteritis in Shanghai and the rest of the world. A total of 42 V. parahaemolyticus strains were isolated from 1900 fecal specimens collected from patients in Shanghai hospital presenting from January 2014 to December 2015. All isolates were evaluated for potential virulence factors [tdh, trh, and type three secretion system (T3SS) genes], typed using multilocus sequence typing (MLST) and screened for antimicrobial resistance phenotype and genotype. And for the first time, the relationship between virulence, genetic diversity and antimicrobial resistance of these isolates were identified. The results showed that 37 isolates carried the tdh gene (88.1%) and only seven isolates were positive for the trh gene. The T3SS1 and T3SS2 genes were detected in all strains and only trh-positive isolates are also containing the T3SS2β genes. MLST analysis of the 42 Shanghai isolates identified 20 sequence types (STs) with 16 novel STs and that these clinical V. parahaemolyticus strains showed high degrees of genetic diversity. All isolates expressed high levels of resistance against Ampicillin (100.0%), Streptomycin (100.0%), Cephazolin (92.9%), Kanamycin (92.8%) and Amikacin (90.5%), and eight out of 38 resistance genes (SHV, tet(B), strA, qnrA, gryA, qnrB, sulI, sulII) were detected in at least two isolates. This study confirms that antimicrobial resistance of clinical V. parahaemolyticus isolates is greater than those of environmental isolates. Furthermore, no clear correlation between antimicrobial resistance and virulence or genetic diversity was found in this study. These results add to epidemiological data of clinical V. parahaemolyticus isolates in Shanghai and highlight the need for additional mechanistic studies, especially antimicrobial resistance, to reduce the burden of disease caused by this pathogen in China. PMID:28642752
Ge, Cibin; Liu, Bo; Che, Jianmei; Chen, Meichun; Liu, Guohong; Wei, Jiangchun
2015-05-04
The present work reported the isolation, identification and diversity of Bacillus species colonizing on the surface and endophyte in lichens collected from Wuyi Mountain. Nine lichen samples of Evernia, Stereocaulon, Menegazzia and other 6 genera belonging to 7 families were collected from Wuyi mountain nature reserve. The bacillus-like species colonizing on the surface and endophyte in these lichens were isolated and identified by 16S rRNA gene sequence analysis. There was no bacillus-like species isolated from Evernia, Ramalina and Lecarona. A total of 34 bacillus-like bacteria were isolated from another 6 lichen samples. These bacteria were identified as 24 species and were classified into Bacillus, Paenibacillus, Brevibacillus, Lysinibacillus and Viridiibacillus. Paenibacillus and Bacillus are the dominant genera, and accounting for 41. 2% and 35. 3% of all isolated bacteria respectively. Brevibacillus, Lysinibacillus and Viridiibacillu were first reported being isolated from lichens. There were different species and quantity of bacillus colonizing on the surface and endophyte in different lichens. The quantity of bacillus colonizing on the surface of Physcia was more than 3.85 x 10(6) cfu/g and was the largest in the isolated bacteria, while the species of bacillus colonizing on the surface and endophyte in Stereocaulon was the most abundant. Most of the isolated bacteria were colonizing on (in) one lichen genera, but Paenibacillus taichungensis, Paenibacillus odorifer, Brevibacillus agri, Lysinibacillus xylanilyticus was respectively colonizing on (in) 2-3 lichen genera and Bacillus mycoides was colonizing on (in) Menegazzia, Cladonia Physcia, and Stereocaulon. There are species and quantity diversity of bacillus colonizing on (in) lichens.
Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio; Middelboe, Mathias
2014-05-01
Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that "enhanced infection" is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed.
[Isolation and physiological characteristics of endophytic actinobacteria from medicinal plants].
Du, Huijing; Su, Jing; Yu, Liyan; Zhang, Yuqin
2013-01-04
To isolate, incubate and characterize cultivable endophytic antinobacteria from medicinal plants, and analyze the diversity of the endophytic antinobacteria, then explore the novel microbial resources. Ten media were used to isolate endophytic antinobacteria from 37 fresh medicinal plant tissue samples. The optimal cultivation conditions for endophytic antinobacteria were determined by comparison. Based on the morphology of the colonies and cells of the new isolates, we chose 174 isolates to analyze their 16S rRNA gene sequences and the diversity of the medicinal plant endophytic antinobacteria. The physiological characteristics of 27 representative strains were studied using Biolog GEN III MicroPlates, API 50CH and API ZYM kits. In total 940 endophytics affiliated to 47 genera of 30 families were isolated, among which more than 600 actinobacteria belonged to 34 genera and 7 unknown taxa. Good growth of the endophytic antinobacteria on PYG (peptone-yeast-glycerol) medium with pH 7.2 at 28-32 degrees C was observed. Physiological characteristics differences of these isolates related to their phylogenetic relationships. Greater differences were shown among the strains from the same host plants than those from differ,ent plants grown in the same area. There are great diverse endophytic actinobacteria inside the medicinal plants. No direct relationship of the endophytic actinobacteria from medicinal plants with the host plants in the sole carbon source utilization, fermentation of carbon sources to produce acid and the enzyme activities was found, while it seemed that the physiological characteristics of the isolates related to the geographical distribution of their host.
Rapid identification of Corynebacterium vaginale in non-purulent vaginitis.
Wells, J I; Goei, S H
1981-01-01
A simple set of tests is proposed to give excellent probability for the identification of Corynebacterium vaginale from clinical material. Using these tests, 380 C vaginale were isolated from genital tract specimens from 1402 patients. Of these isolates 70 were from symptomatic patients. These 70 isolates were subjected to a further set of tests to confirm their identity. The advantage of these primary tests is that they can be completed on the day of isolation of the organism. Of these 70 isolates 66 were confirmed as C vaginale thus giving the primary set of tests a 94% rate of accurate identification. However this rate may be increased beyond 97% by the promotion of one of the key secondary tests to the primary set. PMID:7024317
Zhang, Xiao-Yong; Fu, Wen; Chen, Xiao; Yan, Mu-Ting; Huang, Xian-De; Bao, Jie
2018-06-09
To search for more microbial resources for screening environment-friendly antifoulants, we investigated the phylogenetic diversity and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China. A total of 176 isolates belonging to 57 fungal taxa were recovered and identified. The high levels of diversity and abundance of mangrove fungi from Techeng Isle were in accordance with previous studies on fungi from other mangrove ecosystems. Fifteen of the 176 isolates demonstrated high divergence (87-93%) from the known fungal taxa in GenBank. Moreover, 26 isolates recorded in mangrove ecosystems for the first time. These results suggested that mangrove sediments from Techeng Isle harbored some new fungal communities compared with other mangrove ecosystems. The antifouling activity of 57 representative isolates (belonging to 57 different fungal taxa) was tested against three marine bacteria (Loktanella hongkongensis, Micrococcus luteus and Pseudoalteromonas piscida) and two marine macrofoulers (bryozoan Bugula neritina and barnacle Balanus amphitrite). Approximately 40% of the tested isolates displayed distinct antifouling activity. Furthermore, 17 fungal isolates were found to display strong or a wide spectrum of antifouling activity in this study, suggesting that these isolates deserve further study as potential sources of novel antifouling metabolites. To our knowledge, this is the first report on the investigation of the phylogenetic diversity and antifouling potential of culturable fungi in mangrove sediments from Techeng Isle, China. These results contribute to our knowledge of mangrove fungi and further increases the pool of fungi available for natural bioactive product screening.
O'Connell, Lisa M; Mosseler, Alex; Rajora, Om P
2007-01-01
Conifers are among the most genetically diverse plants but show the lowest levels of genetic differentiation, even among geographically distant populations. High gene flow among populations may be one of the most important factors in maintaining these genetic patterns. Here, we provide empirical evidence for extensive pollen-mediated gene dispersal between natural stands of a widespread northern temperate/boreal conifer, Picea glauca. We used 6 polymorphic allozyme loci to quantify the proportion of seeds sired by pollen originating from different sources in a landscape fragmented by agriculture in North Central Ontario, Canada. In 7 stands, a small proportion of seeds were sired by self-pollen or neighboring trees but 87.1% (+/-1.7% standard error [SE]) of seeds were sired by pollen from at least 250 to 3000 m away. In 4 single isolated trees, self-fertilization rates were low and more than 96% (+/-1.3% SE) of seeds were sired by immigrant pollen. The average minimum pollen dispersal distance in outcrossed matings was 619 m. These results provide strong evidence that extensive long-distance pollen dispersal plays a primary role in maintaining low genetic differentiation among natural populations of P. glauca and helps maintain genetic diversity and minimize inbreeding in small stands in a fragmented landscape.
Fan, Zhou; Jiang, Guo-Fang; Liu, Yu-Xiang; He, Qi-Xin; Blanchard, Benjamin
2014-01-01
Geographic distance and geographical barriers likely play a considerable role in structuring genetic variation in species, although some migratory species may have less phylogeographic structure on a smaller spatial scale. Here, genetic diversity and the phylogenetic structure among geographical populations of the yellow-spined bamboo locust, Ceracris kiangsu, were examined with 16S rDNA and amplified fragment length polymorphisms (AFLPs). In this study, no conspicuous phylogeographical structure was discovered from either Maximum parsimony (MP) and Neighbor-joining (NJ) phylogenetic analyses. The effect of geographical isolation was not conspicuous on a large spatial scale.At smaller spatial scales local diversity of some populations within mountainous areas were detected using Nei's genetic distance and AMOVA. There is a high level of genetic diversity and a low genetic differentiation among populations in the C. kiangsu of South and Southeast China. Our analyses indicate that C. kiangsu is a monophyletic group. Our results also support the hypothesis that the C. kiangsu population is in a primary differentiation stage. Given the mismatch distribution, it is likely that a population expansion in C. kiangsu occurred about 0.242 Ma during the Quaternary interglaciation. Based on historical reports, we conjecture that human activities had significant impacts on the C. kiangsu gene flow. PMID:24603526
Primary forests are irreplaceable for sustaining tropical biodiversity.
Gibson, Luke; Lee, Tien Ming; Koh, Lian Pin; Brook, Barry W; Gardner, Toby A; Barlow, Jos; Peres, Carlos A; Bradshaw, Corey J A; Laurance, William F; Lovejoy, Thomas E; Sodhi, Navjot S
2011-09-14
Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.
Wang, Panpan; Li, Ya; Xiao, Hang; Shi, Yonghui; Le, Guo-Wei; Sun, Jin
2016-09-01
We previously reported that specific Lactobacillus reuteri colonized within mouse Peyer's patches (PP) effectively prevented high fat diet induced obesity and low-grade chronic inflammation. We further investigated the role of PP Lactobacillus reuteri on sIgA production in rats in this study. Lactobacilli were isolated from rat PP. All isolates were L. reuteri and belonged to three phenotypes according to amplified fragment length polymorphism analysis. Typical strains of two main clusters, PP1 and PP2, were used to treat control and vitamin A deficient (VAD) rats, respectively. The feeding of PP1 and PP2 affected sIgA and Lactobacillus diversity by strain-specific manner. Free sIgA was significantly increased by PP1 (p = 0.069) and PP2 (p < 0.05) in the control rats but not in the VAD rats. Only PP1 significantly changed PP Lactobacillus diversity in the control rats (p < 0.05). However, PP2 specifically changed ileal Lactobacillus diversity in both control and VAD rats. Fecal sIgA was correlated with PP Lactobacillus diversity (R(2) = 0.7958, p = 0.011). Modulation of sIgA production by PP L. reuteri of rat is dependent on vitamin A and change of Lactobacillus diversity in PP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Expanding the Diversity of Mycobacteriophages: Insights into Genome Architecture and Evolution
Pope, Welkin H.; Jacobs-Sera, Deborah; Russell, Daniel A.; Peebles, Craig L.; Al-Atrache, Zein; Alcoser, Turi A.; Alexander, Lisa M.; Alfano, Matthew B.; Alford, Samantha T.; Amy, Nichols E.; Anderson, Marie D.; Anderson, Alexander G.; Ang, Andrew A. S.; Ares, Manuel; Barber, Amanda J.; Barker, Lucia P.; Barrett, Jonathan M.; Barshop, William D.; Bauerle, Cynthia M.; Bayles, Ian M.; Belfield, Katherine L.; Best, Aaron A.; Borjon, Agustin; Bowman, Charles A.; Boyer, Christine A.; Bradley, Kevin W.; Bradley, Victoria A.; Broadway, Lauren N.; Budwal, Keshav; Busby, Kayla N.; Campbell, Ian W.; Campbell, Anne M.; Carey, Alyssa; Caruso, Steven M.; Chew, Rebekah D.; Cockburn, Chelsea L.; Cohen, Lianne B.; Corajod, Jeffrey M.; Cresawn, Steven G.; Davis, Kimberly R.; Deng, Lisa; Denver, Dee R.; Dixon, Breyon R.; Ekram, Sahrish; Elgin, Sarah C. R.; Engelsen, Angela E.; English, Belle E. V.; Erb, Marcella L.; Estrada, Crystal; Filliger, Laura Z.; Findley, Ann M.; Forbes, Lauren; Forsyth, Mark H.; Fox, Tyler M.; Fritz, Melissa J.; Garcia, Roberto; George, Zindzi D.; Georges, Anne E.; Gissendanner, Christopher R.; Goff, Shannon; Goldstein, Rebecca; Gordon, Kobie C.; Green, Russell D.; Guerra, Stephanie L.; Guiney-Olsen, Krysta R.; Guiza, Bridget G.; Haghighat, Leila; Hagopian, Garrett V.; Harmon, Catherine J.; Harmson, Jeremy S.; Hartzog, Grant A.; Harvey, Samuel E.; He, Siping; He, Kevin J.; Healy, Kaitlin E.; Higinbotham, Ellen R.; Hildebrandt, Erin N.; Ho, Jason H.; Hogan, Gina M.; Hohenstein, Victoria G.; Holz, Nathan A.; Huang, Vincent J.; Hufford, Ericka L.; Hynes, Peter M.; Jackson, Arrykka S.; Jansen, Erica C.; Jarvik, Jonathan; Jasinto, Paul G.; Jordan, Tuajuanda C.; Kasza, Tomas; Katelyn, Murray A.; Kelsey, Jessica S.; Kerrigan, Larisa A.; Khaw, Daryl; Kim, Junghee; Knutter, Justin Z.; Ko, Ching-Chung; Larkin, Gail V.; Laroche, Jennifer R.; Latif, Asma; Leuba, Kohana D.; Leuba, Sequoia I.; Lewis, Lynn O.; Loesser-Casey, Kathryn E.; Long, Courtney A.; Lopez, A. Javier; Lowery, Nicholas; Lu, Tina Q.; Mac, Victor; Masters, Isaac R.; McCloud, Jazmyn J.; McDonough, Molly J.; Medenbach, Andrew J.; Menon, Anjali; Miller, Rachel; Morgan, Brandon K.; Ng, Patrick C.; Nguyen, Elvis; Nguyen, Katrina T.; Nguyen, Emilie T.; Nicholson, Kaylee M.; Parnell, Lindsay A.; Peirce, Caitlin E.; Perz, Allison M.; Peterson, Luke J.; Pferdehirt, Rachel E.; Philip, Seegren V.; Pogliano, Kit; Pogliano, Joe; Polley, Tamsen; Puopolo, Erica J.; Rabinowitz, Hannah S.; Resiss, Michael J.; Rhyan, Corwin N.; Robinson, Yetta M.; Rodriguez, Lauren L.; Rose, Andrew C.; Rubin, Jeffrey D.; Ruby, Jessica A.; Saha, Margaret S.; Sandoz, James W.; Savitskaya, Judith; Schipper, Dale J.; Schnitzler, Christine E.; Schott, Amanda R.; Segal, J. Bradley; Shaffer, Christopher D.; Sheldon, Kathryn E.; Shepard, Erica M.; Shepardson, Jonathan W.; Shroff, Madav K.; Simmons, Jessica M.; Simms, Erika F.; Simpson, Brandy M.; Sinclair, Kathryn M.; Sjoholm, Robert L.; Slette, Ingrid J.; Spaulding, Blaire C.; Straub, Clark L.; Stukey, Joseph; Sughrue, Trevor; Tang, Tin-Yun; Tatyana, Lyons M.; Taylor, Stephen B.; Taylor, Barbara J.; Temple, Louise M.; Thompson, Jasper V.; Tokarz, Michael P.; Trapani, Stephanie E.; Troum, Alexander P.; Tsay, Jonathan; Tubbs, Anthony T.; Walton, Jillian M.; Wang, Danielle H.; Wang, Hannah; Warner, John R.; Weisser, Emilie G.; Wendler, Samantha C.; Weston-Hafer, Kathleen A.; Whelan, Hilary M.; Williamson, Kurt E.; Willis, Angelica N.; Wirtshafter, Hannah S.; Wong, Theresa W.; Wu, Phillip; Yang, Yun jeong; Yee, Brandon C.; Zaidins, David A.; Zhang, Bo; Zúniga, Melina Y.; Hendrix, Roger W.; Hatfull, Graham F.
2011-01-01
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists. PMID:21298013
Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution.
Pope, Welkin H; Jacobs-Sera, Deborah; Russell, Daniel A; Peebles, Craig L; Al-Atrache, Zein; Alcoser, Turi A; Alexander, Lisa M; Alfano, Matthew B; Alford, Samantha T; Amy, Nichols E; Anderson, Marie D; Anderson, Alexander G; Ang, Andrew A S; Ares, Manuel; Barber, Amanda J; Barker, Lucia P; Barrett, Jonathan M; Barshop, William D; Bauerle, Cynthia M; Bayles, Ian M; Belfield, Katherine L; Best, Aaron A; Borjon, Agustin; Bowman, Charles A; Boyer, Christine A; Bradley, Kevin W; Bradley, Victoria A; Broadway, Lauren N; Budwal, Keshav; Busby, Kayla N; Campbell, Ian W; Campbell, Anne M; Carey, Alyssa; Caruso, Steven M; Chew, Rebekah D; Cockburn, Chelsea L; Cohen, Lianne B; Corajod, Jeffrey M; Cresawn, Steven G; Davis, Kimberly R; Deng, Lisa; Denver, Dee R; Dixon, Breyon R; Ekram, Sahrish; Elgin, Sarah C R; Engelsen, Angela E; English, Belle E V; Erb, Marcella L; Estrada, Crystal; Filliger, Laura Z; Findley, Ann M; Forbes, Lauren; Forsyth, Mark H; Fox, Tyler M; Fritz, Melissa J; Garcia, Roberto; George, Zindzi D; Georges, Anne E; Gissendanner, Christopher R; Goff, Shannon; Goldstein, Rebecca; Gordon, Kobie C; Green, Russell D; Guerra, Stephanie L; Guiney-Olsen, Krysta R; Guiza, Bridget G; Haghighat, Leila; Hagopian, Garrett V; Harmon, Catherine J; Harmson, Jeremy S; Hartzog, Grant A; Harvey, Samuel E; He, Siping; He, Kevin J; Healy, Kaitlin E; Higinbotham, Ellen R; Hildebrandt, Erin N; Ho, Jason H; Hogan, Gina M; Hohenstein, Victoria G; Holz, Nathan A; Huang, Vincent J; Hufford, Ericka L; Hynes, Peter M; Jackson, Arrykka S; Jansen, Erica C; Jarvik, Jonathan; Jasinto, Paul G; Jordan, Tuajuanda C; Kasza, Tomas; Katelyn, Murray A; Kelsey, Jessica S; Kerrigan, Larisa A; Khaw, Daryl; Kim, Junghee; Knutter, Justin Z; Ko, Ching-Chung; Larkin, Gail V; Laroche, Jennifer R; Latif, Asma; Leuba, Kohana D; Leuba, Sequoia I; Lewis, Lynn O; Loesser-Casey, Kathryn E; Long, Courtney A; Lopez, A Javier; Lowery, Nicholas; Lu, Tina Q; Mac, Victor; Masters, Isaac R; McCloud, Jazmyn J; McDonough, Molly J; Medenbach, Andrew J; Menon, Anjali; Miller, Rachel; Morgan, Brandon K; Ng, Patrick C; Nguyen, Elvis; Nguyen, Katrina T; Nguyen, Emilie T; Nicholson, Kaylee M; Parnell, Lindsay A; Peirce, Caitlin E; Perz, Allison M; Peterson, Luke J; Pferdehirt, Rachel E; Philip, Seegren V; Pogliano, Kit; Pogliano, Joe; Polley, Tamsen; Puopolo, Erica J; Rabinowitz, Hannah S; Resiss, Michael J; Rhyan, Corwin N; Robinson, Yetta M; Rodriguez, Lauren L; Rose, Andrew C; Rubin, Jeffrey D; Ruby, Jessica A; Saha, Margaret S; Sandoz, James W; Savitskaya, Judith; Schipper, Dale J; Schnitzler, Christine E; Schott, Amanda R; Segal, J Bradley; Shaffer, Christopher D; Sheldon, Kathryn E; Shepard, Erica M; Shepardson, Jonathan W; Shroff, Madav K; Simmons, Jessica M; Simms, Erika F; Simpson, Brandy M; Sinclair, Kathryn M; Sjoholm, Robert L; Slette, Ingrid J; Spaulding, Blaire C; Straub, Clark L; Stukey, Joseph; Sughrue, Trevor; Tang, Tin-Yun; Tatyana, Lyons M; Taylor, Stephen B; Taylor, Barbara J; Temple, Louise M; Thompson, Jasper V; Tokarz, Michael P; Trapani, Stephanie E; Troum, Alexander P; Tsay, Jonathan; Tubbs, Anthony T; Walton, Jillian M; Wang, Danielle H; Wang, Hannah; Warner, John R; Weisser, Emilie G; Wendler, Samantha C; Weston-Hafer, Kathleen A; Whelan, Hilary M; Williamson, Kurt E; Willis, Angelica N; Wirtshafter, Hannah S; Wong, Theresa W; Wu, Phillip; Yang, Yun jeong; Yee, Brandon C; Zaidins, David A; Zhang, Bo; Zúniga, Melina Y; Hendrix, Roger W; Hatfull, Graham F
2011-01-27
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists.
Characteristics of Streptococcus mutans genotypes and dental caries in children
Cheon, Kyounga; Moser, Stephen A.; Wiener, Howard W.; Whiddon, Jennifer; Momeni, Stephanie S.; Ruby, John D.; Cutter, Gary R.; Childers, Noel K.
2013-01-01
This longitudinal cohort study evaluated the diversity, commonality, and stability of Streptococcus mutans genotypes associated with dental caries history. Sixty-seven 5 and 6 yr-old children, considered being at high caries risk, had plaque collected from baseline through 36 months for S. mutans isolation and genotyping with repetitive extragenic palindromic-PCR (4,392 total isolates). Decayed, missing, filled surfaces (dmfs/DMFS) for each child were recorded at baseline. At baseline, 18 distinct genotypes were found among 911 S. mutans isolates from 67 children (diversity) and 13 genotypes were shared by at least 2 children (commonality). The number of genotypes per individual was positively associated with the proportion of decayed surfaces (p-ds) at baseline. Twenty-four of the 39 children who were available at follow-up visits maintained a predominant genotype for the follow-up periods (stability) and was negatively associated with p-ds. The observed diversity, commonality, and stability of S. mutans genotypes represent a pattern of dental caries epidemiology in this high caries risk community, which suggest fewer decayed surfaces are significantly associated with lower diversity and stability of S. mutans genotypes. PMID:23659236
Microsatellite analysis of Fasciola spp. in Egypt.
Dar, Yasser; Amer, Said; Courtioux, Bertrand; Dreyfuss, Gilles
2011-12-01
Recently, the topic of diversity in Fasciola population in Egypt is controversial. The present study was performed to study the genetic diversity of isolated flukes based on microsatellites markers. Fasciola worms were collected from different hosts and geographical locations in Egypt. Control samples of Fasciola hepatica from France as well as Fasciola gigantica from Cameroon were included in the study. Collected flukes were identified morphologically and subjected for analysis using four microsatellite markers. Results of microsatellite profile (FM1 and FM2) proved that both species of Fasciola are distributed in Egypt irrespective of geographical location and host. Nevertheless, the microsatellite profile of some analyzed loci (FM2 and FM3) proved that Egyptian flukes showed more alleles compared to the reference ones. Differences of microsatellite profile in Egyptian isolates than that of corresponding reference samples indicate the remarkable diversity of these isolates. The present results highlighted the utility of microsatellite profile to discriminate between Fasciola species and to elucidate the diversity within the species. To our knowledge, this is the first time to study microsatellite polymorphism in Fasciola populations in Egypt.
Vali, Leila; Pearce, Michael C.; Wisely, Karen A.; Hamouda, Ahmed; Knight, Hazel I.; Smith, Alastair W.; Amyes, Sebastian G. B.
2005-01-01
A cohort of spring-born beef calves demonstrated limited genetic and phenotypic diversity of Escherichia coli O157 when kept in a state of isolation. Despite this, there was a difference in the pulsed-field gel electrophoresis and phage types of isolates shed by cattle at pasture compared with those shed by the same cattle when weaned and housed. PMID:15746371
Bian, Chao-Rong; Gao, Yu-Meng; Lamberton, Poppy H L; Lu, Da-Bing
2015-06-01
Schistosomiasis japonicum is one of the most important human parasitic diseases, and a number of studies have recently elucidated the difference in biological characteristics of S. japonicum among different parasite isolates, for example, between the field and the laboratory isolates. Therefore, the understanding of underlying genetic mechanism is of both theoretical and practical importance. In this study, we used six microsatellite markers to assess genetic diversity, population structure, and the bottleneck effect (a sharp reduction in population size) of two parasite populations, one field and one laboratory. A total of 136 S. japonicum cercariae from the field and 86 from the laboratory, which were genetically unique within single snails, were analyzed. The results showed bigger numbers of alleles and higher allelic richness in the field parasite population than in the laboratory indicating lower genetic diversity in the laboratory parasites. A bottleneck effect was detected in the laboratory population. When the field and laboratory isolates were combined, there was a clear distinction between two parasite populations using the software Structure. These genetic differences may partially explain the previously observed contrasted biological traits.
Bely, Marina; Masneuf-Pomarede, Isabelle; Jiranek, Vladimir; Albertin, Warren
2017-01-01
The yeast Lachancea thermotolerans (formerly Kluyveromyces thermotolerans) is a species with remarkable, yet underexplored, biotechnological potential. This ubiquist occupies a range of natural and anthropic habitats covering a wide geographic span. To gain an insight into L. thermotolerans population diversity and structure, 172 isolates sourced from diverse habitats worldwide were analysed using a set of 14 microsatellite markers. The resultant clustering revealed that the evolution of L. thermotolerans has been driven by the geography and ecological niche of the isolation sources. Isolates originating from anthropic environments, in particular grapes and wine, were genetically close, thus suggesting domestication events within the species. The observed clustering was further validated by several means including, population structure analysis, F-statistics, Mantel’s test and the analysis of molecular variance (AMOVA). Phenotypic performance of isolates was tested using several growth substrates and physicochemical conditions, providing added support for the clustering. Altogether, this study sheds light on the genotypic and phenotypic diversity of L. thermotolerans, contributing to a better understanding of the population structure, ecology and evolution of this non-Saccharomyces yeast. PMID:28910346
Diversity of phytases in the rumen.
Nakashima, Brenda A; McAllister, Tim A; Sharma, Ranjana; Selinger, L Brent
2007-01-01
Examples of a new class of phytase related to protein tyrosine phosphatases (PTP) were recently isolated from several anaerobic bacteria from the rumen of cattle. In this study, the diversity of PTP-like phytase gene sequences in the rumen was surveyed by using the polymerase chain reaction (PCR). Two sets of degenerate primers were used to amplify sequences from rumen fluid total community DNA and genomic DNA from nine bacterial isolates. Four novel PTP-like phytase sequences were retrieved from rumen fluid, whereas all nine of the anaerobic bacterial isolates investigated in this work contained PTP-like phytase sequences. One isolate, Selenomonas lacticifex, contained two distinct PTP-like phytase sequences, suggesting that multiple phytate hydrolyzing enzymes are present in this bacterium. The degenerate primer and PCR conditions described here, as well as novel sequences obtained in this study, will provide a valuable resource for future studies on this new class of phytase. The observed diversity of microbial phytases in the rumen may account for the ability of ruminants to derive a significant proportion of their phosphorus requirements from phytate.
Lorch, Jeffrey M.; Lindner, Daniel L.; Gargas, Andrea; Muller, Laura K.; Minnis, Andrew M.; Blehert, David S.
2013-01-01
The recent emergence of white-nose syndrome (WNS), a fungal disease causing unprecedented mortality among hibernating bats of eastern North America, has revealed a knowledge gap regarding fungal communities associated with bats and their hibernacula. We used culture-based techniques to investigate the diversity of fungi in soil samples collected from 24 bat hibernacula in the eastern United States. Ribosomal RNA regions (internal transcribed spacer and partial intergenic spacer) were sequenced to preliminarily characterize isolates. Geomyces species were one of the most abundant and diverse groups cultured, representing approximately 33% of all isolates. Geomyces destructans was isolated from soil samples from three hibernacula in states where WNS is known to occur, and many of the other cultured Geomyces isolates likely represent undescribed taxa. Further characterization of the diversity of fungi that occur in hibernacula will both facilitate an improved understanding of the ecology of G. destructans within this complex fungal community and provide an opportunity to identify characteristics that differentiate G. destructans from non-pathogenic relatives.
Diversity of Marine-Derived Aspergillus from Tidal Mudflats and Sea Sand in Korea
Lee, Seobihn; Park, Myung Soo
2016-01-01
Aspergillus (Trichocomaceae, Eurotiales, and Ascomycota) is a genus of well-defined asexual spore-forming fungi that produce valuable compounds such as secondary metabolites and enzymes; however, some species are also responsible for diseases in plants and animals, including humans. To date, 26 Aspergillus species have been reported in Korea, with most species located in terrestrial environments. In our study, Aspergillus species were isolated from mudflats and sea sand along the western and southern coasts of Korea. A total of 84 strains were isolated and identified as 17 Aspergillus species in 11 sections on the basis of both morphological characteristics and sequence analysis of the calmodulin gene (CaM) locus. Commonly isolated species were A. fumigatus (26 strains), A. sydowii (14 strains), and A. terreus (10 strains). The diversity of Aspergillus species isolated from mudflats (13 species) was higher than the diversity of those from sea sand (five species). Four identified species—A. caesiellus, A. montenegroi, A. rhizopodus, and A. tabacinus—are in the first records in Korea. Here, we provide detailed descriptions of the morphological characteristics of these four species. PMID:28154481
Wery, Nathalie; Gerike, Ursula; Sharman, Ajay; Chaudhuri, Julian B.; Hough, David W.; Danson, Michael J.
2003-01-01
Seventy-five aerobic heterotrophs have been isolated from a packed-column bioreactor inoculated with soil from Antarctica. The column was maintained at 10°C and continuously fed with a casein-containing medium to enrich protease producers. Twenty-eight isolates were selected for further characterization on the basis of morphology and production of clearing zones on skim milk plates. Phenotypic tests indicated that the strains were mainly psychrotrophs and presented a high morphological and metabolical diversity. The extracellular protease activities tested were optimal at neutral pH and between 30 and 45°C. 16S ribosomal DNA sequence analyses showed that the bioreactor was colonized by a wide variety of taxons, belonging to various bacterial divisions: α-, β-, and γ-Proteobacteria; the Flexibacter-Cytophaga-Bacteroides group; and high G+C gram-positive bacteria and low G+C gram-positive bacteria. Some strains represent candidates for new species of the genera Chryseobacterium and Massilia. This diversity demonstrates that the bioreactor is an efficient enrichment tool compared to traditional isolation strategies. PMID:12620829
Park, Ji Young; Kim, Sara; Oh, Jae Young; Kim, Hye Ryoung; Jang, Il; Lee, Hee Soo; Kwon, Yong Kuk
2015-06-01
Clostridium perfringens produces diverse virulent toxins that cause necrotic enteritis in poultry, resulting in a great negative impact on the poultry industry. To study the characteristics of C. perfringens in chickens, we isolated 88 strains from chickens (1 strain per flock) with necrotic enteritis. The isolated bacterial strains were screened for toxin type and antimicrobial susceptibility. Necropsy of 17 chickens that died from necrotic enteritis revealed that their intestines were dilated with inflammatory exudates and characterized by mucosal necrosis. All the isolated strains were identified as toxin type A using multiplex PCR for toxin typing. We found that the rate of netB-positive strains isolated from dead chickens was significantly higher (8 of 17) than the rate among healthy chickens (2 of 50). We performed antimicrobial susceptibility test with 20 selected antimicrobial agents using the disk diffusion test and found that 30 tested strains were completely resistant to 5 antibiotics and partially resistant to 6 antibiotics whereas all the strains were susceptible to 9 antimicrobial agents. Using pulsed-field gel electrophoresis analysis, the 17 strains were divided into 13 genetic clusters showing high genetic diversity. In conclusion, C. perfringens strains isolated from Korean poultry showed a high resistance to antimicrobial drugs and high genetic diversity, suggesting that continuous monitoring is essential to prevent outbreaks of necrotic enteritis in chickens. © 2015 Poultry Science Association Inc.
Tapsoba, François; Legras, Jean-Luc; Savadogo, Aly; Dequin, Sylvie; Traore, Alfred Sababenedyo
2015-10-15
In South-West of Burkina Faso, palm wine is produced by spontaneous fermentation of the sap from a specific palm tree Borassus akeassii and plays an important role in people's lives. Saccharomyces cerevisiae is the main agent of this alcoholic fermentation but little is known about the diversity of the isolates from palm. In this work, 39 Saccharomyces cerevisiae strains were isolated from palm wine samples collected from 14 sites in Burkina Faso, as well as 7 isolates obtained from sorghum beer (Dolo) from 3 distant sites. Their diversity was analyzed at 12 microsatellite loci, and compared to the genotypes obtained for other African yeast populations isolated from Cocoa hulks from Ghana, sorghum beer from Ivory Coast, palm wine from Djibouti Republic, and to our database of strains from miscellaneous origins (bread, beer, wine, sake, oaks…). The ploidy of these strains has been assessed as well by flow cytometry. Our results show that B. akeassii palm wine contains a specific yeast population of diploid strains, different from Dolo produced in the same area and from other palm wine strains from Ivory Coast, Nigeria, or Djibouti Republic. In contrast, Dolo strains appeared as a group of related and mainly tetraploid strains despite being isolated from different countries. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Xiao Lei; Liu, Su Lin; Liu, Min; Kong, Bi He; Liu, Lei; Li, Yan Hong
2014-01-01
Investigating the endophytic bacterial community in special moss species is fundamental to understanding the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were estimated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteobacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G. montana needs to be confirmed. PMID:24948927
Dekker, Denise Myriam; Krumkamp, Ralf; Sarpong, Nimako; Frickmann, Hagen; Boahen, Kennedy Gyau; Frimpong, Michael; Asare, Renate; Larbi, Richard; Hagen, Ralf Matthias; Poppert, Sven; Rabsch, Wolfgang; Marks, Florian; Adu-Sarkodie, Yaw; May, Jürgen
2015-01-01
Salmonellosis is an important but neglected disease in sub-Saharan Africa. Food or fecal-oral associated transmissions are the primary cause of infections, while the role of waterborne transmission is unclear. Samples were collected from different dug wells in a rural area of Ghana and analyzed for contamination with bacteria, and with Salmonella in particular. In addition, temporal dynamics and riks factors for contamination were investigated in 16 wells. For all Salmonella isolates antibiotic susceptibility testing was performed, serovars were determined and strains from the same well with the same serovar were genotyped. The frequency of well water contamination with Gram-negative rod-shaped bacteria was 99.2% (n = 395). Out of 398 samples, 26 (6.5%) tested positive for Salmonella spp. The serovar distribution was diverse including strains not commonly isolated from clinical samples. Resistance to locally applied antibiotics or resistance to fluoroquinolones was not seen in the Salmonella isolates. The risk of Salmonella contamination was lower in wells surrounded by a frame and higher during the rainy season. The study confirms the overall poor microbiological quality of well water in a resource-poor area of Ghana. Well contamination with Salmonella poses a potential threat of infection, thus highlighting the important role of drinking water safety in infectious disease control. PMID:25826395
Dekker, Denise Myriam; Krumkamp, Ralf; Sarpong, Nimako; Frickmann, Hagen; Boahen, Kennedy Gyau; Frimpong, Michael; Asare, Renate; Larbi, Richard; Hagen, Ralf Matthias; Poppert, Sven; Rabsch, Wolfgang; Marks, Florian; Adu-Sarkodie, Yaw; May, Jürgen
2015-03-27
Salmonellosis is an important but neglected disease in sub-Saharan Africa. Food or fecal-oral associated transmissions are the primary cause of infections, while the role of waterborne transmission is unclear. Samples were collected from different dug wells in a rural area of Ghana and analyzed for contamination with bacteria, and with Salmonella in particular. In addition, temporal dynamics and riks factors for contamination were investigated in 16 wells. For all Salmonella isolates antibiotic susceptibility testing was performed, serovars were determined and strains from the same well with the same serovar were genotyped. The frequency of well water contamination with Gram-negative rod-shaped bacteria was 99.2% (n = 395). Out of 398 samples, 26 (6.5%) tested positive for Salmonella spp. The serovar distribution was diverse including strains not commonly isolated from clinical samples. Resistance to locally applied antibiotics or resistance to fluoroquinolones was not seen in the Salmonella isolates. The risk of Salmonella contamination was lower in wells surrounded by a frame and higher during the rainy season. The study confirms the overall poor microbiological quality of well water in a resource-poor area of Ghana. Well contamination with Salmonella poses a potential threat of infection, thus highlighting the important role of drinking water safety in infectious disease control.
Dreiseitl, Antonin
2017-01-01
The primary genepool of barley comprises two subspecies – wild barley (Hordeum vulgare subsp. spontaneum) and cultivated barley H. vulgare. subsp. vulgare. The former originated 5.5 million years ago in southwest Asia and is the immediate ancestor of cultivated barley, which arose around 10,000 years ago. In this study, the specific resistance of a set of 146 wild barley accessions, maintained by the International Center for Agriculture Research in the Dry Areas (ICARDA), to 32 isolates of barley powdery mildew caused by Blumeria graminis f. sp. hordei was evaluated. The set comprised 146 heterogeneous accessions of a previously tested collection. Seed was obtained by single seed descent and each accession was usually represented by five single plant progenies. In total, 687 plant progenies were tested. There were 211 phenotypes of resistance among the accessions, 87 of which were found in single plants, while 202 plants contained the eight most common phenotypes. The most frequent phenotype was found in 56 plants that were susceptible to all pathogen isolates, whereas the second most frequent phenotype, which occurred in 46 plants, was resistant to all isolates. The broad resistance diversity that was revealed is of practical importance and is an aid to determining the extent and role of resistance in natural ecosystems. PMID:28261253
Khan, Shams Tabrez; Komaki, Hisayuki; Motohashi, Keiichiro; Kozone, Ikuko; Mukai, Akira; Takagi, Motoki; Shin-ya, Kazuo
2011-02-01
Terrestrial actinobacteria have served as a primary source of bioactive compounds; however, a rapid decrease in the discovery of new compounds strongly necessitates new investigational approaches. One approach is the screening of actinobacteria from marine habitats, especially the members of the genus Streptomyces. Presence of this genus in a marine sponge, Haliclona sp., was investigated using culture-dependent and -independent techniques. 16S rRNA gene clone library analysis showed the presence of diverse Streptomyces in the sponge sample. In addition to the dominant genus Streptomyces, members of six different genera were isolated using four different media. Five phylogenetically new strains, each representing a novel species in the genus Streptomyces were also isolated. Polyphasic study suggesting the classification of two of these strains as novel species is presented. Searching the strains for the production of novel compounds and the presence of biosynthetic genes for secondary metabolites revealed seven novel compounds and biosynthetic genes with unique sequences. In these compounds, JBIR-43 exhibited cytotoxic activity against cancer cell lines. JBIR-34 and -35 were particularly interesting because of their unique chemical skeleton. To our knowledge, this is the first comprehensive study detailing the isolation of actinobacteria from a marine sponge and novel secondary metabolites from these strains.
Musser, J M; Mattingly, S J; Quentin, R; Goudeau, A; Selander, R K
1989-06-01
Chromosomal genotypes of 128 isolates of six serotypes (Ia, Ib, Ic, II, Ic/II, and III) of Streptococcus agalactiae (group B Streptococcus) recovered predominantly from human infants in the United States were characterized by an analysis of electrophoretically demonstrable allelic profiles at 11 metabolic enzyme loci. Nineteen distinctive electrophoretic types (ETs), representing multilocus clonal genotypes, were identified. Mean genetic diversity per locus among ETs of isolates of the same serotype was, on average, nearly equal to that in all 19 ETs. Cluster analysis of the ETs revealed two primary phylogenetic divisions at a genetic distance of 0.65. A single clone (ET 1) represented by 40 isolates expressing type III antigen formed division I. Division II was composed of 18 ETs in three major lineages diverging from one another at distances greater than 0.35 and included strains of all six antigenic classes. The type III organisms in division I produce more extracellular neuraminidase and apparently are more virulent than the type III strains in division II, which are related to strains of other serotypes that cause disease much less frequently. The existence of this unusually virulent clone accounts, in major part, for the high morbidity and mortality associated with infection by type III organisms.
Beauruelle, Clemence; Pastuszka, Adeline; Mereghetti, Laurent; Lanotte, Philippe
2018-06-01
We evaluated the diversity of group B Streptococcus (GBS) vaginal carriage populations in pregnant women. For this purpose, we studied each isolate present in a primary culture of a vaginal swab using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) locus analysis. To evaluate the CRISPR array composition rapidly, a restriction fragment length polymorphism (RFLP) analysis was performed. For each different pattern observed, the CRISPR array was sequenced and capsular typing and multilocus sequence typing (MLST) were performed. A total of 970 isolates from 10 women were analyzed by CRISPR-RFLP. Each woman carrying GBS isolates presented one to five specific "personal" patterns. Five women showed similar isolates with specific and unique restriction patterns, suggesting the carriage of a single GBS clone. Different patterns were observed among isolates from the other five women. For three of these, CRISPR locus sequencing highlighted low levels of internal modifications in the locus backbone, whereas there were high levels of modifications for the last two women, suggesting the carriage of two different clones. These two clones were closely related, having the same ancestral spacer(s), the same capsular type and, in one case, the same ST, but showed different antibiotic resistance patterns in pairs. Eight of 10 women were colonized by a single GBS clone, while two of them were colonized by two strains, leading to a risk of selection of more-virulent and/or more-resistant clones during antibiotic prophylaxis. This CRISPR analysis made it possible to separate isolates belonging to a single capsular type and sequence type, highlighting the greater discriminating power of this approach. Copyright © 2018 American Society for Microbiology.
Fang, Bao-Zhu; Salam, Nimaichand; Han, Ming-Xian; Jiao, Jian-Yu; Cheng, Juan; Wei, Da-Qiao; Xiao, Min; Li, Wen-Jun
2017-01-01
The phylum Actinobacteria is one of the most ubiquitously present bacterial lineages on Earth. In the present study, we try to explore the diversity of cultivable rare Actinobacteria in Sigangli Cave, Yunnan, China by utilizing a combination of different sample pretreatments and under different culture conditions. Pretreating the samples under different conditions of heat, setting the isolation condition at different pHs, and supplementation of media with different calcium salts were found to be effective for isolation of diverse rare Actinobacteria. During our study, a total of 204 isolates affiliated to 30 genera of phylum Actinobacteria were cultured. Besides the dominant Streptomyces, rare Actinobacteria of the genera Actinocorallia, Actinomadura, Agromyces, Alloactinosynnema, Amycolatopsis, Beutenbergia, Cellulosimicrobium, Gordonia, Isoptericola, Jiangella, Knoellia, Kocuria, Krasilnikoviella, Kribbella, Microbacterium, Micromonospora, Mumia, Mycobacterium, Nocardia, Nocardioides, Nocardiopsis, Nonomuraea, Oerskovia, Pseudokineococcus, Pseudonocardia, Rhodococcus, Saccharothrix, Streptosporangium, and Tsukamurella were isolated from these cave samples. PMID:28848538
The Changing Experiences of Primary Teachers: Responding to Scenarios Involving Diverse Sexualities
ERIC Educational Resources Information Center
van Leent, Lisa; Ryan, Mary
2016-01-01
Sex education and diverse sexualities are controversial topics within the primary school arena. Concepts of childhood innocence have influenced sex education curriculum, policy development and teaching practices within schools. However, research shows that primary school-aged students are aware of and talk about sexualities. The aim of this…
USDA-ARS?s Scientific Manuscript database
Primary care practices can be used to engage children and families in weight management programs. The Texas Childhood Obesity Research Demonstration (TX CORD) study targeted patients at 12 primary care practices in diverse and low-income areas of Houston, Texas, and Austin, Texas for recruitment to ...
Andrade, I. M.; Mayo, S. J.; van den Berg, C.; Fay, M. F.; Chester, M.; Lexer, C.; Kirkup, D.
2007-01-01
Background and Aims This study sought genetic evidence of long-term isolation in populations of Monstera adansonii var. klotzschiana (Araceae), a herbaceous, probably outbreeding, humid forest hemi-epiphyte, in the brejo forests of Ceará (north-east Brazil), and clarification of their relationships with populations in Amazonia and the Atlantic forest of Brazil. Methods Within-population genetic diversity and between-population dissimilarity were estimated using AFLP molecular markers in 75 individuals from eight populations located in Ceará, the Brazilian Atlantic Forest and Amazonia. Key Results The populations showed a clinal pattern of weak genetic differentiation over a large geographical region (FST = 0·1896). A strong correlation between genetic and geographical distance (Mantel test: r = 0·6903, P = 0·002) suggests a historical pattern of isolation by distance. Genetic structure analysis revealed at least two distinct gene pools in the data. The two isolated Ceará populations are significantly different from each other (pairwise ΦPT = 0·137, P = 0·003) and as diverse (Nei's gene diversity, average He = 0·1832, 0·1706) as those in the Atlantic and Amazon forest regions. The population in southern Brazil is less diverse (Nei's gene diversity, average He = 0·127) than the rest. The Ceará populations are related to those of the Atlantic forest rather than those from Amazonia (AMOVA, among-groups variation = 11·95 %, P = 0·037). Conclusions The gene pools detected within an overall pattern of clinal variation suggest distinct episodes of gene flow, possibly correlated with past humid forest expansions. The Ceará populations show no evidence of erosion of genetic diversity, although this was expected because of their isolation. Their genetic differentiation and relatively high diversity reinforce the importance of conserving the endangered brejo forests. PMID:17823112
Hemmink, Johanneke D; Weir, William; MacHugh, Niall D; Graham, Simon P; Patel, Ekta; Paxton, Edith; Shiels, Brian; Toye, Philip G; Morrison, W Ivan; Pelle, Roger
2016-07-01
An infection and treatment protocol is used to vaccinate cattle against Theileria parva infection. Due to incomplete cross-protection between different parasite isolates, a mixture of three isolates, termed the Muguga cocktail, is used for vaccination. While vaccination of cattle in some regions provides high levels of protection, some animals are not protected against challenge with buffalo-derived T. parva. Knowledge of the genetic composition of the Muguga cocktail vaccine is required to understand how vaccination is able to protect against field challenge and to identify the potential limitations of the vaccine. The aim of the current study was to determine the extent of genetic and antigenic diversity within the parasite isolates that constitute the Muguga cocktail. High throughput multi-locus sequencing of antigen-encoding loci was performed in parallel with typing using a panel of micro- and mini-satellite loci. The former focused on genes encoding CD8(+) T cell antigens, believed to be relevant to protective immunity. The results demonstrate that each of the three component stocks of the cocktail contains limited parasite genotypic diversity, with single alleles detected at many gene/satellite loci and, moreover, that two of the components show a very high level of similarity. Thus, the vaccine incorporates very little of the genetic and antigenic diversity observed in field populations of T. parva. The presence of alleles at low frequency (<10%) within vaccine component populations also points to the possibility of variability in the content of vaccine doses and the potential for loss of allelic diversity during tick passage. The results demonstrate that there is scope to modify the content of the vaccine in order to enhance its diversity and thus its potential for providing broad protection. The ability to accurately quantify genetic diversity in vaccine component stocks will facilitate improved quality control procedures designed to ensure the long-term efficacy of the vaccine. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
De Groot, G. A.; During, H. J.; Ansell, S. W.; Schneider, H.; Bremer, P.; Wubs, E. R. J.; Maas, J. W.; Korpelainen, H.; Erkens, R. H. J.
2012-01-01
Background and Aims Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal. Methods Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos. Key Results A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species. Conclusions The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated habitats receive dense and diverse spore rains, including genotypes capable of self-fertilization. Limited gene flow may conserve the genetic signature of multiple long-distance colonization events for several decades. PMID:22323427
Expanding the species and chemical diversity of Penicillium section Cinnamopurpurea
USDA-ARS?s Scientific Manuscript database
A set of isolates genetically similar to or potentially conspecific with an unidentified Penicillium isolate NRRL 735, was assembled using a Basic Local Alignment Search Tool (BLAST) search of internal transcribed spacer (ITS) similarity among described (GenBank) and undescribed Penicillium isolates...
USDA-ARS?s Scientific Manuscript database
Isolates of several Trichoderma spp., were collected from tropical environments as potential biocontrol agents for cacao (Theobroma cacao) diseases. The diversity of isolates collected, including new species, and there endophytic nature on their host plants, led us to consider if these isolates have...
First finding of genetic and antigenic diversity in 1b-BVDV isolates from Argentina.
Pecora, A; Malacari, D A; Ridpath, J F; Perez Aguirreburualde, M S; Combessies, G; Odeón, A C; Romera, S A; Golemba, M D; Wigdorovitz, A
2014-02-01
Infection with Bovine Viral Diarrhea Viruses (BVDV) in cattle results in a wide range of clinical manifestations, ranging from mild respiratory disease to fetal death and mucosal disease, depending on the virulence of the virus and the immune and reproductive status of the host. In this study 30 Argentinean BVDV isolates were characterized by phylogenetic analysis. The isolates were genotyped based on comparison of the 5' untranslated region (5' UTR) and the E2 gene. In both phylogenetic trees, 76% of the viruses were assigned to BVDV 1b, whereas BVDV 1a, 2a and 2b were also found. Eight of the BVDV 1b isolates were further characterized by cross-neutralization tests using guinea pig antisera and sera from bovines vaccinated with two different commercial vaccines. The results demonstrated the presence of a marked antigenic diversity among Argentinean BVDV isolates and suggest the need to incorporate BVDV 1b isolates in diagnostic strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Diverse Thermus species inhabit a single hot spring microbial mat
NASA Technical Reports Server (NTRS)
Nold, S. C.; Ward, D. M.
1995-01-01
Through an effort to characterize aerobic chemoorganotrophic bacteria in the Octopus Spring cyano-bacterial mat community, we cultivated four Thermus isolates with unique 16S rRNA sequences. Isolates clustered within existing Thermus clades, including those containing Thermus ruber, Thermus aquaticus, and a subgroup closely related to T. aquaticus. One Octopus Spring isolate is nearly identical (99.9% similar) to isolates from Iceland, and two others are closely related to a T. ruber isolated from Russia. Octopus Spring isolates similar to T. aquaticus and T. ruber exhibited optimal growth rates at high (65-70 degrees C) and low (50 degrees C) temperatures, respectively, with the most abundant species best adapted to the temperature of the habitat (50-55 degrees C). Our results display a diversity of Thermus genotypes defined by 16S rRNA within one hot spring microbial community. We suggest that specialization to temperature and perhaps other local environmental features controls the abundance of Thermus populations.
Characterization of indigenous rhizobia from caatinga
Pires e Teixeira, Fernanda Cíntia; Borges, Wardsson Lustrino; Xavier, Gustavo Ribeiro; Rumjanek, Norma Gouvêa
2010-01-01
The aim of this study was to characterize rhizobial isolates from Cratylia mollis Mart. ex Benth, Calliandra depauperata Benth. and Mimosa tenuiflora (Willd.) Poir. by means of rhizobial colonies morphology and restriction analysis of the 16S ribosomal gene (16S rDNA-ARDRA). Nodules were collected in the field and from plants cultivated in a greenhouse experiment using Caatinga soil samples. Sixty seven isolates were described by morphological analysis. Forty seven representative isolates were used for ARDRA analysis using seven restriction enzymes. We observed high diversity of both slow and fast-growing rhizobia that formed three morpho-physiological clusters. A few fast-growing isolates formed a group of strains of the Bradyrhizobium type; however, most of them diverged from the B. japonicum and B. elkanii species. Cratylia mollis nodule isolates were the most diverse, while all Mimosa tenuiflora isolates displayed fast growth with no pH change and were clustered into groups bearing 100% similarity, according to ARDRA results. PMID:24031482
Phylogeny and variability of Colletotrichum truncatum associated with soybean anthracnose in Brazil.
Rogério, F; Ciampi-Guillardi, M; Barbieri, M C G; Bragança, C A D; Seixas, C D S; Almeida, A M R; Massola, N S
2017-02-01
Fungal diseases are among the main factors limiting high yields of soybean crop. Colletotrichum isolates from soybean plants with anthracnose symptoms were studied from different regions and time periods in Brazil using molecular, morphological and pathogenic analyses. Bayesian phylogenetic inference of GAPDH, HIS3 and ITS-5.8S rDNA sequences, the morphologies of colony and conidia, and inoculation tests on seeds and seedlings were performed. All isolates clustered only with Colletotrichum truncatum species in three well-separated clusters. Intraspecific genetic diversity revealed 27 distinct haplotypes in 51 fungal isolates; some of which were identical to C. truncatum sequences from other regions around the world, while others were related to alternative hosts. Conidia were falcate, hyaline, unicellular and aseptate, formed in acervuli, with variable dimensions. Despite being pathogenic to seedlings by both inoculation methods, variation was observed in the aggressiveness of the tested isolates, which was not correlated with genetic variation. The identification of C. truncatum in the sampled isolates was evidenced as being the only causal agent of soybean anthracnose in Brazil until 2007, with relevant genetic, morphological and pathogenic variability as well as a broad geographical origin. The wide distribution of the predominant C. truncatum haplotype indicated the existence of a highly efficient mechanism of pathogen dispersal over long distances, reinforcing the role of seeds as the primary source of disease inoculum. The characterization and distribution of Colletotrichum species in soybean-producing regions in Brazil is fundamental for understanding the disease epidemiology and for ensuring effective control strategies against anthracnose. © 2016 The Society for Applied Microbiology.
The population structure of Escherichia coli isolated from subtropical and temperate soils.
Byappanahalli, Muruleedhara N; Yan, Tao; Hamilton, Matthew J; Ishii, Satoshi; Fujioka, Roger S; Whitman, Richard L; Sadowsky, Michael J
2012-02-15
While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous microflora. Copyright © 2012 Elsevier B.V. All rights reserved.
Ramey, Andy M.; Reeves, Andrew B.; Ogawa, Haruko; Ip, Hon S.; Imai, Kunitoshi; Bui, V. N.; Yamaguchi, Emi; Silko, N. Y.; Afonso, C.L.
2013-01-01
Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease, one of the most economically important diseases for poultry production worldwide and a cause of periodic epizootics in wild birds in North America. In this study, we examined the genetic diversity of APMV-1 isolated from migratory birds sampled in Alaska, Japan, and Russia and assessed the evidence for intercontinental virus spread using phylogenetic methods. Additionally, we predicted viral virulence using deduced amino acid residues for the fusion protein cleavage site and estimated mutation rates for the fusion gene of class I and class II migratory bird isolates. All 73 isolates sequenced as part of this study were most closely related to virus genotypes previously reported for wild birds; however, five class II genotype I isolates formed a monophyletic clade exhibiting previously unreported genetic diversity, which met criteria for the designation of a new sub-genotype. Phylogenetic analysis of wild-bird isolates provided evidence for intercontinental virus spread, specifically viral lineages of APMV-1 class II genotype I sub-genotypes Ib and Ic. This result supports migratory bird movement as a possible mechanism for the redistribution of APMV-1. None of the predicted deduced amino acid motifs for the fusion protein cleavage site of APMV-1 strains isolated from migratory birds in Alaska, Japan, and Russia were consistent with those of previously identified virulent viruses. These data therefore provide no support for these strains contributing to the emergence of avian pathogens. The estimated mutation rates for fusion genes of class I and class II wild-bird isolates were faster than those reported previously for non-virulent APMV-1 strains. Collectively, these findings provide new insight into the diversity, spread, and evolution of APMV-1 in wild birds.
The population structure of Escherichia coli isolated from subtropical and temperate soils
Byappanahalli, Muruleedhara N.; Yan, Tao; Hamilton, Matthew J.; Ishii, Satoshi; Fujioka, Roger S.; Whitman, Richard L.; Sadowsky, Michael J.
2012-01-01
While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous microflora.
Ramey, Andrew M; Reeves, Andrew B; Ogawa, Haruko; Ip, Hon S; Imai, Kunitoshi; Bui, Vuong Nghia; Yamaguchi, Emi; Silko, Nikita Y; Afonso, Claudio L
2013-12-01
Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease, one of the most economically important diseases for poultry production worldwide and a cause of periodic epizootics in wild birds in North America. In this study, we examined the genetic diversity of APMV-1 isolated from migratory birds sampled in Alaska, Japan, and Russia and assessed the evidence for intercontinental virus spread using phylogenetic methods. Additionally, we predicted viral virulence using deduced amino acid residues for the fusion protein cleavage site and estimated mutation rates for the fusion gene of class I and class II migratory bird isolates. All 73 isolates sequenced as part of this study were most closely related to virus genotypes previously reported for wild birds; however, five class II genotype I isolates formed a monophyletic clade exhibiting previously unreported genetic diversity, which met criteria for the designation of a new sub-genotype. Phylogenetic analysis of wild-bird isolates provided evidence for intercontinental virus spread, specifically viral lineages of APMV-1 class II genotype I sub-genotypes Ib and Ic. This result supports migratory bird movement as a possible mechanism for the redistribution of APMV-1. None of the predicted deduced amino acid motifs for the fusion protein cleavage site of APMV-1 strains isolated from migratory birds in Alaska, Japan, and Russia were consistent with those of previously identified virulent viruses. These data therefore provide no support for these strains contributing to the emergence of avian pathogens. The estimated mutation rates for fusion genes of class I and class II wild-bird isolates were faster than those reported previously for non-virulent APMV-1 strains. Collectively, these findings provide new insight into the diversity, spread, and evolution of APMV-1 in wild birds.
Chu, Chishih; Wei, Yajiun; Chuang, Shih-Te; Yu, Changyou; Changchien, Chih-Hsuan; Su, Yaochi
2013-03-01
A total of 117 mastitis-associated Staphylococcus aureus isolates from cow, goat, and human patients were analyzed for differences in antibiotic susceptibility, virulence genes, and genotypes using accessory gene regulator (agr) typing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Multidrug-resistant (MDR) S. aureus were commonly found in all sources, though they were predominantly found in human and goat isolates. Almost 70% of the isolates were resistant to ampicillin and penicillin. Host-associated virulence genes were identified as follows: tst, a gene encoding toxic shock syndrome toxin, was found in goat isolates; lukED and lukM, genes encoding leukocidin, found in cow isolates; lukPV, a gene encoding leukocidin, found in human isolates; and eta, a gene encoding for exfoliative toxin, found in both human and cow isolates. All four types of hemolysin, α, β, γ, and δ, were identified in human isolates, three types (α, γ, and δ), were identified in cow isolates, and two types (α and δ) were identified in goat isolates. Agr-typing determined agr1 to be the main subtype in human and cow isolates. PFGE and MLST analysis revealed the presence of diverse genotypes among the three sources. In conclusion, mastitis-associated, genetically diverse strains of MDR S. aureus differed in virulence genes among human, cow, and goat isolates.
Bortolaia, Valeria; Guardabassi, Luca; Trevisani, Marcello; Bisgaard, Magne; Venturi, Luciano; Bojesen, Anders Miki
2010-01-01
We characterized 67 Escherichia coli isolates with reduced susceptibility to cefotaxime or ceftiofur obtained from healthy broilers housed in five Italian farms. The blaCTX-M-1, blaCTX-M-32 and blaSHV-12 β-lactamase genes were identified on IncI1, IncN, or IncFIB plasmids. Considerable genetic diversity was detected among the extended-spectrum β-lactamase (ESBL)-producing isolates, and we identified indistinguishable strains in unrelated farms and indistinguishable plasmids in genetically unrelated strains. The detection of highly mobile plasmids suggests a potential animal reservoir for β-lactamase genes. PMID:20100875
Bustamante, Ana V; Lucchesi, Paula M A; Parma, Alberto E
2009-10-01
The aim of this work was to adapt described MLVA protocols to the molecular typing and characterization of VTEC O157:H7 isolates from Argentina. Nine VNTR loci were amplified by PCR showing diversity values from 0.49 to 0.73. Nine MLVA profiles were observed and the cluster analysis indicated both unrelated and closely related VTEC O157:H7 strains. In spite of the limited number of isolates studied, the panel of VNTR used made it possible to perform a first approach of the high genetic diversity of native strains of O157:H7 by MLVA.
Surgical management of colorectal injuries: colostomy or primary repair?
Papadopoulos, V N; Michalopoulos, A; Apostolidis, S; Paramythiotis, D; Ioannidis, A; Mekras, A; Panidis, S; Stavrou, G; Basdanis, G
2011-10-01
Several factors have been considered important for the decision between diversion and primary repair in the surgical management of colorectal injuries. The aim of this study is to clarify whether patients with colorectal injuries need diversion or not. From 2008 to 2010, ten patients with colorectal injuries were surgically treated by primary repair or by a staged repair. The patients were five men and five women, with median age 40 years (20-55). Two men and two women had rectal injuries, while 6 patients had colon injuries. The mechanism of trauma in two patients was firearm injuries, in two patients was a stab injury, in four patients was a motor vehicle accident, in one woman was iatrogenic injury during vaginal delivery, and one case was the transanal foreign body insertion. Primary repair was possible in six patients, while diversion was necessary in four patients. Primary repair should be attempted in the initial surgical management of all penetrating colon and intraperitoneal rectal injuries. Diversion of colonic injuries should only be considered if the colon tissue itself is inappropriate for repair due to severe edema or ischemia. The role of diversion in the management of unrepaired extraperitoneal rectal injuries and in cases with anal sphincter injuries is mandatory.
Whole genome investigation of a divergent clade of the pathogen Streptococcus suis
Baig, Abiyad; Weinert, Lucy A.; Peters, Sarah E.; Howell, Kate J.; Chaudhuri, Roy R.; Wang, Jinhong; Holden, Matthew T. G.; Parkhill, Julian; Langford, Paul R.; Rycroft, Andrew N.; Wren, Brendan W.; Tucker, Alexander W.; Maskell, Duncan J.
2015-01-01
Streptococcus suis is a major porcine and zoonotic pathogen responsible for significant economic losses in the pig industry and an increasing number of human cases. Multiple isolates of S. suis show marked genomic diversity. Here, we report the analysis of whole genome sequences of nine pig isolates that caused disease typical of S. suis and had phenotypic characteristics of S. suis, but their genomes were divergent from those of many other S. suis isolates. Comparison of protein sequences predicted from divergent genomes with those from normal S. suis reduced the size of core genome from 793 to only 397 genes. Divergence was clear if phylogenetic analysis was performed on reduced core genes and MLST alleles. Phylogenies based on certain other genes (16S rRNA, sodA, recN, and cpn60) did not show divergence for all isolates, suggesting recombination between some divergent isolates with normal S. suis for these genes. Indeed, there is evidence of recent recombination between the divergent and normal S. suis genomes for 249 of 397 core genes. In addition, phylogenetic analysis based on the 16S rRNA gene and 132 genes that were conserved between the divergent isolates and representatives of the broader Streptococcus genus showed that divergent isolates were more closely related to S. suis. Six out of nine divergent isolates possessed a S. suis-like capsule region with variation in capsular gene sequences but the remaining three did not have a discrete capsule locus. The majority (40/70), of virulence-associated genes in normal S. suis were present in the divergent genomes. Overall, the divergent isolates extend the current diversity of S. suis species but the phenotypic similarities and the large amount of gene exchange with normal S. suis gives insufficient evidence to assign these isolates to a new species or subspecies. Further, sampling and whole genome analysis of more isolates is warranted to understand the diversity of the species. PMID:26583006
Bai, Y; Wang, W; Yan, L; Yang, S R; Yan, S F; Dong, Y P; Zhao, B C; Zhao, Y Y; Xu, J; Hu, Y J; Li, F Q
2018-04-06
Objective: To analyses the antimicrobial resistance and molecular characterization of 21 MRSA isolates cultured from retail foods from different provinces in China, and evaluate the molecular typing methods. Methods: Twenty-one MRSA isolates were obtained from national foodborne pathogen surveillance network in 2012 (Chinese salad, n= 3; milk, n= 1; cake, n= 2; rice, n= 1; cold noodle, n= 1; spiced beef, n= 1; dumpling, n= 1; packed meal, n= 1; salad, n= 1; raw pork, n= 9). The antimicrobial resistance of 21 strains to 12 antimicrobial agents was tested by broth dilution method. Polymerase chain reaction (PCR) and DNA sequencing were performed to obtain the genetic types of MLST (ST) and spa typing. The clonal complex (CC) was assigned by eBURST soft and the MLVA type (MT) and MLVA complex (MC) were identified via the database of the MLVA website (http://www.mlva.net). Sma I pulsed-field gel electrophoresis ( Sma Ⅰ-PFGE) was also carried out to obtain the PFGE patterns of 21 strains. The genetic diversity and discriminatory power of typing were calculated by the Simpson's index of diversity (diversity index, DI) to find out the best genotyping method for MRSA. Results: All MRSA isolates showed multi-drug resistance(MDR), and were resistant to oxacillin, benzylpenicillin, clindamycin and erythromycin, and 71.4% (15/21), 47.6% (10/21), 42.9% (9/21) and 28.6% (6/21) of the MRSA isolates were resistant to tetracycline, ciprofloxacin, trimethoprim/sulfamethoxazole and gentamicin, respectively. Moreover, one strain was found to be resistant to all three antimicrobials of levofloxacin, moxifloxacin and rifampicin. Great diversity was found in these food-associated MRSA (6 STs, 7 spa types, and 9 MTs). PFGE patterns were more diverse than those of other three molecular typing methods (19 pulse types). The index of diversity (DI) of PFGE, MLVA, spa typing and MLST was 0.99, 0.80, 0.73, and 0.61, respectively. Among the MRSA isolates, CC9-ST9-t899-MT929-MC2236 (PFGE Cluster Ⅴ) was the most prevalent clone, which were all cultured from raw pork (9 isolates). Besides, two MRSA were identified as CC59-ST338-t437-MT621-MC621 (PFGE Cluster Ⅳ). Different clone had their own resistance spectrum profiles. Conclusion: The food-borne MRSA isolates were all MDR in this study. Different clones had their own resistance spectrum profiles. MLVA represented a promising tool for molecular epidemiology tracing of MRSA in foodborne disease events.
Messmer, Vanessa; Jones, Geoffrey P; Munday, Philip L; Planes, Serge
2012-12-01
The relationship between genetic diversity and species diversity provides insights into biogeography and historic patterns of evolution and is critical for developing contemporary strategies for biodiversity conservation. Although concordant large-scale clines in genetic and species diversity have been described for terrestrial organisms, whether these parameters co-vary in marine species remains largely unknown. We examined patterns of genetic diversity for 11 coral reef fish species sampled at three locations across the Pacific Ocean species diversity gradient (Australia: ∼1600 species; New Caledonia: ∼1400 species; French Polynesia: ∼800 species). Combined genetic diversity for all 11 species paralleled the decline in species diversity from West to East, with French Polynesia exhibiting lowest total haplotype and nucleotide diversities. Haplotype diversity consistently declined toward French Polynesia in all and nucleotide diversity in the majority of species. The French Polynesian population of most species also exhibited significant genetic differentiation from populations in the West Pacific. A number of factors may have contributed to the general positive correlation between genetic and species diversity, including location and time of species origin, vicariance events, reduced gene flow with increasing isolation, and decreasing habitat area from West to East. However, isolation and habitat area, resulting in reduced population size, are likely to be the most influential. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Timm, Collin M.; Campbell, Alicia G.; Utturkar, Sagar M.; ...
2015-10-14
The bacterial microbiota of plants is diverse, with ~1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work we investigate how 19 sequenced Pseudomonas fluorescens strains representing a single OTU isolated from Populus deltoides rhizosphere and endosphere differ using phenotypic analysis, comparative genomics, and metabolic models. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for bacterial-plant interactions are enriched in endosphere isolate genomes and growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased towards endosphere isolates. Endosphere isolates have more metabolic pathwaysmore » for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways important for bacterial-plant interactions but show metabolic bias towards chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria that are enriched in event he most closely related isolates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timm, Collin M.; Campbell, Alicia G.; Utturkar, Sagar M.
The bacterial microbiota of plants is diverse, with ~1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work we investigate how 19 sequenced Pseudomonas fluorescens strains representing a single OTU isolated from Populus deltoides rhizosphere and endosphere differ using phenotypic analysis, comparative genomics, and metabolic models. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for bacterial-plant interactions are enriched in endosphere isolate genomes and growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased towards endosphere isolates. Endosphere isolates have more metabolic pathwaysmore » for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways important for bacterial-plant interactions but show metabolic bias towards chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria that are enriched in event he most closely related isolates.« less
Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains
2011-01-01
Background Saccharomyces cerevisiae (Baker's yeast) is found in diverse ecological niches and is characterized by high adaptive potential under challenging environments. In spite of recent advances on the study of yeast genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and stationary growth phases. Results Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose metabolism and in the stress response elicited during fermentation were among the most variable. This gene expression diversity increased at the onset of stationary phase (diauxic shift). Environmental isolates showed lower average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression among the environmental isolates. Conclusions Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results support previous data showing that gene expression variability is a source of phenotypic diversity among closely related organisms. PMID:21507216
Kraus, Jr., Robert H.; Espy, Michelle A.; Matlachov, Andrei; Volegov, Petr
2010-06-01
An apparatus measures electromagnetic signals from a weak signal source. A plurality of primary sensors is placed in functional proximity to the weak signal source with an electromagnetic field isolation surface arranged adjacent the primary sensors and between the weak signal source and sources of ambient noise. A plurality of reference sensors is placed adjacent the electromagnetic field isolation surface and arranged between the electromagnetic isolation surface and sources of ambient noise.
Isolation and genetic diversity of endangered grey nurse shark (Carcharias taurus) populations.
Stow, Adam; Zenger, Kyall; Briscoe, David; Gillings, Michael; Peddemors, Victor; Otway, Nicholas; Harcourt, Robert
2006-06-22
Anthropogenic impacts are believed to be the primary threats to the eastern Australian population of grey nurse sharks (Carcharias taurus), which is listed as critically endangered, and the most threatened population globally. Analyses of 235 polymorphic amplified fragment length polymorphisms (AFLP) loci and 700 base pairs of mitochondrial DNA control region provide the first account of genetic variation and geographical partitioning (east and west coasts of Australia, South Africa) in C. taurus. Assignment tests, analysis of relatedness and Fst values all indicate that the Australian populations are isolated from South Africa, with negligible migration between the east and west Australian coasts. There are significant differences in levels of genetic variation among regions. Australian C. taurus, particularly the eastern population, has significantly less AFLP variation than the other sampling localities. Further, the eastern Australian sharks possess only a single mitochondrial haplotype, also suggesting a small number of founding individuals. Therefore, historical, rather than anthropogenic processes most likely account for their depauperate genetic variation. These findings have implications for the viability of the eastern Australian population of grey nurse sharks.
Vougidou, C; Sandalakis, V; Psaroulaki, A; Petridou, E; Ekateriniadou, L
2013-04-20
Mannheimia haemolytica is the aetiological agent of pneumonic pasteurellosis in small ruminants. The primary virulence factor of the bacterium is a leukotoxin (LktA), which induces apoptosis in susceptible cells via mitochondrial targeting. It has been previously shown that certain lktA alleles are associated either with cattle or sheep. The objective of the present study was to investigate lktA sequence variation among ovine and caprine M haemolytica strains isolated from pneumonic lungs, revealing any potential adaptation for the caprine host, for which there is no available data. Furthermore, we investigated amino acid variation in the N-terminal part of the sequences and its effect on targeting mitochondria. Data analysis showed that the prevalent caprine genotype differed at a single non-synonymous site from a previously described uncommon bovine allele, whereas the ovine sequences represented new, distinct alleles. N-terminal sequence differences did not affect the mitochondrial targeting ability of the isolates; interestingly enough in one case, mitochondrial matrix targeting was indicated rather than membrane association, suggesting an alternative LktA trafficking pattern.
Zhang, Y Y; Huang, N; Xiao, X H; Huang, L; Liu, F; Su, W H; Que, Y X
2015-07-14
Sugarcane smut caused by the fungus Sporisorium scitamineum is a worldwide disease and also one of the most prevalent diseases in sugarcane production in mainland China. To study molecular variation in S. scitamineum, 23 S. scitamineum isolates from the 6 primary sugar-cane production areas in mainland, China (Guangxi, Yunnan, Guangdong, Hainan, Fujian, and Jiangxi Provinces), were assessed using internal transcribed spacer (ITS) methods. The results of ITS sequence analysis showed that the organisms can be defined at the genus level, including Ustilago and Sporisorium, and can also differentiate between closely related species. This method was not suitable for phylogenetic relationship analysis of different S. scitamineum isolates and could not provide support regarding their race ascription at the molecular level. The results of the present study will be useful for studies examining the molecular diversity of S. scitamineum and for establishing a genetic foundation for their pathogenicity differentiation and new race detection. In addition, our results can provide useful information for the pathogen selection principle in sugarcane smut resistance breeding and variety distribution.
Schouls, Leo M.; van der Ende, Arie; van de Pol, Ingrid; Schot, Corrie; Spanjaard, Lodewijk; Vauterin, Paul; Wilderbeek, Dorus; Witteveen, Sandra
2005-01-01
Recently, there has been an increase in The Netherlands in the number of cases of invasive disease caused by Haemophilus influenzae serotype b (Hib). To study a possible change in the Hib population that could explain the rise in incidence, a multiple-locus variable number tandem repeats analysis (MLVA) was developed to genotype H. influenzae isolates. The MLVA enabled the differentiation of H. influenzae serotype b strains with higher discriminatory power than multilocus sequence typing (MLST). MLVA profiles of noncapsulated H. influenzae and H. influenzae serotype f strains were more heterogeneous than serotype b strains and were distinct from Hib, although some overlap occurred. The MLVA was used to genotype a collection of 520 H. influenzae serotype b strains isolated from patients in The Netherlands with invasive disease. The strains were collected from 1983 from 2002, covering a time period of 10 years before and 9 years after the introduction of the Hib vaccine in the Dutch national vaccination program. MLVA revealed a sharp increase in genetic diversity of Hib strains isolated from neonates to 4-year-old patients after 1993, when the Hib vaccine was introduced. Hib strains isolated from patients older than 4 years in age were genetically diverse, and no significant change in diversity was seen after the introduction of the vaccine. These observations suggest that after the introduction of the Hib vaccine young children no longer constitute the reservoir for Hib and that they are infected by adults carrying genetically diverse Hib strains. PMID:15956392
Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina
2016-04-01
The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.
Oates, Angela; Bowling, Frank L.; Boulton, Andrew J. M.
2012-01-01
Wound debridement samples and contralateral (healthy) skin swabs acquired from 26 patients attending a specialist foot clinic were analyzed by differential isolation and eubacterium-specific PCR-denaturing gradient gel electrophoresis (DGGE) in conjunction with DNA sequencing. Thirteen of 26 wounds harbored pathogens according to culture analyses, with Staphylococcus aureus being the most common (13/13). Candida (1/13), pseudomonas (1/13), and streptococcus (7/13) were less prevalent. Contralateral skin was associated with comparatively low densities of bacteria, and overt pathogens were not detected. According to DGGE analyses, all wounds contained significantly greater eubacterial diversity than contralateral skin (P < 0.05), although no significant difference in total eubacterial diversity was detected between wounds from which known pathogens had been isolated and those that were putatively uninfected. DGGE amplicons with homology to Staphylococcus sp. (8/13) and S. aureus (2/13) were detected in putatively infected wound samples, while Staphylococcus sp. amplicons were detected in 11/13 noninfected wounds; S. aureus was not detected in these samples. While a majority of skin-derived DGGE consortial fingerprints could be differentiated from wound profiles through principal component analysis (PCA), a large minority could not. Furthermore, wounds from which pathogens had been isolated could not be distinguished from putatively uninfected wounds on this basis. In conclusion, while chronic wounds generally harbored greater eubacterial diversity than healthy skin, the isolation of known pathogens was not associated with qualitatively distinct consortial profiles or otherwise altered diversity. The data generated support the utility of both culture and DGGE for the microbial characterization of chronic wounds. PMID:22553231
Genetic diversity of Talaromyces species isolated from maize in North America
USDA-ARS?s Scientific Manuscript database
Talaromyces species isolated from maize in the U.S., primarily between 1970 and 2014 were grown up from lyophilized storage to identify potential seed endophytes. These isolates had been predominantly identified as Penicillium funiculosum following the taxonomic system of Raper & Thom (1949), althou...
Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil
USDA-ARS?s Scientific Manuscript database
Two isolates of Gram-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacteria were identified during a survey of the diversity of Bacillus strains deposited in the Agriculture Research Service Culture Collection. These strains were originally isolated from soil in Evolution ...
GENETIC DIVERSITY OF TOXOPLASMA GONDII ISOLATES FROM CHICKENS FROM BRAZIL
USDA-ARS?s Scientific Manuscript database
Until recently, Toxoplasma gondii was considered clonal with very little genetic variability. Recent studies indicate that T. gondii isolates from Brazil are genetically and biologically different from T. gondii isolates from USA and Europe. In the present study, we retyped 151 free range chicken is...
Nampally, Malathi; Rajulu, M. B. Govinda; Gillet, Dominique; Suryanarayanan, T. S.; Moerschbacher, Bruno B.
2015-01-01
Chitin is one of the most abundant biomolecules on earth, and its partially de-N-acetylated counterpart, chitosan, is one of the most promising biotechnological resources due to its diversity in structure and function. Recently, chitin and chitosan modifying enzymes (CCMEs) have gained increasing interest as tools to engineer chitosans with specific functions and reliable performance in biotechnological and biomedical applications. In a search for novel CCME, we isolated chitinolytic and chitosanolytic microorganisms from soils with more than ten-years history of chitin and chitosan exposure and screened them for chitinase and chitosanase isoenzymes as well as for their patterns of oligomeric products by incubating their secretomes with chitosan polymers. Of the 60 bacterial strains isolated, only eight were chitinolytic and/or chitosanolytic, while 20 out of 25 fungal isolates were chitinolytic and/or chitosanolytic. The bacterial isolates produced rather similar patterns of chitinolytic and chitosanolytic enzymes, while the fungal isolates produced a much broader range of different isoenzymes. Furthermore, diverse mixtures of oligosaccharides were formed when chitosan polymers were incubated with the secretomes of select fungal species. Our study indicates that soils with a history of chitin and chitosan exposure are a good source of novel CCME for chitosan bioengineering. PMID:26273652
Nampally, Malathi; Rajulu, M B Govinda; Gillet, Dominique; Suryanarayanan, T S; Moerschbacher, Bruno B
2015-01-01
Chitin is one of the most abundant biomolecules on earth, and its partially de-N-acetylated counterpart, chitosan, is one of the most promising biotechnological resources due to its diversity in structure and function. Recently, chitin and chitosan modifying enzymes (CCMEs) have gained increasing interest as tools to engineer chitosans with specific functions and reliable performance in biotechnological and biomedical applications. In a search for novel CCME, we isolated chitinolytic and chitosanolytic microorganisms from soils with more than ten-years history of chitin and chitosan exposure and screened them for chitinase and chitosanase isoenzymes as well as for their patterns of oligomeric products by incubating their secretomes with chitosan polymers. Of the 60 bacterial strains isolated, only eight were chitinolytic and/or chitosanolytic, while 20 out of 25 fungal isolates were chitinolytic and/or chitosanolytic. The bacterial isolates produced rather similar patterns of chitinolytic and chitosanolytic enzymes, while the fungal isolates produced a much broader range of different isoenzymes. Furthermore, diverse mixtures of oligosaccharides were formed when chitosan polymers were incubated with the secretomes of select fungal species. Our study indicates that soils with a history of chitin and chitosan exposure are a good source of novel CCME for chitosan bioengineering.
Characterization of Pathogenic Vibrio parahaemolyticus from the Chesapeake Bay, Maryland
Chen, Arlene J.; Hasan, Nur A.; Haley, Bradd J.; Taviani, Elisa; Tarnowski, Mitch; Brohawn, Kathy; Johnson, Crystal N.; Colwell, Rita R.; Huq, Anwar
2017-01-01
Vibrio parahaemolyticus is the leading cause of bacterial gastroenteritis associated with seafood consumption in the United States. Here we investigated the presence of virulence factors and genetic diversity of V. parahaemolyticus isolated from water, oyster, and sediment samples from the Chesapeake Bay, Maryland. Of more than 2,350 presumptive Vibrio collected, more than half were confirmed through PCR as V. parahaemolyticus, with 10 encoding both tdh and trh and 6 encoding only trh. Potentially pathogenic V. parahaemolyticus were then serotyped with O1:KUT and O3:KUT predominant. Furthermore, pulsed-field gel electrophoresis was performed and the constructed dendrogram displayed high diversity, as did results from multiple-locus VNTR analysis. Vibrio parahaemolyticus was readily isolated from Chesapeake Bay waters but was less frequently isolated from oyster and sediment samples collected during this study. Potentially pathogenic V. parahaemolyticus was isolated in fewer numbers and the isolates displayed expansive diversity. Although characteristics of the pathogenic V. parahaemolyticus were highly variable and the percent of pathogenic V. parahaemolyticus detected was low, it is important to note that, pathogenic V. parahaemolyticus are present in the Chesapeake Bay, warranting seafood monitoring to minimize risk of disease for the public, and to reduce the economic burden of V. parahaemolyticus related illness. PMID:29375492
Characterization of Pathogenic Vibrio parahaemolyticus from the Chesapeake Bay, Maryland.
Chen, Arlene J; Hasan, Nur A; Haley, Bradd J; Taviani, Elisa; Tarnowski, Mitch; Brohawn, Kathy; Johnson, Crystal N; Colwell, Rita R; Huq, Anwar
2017-01-01
Vibrio parahaemolyticus is the leading cause of bacterial gastroenteritis associated with seafood consumption in the United States. Here we investigated the presence of virulence factors and genetic diversity of V. parahaemolyticus isolated from water, oyster, and sediment samples from the Chesapeake Bay, Maryland. Of more than 2,350 presumptive Vibrio collected, more than half were confirmed through PCR as V. parahaemolyticus , with 10 encoding both tdh and trh and 6 encoding only trh . Potentially pathogenic V. parahaemolyticus were then serotyped with O1:KUT and O3:KUT predominant. Furthermore, pulsed-field gel electrophoresis was performed and the constructed dendrogram displayed high diversity, as did results from multiple-locus VNTR analysis. Vibrio parahaemolyticus was readily isolated from Chesapeake Bay waters but was less frequently isolated from oyster and sediment samples collected during this study. Potentially pathogenic V. parahaemolyticus was isolated in fewer numbers and the isolates displayed expansive diversity. Although characteristics of the pathogenic V. parahaemolyticus were highly variable and the percent of pathogenic V. parahaemolyticus detected was low, it is important to note that, pathogenic V. parahaemolyticus are present in the Chesapeake Bay, warranting seafood monitoring to minimize risk of disease for the public, and to reduce the economic burden of V. parahaemolyticus related illness.
Cuddy, William S; Neilan, Brett A; Gehringer, Michelle M
2012-04-01
Does the diversity of cyanobacteria in the cycad rhizosphere relate to the cyanobiont species found in the coralloid roots of these ancient plants? The aim of this study was to identify the diversity of soil cyanobacteria occurring in the immediate vicinity of 22 colonized coralloid roots belonging to members of the cycad genera: Macrozamia, Lepidozamia, Bowenia and Cycas. The majority of coralloid roots were sampled at depths > 10 cm below the soil surface. A total of 32 cyanobacterial isolates were cultured and their 16S rRNA gene partially sequenced. Phylogenetic analysis revealed nine operational taxonomic units of soil cyanobacteria comprising 30 Nostoc spp., a Tolypothrix sp. and a Leptolyngbya sp. Microscopy indicated that all isolates were unialgal and confirmed their genus identity. Rhizospheric diversity was compared to existing data on cyanobionts isolated at the same time from the cycad coralloid root. The same isolate was present in both the cycad coralloid root and rhizosphere at only six sites. Phylogenetic evidence indicates that most rhizosphere isolates were distinct from root cyanobionts. This weak relationship between the soil cyanobacteria and cycad cyanobionts might indicate that changes in the soil community composition are due to environmental factors. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Screening and isolation of halophilic bacteria producing industrially important enzymes.
Kumar, Sumit; Karan, Ram; Kapoor, Sanjay; S P, Singh; S K, Khare
2012-10-01
Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology.
Screening and isolation of halophilic bacteria producing industrially important enzymes
Kumar, Sumit; Karan, Ram; Kapoor, Sanjay; S.P., Singh; S.K., Khare
2012-01-01
Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3–20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology. PMID:24031991
Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua
2014-01-01
Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis. PMID:24663116
Sharma, Rahul; Prakash, Om; Sonawane, Mahesh S; Nimonkar, Yogesh; Golellu, Priyanka B; Sharma, Rohit
2016-01-01
Soda lake is hyper alkaline and saline habitat located in closed craters with high evaporation rate. In current study fungal diversity from water and sediment samples of a soda lake (Lonar lake) located in Buldhana district of Maharashtra, India was investigated using extensive culturomics approach and mimicking the natural conditions of Lonar lake in culture media. A total of 104 diverse isolates of extremophilic fungi were recovered from this study and phylogenetically characterized by internal transcribed spacer (ITS) region sequencing. In addition, due to important role of phenol oxidase, and peroxidase in degradation of toxic phenol, lignin, etc., all isolated pure cultures were also screened for extracellular phenol oxidase and peroxidase production potential. Diversity analysis indicated that different groups of extremophilic fungi are present in the water and sediment samples of Lonar lake. A total of 38 species of fungi belonging to 18-different genera were recovered. Out of 104 isolates 32 showed ≤97% sequences similarity, which were morphologically different and could be potential novel isolates of extremophilic fungi. However, out of 104 isolates only 14 showed the extracellular phenol oxidase production potentials at alkaline pH. Curvularia sp. strain MEF018 showed highest phenol oxidase production at alkaline condition and had low sequence similarity with previously characterized species (96% with Curvularia pseudorobusta ). Taxonomic characterization (morphological and physiological) and multi locus sequence analysis (MLSA) using combined alignment of ITS-LSU- gpd of strain MEF018 showed that it is a novel species of the genus Curvularia and hence proposed as Curvularia lonarensis sp. nov.
Barbosa, Renan do Nascimento; Bezerra, Jadson Diogo Pereira; Costa, Phelipe Manoel Oller; de Lima-Júnior, Nelson Correia; Alves de Souza Galvão, Ivana Roberta Gomes; Alves dos Santos-Júnior, Anthony; Fernandes, Maria José; de Souza-Motta, Cristina Maria; Oliveira, Neiva Tinti
2016-03-01
Soil is a complex biological system that plays a key role for plants and animals, especially in dry forests such as the Caatinga. Fungi from soils, such as Aspergillus and Penicillium, can be used as bioindica- tors for biodiversity conservation. The aim of this study was to isolate and identify species of Aspergillus and Penicillium in soil, from the municipalities of Tupanatinga and Ibimirim, with dry forests, in the Catimbau National Park. Five collections were performed in each area during the drought season of 2012, totaling 25 soil samples per area. Fungi were isolated by suspending soil samples in sterile distilled water and plating on Sabouraud Agar media plus Chloramphenicol and Rose Bengal, and Glycerol Dicloran Agar. Isolates were identified by morphological taxonomy in the Culture Collection Laboratory and confirmed by sequencing of the Internal Transcribed Spacer of rDNA. A total of 42 species were identified, of which 22 belong to the genus Aspergillus and 20 to Penicillium. Penicillium isolates showed uniform distribution from the collecting area in Tupanatinga, and the evenness indices found were 0.92 and 0.88 in Tupanatinga and Ibimirim, respectively. Among isolates of Aspergillus evenness, the value found in Tupanatinga (0.85) was very close to that found in Ibimirim (0.86). High diversity and low dominance of fungi in soil samples was observed. These results con- tributed to the estimation of fungal diversity in dry environments of the Caatinga, where diversity is decreasing in soils that have undergone disturbance.
Sharma, Rahul; Prakash, Om; Sonawane, Mahesh S.; Nimonkar, Yogesh; Golellu, Priyanka B.; Sharma, Rohit
2016-01-01
Soda lake is hyper alkaline and saline habitat located in closed craters with high evaporation rate. In current study fungal diversity from water and sediment samples of a soda lake (Lonar lake) located in Buldhana district of Maharashtra, India was investigated using extensive culturomics approach and mimicking the natural conditions of Lonar lake in culture media. A total of 104 diverse isolates of extremophilic fungi were recovered from this study and phylogenetically characterized by internal transcribed spacer (ITS) region sequencing. In addition, due to important role of phenol oxidase, and peroxidase in degradation of toxic phenol, lignin, etc., all isolated pure cultures were also screened for extracellular phenol oxidase and peroxidase production potential. Diversity analysis indicated that different groups of extremophilic fungi are present in the water and sediment samples of Lonar lake. A total of 38 species of fungi belonging to 18-different genera were recovered. Out of 104 isolates 32 showed ≤97% sequences similarity, which were morphologically different and could be potential novel isolates of extremophilic fungi. However, out of 104 isolates only 14 showed the extracellular phenol oxidase production potentials at alkaline pH. Curvularia sp. strain MEF018 showed highest phenol oxidase production at alkaline condition and had low sequence similarity with previously characterized species (96% with Curvularia pseudorobusta). Taxonomic characterization (morphological and physiological) and multi locus sequence analysis (MLSA) using combined alignment of ITS-LSU-gpd of strain MEF018 showed that it is a novel species of the genus Curvularia and hence proposed as Curvularia lonarensis sp. nov. PMID:27920761
Criscitiello, Michael F; Ohta, Yuko; Saltis, Mark; McKinney, E Churchill; Flajnik, Martin F
2010-06-15
Cartilaginous fish are the oldest animals that generate RAG-based Ag receptor diversity. We have analyzed the genes and expressed transcripts of the four TCR chains for the first time in a cartilaginous fish, the nurse shark (Ginglymostoma cirratum). Northern blotting found TCR mRNA expression predominantly in lymphoid and mucosal tissues. Southern blotting suggested translocon-type loci encoding all four chains. Based on diversity of V and J segments, the expressed combinatorial diversity for gamma is similar to that of human, alpha and beta may be slightly lower, and delta diversity is the highest of any organism studied to date. Nurse shark TCRdelta have long CDR3 loops compared with the other three chains, creating binding site topologies comparable to those of mammalian TCR in basic paratope structure; additionally, nurse shark TCRdelta CDR3 are more similar to IgH CDR3 in length and heterogeneity than to other TCR chains. Most interestingly, several cDNAs were isolated that contained IgM or IgW V segments rearranged to other gene segments of TCRdelta and alpha. Finally, in situ hybridization experiments demonstrate a conservation of both alpha/beta and gamma/delta T cell localization in the thymus across 450 million years of vertebrate evolution, with gamma/delta TCR expression especially high in the subcapsular region. Collectively, these data make the first cellular identification of TCR-expressing lymphocytes in a cartilaginous fish.
Genetic diversity of Toxoplasma gondii isolates from Ethiopian feral cats.
Dubey, J P; Choudhary, S; Tilahun, G; Tiao, N; Gebreyes, W A; Zou, X; Su, C
2013-09-01
Recent studies indicate greater genetic variability among isolates of Toxoplasma gondii worldwide than previously thought. However, there is no information on genetic diversity of T. gondii from any host in Ethiopia. In the present study, genotyping was performed on viable T. gondii isolates by bioassays in mice from tissues and feces of 27 cats from Ethiopia. Viable T. gondii was isolated from hearts of 26 cats, feces alone of 1 cat, and feces and tissues of 6 cats; in total there were 33 isolates. Genotyping was performed on DNA from cell-cultured derived T. gondii tachyzoites and by using 10 PCR-restriction fragment length polymorphism markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico). Four genotypes were recognized, including ToxoDB #1 (Type II clonal, nine isolates), ToxoDB #2 (Type III, five isolates), Toxo DB #3 (Type II variant, ten isolates), and ToxoDB #20 (nine isolates). Of interest is the isolation of different genotypes from tissues and feces of two cats, suggesting re-infection or mixed strain T. gondii infection. These findings are of epidemiological significance with respect to shedding of oocysts by cats. This is the first report of genotyping of T. gondii from any host in Ethiopia. Published by Elsevier B.V.
Isolation of Geobacter species from diverse sedimentary environments
Coaxes, J.D.; Phillips, E.J.P.; Lonergan, D.J.; Jenter, H.; Lovley, D.R.
1996-01-01
In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram- negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor fur Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.
Betancourt, Doris A.; Loveless, Telisa M.; Brown, James W.; Bishop, Paul E.
2008-01-01
Molybdenum-independent nitrogenases were first described in the nitrogen-fixing bacterium Azotobacter vinelandii and have since been described in other diazotrophic bacteria. Previously, we reported the isolation of seven diazotrophs with Mo-independent nitrogenases from aquatic environments. In the present study, we extend these results to include diazotrophs isolated from wood chip mulch, soil, “paraffin dirt,” and sediments from mangrove swamps. Mo-deficient, N-free media under both aerobic and anaerobic conditions were used for the isolations. A total of 26 isolates were genetically and physiologically characterized. Their phylogenetic placement was determined using 16S rRNA gene sequence analysis. Most of the isolates are members of the gamma subdivision of the class Proteobacteria and appear to be specifically related to fluorescent pseudomonads and azotobacteria. Two other isolates, AN1 and LPF4, are closely related to Enterobacter spp. and Paenibacillus spp., respectively. PCR and/or Southern hybridization were used to detect the presence of nitrogenase genes in the isolates. PCR amplification of vnfG and anfG was used to detect the genetic potential for the expression of the vanadium-containing nitrogenase and the iron-only nitrogenase in the isolates. This study demonstrates that diazotrophs with Mo-independent nitrogenases can be readily isolated from diverse natural environments. PMID:18378646
Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Amy L. Ross-Davis; Sara M. Ashiglar; Geral I. McDonald
2012-01-01
Species of the fungal genus Armillaria are pervasive in forest soils and are associated with widely ranging tree species of diverse forests worldwide (Baumgartner et al., 2011). As primary decay drivers of ecosystem processes, Armillaria species exhibit diverse ecological behaviors, ranging from virulent root and/or butt pathogens of diverse woody hosts, such as timber...
Li, Peiqin; Wu, Zhou; Liu, Tao; Wang, Yanan
2016-09-13
This study investigated the biodiversity, phylogeny, and antifungal activity of endophytic fungi isolated from Zanthoxylum bungeanum. A total of 940 isolates obtained were grouped into 93 morphotypes, 43 species, and 23 genera, which were authenticated by molecular identification based on rDNA internal transcribed spacer (ITS) sequence analysis. A high diversity of endophytic fungi from Z. bungeanum are observed with high species richness S (43), Margalef index D' (6.1351), Shannon-Wiener index H' (3.2743), Simpson diversity index Ds (0.9476), PIE index (0.9486), and evenness Pielou index J (0.8705) but a low dominant index λ (0.0524). Significant tissue specificity of the endophytic fungi was observed in Z. bungeanum, and the highest species richness and diversity indexes were obtained in the stem. Phylogenetic analyses of the 93 endophytic isolates were carried out by the neighbor-joining (NJ) method to demonstrate their evolutionary processes. Antifungal activities of endophytic fungi were assayed and eight endophytic isolates showed strong and long-lasting inhibition against host pathogenic fungi Fusarium sambucinum and Pseudocercospora zanthoxyli. Here, for the first time, we systematically demonstrate the biodiversity, phylogeny, and antifungal activity of endophytic fungi associated with Z. bungeanum and reveal the value of sampling different tissues of a given plant to obtain the greatest endophyte species diversity, which might offer a framework for further investigation and utilization of endophytic fungi as aunique source of interesting and useful bioactive compounds.
Sherman, Lauren S.; Schrankel, Catherine S.; Brown, Kristy J.; Smith, L. Courtney
2015-01-01
Effective protection against pathogens requires the host to produce a wide range of immune effector proteins. The Sp185/333 gene family, which is expressed by the California purple sea urchin Strongylocentrotus purpuratus in response to bacterial infection, encodes a highly diverse repertoire of anti-pathogen proteins. A subset of these proteins can be isolated by affinity to metal ions based on multiple histidines, resulting in one to four bands of unique molecular weight on standard Western blots, which vary depending on the individual sea urchin. Two dimensional gel electrophoresis (2DE) of nickel-isolated protein samples followed by Western blot was employed to detect nickel-isolated Sp185/333 (Ni-Sp185/333) proteins and to evaluate protein diversity in animals before and after immune challenge with marine bacteria. Ni-Sp185/333 proteins of the same molecular weight on standard Western blots appear as a broad complex of variants that differ in pI on 2DE Western blots. The Ni-Sp185/333 protein repertoire is variable among animals, and shows a variety of changes among individual sea urchins in response to immune challenges with both the same and different species of bacteria. The extraordinary diversity of the Ni-Sp185/333 proteins may provide significant anti-pathogen capabilities for sea urchins that survive solely on innate immunity. PMID:26406912
Diverse deep-sea fungi from the South China Sea and their antimicrobial activity.
Zhang, Xiao-Yong; Zhang, Yun; Xu, Xin-Ya; Qi, Shu-Hua
2013-11-01
We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84-92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics' discovery and further increase the pool of fungi available for natural bioactive product screening.
Marques, Isabel; Shiposha, Valeriia; López-Alvarez, Diana; Manzaneda, Antonio J; Hernandez, Pilar; Olonova, Marina; Catalán, Pilar
2017-06-15
Brachypodium distachyon (Poaceae), an annual Mediterranean Aluminum (Al)-sensitive grass, is currently being used as a model species to provide new information on cereals and biofuel crops. The plant has a short life cycle and one of the smallest genomes in the grasses being well suited to experimental manipulation. Its genome has been fully sequenced and several genomic resources are being developed to elucidate key traits and gene functions. A reliable germplasm collection that reflects the natural diversity of this species is therefore needed for all these genomic resources. However, despite being a model plant, we still know very little about its genetic diversity. As a first step to overcome this gap, we used nuclear Simple Sequence Repeats (nSSR) to study the patterns of genetic diversity and population structure of B. distachyon in 14 populations sampled across the Iberian Peninsula (Spain), one of its best known areas. We found very low levels of genetic diversity, allelic number and heterozygosity in B. distachyon, congruent with a highly selfing system. Our results indicate the existence of at least three genetic clusters providing additional evidence for the existence of a significant genetic structure in the Iberian Peninsula and supporting this geographical area as an important genetic reservoir. Several hotspots of genetic diversity were detected and populations growing on basic soils were significantly more diverse than those growing in acidic soils. A partial Mantel test confirmed a statistically significant Isolation-By-Distance (IBD) among all studied populations, as well as a statistically significant Isolation-By-Environment (IBE) revealing the presence of environmental-driven isolation as one explanation for the genetic patterns found in the Iberian Peninsula. The finding of higher genetic diversity in eastern Iberian populations occurring in basic soils suggests that these populations can be better adapted than those occurring in western areas of the Iberian Peninsula where the soils are more acidic and accumulate toxic Al ions. This suggests that the western Iberian acidic soils might prevent the establishment of Al-sensitive B. distachyon populations, potentially causing the existence of more genetically depauperated individuals.
Herrera, C M; Pozo, M I; Bazaga, P
2011-11-01
Vast amounts of effort have been devoted to investigate patterns of genetic diversity and structuring in plants and animals, but similar information is scarce for organisms of other kingdoms. The study of the genetic structure of natural populations of wild yeasts can provide insights into the ecological and genetic correlates of clonality, and into the generality of recent hypotheses postulating that microbial populations lack the potential for genetic divergence and allopatric speciation. Ninety-one isolates of the flower-living yeast Metschnikowia gruessii from southeastern Spain were DNA fingerprinted using amplified fragment length polymorphism (AFLP) markers. Genetic diversity and structuring was investigated with band-based methods and model- and nonmodel-based clustering. Linkage disequilibrium tests were used to assess reproduction mode. Microsite-dependent, diversifying selection was tested by comparing genetic characteristics of isolates from bumble bee vectors and different floral microsites. AFLP polymorphism (91%) and genotypic diversity were very high. Genetic diversity was spatially structured, as shown by amova (Φ(st) = 0.155) and clustering. The null hypothesis of random mating was rejected, clonality seeming the prevailing reproductive mode in the populations studied. Genetic diversity of isolates declined from bumble bee mouthparts to floral microsites, and frequency of five AFLP markers varied significantly across floral microsites, thus supporting the hypothesis of diversifying selection on clonal lineages. Wild populations of clonal fungal microbes can exhibit levels of genetic diversity and spatial structuring that are not singularly different from those shown by sexually reproducing plants or animals. Microsite-dependent, divergent selection can maintain high local and regional genetic diversity in microbial populations despite extensive clonality. © 2011 Blackwell Publishing Ltd.
USDA-ARS?s Scientific Manuscript database
The striking ecological, metabolic, and biochemical diversity of Pseudomonas has intrigued microbiologists for many decades. To explore the genomic diversity of biocontrol strains of Pseudomonas spp., we derived high quality draft sequences of seven strains known to suppress plant disease. The str...
Genetic diversity of merozoite surface antigens in Babesia bovis detected from Sri Lankan cattle.
Sivakumar, Thillaiampalam; Okubo, Kazuhiro; Igarashi, Ikuo; de Silva, Weligodage Kumarawansa; Kothalawala, Hemal; Silva, Seekkuge Susil Priyantha; Vimalakumar, Singarayar Caniciyas; Meewewa, Asela Sanjeewa; Yokoyama, Naoaki
2013-10-01
Babesia bovis, the causative agent of severe bovine babesiosis, is endemic in Sri Lanka. The live attenuated vaccine (K-strain), which was introduced in the early 1990s, has been used to immunize cattle populations in endemic areas of the country. The present study was undertaken to determine the genetic diversity of merozoite surface antigens (MSAs) in B. bovis isolates from Sri Lankan cattle, and to compare the gene sequences obtained from such isolates against those of the K-strain. Forty-four bovine blood samples isolated from different geographical regions of Sri Lanka and judged to be B. bovis-positive by PCR screening were used to amplify MSAs (MSA-1, MSA-2c, MSA-2a1, MSA-2a2, and MSA-2b), AMA-1, and 12D3 genes from parasite DNA. Although the AMA-1 and 12D3 gene sequences were highly conserved among the Sri Lankan isolates, the MSA gene sequences from the same isolates were highly diverse. Sri Lankan MSA-1, MSA-2c, MSA-2a1, MSA-2a2, and MSA-2b sequences clustered within 5, 2, 4, 1, and 9 different clades in the gene phylograms, respectively, while the minimum similarity values among the deduced amino acid sequences of these genes were 36.8%, 68.7%, 80.3%, 100%, and 68.3%, respectively. In the phylograms, none of the Sri Lankan sequences fell within clades containing the respective K-strain sequences. Additionally, the similarity values for MSA-1 and MSA-2c were 40-61.8% and 90.9-93.2% between the Sri Lankan isolates and the K-strain, respectively, while the K-strain MSA-2a/b sequence shared 64.5-69.8%, 69.3%, and 70.5-80.3% similarities with the Sri Lankan MSA-2a1, MSA-2a2, and MSA-2b sequences, respectively. The present study has shown that genetic diversity among MSAs of Sri Lankan B. bovis isolates is very high, and that the sequences of field isolates diverged genetically from the K-strain. Copyright © 2013 Elsevier B.V. All rights reserved.
First Insights into the Phylogenetic Diversity of Mycobacterium tuberculosis in Nepal
Malla, Bijaya; Stucki, David; Borrell, Sonia; Feldmann, Julia; Maharjan, Bhagwan; Shrestha, Bhawana
2012-01-01
Background Tuberculosis (TB) is a major public health problem in Nepal. Strain variation in Mycobacterium tuberculosis may influence the outcome of TB infection and disease. To date, the phylogenetic diversity of M. tuberculosis in Nepal is unknown. Methods and Findings We analyzed 261 M. tuberculosis isolates recovered from pulmonary TB patients recruited between August 2009 and August 2010 in Nepal. M. tuberculosis lineages were determined by single nucleotide polymorphisms (SNP) typing and spoligotyping. Drug resistance was determined by sequencing the hot spot regions of the relevant target genes. Overall, 164 (62.8%) TB patients were new, and 97 (37.2%) were previously treated. Any drug resistance was detected in 50 (19.2%) isolates, and 16 (6.1%) were multidrug-resistant. The most frequent M. tuberculosis lineage was Lineage 3 (CAS/Delhi) with 106 isolates (40.6%), followed by Lineage 2 (East-Asian lineage, includes Beijing genotype) with 84 isolates (32.2%), Lineage 4 (Euro-American lineage) with 41 (15.7%) isolates, and Lineage 1 (Indo-Oceanic lineage) with 30 isolates (11.5%). Based on spoligotyping, we found 45 different spoligotyping patterns that were previously described. The Beijing (83 isolates, 31.8%) and CAS spoligotype (52, 19.9%) were the dominant spoligotypes. A total of 36 (13.8%) isolates could not be assigned to any known spoligotyping pattern. Lineage 2 was associated with female sex (adjusted odds ratio [aOR] 2.58, 95% confidence interval [95% CI] 1.42–4.67, p = 0.002), and any drug resistance (aOR 2.79; 95% CI 1.43–5.45; p = 0.002). We found no evidence for an association of Lineage 2 with age or BCG vaccination status. Conclusions We found a large genetic diversity of M. tuberculosis in Nepal with representation of all four major lineages. Lineages 3 and 2 were dominating. Lineage 2 was associated with clinical characteristics. This study fills an important gap on the map of the M. tuberculosis genetic diversity in the Asian region. PMID:23300635
Genomic analyses of Clostridium perfringens isolates from five toxinotypes.
Hassan, Karl A; Elbourne, Liam D H; Tetu, Sasha G; Melville, Stephen B; Rood, Julian I; Paulsen, Ian T
2015-05-01
Clostridium perfringens can be isolated from a range of environments, including soil, marine and fresh water sediments, and the gastrointestinal tracts of animals and humans. Some C. perfringens strains have attractive industrial applications, e.g., in the degradation of waste products or the production of useful chemicals. However, C. perfringens has been most studied as the causative agent of a range of enteric and soft tissue infections of varying severities in humans and animals. Host preference and disease type in C. perfringens are intimately linked to the production of key extracellular toxins and on this basis toxigenic C. perfringens strains have been classified into five toxinotypes (A-E). To date, twelve genome sequences have been generated for a diverse collection of C. perfringens isolates, including strains associated with human and animal infections, a human commensal strain, and a strain with potential industrial utility. Most of the sequenced strains are classified as toxinotype A. However, genome sequences of representative strains from each of the other four toxinotypes have also been determined. Analysis of this collection of sequences has highlighted a lack of features differentiating toxinotype A strains from the other isolates, indicating that the primary defining characteristic of toxinotype A strains is their lack of key plasmid-encoded extracellular toxin genes associated with toxinotype B to E strains. The representative B-E strains sequenced to date each harbour many unique genes. Additional genome sequences are needed to determine if these genes are characteristic of their respective toxinotypes. Copyright © 2014. Published by Elsevier Masson SAS.
Survival of epiphytic bacteria from seed stored on the Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
Schuerger, Andrew C.; Norman, Bret L.; Angelo, Joseph A., Jr.
1991-01-01
This study was designed to determine the survival of microorganisms exposed to the relatively harsh conditions found in low Earth orbit (LEO). Seed of corn, sunflower, canteloupe, zucchini, bean, pea, and pumpkin cultivars were packaged in two 18 x 2.5 cm aluminum tubes; wall thickness for each tube was 1.33 mm. One seed tube was attacked to payload M0006, tray C-2; a second tube was stored at room temperature in a lab on Earth. Five lithium fluoride thermoluminescent dosimetry wafers (TLD-100 wafers) were placed in each aluminum tube. The total mean dosages for flight and ground-control TLD wafers were 210.0 and 0.9 rads, respectively. Seeds were washed for 2 hrs in a phosphate buffered saline solution. Bacteria were isolated by plating samples of the seed-washings onto dilute tryptic soy agar. Pure isolates of morphologically distinct bacteria were obtained by standard microbiological procedures. Bacteria were grouped according to colony-type and preliminary identification was completed using a fatty-acid analysis system. Bacillus spp. were the primary microoganisms that survived on seed during the experiment. Bacterial diversity and relative abundance were similar for the ground flight seed. Bacillus subtilus, B. pumilus, B. licheniformis, B. polymyxa, B. megaterium, and B. pabuli were isolated most frequently. Members of the genera Kurthia, Listeria, Micrococcus, and Arthrobacter were also isolated from flight and ground control seed. Results support the hypothesis that terrestrial microorganisms can survive long periods of time in the relatively harsh LEO environment.
Toledo, G; Palenik, B
1997-01-01
Because they are ubiquitous in a range of aquatic environments and culture methods are relatively advanced, cyanobacteria may be useful models for understanding the extent of evolutionary adaptation of prokaryotes in general to environmental gradients. The roles of environmental variables such as light and nutrients in influencing cyanobacterial genetic diversity are still poorly characterized, however. In this study, a total of 15 Synechococcus strains were isolated from the oligotrophic edge of the California Current from two depths (5 and 95 m) with large differences in light intensity, light quality, and nutrient concentrations. RNA polymerase gene (rpoC1) fragment sequences of the strains revealed two major genetic lineages, distinct from other marine or freshwater cyanobacterial isolates or groups seen in shotgun-cloned sequences from the oligotrophic Atlantic Ocean. The California Current low-phycourobilin (CCLPUB) group represented by six isolates in a single lineage was less diverse than the California Current high-phycourobilin (CCHPUB) group with nine isolates in three relatively divergent lineages. The former was found to be the closest known genetic group to Prochlorococcus spp., a chlorophyll b-containing cyanobacterial group. Having an isolate from this group will be valuable for looking at the molecular changes necessary for the transition from the use of phycobiliproteins to chlorophyll b as light-harvesting pigments. Both of the CCHPUB and CCLPUB groups included strains obtained from surface (5 m) and deep (95 m) samples. Thus, contrary to expectations, there was no clear correlation between sampling depth and isolation of genetic groups, despite the large environmental gradients present. To our knowledge, this is the first demonstration with isolates that genetically divergent Synechococcus groups coexist in the same seawater sample. PMID:9361417
Biglari, Shirin; Hanafiah, Alfizah; Mohd Puzi, Shaliawani; Ramli, Ramliza; Rahman, Mostafizur; Lopes, Bruno Silvester
2017-07-01
Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-bla OXA-23 and ISAba1-bla ADC and had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the bla OXA-51-like genes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.
Zoonotic Potential and Antibiotic Resistance of Escherichia coli in Neonatal Calves in Uruguay.
Umpiérrez, Ana; Bado, Inés; Oliver, Martín; Acquistapace, Sofía; Etcheverría, Analía; Padola, Nora Lía; Vignoli, Rafael; Zunino, Pablo
2017-09-27
Escherichia coli is one of the main etiological agents of neonatal calf diarrhea (NCD). The objective of this study was to assess the presence of virulence genes, genetic diversity, and antibiotic resistance mechanisms in E. coli associated with NCD in Uruguay. PCR was used to assess the presence of intimin, Shiga-like toxin, and stable and labile enterotoxin genes. Resistance to fluoroquinolones and oxyimino-cephalosporins was estimated on Müller-Hinton agar plates. Further antibiotic disc-diffusion tests were performed to assess bacterial multi-resistance. The presence of PMQR, ESBL, MCR-1, and integron genes was evaluated. Isolates were typed using ERIC-PCR, and 20 were selected for MLST, adhesion to Hep-2 cells, in vitro biofilm formation, and eukaryotic cytotoxicity. The prevalence of ETEC genes was lower than 3% in each case (estA and elt). Six isolates were EPEC (eae+) and 2 were EHEC/STEC (eae+/stx1+). The results of a diversity analysis showed high genetic heterogenicity among isolates. Additionally, different sequence types, including ST10, ST21, and ST69, were assigned to selected isolates. Thirty-six percent (96/264) of the isolates were fluoroquinolone-resistant, with 61/96 (63.5%) being multidrug-resistant. Additionally, 6 were oxyimino-cephalosporin-resistant. The qnrB, qnrS1, and bla CTX-M-14 genes were detected, whereas no isolates carried the mcr-1 gene. Isolates had the ability to adhere to Hep-2 cells and form biofilms. Only 1 isolate expressed toxins in vitro. E. coli from NCD cases in Uruguay are very diverse, potentially virulent, and may interact with eukaryotic cells. Zoonotic potential, together with resistance traits and the presence of horizontal transfer mechanisms, may play a significant role in infections caused by these microorganisms.
Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes
Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.
2016-01-01
Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.
Zoonotic Potential and Antibiotic Resistance of Escherichia coli in Neonatal Calves in Uruguay
Umpiérrez, Ana; Bado, Inés; Oliver, Martín; Acquistapace, Sofía; Etcheverría, Analía; Padola, Nora Lía; Vignoli, Rafael; Zunino, Pablo
2017-01-01
Escherichia coli is one of the main etiological agents of neonatal calf diarrhea (NCD). The objective of this study was to assess the presence of virulence genes, genetic diversity, and antibiotic resistance mechanisms in E. coli associated with NCD in Uruguay. PCR was used to assess the presence of intimin, Shiga-like toxin, and stable and labile enterotoxin genes. Resistance to fluoroquinolones and oxyimino-cephalosporins was estimated on Müller-Hinton agar plates. Further antibiotic disc-diffusion tests were performed to assess bacterial multi-resistance. The presence of PMQR, ESBL, MCR-1, and integron genes was evaluated. Isolates were typed using ERIC-PCR, and 20 were selected for MLST, adhesion to Hep-2 cells, in vitro biofilm formation, and eukaryotic cytotoxicity. The prevalence of ETEC genes was lower than 3% in each case (estA and elt). Six isolates were EPEC (eae+) and 2 were EHEC/STEC (eae+/stx1+). The results of a diversity analysis showed high genetic heterogenicity among isolates. Additionally, different sequence types, including ST10, ST21, and ST69, were assigned to selected isolates. Thirty-six percent (96/264) of the isolates were fluoroquinolone-resistant, with 61/96 (63.5%) being multidrug-resistant. Additionally, 6 were oxyimino-cephalosporin-resistant. The qnrB, qnrS1, and blaCTX-M-14 genes were detected, whereas no isolates carried the mcr-1 gene. Isolates had the ability to adhere to Hep-2 cells and form biofilms. Only 1 isolate expressed toxins in vitro. E. coli from NCD cases in Uruguay are very diverse, potentially virulent, and may interact with eukaryotic cells. Zoonotic potential, together with resistance traits and the presence of horizontal transfer mechanisms, may play a significant role in infections caused by these microorganisms. PMID:28904264
Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record
NASA Astrophysics Data System (ADS)
Stigall, Alycia L.; Bauer, Jennifer E.; Lam, Adriane R.; Wright, David F.
2017-01-01
Biotic Immigration Events (BIMEs) record the large-scale dispersal of taxa from one biogeographic area to another and have significantly impacted biodiversity throughout geologic time. BIMEs associated with biodiversity increases have been linked to ecologic and evolutionary processes including niche partitioning, species packing, and higher speciation rates. Yet substantial biodiversity decline has also been documented following BIMEs due to elevated extinction and/or reduced speciation rates. In this review, we develop a conceptual model for biodiversity accumulation that links BIMEs and geographic isolation with local (α) diversity, regional (β) diversity, and global (γ) diversity metrics. Within the model, BIME intervals are characterized by colonization of existing species within new geographic regions and a lack of successful speciation events. Thus, there is no change in γ-diversity, and α-diversity increases at the cost of β-diversity. An interval of regional isolation follows in which lineage splitting results in successful speciation events and diversity increases across all three metrics. Alternation of these two regimes can result in substantial biodiversity accumulation. We tested this conceptual model using a series of case studies from the paleontological record. We primarily focus on two intervals during the Middle through Late Ordovician Period (470-458 Ma): the globally pervasive BIMEs during the Great Ordovician Biodiversification Event (GOBE) and a regional BIME, the Richmondian Invasion. We further test the conceptual model by examining the Great Devonian Interchange, Neogene mollusk migrations and diversification, and the Great American Biotic Interchange. Paleontological data accord well with model predictions. Constraining the mechanisms of biodiversity accumulation provides context for conservation biology. Because α-, β-, and γ-diversity are semi-independent, different techniques should be considered for sustaining various diversity partitions. Maintaining natural migration routes and population sizes among isolated regions are vital to preserving both extant biodiversity and biogeographic pathways requisite for future diversity generation.
Arocha-Garza, Hector Fernando; Canales-Del Castillo, Ricardo; Eguiarte, Luis E.; Souza, Valeria
2017-01-01
The phylum Actinobacteria constitutes one of the largest and anciently divergent phyla within the Bacteria domain. Actinobacterial diversity has been thoroughly researched in various environments due to its unique biotechnological potential. Such studies have focused mostly on soil communities, but more recently marine and extreme environments have also been explored, finding rare taxa and demonstrating dispersal limitation and biogeographic patterns for Streptomyces. To test the distribution of Actinobacteria populations on a small scale, we chose the extremely oligotrophic and biodiverse Cuatro Cienegas Basin (CCB), an endangered oasis in the Chihuahuan desert to assess the diversity and uniqueness of Actinobacteria in the Churince System with a culture-dependent approach over a period of three years, using nine selective media. The 16S rDNA of putative Actinobacteria were sequenced using both bacteria universal and phylum-specific primer pairs. Phylogenetic reconstructions were performed to analyze OTUs clustering and taxonomic identification of the isolates in an evolutionary context, using validated type species of Streptomyces from previously phylogenies as a reference. Rarefaction analysis for total Actinobacteria and for Streptomyces isolates were performed to estimate species’ richness in the intermediate lagoon (IL) in the oligotrophic Churince system. A total of 350 morphologically and nutritionally diverse isolates were successfully cultured and characterized as members of the Phylum Actinobacteria. A total of 105 from the total isolates were successfully subcultured, processed for DNA extraction and 16S-rDNA sequenced. All strains belong to the order Actinomycetales, encompassing 11 genera of Actinobacteria; the genus Streptomyces was found to be the most abundant taxa in all the media tested throughout the 3-year sampling period. Phylogenetic analysis of our isolates and another 667 reference strains of the family Streptomycetaceae shows that our isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies. PMID:28480140
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare is the etiologic agent of columnaris disease and severely affects various freshwater aquaculture fish species worldwide. The objectives of this study were to determine the phenotypic characteristics and genetic variability among F. columnare isolates isolated from red tilapi...
Genetic diversity among isolates of Autographa californica multiple nucleopolyhedrovirus
USDA-ARS?s Scientific Manuscript database
Our knowledge of genetic variation at the nucleotide sequence level of Autographa californica multiple nucleopolyhedrovirus (AcMNPV; Baculoviridae: Alphabaculovirus) derives from complete genome sequences of the C6 clonal isolate of AcMNPV and the R1 and CL3 clonal isolates of AcMNPV variants Rachip...
USDA-ARS?s Scientific Manuscript database
Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains. To evaluate the genetic diversity of Lymantria dispar nucleopolyhedrovirus (LdMNPV) at the genomic level, the genomes of three isolates of...
Bartlett, David C; Newsome, Philip N
2017-01-01
Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver and the results of hepatocyte isolation from such tissue are inferior compared to normal tissue. Here we describe a modified method, combining the use of Liberase and N-acetylcysteine (NAC), for the isolation of primary human hepatocytes with high viability from normal and diseased liver.
Genetic diversity of Echinococcus granulosus in center of Iran.
Pestechian, Nader; Hosseini Safa, Ahmad; Tajedini, Mohammadhasan; Rostami-Nejad, Mohammad; Mousavi, Mohammad; Yousofi, Hosseinali; Haghjooy Javanmard, Shaghayegh
2014-08-01
Hydatid cyst caused by Echinococcus granulosus is one of the most important parasitic diseases around the world and many countries in Asia, including Iran, are involved with this infection. This disease can cause high mortality in humans as well as economic losses in livestock. To date, several molecular methods have been used to determine the genetic diversity of E. granulosus. So far, identification of E. granulosus using real-time PCR fluorescence-based quantitative assays has not been studied worldwide, also in Iran. Therefore, the aim of this study was to investigate the genetic diversity of E. granulosus from center of Iran using real-time PCR method. A total of 71 hydatid cysts were collected from infected sheep, goat, and cattle slaughtered in Isfahan, Iran during 2013. DNA was extracted from protoscolices and/or germinal layers from each individual cyst and used as template to amplify the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) (420 bp). Five cattle isolates out of 71 isolates were sterile and excluded from further investigation. Overall, of 66 isolates, partial sequences of the cox1 gene of E. granulosus indicated the presence of genotypes G1 in 49 isolates (74.2%), G3 in 15 isolates (22.7%), and G6 in 2 isolates (3.0%) in infected intermediate hosts. Sixteen sequences of G1 genotype had microgenetic variants, and they were compared to the original sequence of cox1. However, isolates identified as G3 and G6 genotypes were completely consistent with original sequences. G1 genotype in livestock was the dominant genotype in Isfahan region, Iran.
Howe, Daniel K; Gaji, Rajshekhar Y; Marsh, Antoinette E; Patil, Bhagyashree A; Saville, William J; Lindsay, David S; Dubey, J P; Granstrom, David E
2008-05-01
A gene family of surface antigens is expressed by merozoites of Sarcocystis neurona, the primary cause of equine protozoal myeloencephalitis (EPM). These surface proteins, designated SnSAGs, are immunodominant and therefore excellent candidates for development of EPM diagnostics or vaccines. Prior work had identified an EPM isolate lacking the major surface antigen SnSAG1, thus suggesting there may be some diversity in the SnSAGs expressed by different S. neurona isolates. Therefore, a bioinformatic, molecular and immunological study was conducted to assess conservation of the SnSAGs. Examination of an expressed sequence tag (EST) database revealed several notable SnSAG polymorphisms. In particular, the EST information implied that the EPM strain SN4 lacked the major surface antigen SnSAG1. The absence of this surface antigen from the SN4 strain was confirmed by both Western blot and Southern blot. To evaluate SnSAG polymorphisms in the S. neurona population, 14 strains were examined by Western blots using monospecific polyclonal antibodies against the four described SnSAGs. The results of these analyses demonstrated that SnSAG2, SnSAG3, and SnSAG4 are present in all 14 S. neurona strains tested, although some variance in SnSAG4 was observed. Importantly, SnSAG1 was not detected in seven of the strains, which included isolates from four cases of EPM and a case of fatal meningoencephalitis in a sea otter. Genetic analyses by PCR using gene-specific primers confirmed the absence of the SnSAG1 locus in six of these seven strains. Collectively, the data indicated that there is heterogeneity in the surface antigen composition of different S. neurona isolates, which is an important consideration for development of serological tests and prospective vaccines for EPM. Furthermore, the diversity reported herein likely extends to other phenotypes, such as strain virulence, and may have implications for the phylogeny of the various Sarcocystis spp. that undergo sexual stages of their life cycle in opossums.
Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations
Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert
2016-01-01
Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard ecosystem, which contains yeasts from different species. The description of this yeast diversity will lead to the selection of native microbiota that can be used to produce quality wines with the characteristics of the Priorat. PMID:27379060
Roman, Fabiola; das Chagas Xavier, Samanta; Messenger, Louisa A; Pavan, Márcio G; Miles, Michael A; Jansen, Ana María; Yeo, Matthew
2018-05-01
Trypanosoma cruzi, the causal agent of Chagas disease, is monophyletic but genetically heterogeneous. It is currently represented by six genetic lineages (Discrete Typing Units, DTUs) designated TcI-TcVI. TcI is the most geographically widespread and genetically heterogeneous lineage, this as is evidenced by a wide range of genetic markers applied to isolates spanning a vast geographic range in Latin America. In total, 78 TcI isolated from hosts and vectors distributed in 5 different biomes of Brazil, were analyzed using 6 nuclear housekeeping genes, 25 microsatellite loci and one mitochondrial marker. Nuclear markers reveal substantial genetic diversity, significant gene flow between biomes, incongruence in phylogenies, and haplotypic analysis indicative of intra-DTU genetic exchange. Phylogenetic reconstructions based on mitochondrial and nuclear loci were incongruent, and consistent with introgression. Structure analysis of microsatellite data reveals that, amongst biomes, the Amazon is the most genetically diverse and experiences the lowest level of gene flow. Investigation of population structure based on the host species/genus, indicated that Didelphis marsupialis might play a role as the main disperser of TcI. The present work considers a large TcI sample from different hosts and vectors spanning multiple ecologically diverse biomes in Brazil. Importantly, we combine fast and slow evolving markers to contribute to the epizootiological understanding of TcI in five distinct Brazilian biomes. This constitutes the first instance in which MLST analysis was combined with the use of MLMT and maxicircle markers to evaluate the genetic diversity of TcI isolates in Brazil. Our results demonstrate the existence of substantial genetic diversity and the occurrence of introgression events. We provide evidence of genetic exchange in TcI isolates from Brazil and of the relative isolation of TcI in the Amazon biome. We observe the absence of strict associations with TcI genotypes to geographic areas and/or host species.
Feng, Jing; Jiang, Yujun; Li, Mingyu; Zhao, Siyu; Zhang, Yanming; Li, Xuesong; Wang, Hui; Lin, Guangen; Wang, Hao; Li, Tiejing; Man, Chaoxin
2018-05-25
Bacteria in Lactobacillus casei group, including Lactobacillus casei (L. casei), Lactobacillus paracasei (L. paracasei), and Lactobacillus rhamnosus (L. rhamnosus) are important lactic acid bacteria in the production of fermented dairy products and are faced with the controversial nomenclatural status due to their close phylogenetic similarity. To probe the evolution and phylogeny of L. casei group, 100 isolates of lactic acid bacteria originated from naturally fermented dairy products in Tibet of China were subjected to multilocus sequence typing (MLST). The MLST scheme, based on analysis of the housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA and recG, revealed that all the isolates belonged to a group containing the L. paracasei reference strains and were clearly different from the strains of L. casei and L. rhamnosus. Although nucleotide diversity (π) was low for the seven genes (ranging from 0.00341 for fusA to 0.01307 for recG), high genetic diversity represented by 83 sequence types (STs) with a discriminatory index of 0.98 was detected. A network-like structure based on split decomposition analysis, and the high values of the relative effect of recombination and mutation in the diversification of the lineages (r/m = 4.76) and the relative frequency of occurrence of recombination and mutation (ρ/θ = 2.62) indicated that intra-species recombination occurred frequently and homologous recombination played a key role in generating genotypic diversity amongst L. paracasei strains in Tibet. The discovery of 51 new STs and the results of STRUCTURE analysis suggested that the L. casei group in Tibet had an individual and particular population structure in comparison to European isolates. Overall, this research might be the first report about genetic diversity and population structure of Lactobacillus populations isolated from naturally fermented dairy products in Tibet based on MLST scheme.
das Chagas Xavier, Samanta; Messenger, Louisa A.; Pavan, Márcio G.; Miles, Michael A.; Jansen, Ana María; Yeo, Matthew
2018-01-01
Background Trypanosoma cruzi, the causal agent of Chagas disease, is monophyletic but genetically heterogeneous. It is currently represented by six genetic lineages (Discrete Typing Units, DTUs) designated TcI-TcVI. TcI is the most geographically widespread and genetically heterogeneous lineage, this as is evidenced by a wide range of genetic markers applied to isolates spanning a vast geographic range in Latin America. Methodology/Principal findings In total, 78 TcI isolated from hosts and vectors distributed in 5 different biomes of Brazil, were analyzed using 6 nuclear housekeeping genes, 25 microsatellite loci and one mitochondrial marker. Nuclear markers reveal substantial genetic diversity, significant gene flow between biomes, incongruence in phylogenies, and haplotypic analysis indicative of intra-DTU genetic exchange. Phylogenetic reconstructions based on mitochondrial and nuclear loci were incongruent, and consistent with introgression. Structure analysis of microsatellite data reveals that, amongst biomes, the Amazon is the most genetically diverse and experiences the lowest level of gene flow. Investigation of population structure based on the host species/genus, indicated that Didelphis marsupialis might play a role as the main disperser of TcI. Conclusions/Significance The present work considers a large TcI sample from different hosts and vectors spanning multiple ecologically diverse biomes in Brazil. Importantly, we combine fast and slow evolving markers to contribute to the epizootiological understanding of TcI in five distinct Brazilian biomes. This constitutes the first instance in which MLST analysis was combined with the use of MLMT and maxicircle markers to evaluate the genetic diversity of TcI isolates in Brazil. Our results demonstrate the existence of substantial genetic diversity and the occurrence of introgression events. We provide evidence of genetic exchange in TcI isolates from Brazil and of the relative isolation of TcI in the Amazon biome. We observe the absence of strict associations with TcI genotypes to geographic areas and/or host species. PMID:29782493
Tran, Le Son; Ferrero, Richard L
2018-01-01
The gastrointestinal epithelium provides the first line of defense against invading pathogens, among which Helicobacter pylori is linked to numerous gastric pathologies, including chronic gastritis and cancer. Primary gastric epithelial cells represent a useful model for the investigation of the underlying molecular and cellular mechanisms involved in these H. pylori associated diseases. In this chapter, we describe a method for the isolation of primary gastric epithelial cells from mice and detection of epithelial cell adhesion molecule (EpCAM) expression in the isolated cells.
Twenty-million-year relationship between mammalian diversity and primary productivity
NASA Astrophysics Data System (ADS)
Fritz, Susanne A.; Eronen, Jussi T.; Schnitzler, Jan; Hof, Christian; Janis, Christine M.; Mulch, Andreas; Böhning-Gaese, Katrin; Graham, Catherine H.
2016-09-01
At global and regional scales, primary productivity strongly correlates with richness patterns of extant animals across space, suggesting that resource availability and climatic conditions drive patterns of diversity. However, the existence and consistency of such diversity-productivity relationships through geological history is unclear. Here we provide a comprehensive quantitative test of the diversity-productivity relationship for terrestrial large mammals through time across broad temporal and spatial scales. We combine >14,000 occurrences for 690 fossil genera through the Neogene (23-1.8 Mya) with regional estimates of primary productivity from fossil plant communities in North America and Europe. We show a significant positive diversity-productivity relationship through the 20-million-year record, providing evidence on unprecedented spatial and temporal scales that this relationship is a general pattern in the ecology and paleo-ecology of our planet. Further, we discover that genus richness today does not match the fossil relationship, suggesting that a combination of human impacts and Pleistocene climate variability has modified the 20-million-year ecological relationship by strongly reducing primary productivity and driving many mammalian species into decline or to extinction.
Diversity and Biosynthetic Potential of Culturable Microbes Associated with Toxic Marine Animals
Chau, Rocky; Kalaitzis, John A.; Wood, Susanna A.; Neilan, Brett A.
2013-01-01
Tetrodotoxin (TTX) is a neurotoxin that has been reported from taxonomically diverse organisms across 14 different phyla. The biogenic origin of tetrodotoxin is still disputed, however, TTX biosynthesis by host-associated bacteria has been reported. An investigation into the culturable microbial populations from the TTX-associated blue-ringed octopus Hapalochlaena sp. and sea slug Pleurobranchaea maculata revealed a surprisingly high microbial diversity. Although TTX was not detected among the cultured isolates, PCR screening identifiedsome natural product biosynthesis genes putatively involved in its assembly. This study is the first to report on the microbial diversity of culturable communities from H. maculosa and P. maculata and common natural product biosynthesis genes from their microbiota. We also reassess the production of TTX reported from three bacterial strains isolated from the TTX-containing gastropod Nassarius semiplicatus. PMID:23917066
Diversity and biosynthetic potential of culturable microbes associated with toxic marine animals.
Chau, Rocky; Kalaitzis, John A; Wood, Susanna A; Neilan, Brett A
2013-08-02
Tetrodotoxin (TTX) is a neurotoxin that has been reported from taxonomically diverse organisms across 14 different phyla. The biogenic origin of tetrodotoxin is still disputed, however, TTX biosynthesis by host-associated bacteria has been reported. An investigation into the culturable microbial populations from the TTX-associated blue-ringed octopus Hapalochlaena sp. and sea slug Pleurobranchaea maculata revealed a surprisingly high microbial diversity. Although TTX was not detected among the cultured isolates, PCR screening identifiedsome natural product biosynthesis genes putatively involved in its assembly. This study is the first to report on the microbial diversity of culturable communities from H. maculosa and P. maculata and common natural product biosynthesis genes from their microbiota. We also reassess the production of TTX reported from three bacterial strains isolated from the TTX-containing gastropod Nassarius semiplicatus.
Lisdawati, Vivi; Puspandari, Nelly; Rif'ati, Lutfah; Soekarno, Triyani; M, Melatiwati; K, Syamsidar; Ratnasari, Lies; Izzatun, Nur; Parwati, Ida
2015-08-22
Genotyping of Mycobacterium tuberculosis helps to understand the molecular epidemiology of tuberculosis and to address evolutionary questions about the disease spread. Certain genotypes also have implications for the spread of infection and treatment. Indonesia is a very diverse country with a population with multiple ethnicities and cultures and a history of many trade and tourism routes. This study describes the first attempt to map the molecular epidemiology of TB in the Indonesian archipelago. From 2008 to 2011, 404 clinical specimens from sputum-smear (SS+) TB patients, age ≥15 years, were collected from 16 TB referral primary health centers (PHC) in 16 provincial capitals in Indonesia. Susceptibility testing to first line drugs was conducted for 262 samples using the agar proportion method as per WHO guidelines. Spoligotyping was done on all samples. Ninety-three of the 404 samples (23 %) were from the Beijing family, making it the predominant family in the country. However, the geographic distribution of the family varied by region with 86/294 (29.3 %) in the western region, 6/72 (8.3 %) in the central region, and 2/72 (2.8 %) in the eastern region (p < 0.001). The predominant genotype in the central and eastern regions was from the East-African-Indian (EAI) family, comprising 15.3 % (11/72), and 26.3 % (10/38) of the isolates, respectively. Drug susceptibility to first-line anti-TB drugs was tested in 262 isolates. 162 (61.8 %) isolates were susceptible to all TB drugs, 70 (26.7 %) were mono-resistant 16 (6.1 %) were poly-resistant, and 14 (5.4 %) were multi-drug resistant (MDR). The proportion of Beijing family isolates in the susceptible, mono-resistant, poly-resistant, and MDR groups was 33/162 (20.4 %), 28/70 (40.0 %), 6/16 (37.5 %), and 3/14 (21.4 %), respectively. Overall, resistance of the Beijing family isolates to any of the first line TB drugs was significantly higher than non-Beijing families [37/71 (52.1 %) vs. 63/191 (33.0 %) (p-value = 0.003)]. The distribution of Mycobacterium tuberculosis genotypes in Indonesia showed high genetic diversity and tended to vary by geographic regions. Drug susceptibility testing confirmed that the Beijing family of M.tb in Indonesia exhibited greater resistance to first line anti-TB drugs than did other families.
Molecular and Pathogenic Characterization of Borrelia burgdorferi Sensu Lato Isolates from Spain
Escudero, Raquel; Barral, Marta; Pérez, Azucena; Vitutia, M. Mar; García-Pérez, Ana L.; Jiménez, Santos; Sellek, Ricela E.; Anda, Pedro
2000-01-01
Fifteen Borrelia burgdorferi sensu lato isolates from questing ticks and skin biopsy specimens from erythema migrans patients in three different areas of Spain were characterized. Four different genospecies were found (nine Borrelia garinii, including the two human isolates, three B. burgdorferi sensu stricto, two B. valaisiana, and one B. lusitaniae), showing a diverse spectrum of B. burgdorferi sensu lato species. B. garinii isolates were highly variable in terms of pulsed-field gel electrophoresis pattern and OspA serotype, with four of the seven serotypes described. One of the human isolates was OspA serotype 5, the same found in four of seven tick isolates. The second human isolate was OspA serotype 3, which was not present in ticks from the same area. Seven B. garinii isolates were able to disseminate through the skin of C3H/HeN mice and to cause severe inflammation of joints. One of the two B. valaisiana isolates also caused disease in mice. Only one B. burgdorferi sensu stricto isolate was recovered from the urinary bladder. One isolate each of B. valaisiana and B. lusitaniae were not able to disseminate through the skin of mice or to infect internal organs. In summary, there is substantial diversity in the species and in the pathogenicity of B. burgdorferi sensu lato in areas in northern Spain where Lyme disease is endemic. PMID:11060064
ERIC Educational Resources Information Center
Bell, Ronny A.; Quandt, Sara A.; Arcury, Thomas A.; Snively, Beverly M.; Stafford, Jeanette M.; Smith, Shannon L.; Skelly, Anne H.
2005-01-01
Purpose: Residents in rural communities in the United States, especially ethnic minority group members, have limited access to primary and specialty health care that is critical for diabetes management. This study examines primary and specialty medical care utilization among a rural, ethnically diverse, older adult population with diabetes.…
ERIC Educational Resources Information Center
Bell, Ronny A.; Quandt, Sara A.; Arcury, Thomas A.; Snively, Beverly M.; Stafford, Jeanette M.; Smith, Shannon L.; Skelly, Anne H.
2005-01-01
Purpose: Residents in rural communities in the United States, especially ethnic minority group members, have limited access to primary and specialty health care that is critical for diabetes management. This study examines primary and specialty medical care utilization among a rural, ethnically diverse, older adult population with diabetes.…
Population Genetics of Plasmodium vivax in Four High Malaria Endemic Areas in Thailand.
Congpuong, Kanungnit; Ubalee, Ratawan
2017-10-01
Recent trends of malaria in Thailand illustrate an increasing proportion of Plasmodium vivax, indicating the importance of P. vivax as a major causative agent of malaria. P. vivax malaria is usually considered a benign disease so the knowledge of this parasite has been limited, especially the genetic diversity and genetic structure of isolates from different endemic areas. The aim of this study was to examine the population genetics and structure of P. vivax isolates from 4 provinces with different malaria endemic settings in Thailand using 6 microsatellite markers. Total 234 blood samples from P. vivax mono-infected patients were collected. Strong genetic diversity was observed across all study sites; the expected heterozygosity values ranged from 0.5871 to 0.9033. Genetic variability in this study divided P. vivax population into 3 clusters; first was P. vivax isolates from Mae Hong Son and Kanchanaburi Provinces located on the western part of Thailand; second, Yala isolates from the south; and third, Chanthaburi isolates from the east. P. vivax isolates from patients having parasite clearance time (PCT) longer than 24 hr after the first dose of chloroquine treatment had higher diversity when compared with those having PCT within 24 hr. This study revealed a clear evidence of different population structure of P. vivax from different malaria endemic areas of Thailand. The findings provide beneficial information to malaria control programme as it is a useful tool to track the source of infections and current malaria control efforts.
Santos, A L; Lopes, S; Baptista, I; Henriques, I; Gomes, N C M; Almeida, A; Correia, A; Cunha, A
2011-04-01
To assess the variability in UV-B (280-320 nm) sensitivity of selected bacterial isolates from the surface microlayer and underlying water of the Ria de Aveiro (Portugal) estuary and their ability to recover from previous UV-induced stress. Bacterial suspensions were exposed to UV-B radiation (3·3 W m⁻²). Effects on culturability and activity were assessed from colony counts and (3) H-leucine incorporation rates, respectively. Among the tested isolates, wide variability in UV-B-induced inhibition of culturability (37·4-99·3%) and activity (36·0-98·0%) was observed. Incubation of UV-B-irradiated suspensions under reactivating regimes (UV-A, 3·65 W m⁻²; photosynthetic active radiation, 40 W m⁻²; dark) also revealed diversity in the extent of recovery from UV-B stress. Trends of enhanced resistance of culturability (up to 15·0%) and enhanced recovery in activity (up to 52·0%) were observed in bacterioneuston isolates. Bacterioneuston isolates were less sensitive and recovered more rapidly from UV-B stress than bacterioplankton isolates, showing enhanced reduction in their metabolism during the irradiation period and decreased culturability during the recovery process compared to bacterioplankton. UV exposure can affect the diversity and activity of microbial communities by selecting UV-resistant strains and alter their metabolic activity towards protective strategies. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Chen, F; Evins, G M; Cook, W L; Almeida, R; Hargrett-Bean, N; Wachsmuth, K
1991-08-01
Multilocus enzyme electrophoresis was used to examine genetic relationships among and between toxigenic and non-toxigenic isolates of Vibrio cholerae O1 obtained from patients and the environment in the US Gulf Coast and surrounding areas. A total of 23 toxigenic and 23 non-toxigenic strains were examined. All the toxigenic and 7 of the non-toxigenic strains had the same alleles at 16 enzyme loci, whereas the balance of the nontoxigenic strains had 9 distinct combinations of alleles. This study suggests that all of the toxigenic strains belong to a single clone, and that while some of the non-toxigenic isolates were related, most were of diverse origin.
Chen, F.; Evins, G. M.; Cook, W. L.; Almeida, R.; Hargrett-Bean, N.; Wachsmuth, K.
1991-01-01
Multilocus enzyme electrophoresis was used to examine genetic relationships among and between toxigenic and non-toxigenic isolates of Vibrio cholerae O1 obtained from patients and the environment in the US Gulf Coast and surrounding areas. A total of 23 toxigenic and 23 non-toxigenic strains were examined. All the toxigenic and 7 of the non-toxigenic strains had the same alleles at 16 enzyme loci, whereas the balance of the nontoxigenic strains had 9 distinct combinations of alleles. This study suggests that all of the toxigenic strains belong to a single clone, and that while some of the non-toxigenic isolates were related, most were of diverse origin. PMID:1879486
Bustamante, Ana V.; Lucchesi, Paula M.A.; Parma, Alberto E.
2009-01-01
The aim of this work was to adapt described MLVA protocols to the molecular typing and characterization of VTEC O157:H7 isolates from Argentina. Nine VNTR loci were amplified by PCR showing diversity values from 0.49 to 0.73. Nine MLVA profiles were observed and the cluster analysis indicated both unrelated and closely related VTEC O157:H7 strains. In spite of the limited number of isolates studied, the panel of VNTR used made it possible to perform a first approach of the high genetic diversity of native strains of O157:H7 by MLVA. PMID:24031443
N. B. Klopfenstein; J. E. Lundquist; J. W. Hanna; M.-S. Kim; G. I. McDonald
2009-01-01
In August of 2007, a preliminary survey was conducted in Alaska to evaluate potential impacts of climate change on forest trees. Armillaria sinapina, a root-disease pathogen, was isolated from conifer and hardwood hosts on climatically diverse sites spanning 675 km from the Kenai Peninsula to the Arctic Circle. Seven isolates (NKAK1, NKAK2, NKAK5, NKAK6, NKAK9F, NKAK13...
Choi, Seon Young; Rashed, Shah M.; Hasan, Nur A.; Alam, Munirul; Islam, Tarequl; Sadique, Abdus; Johura, Fatema-Tuz; Eppinger, Mark; Huq, Anwar; Cravioto, Alejandro
2016-01-01
ABSTRACT An outbreak of cholera occurred in 1991 in Mexico, where it had not been reported for more than a century and is now endemic. Vibrio cholerae O1 prototype El Tor and classical strains coexist with altered El Tor strains (1991 to 1997). Nontoxigenic (CTX−) V. cholerae El Tor dominated toxigenic (CTX+) strains (2001 to 2003), but V. cholerae CTX+ variant El Tor was isolated during 2004 to 2008, outcompeting CTX− V. cholerae. Genomes of six Mexican V. cholerae O1 strains isolated during 1991 to 2008 were sequenced and compared with both contemporary and archived strains of V. cholerae. Three were CTX+ El Tor, two were CTX− El Tor, and the remaining strain was a CTX+ classical isolate. Whole-genome sequence analysis showed the six isolates belonged to five distinct phylogenetic clades. One CTX− isolate is ancestral to the 6th and 7th pandemic CTX+ V. cholerae isolates. The other CTX− isolate joined with CTX− non-O1/O139 isolates from Haiti and seroconverted O1 isolates from Brazil and Amazonia. One CTX+ isolate was phylogenetically placed with the sixth pandemic classical clade and the V. cholerae O395 classical reference strain. Two CTX+ El Tor isolates possessing intact Vibrio seventh pandemic island II (VSP-II) are related to hybrid El Tor isolates from Mozambique and Bangladesh. The third CTX+ El Tor isolate contained West African-South American (WASA) recombination in VSP-II and showed relatedness to isolates from Peru and Brazil. Except for one isolate, all Mexican isolates lack SXT/R391 integrative conjugative elements (ICEs) and sensitivity to selected antibiotics, with one isolate resistant to streptomycin. No isolates were related to contemporary isolates from Asia, Africa, or Haiti, indicating phylogenetic diversity. PMID:26980836
Primary repair of civilian colon injuries is safe in the damage control scenario.
Kashuk, Jeffry L; Cothren, C Clay; Moore, Ernest E; Johnson, Jeffrey L; Biffl, Walter L; Barnett, Carlton C
2009-10-01
Although the safety of primary repair/anastomosis for civilian colon injuries after standard laparotomy (SL) has been established, recent civilian and military reports have questioned the advisability of this technique in the patient requiring damage control laparotomy (DL). We hypothesized that, even in the high-risk DL group, primary repair could be safely used after patient stabilization and that the open abdomen would facilitate the safety of this procedure. All patients admitted to our level 1 trauma center with a colon injury over a 7-year period were reviewed from a prospectively collected database. Patients were categorized as having undergone either SL or DL at initial operation. Primary variables of interest were as follows: injury patterns; method of primary repair (suture repair, resection and primary anastomosis, resection and delayed anastomosis); diversion techniques (planned diversion or diversion for anastomotic dehiscence); and colon-related morbidity and mortality. High-risk status in the DL group was identified by the following physiologic variables: mean injury severity score (ISS), red blood cell (RBC) transfusions, ventilator days, and intensive care unit (ICU) duration of stay. During the study period, 309 patients had colonic wounds identified at laparotomy. Of these 309 patients, 280 (91%) underwent SL, of which 277 (98.9%) had primary colonic repair/anastomosis. In the SL group, 1 (0.3%) patient required diversion for subsequent leak and 2 (0.6%) patients had planned diversion The remaining 29 hemodynamically unstable patients required DL. Mean +/- standard deviation indices of injury severity in this group included: ISS = 36.2 +/- 15.8, RBC = 28.7 +/- 25.4 units, ventilator days = 20.1 +/- 16.3, ICU duration of stay = 29.5 +/- 21.6 days. Of the 29 patients in the DL group, 21 (72%) had bowel continuity successfully reestablished in 2.6 +/- 2 days after initial attempts at primary suture repair or resection/anastomosis. A total of 4 (16.6%) patients in this group developed colon-related complications, 3 of whom were treated with subsequent diversion before definitive abdominal closure. One patient developed a late leak. (day 43). Another 4 (13.8%) patients had planned diversion for injuries that were considered to be high risk for leak at subsequent reexploration. There were no colon-related deaths in either group. Primary repair of colon injuries appears safe in the majority of patients after DL. Although it is associated with a higher leak rate than SL, the open abdomen affords careful inspection of abdominal contents at reexploration to identify patients who require subsequent diversion.
Voronina, O L; Kunda, M S; Dmitrienko, O A; Liubasovskaia, L A; Kovalishena, O V; Popov, D A; Lunin, V G
2011-01-01
Comparative analysis of species diversity of sample of coagulase-negative staphylococci (CNS) isolated in hospitals of different specializations. For identification of 102 CNS strains, biochemical systems manufactured by NPO "Diagnostic Systems", VITEK 2 Compact, and BBL Crystal as well as sequencing of fragments of tuf and gap genes were used. Greater differentiating capability of genotyping compared with phenotyping methods for species identification of staphylococci was demonstrated. Six CNS species were identified in the sample: S. epidermidis, S. haemolyticus, S. hominis, S. warneri, S. capitis, and S. pasteuri. The largest species diversity was noted for strains from maternity hospitals in Nizhny Novgorod and Kulakov Scientific Center for Obstetrics, Gynecology and Perinatology. Strains isolated from blood of patients in Bakulev Center for Cardiovascular Surgery were represented mostly by S. epidermidis and S. haemolyticus. Differences in species diversity of CNS--causative agents of neonatal conjunctivitis and omphalitis--were observed. Two species of CNS: S. epidermidis and S. haemolyticus pose special threat as nosocomial pathogens both in hospitals for adults and obstetrical facilities. Additionally, in neonatal units it is necessary to control such species as S. warneri, S. capitis, S. pasteuri.
Duponnois, Robin; Assikbetse, Komi; Ramanankierana, Heriniaina; Kisa, Marija; Thioulouse, Jean; Lepage, Michel
2006-05-01
The hypothesis of the present study was that the termite mounds of Macrotermes subhyalinus (MS) (a litter-forager termite) were inhabited by a specific microflora that could enhance with the ectomycorrhizal fungal development. We tested the effect of this feeding group mound material on (i) the ectomycorrhization symbiosis between Acacia holosericea (an Australian Acacia introduced in the sahelian areas) and two ectomycorrhizal fungal isolates of Scleroderma dictyosporum (IR408 and IR412) in greenhouse conditions, (ii) the functional diversity of soil microflora and (iii) the diversity of fluorescent pseudomonads. The results showed that the termite mound amendment significantly increased the ectomycorrhizal expansion. MS mound amendment and ectomycorrhizal inoculation induced strong modifications of the soil functional microbial diversity by promoting the multiplication of carboxylic acid catabolizing microorganisms. The phylogenetic analysis showed that fluorescent pseudomonads mostly belong to the Pseudomonads monteillii species. One of these, P. monteillii isolate KR9, increased the ectomycorrhizal development between S. dictyosporum IR412 and A. holosericea. The occurrence of MS termite mounds could be involved in the expansion of ectomycorrhizal symbiosis and could be implicated in nutrient flow and local diversity.
Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica.
Leiva, Sergio; Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio
2015-12-01
Little is known about the diversity and roles of Gram-positive and pigmented bacteria in Antarctic environments, especially those associated with marine macroorganisms. This work is the first study about the diversity and antimicrobial activity of culturable pigmented Gram-positive bacteria associated with marine Antarctic macroalgae. A total of 31 pigmented Gram-positive strains were isolated from the surface of six species of macroalgae collected in the King George Island, South Shetland Islands. On the basis of 16S rRNA gene sequence similarities ≥99%, 18 phylotypes were defined, which were clustered into 11 genera of Actinobacteria (Agrococcus, Arthrobacter, Brachybacterium, Citricoccus, Kocuria, Labedella, Microbacterium, Micrococcus, Rhodococcus, Salinibacterium and Sanguibacter) and one genus of the Firmicutes (Staphylococcus). It was found that five isolates displayed antimicrobial activity against a set of macroalgae-associated bacteria. The active isolates were phylogenetically related to Agrococcus baldri, Brachybacterium rhamnosum, Citricoccus zhacaiensis and Kocuria palustris. The results indicate that a diverse community of pigmented Gram-positive bacteria is associated with Antartic macroalgae and suggest its potential as a promising source of antimicrobial and pigmented natural compounds. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Troyer, Ryan M.; LaPatra, Scott E.; Kurath, Gael
2000-01-01
Infectious haematopoietic necrosis virus (IHNV) is the most significant virus pathogen of salmon and trout in North America. Previous studies have shown relatively low genetic diversity of IHNV within large geographical regions. In this study, the genetic heterogeneity of 84 IHNV isolates sampled from rainbow trout (Oncorhynchus mykiss) over a 20 year period at four aquaculture facilities within a 12 mile stretch of the Snake River in Idaho, USA was investigated. The virus isolates were characterized using an RNase protection assay (RPA) and nucleotide sequence analyses. Among the 84 isolates analysed, 46 RPA haplotypes were found and analyses revealed a high level of genetic heterogeneity relative to that detected in other regions. Sequence analyses revealed up to 7·6% nucleotide divergence, which is the highest level of diversity reported for IHNV to date. Phylogenetic analyses identified four distinct monophyletic clades representing four virus lineages. These lineages were distributed across facilities, and individual facilities contained multiple lineages. These results suggest that co-circulating IHNV lineages of relatively high genetic diversity are present in the IHNV populations in this rainbow trout culture study site. Three of the four lineages exhibited temporal trends consistent with rapid evolution.
Katoh, Hiroshi; Subandiyah, Siti; Tomimura, Kenta; Okuda, Mitsuru; Su, Hong-Ji; Iwanami, Toru
2011-01-01
Four highly polymorphic simple sequence repeat (SSR) loci were selected and used to differentiate 84 Japanese isolates of “Candidatus Liberibacter asiaticus.” The Nei's measure of genetic diversity values for these four SSRs ranged from 0.60 to 0.86. The four SSR loci were also highly polymorphic in four isolates from Taiwan and 12 isolates from Indonesia. PMID:21239554
The Role of Nitrogen-Fixing Symbionts in Primary Succession on the Juneau Icefield
NASA Astrophysics Data System (ADS)
Walker-Andrews, T.; Cooley, S.; Veitz, M.; White, C.
2017-12-01
The glaciers of the Juneau icefield will likely continue to retreat in the coming years, leaving behind a rocky landscape. As this land is exposed, colonizing organisms will begin the process of primary succession and soil formation. As student researchers with the Juneau Icefield Research Program, we are studying the relationship between abundance and diversity of nitrogen-fixing symbionts on the Juneau Icefield and the rate of primary succession and soil development on recently deglaciated areas. We will survey three representative plots in a variety of vegetation zones at various sample sites; collecting data on soil profiles, as well as abundance and diversity of plants and lichens. We expect to find a positive correlation between the diversity of plants and lichens- especially of nitrogen-fixing symbionts - and the level of soil development. The data will improve understanding of plant diversity on the Juneau Icefield and how the processes of primary succession transform the new environment. This work will contribute to on-going research on the process of primary succession on the Juneau Icefield.
Population diversity of Puccinia graminis is sustained through sexual cycle on alternate hosts
USDA-ARS?s Scientific Manuscript database
A high degree of virulence diversity has been maintained in the population of Puccinia graminis f. sp. tritici (Pgt) in northwestern United States. Although Berberis vulgaris is present in the region and Pgt has been isolated from aecial infections on B. vulgaris, the population is too diverse to be...
Invasive exotic plants in the tropical Pacific Islands: Patterns of Diversity
J.S. Denslow; J.C. Space; P.A. Thomas
2009-01-01
Oceanic islands are good model systems with which to explore factors affecting exotic species diversity. Islands vary in size, topography, substrate type, degree of isolation, native species diversity, history, human population characteristics, and economic development. Moreover, islands are highly vulnerable to exotic species establishment. We used AICc analyses of...
[Isolation and diversity analyses of endophytic fungi from Paris polyphylla var. yunnanensis].
Wang, Qian; Shen, Shi-Kang; Zhang, Ai-Li; Wu, Chun-Yan; Wu, Fu-Qin; Zhang, Xin-Jun; Wang, Yue-Hua
2013-11-01
The paper is aimed at studying the diversity of endophytic fungi community from Paris polyphylla var. yunnanensis, and to provide a scientific basis for the utilization value of the endophytic fungi as bioactive material resources. In the present study, endophytic fungi were isolated from roots, rhizomes and leaves of wild P. polyphylla var. yunnanensis collected from Baoshan, Heqing county and Songming city of Yunnan province, and identified and classified by morphological methods together with its ITS sequence analysis. Seven and forty-nine strains of endophytic fungi were isolated from P. polyphylla var. yunnanensis. They were identified belonging to 41 genus. In these 41 genus, 3 genus exist in root only, 12 genus only exist in rhizome and 8 genus only exist in leaf. There was difference in endophytic fungi isolated from different sample sites. Endophytic fungi diversity from rhizomes of Heqing site was the highest. Endophytic fungi similarity coefficient was low among different sites and tissues. Based on these results, it is reasonable to propose that endophytic fungi of P. polyphylla var. yannanensis from different tissue and different sample sites has a certain difference which is possibly relate to their different habitats, different structure and composition of each tissue.
Jimu, Luke; Chen, ShuaiFei; Wingfield, Michael J; Mwenje, Eddie; Roux, Jolanda
2016-01-01
The Eucalyptus stem canker pathogen Teratosphaeria zuluensis was discovered in South Africa in 1988 and it has subsequently been found in several other African countries as well as globally. In this study, the population structure, genetic diversity and evolutionary history of T. z uluensis were analysed using microsatellite markers to gain an enhanced understanding of its movement in Africa. Isolates were collected from several sites in Malawi, Mozambique, Uganda and Zambia. Data obtained were compared with those previously published for a South African population. The data obtained from 334 isolates, amplified across eight microsatellite loci, were used for assignment, differentiation and genetic diversity tests. STRUCTURE analyses, θ st and genetic distances revealed the existence of two clusters, one dominated by isolates from South Africa and the other by isolates from the Zambezi basin including Malawi, Mozambique and Zambia. High levels of admixture were found within and among populations, dominated by the Mulanje population in Malawi. Moderate to low genetic diversity of the populations supports the previously held view that the pathogen was introduced into Africa. The clonal nature of the Ugandan population suggests a very recent introduction, most likely from southern Africa.
Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.
2015-01-01
Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523
Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus
Faye, Oumar; Diagne, Moussa Moise; Fall, Gamou; Sembene, Mbacke; Sall, Amadou Alpha; Faye, Ousmane
2018-01-01
Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health. PMID:29652824
Social networks and links to isolation and loneliness among elderly HCBS clients.
Medvene, Louis J; Nilsen, Kari M; Smith, Rachel; Ofei-Dodoo, Samuel; DiLollo, Anthony; Webster, Noah; Graham, Annette; Nance, Anita
2016-01-01
The purpose of this study was to explore the network types of HCBS clients based on the structural characteristics of their social networks. We also examined how the network types were associated with social isolation, relationship quality and loneliness. Forty personal interviews were carried out with HCBS clients to assess the structure of their social networks as indicated by frequency of contact with children, friends, family and participation in religious and community organizations. Hierarchical cluster analysis was conducted to identify network types. Four network types were found including: family (n = 16), diverse (n = 8), restricted (n = 8) and religious (n = 7). Family members comprised almost half of participants' social networks, and friends comprised less than one-third. Clients embedded in family, diverse and religious networks had significantly more positive relationships than clients embedded in restricted networks. Clients embedded in restricted networks had significantly higher social isolation scores and were lonelier than clients in diverse and family networks. The findings suggest that HCBS clients' isolation and loneliness are linked to the types of social networks in which they are embedded. The findings also suggest that clients embedded in restricted networks are at high risk for negative outcomes.
Ghosh, Abhrajyoti; Maity, Bhaswar; Chakrabarti, Krishanu; Chattopadhyay, Dhrubajyoti
2007-10-01
The extent of microbial diversity in nature is still largely unknown, suggesting that there might be many more useful products yet to be identified from soil microorganisms. This insight provides the scientific foundation for a renewed interest in examining soil microorganisms for novel commercially important products. This has led us to access the metabolic potential of soil microorganisms via cultivation strategy. Keeping this in mind, we have performed a culture-dependent survey of important soil bacterial community diversity in East Calcutta Wetland area (Dhapa Landfill Area). We describe isolation of 38 strains, their phenotypic and biochemical characterization, and finally molecular identification by direct sequencing of polymerase chain reaction (PCR)-amplified 16S rRNA gene products. We have isolated and identified strains able to fix nitrogen, produce extracellular enzymes like protease, cellulase, xylanase, and amylase, and solubilize inorganic phosphates. Some isolates can synthesize extracellular insecticidal toxins. We find a good correlation between biochemical and phenotypic behavior and the molecular study using 16S rRNA gene of the isolates. Furthermore, our findings clearly indicate the composition of cultivable soil bacteria in East Calcutta Wetland Area.
Microbial Characterization and Comparison of Isolates During the Mir and ISS Missions
NASA Technical Reports Server (NTRS)
Fontenot, Sondra L.; Castro, Victoria; Bruce, Rebekah; Ott, C. Mark; Pierson, Duane L.
2004-01-01
Spacecraft represent a semi-closed ecosystem that provides a unique model of microbial interaction with other microbes, potential hosts, and their environment. Environmental samples from the Mir Space Station (1995-1998) and the International Space Station (ISS) (2000-Present) were collected and processed to provide insight into the characterization of microbial diversity aboard spacecraft over time and assess any potential health risks to the crew. All microbiota were isolated using standard media-based methodologies. Isolates from Mir and ISS were processed using various methods of analysis, including VITEK biochemical analysis, 16s ribosomal identification, and fingerprinting using rep-PCR analysis. Over the first 41 months of habitation, the diversity of the microbiota from air and surface samples aboard ISS increased from an initial six to 53 different bacterial species. During the same period, fungal diversity increased from 2 to 24 species. Based upon rep-PCR analysis, the majority of isolates were unique suggesting the need for increased sampling frequency and a more thorough analysis of samples to properly characterize the ISS microbiota. This limited fungal and bacterial data from environmental samples acquired during monitoring currently do not indicate a microbial hazard to ISS or any trends suggesting potential health risks.
Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus.
Faye, Martin; Faye, Oumar; Diagne, Moussa Moise; Fall, Gamou; Weidmann, Manfred; Sembene, Mbacke; Sall, Amadou Alpha; Faye, Ousmane
2018-04-13
Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health.
Nimaichand, Salam; Devi, Asem Mipeshwaree; Tamreihao, K.; Ningthoujam, Debananda S.; Li, Wen-Jun
2015-01-01
Studies on actinobacterial diversity in limestone habitats are scarce. This paper reports profiling of actinobacteria isolated from Hundung limestone samples in Manipur, India using ARDRA as the molecular tool for preliminary classification. A total of 137 actinobacteria were clustered into 31 phylotypic groups based on the ARDRA pattern generated and representative of each group was subjected to 16S rRNA gene sequencing. Generic diversity of the limestone isolates consisted of Streptomyces (15 phylotypic groups), Micromonospora (4), Amycolatopsis (3), Arthrobacter (3), Kitasatospora (2), Janibacter (1), Nocardia (1), Pseudonocardia (1) and Rhodococcus (1). Considering the antimicrobial potential of these actinobacteria, 19 showed antimicrobial activities against at least one of the bacterial and candidal test pathogens, while 45 exhibit biocontrol activities against at least one of the rice fungal pathogens. Out of the 137 actinobacterial isolates, 118 were found to have at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, NRPS). The results indicate that 86% of the strains isolated from Hundung limestone deposit sites possessed biosynthetic gene clusters of which 40% exhibited antimicrobial activities. It can, therefore, be concluded that limestone habitat is a promising source for search of novel secondary metabolites. PMID:25999937
McKell, Allison O.; Rippinger, Christine M.; McAllen, John K.; Akopov, Asmik; Kirkness, Ewen F.; Payne, Daniel C.; Edwards, Kathryn M.; Chappell, James D.; Patton, John T.
2012-01-01
Group A rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses and are primary causes of gastroenteritis in young children. Despite their medical relevance, the genetic diversity of modern human RVs is poorly understood, and the impact of vaccine use on circulating strains remains unknown. In this study, we report the complete genome sequence analysis of 58 RVs isolated from children with severe diarrhea and/or vomiting at Vanderbilt University Medical Center (VUMC) in Nashville, TN, during the years spanning community vaccine implementation (2005 to 2009). The RVs analyzed include 36 G1P[8], 18 G3P[8], and 4 G12P[8] Wa-like genogroup 1 strains with VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 genotype constellations of I1-R1-C1-M1-A1-N1-T1-E1-H1. By constructing phylogenetic trees, we identified 2 to 5 subgenotype alleles for each gene. The results show evidence of intragenogroup gene reassortment among the cocirculating strains. However, several isolates from different seasons maintained identical allele constellations, consistent with the notion that certain RV clades persisted in the community. By comparing the genes of VUMC RVs to those of other archival and contemporary RV strains for which sequences are available, we defined phylogenetic lineages and verified that the diversity of the strains analyzed in this study reflects that seen in other regions of the world. Importantly, the VP4 and VP7 proteins encoded by VUMC RVs and other contemporary strains show amino acid changes in or near neutralization domains, which might reflect antigenic drift of the virus. Thus, this large-scale, comparative genomic study of modern human RVs provides significant insight into how this pathogen evolves during its spread in the community. PMID:22696651
ERIC Educational Resources Information Center
Wentling, Rose Mary; Palma-Rivas, Nilda
1998-01-01
In-depth interviews with 12 diversity experts identified organizational and individual barriers inhibiting development of a diverse workforce. Primary reasons for diversity initiatives included improving productivity, enhancing social responsibility, and addressing legal concerns. (SK)
Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico.
Jiménez-Becerril, María F; Hernández-Delgado, Sanjuana; Solís-Oba, Myrna; González Prieto, Juan M
2018-01-01
The current understanding of the genetic diversity of the phytopathogenic fungus Ustilago maydis is limited. To determine the genetic diversity and structure of U. maydis, 48 fungal isolates were analyzed using mitochondrial simple sequence repeats (SSRs). Tumours (corn smut or 'huitlacoche') were collected from different Mexican states with diverse environmental conditions. Using bioinformatic tools, five microsatellites were identified within intergenic regions of the U. maydis mitochondrial genome. SSRMUM4 was the most polymorphic marker. The most common repeats were hexanucleotides. A total of 12 allelic variants were identified, with a mean of 2.4 alleles per locus. An estimate of the genetic diversity using analysis of molecular variance (AMOVA) revealed that the highest variance component is within states (84%), with moderate genetic differentiation between states (16%) (F ST = 0.158). A dendrogram generated using the unweighted paired-grouping method with arithmetic averages (UPGMA) and the Bayesian analysis of population structure grouped the U. maydis isolates into two subgroups (K = 2) based on their shared SSRs.
Intrinsic bioremediation potential of a chronically polluted marine coastal area.
Catania, Valentina; Santisi, Santina; Signa, Geraldina; Vizzini, Salvatrice; Mazzola, Antonio; Cappello, Simone; Yakimov, Michail M; Quatrini, Paola
2015-10-15
A microbiological survey of the Priolo Bay (eastern coast of Sicily, Ionian Sea), a chronically polluted marine coastal area, was carried out in order to discern its intrinsic bioremediation potential. Microbiological analysis, 16S rDNA-based DGGE fingerprinting and PLFAs analysis were performed on seawater and sediment samples from six stations on two transects. Higher diversity and variability among stations was detected by DGGE in sediment than in water samples although seawater revealed higher diversity of culturable hydrocarbon-degrading bacteria. The most polluted sediment hosted higher total bacterial diversity and higher abundance and diversity of culturable HC degraders. Alkane- and PAH-degrading bacteria were isolated from all stations and assigned to Alcanivorax, Marinobacter, Thalassospira, Alteromonas and Oleibacter (first isolation from the Mediterranean area). High total microbial diversity associated to a large selection of HC degraders is believed to contribute to natural attenuation of the area, provided that new contaminant contributions are avoided. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yeo, Matthew; Mauricio, Isabel L; Messenger, Louisa A; Lewis, Michael D; Llewellyn, Martin S; Acosta, Nidia; Bhattacharyya, Tapan; Diosque, Patricio; Carrasco, Hernan J; Miles, Michael A
2011-06-01
Multilocus sequence typing (MLST) is a powerful and highly discriminatory method for analysing pathogen population structure and epidemiology. Trypanosoma cruzi, the protozoan agent of American trypanosomiasis (Chagas disease), has remarkable genetic and ecological diversity. A standardised MLST protocol that is suitable for assignment of T. cruzi isolates to genetic lineage and for higher resolution diversity studies has not been developed. We have sequenced and diplotyped nine single copy housekeeping genes and assessed their value as part of a systematic MLST scheme for T. cruzi. A minimum panel of four MLST targets (Met-III, RB19, TcGPXII, and DHFR-TS) was shown to provide unambiguous assignment of isolates to the six known T. cruzi lineages (Discrete Typing Units, DTUs TcI-TcVI). In addition, we recommend six MLST targets (Met-II, Met-III, RB19, TcMPX, DHFR-TS, and TR) for more in depth diversity studies on the basis that diploid sequence typing (DST) with this expanded panel distinguished 38 out of 39 reference isolates. Phylogenetic analysis implies a subdivision between North and South American TcIV isolates. Single Nucleotide Polymorphism (SNP) data revealed high levels of heterozygosity among DTUs TcI, TcIII, TcIV and, for three targets, putative corresponding homozygous and heterozygous loci within DTUs TcI and TcIII. Furthermore, individual gene trees gave incongruent topologies at inter- and intra-DTU levels, inconsistent with a model of strict clonality. We demonstrate the value of systematic MLST diplotyping for describing inter-DTU relationships and for higher resolution diversity studies of T. cruzi, including presence of recombination events. The high levels of heterozygosity will facilitate future population genetics analysis based on MLST haplotypes.
Assessment of bacterial diversity during composting of agricultural byproducts
2013-01-01
Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of different agricultural byproducts like wheat bran, rice bran, rice husk, along with grass clippings and bulking agents. Here it has been attempted to assess the diversity of culturable bacteria during composting of agricultural byproducts. Results The culturable bacterial diversity was assessed during the process by isolating the most prominent bacteria. Bacterial population was found to be maximum during the mesophilic phase, but decreased during the thermophilic phase and declined further in the cooling and maturation phase of composting. The bacterial population ranged from 105 to 109 cfu g-1 compost. The predominant bacteria were characterized biochemically, followed by 16S rRNA gene sequencing. The isolated strains, both Gram-positive and Gram-negative groups belonged to the order Burkholderiales, Enterobacteriales, Actinobacteriales and Bacillales, which includes genera e.g. Staphylococcus, Serratia, Klebsiella, Enterobacter, Terribacillus, Lysinibacillus Kocuria, Microbacterium, Acidovorax and Comamonas. Genera like Kocuria, Microbacterium, Acidovorax, Comamonas and some new species of Bacillus were also identified for the first time from the compost made from agricultural byproducts. Conclusion The use of appropriate nitrogen amendments and bulking agents in composting resulted in good quality compost. The culture based strategy enabled us to isolate some novel bacterial isolates like Kocuria, Microbacterium, Acidovorax and Comamonas first time from agro-byproducts compost. These bacteria can be used as potential compost inoculants for accelerating composting process. PMID:23651653
Population Genetic Analysis Infers Migration Pathways of Phytophthora ramorum in US Nurseries
Goss, Erica M.; Larsen, Meg; Chastagner, Gary A.; Givens, Donald R.; Grünwald, Niklaus J.
2009-01-01
Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in the late 1990s, that is responsible for sudden oak death in California forests and ramorum blight of common ornamentals. The nursery trade has moved this pathogen from source populations on the West Coast to locations across the United States, thus risking introduction to other native forests. We examined the genetic diversity of P. ramorum in United States nurseries by microsatellite genotyping 279 isolates collected from 19 states between 2004 and 2007. Of the three known P. ramorum clonal lineages, the most common and genetically diverse lineage in the sample was NA1. Two eastward migration pathways were revealed in the clustering of NA1 isolates into two groups, one containing isolates from Connecticut, Oregon, and Washington and the other isolates from California and the remaining states. This finding is consistent with trace forward analyses conducted by the US Department of Agriculture's Animal and Plant Health Inspection Service. At the same time, genetic diversities in several states equaled those observed in California, Oregon, and Washington and two-thirds of multilocus genotypes exhibited limited geographic distributions, indicating that mutation was common during or subsequent to migration. Together, these data suggest that migration, rapid mutation, and genetic drift all play a role in structuring the genetic diversity of P. ramorum in US nurseries. This work demonstrates that fast-evolving genetic markers can be used to examine the evolutionary processes acting on recently introduced pathogens and to infer their putative migration patterns, thus showing promise for the application of forensics to plant pathogens. PMID:19774068
In vitro testing of biological control agents on A1 and A2 isolates of Phytophthora ramorum
Marianne Elliott; Simon Shamoun
2008-01-01
Biological control products were tested in vitro with six isolates of Phytophthora ramorum. These isolates were geographically diverse and were selected based on their pathogenicity to detached Rhododendron leaves. In addition to five commercially available biocontrol products, nine species of Trichoderma were tested. The in vitro...
In this study, Geographic Information Systems (GIS) and remote sensing mapping techniques were developed to identify the locations of isolated wetlands in Alachua County, FL, a 2510 sq km area in north-central Florida with diverse geology and numerous isolated wetlands. The resul...
USDA-ARS?s Scientific Manuscript database
Six Aspergillus flavus isolates out of 17 fungal isolates were sampled from diverse food and organic matter in southwest Nigeria. All the A. flavus samples produced aflatoxin and cyclopiazonic acid. These six isolates constitute a ready mycobank of toxigenic species for analytical research involving...
[Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].
Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai
2015-09-01
In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.
Jordan, Rebecca; Dillon, Shannon K; Prober, Suzanne M; Hoffmann, Ary A
2016-12-01
In order to contribute to evolutionary resilience and adaptive potential in highly modified landscapes, revegetated areas should ideally reflect levels of genetic diversity within and across natural stands. Landscape genomic analyses enable such diversity patterns to be characterized at genome and chromosomal levels. Landscape-wide patterns of genomic diversity were assessed in Eucalyptus microcarpa, a dominant tree species widely used in revegetation in Southeastern Australia. Trees from small and large patches within large remnants, small isolated remnants and revegetation sites were assessed across the now highly fragmented distribution of this species using the DArTseq genomic approach. Genomic diversity was similar within all three types of remnant patches analysed, although often significantly but only slightly lower in revegetation sites compared with natural remnants. Differences in diversity between stand types varied across chromosomes. Genomic differentiation was higher between small, isolated remnants, and among revegetated sites compared with natural stands. We conclude that small remnants and revegetated sites of our E. microcarpa samples largely but not completely capture patterns in genomic diversity across the landscape. Genomic approaches provide a powerful tool for assessing restoration efforts across the landscape. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.