Sample records for diverse structural classes

  1. Highly diverse, massive organic data as explored by a composite QSPR strategy: an advanced study of boiling point.

    PubMed

    Ivanova, A A; Ivanov, A A; Oliferenko, A A; Palyulin, V A; Zefirov, N S

    2005-06-01

    An improved strategy of quantitative structure-property relationship (QSPR) studies of diverse and inhomogeneous organic datasets has been proposed. A molecular connectivity term was successively corrected for different structural features encoded in fragmental descriptors. The so-called solvation index 1chis (a weighted Randic index) was used as a "leading" variable and standardized molecular fragments were employed as "corrective" class-specific variables. Performance of the new approach was illustrated by modelling a dataset of experimental normal boiling points of 833 organic compounds belonging to 20 structural classes. Firstly, separate QSPR models were derived for each class and for eight groups of structurally similar classes. Finally, a general model formed by combining all the classes together was derived (r2=0.957, s=12.9degreesC). The strategy outlined can find application in QSPR analyses of massive, highly diverse databases of organic compounds.

  2. Chemodiversity in Freshwater and Terrestrial Cyanobacteria – a Source for Drug Discovery

    PubMed Central

    Chlipala, George E.; Mo, Shunyan; Orjala, Jimmy

    2011-01-01

    Cyanobacteria are considered a promising source for new pharmaceutical lead compounds and a large number of chemically diverse and bioactive metabolites have been obtained from cyanobacteria over the last few decades. This review highlights the structural diversity of natural products from freshwater and terrestrial cyanobacteria. The review is divided into three areas: cytotoxic metabolites, protease inhibitors, and antimicrobial metabolites. The first section discusses the potent cytotoxins cryptophycin and tolytoxin. The second section covers protease inhibitors from freshwater and terrestrial cyanobacteria and is divided in five subsections according to structural class: aeruginosins, cyanopeptolins, microviridins, anabaenopeptins, and microginins. Structure activity relationships are discussed within each protease inhibitor class. The third section, antimicrobial metabolites from freshwater and terrestrial cyanobacteria, is divided by chemical class in three subsections: alkaloids, peptides and terpenoids. These examples emphasize the structural diversity and drug development potential of natural products from freshwater and terrestrial cyanobacteria. PMID:21561419

  3. Diversity, abundance, and size structure of bivalve assemblages in the Sipsey River, Alabama

    Treesearch

    Wendell R. Haag; Melvin L. Jr. Warren

    2010-01-01

    1. Patterns of mussel diversity and assemblage structure in the Sipsey River, Alabama, are described. Qualitative data were used to describe river-wide patterns of diversity. Quantitative data were used to describe the structure of mussel assemblages at several sites based on whole-substrate sampling that ensured all size classes were detected. 2. Major human impacts...

  4. Structure Diversity, Synthesis, and Biological Activity of Cyathane Diterpenoids in Higher Fungi.

    PubMed

    Tang, Hao-Yu; Yin, Xia; Zhang, Cheng-Chen; Jia, Qian; Gao, Jin-Ming

    2015-01-01

    Cyathane diterpenoids, occurring exclusively in higher basidiomycete (mushrooms), represent a structurally diverse class of natural products based on a characteristic 5-6-7 tricyclic carbon scaffold, including 105 members reported to date. These compounds show a diverse range of biological activities, such as antimicrobial, anti-MRSA, agonistic toward the kappa-opioid receptor, antiinflammatory, anti-proliferative and nerve growth factor (NGF)-like properties. The present review focuses on the structure diversity, structure elucidation and biological studies of these compounds, including mechanisms of actions and structure-activity relationships (SARs). In addition, new progress in chemical synthesis of cyathane diterpenoids is discussed.

  5. Inorganic pyrophosphatases: structural diversity serving the function

    NASA Astrophysics Data System (ADS)

    Samygina, V. R.

    2016-05-01

    The review is devoted to ubiquitous enzymes, inorganic pyrophosphatases, which are essential in all living organisms. Despite the long history of investigations, these enzymes continue to attract interest. The review focuses on the three-dimensional structures of various representatives of this class of proteins. The structural diversity, the relationship between the structure and some properties of pyrophosphatases and various mechanisms of enzyme action related to the structural diversity of these enzymes are discussed. Interactions of pyrophosphatase with other proteins and possible practical applications are considered. The bibliography includes 56 references.

  6. Beyond the Schoolyard: The Role of Parenting Logics, Financial Resources, and Social Institutions in the Social Class Gap in Structured Activity Participation

    ERIC Educational Resources Information Center

    Bennett, Pamela R.; Lutz, Amy C.; Jayaram, Lakshmi

    2012-01-01

    We investigate class differences in youth activity participation with interview, survey, and archival data from a diverse sample of parents (n = 51) in two schools. Findings point toward structural rather than cultural explanations. Working- and middle-class parents overlap in parenting logics about participation, though differ in one respect:…

  7. Changes in ground beetle diversity and community composition in age structured forests (Coleoptera, Carabidae).

    PubMed

    Riley, Kathryn N; Browne, Robert A

    2011-01-01

    We examined diversity, community composition, and wing-state of Carabidae as a function of forest age in Piedmont North Carolina. Carabidae were collected monthly from 396 pitfall traps (12×33 sites) from March 2009 through February 2010, representing 5 forest age classes approximately 0, 10, 50, 85, and 150 years old. A total of 2,568 individuals, representing 30 genera and 63 species, were collected. Carabid species diversity, as estimated by six diversity indices, was significantly different between the oldest and youngest forest age classes for four of the six indices. Most carabid species were habitat generalists, occurring in all or most of the forest age classes. Carabid species composition varied across forest age classes. Seventeen carabid species were identified as potential candidates for ecological indicators of forest age. Non-metric multidimensional scaling (NMDS) showed separation among forest age classes in terms of carabid beetle community composition. The proportion of individuals capable of flight decreased significantly with forest age.

  8. Changes in ground beetle diversity and community composition in age structured forests (Coleoptera, Carabidae)

    PubMed Central

    Riley, Kathryn N.; Browne, Robert A.

    2011-01-01

    Abstract We examined diversity, community composition, and wing-state of Carabidae as a function of forest age in Piedmont North Carolina. Carabidae were collected monthly from 396 pitfall traps (12×33 sites) from March 2009 through February 2010, representing 5 forest age classes approximately 0, 10, 50, 85, and 150 years old. A total of 2,568 individuals, representing 30 genera and 63 species, were collected. Carabid species diversity, as estimated by six diversity indices, was significantly different between the oldest and youngest forest age classes for four of the six indices. Most carabid species were habitat generalists, occurring in all or most of the forest age classes. Carabid species composition varied across forest age classes. Seventeen carabid species were identified as potential candidates for ecological indicators of forest age. Non-metric multidimensional scaling (NMDS) showed separation among forest age classes in terms of carabid beetle community composition. The proportion of individuals capable of flight decreased significantly with forest age. PMID:22371677

  9. Diversity and abundance of phosphonate biosynthetic genes in nature

    USDA-ARS?s Scientific Manuscript database

    Phosphonates, molecules containing direct C-P bonds, comprise a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than fifty years ago, the extent and diversity of phosphonate production in natur...

  10. Long-term stand growth of interior ponderosa pine stands in response to structural modifications and burning treatments in northeastern California

    Treesearch

    Justin S. Crotteau; Martin W. Ritchie

    2014-01-01

    The Blacks Mountain Experimental Research Project created two distinct overstory structural classes (high structural diversity [HiD]; low-structural diversity [LoD]) across 12 stands and subsequently burned half of each stand. We analyzed stand-level growth 10 years after treatment and then modeled individual tree growth to forecast stand-level growth 10–20 years after...

  11. Race/Ethnicity and Social Capital among Middle- and Upper-Middle-Class Elementary School Families: A Structural Equation Model

    ERIC Educational Resources Information Center

    Caldas, Stephen J.; Cornigans, Linda

    2015-01-01

    This study used structural equation modeling to conduct a first and second order confirmatory factor analysis (CFA) of a scale developed by McDonald and Moberg (2002) to measure three dimensions of social capital among a diverse group of middle- and upper-middle-class elementary school parents in suburban New York. A structural path model was…

  12. RSL Class I Genes Controlled the Development of Epidermal Structures in the Common Ancestor of Land Plants.

    PubMed

    Proust, Hélène; Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Prescott, Helen; Kelly, Steve; Ishizaki, Kimitsune; Kohchi, Takayuki; Dolan, Liam

    2016-01-11

    The colonization of the land by plants, sometime before 470 million years ago, was accompanied by the evolution tissue systems [1-3]. Specialized structures with diverse functions-from nutrient acquisition to reproduction-derived from single cells in the outermost layer (epidermis) were important sources of morphological innovation at this time [2, 4, 5]. In extant plants, these structures may be unicellular extensions, such as root hairs or rhizoids [6-9], or multicellular structures, such as asexual propagules or secretory hairs (papillae) [10-12]. Here, we show that a ROOTHAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix-loop-helix transcription factor positively regulates the development of the unicellular and multicellular structures that develop from individual cells that expand out of the epidermal plane of the liverwort Marchantia polymorpha; mutants that lack MpRSL1 function do not develop rhizoids, slime papillae, mucilage papillae, or gemmae. Furthermore, we discovered that RSL class I genes are also required for the development of multicellular axillary hairs on the gametophyte of the moss Physcomitrella patens. Because class I RSL proteins also control the development of rhizoids in mosses and root hairs in angiosperms [13, 14], these data demonstrate that the function of RSL class I genes was to control the development of structures derived from single epidermal cells in the common ancestor of the land plants. Class I RSL genes therefore controlled the generation of adaptive morphological diversity as plants colonized the land from the water. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. RSL Class I Genes Controlled the Development of Epidermal Structures in the Common Ancestor of Land Plants

    PubMed Central

    Proust, Hélène; Honkanen, Suvi; Jones, Victor A.S.; Morieri, Giulia; Prescott, Helen; Kelly, Steve; Ishizaki, Kimitsune; Kohchi, Takayuki; Dolan, Liam

    2016-01-01

    Summary The colonization of the land by plants, sometime before 470 million years ago, was accompanied by the evolution tissue systems [1, 2, 3]. Specialized structures with diverse functions—from nutrient acquisition to reproduction—derived from single cells in the outermost layer (epidermis) were important sources of morphological innovation at this time [2, 4, 5]. In extant plants, these structures may be unicellular extensions, such as root hairs or rhizoids [6, 7, 8, 9], or multicellular structures, such as asexual propagules or secretory hairs (papillae) [10, 11, 12]. Here, we show that a ROOTHAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix-loop-helix transcription factor positively regulates the development of the unicellular and multicellular structures that develop from individual cells that expand out of the epidermal plane of the liverwort Marchantia polymorpha; mutants that lack MpRSL1 function do not develop rhizoids, slime papillae, mucilage papillae, or gemmae. Furthermore, we discovered that RSL class I genes are also required for the development of multicellular axillary hairs on the gametophyte of the moss Physcomitrella patens. Because class I RSL proteins also control the development of rhizoids in mosses and root hairs in angiosperms [13, 14], these data demonstrate that the function of RSL class I genes was to control the development of structures derived from single epidermal cells in the common ancestor of the land plants. Class I RSL genes therefore controlled the generation of adaptive morphological diversity as plants colonized the land from the water. PMID:26725198

  14. Structure based design of 11β-HSD1 inhibitors.

    PubMed

    Singh, Suresh; Tice, Colin

    2010-11-01

    Controlling elevated tissue-specific levels of cortisol may provide a novel therapeutic approach for treating metabolic syndrome. This concept has spurred large scale medicinal chemistry efforts in the pharmaceutical industry for the design of 11β-HSD1 inhibitors. High resolution X-ray crystal structures of inhibitors in complex with the enzyme have facilitated the structure-based design of diverse classes of molecules. A summary of binding modes, trends in structure-activity relationships, and the pharmacodynamic data of inhibitors from each class is presented.

  15. The Regional Structure of Technical Innovation

    NASA Astrophysics Data System (ADS)

    O'Neale, Dion

    2014-03-01

    There is strong evidence that the productivity per capita of cities and regions increases with population. One likely explanation for this phenomenon is that densely populated regions bring together otherwise unlikely combinations of individuals and organisations with diverse, specialised capabilities, leading to increased innovation and productivity. We have used the REGPAT patent database to construct a bipartite network of geographic regions and the patent classes for which those regions display a revealed comparative advantage. By analysing this network, we can infer relationships between different types of patent classes - and hence the structure of (patentable) technology. The network also provides a novel perspective for studying the combinations of technical capabilities in different geographic regions. We investigate measures such as the diversity and ubiquity of innovations within regions and find that diversity (resp. ubiquity) is positively (resp. negatively) correlated with population. We also find evidence of a nested structure for technical innovation. That is, specialised innovations tend to occur only when other more general innovations are already present.

  16. Effects of reclamation years on composition and diversity of soil bacterial communities in Northwest China.

    PubMed

    Cheng, Zhibo; Zhang, Fenghua; Gale, William Jeffrey; Wang, Weichao; Sang, Wen; Yang, Haichang

    2018-01-01

    The objective of this study was to evaluate bacterial community structure and diversity in soil aggregate fractions when salinized farmland was reclaimed after >27 years of abandonment and then farmed again for 1, 5, 10, and 15 years. Illumina MiSeq high-throughput sequencing was performed to characterize the soil bacterial communities in 5 aggregate size classes in each treatment. The results indicated that reclamation significantly increased macro-aggregation (>0.25 mm), as well as soil organic C, available N, and available P. The 10-year field had the largest proportion (93.9%) of soil in the macro-aggregate size classes (i.e., >0.25 mm) and the highest soil electrical conductivity. The 5 most dominant phyla in the soil samples were Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, and Bacteroidetes. The phylogenetic diversity, Chao1, and Shannon indices increased after the abandoned land was reclaimed for farming, reaching maximums in the 15-year field. Among aggregate size classes, the 1-0.25 mm aggregates generally had the highest phylogenetic diversity, Chao1, and Shannon indices. Soil organic C and soil electrical conductivity were the main environmental factors affecting the soil bacterial communities. The composition and structure of the bacterial communities also varied significantly depending on soil aggregate size and time since reclamation.

  17. McMAC: Towards a MAC Protocol with Multi-Constrained QoS Provisioning for Diverse Traffic in Wireless Body Area Networks

    PubMed Central

    Monowar, Muhammad Mostafa; Hassan, Mohammad Mehedi; Bajaber, Fuad; Al-Hussein, Musaed; Alamri, Atif

    2012-01-01

    The emergence of heterogeneous applications with diverse requirements for resource-constrained Wireless Body Area Networks (WBANs) poses significant challenges for provisioning Quality of Service (QoS) with multi-constraints (delay and reliability) while preserving energy efficiency. To address such challenges, this paper proposes McMAC, a MAC protocol with multi-constrained QoS provisioning for diverse traffic classes in WBANs. McMAC classifies traffic based on their multi-constrained QoS demands and introduces a novel superframe structure based on the “transmit-whenever-appropriate” principle, which allows diverse periods for diverse traffic classes according to their respective QoS requirements. Furthermore, a novel emergency packet handling mechanism is proposed to ensure packet delivery with the least possible delay and the highest reliability. McMAC is also modeled analytically, and extensive simulations were performed to evaluate its performance. The results reveal that McMAC achieves the desired delay and reliability guarantee according to the requirements of a particular traffic class while achieving energy efficiency. PMID:23202224

  18. Mechanisms for increased soil C storage with increasing temporal and spatial plant diversity in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Tiemann, L. K.; Grandy, S.; Marin-Spiotta, E.; Atkinson, E. E.

    2012-12-01

    Generally, there are positive relationships between plant species diversity and net primary production and other key ecosystem functions. However, the effects of aboveground diversity on soil microbial communities and ecosystem processes they mediate, such as soil C sequestration, remain unclear. In this study, we used an 11-y cropping diversity study where increases in diversity have increased crop yields. At the experimental site, temporal diversity is altered using combinations of annual crop rotations, while spatial diversity is altered using cover crop species. We used five treatments ranging in diversity from one to five species consisting of continuous corn with no cover crop or one cover crop and corn-soy-wheat rotations with no cover, one cover or two cover crop species. We collected soils from four replicate plots of each treatment and measured the distribution of mega- (>2 mm), macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates. Within each aggregate size class, we also measured total soil C and N, permanganate oxidizable C (POXC), extracellular enzyme activities (EEA), and microbial community structure with phospholipid fatty acid (PLFA) analysis. We use these data to address the impacts of both rotational and cover crop diversity on soil physical structure, associated microbial community structure and activity and soil C storage. As spatial diversity increased, we found concurrent increases in mega-aggregate abundance as well as increasing soil C in the mega- and micro-aggregates but not macro-aggregates. The proportion of total soil C in each aggregate size class that is relatively labile (POXC) was highest in the micro-aggregates, as was enzyme activity associated with labile C acquisition across all levels of diversity. Enzyme activity associated with more recalcitrant forms of soil C was highest in the mega-aggregate class, also across all diversity levels; however, the ratio of labile to recalcitrant EEA increased with increasing diversity in the mega- and micro-aggregates. In addition, soil N increased with diversity such that microbial C:N EEA simultaneously decreased in mega-aggregates. We also found that cropping diversity has created distinctive soil microbial communities, highlighted by variation in the abundance of gram positive bacteria and Actinomycetes. Further research will help us determine how these changes in community structure with increasing diversity are related to concomitant changes in aggregation and enzyme activities. We suggest that the additional organic matter inputs from cover crops in the high diversity treatments have increased aggregation processes and C pools. While microbial activity has also increased in association with this increased C availability, the activity of recalcitrant and N-acquiring enzymes has declined, suggesting an overall decrease in SOM mineralization with possible increased SOM stabilization. The addition of crop species in rotation (temporal diversity) had minimal influence on any of the measured parameters. We thus conclude that spatial diversity is a more important driver of soil structure and microbial activity, likely due to the high quality organic matter inputs derived from the leguminous cover crops; however, spatial diversity alone did not lead to the same level of C storage potential as mixtures of temporal and spatial diversity.

  19. Education Policy and Equality: Some Evidence from Europe.

    ERIC Educational Resources Information Center

    Ambler, John S.; Neathery, Jody

    1999-01-01

    Examines whether European educational reforms of the past three decades had the intended effect of reducing the impact of social class on educational achievement. Concludes that the modest decline in class inequality suggested by the odds ratio is offset by continuing social selection within the increasingly diverse structure of post-secondary…

  20. A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine.

    PubMed

    Ciardiello, J J; Stewart, H L; Sore, H F; Galloway, W R J D; Spring, D R

    2017-06-01

    Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections. Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability. Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Sequences of 95 human MHC haplotypes reveal extreme coding variation in genes other than highly polymorphic HLA class I and II

    PubMed Central

    Norman, Paul J.; Norberg, Steven J.; Guethlein, Lisbeth A.; Nemat-Gorgani, Neda; Royce, Thomas; Wroblewski, Emily E.; Dunn, Tamsen; Mann, Tobias; Alicata, Claudia; Hollenbach, Jill A.; Chang, Weihua; Shults Won, Melissa; Gunderson, Kevin L.; Abi-Rached, Laurent; Ronaghi, Mostafa; Parham, Peter

    2017-01-01

    The most polymorphic part of the human genome, the MHC, encodes over 160 proteins of diverse function. Half of them, including the HLA class I and II genes, are directly involved in immune responses. Consequently, the MHC region strongly associates with numerous diseases and clinical therapies. Notoriously, the MHC region has been intractable to high-throughput analysis at complete sequence resolution, and current reference haplotypes are inadequate for large-scale studies. To address these challenges, we developed a method that specifically captures and sequences the 4.8-Mbp MHC region from genomic DNA. For 95 MHC homozygous cell lines we assembled, de novo, a set of high-fidelity contigs and a sequence scaffold, representing a mean 98% of the target region. Included are six alternative MHC reference sequences of the human genome that we completed and refined. Characterization of the sequence and structural diversity of the MHC region shows the approach accurately determines the sequences of the highly polymorphic HLA class I and HLA class II genes and the complex structural diversity of complement factor C4A/C4B. It has also uncovered extensive and unexpected diversity in other MHC genes; an example is MUC22, which encodes a lung mucin and exhibits more coding sequence alleles than any HLA class I or II gene studied here. More than 60% of the coding sequence alleles analyzed were previously uncharacterized. We have created a substantial database of robust reference MHC haplotype sequences that will enable future population scale studies of this complicated and clinically important region of the human genome. PMID:28360230

  2. A nonpolymorphic major histocompatibility complex class Ib molecule binds a large array of diverse self-peptides

    PubMed Central

    1994-01-01

    Unlike the highly polymorphic major histocompatibility complex (MHC) class Ia molecules, which present a wide variety of peptides to T cells, it is generally assumed that the nonpolymorphic MHC class Ib molecules may have evolved to function as highly specialized receptors for the presentation of structurally unique peptides. However, a thorough biochemical analysis of one class Ib molecule, the soluble isoform of Qa-2 antigen (H-2SQ7b), has revealed that it binds a diverse array of structurally similar peptides derived from intracellular proteins in much the same manner as the classical antigen-presenting molecules. Specifically, we find that SQ7b molecules are heterodimers of heavy and light chains complexed with nonameric peptides in a 1:1:1 ratio. These peptides contain a conserved hydrophobic residue at the COOH terminus and a combination of one or more conserved residue(s) at P7 (histidine), P2 (glutamine/leucine), and/or P3 (leucine/asparagine) as anchors for binding SQ7b. 2 of 18 sequenced peptides matched cytosolic proteins (cofilin and L19 ribosomal protein), suggesting an intracellular source of the SQ7b ligands. Minimal estimates of the peptide repertoire revealed that at least 200 different naturally processed self-peptides can bind SQ7b molecules. Since Qa-2 molecules associate with a diverse array of peptides, we suggest that they function as effective presenting molecules of endogenously synthesized proteins like the class Ia molecules. PMID:8294869

  3. Ethnic Identity and Perceived Stress Among Ethnically Diverse Immigrants.

    PubMed

    Espinosa, Adriana; Tikhonov, Aleksandr; Ellman, Lauren M; Kern, David M; Lui, Florence; Anglin, Deidre

    2018-02-01

    Recent empirical research suggests that having a strong ethnic identity may be associated with reduced perceived stress. However, the relationship between perceived stress and ethnic identity has not been tested in a large and ethnically diverse sample of immigrants. This study utilized a multi-group latent class analysis of ethnic identity on a sample of first and second generation immigrants (N = 1603), to determine ethnic identity classifications, and their relation to perceived stress. A 4-class ethnic identity structure best fit the data for this immigrant sample, and the proportion within each class varied by ethnicity, but not immigrant generation. High ethnic identity was found to be protective against perceived stress, and this finding was invariant across ethnicity. This study extends the findings of previous research on the protective effect of ethnic identity against perceived stress to immigrant populations of diverse ethnic origins.

  4. Platyhelminth Venom Allergen-Like (VAL) proteins: revealing structural diversity, class-specific features and biological associations across the phylum

    PubMed Central

    CHALMERS, IAIN W.; HOFFMANN, KARL F.

    2012-01-01

    SUMMARY During platyhelminth infection, a cocktail of proteins is released by the parasite to aid invasion, initiate feeding, facilitate adaptation and mediate modulation of the host immune response. Included amongst these proteins is the Venom Allergen-Like (VAL) family, part of the larger sperm coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) superfamily. To explore the significance of this protein family during Platyhelminthes development and host interactions, we systematically summarize all published proteomic, genomic and immunological investigations of the VAL protein family to date. By conducting new genomic and transcriptomic interrogations to identify over 200 VAL proteins (228) from species in all 4 traditional taxonomic classes (Trematoda, Cestoda, Monogenea and Turbellaria), we further expand our knowledge related to platyhelminth VAL diversity across the phylum. Subsequent phylogenetic and tertiary structural analyses reveal several class-specific VAL features, which likely indicate a range of roles mediated by this protein family. Our comprehensive analysis of platyhelminth VALs represents a unifying synopsis for understanding diversity within this protein family and a firm context in which to initiate future functional characterization of these enigmatic members. PMID:22717097

  5. Insights into animal and plant lectins with antimicrobial activities.

    PubMed

    Dias, Renata de Oliveira; Machado, Leandro Dos Santos; Migliolo, Ludovico; Franco, Octavio Luiz

    2015-01-05

    Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs.

  6. Application of Aquatic Insects (Ephemeroptera, Plecoptera And Trichoptera) In Water Quality Assessment of Malaysian Headwater

    PubMed Central

    Ab Hamid, Suhaila; Md Rawi, Che Salmah

    2017-01-01

    The Ephemeroptera, Plecoptera and Trichoptera (EPT) community structure and the specific sensitivity of certain EPT genera were found to be influenced by water parameters in the rivers of Gunung Jerai Forest Reserve (GJFR) in the north of peninsular Malaysia. The scores of EPT taxa richness of >10 in all rivers indicated all rivers’ habitats were non-impacted, having good water quality coinciding with Class I and Class II of Malaysian water quality index (WQI) classification of potable water. The abundance of EPT was very high in Teroi River (9,661 individuals) but diversity was lower (22 genera) than Tupah River which was highly diverse (28 genera) but lower in abundance (4,263 individuals). The lowest abundance and moderate diversity was recorded from Batu Hampar River (25 genera). Baetis spp. and Thalerosphyrus spp., Neoperla spp. and Cheumatopsyche spp. were the most common genera found. Classification for all rivers using EPT taxa Richness Index and WQI gave different category of water quality, respectively. The WQI classified Tupah and Batu Hampar rivers into Class II and Teroi River (Class I) was two classes above the classification of the EPT taxa Richness Index. PMID:28890767

  7. Application of Aquatic Insects (Ephemeroptera, Plecoptera And Trichoptera) In Water Quality Assessment of Malaysian Headwater.

    PubMed

    Ab Hamid, Suhaila; Md Rawi, Che Salmah

    2017-07-01

    The Ephemeroptera, Plecoptera and Trichoptera (EPT) community structure and the specific sensitivity of certain EPT genera were found to be influenced by water parameters in the rivers of Gunung Jerai Forest Reserve (GJFR) in the north of peninsular Malaysia. The scores of EPT taxa richness of >10 in all rivers indicated all rivers' habitats were non-impacted, having good water quality coinciding with Class I and Class II of Malaysian water quality index (WQI) classification of potable water. The abundance of EPT was very high in Teroi River (9,661 individuals) but diversity was lower (22 genera) than Tupah River which was highly diverse (28 genera) but lower in abundance (4,263 individuals). The lowest abundance and moderate diversity was recorded from Batu Hampar River (25 genera). Baetis spp. and Thalerosphyrus spp., Neoperla spp. and Cheumatopsyche spp. were the most common genera found. Classification for all rivers using EPT taxa Richness Index and WQI gave different category of water quality, respectively. The WQI classified Tupah and Batu Hampar rivers into Class II and Teroi River (Class I) was two classes above the classification of the EPT taxa Richness Index.

  8. Detection of Inter- and Intra-Specific Competition in the Insect Communities of British Trees: A Practical Exercise in Community Ecology.

    ERIC Educational Resources Information Center

    Putman, R. J.

    1984-01-01

    Describes an activity (suitable for high school or college) in which the effects of competition in the structuring of ecological communities are examined. The exercise also offers an introduction into species diversity; more advanced classes may be encouraged to seek reasons for differences in insect diversity on different trees. (Author/JN)

  9. Pharmacophore modeling of diverse classes of p38 MAP kinase inhibitors.

    PubMed

    Sarma, Rituparna; Sinha, Sharat; Ravikumar, Muttineni; Kishore Kumar, Madala; Mahmood, S K

    2008-12-01

    Mitogen-activated protein (MAP) p38 kinase is a serine-threonine protein kinase and its inhibitors are useful in the treatment of inflammatory diseases. Pharmacophore models were developed using HypoGen program of Catalyst with diverse classes of p38 MAP kinase inhibitors. The best pharmacophore hypothesis (Hypo1) with hydrogen-bond acceptor (HBA), hydrophobic (HY), hydrogen-bond donor (HBD), and ring aromatic (RA) as features has correlation coefficient of 0.959, root mean square deviation (RMSD) of 1.069 and configuration cost of 14.536. The model was validated using test set containing 119 compounds and had high correlation coefficient of 0.851. The results demonstrate that results obtained in this study can be considered to be useful and reliable tools in identifying structurally diverse compounds with desired biological activity.

  10. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases

    PubMed Central

    Haupt, V. Joachim; Schroeder, Michael; Labudde, Dirk

    2018-01-01

    The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes. PMID:29659563

  11. Is scaffold hopping a reliable indicator for the ability of computational methods to identify structurally diverse active compounds?

    NASA Astrophysics Data System (ADS)

    Dimova, Dilyana; Bajorath, Jürgen

    2017-07-01

    Computational scaffold hopping aims to identify core structure replacements in active compounds. To evaluate scaffold hopping potential from a principal point of view, regardless of the computational methods that are applied, a global analysis of conventional scaffolds in analog series from compound activity classes was carried out. The majority of analog series was found to contain multiple scaffolds, thus enabling the detection of intra-series scaffold hops among closely related compounds. More than 1000 activity classes were found to contain increasing proportions of multi-scaffold analog series. Thus, using such activity classes for scaffold hopping analysis is likely to overestimate the scaffold hopping (core structure replacement) potential of computational methods, due to an abundance of artificial scaffold hops that are possible within analog series.

  12. The importance of forest structure to biodiversity–productivity relationships

    PubMed Central

    Huth, Andreas

    2017-01-01

    While various relationships between productivity and biodiversity are found in forests, the processes underlying these relationships remain unclear and theory struggles to coherently explain them. In this work, we analyse diversity–productivity relationships through an examination of forest structure (described by basal area and tree height heterogeneity). We use a new modelling approach, called ‘forest factory’, which generates various forest stands and calculates their annual productivity (above-ground wood increment). Analysing approximately 300 000 forest stands, we find that mean forest productivity does not increase with species diversity. Instead forest structure emerges as the key variable. Similar patterns can be observed by analysing 5054 forest plots of the German National Forest Inventory. Furthermore, we group the forest stands into nine forest structure classes, in which we find increasing, decreasing, invariant and even bell-shaped relationships between productivity and diversity. In addition, we introduce a new index, called optimal species distribution, which describes the ratio of realized to the maximal possible productivity (by shuffling species identities). The optimal species distribution and forest structure indices explain the obtained productivity values quite well (R2 between 0.7 and 0.95), whereby the influence of these attributes varies within the nine forest structure classes. PMID:28280550

  13. Morphological diversity and evolution of egg and clutch structure in amphibians

    USGS Publications Warehouse

    Altig, Ronald; McDiarmid, Roy W.

    2007-01-01

    The first part of this synthesis summarizes the morphology of the jelly layers surrounding an amphibian ovum. We propose a standard terminology and discuss the evolution of jelly layers. The second part reviews the morphological diversity and arrangement of deposited eggs?the ovipositional mode; we recognize 5 morphological classes including 14 modes. We discuss some of the oviductal, ovipositional, and postovipositional events that contribute to these morphologies. We have incorporated data from taxa from throughout the world but recognize that other types will be discovered that may modify understanding of these modes. Finally, we discuss the evolutionary context of the diversity of clutch structure and present a first estimate of its evolution.

  14. A Review Study on Macrolides Isolated from Cyanobacteria.

    PubMed

    Wang, Mengchuan; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-04-26

    Cyanobacteria are rich sources of structurally-diverse molecules with promising pharmacological activities. Marine cyanobacteria have been proven to be true producers of some significant bioactive metabolites from marine invertebrates. Macrolides are a class of bioactive compounds isolated from marine organisms, including marine microorganisms in particular. The structural characteristics of macrolides from cyanobacteria mainly manifest in the diversity of carbon skeletons, complexes of chlorinated thiazole-containing molecules and complex spatial configuration. In the present work, we systematically reviewed the structures and pharmacological activities of macrolides from cyanobacteria. Our data would help establish an effective support system for the discovery and development of cyanobacterium-derived macrolides.

  15. Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta.

    PubMed

    Abbass, Jad; Nebel, Jean-Christophe

    2017-01-01

    Protein structure prediction is considered a main challenge in computational biology. The biannual international competition, Critical Assessment of protein Structure Prediction (CASP), has shown in its eleventh experiment that free modelling target predictions are still beyond reliable accuracy, therefore, much effort should be made to improve ab initio methods. Arguably, Rosetta is considered as the most competitive method when it comes to targets with no homologues. Relying on fragments of length 9 and 3 from known structures, Rosetta creates putative structures by assembling candidate fragments. Generally, the structure with the lowest energy score, also known as first model, is chosen to be the "predicted one". A thorough study has been conducted on the role and diversity of 3-mers involved in Rosetta's model "refinement" phase. Usage of the standard number of 3-mers - i.e. 200 - has been shown to degrade alpha and alpha-beta protein conformations initially achieved by assembling 9-mers. Therefore, a new prediction pipeline is proposed for Rosetta where the "refinement" phase is customised according to a target's structural class prediction. Over 8% improvement in terms of first model structure accuracy is reported for alpha and alpha-beta classes when decreasing the number of 3- mers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. A novel system of polymorphic and diverse NK cell receptors in primates.

    PubMed

    Averdam, Anne; Petersen, Beatrix; Rosner, Cornelia; Neff, Jennifer; Roos, Christian; Eberle, Manfred; Aujard, Fabienne; Münch, Claudia; Schempp, Werner; Carrington, Mary; Shiina, Takashi; Inoko, Hidetoshi; Knaust, Florian; Coggill, Penny; Sehra, Harminder; Beck, Stephan; Abi-Rached, Laurent; Reinhardt, Richard; Walter, Lutz

    2009-10-01

    There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in "higher" primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire.

  17. A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates

    PubMed Central

    Rosner, Cornelia; Neff, Jennifer; Roos, Christian; Eberle, Manfred; Aujard, Fabienne; Münch, Claudia; Schempp, Werner; Carrington, Mary; Shiina, Takashi; Inoko, Hidetoshi; Knaust, Florian; Coggill, Penny; Sehra, Harminder; Beck, Stephan; Abi-Rached, Laurent; Reinhardt, Richard; Walter, Lutz

    2009-01-01

    There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire. PMID:19834558

  18. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis

    PubMed Central

    Dorner, Mariah E; McMunn, Ryan D; Bartholow, Thomas G; Calhoon, Brecken E; Conlon, Michelle R; Dulli, Jessica M; Fehling, Samuel C; Fisher, Cody R; Hodgson, Shane W; Keenan, Shawn W; Kruger, Alyssa N; Mabin, Justin W; Mazula, Daniel L; Monte, Christopher A; Olthafer, Augustus; Sexton, Ashley E; Soderholm, Beatrice R; Strom, Alexander M; Hati, Sanchita

    2015-01-01

    Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes. PMID:26130403

  19. Beyond the frontiers of neuronal types

    PubMed Central

    Battaglia, Demian; Karagiannis, Anastassios; Gallopin, Thierry; Gutch, Harold W.; Cauli, Bruno

    2012-01-01

    Cortical neurons and, particularly, inhibitory interneurons display a large diversity of morphological, synaptic, electrophysiological, and molecular properties, as well as diverse embryonic origins. Various authors have proposed alternative classification schemes that rely on the concomitant observation of several multimodal features. However, a broad variability is generally observed even among cells that are grouped into a same class. Furthermore, the attribution of specific neurons to a single defined class is often difficult, because individual properties vary in a highly graded fashion, suggestive of continua of features between types. Going beyond the description of representative traits of distinct classes, we focus here on the analysis of atypical cells. We introduce a novel paradigm for neuronal type classification, assuming explicitly the existence of a structured continuum of diversity. Our approach, grounded on the theory of fuzzy sets, identifies a small optimal number of model archetypes. At the same time, it quantifies the degree of similarity between these archetypes and each considered neuron. This allows highlighting archetypal cells, which bear a clear similarity to a single model archetype, and edge cells, which manifest a convergence of traits from multiple archetypes. PMID:23403725

  20. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18-ceramide N-stearoyl phytosphingosine to improve the physiological properties of human stratum corneum.

    PubMed

    Oh, Myoung Jin; Cho, Young Hoon; Cha, So Yoon; Lee, Eun Ok; Kim, Jin Wook; Kim, Sun Ki; Park, Chang Seo

    2017-01-01

    Ceramides in the human stratum corneum (SC) are a mixture of diverse N -acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N -acylated FAs and compare them with C18-ceramide N -stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer.

  1. Synthesis and Biological Evaluation of Macrocyclized Betulin Derivatives as a Novel Class of Anti-HIV-1 Maturation Inhibitors.

    PubMed

    Tang, Jun; Jones, Stacey A; Jeffery, Jerry L; Miranda, Sonia R; Galardi, Cristin M; Irlbeck, David M; Brown, Kevin W; McDanal, Charlene B; Han, Nianhe; Gao, Daxin; Wu, Yongyong; Shen, Bin; Liu, Chunyu; Xi, Caiming; Yang, Heping; Li, Rui; Yu, Yajun; Sun, Yufei; Jin, Zhimin; Wang, Erjuan; Johns, Brian A

    2014-01-01

    A macrocycle provides diverse functionality and stereochemical complexity in a conformationally preorganized ring structure, and it occupies a unique chemical space in drug discovery. However, the synthetic challenge to access this structural class is high and hinders the exploration of macrocycles. In this study, efficient synthetic routes to macrocyclized betulin derivatives have been established. The macrocycle containing compounds showed equal potency compared to bevirimat in multiple HIV-1 antiviral assays. The synthesis and biological evaluation of this novel series of HIV-1 maturation inhibitors will be discussed.

  2. European Invasion of North American Pinus strobus at Large and Fine Scales: High Genetic Diversity and Fine-Scale Genetic Clustering over Time in the Adventive Range

    PubMed Central

    Mandák, Bohumil; Hadincová, Věroslava; Mahelka, Václav; Wildová, Radka

    2013-01-01

    Background North American Pinus strobus is a highly invasive tree species in Central Europe. Using ten polymorphic microsatellite loci we compared various aspects of the large-scale genetic diversity of individuals from 30 sites in the native distribution range with those from 30 sites in the European adventive distribution range. To investigate the ascertained pattern of genetic diversity of this intercontinental comparison further, we surveyed fine-scale genetic diversity patterns and changes over time within four highly invasive populations in the adventive range. Results Our data show that at the large scale the genetic diversity found within the relatively small adventive range in Central Europe, surprisingly, equals the diversity found within the sampled area in the native range, which is about thirty times larger. Bayesian assignment grouped individuals into two genetic clusters separating North American native populations from the European, non-native populations, without any strong genetic structure shown over either range. In the case of the fine scale, our comparison of genetic diversity parameters among the localities and age classes yielded no evidence of genetic diversity increase over time. We found that SGS differed across age classes within the populations under study. Old trees in general completely lacked any SGS, which increased over time and reached its maximum in the sapling stage. Conclusions Based on (1) the absence of difference in genetic diversity between the native and adventive ranges, together with the lack of structure in the native range, and (2) the lack of any evidence of any temporal increase in genetic diversity at four highly invasive populations in the adventive range, we conclude that population amalgamation probably first happened in the native range, prior to introduction. In such case, there would have been no need for multiple introductions from previously isolated populations, but only several introductions from genetically diverse populations. PMID:23874648

  3. Pampered sons, (wo)manly men, or do-nothing machos? Costa Rican men coming of age under neoliberalism.

    PubMed

    Mannon, Susan E; Kemp, Eagan

    2010-01-01

    This article explores how young men in Costa Rica negotiate ideas of manhood under neoliberalism. We draw on interview data involving 23 men, ages 15–35, residing in one Costa Rican city. Comparing men across three different class locations, we find diverse "markers of manhood." Our data suggest an emerging globally dominant masculine ideal among an elite class of men, a declining locally dominant masculine ideal among working-class men, and a cynical, possibly counter-cultural masculine ideal among poor men. We conclude that masculinities are not only fluid, but tied to changing economic circumstances and class structures.

  4. Large volcanoes on Venus: Examples of geologic and structural characteristics from different classes

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Head, J. W.; Aubele, J. C.

    1993-01-01

    Large volcanoes characterized by radial lava flows and similar evidence for a topographic edifice are widely distributed over the surface of Venus and geologically diverse. Based on the global identification of more than 165 examples and preliminary geologic mapping, large volcanoes range from those characterized geologically as simple lava edifices to those bearing evidence of complexly developed volcanic and structural histories. Many large volcanoes exhibit characteristics transitional to other large magnetic center types such as coronae and novae. In this study, we examine the geology and structure of several type examples of large volcanoes not addressed in previous studies which are representative of several of the morphological classes.

  5. MacroEvoLution: A New Method for the Rapid Generation of Novel Scaffold-Diverse Macrocyclic Libraries.

    PubMed

    Saupe, Jörn; Kunz, Oliver; Haustedt, Lars Ole; Jakupovic, Sven; Mang, Christian

    2017-09-04

    Macrocycles are a structural class bearing great promise for future challenges in medicinal chemistry. Nevertheless, there are few flexible approaches for the rapid generation of structurally diverse macrocyclic compound collections. Here, an efficient method for the generation of novel macrocyclic peptide-based scaffolds is reported. The process, named here as "MacroEvoLution", is based on a cyclization screening approach that gives reliable access to novel macrocyclic architectures. Classification of building blocks into specific pools ensures that scaffolds with orthogonally addressable functionalities are generated, which can easily be used for the generation of structurally diverse compound libraries. The method grants rapid access to novel scaffolds with scalable synthesis (multi gram scale) and the introduction of further diversity at a late stage. Despite being developed for peptidic systems, the approach can easily be extended for the synthesis of systems with a decreased peptidic character. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A.

    Treesearch

    J.E. Smith; R. Molina; M.M.P. Huso; D.L. Luoma; D. McKay; M.A. Castellano; T. Lebel; Y. Valachovic

    2002-01-01

    Knowledge of the community structure of ectomycorrhizal fungi among successional forest age-classes is critical for conserving fungal species diversity. Hypogeous and epigeous sporocarps were collected from three replicate stands in each of three forest age-classes (young, rotation-age, and old-growth) of Douglas-fir (Pseudotsuga menziesii (Mirb.)...

  7. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  8. Grazers structure the bacterial and algal diversity of aquatic metacommunities.

    PubMed

    Birtel, Julia; Matthews, Blake

    2016-12-01

    Consumers can have strong effects on the biotic and abiotic dynamics of spatially-structured ecosystems. In metacommunities, dispersing consumers can alter local assembly dynamics either directly through trophic interactions or indirectly by modifying local environmental conditions. In aquatic systems, very little is known about how key grazers, such as Daphnia, structure the microbial diversity of metacommunities and influence bacterial-mediated ecosystem functions. In an outdoor mesocosm experiment with replicate metacommunities (two 300 L mesocosms), we tested how the presence and absence of Daphnia and the initial density of the microbial community (manipulated via dilution) influenced the diversity and community structure of algae and bacteria, and several ecosystem properties (e.g., pH, dissolved substances) and functions (e.g., enzyme activity, respiration). We found that Daphnia strongly affected the local and regional diversity of both phytoplankton and bacteria, the taxonomic composition of bacterial communities, the biomass of algae, and ecosystem metabolism (i.e., respiration). Diluting the microbial inoculum (0.2-5 μm size fraction) to the metacommunities increased local phytoplankton diversity, decreased bacteria beta-diversity, and changed the relative abundance of bacterial classes. Changes in the rank abundance of different bacterial groups exhibited phylogenetic signal, implying that closely related bacteria species might share similar responses to the presence of Daphnia. © 2016 by the Ecological Society of America.

  9. The effects of rurality on substance use disorder diagnosis: A multiple-groups latent class analysis.

    PubMed

    Brooks, Billy; McBee, Matthew; Pack, Robert; Alamian, Arsham

    2017-05-01

    Rates of accidental overdose mortality from substance use disorder (SUD) have risen dramatically in the United States since 1990. Between 1999 and 2004 alone rates increased 62% nationwide, with rural overdose mortality increasing at a rate 3 times that seen in urban populations. Cultural differences between rural and urban populations (e.g., educational attainment, unemployment rates, social characteristics, etc.) affect the nature of SUD, leading to disparate risk of overdose across these communities. Multiple-groups latent class analysis with covariates was applied to data from the 2011 and 2012 National Survey on Drug Use and Health (n=12.140) to examine potential differences in latent classifications of SUD between rural and urban adult (aged 18years and older) populations. Nine drug categories were used to identify latent classes of SUD defined by probability of diagnosis within these categories. Once the class structures were established for rural and urban samples, posterior membership probabilities were entered into a multinomial regression analysis of socio-demographic predictors' association with the likelihood of SUD latent class membership. Latent class structures differed across the sub-groups, with the rural sample fitting a 3-class structure (Bootstrap Likelihood Ratio Test P value=0.03) and the urban fitting a 6-class model (Bootstrap Likelihood Ratio Test P value<0.0001). Overall the rural class structure exhibited less diversity in class structure and lower prevalence of SUD in multiple drug categories (e.g. cocaine, hallucinogens, and stimulants). This result supports the hypothesis that different underlying elements exist in the two populations that affect SUD patterns, and thus can inform the development of surveillance instruments, clinical services, and prevention programming tailored to specific communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.

    PubMed

    Koutsoukas, Alexios; Paricharak, Shardul; Galloway, Warren R J D; Spring, David R; Ijzerman, Adriaan P; Glen, Robert C; Marcus, David; Bender, Andreas

    2014-01-27

    Chemical diversity is a widely applied approach to select structurally diverse subsets of molecules, often with the objective of maximizing the number of hits in biological screening. While many methods exist in the area, few systematic comparisons using current descriptors in particular with the objective of assessing diversity in bioactivity space have been published, and this shortage is what the current study is aiming to address. In this work, 13 widely used molecular descriptors were compared, including fingerprint-based descriptors (ECFP4, FCFP4, MACCS keys), pharmacophore-based descriptors (TAT, TAD, TGT, TGD, GpiDAPH3), shape-based descriptors (rapid overlay of chemical structures (ROCS) and principal moments of inertia (PMI)), a connectivity-matrix-based descriptor (BCUT), physicochemical-property-based descriptors (prop2D), and a more recently introduced molecular descriptor type (namely, "Bayes Affinity Fingerprints"). We assessed both the similar behavior of the descriptors in assessing the diversity of chemical libraries, and their ability to select compounds from libraries that are diverse in bioactivity space, which is a property of much practical relevance in screening library design. This is particularly evident, given that many future targets to be screened are not known in advance, but that the library should still maximize the likelihood of containing bioactive matter also for future screening campaigns. Overall, our results showed that descriptors based on atom topology (i.e., fingerprint-based descriptors and pharmacophore-based descriptors) correlate well in rank-ordering compounds, both within and between descriptor types. On the other hand, shape-based descriptors such as ROCS and PMI showed weak correlation with the other descriptors utilized in this study, demonstrating significantly different behavior. We then applied eight of the molecular descriptors compared in this study to sample a diverse subset of sample compounds (4%) from an initial population of 2587 compounds, covering the 25 largest human activity classes from ChEMBL and measured the coverage of activity classes by the subsets. Here, it was found that "Bayes Affinity Fingerprints" achieved an average coverage of 92% of activity classes. Using the descriptors ECFP4, GpiDAPH3, TGT, and random sampling, 91%, 84%, 84%, and 84% of the activity classes were represented in the selected compounds respectively, followed by BCUT, prop2D, MACCS, and PMI (in order of decreasing performance). In addition, we were able to show that there is no visible correlation between compound diversity in PMI space and in bioactivity space, despite frequent utilization of PMI plots to this end. To summarize, in this work, we assessed which descriptors select compounds with high coverage of bioactivity space, and can hence be used for diverse compound selection for biological screening. In cases where multiple descriptors are to be used for diversity selection, this work describes which descriptors behave complementarily, and can hence be used jointly to focus on different aspects of diversity in chemical space.

  11. Legume Lectins: Proteins with Diverse Applications

    PubMed Central

    Lagarda-Diaz, Irlanda; Guzman-Partida, Ana Maria; Vazquez-Moreno, Luz

    2017-01-01

    Lectins are a diverse class of proteins distributed extensively in nature. Among these proteins; legume lectins display a variety of interesting features including antimicrobial; insecticidal and antitumor activities. Because lectins recognize and bind to specific glycoconjugates present on the surface of cells and intracellular structures; they can serve as potential target molecules for developing practical applications in the fields of food; agriculture; health and pharmaceutical research. This review presents the current knowledge of the main structural characteristics of legume lectins and the relationship of structure to the exhibited specificities; provides an overview of their particular antimicrobial; insecticidal and antitumor biological activities and describes possible applications based on the pattern of recognized glyco-targets. PMID:28604616

  12. Thienoacene-based organic semiconductors.

    PubMed

    Takimiya, Kazuo; Shinamura, Shoji; Osaka, Itaru; Miyazaki, Eigo

    2011-10-11

    Thienoacenes consist of fused thiophene rings in a ladder-type molecular structure and have been intensively studied as potential organic semiconductors for organic field-effect transistors (OFETs) in the last decade. They are reviewed here. Despite their simple and similar molecular structures, the hitherto reported properties of thienoacene-based OFETs are rather diverse. This Review focuses on four classes of thienoacenes, which are classified in terms of their chemical structures, and elucidates the molecular electronic structure of each class. The packing structures of thienoacenes and the thus-estimated solid-state electronic structures are correlated to their carrier transport properties in OFET devices. With this perspective of the molecular structures of thienoacenes and their carrier transport properties in OFET devices, the structure-property relationships in thienoacene-based organic semiconductors are discussed. The discussion provides insight into new molecular design strategies for the development of superior organic semiconductors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Apprehending ganglioside diversity: a comprehensive methodological approach[S

    PubMed Central

    Masson, Elodie A. Y.; Sibille, Estelle; Martine, Lucy; Chaux-Picquet, Fanny; Bretillon, Lionel; Berdeaux, Olivier

    2015-01-01

    Gangliosides (GGs) make a wide family of glycosphingolipids ubiquitously expressed in mammalian tissues and particularly abundant in the brain and nervous system. They exhibit a huge diversity due to structural variations in both their oligosaccharidic chain and ceramide moiety, which represent a real analytical challenge. Since their discovery in the 1940s, methods have persistently improved until the emergence of LC/MS, which offers a high level of specificity and sensitivity and is suitable with high-throughput profiling studies. We describe here a comprehensive approach relying on various techniques and aiming at fully characterizing GGs in biological samples. First, total GG content was determined by a biochemical assay. Second, GG class composition was assessed by high-performance thin-layer chromatography followed by colorimetric revelation. Then, ceramide types of GG classes were identified, and their relative quantification was performed thanks to the development of a powerful and reliable LC/MS method. Finally, ceramides were structurally characterized, and minor and less common GG classes were identified using high-resolution MS. These methods were applied to the rat retina to provide an exhaustive description of its GG composition, giving the base for a better understanding of the precise roles of GGs in this tissue. PMID:26142958

  14. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges.

    PubMed

    Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area.

  15. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges

    PubMed Central

    Wu, Hao Bin; Lou, Xiong Wen (David)

    2017-01-01

    In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area. PMID:29214220

  16. Class Size and Student Diversity: Two Sides of the Same Coin. Teacher Voice

    ERIC Educational Resources Information Center

    Froese-Germain, Bernie; Riel, Rick; McGahey, Bob

    2012-01-01

    Among Canadian teacher unions, discussions of class size are increasingly being informed by the importance of considering the diversity of student needs within the classroom (often referred to as class composition). For teachers, both class size and diversity matter. Teachers consistently adapt their teaching to address the individual needs of the…

  17. A Structural Model of a P450-Ferredoxin Complex from Orientation-Selective Double Electron-Electron Resonance Spectroscopy.

    PubMed

    Bowen, Alice M; Johnson, Eachan O D; Mercuri, Francesco; Hoskins, Nicola J; Qiao, Ruihong; McCullagh, James S O; Lovett, Janet E; Bell, Stephen G; Zhou, Weihong; Timmel, Christiane R; Wong, Luet Lok; Harmer, Jeffrey R

    2018-02-21

    Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C-H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe 2 S 2 ] cluster-binding loop and the α3 helix and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe 2 S 2 ] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.

  18. Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics.

    PubMed

    Harris, Kenneth D; Hochgerner, Hannah; Skene, Nathan G; Magno, Lorenza; Katona, Linda; Bengtsson Gonzales, Carolina; Somogyi, Peter; Kessaris, Nicoletta; Linnarsson, Sten; Hjerling-Leffler, Jens

    2018-06-18

    Understanding any brain circuit will require a categorization of its constituent neurons. In hippocampal area CA1, at least 23 classes of GABAergic neuron have been proposed to date. However, this list may be incomplete; additionally, it is unclear whether discrete classes are sufficient to describe the diversity of cortical inhibitory neurons or whether continuous modes of variability are also required. We studied the transcriptomes of 3,663 CA1 inhibitory cells, revealing 10 major GABAergic groups that divided into 49 fine-scale clusters. All previously described and several novel cell classes were identified, with three previously described classes unexpectedly found to be identical. A division into discrete classes, however, was not sufficient to describe the diversity of these cells, as continuous variation also occurred between and within classes. Latent factor analysis revealed that a single continuous variable could predict the expression levels of several genes, which correlated similarly with it across multiple cell types. Analysis of the genes correlating with this variable suggested it reflects a range from metabolically highly active faster-spiking cells that proximally target pyramidal cells to slower-spiking cells targeting distal dendrites or interneurons. These results elucidate the complexity of inhibitory neurons in one of the simplest cortical structures and show that characterizing these cells requires continuous modes of variation as well as discrete cell classes.

  19. Structural basis of cargo recognitions for class V myosins

    PubMed Central

    Wei, Zhiyi; Liu, Xiaotian; Yu, Cong; Zhang, Mingjie

    2013-01-01

    Class V myosins (MyoV), the most studied unconventional myosins, recognize numerous cargos mainly via the motor’s globular tail domain (GTD). Little is known regarding how MyoV-GTD recognizes such a diverse array of cargos specifically. Here, we solved the crystal structures of MyoVa-GTD in its apo-form and in complex with two distinct cargos, melanophilin and Rab interacting lysosomal protein-like 2. The apo-MyoVa-GTD structure indicates that most mutations found in patients with Griscelli syndrome, microvillus inclusion disease, or cancers or in “dilute” rodents likely impair the folding of GTD. The MyoVa-GTD/cargo complex structure reveals two distinct cargo-binding surfaces, one primarily via charge–charge interaction and the other mainly via hydrophobic interactions. Structural and biochemical analysis reveal the specific cargo-binding specificities of various isoforms of mammalian MyoV as well as very different cargo recognition mechanisms of MyoV between yeast and higher eukaryotes. The MyoVa-GTD structures resolved here provide a framework for future functional studies of vertebrate class V myosins. PMID:23798443

  20. Beyond the Eye: Molecular Evolution of Extraocular Photoreception.

    PubMed

    Porter, Megan L

    2016-11-01

    The molecular mechanisms used by biological systems to detect light are diverse, with at least 10 classes of photosensor proteins and additional photosensitive domains characterized. At least six of these protein classes-Type I microbial opsins, Type II animal opsins, cryptochromes, gustatory-related receptors (GRRs), transient receptor potential A1 ion channels, and euglenoid photoactivated adenylyl cylases-can be considered as playing a role in extraocular systems (e.g., expressed outside of the eye in organisms with a visual system). These six classes of extraocular photosensor proteins consist of four broad groups: (1) seven transmembrane proteins, (2) cryptochromes, (3) ion channels, and (4) adenylyl cyclases. The light-driven functions of these extraocular photoreceptors are diverse, ranging from circadian entrainment to phototactic behavior. There are surprising similarities in structural motifs, with at least three independent families-the GRRs and Types I and II opsins-evolving a seven transmembrane helical tertiary structure for light sensing. When considering all of the photosensitive proteins, particularly those in microbial lineages, an image of evolutionary flexibility is emerging, with examples of fusion proteins from multiple types of photosensors and photosensitive domains shared among diverse arrays of proteins. In general, large questions remain for most of these photosensor proteins about exactly how the protein evolved light sensitivity, how light interacts with the protein, and how the photosensitive protein is transducing the signal. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Antimicrobial peptides: a new class of antimalarial drugs?

    PubMed Central

    Vale, Nuno; Aguiar, Luísa; Gomes, Paula

    2014-01-01

    A range of antimicrobial peptides (AMP) exhibit activity on malaria parasites, Plasmodium spp., in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity, and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs. PMID:25566072

  2. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18-ceramide N-stearoyl phytosphingosine to improve the physiological properties of human stratum corneum

    PubMed Central

    Oh, Myoung Jin; Cho, Young Hoon; Cha, So Yoon; Lee, Eun Ok; Kim, Jin Wook; Kim, Sun Ki; Park, Chang Seo

    2017-01-01

    Ceramides in the human stratum corneum (SC) are a mixture of diverse N-acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N-acylated FAs and compare them with C18-ceramide N-stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer. PMID:28979153

  3. Microbial community structure and diversity within hypersaline Keke Salt Lake environments.

    PubMed

    Han, Rui; Zhang, Xin; Liu, Jing; Long, Qifu; Chen, Laisheng; Liu, Deli; Zhu, Derui

    2017-11-01

    Keke Salt Lake is located in the Qaidamu Basin of China. It is a unique magnesium sulfate-subtype hypersaline lake that exhibits a halite domain ecosystem, yet its microbial diversity has remained unstudied. Here, the microbial community structure and diversity was investigated via high-throughput sequencing of the V3-V5 regions of 16S rRNA genes. A high diversity of operational taxonomic units was detected for Bacteria and Archaea (734 and 747, respectively), comprising 21 phyla, 43 classes, and 201 genera of Bacteria and 4 phyla, 4 classes, and 39 genera of Archaea. Salt-saturated samples were dominated by the bacterial genera Bacillus (51.52%-58.35% relative abundance), Lactococcus (9.52%-10.51%), and Oceanobacillus (8.82%-9.88%) within the Firmicutes phylum (74.81%-80.99%), contrasting with other hypersaline lakes. The dominant Archaea belonged to the Halobacteriaceae family, and in particular, the genera (with an abundance of >10% of communities) Halonotius, Halorubellus, Halapricum, Halorubrum, and Natronomonas. Additionally, we report the presence of Nanohaloarchaeota and Woesearchaeota in Qinghai-Tibet Plateau lakes, which has not been previously documented. Total salinity (especially Mg 2+ , Cl - , Na + , and K + ) mostly correlated with taxonomic distribution across samples. These results expand our understanding of microbial resource utilization within hypersaline lakes and the potential adaptations of dominant microorganisms that allow them to inhabit such environments.

  4. Weaving Social Foundations through Dance Pedagogy: A Pedagogy of Uncovering

    ERIC Educational Resources Information Center

    Barr, Sherrie; Risner, Doug

    2014-01-01

    Today's dance educators enter classrooms populated by increasingly diverse students in which teachers' pedagogical knowledge necessitates heightened understandings of race, ethnicity, social class, gender, and sexuality. Uncovering taken-for-granted assumptions, dominant stereotypes, and educational structures that reproduce social…

  5. Parkinson’s disease and pesticides: a toxicological perspective

    PubMed Central

    Hatcher, Jaime M.; Pennell, Kurt D.; Miller, Gary W.

    2017-01-01

    Environmental factors have been shown to contribute to the incidence of Parkinson’s disease (PD). Pesticides, which represent one of the primary classes of environmental agents associated with PD, share the common feature of being intentionally released into the environment to control or eliminate pests. Pesticides consist of multiple classes and subclasses of insecticides, herbicides, rodenticides, fungicides, fumigants and others and exhibit a vast array of chemically diverse structures. In this review we examine the evidence regarding the ability of each of the major pesticide subclasses to increase the incidence of PD. We propose that, from a toxicological perspective, it would be beneficial to identify specific subclasses, common structural features and the propensity for widespread human exposure when considering the potential role in PD, rather than using the overly broad term of ‘pesticides’ to describe this diverse group of chemicals. Furthermore, these chemicals and their environmentally relevant combinations should be evaluated for their ability to promote or accelerate PD and not merely for being singular causative agents. PMID:18453001

  6. A combined computational and structural model of the full-length human prolactin receptor

    PubMed Central

    Bugge, Katrine; Papaleo, Elena; Haxholm, Gitte W.; Hopper, Jonathan T. S.; Robinson, Carol V.; Olsen, Johan G.; Lindorff-Larsen, Kresten; Kragelund, Birthe B.

    2016-01-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg. PMID:27174498

  7. Screening of ligands for the Ullmann synthesis of electron-rich diaryl ethers.

    PubMed

    Otto, Nicola; Opatz, Till

    2012-01-01

    In the search for new ligands for the Ullmann diaryl ether synthesis, permitting the coupling of electron-rich aryl bromides at relatively low temperatures, 56 structurally diverse multidentate ligands were screened in a model system that uses copper iodide in acetonitrile with potassium phosphate as the base. The ligands differed largely in their performance, but no privileged structural class could be identified.

  8. PPARÁ-DEPENDENT GENE EXPRESSION CHANGES IN THE MOUSE LIVER AFTER EXPOSURE TO PEROXISOME PROLIFERATORS

    EPA Science Inventory

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor ¿ (PPARα). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPAR&#...

  9. Find structural aspects of anthozoan desmocyte development (phylum Cnidaria).

    PubMed

    Tidball, J G

    1982-01-01

    The fine structural changes associated with the differentiation of skeletogenic cells into cells specialized in binding soft tissues onto skeletal structures are described in the gorgonian coral, Leptogorgia virgulata (Lam.). These binding cells are called desmocytes. The sequence of events in desmocyte development includes: growth of the plasma membrane, invagination of the mesoglea-end of the cell, expansion of the axis-end of the cell, loss of organelles involved in skeletogenesis, proliferation of double vesicles and transformation of double vesicles into cytoskeletal rods. Double vesicles appear either cup-shaped or as a vesicle within a vesicle in sectioned material. These observations of desmocyte development are compared to previous light microscopical observations desmocyte development in diverse forms of anthozoans. Similarities in desmocyte development throughout the class include invagination of the differentiating cell, formation of a pectinate mesogleal margin and formation of an array of cytoskeletal rods at the axis-end of the cell. Comparison with available information on the development and fine structure of desmocytes in the cnidarian classes Scyphozoa and Hydrozoa shows these similarities do not extend across class boundaries and, therefore, common ancestry between the three classes of cnidarian desmocytes seems remote if, indeed, such an ancestral cell existed at all.

  10. Maintenance of Distal Intestinal Structure in the Face of Prolonged Fasting: A Comparative Examination of Species From Five Vertebrate Classes.

    PubMed

    McCue, Marshall D; Passement, Celeste A; Meyerholz, David K

    2017-12-01

    It was recently shown that fasting alters the composition of microbial communities residing in the distal intestinal tract of animals representing five classes of vertebrates [i.e., fishes (tilapia), amphibians (toads), reptiles (leopard geckos), birds (quail), and mammals (mice)]. In this study, we tested the hypothesis that the extent of tissue reorganization in the fasted distal intestine was correlated with the observed changes in enteric microbial diversity. Segments of intestine adjacent to those used for the microbiota study were examined histologically to quantify cross-sectional and mucosal surface areas and thicknesses of mucosa, submucosa, and tunica muscularis. We found no fasting-induced differences in the morphology of distal intestines of the mice (3 days), quail (7 days), or geckos (28 days). The toads, which exhibited a general increase in phylogenetic diversity of their enteric microbiota with fasting, also exhibited reduced mucosal circumference at 14 and 21 days of fasting. Tilapia showed increased phylogenetic diversity of their enteric microbiota, and showed a thickened tunica muscularis at 21 days of fasting; but this morphological change was not related to microbial diversity or absorptive surface area, and thus, is unlikely to functionally match the changes in their microbiome. Given that fasting caused significant increases and reductions in the enteric microbial diversity of mice and quail, respectively, but no detectable changes in distal intestine morphology, we conclude that reorganization is not the primary factor shaping changes in microbial diversity within the fasted colon, and the observed modest structural changes are more related to the fasted state. Anat Rec, 300:2208-2219, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. [Age structure and genetic diversity of Homatula pycnolepis in the Nujiang River basin].

    PubMed

    Yue, Xing-Jian; Liu, Shao-Ping; Liu, Ming-Dian; Duan, Xin-Bin; Wang, Deng-Qiang; Chen, Da-Qing

    2013-08-01

    This study examined the age structure of the Loach, Homatula pycnolepis through the otolith growth rings in 204 individual specimens collected from the Xiaomengtong River of the Nujiang River (Salween River) basin in April, 2008. There were only two different age classes, 1 and 2 years of age-no 3 year olds were detected. The age structure of H. pycnolepis was simple. The complete mitochondrial DNA cytochrome b gene sequences (1140) of 80 individuals from 4 populations collected in the Nujiang River drainage were sequenced and a total of 44 variable sites were found among 4 different haplotypes. The global haplotype diversity (Hd) and nucleotide diversity (Pi) were calculated at 0.7595, 0.0151 respectively, and 0, 0 in each population, indicating a consistent lack of genetic diversity in each small population. There was obvious geographic structure in both the Nujiang River basin (NJB) group, and the Nanding River (NDR) group. The genetic distance between NJB and NDR was calculated at 0.0356, suggesting that genetic divergence resulted from long-term isolation of individual population. Such a simple age structure and a lack of genetic diversity in H. pycnolepis may potentially be due to small populations and locale fishing pressures. Accordingly, the results of this study prompt us to recommend that the NJB, NDR and Lancang River populations should be protected as three different evolutionary significant units or separated management units.

  12. MHC class I diversity in chimpanzees and bonobos.

    PubMed

    Maibach, Vincent; Hans, Jörg B; Hvilsom, Christina; Marques-Bonet, Tomas; Vigilant, Linda

    2017-10-01

    Major histocompatibility complex (MHC) class I genes are critically involved in the defense against intracellular pathogens. MHC diversity comparisons among samples of closely related taxa may reveal traces of past or ongoing selective processes. The bonobo and chimpanzee are the closest living evolutionary relatives of humans and last shared a common ancestor some 1 mya. However, little is known concerning MHC class I diversity in bonobos or in central chimpanzees, the most numerous and genetically diverse chimpanzee subspecies. Here, we used a long-read sequencing technology (PacBio) to sequence the classical MHC class I genes A, B, C, and A-like in 20 and 30 wild-born bonobos and chimpanzees, respectively, with a main focus on central chimpanzees to assess and compare diversity in those two species. We describe in total 21 and 42 novel coding region sequences for the two species, respectively. In addition, we found evidence for a reduced MHC class I diversity in bonobos as compared to central chimpanzees as well as to western chimpanzees and humans. The reduced bonobo MHC class I diversity may be the result of a selective process in their evolutionary past since their split from chimpanzees.

  13. [Spectral diversity among the members of the family of Green Fluorescent Protein in hydroid jellyfish (Cnidaria, Hydrozoa)].

    PubMed

    Ianushevich, Iu G; Shagin, D A; Fradkov, A F; Shakhbazov, K S; Barsova, E V; Gurskaia, N G; Labas, Iu A; Matts, M V; Luk'ianov, k A; Lul'ianov, S A

    2005-01-01

    The cDNAs encoding the genes of new proteins homologous to the well-known Green Fluorescent Protein (GFP) from the hydroid jellyfish Aequorea victoria were cloned. Two green fluorescent proteins from one un-identified anthojellyfish, a yellow fluorescent protein from Phialidium sp., and a nonfluorescent chromoprotein from another unidentified anthojellyfish were characterized. Thus, a broad diversity of GFP-like proteins among the organisms of the class Hydrozoa in both spectral properties and primary structure was shown.

  14. Woody plant diversity and structure of shade-grown-coffee plantations in northern Chiapas, Mexico.

    PubMed

    Soto-Pinto, L; Romero-Alvarado, Y; Caballero-Nieto, J; Segura Warnholtz, G

    2001-01-01

    Shade-grown coffee is an agricultural system that contains some forest-like characteristics. However, structure and diversity are poorly known in shade coffee systems. In 61 coffee-growers' plots of Chiapas, Mexico, structural variables of shade vegetation and coffee yields were measured, recording species and their use. Coffee stands had five vegetation strata. Seventy seven woody species mostly used as wood were found (mean density 371.4 trees per hectare). Ninety percent were native species (40% of the local flora), the remaining were introduced species, mainly fruit trees/shrubs. Diametric distribution resembles that of a secondary forest. Principal Coordinates Analysis grouped plots in four classes by the presence of Inga, however the majority of plots are diverse. There was no difference in equitability among groups or coffee yields. Coffee yield was 835 g clean coffee per shrub, or ca. 1,668 kg ha-1. There is a significant role of shade-grown coffee as diversity refuge for woody plants and presumably associated fauna as well as an opportunity for shade-coffee growers to participate in the new biodiversity-friendly-coffee market.

  15. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins

    PubMed Central

    Brahma, Biswajit; Patra, Mahesh Chandra; Karri, Satyanagalakshmi; Chopra, Meenu; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Mahanty, Sourav; Thakur, Kiran; Poluri, Krishna Mohan; Datta, Tirtha Kumar; De, Sachinandan

    2015-01-01

    Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics. PMID:26675301

  16. How diverse is the asteroid belt?

    NASA Technical Reports Server (NTRS)

    Burbine, Thomas H.; Bell, Jeffrey F.

    1993-01-01

    For approximately twenty years, many different asteroid taxonomies, which used many different observational data sets, have been developed to try to group asteroids into classes that contain members with similar spectral characteristics. However, to understand the structure of the asteroid belt, the resulting classes are only useful if they are grouping together asteroids with somewhat similar mineralogies and thermal histories. Until recently, these taxonomies have focused on spectral reflectance data from 0.3 to 1.1 microns and visual albedo. But in the last five years, observational data sets (e.g., 0.8 to 2.5 microns spectra, CCD spectra, 3 microns spectra, and radar albedos) for a small number of asteroids were compiled that can give a better mineralogical interpretation, but whose use in asteroid taxonomy was relatively limited. Analyses of these 'supplementary' data sets show that most asteroid classes contain members with different compositions and/or thermal histories. To understand the diversity of the asteroid belt, the number of objects with these observations must be expanded and used in the next generation of taxonomies.

  17. Conformational diversity analysis reveals three functional mechanisms in proteins

    PubMed Central

    Fornasari, María Silvina

    2017-01-01

    Protein motions are a key feature to understand biological function. Recently, a large-scale analysis of protein conformational diversity showed a positively skewed distribution with a peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution in terms of structure-function relationships, we studied a well curated and large dataset of ~5,000 proteins with experimentally determined conformational diversity. We searched for global behaviour patterns studying how structure-based features change among the available conformer population for each protein. This procedure allowed us to describe the RMSD distribution in terms of three main protein classes sharing given properties. The largest of these protein subsets (~60%), which we call “rigid” (average RMSD = 0.83 Å), has no disordered regions, shows low conformational diversity, the largest tunnels and smaller and buried cavities. The two additional subsets contain disordered regions, but with differential sequence composition and behaviour. Partially disordered proteins have on average 67% of their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of hinges and the longest disordered regions. In contrast, malleable proteins have on average only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected in size by the presence of disordered regions and show the highest diversity of cognate ligands. Proteins in each set are mostly non-homologous to each other, share no given fold class, nor functional similarity but do share features derived from their conformer population. These shared features could represent conformational mechanisms related with biological functions. PMID:28192432

  18. Molecular and functional evolution of class I chitinases for plant carnivory in the caryophyllales.

    PubMed

    Renner, Tanya; Specht, Chelsea D

    2012-10-01

    Proteins produced by the large and diverse chitinase gene family are involved in the hydrolyzation of glycosidic bonds in chitin, a polymer of N-acetylglucosamines. In flowering plants, class I chitinases are important pathogenesis-related proteins, functioning in the determent of herbivory and pathogen attack by acting on insect exoskeletons and fungal cell walls. Within the carnivorous plants, two subclasses of class I chitinases have been identified to play a role in the digestion of prey. Members of these two subclasses, depending on the presence or absence of a C-terminal extension, can be secreted from specialized digestive glands found within the morphologically diverse traps that develop from carnivorous plant leaves. The degree of homology among carnivorous plant class I chitinases and the method by which these enzymes have been adapted for the carnivorous habit has yet to be elucidated. This study focuses on understanding the evolution of carnivory and chitinase genes in one of the major groups of plants that has evolved the carnivorous habit: the Caryophyllales. We recover novel class I chitinase homologs from species of genera Ancistrocladus, Dionaea, Drosera, Nepenthes, and Triphyophyllum, while also confirming the presence of two subclasses of class I chitinases based upon sequence homology and phylogenetic affinity to class I chitinases available from sequenced angiosperm genomes. We further detect residues under positive selection and reveal substitutions specific to carnivorous plant class I chitinases. These substitutions may confer functional differences as indicated by protein structure homology modeling.

  19. Electron transfer from alpha-keggin anions to dioxygen

    Treesearch

    Yurii V. Geletii; Rajai H. Atalla; Craig L. Hill; Ira A. Weinstock

    2004-01-01

    Polyoxometalates (POMs), of which alpha-Keggin anions are representative, are a diverse and rapidly growing class of water-soluble cluster-anion structures with applications ranging from molecular catalysis to materials. [1] POMs are inexpensive, minimally or non-toxic, negatively charged clusters comprised of early transition-metals, usually in their do electronic...

  20. Improving Science Education and Understanding through Editing Wikipedia

    ERIC Educational Resources Information Center

    Moy, Cheryl L.; Locke, Jonas R.; Coppola, Brian P.; McNeil, Anne J.

    2010-01-01

    This paper describes a graduate-level class project centered on editing chemistry-related entries in Wikipedia. This project enables students to work collaboratively, explore advanced concepts in chemistry, and learn how to communicate science to a diverse audience, including the general public. The format and structure of the project is outlined…

  1. Isolation of Betulin and Rearrangement to Allobetulin: A Biomimetic Natural Product Synthesis

    ERIC Educational Resources Information Center

    Green, Brian; Bentley, Michael D.; Chung, Bong Y.; Lynch, Nicholas G.; Jensen, Bruce L.

    2007-01-01

    The triterpenes are a diverse class of widely distributed natural products derived from squalene. Various cyclization and subsequent rearrangement reactions produce many complex structural types. These compounds frequently display a wide divergence of biological properties. For example the pentacyclic triterpene, betulin, is isolated from white…

  2. IDENTIFICATION OF EARLY MOLECULAR EVENTS AFTER PEROXISOME PROLIFERATOR EXPOSURE IN THE RODENT LIVER

    EPA Science Inventory

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor α(PPARα). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPARα but do...

  3. Natural selection on marine carnivores elaborated a diverse family of classical MHC class I genes exhibiting haplotypic gene content variation and allelic polymorphism

    PubMed Central

    Norman, Paul J.; Parham, Peter

    2012-01-01

    Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals’ classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores. PMID:23001684

  4. Applications of Functional Amyloids from Fungi: Surface Modification by Class I Hydrophobins.

    PubMed

    Piscitelli, Alessandra; Cicatiello, Paola; Gravagnuolo, Alfredo Maria; Sorrentino, Ilaria; Pezzella, Cinzia; Giardina, Paola

    2017-06-26

    Class I hydrophobins produced from fungi are amongst the first proteins recognized as functional amyloids. They are amphiphilic proteins involved in the formation of aerial structures such as spores or fruiting bodies. They form chemically robust layers which can only be dissolved in strong acids. These layers adhere to different surfaces, changing their wettability, and allow the binding of other proteins. Herein, the modification of diverse types of surfaces with Class I hydrophobins is reported, highlighting the applications of the coated surfaces. Indeed, these coatings can be exploited in several fields, spanning from biomedical to industrial applications, which include biosensing and textile manufacturing.

  5. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.

  6. Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change: genetic and ecological study in northern Sweden.

    PubMed

    Truong, C; Palmé, A E; Felber, F

    2007-01-01

    Mountain birch, Betula pubescens ssp. tortuosa, forms the treeline in northern Sweden. A recent shift in the range of the species associated with an elevation of the treeline is commonly attributed to climate warming. Using microsatellite markers, we explored the genetic structure of populations along an altitudinal gradient close to the treeline. Low genetic differentiation was found between populations, whereas high genetic diversity was maintained within populations. High level of gene flow compensated for possible losses of genetic diversity at higher elevations and dissipated the founding effect of newly established populations above the treeline. Spatial autocorrelation analysis showed low spatial genetic structure within populations because of extensive gene flow. At the treeline, significant genetic structure within the juvenile age class at small distances did not persist in the adult age class, indicating recent expansion of young recruits due to the warming of the climate. Finally, seedling performance above the treeline was positively correlated with parameters related to temperature. These data confirm the high migration potential of the species in response to fluctuating environmental conditions and indicate that it is now invading higher altitudes due to the recent warming of the climate.

  7. Assessment of post-fire forest structural diversity using neighborhood parameter in the Sierra Madre Oriental, Mexico

    Treesearch

    Diana Yemilet Avila Flores; Marco Aurelio González Tagle; Javier Jiménez Pérez; Oscar Aguirre Calderón; Eduardo Treviño Garza

    2013-01-01

    The objective of this research was to characterize the spatial structure patterns of a Pinus hartwegii forest in the Sierra Madre Oriental, affected by a fire in 1998. Sampling was stratified by fire severity. A total of three fire severity classes (low, medium and high) were defined. Three sample plots of 40m x 40m were established for each...

  8. An updated version of NPIDB includes new classifications of DNA–protein complexes and their families

    PubMed Central

    Zanegina, Olga; Kirsanov, Dmitriy; Baulin, Eugene; Karyagina, Anna; Alexeevski, Andrei; Spirin, Sergey

    2016-01-01

    The recent upgrade of nucleic acid–protein interaction database (NPIDB, http://npidb.belozersky.msu.ru/) includes a newly elaborated classification of complexes of protein domains with double-stranded DNA and a classification of families of related complexes. Our classifications are based on contacting structural elements of both DNA: the major groove, the minor groove and the backbone; and protein: helices, beta-strands and unstructured segments. We took into account both hydrogen bonds and hydrophobic interaction. The analyzed material contains 1942 structures of protein domains from 748 PDB entries. We have identified 97 interaction modes of individual protein domain–DNA complexes and 17 DNA–protein interaction classes of protein domain families. We analyzed the sources of diversity of DNA–protein interaction modes in different complexes of one protein domain family. The observed interaction mode is sometimes influenced by artifacts of crystallization or diversity in secondary structure assignment. The interaction classes of domain families are more stable and thus possess more biological sense than a classification of single complexes. Integration of the classification into NPIDB allows the user to browse the database according to the interacting structural elements of DNA and protein molecules. For each family, we present average DNA shape parameters in contact zones with domains of the family. PMID:26656949

  9. Spatial diversity of bacterioplankton communities in surface water of northern South China Sea.

    PubMed

    Li, Jialin; Li, Nan; Li, Fuchao; Zou, Tao; Yu, Shuxian; Wang, Yinchu; Qin, Song; Wang, Guangyi

    2014-01-01

    The South China Sea is one of the largest marginal seas, with relatively frequent passage of eddies and featuring distinct spatial variation in the western tropical Pacific Ocean. Here, we report a phylogenetic study of bacterial community structures in surface seawater of the northern South China Sea (nSCS). Samples collected from 31 sites across large environmental gradients were used to construct clone libraries and yielded 2,443 sequences grouped into 170 OTUs. Phylogenetic analysis revealed 23 bacterial classes with major components α-, β- and γ-Proteobacteria, as well as Cyanobacteria. At class and genus taxon levels, community structure of coastal waters was distinctively different from that of deep-sea waters and displayed a higher diversity index. Redundancy analyses revealed that bacterial community structures displayed a significant correlation with the water depth of individual sampling sites. Members of α-Proteobacteria were the principal component contributing to the differences of the clone libraries. Furthermore, the bacterial communities exhibited heterogeneity within zones of upwelling and anticyclonic eddies. Our results suggested that surface bacterial communities in nSCS had two-level patterns of spatial distribution structured by ecological types (coastal VS. oceanic zones) and mesoscale physical processes, and also provided evidence for bacterial phylogenetic phyla shaped by ecological preferences.

  10. Organics In Meteorites

    NASA Technical Reports Server (NTRS)

    Chang, Sherwood

    1996-01-01

    The variety of classes of organic compounds that occur in carbonaceous meteorites suggests a rich pre-planetary chemistry with possible connections to interstellar, solar nebular and parent body processes. Structural diversity prevails within all classes examined in detail. Among amino acids for instance, all possible isomers are found up to species containing 4-6 carbon atoms, with abundances decreasing with increasing molecular weight. Such diversity seems limited to those carbonaceous meteorites which show evidence of having been exposed to liquid water; meteorites lacking such evidence also show much lower abundances and less structural diversity in their organic contents. This apparent dependency on water suggests a role for cometary ices in the chemical evolution of organic compounds on parent bodies. Measurements of the stable isotope compositions of C, H, N and S in classes of compounds and at the individual compound level show strong deviations from average chondritic values. These deviations are difficult to explain by solar system or parent body processes, and precedents for some of these isotopic anomalies exist in interstellar (e.g., high D/H ratios) and circumstellar chemistry. Therefore, presolar origins for much if not all of the meteoritic organic compounds (or their precursors) is a distinct possibility. In contrast, evidence of solar nebular origins is either lacking or suspect. Results from molecular and isotopic analyses of meteoritic organics, from laboratory simulations and from a model of interstellar grain reactions will be used to flesh out the hypothesis that this material originated with interstellar chemistry, was distributed within the early solar system as cometary ices, and was subsequently altered on meteorite parent bodies to yield the observed compounds.

  11. Recent Advances in Experimental Whole Genome Haplotyping Methods

    PubMed Central

    Huang, Mengting; Lu, Zuhong

    2017-01-01

    Haplotype plays a vital role in diverse fields; however, the sequencing technologies cannot resolve haplotype directly. Pioneers demonstrated several approaches to resolve haplotype in the early years, which was extensively reviewed. Since then, numerous methods have been developed recently that have significantly improved phasing performance. Here, we review experimental methods that have emerged mainly over the past five years, and categorize them into five classes according to their maximum scale of contiguity: (i) encapsulation, (ii) 3D structure capture and construction, (iii) compartmentalization, (iv) fluorography, (v) long-read sequencing. Several subsections of certain methods are attached to each class as instances. We also discuss the relative advantages and disadvantages of different classes and make comparisons among representative methods of each class. PMID:28891974

  12. Trophic diversity, size and biomass spectrum of Bay of Bengal nematodes: A study case on depth and latitudinal patterns

    NASA Astrophysics Data System (ADS)

    Ansari, Kapuli Gani Mohamed Thameemul; Lyla, Somasundharanair; Khan, Syed Ajmal; Bhadury, Punyasloke

    2017-09-01

    Depth and latitudinal patterns of nematode functional attributes were investigated from 35 stations of Bay of Bengal (BoB) continental shelf. We aim to address whether depth and latitudinal variations can modify nematode community structure and their functional attributes (trophic diversity, size and biomass spectra). Global trend of depth and latitudinal related variations have also been noticed from BoB shelf in terms of nematode abundance and species richness, albeit heterogeneity patterns were encountered in functional attributes. Index of trophic diversity values revealed higher trophic diversity across the BoB shelf and suggested variety of food resource availability. However, downstream analysis of trophic status showed depth and latitude specific patterns but not reflected in terms of size and biomass spectrum. The peaks at different positions clearly visualized heterogeneity in distribution patterns for both size and biomass spectrum and also there was evidence of availability of diversified food resources. Nematode biomass spectra (NBS) constructed for nematode communities showed shift in peak biomass values towards lower to moderate size classes particularly in shallower depth but did not get reflected in latitudes. However, Chennai and Parangipettai transects demonstrated shift in peak biomass values towards higher biomass classes explaining the representation of higher nematode abundance. Our findings concluded that depth and latitudes are physical variables; they may not directly affect nematode community structure and functional attributes but they might influence the other factors such as food availability, sediment deposition and settlement rate. Our observations suggest that the local factors (seasonal character) of phytodetrital food flux can be very important for shaping the nematode community structure and success of nematode functional heterogeneity patterns across the Bay of Bengal shelf.

  13. The effectiveness and cost-effectiveness of diversion and aftercare programmes for offenders using class A drugs: a systematic review and economic evaluation.

    PubMed

    Hayhurst, Karen P; Leitner, Maria; Davies, Linda; Flentje, Rachel; Millar, Tim; Jones, Andrew; King, Carlene; Donmall, Michael; Farrell, Michael; Fazel, Seena; Harris, Rochelle; Hickman, Matthew; Lennox, Charlotte; Mayet, Soraya; Senior, Jane; Shaw, Jennifer

    2015-01-01

    The societal costs of problematic class A drug use in England and Wales exceed £15B; drug-related crime accounts for almost 90% of costs. Diversion plus treatment and/or aftercare programmes may reduce drug-related crime and costs. To assess the effectiveness and cost-effectiveness of diversion and aftercare for class A drug-using offenders, compared with no diversion. Adult class A drug-using offenders diverted to treatment or an aftercare programme for their drug use. Programmes to identify and divert problematic drug users to treatment (voluntary, court mandated or monitored services) at any point within the criminal justice system (CJS). Aftercare follows diversion and treatment, excluding care following prison or non-diversionary drug treatment. Thirty-three electronic databases and government online resources were searched for studies published between January 1985 and January 2012, including MEDLINE, PsycINFO and ISI Web of Science. Bibliographies of identified studies were screened. The UK Drug Data Warehouse, the UK Drug Treatment Outcomes Research Study and published statistics and reports provided data for the economic evaluation. Included studies evaluated diversion in adult class A drug-using offenders, in contact with the CJS. The main outcomes were drug use and offending behaviour, and these were pooled using meta-analysis. The economic review included full economic evaluations for adult opiate and/or crack, or powder, cocaine users. An economic decision analytic model, estimated incremental costs per unit of outcome gained by diversion and aftercare, over a 12-month time horizon. The perspectives included the CJS, NHS, social care providers and offenders. Probabilistic sensitivity analysis and one-way sensitivity analysis explored variance in parameter estimates, longer time horizons and structural uncertainty. Sixteen studies met the effectiveness review inclusion criteria, characterised by poor methodological quality, with modest sample sizes, high attrition rates, retrospective data collection, limited follow-up, no random allocation and publication bias. Most study samples comprised US methamphetamine users. Limited meta-analysis was possible, indicating a potential small impact of diversion interventions on reducing drug use [odds ratio (OR) 1.68, 95% confidence interval (CI) 1.12 to 2.53 for reduced primary drug use, and OR 2.60, 95% CI 1.70 to 3.98 for reduced use of other drugs]. The cost-effectiveness review did not identify any relevant studies. The economic evaluation indicated high uncertainty because of variance in data estimates and limitations in the model design. The primary analysis was unclear whether or not diversion was cost-effective. The sensitivity analyses indicated some scenarios where diversion may be cost-effective. Nearly all participants (99.6%) in the effectiveness review were American (Californian) methamphetamine users, limiting transfer of conclusions to the UK. Data and methodological limitations mean it is unclear whether or not diversion is effective or cost-effective. High-quality evidence for the effectiveness and cost-effectiveness of diversion schemes is sparse and does not relate to the UK. Importantly this research identified a range of methodological limitations in existing evidence. These highlight the need for research to conceptualise, define and develop models of diversion programmes and identify a core outcome set. A programme of feasibility, pilot and definitive trials, combined with process evaluation and qualitative research is recommended to assess the effectiveness and cost-effectiveness of diversionary interventions in class A drug-using offenders. The National Institute for Health Research Health Technology Assessment programme.

  14. A Genomics-Based Approach Identifies a Thioviridamide-Like Compound with Selective Anticancer Activity.

    PubMed

    Frattaruolo, Luca; Lacret, Rodney; Cappello, Anna Rita; Truman, Andrew W

    2017-11-17

    Thioviridamide is a structurally novel ribosomally synthesized and post-translational modified peptide (RiPP) produced by Streptomyces olivoviridis NA005001. It is characterized by a structure that features a series of thioamide groups and possesses potent antiproliferative activity in cancer cell lines. Its unusual structure allied to its promise as an anticancer compound led us to investigate the diversity of thioviridamide-like pathways across sequenced bacterial genomes. We have isolated and characterized three diverse members of this family of natural products. This characterization is supported by transformation-associated recombination cloning and heterologous expression of one of these compounds, thiostreptamide S4. Our work provides an insight into the diversity of this rare class of compound and indicates that the unusual N-terminus of thioviridamide is not introduced biosynthetically but is instead introduced during acetone extraction. A detailed analysis of the biological activity of one of the newly discovered compounds, thioalbamide, indicates that it is highly cytotoxic to cancer cells, while exhibiting significantly less activity toward a noncancerous epithelial cell line.

  15. A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds.

    PubMed

    Isidro-Llobet, Albert; Hadje Georgiou, Kathy; Galloway, Warren R J D; Giacomini, Elisa; Hansen, Mette R; Méndez-Abt, Gabriela; Tan, Yaw Sing; Carro, Laura; Sore, Hannah F; Spring, David R

    2015-04-21

    Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity.

  16. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    PubMed Central

    Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart

    2018-01-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes. PMID:25771806

  17. MHC class II diversity of koala (Phascolarctos cinereus) populations across their range

    PubMed Central

    Lau, Q; Jaratlerdsiri, W; Griffith, J E; Gongora, J; Higgins, D P

    2014-01-01

    Major histocompatibility complex class II (MHCII) genes code for proteins that bind and present antigenic peptides and trigger the adaptive immune response. We present a broad geographical study of MHCII DA β1 (DAB) and DB β1 (DBB) variants of the koala (Phascolarctos cinereus; n=191) from 12 populations across eastern Australia, with a total of 13 DAB and 7 DBB variants found. We identified greater MHCII variation and, possibly, additional gene copies in koala populations in the north (Queensland and New South Wales) relative to the south (Victoria), confirmed by STRUCTURE analyses and genetic differentiation using analysis of molecular variance. The higher MHCII diversity in the north relative to south could potentially be attributed to (i) significant founder effect in Victorian populations linked to historical translocation of bottlenecked koala populations and (ii) increased pathogen-driven balancing selection and/or local genetic drift in the north. Low MHCII genetic diversity in koalas from the south could reduce their potential response to disease, although the three DAB variants found in the south had substantial sequence divergence between variants. This study assessing MHCII diversity in the koala with historical translocations in some populations contributes to understanding the effects of population translocations on functional genetic diversity. PMID:24690756

  18. A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses

    PubMed Central

    Koehler, Jeffrey W.; Smith, Jeffrey M.; Ripoll, Daniel R.; Spik, Kristin W.; Taylor, Shannon L.; Badger, Catherine V.; Grant, Rebecca J.; Ogg, Monica M.; Wallqvist, Anders; Guttieri, Mary C.; Garry, Robert F.; Schmaljohn, Connie S.

    2013-01-01

    For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors. PMID:24069485

  19. Teaching social justice using a pedagogy of engagement.

    PubMed

    Belknap, Ruth Ann

    2008-01-01

    Teaching an undergraduate level diversity course with a health focus requires specific teaching methods. A pedagogy of engagement provides an effective strategy for exploring issues of race, class, gender, and structural inequalities that underlie health disparities. Engagement learning enhances understanding of theories of oppression and liberation presented in the course and highlights social justice issues.

  20. Using Peer Instruction and I-Clickers to Enhance Student Participation in Calculus

    ERIC Educational Resources Information Center

    Lucas, Adam

    2009-01-01

    In my Calculus classes I encourage my students to actively reflect on course material, to work collaboratively, and to generate diverse solutions to questions. To facilitate this I use peer instruction (PI), a structured questioning process, and i-clickers, a radio frequency classroom response system enabling students to vote anonymously. This…

  1. Phenolics and compartmentalization in the sapwood of broad-leaved trees

    Treesearch

    Kevin T. Smith

    1997-01-01

    Tree survival depends on the chemistry of phenolic compounds, a broad class of chemicals characterized by a hydroxylated benzene ring. In trees, phenolics occur frequently as polymers, acids, or glycosylated esters and perform diverse functions. For example, lignin, a phenylpropane heteropolymer, provides structural strength to wood. The induced production of phenols...

  2. Identification and characterization of long non-coding RNAs in rainbow trout eggs

    USDA-ARS?s Scientific Manuscript database

    Long non-coding RNAs (lncRNAs) are in general considered as a diverse class of transcripts longer than 200 nucleotides that structurally resemble mRNAs but do not encode proteins. Recent advances in RNA sequencing (RNA-Seq) and bioinformatics methods have provided an opportunity to indentify and ana...

  3. Traversing the fungal terpenome

    PubMed Central

    Quin, Maureen B.; Flynn, Christopher M.; Schmidt-Dannert, Claudia

    2014-01-01

    Fungi (Ascomycota and Basidiomycota) are prolific producers of structurally diverse terpenoid compounds. Classes of terpenoids identified in fungi include the sesqui-, di- and triterpenoids. Biosynthetic pathways and enzymes to terpenoids from each of these classes have been described. These typically involve the scaffold generating terpene synthases and cyclases, and scaffold tailoring enzymes such as e.g. cytochrome P450 monoxygenases, NAD(P)+ and flavin dependent oxidoreductases, and various group transferases that generate the final bioactive structures. The biosynthesis of several sesquiterpenoid mycotoxins and bioactive diterpenoids has been well-studied in Ascomycota (e.g. filamentous fungi). Little is known about the terpenoid biosynthetic pathways in Basidiomycota (e.g. mushroom forming fungi), although they produce a huge diversity of terpenoid natural products. Specifically, many trans-humulyl cation derived sesquiterpenoid natural products with potent bioactivities have been isolated. Biosynthetic gene clusters responsible for the production of trans-humulyl cation derived protoilludanes, and other sesquiterpenoids, can be rapidly identified by genome sequencing and bioinformatic methods. Genome mining combined with heterologous biosynthetic pathway refactoring has the potential to facilitate discovery and production of pharmaceutically relevant fungal terpenoids. PMID:25171145

  4. [Characterization of microbial community in produced water from a petroleum reservoir subjected to alkali-surfactant-polymer ASP flooding].

    PubMed

    Hao, Qin Qin; Shi, Rong Jiu; Hao, Jin Sheng; Zhao, Jin Yi; Li, Guo Qiao; Zhao, Feng; Han, Si Qin; Zhang, Ying

    2017-10-01

    Injection of alkali, surfactant and polymer (ASP) into oil reservoir can substantially increase oil recovery compared with water-flooding strategy. However, the effects of these agents on the microbial diversity and community structure, which is important for water management and corrosion control in oil industry, are hitherto poorly understood. Here, we disclosed the microbial diversity and community structure in the produced water collected from four producing wells of an ASP-flooded oilfield at Daqing, China, using high-throughput sequencing technique. Results showed that the average pH in produced water was as high as 9.65. The microbial diversity varied from well to well, and the Shannon diversity index was between 2.00 to 3.56. The Proteobacteria (85.5%-98.3%), γ-proteobacteria (83.7%-97.8%), and alkaliphilic Nitrincola (51.8%-82.5%) were the most dominant phylogenetic taxa at the phylum, class, and genus levels, respectively. A total of 12 potentially sulfide-producing genera were detected, and the most abundant taxon was Sulfurospirillum (0.4%-7.4%). The microbial community of ASP-flooded petroleum reservoir was distinct, showing an alkaliphilic or alkalitolerant potential; a reduced diversity and more simple structure were observed compared with those of the water-flooded petroleum reservoirs that were previously reported.

  5. Characterization of Lipooligosaccharide-Biosynthetic Loci of Campylobacter jejuni Reveals New Lipooligosaccharide Classes: Evidence of Mosaic Organizations▿ †

    PubMed Central

    Parker, Craig T.; Gilbert, Michel; Yuki, Nobuhiro; Endtz, Hubert P.; Mandrell, Robert E.

    2008-01-01

    The lipooligosaccharide (LOS) biosynthesis region is one of the more variable genomic regions between strains of Campylobacter jejuni. Indeed, eight classes of LOS biosynthesis loci have been established previously based on gene content and organization. In this study, we characterize additional classes of LOS biosynthesis loci and analyze various mechanisms that result in changes to LOS structures. To gain further insights into the genomic diversity of C. jejuni LOS biosynthesis region, we sequenced the LOS biosynthesis loci of 15 strains that possessed gene content that was distinct from the eight classes. This analysis identified 11 new classes of LOS loci that exhibited examples of deletions and insertions of genes and cassettes of genes found in other LOS classes or capsular biosynthesis loci leading to mosaic LOS loci. The sequence analysis also revealed both missense mutations leading to “allelic” glycosyltransferases and phase-variable and non-phase-variable gene inactivation by the deletion or insertion of bases. Specifically, we demonstrated that gene inactivation is an important mechanism for altering the LOS structures of strains possessing the same class of LOS biosynthesis locus. Together, these observations suggest that LOS biosynthesis region is a hotspot for genetic exchange and variability, often leading to changes in the LOS produced. PMID:18556784

  6. Diversity of mire massif types in the boreal zone of European Russia

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O. L.

    2018-03-01

    In Russia, mire massif type is the principal structural unit for descriptions of the diversity of regional mire ecosystems of various ranks, vegetation mapping, and decision-making on the use of mires. The classification of mire massifs is based on various criteria and indicators. The botanical-geographical classification of mire massifs of the boreal zone of European Russia is four-tiered, and includes 22 types gathered in groups, subgroups and three classes. For most of the types their characteristic associations and diagnostic species are stated.

  7. Young Alu insertions within the MHC class I region in native American populations: insights into the origin of the MHC-Alu repeats.

    PubMed

    Gómez-Pérez, Luis; Alfonso-Sánchez, Miguel A; Dipierri, José E; Sánchez, Dora; Espinosa, Ibone; De Pancorbo, Marian M; Peña, José A

    2013-01-01

    Genetic heterogeneity of two Amerindian populations (Jujuy province, Argentina, and Waorani tribe, Ecuador) was characterized by analyzing data on polymorphic Alu insertions within the human major histocompatibility complex (MHC) class I region (6p21.31), which are completely nonexistent in Native Americans. We further evaluated the haplotype distribution and genetic diversity among continental ancestry groups and their potential implications for the dating of the origin of MHC-Alus. Five MHC-Alu elements (AluMicB, AluTF, AluHJ, AluHG, and AluHF) were typed in samples from Jujuy (N = 108) and Waorani (N = 36). Allele and haplotype frequency data on worldwide populations were compiled to explore spatial structuring of the MHC-Alu diversity through AMOVA tests. We utilized the median-joining network approach to illustrate the continental distribution of the MHC-Alu haplotypes and their phylogenetic relationships. Allele and haplotype distributions differed significantly between Jujuy and Waorani. The Waorani featured a low average heterozygosity attributable to strong population isolation. Overall, Alu markers showed great genetic heterogeneity both within and among populations. The haplotype distribution was distinctive of each continental ancestry group. Contrary to expectations, Africans showed the lowest MHC-Alu diversity. Genetic drift mainly associated to population bottlenecks seems to be reflected in the low MHC-Alu diversity of the Amerindians, mainly in Waorani. Geographical structuring of the haplotype distribution supports the efficiency of the MHC-Alu loci as lineage (ancestry) markers. The markedly low Alu diversity of African populations relative to other continental clusters suggests that these MHC-Alus might have arisen after the anatomically modern humans expanded out of Africa. Copyright © 2013 Wiley Periodicals, Inc.

  8. Virtual Control Policy for Binary Ordered Resources Petri Net Class.

    PubMed

    Rovetto, Carlos A; Concepción, Tomás J; Cano, Elia Esther

    2016-08-18

    Prevention and avoidance of deadlocks in sensor networks that use the wormhole routing algorithm is an active research domain. There are diverse control policies that will address this problem being our approach a new method. In this paper we present a virtual control policy for the new specialized Petri net subclass called Binary Ordered Resources Petri Net (BORPN). Essentially, it is an ordinary class constructed from various state machines that share unitary resources in a complex form, which allows branching and joining of processes. The reduced structure of this new class gives advantages that allow analysis of the entire system's behavior, which is a prohibitive task for large systems because of the complexity and routing algorithms.

  9. An Evolutionarily Structured Universe of Protein Architecture

    PubMed Central

    Caetano-Anollés, Gustavo; Caetano-Anollés, Derek

    2003-01-01

    Protein structural diversity encompasses a finite set of architectural designs. Embedded in these topologies are evolutionary histories that we here uncover using cladistic principles and measurements of protein-fold usage and sharing. The reconstructed phylogenies are inherently rooted and depict histories of protein and proteome diversification. Proteome phylogenies showed two monophyletic sister-groups delimiting Bacteria and Archaea, and a topology rooted in Eucarya. This suggests three dramatic evolutionary events and a common ancestor with a eukaryotic-like, gene-rich, and relatively modern organization. Conversely, a general phylogeny of protein architectures showed that structural classes of globular proteins appeared early in evolution and in defined order, the α/β class being the first. Although most ancestral folds shared a common architecture of barrels or interleaved β-sheets and α-helices, many were clearly derived, such as polyhedral folds in the all-α class and β-sandwiches, β-propellers, and β-prisms in all-β proteins. We also describe transformation pathways of architectures that are prevalently used in nature. For example, β-barrels with increased curl and stagger were favored evolutionary outcomes in the all-β class. Interestingly, we found cases where structural change followed the α-to-β tendency uncovered in the tree of architectures. Lastly, we traced the total number of enzymatic functions associated with folds in the trees and show that there is a general link between structure and enzymatic function. PMID:12840035

  10. Domestic violence at the intersections of race, class, and gender: challenges and contributions to understanding violence against marginalized women in diverse communities.

    PubMed

    Sokoloff, Natalie J; Dupont, Ida

    2005-01-01

    This article provides a comprehensive review of the emerging domestic violence literature using a race, class, gender, sexual orientation intersectional analysis and structural framework fostered by women of color and their allies to understand the experiences and contexts of domestic violence for marginalized women in U.S. society. The first half of the article lays out a series of challenges that an intersectional analysis grounded in a structural framework provides for understanding the role of culture in domestic violence. The second half of the article points to major contributions of such an approach to feminist methods and practices in working with battered women on the margins of society.

  11. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man.

    PubMed

    Kulski, Jerzy K; Shiina, Takashi; Anzai, Tatsuya; Kohara, Sakae; Inoko, Hidetoshi

    2002-12-01

    The major histocompatibility complex (MHC) genomic region is composed of a group of linked genes involved functionally with the adaptive and innate immune systems. The class I and class II genes are intrinsic features of the MHC and have been found in all the jawed vertebrates studied so far. The MHC genomic regions of the human and the chicken (B locus) have been fully sequenced and mapped, and the mouse MHC sequence is almost finished. Information on the MHC genomic structures (size, complexity, genic and intergenic composition and organization, gene order and number) of other vertebrates is largely limited or nonexistent. Therefore, we are mapping, sequencing and analyzing the MHC genomic regions of different human haplotypes and at least eight nonhuman species. Here, we review our progress with these sequences and compare the human MHC structure with that of the nonhuman primates (chimpanzee and rhesus macaque), other mammals (pigs, mice and rats) and nonmammalian vertebrates such as birds (chicken and quail), bony fish (medaka, pufferfish and zebrafish) and cartilaginous fish (nurse shark). This comparison reveals a complex MHC structure for mammals and a relatively simpler design for nonmammalian animals with a hypothetical prototypic structure for the shark. In the mammalian MHC, there are two to five different class I duplication blocks embedded within a framework of conserved nonclass I and/or nonclass II genes. With a few exceptions, the class I framework genes are absent from the MHC of birds, bony fish and sharks. Comparative genomics of the MHC reveal a highly plastic region with major structural differences between the mammalian and nonmammalian vertebrates. Additional genomic data are needed on animals of the reptilia, crocodilia and marsupial classes to find the origins of the class I framework genes and examples of structures that may be intermediate between the simple and complex MHC organizations of birds and mammals, respectively.

  12. Public Address, Cultural Diversity, and Tolerance: Teaching Cultural Diversity in Speech Classes.

    ERIC Educational Resources Information Center

    Byrd, Marquita L.

    While speech instructors work to design appropriate diversity goals in the public speaking class, few have the training for such a task. A review of course objectives and assignments for the basic course may be helpful. Suggestions for instructors working to incorporate diversity in the basic course include: (1) recognize the dominance of the…

  13. State-dependent compound inhibition of Nav1.2 sodium channels using the FLIPR Vm dye: on-target and off-target effects of diverse pharmacological agents.

    PubMed

    Benjamin, Elfrida R; Pruthi, Farhana; Olanrewaju, Shakira; Ilyin, Victor I; Crumley, Gregg; Kutlina, Elena; Valenzano, Kenneth J; Woodward, Richard M

    2006-02-01

    Voltage-gated sodium channels (NaChs) are relevant targets for pain, epilepsy, and a variety of neurological and cardiac disorders. Traditionally, it has been difficult to develop structure-activity relationships for NaCh inhibitors due to rapid channel kinetics and state-dependent compound interactions. Membrane potential (Vm) dyes in conjunction with a high-throughput fluorescence imaging plate reader (FLIPR) offer a satisfactory 1st-tier solution. Thus, the authors have developed a FLIPR Vm assay of rat Nav1.2 NaCh. Channels were opened by addition of veratridine, and Vm dye responses were measured. The IC50 values from various structural classes of compounds were compared to the resting state binding constant (Kr)and inactivated state binding constant (Ki)obtained using patch-clamp electrophysiology (EP). The FLIPR values correlated with Ki but not Kr. FLIPRIC50 values fell within 0.1-to 1.5-fold of EP Ki values, indicating that the assay generally reports use-dependent inhibition rather than resting state block. The Library of Pharmacologically Active Compounds (LOPAC, Sigma) was screened. Confirmed hits arose from diverse classes such as dopamine receptor antagonists, serotonin transport inhibitors, and kinase inhibitors. These data suggest that NaCh inhibition is inherent in a diverse set of biologically active molecules and may warrant counterscreening NaChs to avoid unwanted secondary pharmacology.

  14. Differences in soil micro-eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs.

    PubMed

    Dupont, A Ö C; Griffiths, R I; Bell, T; Bass, D

    2016-06-01

    A recent large-scale assessment of bacterial communities across a range of UK soil types showed that bacterial community structure was strongly determined by soil pH. We analysed a data set of eukaryotic 454 sequencing 18S rDNA from the surveyed samples and showed significant differences in eukaryotic assemblages according to pH class, mostly between low pH and higher pH soils. Soil eukaryote communities (per sample) differed most at the taxonomic rank approximating to order level. Taxonomies assigned with the Protist Ribosomal Reference and the Silva 119 databases were taxonomically inconsistent, mostly due to differing 18S annotations, although general structure and composition according to pH were coherent. A relatively small number of lineages, mostly putative parasitic protists and fungi, drive most differences between pH classes, with weaker contributions from bacterivores and autotrophs. Overall, soil parasites included a large diversity of alveolates, in particular apicomplexans. Phylogenetic analysis of alveolate lineages demonstrates a large diversity of unknown gregarines, novel perkinsids, coccidians, colpodellids and uncharacterized alveolates. Other novel and/or divergent lineages were revealed across the eukaryote tree of life. Our study provides an in-depth taxonomic evaluation of micro-eukaryotic diversity, and reveals novel lineages and insights into their relationships with environmental variables across soil gradients. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Social class shapes the form and function of relationships and selves.

    PubMed

    Carey, Rebecca M; Markus, Hazel Rose

    2017-12-01

    Social class shapes relational realities, which in turn situate and structure different selves and their associated psychological tendencies. We first briefly review how higher class contexts tend to foster independent models of self and lower class contexts tend to foster interdependent models of self. We then consider how these independent and interdependent models of self are situated in and adapted to different social class-driven relational realities. We review research demonstrating that in lower social class contexts, social networks tend to be small, dense, homogenous and strongly connected. Ties in these networks provide the bonding capital that is key for survival and that promotes the interdependence between self and other(s). In higher social class contexts, social networks tend to be large, far-reaching, diverse and loosely connected. Ties in these networks provide the bridging capital that is key for achieving personal goals and that promotes an independence of self from other. We conclude that understanding and addressing issues tied to social class and inequality requires understanding the form and function of relationships across class contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A novel VLSI processor architecture for supercomputing arrays

    NASA Technical Reports Server (NTRS)

    Venkateswaran, N.; Pattabiraman, S.; Devanathan, R.; Ahmed, Ashaf; Venkataraman, S.; Ganesh, N.

    1993-01-01

    Design of the processor element for general purpose massively parallel supercomputing arrays is highly complex and cost ineffective. To overcome this, the architecture and organization of the functional units of the processor element should be such as to suit the diverse computational structures and simplify mapping of complex communication structures of different classes of algorithms. This demands that the computation and communication structures of different class of algorithms be unified. While unifying the different communication structures is a difficult process, analysis of a wide class of algorithms reveals that their computation structures can be expressed in terms of basic IP,IP,OP,CM,R,SM, and MAA operations. The execution of these operations is unified on the PAcube macro-cell array. Based on this PAcube macro-cell array, we present a novel processor element called the GIPOP processor, which has dedicated functional units to perform the above operations. The architecture and organization of these functional units are such to satisfy the two important criteria mentioned above. The structure of the macro-cell and the unification process has led to a very regular and simpler design of the GIPOP processor. The production cost of the GIPOP processor is drastically reduced as it is designed on high performance mask programmable PAcube arrays.

  17. Forest fuels and potential fire behaviour 12 years after variable-retention harvest in lodgepole pine

    Treesearch

    Justin S. Crotteau; Christopher R. Keyes; Elaine K. Sutherland; David K. Wright; Joel M. Egan

    2016-01-01

    Variable-retention harvesting in lodgepole pine offers an alternative to conventional, even-aged management. This harvesting technique promotes structural complexity and age-class diversity in residual stands and promotes resilience to disturbance. We examined fuel loads and potential fire behaviour 12 years after two modes of variable-retention harvesting (...

  18. Natural Products as a Source of Alzheimer’s Drug Leads

    PubMed Central

    Sorribas, Analia; Howes, Melanie-Jayne R.

    2016-01-01

    This review focuses on recent developments in the use of natural products as therapeutics for Alzheimer’s disease. Compounds span a diverse array of structural classes and are organized according to their mechanism of action, with the focus primarily on the major hypotheses. Overall, the review discusses more than 180 compounds and summarizes 393 references. PMID:21072430

  19. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum.

    PubMed

    Melito, Sara; Sias, Angela; Petretto, Giacomo L; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil.

  20. Evolution by selection, recombination, and gene duplication in MHC class I genes of two Rhacophoridae species

    PubMed Central

    2013-01-01

    Background Comparison of major histocompatibility complex (MHC) genes across vertebrate species can reveal molecular mechanisms underlying the evolution of adaptive immunity-related proteins. As the first terrestrial tetrapods, amphibians deserve special attention because of their exposure to probably increased spectrum of microorganisms compared with ancestral aquatic fishes. Knowledge regarding the evolutionary patterns and mechanisms associated with amphibian MHC genes remains limited. The goal of the present study was to isolate MHC class I genes from two Rhacophoridae species (Rhacophorus omeimontis and Polypedates megacephalus) and examine their evolution. Results We identified 27 MHC class I alleles spanning the region from exon 2 to 4 in 38 tree frogs. The available evidence suggests that these 27 sequences all belong to classical MHC class I (MHC Ia) genes. Although several anuran species only display one MHC class Ia locus, at least two or three loci were observed in P. megacephalus and R. omeimontis, indicating that the number of MHC class Ia loci varies among anuran species. Recombination events, which mainly involve the entire exons, played an important role in shaping the genetic diversity of the 27 MHC class Ia alleles. In addition, signals of positive selection were found in Rhacophoridae MHC class Ia genes. Amino acid sites strongly suggested by program to be under positive selection basically accorded with the putative antigen binding sites deduced from crystal structure of human HLA. Phylogenetic relationships among MHC class I alleles revealed the presence of trans-species polymorphisms. Conclusions In the two Rhacophoridae species (1) there are two or three MHC class Ia loci; (2) recombination mainly occurs between the entire exons of MHC class Ia genes; (3) balancing selection, gene duplication and recombination all contribute to the diversity of MHC class Ia genes. These findings broaden our knowledge on the evolution of amphibian MHC systems. PMID:23734729

  1. Crystal structure of the Streptomyces coelicolor sortase E1 transpeptidase provides insight into the binding mode of the novel class E sorting signal

    DOE PAGES

    Kattke, Michele D.; Chan, Albert H.; Duong, Andrew; ...

    2016-12-09

    Here, many species of Gram-positive bacteria use sortase transpeptidases to covalently affix proteins to their cell wall or to assemble pili. Sortase-displayed proteins perform critical and diverse functions for cell survival, including cell adhesion, nutrient acquisition, and morphological development, among others. Based on their amino acid sequences, there are at least six types of sortases (class A to F enzymes); however, class E enzymes have not been extensively studied. Class E sortases are used by soil and freshwater-dwelling Actinobacteria to display proteins that contain a non-canonical LAXTG sorting signal, which differs from 90% of known sorting signals by substitution ofmore » alanine for proline. Here we report the first crystal structure of a class E sortase, the 1.93 Å resolution structure of the SrtE1 enzyme from Streptomyces coelicolor. The active site is bound to a tripeptide, providing insight into the mechanism of substrate binding. SrtE1 possesses β3/β4 and β6/β7 active site loops that contact the LAXTG substrate and are structurally distinct from other classes. We propose that SrtE1 and other class E sortases employ a conserved tyrosine residue within their β3/β4 loop to recognize the amide nitrogen of alanine at position P3 of the sorting signal through a hydrogen bond, as seen here. Incapability of hydrogen-bonding with canonical proline-containing sorting signals likely contributes to class E substrate specificity. Furthermore, we demonstrate that surface anchoring of proteins involved in aerial hyphae formation requires an N-terminal segment in SrtE1 that is presumably positioned within the cytoplasm. Combined, our results reveal unique features within class E enzymes that enable them to recognize distinct sorting signals, and could facilitate the development of substrate-based inhibitors of this important enzyme family.« less

  2. The CD1 family: serving lipid antigens to T cells since the Mesozoic era.

    PubMed

    Zajonc, Dirk M

    2016-08-01

    Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs).

  3. The CD1 family: serving lipid antigens to T cells since the Mesozoic era

    PubMed Central

    Zajonc, Dirk M.

    2016-01-01

    Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs). PMID:27368414

  4. A Structure-Based Classification of Class A β-Lactamases, a Broadly Diverse Family of Enzymes

    PubMed Central

    Slama, Patrick; Dény, Paul; Labia, Roger

    2015-01-01

    SUMMARY For medical biologists, sequencing has become a commonplace technique to support diagnosis. Rapid changes in this field have led to the generation of large amounts of data, which are not always correctly listed in databases. This is particularly true for data concerning class A β-lactamases, a group of key antibiotic resistance enzymes produced by bacteria. Many genomes have been reported to contain putative β-lactamase genes, which can be compared with representative types. We analyzed several hundred amino acid sequences of class A β-lactamase enzymes for phylogenic relationships, the presence of specific residues, and cluster patterns. A clear distinction was first made between dd-peptidases and class A enzymes based on a small number of residues (S70, K73, P107, 130SDN132, G144, E166, 234K/R, 235T/S, and 236G [Ambler numbering]). Other residues clearly separated two main branches, which we named subclasses A1 and A2. Various clusters were identified on the major branch (subclass A1) on the basis of signature residues associated with catalytic properties (e.g., limited-spectrum β-lactamases, extended-spectrum β-lactamases, and carbapenemases). For subclass A2 enzymes (e.g., CfxA, CIA-1, CME-1, PER-1, and VEB-1), 43 conserved residues were characterized, and several significant insertions were detected. This diversity in the amino acid sequences of β-lactamases must be taken into account to ensure that new enzymes are accurately identified. However, with the exception of PER types, this diversity is poorly represented in existing X-ray crystallographic data. PMID:26511485

  5. Demography and early academic skills of students from immigrant families: The kindergarten class of 2011.

    PubMed

    Sullivan, Amanda L; Houri, Alaa; Sadeh, Shanna

    2016-06-01

    Children from immigrant families are one of the fastest growing and most diverse groups in America's schools. This study provides a demographic portrait of immigrant children who entered kindergarten in 2010 and describes patterns and predictors of early educational outcomes of students from immigrant families. A nationally representative sample of 13,530 students who participated in the Early Childhood Longitudinal Study-Kindergarten Class of 2010-11 was analyzed. Descriptive statistics were used to estimate the sociodemographic characteristics of this population. Regression was used to examine the relations between nativity, child characteristics, and family characteristics to reading and mathematics skills in kindergarten. Approximately 27% of kindergartners in the class of 2011 came from immigrant families. These students were more racially, linguistically, and socioeconomically diverse than students from U.S.-born parents. Educational outcomes varied by parents' region of origin. Children's early academic skills were significantly related to parent's region of origin, but these relations were attenuated when child health, language, family structure, and socioeconomic status were accounted for. These results indicate the importance of considering parent nativity when examining the outcomes and needs of students from immigrant families. Because of the diversity of characteristics and outcomes of children of immigrants, researchers should consider the implications of nativity for students' experiences and needs. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. A Bioinformatic Strategy for the Detection, Classification and Analysis of Bacterial Autotransporters

    PubMed Central

    Celik, Nermin; Webb, Chaille T.; Leyton, Denisse L.; Holt, Kathryn E.; Heinz, Eva; Gorrell, Rebecca; Kwok, Terry; Naderer, Thomas; Strugnell, Richard A.; Speed, Terence P.; Teasdale, Rohan D.; Likić, Vladimir A.; Lithgow, Trevor

    2012-01-01

    Autotransporters are secreted proteins that are assembled into the outer membrane of bacterial cells. The passenger domains of autotransporters are crucial for bacterial pathogenesis, with some remaining attached to the bacterial surface while others are released by proteolysis. An enigma remains as to whether autotransporters should be considered a class of secretion system, or simply a class of substrate with peculiar requirements for their secretion. We sought to establish a sensitive search protocol that could identify and characterize diverse autotransporters from bacterial genome sequence data. The new sequence analysis pipeline identified more than 1500 autotransporter sequences from diverse bacteria, including numerous species of Chlamydiales and Fusobacteria as well as all classes of Proteobacteria. Interrogation of the proteins revealed that there are numerous classes of passenger domains beyond the known proteases, adhesins and esterases. In addition the barrel-domain-a characteristic feature of autotransporters-was found to be composed from seven conserved sequence segments that can be arranged in multiple ways in the tertiary structure of the assembled autotransporter. One of these conserved motifs overlays the targeting information required for autotransporters to reach the outer membrane. Another conserved and diagnostic motif maps to the linker region between the passenger domain and barrel-domain, indicating it as an important feature in the assembly of autotransporters. PMID:22905239

  7. Structural basis of viral invasion: lessons from paramyxovirus F

    PubMed Central

    Lamb, Robert A.; Jardetzky, Theodore S.

    2007-01-01

    Summary The structures of glycoproteins that mediate enveloped virus entry into cells have revealed dramatic structural changes that accompany membrane fusion and provided mechanistic insights into this process. The group of class I viral fusion proteins includes the influenza hemagglutinin, paramyxovirus F, HIV env and other mechanistically related fusogens, but these proteins are unrelated in sequence and exhibit clearly distinct structural features. Recently determined crystal structures of the paramyxovirus F protein in two conformations, representing prefusion and postfusion states, reveal a novel protein architecture that undergoes large-scale, irreversible refolding during membrane fusion, extending our understanding of this diverse group of membrane fusion machines. PMID:17870467

  8. Diversity and community structure of fungi through a permafrost core profile from the Qinghai-Tibet Plateau of China.

    PubMed

    Hu, Weigang; Zhang, Qi; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; An, Lizhe; Feng, Huyuan

    2014-12-01

    While a vast number of studies have addressed the prokaryotic diversity in permafrost, characterized by subzero temperatures, low water activity, and extremely low rates of nutrient and metabolite transfer, fungal patterns have received surprisingly limited attention. Here, the fungal diversity and community structure were investigated by culture-dependent technique combined with cloning-restriction fragment length polymorphism (RFLP) analysis of sediments in a 10-m-long permafrost core from the Qinghai-Tibet Plateau of China. A total of 62 fungal phylotypes related to 10 distinct classes representing three phyla were recovered from 5031 clones generated in 13 environmental gene libraries. A large proportion of the phylotypes (25/62) that were distantly related to described fungal species appeared to be novel diversity. Ascomycota was the predominant group of fungi, with respect to both clone and phylotype number. Our results suggested there was the existence of cosmopolitan psychrophilic or psychrotolerant fungi in permafrost sediments, the community composition of fungi varied with increasing depth, while these communities largely distributed according to core layers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Diversity as a Natural Occurrence: An Enrichment Strategy of Peer Learning

    ERIC Educational Resources Information Center

    Crocitto, Madeline M.; Walsh, Lynn D.; Murphy, Albert; Keefe, Maureen A.

    2018-01-01

    Business educators are concerned with integrating diversity-related topics and seek methods by which to teach them. This paper suggests that as classes become more heterogeneous, the opportunity to examine diverse perspectives and experiences naturally arises in the course of class assignments and activities. The differential experiences of…

  10. Virtual Control Policy for Binary Ordered Resources Petri Net Class

    PubMed Central

    Rovetto, Carlos A.; Concepción, Tomás J.; Cano, Elia Esther

    2016-01-01

    Prevention and avoidance of deadlocks in sensor networks that use the wormhole routing algorithm is an active research domain. There are diverse control policies that will address this problem being our approach a new method. In this paper we present a virtual control policy for the new specialized Petri net subclass called Binary Ordered Resources Petri Net (BORPN). Essentially, it is an ordinary class constructed from various state machines that share unitary resources in a complex form, which allows branching and joining of processes. The reduced structure of this new class gives advantages that allow analysis of the entire system’s behavior, which is a prohibitive task for large systems because of the complexity and routing algorithms. PMID:27548170

  11. Biological Databases for Behavioral Neurobiology

    PubMed Central

    Baker, Erich J.

    2014-01-01

    Databases are, at their core, abstractions of data and their intentionally derived relationships. They serve as a central organizing metaphor and repository, supporting or augmenting nearly all bioinformatics. Behavioral domains provide a unique stage for contemporary databases, as research in this area spans diverse data types, locations, and data relationships. This chapter provides foundational information on the diversity and prevalence of databases, how data structures support the various needs of behavioral neuroscience analysis and interpretation. The focus is on the classes of databases, data curation, and advanced applications in bioinformatics using examples largely drawn from research efforts in behavioral neuroscience. PMID:23195119

  12. Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population.

    PubMed

    Castro-Prieto, Aines; Wachter, Bettina; Sommer, Simone

    2011-04-01

    For more than two decades, the cheetah (Acinonyx jubatus) has been considered a paradigm of disease vulnerability associated with low genetic diversity, particularly at the immune genes of the major histocompatibility complex (MHC). Cheetahs have been used as a classic example in numerous conservation genetics textbooks as well as in many related scientific publications. However, earlier studies used methods with low resolution to quantify MHC diversity and/or small sample sizes. Furthermore, high disease susceptibility was reported only for captive cheetahs, whereas free-ranging cheetahs show no signs of infectious diseases and a good general health status. We examined whether the diversity at MHC class I and class II-DRB loci in 149 Namibian cheetahs was higher than previously reported using single-strand conformation polymorphism analysis, cloning, and sequencing. MHC genes were examined at the genomic and transcriptomic levels. We detected ten MHC class I and four class II-DRB alleles, of which nine MHC class I and all class II-DRB alleles were expressed. Phylogenetic analyses and individual genotypes suggested that the alleles belong to four MHC class I and three class II-DRB putative loci. Evidence of positive selection was detected in both MHC loci. Our study indicated that the low number of MHC class I alleles previously observed in cheetahs was due to a smaller sample size examined. On the other hand, the low number of MHC class II-DRB alleles previously observed in cheetahs was further confirmed. Compared with other mammalian species including felids, cheetahs showed low levels of MHC diversity, but this does not seem to influence the immunocompetence of free-ranging cheetahs in Namibia and contradicts the previous conclusion that the cheetah is a paradigm species of disease vulnerability.

  13. Correlation analysis of genetic diversity and population structure of Houttuynia cordata Thunb with regard to environment.

    PubMed

    Zhong, J; Wu, F-C; Qiu, P; Dai, L-J

    2016-08-12

    To study the levels of genetic diversity, and population structure, of Houttuynia cordata Thunb, the genetic background and relationships of populations were analyzed in terms of environmental factors. The genetic diversity and population structure of H. cordata were investigated using sequence-related amplified polymorphisms and correlation with environmental factors was analyzed using the SPSS software. Two thousand one hundred sixty-three sites were amplified from 41 pairs of primers, 1825 of which were polymorphic, and the percentage of polymorphic loci was 84.37%; the percentage of polymorphic sites was 72.14 and 67.77% at the species and population level, respectively. The observed number of alleles was 1.52 and 1.30 at species and population level, respectively. The effective number of alleles was 1.38 and 1.24 at species and population level, respectively. The Nei's diversity was 0.26 and 0.15 at species and population level, respectively. The Shannon's information index was 0.87 and 0.63 at species and population level, respectively. The genetic differentiation coefficient of populations was 0.51, and 12 populations were divided into three classes based on D = 0.20; the genetic diversities of different populations are correlated at different significance levels (P < 0.05) with environmental factors. Genetic differentiation existed among populations and the populations exhibited heteroplasmy.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kattke, Michele D.; Chan, Albert H.; Duong, Andrew

    Here, many species of Gram-positive bacteria use sortase transpeptidases to covalently affix proteins to their cell wall or to assemble pili. Sortase-displayed proteins perform critical and diverse functions for cell survival, including cell adhesion, nutrient acquisition, and morphological development, among others. Based on their amino acid sequences, there are at least six types of sortases (class A to F enzymes); however, class E enzymes have not been extensively studied. Class E sortases are used by soil and freshwater-dwelling Actinobacteria to display proteins that contain a non-canonical LAXTG sorting signal, which differs from 90% of known sorting signals by substitution ofmore » alanine for proline. Here we report the first crystal structure of a class E sortase, the 1.93 Å resolution structure of the SrtE1 enzyme from Streptomyces coelicolor. The active site is bound to a tripeptide, providing insight into the mechanism of substrate binding. SrtE1 possesses β3/β4 and β6/β7 active site loops that contact the LAXTG substrate and are structurally distinct from other classes. We propose that SrtE1 and other class E sortases employ a conserved tyrosine residue within their β3/β4 loop to recognize the amide nitrogen of alanine at position P3 of the sorting signal through a hydrogen bond, as seen here. Incapability of hydrogen-bonding with canonical proline-containing sorting signals likely contributes to class E substrate specificity. Furthermore, we demonstrate that surface anchoring of proteins involved in aerial hyphae formation requires an N-terminal segment in SrtE1 that is presumably positioned within the cytoplasm. Combined, our results reveal unique features within class E enzymes that enable them to recognize distinct sorting signals, and could facilitate the development of substrate-based inhibitors of this important enzyme family.« less

  15. Fungal Diversity in Tomato Rhizosphere Soil under Conventional and Desert Farming Systems

    PubMed Central

    Kazerooni, Elham A.; Maharachchikumbura, Sajeewa S. N.; Rethinasamy, Velazhahan; Al-Mahrouqi, Hamed; Al-Sadi, Abdullah M.

    2017-01-01

    This study examined fungal diversity and composition in conventional (CM) and desert farming (DE) systems in Oman. Fungal diversity in the rhizosphere of tomato was assessed using 454-pyrosequencing and culture-based techniques. Both techniques produced variable results in terms of fungal diversity, with 25% of the fungal classes shared between the two techniques. In addition, pyrosequencing recovered more taxa compared to direct plating. These findings could be attributed to the ability of pyrosequencing to recover taxa that cannot grow or are slow growing on culture media. Both techniques showed that fungal diversity in the conventional farm was comparable to that in the desert farm. However, the composition of fungal classes and taxa in the two farming systems were different. Pyrosequencing revealed that Microsporidetes and Dothideomycetes are the two most common fungal classes in CM and DE, respectively. However, the culture-based technique revealed that Eurotiomycetes was the most abundant class in both farming systems and some classes, such as Microsporidetes, were not detected by the culture-based technique. Although some plant pathogens (e.g., Pythium or Fusarium) were detected in the rhizosphere of tomato, the majority of fungal species in the rhizosphere of tomato were saprophytes. Our study shows that the cultivation system may have an impact on fungal diversity. The factors which affected fungal diversity in both farms are discussed. PMID:28824590

  16. Marine Natural Products as Prototype Agrochemical Agents

    PubMed Central

    Peng, Jiangnan; Shen, Xiaoyu; El Sayed, Khalid A.; Dunbar, D. C Harles; Perry, Tony L.; Wilkins, Scott P.; Hamann, Mark T.; Bobzin, Steve; Huesing, Joseph; Camp, Robin; Prinsen, Mike; Krupa, Dan; Wideman, Margaret A.

    2016-01-01

    In the interest of identifying new leads that could serve as prototype agrochemical agents, 18 structurally diverse marine-derived compounds were examined for insecticidal, herbicidal, and fungicidal activities. Several new classes of compounds have been shown to be insecticidal, herbicidal, and fungicidal, which suggests that marine natural products represent an intriguing source for the discovery of new agrochemical agents. PMID:12670165

  17. Triazine-based sequence-defined polymers with side-chain diversity and backbone-backbone interaction motifs

    DOE PAGES

    Grate, Jay W.; Mo, Kai -For; Daily, Michael D.

    2016-02-10

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less

  18. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    PubMed

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Triazine-based sequence-defined polymers with side-chain diversity and backbone-backbone interaction motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Mo, Kai -For; Daily, Michael D.

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less

  20. Class in the Class: Sharing Bukowski's Class with Community College Students

    ERIC Educational Resources Information Center

    Hiraldo, Carlos

    2008-01-01

    Faculty members take pride in the great diversity of students attending LaGuardia Community College. Their students self-identify with various nationalities, races, religions, ethnicities, and sexual orientations. Not only do students adopt diverse identity markers, but they also come to their classroom with variant skill levels. It is difficult…

  1. Reconciling the Structural Attributes of Avian Antibodies*

    PubMed Central

    Conroy, Paul J.; Law, Ruby H. P.; Gilgunn, Sarah; Hearty, Stephen; Caradoc-Davies, Tom T.; Lloyd, Gordon; O'Kennedy, Richard J.; Whisstock, James C.

    2014-01-01

    Antibodies are high value therapeutic, diagnostic, biotechnological, and research tools. Combinatorial approaches to antibody discovery have facilitated access to unique antibodies by surpassing the diversity limitations of the natural repertoire, exploitation of immune repertoires from multiple species, and tailoring selections to isolate antibodies with desirable biophysical attributes. The V-gene repertoire of the chicken does not utilize highly diverse sequence and structures, which is in stark contrast to the mechanism employed by humans, mice, and primates. Recent exploitation of the avian immune system has generated high quality, high affinity antibodies to a wide range of antigens for a number of therapeutic, diagnostic and biotechnological applications. Furthermore, extensive examination of the amino acid characteristics of the chicken repertoire has provided significant insight into mechanisms employed by the avian immune system. A paucity of avian antibody crystal structures has limited our understanding of the structural consequences of these uniquely chicken features. This paper presents the crystal structure of two chicken single chain fragment variable (scFv) antibodies generated from large libraries by phage display against important human antigen targets, which capture two unique CDRL1 canonical classes in the presence and absence of a non-canonical disulfide constrained CDRH3. These structures cast light on the unique structural features of chicken antibodies and contribute further to our collective understanding of the unique mechanisms of diversity and biochemical attributes that render the chicken repertoire of particular value for antibody generation. PMID:24737329

  2. SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches.

    PubMed

    Mirihana Arachchilage, Gayan; Sherlock, Madeline E; Weinberg, Zasha; Breaker, Ronald R

    2018-03-04

    Five distinct riboswitch classes that regulate gene expression in response to the cofactor S-adenosylmethionine (SAM) or its metabolic breakdown product S-adenosylhomocysteine (SAH) have been reported previously. Collectively, these SAM- or SAH-sensing RNAs constitute the most abundant collection of riboswitches, and are found in nearly every major bacterial lineage. Here, we report a potential sixth member of this pervasive riboswitch family, called SAM-VI, which is predominantly found in Bifidobacterium species. SAM-VI aptamers selectively bind the cofactor SAM and strongly discriminate against SAH. The consensus sequence and structural model for SAM-VI share some features with the consensus model for the SAM-III riboswitch class, whose members are mainly found in lactic acid bacteria. However, there are sufficient differences between the two classes such that current bioinformatics methods separately cluster representatives of the two motifs. These findings highlight the abundance of RNA structures that can form to selectively recognize SAM, and showcase the ability of RNA to utilize diverse strategies to perform similar biological functions.

  3. Mimicking Heme Enzymes in the Solid State: Metal-Organic Materials with Selectively Encapsulated Heme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason

    2011-06-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal–organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a “ship-in-a-bottle” fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levelsmore » of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.« less

  4. Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme.

    PubMed

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M

    2011-07-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal-organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a "ship-in-a-bottle" fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  5. Diversity and Inclusion of Sociopolitical Issues in Foreign Language Classrooms: An Exploratory Survey.

    ERIC Educational Resources Information Center

    Kubota, Ryuko; Austin, Theresa; Saito-Abbott, Yoshiko

    2003-01-01

    Investigated diversity in the classroom, student background and learning experiences, and perceptions about the relationship between foreign language learning and issues of race, gender, class, and social justice among university students studying Spanish, Japanese, and Swahili. Found more racial diversity in Japanese and Swahili classes and in…

  6. Avibactam and Class C β-Lactamases: Mechanism of Inhibition, Conservation of the Binding Pocket, and Implications for Resistance

    PubMed Central

    Johnstone, M. R.; Ross, P. L.; McLaughlin, R. E.; Olivier, N. B.

    2014-01-01

    Avibactam is a novel non-β-lactam β-lactamase inhibitor that inhibits a wide range of β-lactamases. These include class A, class C, and some class D enzymes, which erode the activity of β-lactam drugs in multidrug-resistant pathogens like Pseudomonas aeruginosa and Enterobacteriaceae spp. Avibactam is currently in clinical development in combination with the β-lactam antibiotics ceftazidime, ceftaroline fosamil, and aztreonam. Avibactam has the potential to be the first β-lactamase inhibitor that might provide activity against class C-mediated resistance, which represents a growing concern in both hospital- and community-acquired infections. Avibactam has an unusual mechanism of action: it is a covalent inhibitor that acts via ring opening, but in contrast to other currently used β-lactamase inhibitors, this reaction is reversible. Here, we present a high-resolution structure of avibactam bound to a class C β-lactamase, AmpC, from P. aeruginosa that provided insight into the mechanism of both acylation and recyclization in this enzyme class and highlighted the differences observed between class A and class C inhibition. Furthermore, variants resistant to avibactam that identified the residues important for inhibition were isolated. Finally, the structural information was used to predict effective inhibition by sequence analysis and functional studies of class C β-lactamases from a large and diverse set of contemporary clinical isolates (P. aeruginosa and several Enterobacteriaceae spp.) obtained from recent infections to understand any preexisting variability in the binding pocket that might affect inhibition by avibactam. PMID:25022578

  7. A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae).

    PubMed

    Lord, Nathan P; Plimpton, Rebecca L; Sharkey, Camilla R; Suvorov, Anton; Lelito, Jonathan P; Willardson, Barry M; Bybee, Seth M

    2016-05-18

    Arthropods have received much attention as a model for studying opsin evolution in invertebrates. Yet, relatively few studies have investigated the diversity of opsin proteins that underlie spectral sensitivity of the visual pigments within the diverse beetles (Insecta: Coleoptera). Previous work has demonstrated that beetles appear to lack the short-wavelength-sensitive (SWS) opsin class that typically confers sensitivity to the "blue" region of the light spectrum. However, this is contrary to established physiological data in a number of Coleoptera. To explore potential adaptations at the molecular level that may compensate for the loss of the SWS opsin, we carried out an exploration of the opsin proteins within a group of beetles (Buprestidae) where short-wave sensitivity has been demonstrated. RNA-seq data were generated to identify opsin proteins from nine taxa comprising six buprestid species (including three male/female pairs) across four subfamilies. Structural analyses of recovered opsins were conducted and compared to opsin sequences in other insects across the main opsin classes-ultraviolet, short-wavelength, and long-wavelength. All nine buprestids were found to express two opsin copies in each of the ultraviolet and long-wavelength classes, contrary to the single copies recovered in all other molecular studies of adult beetle opsin expression. No SWS opsin class was recovered. Furthermore, the male Agrilus planipennis (emerald ash borer-EAB) expressed a third LWS opsin at low levels that is presumed to be a larval copy. Subsequent homology and structural analyses identified multiple amino acid substitutions in the UVS and LWS copies that could confer short-wavelength sensitivity. This work is the first to compare expressed opsin genes against known electrophysiological data that demonstrate multiple peak sensitivities in Coleoptera. We report the first instance of opsin duplication in adult beetles, which occurs in both the UVS and LWS opsin classes. Through structural comparisons of known insect opsins, we suggest that opsin duplication and amino acid variation within the chromophore binding pocket explains sensitivity in the short-wavelength portion of the visible light spectrum in these species. These findings are the first to reveal molecular complexity of the color vision system within beetles.

  8. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov; Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu; Krupovic, Mart, E-mail: krupovic@pasteur.fr

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangiblemore » clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes. - Highlights: • Eukaryotic virome dramatically differs from the viromes of bacteria and archaea. • Eukaryotic virome is dominated by RNA viruses and retroelements. • All classes of eukaryotic viruses evolved by gene module exchange. • Prokaryotic ancestry is traceable for core gene modules of most eukaryotic viruses. • Evolutionary histories of viruses and transposable elements are tightly linked.« less

  9. A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds† †Electronic supplementary information (ESI) available: Experimental procedures, characterization data and details of the computational analyses. See DOI: 10.1039/c5ob00371g Click here for additional data file.

    PubMed Central

    Isidro-Llobet, Albert; Hadje Georgiou, Kathy; Galloway, Warren R. J. D.; Giacomini, Elisa; Hansen, Mette R.; Méndez-Abt, Gabriela; Tan, Yaw Sing; Carro, Laura; Sore, Hannah F.

    2015-01-01

    Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity. PMID:25778821

  10. Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): Characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans

    PubMed Central

    Herget, Stephan; Toukach, Philip V; Ranzinger, René; Hull, William E; Knirel, Yuriy A; von der Lieth, Claus-Wilhelm

    2008-01-01

    Background There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance. Results The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties. Conclusion For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans. PMID:18694500

  11. A comparison of selected diversity, similarity, and biotic indices for detecting changes in benthic-invertebrate community structure and stream quality

    USGS Publications Warehouse

    Lydy, M.J.; Crawford, Charles G.; Frey, J.W.

    2000-01-01

    Implementation of advanced wastewater treatment at the two municipal wastewater-treatment plants for Indianapolis, Indiana, resulted in substantial improvement in the quality of the receiving stream and significant changes in the benthic-invertebrate community. Diversity, similarity, and biotic indices were compared to determine which indices best reflected changes in the composition of the biota in the river. None of the indices perfectly reflected the changes in river quality or community structure. Similarity indices, especially percentage similarity, exhibit the most promise of the three classes of indices. Diversity indices were least useful, wrongly indicating that water quality deteriorated after the upgrade of the wastewater-treatment plants. The most descriptive tool in analyzing the data was the percentage of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa present. Using a mixture of indices and other analytical tools, such as EPT, in the analysis of biological data will ensure the most effective investigations of water quality.

  12. How mammalian predation contributes to tropical tree community structure.

    PubMed

    Paine, C E Timothy; Beck, Harald; Terborgh, John

    2016-12-01

    The recruitment of seedlings from seeds is the key demographic transition for rain forest trees. Though tropical forest mammals are known to consume many seeds, their effects on tree community structure remain little known. To evaluate their effects, we monitored 8,000 seeds of 24 tree species using exclosure cages that were selectively permeable to three size classes of mammals for up to 4.4 years. Small and medium-bodied mammals removed many more seeds than did large mammals, and they alone generated beta diversity and negative density dependence, whereas all mammals reduced diversity and shaped local species composition. Thus, small and medium-bodied mammals more strongly contributed to community structure and promoted species coexistence than did large mammals. Given that seedling recruitment is seed limited for most species, alterations to the composition of the community of mammalian seed predators is expected to have long-term consequences for tree community structure in tropical forests. © 2016 by the Ecological Society of America.

  13. Designed synthesis of double-stage two-dimensional covalent organic frameworks

    PubMed Central

    Chen, Xiong; Addicoat, Matthew; Jin, Enquan; Xu, Hong; Hayashi, Taku; Xu, Fei; Huang, Ning; Irle, Stephan; Jiang, Donglin

    2015-01-01

    Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers in which organic building blocks are covalently and topologically linked to form extended crystalline polygon structures, constituting a new platform for designing π-electronic porous materials. However, COFs are currently synthesised by a few chemical reactions, limiting the access to and exploration of new structures and properties. The development of new reaction systems that avoid such limitations to expand structural diversity is highly desired. Here we report that COFs can be synthesised via a double-stage connection that polymerises various different building blocks into crystalline polygon architectures, leading to the development of a new type of COFs with enhanced structural complexity and diversity. We show that the double-stage approach not only controls the sequence of building blocks but also allows fine engineering of pore size and shape. This strategy is widely applicable to different polymerisation systems to yield hexagonal, tetragonal and rhombus COFs with predesigned pores and π-arrays. PMID:26456081

  14. Designed synthesis of double-stage two-dimensional covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Chen, Xiong; Addicoat, Matthew; Jin, Enquan; Xu, Hong; Hayashi, Taku; Xu, Fei; Huang, Ning; Irle, Stephan; Jiang, Donglin

    2015-10-01

    Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers in which organic building blocks are covalently and topologically linked to form extended crystalline polygon structures, constituting a new platform for designing π-electronic porous materials. However, COFs are currently synthesised by a few chemical reactions, limiting the access to and exploration of new structures and properties. The development of new reaction systems that avoid such limitations to expand structural diversity is highly desired. Here we report that COFs can be synthesised via a double-stage connection that polymerises various different building blocks into crystalline polygon architectures, leading to the development of a new type of COFs with enhanced structural complexity and diversity. We show that the double-stage approach not only controls the sequence of building blocks but also allows fine engineering of pore size and shape. This strategy is widely applicable to different polymerisation systems to yield hexagonal, tetragonal and rhombus COFs with predesigned pores and π-arrays.

  15. Oral Microbiota Distinguishes Acute Lymphoblastic Leukemia Pediatric Hosts from Healthy Populations

    PubMed Central

    Zhou, Xuedong; You, Meng; Du, Qin; Yang, Xue; He, Jingzhi; Zou, Jing; Cheng, Lei; Li, Mingyun; Li, Yuqing; Zhu, Yiping; Li, Jiyao; Shi, Wenyuan; Xu, Xin

    2014-01-01

    In leukemia, oral manifestations indicate aberrations in oral microbiota. Microbiota structure is determined by both host and environmental factors. In human hosts, how health status shapes the composition of oral microbiota is largely unknown. Taking advantage of advances in high-throughput sequencing, we compared the composition of supragingival plaque microbiota of acute lymphoblastic leukemia (ALL) pediatric patients with healthy controls. The oral microbiota of leukemia patients had lower richness and less diversity compared to healthy controls. Microbial samples clustered into two major groups, one of ALL patients and another of healthy children, with different structure and composition. Abundance changes of certain taxa including the Phylum Firmicutes, the Class Bacilli, the Order Lactobacillales, the Family Aerococcaceae and Carnobacteriaceae, as well as the Genus Abiotrophia and Granulicatella were associated with leukemia status. ALL patients demonstrated a structural imbalance of the oral microbiota, characterized by reduced diversity and abundance alterations, possibly involved in systemic infections, indicating the importance of immune status in shaping the structure of oral microbiota. PMID:25025462

  16. Living in the city: school friendships, diversity and the middle classes.

    PubMed

    Vincent, Carol; Neal, Sarah; Iqbal, Humera

    2018-06-01

    Much of the literature on the urban middle classes describes processes of both affiliation (often to the localities) and disaffiliation (often from some of the non-middle-class residents). In this paper, we consider this situation from a different position, drawing on research exploring whether and how children and adults living in diverse localities develop friendships with those different to themselves in terms of social class and ethnicity. This paper focuses on the interviews with the ethnically diverse, but predominantly white British, middle-class parent participants, considering their attitudes towards social and cultural difference. We emphasize the importance of highlighting inequalities that arise from social class and its intersection with ethnicity in analyses of complex urban populations. The paper's contribution is, first, to examine processes of clustering amongst the white British middle-class parents, particularly in relation to social class. Second, we contrast this process, and its moments of reflection and unease, with the more deliberate and purposeful efforts of one middle-class, Bangladeshi-origin mother who engages in active labour to facilitate relationships across social and ethnic difference. © London School of Economics and Political Science 2017.

  17. Lesser snow goose helminths show recurring and positive parasite infection-diversity relations.

    PubMed

    Dargent, Felipe; Morrill, André; Alisauskas, Ray T; McLaughlin, J Daniel; Shutler, Dave; Forbes, Mark R

    2017-04-01

    The patterns and mechanisms by which biological diversity is associated with parasite infection risk are important to study because of their potential implications for wildlife population's conservation and management. Almost all research in this area has focused on host species diversity and has neglected parasite diversity, despite evidence that parasites are important drivers of community structure and ecosystem processes. Here, we assessed whether presence or abundance of each of nine helminth species parasitizing lesser snow geese ( Chen caerulescens ) was associated with indices of parasite diversity (i.e. species richness and Shannon's Diversity Index). We found repeated instances of focal parasite presence and abundance having significant positive co-variation with diversity measures of other parasites. These results occurred both within individual samples and for combinations of all samples. Whereas host condition and parasite facilitation could be drivers of the patterns we observed, other host- or parasite-level effects, such as age or sex class of host or taxon of parasite, were discounted as explanatory variables. Our findings of recurring and positive associations between focal parasite abundance and diversity underscore the importance of moving beyond pairwise species interactions and contexts, and of including the oft-neglected parasite species diversity in infection-diversity studies.

  18. Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors

    PubMed Central

    2014-01-01

    Background SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. Results The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. Conclusion Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity. PMID:25678957

  19. Is Their Class in This Room?: Focusing on Class in Diverse Classrooms

    ERIC Educational Resources Information Center

    Hiraldo, Carlos

    2011-01-01

    As the increasing racial diversity of the United States continues to be reflected in colleges and universities across the country, academics who think and write about their teaching philosophy remain more comfortable arguing for a curriculum that deals with race and gender than for one that centers on class and social mobility. Some academics feel…

  20. Teaching the 2008 Presidential Election at Three Demographically Diverse Schools: An Exercise in Neoliberal Governmentality

    ERIC Educational Resources Information Center

    Journell, Wayne

    2011-01-01

    This article describes the disparity in political instruction found in six government classes from three demographically diverse high schools during the 2008 Presidential Election. In general, students from working-class households or those in lower-level classes were rarely given opportunities to discuss politics at a national level or engage in…

  1. Different Strokes for Different Folks: Diverse Students in Diverse Institutions--Experiences of Higher Education

    ERIC Educational Resources Information Center

    Crozier, Gill; Reay, Diane; Clayton, John; Colliander, Lori; Grinstead, Jan

    2008-01-01

    In the context of widening participation policies, polarisation of types of university recruitment and a seemingly related high drop-out rate amongst first generation, working class students, we focus on the provision offered by the universities to their students. We discuss how middle class and working class student experiences compare across…

  2. A Qualitative Dissertation an Autoethnographic Inquiry into an African American, Class-Based Perspective in Educational Delivery

    ERIC Educational Resources Information Center

    Anderson, Stassi Thomas

    2017-01-01

    Research has given us the understanding of the demographic disparity between white, largely middle class teachers and diverse lower socioeconomic school children (Grious & Silva, 2010), as teachers from the middle class society wrestle with meeting the needs of their culturally diverse students. In efforts to bridge the social and academic…

  3. Genetic and Metabolite Diversity of Sardinian Populations of Helichrysum italicum

    PubMed Central

    Melito, Sara; Sias, Angela; Petretto, Giacomo L.; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Background Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. Key results The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. Conclusions The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil. PMID:24260149

  4. An Ethnography of Children's Friendships in a Fifth-Grade Culturally Diverse Class.

    ERIC Educational Resources Information Center

    Deegan, James G.

    The purpose of this ethnographic study was to examine friendships of early adolescents in a culturally diverse fifth grade class in an urban elementary school in the southeastern United States. The study described and interpreted the experiences of being a friend and having a friend in a culturally diverse classroom. The approach was grounded in…

  5. Microbial Community Structure and Diversity in an Integrated System of Anaerobic-Aerobic Reactors and a Constructed Wetland for the Treatment of Tannery Wastewater in Modjo, Ethiopia

    PubMed Central

    Desta, Adey Feleke; Assefa, Fassil; Leta, Seyoum; Stomeo, Francesca; Wamalwa, Mark; Njahira, Moses; Appolinaire, Djikeng

    2014-01-01

    A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%–96% for COD, 91%–100% for SO42- and S2-, 92%–94% for BOD, 56%–82% for total Nitrogen and 2%–90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU) - based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%), Betaproteobacteria (10%), Bacteroidia (10%), Deltaproteobacteria (9%) and Gammaproteobacteria (6%). Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia. PMID:25541981

  6. Linking Carbonic Anhydrase Abundance and Diversity in Soils to Ecological Function

    NASA Astrophysics Data System (ADS)

    Pang, E.; Meredith, L. K.; Welander, P. V.

    2015-12-01

    Carbonic anhydrase (CA) is an ancient enzyme widespread among bacteria, archaea, and eukarya that catalyzes the following reaction: CO2 + H2O ⇌ HCO3- + H+. Its functions are critical for key cellular processes such as concentrating CO2 for autotrophic growth, pH regulation, and pathogen survival in hosts. Currently, there are six known CA classes (α, β, γ, δ, η, ζ) arising from several distinct evolutionary lineages. CA are widespread in sequenced genomes, with many organisms containing multiple classes of CA or multiple CA of the same class. Soils host rich microbial communities with diverse and important ecological functions, but the diversity and abundance of CA in soils has not been explored. CA appears to play an important, but poorly understood, role in some biogeochemical cycles such as those of CO2 and its oxygen isotope composition and also carbonyl sulfide (COS), which are potential tracers in predictive carbon cycle models. Recognizing the prevalence and functional significance of CA in soils, we used a combined bioinformatics and molecular biology approach to address fundamental questions regarding the abundance, diversity, and function of CA in soils. To characterize the abundance and diversity of the different CA classes in soils, we analyzed existing soil metagenomic and metatranscriptomic data from the DOE Joint Genome Institute databases. Out of the six classes of CA, we only found the α, β, and γ classes to be present in soils, with the β class being the most abundant. We also looked at genomes of sequenced soil microorganisms to learn what combination of CA classes they contain, from which we can begin to predict the physiological role of CA. To characterize the functional roles of the different CA classes in soils, we collected soil samples from a variety of biomes with diverse chemical and physical properties and quantified the rate of two CA-mediated processes: soil uptake of COS and acceleration of the oxygen isotope exchange between CO2 and H2O. We employed PCR-based methods to quantify the abundance and diversity of CA encoding genes and their expression in our samples to link CA classes to the gas flux data. These studies provide the first survey of CA in soils, a step towards understanding CA's potentially significant role in microbial survival and microbe-mediated biogeochemical cycles.

  7. Use of an airborne lidar system to model plant species composition and diversity of Mediterranean oak forests.

    PubMed

    Simonson, William D; Allen, Harriet D; Coomes, David A

    2012-10-01

    Airborne lidar is a remote-sensing tool of increasing importance in ecological and conservation research due to its ability to characterize three-dimensional vegetation structure. If different aspects of plant species diversity and composition can be related to vegetation structure, landscape-level assessments of plant communities may be possible. We examined this possibility for Mediterranean oak forests in southern Portugal, which are rich in biological diversity but also threatened. We compared data from a discrete, first-and-last return lidar data set collected for 31 plots of cork oak (Quercus suber) and Algerian oak (Quercus canariensis) forest with field data to test whether lidar can be used to predict the vertical structure of vegetation, diversity of plant species, and community type. Lidar- and field-measured structural data were significantly correlated (up to r= 0.85). Diversity of forest species was significantly associated with lidar-measured vegetation height (R(2) = 0.50, p < 0.001). Clustering and ordination of the species data pointed to the presence of 2 main forest classes that could be discriminated with an accuracy of 89% on the basis of lidar data. Lidar can be applied widely for mapping of habitat and assessments of habitat condition (e.g., in support of the European Species and Habitats Directive [92/43/EEC]). However, particular attention needs to be paid to issues of survey design: density of lidar points and geospatial accuracy of ground-truthing and its timing relative to acquisition of lidar data. ©2012 Society for Conservation Biology.

  8. School feeding program has resulted in improved dietary diversity, nutritional status and class attendance of school children.

    PubMed

    Zenebe, Mastewal; Gebremedhin, Samson; Henry, Carol J; Regassa, Nigatu

    2018-01-23

    School Feeding Program (SFP) is a targeted safety net program designed to provide educational and health benefits to vulnerable children. However, limited evidence exists regarding the effect of the intervention on the nutritional status and school attendance of children. The study is aimed at examining the effects of SFP on dietary diversity, nutritional status and class attendance of school children in Boricha district, Southern Ethiopia. The study was conducted based on a representative data collected from 290 students drawn from the district. A school-based comparative cross-sectional study was conducted on school children aged 10-14 years. Data were collected using structured pretested questionnaire. The effects of SFP on dietary diversity score (DDS), class attendance rate, body-mass-index for age (BAZ) and height-for-age (HAZ) Z-scores were assessed using multivariable linear regression model. The finding showed significantly higher mean (±SD) of DDS in SFP beneficiaries (5.8 ± 1.1) than the non-beneficiaries (3.5 ± 0.7) (P < 0.001). BAZ and HAZ of the beneficiaries were also higher than their counterparts, which were (0.07 ± 0.93), (- 0.50 ± 0.86) and (- 1.45 ± 1.38), (- 2.17 ± 1.15) respectively (P < 0.001). The mean (±SD) days of absence from school for non-beneficiaries (2.6 ± 1.6) was significantly higher than that of the beneficiaries (1.3 ± 1.7) (P < 0.05). Given the positive effects of the program in improving the DDS, nutritional status, and class attendance of school children, we strongly recommend scaling up the program to other food insecure areas.

  9. The Astonishing Diversity of Ig Classes and B Cell Repertoires in Teleost Fish

    PubMed Central

    Fillatreau, Simon; Six, Adrien; Magadan, Susanna; Castro, Rosario; Sunyer, J. Oriol; Boudinot, Pierre

    2013-01-01

    With lymphoid tissue anatomy different than mammals, and diverse adaptations to all aquatic environments, fish constitute a fascinating group of vertebrate to study the biology of B cell repertoires in a comparative perspective. Fish B lymphocytes express immunoglobulin (Ig) on their surface and secrete antigen-specific antibodies in response to immune challenges. Three antibody classes have been identified in fish, namely IgM, IgD, and IgT, while IgG, IgA, and IgE are absent. IgM and IgD have been found in all fish species analyzed, and thus seem to be primordial antibody classes. IgM and IgD are normally co-expressed from the same mRNA through alternative splicing, as in mammals. Tetrameric IgM is the main antibody class found in serum. Some species of fish also have IgT, which seems to exist only in fish and is specialized in mucosal immunity. IgM/IgD and IgT are expressed by two different sub-populations of B cells. The tools available to investigate B cell responses at the cellular level in fish are limited, but the progress of fish genomics has started to unravel a rich diversity of IgH and immunoglobulin light chain locus organization, which might be related to the succession of genome remodelings that occurred during fish evolution. Moreover, the development of deep sequencing techniques has allowed the investigation of the global features of the expressed fish B cell repertoires in zebrafish and rainbow trout, in steady state or after infection. This review provides a description of the organization of fish Ig loci, with a particular emphasis on their heterogeneity between species, and presents recent data on the structure of the expressed Ig repertoire in healthy and infected fish. PMID:23408183

  10. "Not Everybody Walks around and Thinks 'That's an Example of Othering or Stigmatisation'": Identity, Pedagogic Rights and the Acquisition of Undergraduate Sociology-Based Social Science Knowledge

    ERIC Educational Resources Information Center

    McLean, Monica; Abbas, Andrea; Ashwin, Paul

    2015-01-01

    This article places itself in conversation with literature about how the experience and outcomes of university education are structured by intersections between social class, ethnicity, gender, age and type of university attended. It addresses undergraduate students' acquisition of sociological knowledge in four diverse university settings. Basil…

  11. Neighborhood diversity of large trees shows independent species patterns in a mixed dipterocarp forest in Sri Lanka.

    PubMed

    Punchi-Manage, Ruwan; Wiegand, Thorsten; Wiegand, Kerstin; Getzin, Stephan; Huth, Andreas; Gunatilleke, C V Savitri; Gunatilleke, I A U Nimal

    2015-07-01

    Interactions among neighboring individuals influence plant performance and should create spatial patterns in local community structure. In order to assess the role of large trees in generating spatial patterns in local species richness, we used the individual species-area relationship (ISAR) to evaluate the species richness of trees of different size classes (and dead trees) in circular neighborhoods with varying radius around large trees of different focal species. To reveal signals of species interactions, we compared the ISAR function of the individuals of focal species with that of randomly selected nearby locations. We expected that large trees should strongly affect the community structure of smaller trees in their neighborhood, but that these effects should fade away with increasing size class. Unexpectedly, we found that only few focal species showed signals of species interactions with trees of the different size classes and that this was less likely for less abundant focal species. However, the few and relatively weak departures from independence were consistent with expectations of the effect of competition for space and the dispersal syndrome on spatial patterns. A noisy signal of competition for space found for large trees built up gradually with increasing life stage; it was not yet present for large saplings but detectable for intermediates. Additionally, focal species with animal-dispersed seeds showed higher species richness in their neighborhood than those with gravity- and gyration-dispersed seeds. Our analysis across the entire ontogeny from recruits to large trees supports the hypothesis that stochastic effects dilute deterministic species interactions in highly diverse communities. Stochastic dilution is a consequence of the stochastic geometry of biodiversity in species-rich communities where the identities of the nearest neighbors of a given plant are largely unpredictable. While the outcome of local species interactions is governed for each plant by deterministic fitness and niche differences, the large variability of competitors causes also a large variability in the outcomes of interactions and does not allow for strong directed responses at the species level. Collectively, our results highlight the critical effect of the stochastic geometry of biodiversity in structuring local spatial patterns of tropical forest diversity.

  12. Positionings of Racial, Ethnic, and Linguistic Minority Students in High School Biology Class: Implications for Science Education in Diverse Classrooms

    ERIC Educational Resources Information Center

    Ryu, Minjung

    2015-01-01

    In the present study, I analyze ethnographic data from a year-long study of two Advanced Placement (AP) Biology classes that enrolled students with diverse racial, ethnic, and linguistic backgrounds. Specifically, I consider participation, positioning, and learning of newcomer Korean students in the focal classes. Building on the notion of figured…

  13. Teaching Business Law to Non-Law Students, Culturally and Linguistically Diverse ("CaLD") Students, and Large Classes

    ERIC Educational Resources Information Center

    Kariyawasam, Kanchana; Low, Hang Yen

    2014-01-01

    This paper is largely based on the experience of teaching law to students with non-legal background in business schools, with a focus on internationalisation and the large class lecture format. Business schools often consist of large classes which include a significant proportion of Culturally and Linguistically Diverse (CaLD) students. Teaching a…

  14. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin.

    PubMed

    Pearson, Leanne; Mihali, Troco; Moffitt, Michelle; Kellmann, Ralf; Neilan, Brett

    2010-05-10

    The cyanobacteria or "blue-green algae", as they are commonly termed, comprise a diverse group of oxygenic photosynthetic bacteria that inhabit a wide range of aquatic and terrestrial environments, and display incredible morphological diversity. Many aquatic, bloom-forming species of cyanobacteria are capable of producing biologically active secondary metabolites, which are highly toxic to humans and other animals. From a toxicological viewpoint, the cyanotoxins span four major classes: the neurotoxins, hepatotoxins, cytotoxins, and dermatoxins (irritant toxins). However, structurally they are quite diverse. Over the past decade, the biosynthesis pathways of the four major cyanotoxins: microcystin, nodularin, saxitoxin and cylindrospermopsin, have been genetically and biochemically elucidated. This review provides an overview of these biosynthesis pathways and additionally summarizes the chemistry and toxicology of these remarkable secondary metabolites.

  15. Bacterial Diversity and Community Structure of Supragingival Plaques in Adults with Dental Health or Caries Revealed by 16S Pyrosequencing

    PubMed Central

    Xiao, Cuicui; Ran, Shujun; Huang, Zhengwei; Liang, Jingping

    2016-01-01

    Dental caries has a polymicrobial etiology within the complex oral microbial ecosystem. However, the overall diversity and structure of supragingival plaque microbiota in adult dental health and caries are not well understood. Here, 160 supragingival plaque samples from patients with dental health and different severities of dental caries were collected for bacterial genomic DNA extraction, pyrosequencing by amplification of the 16S rDNA V1–V3 hypervariable regions, and bioinformatic analysis. High-quality sequences (2,261,700) clustered into 10,365 operational taxonomic units (OTUs; 97% identity), representing 453 independent species belonging to 122 genera, 66 families, 34 orders, 21 classes, and 12 phyla. All groups shared 7522 OTUs, indicating the presence of a core plaque microbiome. α diversity analysis showed that the microbial diversity in healthy plaques exceeded that of dental caries, with the diversity decreasing gradually with the severity of caries. The dominant phyla of plaque microbiota included Bacteroidetes, Actinobacteria, Proteobacteria, Firmicutes, Fusobacteria, and TM7. The dominant genera included Capnocytophaga, Prevotella, Actinomyces, Corynebacterium, Neisseria, Streptococcus, Rothia, and Leptotrichia. β diversity analysis showed that the plaque microbial community structure was similar in all groups. Using LEfSe analysis, 25 differentially abundant taxa were identified as potential biomarkers. Key genera (27) that potentially contributed to the differential distributions of plaque microbiota between groups were identified by PLS-DA analysis. Finally, co-occurrence network analysis and function predictions were performed. Treatment strategies directed toward modulating microbial interactions and their functional output should be further developed. PMID:27499752

  16. Ontology and Knowledgebase of Fractures and Faults

    NASA Astrophysics Data System (ADS)

    Aydin, A.; Zhong, J.

    2007-12-01

    Fractures and faults are related to many societal and industrial problems including oil and gas exploration and production, CO2 sequestration, and waste isolation. Therefore, an ontology focusing fractures and faults is desirable to facilitate a sound education and communication among this highly diverse community. We developed an ontology for this field. Some high level classes in our ontology include geological structure, deformation mechanism, and property or factor. Throughout our ontology, we emphasis the relationship among the classes, such as structures formed by mechanisms and properties effect the mechanism that will occur. At this stage, there are about 1,000 classes, referencing about 150 articles or textbook and supplemented by about 350 photographs, diagrams, and illustrations. With limited time and resources, we chose a simple application for our ontology - transforming to a knowledgebase made of a series of web pages. Each web page corresponds to one class in the ontology, having discussion, figures, links to subclass and related concepts, as well as references. We believe that our knowledgebase is a valuable resource for finding information about fractures and faults, to both practicing geologists and students who are interested in the related issues either in application or in education and training.

  17. Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity

    NASA Astrophysics Data System (ADS)

    Leyequien, Euridice; Verrelst, Jochem; Slot, Martijn; Schaepman-Strub, Gabriela; Heitkönig, Ignas M. A.; Skidmore, Andrew

    2007-02-01

    Amongst many ongoing initiatives to preserve biodiversity, the Millennium Ecosystem Assessment again shows the importance to slow down the loss of biological diversity. However, there is still a gap in the overview of global patterns of species distributions. This paper reviews how remote sensing has been used to assess terrestrial faunal diversity, with emphasis on proxies and methodologies, while exploring prospective challenges for the conservation and sustainable use of biodiversity. We grouped and discussed papers dealing with the faunal taxa mammals, birds, reptiles, amphibians, and invertebrates into five classes of surrogates of animal diversity: (1) habitat suitability, (2) photosynthetic productivity, (3) multi-temporal patterns, (4) structural properties of habitat, and (5) forage quality. It is concluded that the most promising approach for the assessment, monitoring, prediction, and conservation of faunal diversity appears to be the synergy of remote sensing products and auxiliary data with ecological biodiversity models, and a subsequent validation of the results using traditional observation techniques.

  18. Glycolipids from seaweeds and their potential biotechnological applications.

    PubMed

    Plouguerné, Erwan; da Gama, Bernardo A P; Pereira, Renato C; Barreto-Bergter, Eliana

    2014-01-01

    Marine macroalgae, or seaweeds, are a formidable source of natural compounds with diverse biological activities. In the last five decades it has been estimated that more than 3000 natural compounds were discovered from these organisms. The great majority of the published works have focused on terpenoids. In comparison, glycolipids are a neglected class of macroalgal secondary metabolites therefore remaining as a largely unknown reservoir of molecular diversity. Nevertheless, the interest regarding these compounds has been growing fast in the last decades as activities of ecological or pharmaceutical interest have been highlighted. This paper will review recent work regarding isolation and structural characterization of glycolipids from seaweeds and their prospective biological activities.

  19. In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future

    NASA Astrophysics Data System (ADS)

    Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy

    2017-06-01

    Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.

  20. Antibiotic Capture by Bacterial Lipocalins Uncovers an Extracellular Mechanism of Intrinsic Antibiotic Resistance

    PubMed Central

    El-Halfawy, Omar M.; Klett, Javier; Ingram, Rebecca J.; Loutet, Slade A.; Murphy, Michael E. P.; Martín-Santamaría, Sonsoles

    2017-01-01

    ABSTRACT The potential for microbes to overcome antibiotics of different classes before they reach bacterial cells is largely unexplored. Here we show that a soluble bacterial lipocalin produced by Burkholderia cenocepacia upon exposure to sublethal antibiotic concentrations increases resistance to diverse antibiotics in vitro and in vivo. These phenotypes were recapitulated by heterologous expression in B. cenocepacia of lipocalin genes from Pseudomonas aeruginosa, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus. Purified lipocalin bound different classes of bactericidal antibiotics and contributed to bacterial survival in vivo. Experimental and X-ray crystal structure-guided computational studies revealed that lipocalins counteract antibiotic action by capturing antibiotics in the extracellular space. We also demonstrated that fat-soluble vitamins prevent antibiotic capture by binding bacterial lipocalin with higher affinity than antibiotics. Therefore, bacterial lipocalins contribute to antimicrobial resistance by capturing diverse antibiotics in the extracellular space at the site of infection, which can be counteracted by known vitamins. PMID:28292982

  1. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    PubMed

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.

  2. Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems

    PubMed Central

    Bocian-Ostrzycka, Katarzyna M.; Grzeszczuk, Magdalena J.; Dziewit, Lukasz; Jagusztyn-Krynicka, Elżbieta K.

    2015-01-01

    The bacterial proteins of the Dsb family—important components of the post-translational protein modification system—catalyze the formation of disulfide bridges, a process that is crucial for protein structure stabilization and activity. Dsb systems play an essential role in the assembly of many virulence factors. Recent rapid advances in global analysis of bacteria have thrown light on the enormous diversity among bacterial Dsb systems. While the Escherichia coli disulfide bond-forming system is quite well understood, the mechanisms of action of Dsb systems in other bacteria, including members of class Epsilonproteobacteria that contain pathogenic and non-pathogenic bacteria colonizing extremely diverse ecological niches, are poorly characterized. Here we present a review of current knowledge on Epsilonproteobacteria Dsb systems. We have focused on the Dsb systems of Campylobacter spp. and Helicobacter spp. because our knowledge about Dsb proteins of Wolinella and Arcobacter spp. is still scarce and comes mainly from bioinformatic studies. Helicobacter pylori is a common human pathogen that colonizes the gastric epithelium of humans with severe consequences. Campylobacter spp. is a leading cause of zoonotic enteric bacterial infections in most developed and developing nations. We focus on various aspects of the diversity of the Dsb systems and their influence on pathogenicity, particularly because Dsb proteins are considered as potential targets for a new class of anti-virulence drugs to treat human infections by Campylobacter or Helicobacter spp. PMID:26106374

  3. Fish community structure in natural and engineered habitats in the Kansas River

    USGS Publications Warehouse

    White, K.; Gerken, J.; Paukert, Craig P.; Makinster, Andrew S.

    2010-01-01

    We investigated fish assemblage structure in engineered (rip-rap) and natural habitats (log jams and mud banks) in the Kansas River USA to determine if natural structures had higher abundance and diversity of fishes at a local spatial scale. A total of 439 randomly selected sites were boat electrofished from May to August 2005 and 2006. Mean species diversity and richness were significantly higher in rip-rap than log jams and mud banks. Mean relative abundance (CPUE; number of fish collected per hour electrofishing) of six of the 15 most common fishes (>1% of total catch) were most abundant in rip-rap, two were most abundant in log jams, and none in mud banks. Rip-rap had the highest relative abundance of fluvial specialist and macrohabitat generalists, whereas mean CPUE of fluvial dependents was highest in log jams. Although a discriminant function analysis indicated that nine size classes (eight species) discriminated among three habitat types, the high misclassification rate (38%) suggested a high degree of fish assemblage overlap among the habitats. Although previous work has suggested that engineered structures (rip-rap) and urbanization are linked to reduced biotic diversity or reduced growth of fish species, our results suggest that at a local scale rip-rap may not have the same negative impacts on fish assemblages.

  4. Fish community structure in natural and engineered habitats in the Kansas river

    USGS Publications Warehouse

    White, K.; Gerken, J.; Paukert, C.; Makinster, A.

    2010-01-01

    We investigated fish assemblage structure in engineered (rip-rap) and natural habitats (log jams and mud banks) in the Kansas River USA to determine if natural structures had higher abundance and diversity of fishes at a local spatial scale. A total of 439 randomly selected sites were boat electrofished from May to August 2005 and 2006. Mean species diversity and richness were significantly higher in rip-rap than log jams and mud banks. Mean relative abundance (CPUE; number of fish collected per hour electrofishing) of six of the 15 most common fishes (>1% of total catch) were most abundant in rip-rap, two were most abundant in log jams, and none in mud banks. Rip-rap had the highest relative abundance of fluvial specialist and macrohabitat generalists, whereas mean CPUE of fluvial dependents was highest in log jams. Although a discriminant function analysis indicated that nine size classes (eight species) discriminated among three habitat types, the high misclassification rate (38%) suggested a high degree of fish assemblage overlap among the habitats. Although previous work has suggested that engineered structures (rip-rap) and urbanization are linked to reduced biotic diversity or reduced growth of fish species, our results suggest that at a local scale rip-rap may not have the same negative impacts on fish assemblages.

  5. Functional assignment to JEV proteins using SVM.

    PubMed

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).

  6. Functional assignment to JEV proteins using SVM

    PubMed Central

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP). PMID:19052658

  7. [Microbial diversity of sediments from the coasts of Dalian Changshan Islands].

    PubMed

    Li, Jialin; Wang, Zhonghua; Qin, Song; Wang, Guangyi

    2011-05-01

    To understand the impacts of anthropogenic activities on structure and composition of bacterial communities and to evaluate how bacterial communities respond to environmental gradients at coastal sediments. The diversity of bacterial communities in sediments from tourist and mariculture zones at coastal area of Dalian Changshan Islands was assessed using terminal restriction fragment length polymorphism (t-RFLP) and denaturing gradient gel electrophoresis (DGGE) approaches. Meanwhile, 16S rRNA clone library was constructed to reveal the composition and structure of bacterial communities in the most seriously polluted site (D4). There were much higher values of richness, Shannon-wiener and evenness index at D4 site by the analysis of terminal restriction fragments (t-RFs). The clustering result on the t-RFs areas and DGGE patterns showed that the bacterial diversity of tourist zone were more similar, while the distinction was increased with pollution levels among the tourist and mariculture zones. The 16S rRNA clone of D4 revealed that the Proteobacteria were the dominant phylum, and gamma-proteobacteria was the main class within Proteobacteria. The study documented changes in bacterial community structure by human impacts of mariculture than geographical location.

  8. Polymorphism in magic-sized Au144(SR)60 clusters

    NASA Astrophysics Data System (ADS)

    Jensen, Kirsten M. Ø.; Juhas, Pavol; Tofanelli, Marcus A.; Heinecke, Christine L.; Vaughan, Gavin; Ackerson, Christopher J.; Billinge, Simon J. L.

    2016-06-01

    Ultra-small, magic-sized metal nanoclusters represent an important new class of materials with properties between molecules and particles. However, their small size challenges the conventional methods for structure characterization. Here we present the structure of ultra-stable Au144(SR)60 magic-sized nanoclusters obtained from atomic pair distribution function analysis of X-ray powder diffraction data. The study reveals structural polymorphism in these archetypal nanoclusters. In addition to confirming the theoretically predicted icosahedral-cored cluster, we also find samples with a truncated decahedral core structure, with some samples exhibiting a coexistence of both cluster structures. Although the clusters are monodisperse in size, structural diversity is apparent. The discovery of polymorphism may open up a new dimension in nanoscale engineering.

  9. Higher stability in forest-atmosphere exchange observed in a structurally diverse forest.

    NASA Astrophysics Data System (ADS)

    Tamrakar, R.; Rayment, M.; Moyano, F.; Herbst, M.; Mund, M.; Knohl, A.

    2016-12-01

    We tested the hypothesis that structurally diverse forests have greater stability on exchange processes with the atmosphere compared to forests with less diverse structure. In a case study, we assessed how net ecosystem exchange (NEE) and normalized maximum assimilation (Amax) varied over time in two forests in Germany based on 11 years of continuous eddy flux measurements. The two sites differ in structure as well as in species composition: one (Hainich) is an unmanaged, uneven-aged and heterogeneous mixed beech forest (65% beech), the other (Leinefelde) is a managed, even-aged and homogeneous pure beech stand. The two selected forests are of similar mean ages (about 130 years old) and exposed to similar air temperatures and vapour pressure deficits. Even though Hainich (the unmanaged forest) received higher rainfall (720 ± 134 mm vs 599±166 mm), the soil water availability showed no significant difference between both sites. Based on detailed biomass inventory, trees in Hainich are well distributed in all diameter at breast height (dbh) classes (10 to 90cm dbh) whereas in Leinefelde (the managed forest) trees are mostly confined to dbh classes of 40 to 55 cm. Our results showed a strong difference in inter-annual variability of NEE, which was lower in the unmanaged than in the managed site (coefficient of variation (CV) of 0.13 and 0.27, respectively). The lowest NEE was observed in both sites in 2004, a mast year and a year after the strong summer drought of 2003. The variation in the inter-annual normalized maximum assimilation (Amax) was lower in Hainich (standard deviation of 2.5 compared to 3.9 µmol m-2 s-1). Also, the seasonal course of Amax differed between the two forests which could explain why the mixed forest was more affected by the late summer drought of 2003, despite showing a more conservative carbon budget than the pure stand in the long term. The interannual anomaly in Amax was correlated with fruit production, the latter being larger in Leinefelde (CV of 1.37 vs. 1.18). Our data provide evidence from a case study that exchange processes with the atmosphere are more stable in structurally diverse forests, yet a confirmation covering multiple sites is still pending.

  10. Structure-based classification and ontology in chemistry

    PubMed Central

    2012-01-01

    Background Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures), while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies. Results We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches. Conclusion Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational utilities including algorithmic, statistical and logic-based tools. For the task of automatic structure-based classification of chemical entities, essential to managing the vast swathes of chemical data being brought online, systems which are capable of hybrid reasoning combining several different approaches are crucial. We provide a thorough review of the available tools and methodologies, and identify areas of open research. PMID:22480202

  11. 7TM X-ray structures for class C GPCRs as new drug-discovery tools. 1. mGluR5.

    PubMed

    Topiol, Sid; Sabio, Michael

    2016-01-15

    We illustrate, with a focus on mGluR5, how the recently published, first X-ray structures of mGluR 7TM domains, specifically those of mGluR1 and mGluR5 complexed with negative allosteric modulators (NAMs), will begin to influence ligand- (e.g., drug- or sweetener-) discovery efforts involving class C GPCRs. With an extensive docking study allowing full ligand flexibility and full side chain flexibility of all residues in the ligand-binding cavity, we have predicted and analyzed the binding modes of a variety of structurally diverse mGluR5 NAM ligands, showing how the X-ray structures serve to effectively rationalize each ligand's binding characteristics. We demonstrated that the features that are inherent in our earlier overlay model are preserved in the protein structure-based docking models. We identified structurally diverse compounds, which potentially act as mGluR NAMs, and revealed binding-site differences by performing high-throughput docking using a database of approximately six million structures of commercially available compounds and the mGluR1 and mGluR5 X-ray structures. By comparing the 7TM domains of the mGluR5 and mGluR1 X-rays structures, we identified selectivity factors within group I of the mGluRs. Similarly, using homology models that we built for mGluR2 and mGluR4, we have identified the factors leading to the selectivity between group I and groups II and III for ligands occupying the deepest portion of the mGluR5 binding cavity. Finally, we have proposed a structure-based explanation of the pharmacological switching within a set of positive allosteric modulators (PAMs) and their corresponding, very close NAM analogs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Cattle NK Cell Heterogeneity and the Influence of MHC Class I

    PubMed Central

    Allan, Alasdair J.; Sanderson, Nicholas D.; Gubbins, Simon; Ellis, Shirley A.

    2015-01-01

    Primate and rodent NK cells form highly heterogeneous lymphocyte populations owing to the differential expression of germline-encoded receptors. Many of these receptors are polymorphic and recognize equally polymorphic determinants of MHC class I. This diversity can lead to individuals carrying NK cells with different specificities. Cattle have an unusually diverse repertoire of NK cell receptor genes predicted to encode receptors that recognize MHC class I. To begin to examine whether this genetic diversity leads to a diverse NK cell population, we isolated peripheral NK cells from cattle with different MHC homozygous genotypes. Cytokine stimulation differentially influenced the transcription of five receptors at the cell population level. Using dilution cultures, we found that a further seven receptors were differentially transcribed, including five predicted to recognize MHC class I. Moreover, there was a statistically significant reduction in killer cell lectin-like receptor mRNA expression between cultures with different CD2 phenotypes and from animals with different MHC class I haplotypes. This finding confirms that cattle NK cells are a heterogeneous population and reveals that the receptors creating this diversity are influenced by the MHC. The importance of this heterogeneity will become clear as we learn more about the role of NK cells in cattle disease resistance and vaccination. PMID:26216890

  13. Vegetation types, dominant compositions, woody plant diversity and stand structure in Trishna Wildlife Sanctuary of Northeast India.

    PubMed

    Majumdar, Koushik; Datta, B K

    2015-03-01

    Present study was carried out to assess the vegetation types, diversity and phytosociological status of woody plants in Trishna Wildlife Sanctuary of Tripura, Northeast India. Vegetation data was derived by 25 line transects (10 m wide and 500 m length, each 0.5 ha size). All woody species at >10 cm gbh (Girth at Breast Height) within each plots were measured and counted. A total of six forest types were classified by cluster analysis using Importance Value Index (IVI) of 289 woody species. Species diversity, forest structure and woody community associations were evaluated and discussed. One way ANOVA revealed significant differences in all species diversity measures and stand structure along the forest types. Distribution of stem density at ten different gbh classes showed reverse J-shaped curves. Population status of woody plants was also examined through grouping of all individuals into four population age stages viz. sapling (<30 cm gbh), adult (> or = 30 - <120 cm gbh), mature (>120 - 210 cm gbh) and old (> or =210 cm). To observe dominant composition and species population trend, IVI of top ten dominant species from all forest types were tabulated. The present study suggested that Trishna Wildlife Sanctuary is an important habitat in Tripura from floristic point of view and it should be conserved on priority basis for remaining wildlife endurances and monitor for forest livelihoods products for sustainable biodiversity conservation in this region.

  14. Molecular diversity management strategies for building and enhancement of diverse and focused lead discovery compound screening collections.

    PubMed

    Schuffenhauer, A; Popov, M; Schopfer, U; Acklin, P; Stanek, J; Jacoby, E

    2004-12-01

    This publication describes processes for the selection of chemical compounds for the building of a high-throughput screening (HTS) collection for drug discovery, using the currently implemented process in the Discovery Technologies Unit of the Novartis Institute for Biomedical Research, Basel Switzerland as reference. More generally, the currently existing compound acquisition models and practices are discussed. Our informatics, chemistry and biology-driven compound selection consists of two steps: 1) The individual compounds are filtered and grouped into three priority classes on the basis of their individual structural properties. Substructure filters are used to eliminate or penalize compounds based on unwanted structural properties. The similarity of the structures to reference ligands of the main proven druggable target families is computed, and drug-similar compounds are prioritized for the following diversity analysis. 2) The compounds are compared to the archive compounds and a diversity analysis is performed. This is done separately for the prioritized, regular and penalized compounds with increasingly stringent dissimilarity criterion. The process includes collecting vendor catalogues and monitoring the availability of samples together with the selection and purchase decision points. The development of a corporate vendor catalogue database is described. In addition to the selection methods on a per single molecule basis, selection criteria for scaffold and combinatorial chemistry projects in collaboration with compound vendors are discussed.

  15. Generation of enteroendocrine cell diversity in midgut stem cell lineages

    PubMed Central

    Beehler-Evans, Ryan; Micchelli, Craig A.

    2015-01-01

    The endocrine system mediates long-range peptide hormone signaling to broadcast changes in metabolic status to distant target tissues via the circulatory system. In many animals, the diffuse endocrine system of the gut is the largest endocrine tissue, with the full spectrum of endocrine cell subtypes not yet fully characterized. Here, we combine molecular mapping, lineage tracing and genetic analysis in the adult fruit fly to gain new insight into the cellular and molecular mechanisms governing enteroendocrine cell diversity. Neuropeptide hormone distribution was used as a basis to generate a high-resolution cellular map of the diffuse endocrine system. Our studies show that cell diversity is seen at two distinct levels: regional and local. We find that class I and class II enteroendocrine cells can be distinguished locally by combinatorial expression of secreted neuropeptide hormones. Cell lineage tracing studies demonstrate that class I and class II cells arise from a common stem cell lineage and that peptide profiles are a stable feature of enteroendocrine cell identity during homeostasis and following challenge with the enteric pathogen Pseudomonas entomophila. Genetic analysis shows that Notch signaling controls the establishment of class II cells in the lineage, but is insufficient to reprogram extant class I cells into class II enteroendocrine cells. Thus, one mechanism by which secretory cell diversity is achieved in the diffuse endocrine system is through cell-cell signaling interactions within individual adult stem cell lineages. PMID:25670792

  16. Catalytic Asymmetric Synthesis of Butenolides and Butyrolactones

    PubMed Central

    2017-01-01

    γ-Butenolides, γ-butyrolactones, and derivatives, especially in enantiomerically pure form, constitute the structural core of numerous natural products which display an impressive range of biological activities which are important for the development of novel physiological and therapeutic agents. Furthermore, optically active γ-butenolides and γ-butyrolactones serve also as a prominent class of chiral building blocks for the synthesis of diverse biological active compounds and complex molecules. Taking into account the varying biological activity profiles and wide-ranging structural diversity of the optically active γ-butenolide or γ-butyrolactone structure, the development of asymmetric synthetic strategies for assembling such challenging scaffolds has attracted major attention from synthetic chemists in the past decade. This review offers an overview of the different enantioselective synthesis of γ-butenolides and γ-butyrolactones which employ catalytic amounts of metal complexes or organocatalysts, with emphasis focused on the mechanistic issues that account for the observed stereocontrol of the representative reactions, as well as practical applications and synthetic potentials. PMID:28640622

  17. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. Themore » goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.« less

  18. Insights into HLA-G Genetics Provided by Worldwide Haplotype Diversity

    PubMed Central

    Castelli, Erick C.; Ramalho, Jaqueline; Porto, Iane O. P.; Lima, Thálitta H. A.; Felício, Leandro P.; Sabbagh, Audrey; Donadi, Eduardo A.; Mendes-Junior, Celso T.

    2014-01-01

    Human leukocyte antigen G (HLA-G) belongs to the family of non-classical HLA class I genes, located within the major histocompatibility complex (MHC). HLA-G has been the target of most recent research regarding the function of class I non-classical genes. The main features that distinguish HLA-G from classical class I genes are (a) limited protein variability, (b) alternative splicing generating several membrane bound and soluble isoforms, (c) short cytoplasmic tail, (d) modulation of immune response (immune tolerance), and (e) restricted expression to certain tissues. In the present work, we describe the HLA-G gene structure and address the HLA-G variability and haplotype diversity among several populations around the world, considering each of its major segments [promoter, coding, and 3′ untranslated region (UTR)]. For this purpose, we developed a pipeline to reevaluate the 1000Genomes data and recover miscalled or missing genotypes and haplotypes. It became clear that the overall structure of the HLA-G molecule has been maintained during the evolutionary process and that most of the variation sites found in the HLA-G coding region are either coding synonymous or intronic mutations. In addition, only a few frequent and divergent extended haplotypes are found when the promoter, coding, and 3′UTRs are evaluated together. The divergence is particularly evident for the regulatory regions. The population comparisons confirmed that most of the HLA-G variability has originated before human dispersion from Africa and that the allele and haplotype frequencies have probably been shaped by strong selective pressures. PMID:25339953

  19. Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation--classification and comparison with crystallization tendency from undercooled melts.

    PubMed

    Van Eerdenbrugh, Bernard; Baird, Jared A; Taylor, Lynne S

    2010-09-01

    In this study, the crystallization behavior of a variety of compounds was studied following rapid solvent evaporation using spin coating. Initial screening to determine model compound suitability was performed using a structurally diverse set of 51 compounds in three different solvent systems [dichloromethane (DCM), a 1:1 (w/w) dichloromethane/ethanol mixture (MIX), and ethanol (EtOH)]. Of this starting set of 153 drug-solvent combinations, 93 (40 compounds) were selected for further evaluation based on solubility, chemical solution stability, and processability criteria. These systems were spin coated and their crystallization was monitored using polarized light microscopy (7 days, dry conditions). The crystallization behavior of the samples could be classified as rapid (Class I: 39 cases), intermediate (Class II: 23 cases), or slow (Class III: 31 cases). The solvent system employed influenced the classification outcome for only four of the compounds. The various compounds showed very diverse crystallization behavior. Upon comparison of classification results with those of a previous study, where cooling from the melt was used as a preparation technique, a good similarity was found whereby 68% of the cases were identically classified. Multivariate analysis was performed using a set of relevant physicochemical compound characteristics. It was found that a number of these parameters tended to differ between the different classes. These could be further interpreted in terms of the nature of the crystallization process. Additional multivariate analysis on the separate classes of compounds indicated some potential in predicting the crystallization tendency of a given compound.

  20. Diversity-oriented synthesis leads to an effective class of bifunctional linchpins uniting anion relay chemistry (ARC) with benzyne reactivity

    PubMed Central

    Smith, Amos B.; Kim, Won-Suk

    2011-01-01

    In conjunction with the construction of a diversity-oriented synthesis library of 10-membered ring “natural product-like” macrolides, the design, synthesis, and validation of a unique class of bifunctional linchpins, uniting benzyne reactivity initiated by type II anion relay chemistry (ARC) has been achieved, permitting access to diverse [2+2], [3+2], and [4+2] cycloadducts. PMID:21245309

  1. Citizenship, Diversity and Distance Learning: Videoconferencing in Connecticut.

    ERIC Educational Resources Information Center

    Sembor, Edward C.

    1997-01-01

    Profiles a videoconference that brought together two seventh-grade classes in Connecticut. Over several days, white, middle-class, rural students discussed topical issues with urban black students. Topics raised included diversity, politics, gun control and local issues. Includes students' responses to the program. (MJP)

  2. Crossing Borders: The Role of Discourse Diversity in Multicultural Education

    ERIC Educational Resources Information Center

    Ayers, Rick

    2014-01-01

    In today's complex, multicultural world, discourses and language vernaculars are more diverse than ever. Educational institutions often privilege the historically dominant vernacular (such as white middle-class English which is sometimes called "Standard English"). This language bias disadvantages students form working class and…

  3. Dissecting the protein architecture of DNA-binding transcription factors in bacteria and archaea.

    PubMed

    Rivera-Gómez, Nancy; Martínez-Núñez, Mario Alberto; Pastor, Nina; Rodriguez-Vazquez, Katya; Perez-Rueda, Ernesto

    2017-08-01

    Gene regulation at the transcriptional level is a central process in all organisms where DNA-binding transcription factors play a fundamental role. This class of proteins binds specifically at DNA sequences, activating or repressing gene expression as a function of the cell's metabolic status, operator context and ligand-binding status, among other factors, through the DNA-binding domain (DBD). In addition, TFs may contain partner domains (PaDos), which are involved in ligand binding and protein-protein interactions. In this work, we systematically evaluated the distribution, abundance and domain organization of DNA-binding TFs in 799 non-redundant bacterial and archaeal genomes. We found that the distributions of the DBDs and their corresponding PaDos correlated with the size of the genome. We also identified specific combinations between the DBDs and their corresponding PaDos. Within each class of DBDs there are differences in the actual angle formed at the dimerization interface, responding to the presence/absence of ligands and/or crystallization conditions, setting the orientation of the resulting helices and wings facing the DNA. Our results highlight the importance of PaDos as central elements that enhance the diversity of regulatory functions in all bacterial and archaeal organisms, and our results also demonstrate the role of PaDos in sensing diverse signal compounds. The highly specific interactions between DBDs and PaDos observed in this work, together with our structural analysis highlighting the difficulty in predicting both inter-domain geometry and quaternary structure, suggest that these systems appeared once and evolved with diverse duplication events in all the analysed organisms.

  4. Plant lectins: the ties that bind in root symbiosis and plant defense.

    PubMed

    De Hoff, Peter L; Brill, Laurence M; Hirsch, Ann M

    2009-07-01

    Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general.

  5. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall

    PubMed Central

    Schmitt-Kopplin, Philippe; Gabelica, Zelimir; Gougeon, Régis D.; Fekete, Agnes; Kanawati, Basem; Harir, Mourad; Gebefuegi, Istvan; Eckel, Gerhard; Hertkorn, Norbert

    2010-01-01

    Numerous descriptions of organic molecules present in the Murchison meteorite have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, all molecular analyses were so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a nontargeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of Murchison extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. This molecular complexity, which provides hints on heteroatoms chronological assembly, suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological- and biogeochemical-driven chemical space. PMID:20160129

  6. On the Chemistry, Toxicology and Genetics of the Cyanobacterial Toxins, Microcystin, Nodularin, Saxitoxin and Cylindrospermopsin

    PubMed Central

    Pearson, Leanne; Mihali, Troco; Moffitt, Michelle; Kellmann, Ralf; Neilan, Brett

    2010-01-01

    The cyanobacteria or “blue-green algae”, as they are commonly termed, comprise a diverse group of oxygenic photosynthetic bacteria that inhabit a wide range of aquatic and terrestrial environments, and display incredible morphological diversity. Many aquatic, bloom-forming species of cyanobacteria are capable of producing biologically active secondary metabolites, which are highly toxic to humans and other animals. From a toxicological viewpoint, the cyanotoxins span four major classes: the neurotoxins, hepatotoxins, cytotoxins, and dermatoxins (irritant toxins). However, structurally they are quite diverse. Over the past decade, the biosynthesis pathways of the four major cyanotoxins: microcystin, nodularin, saxitoxin and cylindrospermopsin, have been genetically and biochemically elucidated. This review provides an overview of these biosynthesis pathways and additionally summarizes the chemistry and toxicology of these remarkable secondary metabolites. PMID:20559491

  7. An eco-compatible strategy for the diversity-oriented synthesis of macrocycles exploiting carbohydrate-derived building blocks.

    PubMed

    Maurya, Sushil K; Rana, Rohit

    2017-01-01

    An efficient, eco-compatible diversity-oriented synthesis (DOS) approach for the generation of library of sugar embedded macrocyclic compounds with various ring size containing 1,2,3-triazole has been developed. This concise strategy involves the iterative use of readily available sugar-derived alkyne/azide-alkene building blocks coupled through copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction followed by pairing of the linear cyclo-adduct using greener reaction conditions. The eco-compatibility, mild reaction conditions, greener solvents, easy purification and avoidance of hazards and toxic solvents are advantages of this protocol to access this important structural class. The diversity of the macrocycles synthesized (in total we have synthesized 13 macrocycles) using a set of standard reaction protocols demonstrate the potential of the new eco-compatible approach for the macrocyclic library generation.

  8. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall.

    PubMed

    Schmitt-Kopplin, Philippe; Gabelica, Zelimir; Gougeon, Régis D; Fekete, Agnes; Kanawati, Basem; Harir, Mourad; Gebefuegi, Istvan; Eckel, Gerhard; Hertkorn, Norbert

    2010-02-16

    Numerous descriptions of organic molecules present in the Murchison meteorite have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, all molecular analyses were so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a nontargeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of Murchison extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. This molecular complexity, which provides hints on heteroatoms chronological assembly, suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological- and biogeochemical-driven chemical space.

  9. Catalyst-controlled oligomerization for the collective synthesis of polypyrroloindoline natural products.

    PubMed

    Jamison, Christopher R; Badillo, Joseph J; Lipshultz, Jeffrey M; Comito, Robert J; MacMillan, David W C

    2017-12-01

    In nature, many organisms generate large families of natural product metabolites that have related molecular structures as a means to increase functional diversity and gain an evolutionary advantage against competing systems within the same environment. One pathway commonly employed by living systems to generate these large classes of structurally related families is oligomerization, wherein a series of enzymatically catalysed reactions is employed to generate secondary metabolites by iteratively appending monomers to a growing serial oligomer chain. The polypyrroloindolines are an interesting class of oligomeric natural products that consist of multiple cyclotryptamine subunits. Herein we describe an iterative application of asymmetric copper catalysis towards the synthesis of six distinct oligomeric polypyrroloindoline natural products: hodgkinsine, hodgkinsine B, idiospermuline, quadrigemine H and isopsychotridine B and C. Given the customizable nature of the small-molecule catalysts employed, we demonstrate that this strategy is further amenable to the construction of quadrigemine H-type alkaloids not isolated previously from natural sources.

  10. Catalyst-controlled oligomerization for the collective synthesis of polypyrroloindoline natural products

    NASA Astrophysics Data System (ADS)

    Jamison, Christopher R.; Badillo, Joseph J.; Lipshultz, Jeffrey M.; Comito, Robert J.; MacMillan, David W. C.

    2017-12-01

    In nature, many organisms generate large families of natural product metabolites that have related molecular structures as a means to increase functional diversity and gain an evolutionary advantage against competing systems within the same environment. One pathway commonly employed by living systems to generate these large classes of structurally related families is oligomerization, wherein a series of enzymatically catalysed reactions is employed to generate secondary metabolites by iteratively appending monomers to a growing serial oligomer chain. The polypyrroloindolines are an interesting class of oligomeric natural products that consist of multiple cyclotryptamine subunits. Herein we describe an iterative application of asymmetric copper catalysis towards the synthesis of six distinct oligomeric polypyrroloindoline natural products: hodgkinsine, hodgkinsine B, idiospermuline, quadrigemine H and isopsychotridine B and C. Given the customizable nature of the small-molecule catalysts employed, we demonstrate that this strategy is further amenable to the construction of quadrigemine H-type alkaloids not isolated previously from natural sources.

  11. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease

    PubMed Central

    Tracey, Timothy J.; Steyn, Frederik J.; Wolvetang, Ernst J.; Ngo, Shyuan T.

    2018-01-01

    Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS. PMID:29410613

  12. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships.

    PubMed

    Bhatia, Chitra; Oerum, Stephanie; Bray, James; Kavanagh, Kathryn L; Shafqat, Naeem; Yue, Wyatt; Oppermann, Udo

    2015-06-05

    Short-chain dehydrogenases/reductases (SDRs) constitute a large, functionally diverse branch of enzymes within the class of NAD(P)(H) dependent oxidoreductases. In humans, over 80 genes have been identified with distinct metabolic roles in carbohydrate, amino acid, lipid, retinoid and steroid hormone metabolism, frequently associated with inherited genetic defects. Besides metabolic functions, a subset of atypical SDR proteins appears to play critical roles in adapting to redox status or RNA processing, and thereby controlling metabolic pathways. Here we present an update on the human SDR superfamily and a ligand identification strategy using differential scanning fluorimetry (DSF) with a focused library of oxidoreductase and metabolic ligands to identify substrate classes and inhibitor chemotypes. This method is applicable to investigate structure-activity relationships of oxidoreductases and ultimately to better understand their physiological roles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. CU Prime Diversity Workshops: Creating Spaces for Growth Amongst Organizers

    NASA Astrophysics Data System (ADS)

    Hyater-Adams, Simone

    2016-03-01

    CU Prime is a graduate student run organization that was created as a way to promote community and inclusion amongst students in CU Physics Department. With a mission to improve the experiences of students, especially those underrepresented in the department and field, the core organizers developed three programs: a seminar series, a class, and a mentorship program. However, because this is strictly volunteer time for most organizers, there is little time for development and growth as a group. In response, we developed a series of diversity workshops for the group, in order to provide space and time for organizers to reflect on and grapple with difficult issues around diversity and inclusion that are important to think about when running these programs. With a structure based on readings, informal videos, and reflection, there have been 5 workshops around topics ranging from gender in physics to how to be an ally. We overview the structure and framing of these workshops, along with the challenges and successes throughout the process of developing them, along with plans for future development.

  14. The complex and specific pMHC interactions with diverse HIV-1 TCR clonotypes reveal a structural basis for alterations in CTL function

    NASA Astrophysics Data System (ADS)

    Xia, Zhen; Chen, Huabiao; Kang, Seung-Gu; Huynh, Tien; Fang, Justin W.; Lamothe, Pedro A.; Walker, Bruce D.; Zhou, Ruhong

    2014-02-01

    Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function.

  15. Surfactants tailored by the class Actinobacteria

    PubMed Central

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  16. Structural Features and Biological Properties of Ellagitannins in Some Plant Families of the Order Myrtales

    PubMed Central

    Yoshida, Takashi; Amakura, Yoshiaki; Yoshimura, Morio

    2010-01-01

    Plant tannins, including hydrolysable and condensed varieties, are well known antioxidants in medicinal plants, foods, and edible fruits. Their diverse biological properties and potential for disease prevention have been demonstrated by various in vitro and in vivo assays. A number of ellagitannins, the largest group of hydrolysable tannins, have been isolated from dicotyledoneous angiosperms and characterized. This diverse class of tannins is sub-grouped into simple ellagitannins, C-glycosidic ellagitannins, complex tannins (condensates of C-glycosidic tannins with flavan-3-ol), and oligomers up to pentamers. This review outlines and describes the chemotaxonomic significance of structural features in various types of ellagitannins found in plants belonging to the Myrtaceae, Onagraceae, and Melastomataceae families, which are all included in the order Myrtales. Any biological activities that have been reported, including antitumor and antibacterial effects as well as enzyme inhibition, are also reviewed. PMID:20162003

  17. Breast Milk Oligosaccharides: Structure-Function Relationships in the Neonate

    PubMed Central

    Smilowitz, Jennifer T.; Lebrilla, Carlito B.; Mills, David A.; German, J. Bruce; Freeman, Samara L.

    2015-01-01

    In addition to providing complete postnatal nutrition, breast milk is a complex biofluid that delivers bioactive components for the growth and development of the intestinal and immune systems. Lactation is a unique opportunity to understand the role of diet in shaping the intestinal environment including the infant microbiome. Of considerable interest is the diversity and abundance of milk glycans that are energetically costly for the mammary gland to produce yet indigestible by infants. Milk glycans comprise free oligosaccharides, glycoproteins, glycopeptides, and glycolipids. Emerging technological advances are enabling more comprehensive, sensitive, and rapid analyses of these different classes of milk glycans. Understanding the impact of inter- and intraindividual glycan diversity on function is an important step toward interventions aimed at improving health and preventing disease. This review discusses the state of technology for glycan analysis and how specific structure-function knowledge is enhancing our understanding of early nutrition in the neonate. PMID:24850388

  18. [A phylogenetic analysis of plant communities of Teberda Biosphere Reserve].

    PubMed

    Shulakov, A A; Egorov, A V; Onipchenko, V G

    2016-01-01

    Phylogenetic analysis of communities is based on the comparison of distances on the phylogenetic tree between species of a community under study and those distances in random samples taken out of local flora. It makes it possible to determine to what extent a community composition is formed by more closely related species (i.e., "clustered") or, on the opposite, it is more even and includes species that are less related with each other. The first case is usually interpreted as a result of strong influence caused by abiotic factors, due to which species with similar ecology, a priori more closely related, would remain: In the second case, biotic factors, such as competition, may come to the fore and lead to forming a community out of distant clades due to divergence of their ecological niches: The aim of this' study Was Ad explore the phylogenetic structure in communities of the northwestern Caucasus at two spatial scales - the scale of area from 4 to 100 m2 and the smaller scale within a community. The list of local flora of the alpine belt has been composed using the database of geobotanic descriptions carried out in Teberda Biosphere Reserve at true altitudes exceeding.1800 m. It includes 585 species of flowering plants belonging to 57 families. Basal groups of flowering plants are.not represented in the list. At the scale of communities of three classes, namely Thlaspietea rotundifolii - commumties formed on screes and pebbles, Calluno-Ulicetea - alpine meadow, and Mulgedio-Aconitetea subalpine meadows, have not demonstrated significant distinction of phylogenetic structure. At intra level, for alpine meadows the larger share of closely related species. (clustered community) is detected. Significantly clustered happen to be those communities developing on rocks (class Asplenietea trichomanis) and alpine (class Juncetea trifidi). At the same time, alpine lichen proved to have even phylogenetic structure at the small scale. Alpine (class Salicetea herbaceae) that develop under conditions of winter snow accumulation were more,even at the both.scale, i.e., contained more diverse and distantly related plant species compared with random samples. (Scheuchzerio-Caricetea fuscae) aquatic communities in cold (Montio-Cardaminetea), sedge meadows (Carici rupestris-Kobresietea bellardii), and communities, in which shrubs and predominated (juniper and rhododendron elfin woods, class Loiseleurio-Vaccinietea), have been studied only at the larger scale and showed significant evenness of species composition, i.e., were phylogenetically more diverse compared with random samples.

  19. A small diversity library of α-methyl amide analogs of sulindac for probing anticancer structure-activity relationships.

    PubMed

    Mathew, Bini; Snowden, Timothy S; Connelly, Michele C; Guy, R Kiplin; Reynolds, Robert C

    2018-05-10

    Non-steroidal anti-inflammatory drugs (NSAIDs) have a variety of potential indications that include management of pain and inflammation as well as chemoprevention and/or treatment of cancer. Furthermore, a specific form of ibuprofen, dexibuprofen or the S-(+) form, shows interesting neurological activities and has been proposed for the treatment of Alzheimer's disease. In a continuation of our work probing the anticancer activity of small sulindac libraries, we have prepared and screened a small diversity library of α-methyl substituted sulindac amides in the profen class. Several compounds of this series displayed promising activity compared with a lead sulindac analog. Copyright © 2018. Published by Elsevier Ltd.

  20. Polymorphism in magic-sized Au144(SR)60 clusters

    DOE PAGES

    Jensen, Kirsten M. O.; Juhas, Pavol; Tofanelli, Marcus A.; ...

    2016-06-14

    Ultra-small, magic-sized metal nanoclusters represent an important new class of materials with properties between molecules and particles. However, their small size challenges the conventional methods for structure characterization. We present the structure of ultra-stable Au144(SR)60 magic-sized nanoclusters obtained from atomic pair distribution function analysis of X-ray powder diffraction data. Our study reveals structural polymorphism in these archetypal nanoclusters. Additionally, in order to confirm the theoretically predicted icosahedral-cored cluster, we also find samples with a truncated decahedral core structure, with some samples exhibiting a coexistence of both cluster structures. Although the clusters are monodisperse in size, structural diversity is apparent. Finally,more » the discovery of polymorphism may open up a new dimension in nanoscale engineering.« less

  1. Multiscale assessment of landscape structure in heterogeneous forested area

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Pignatti, S.; Carone, M. T.; Fusilli, L.; Lanfredi, M.; Coppola, R.; Santini, F.

    2010-05-01

    The characterization of landscape structure in space or time is fundamental to infer ecological processes (Ingegnoli, 2002). Landscape pattern arrangements strongly influence forest ecological functioning and biodiversity, as an example landscape fragmentation can induce habitat degradation reducing forest species populations or limiting their recolonization. Such arrangements are spatially correlated and scale-dependent, therefore they have distinctive operational-scales at which they can be best characterized (Wu, 2004). In addition, the detail of the land cover classification can have substantial influences on resulting pattern quantification (Greenberg et al.2001). In order to evaluate the influence of the observational scales and labelling details, we investigated a forested area (Pollino National Park; southern Italy) by analyzing the patch arrangement derived from three remote sensing sensors having different spectral and spatial resolutions. In particular, we elaborated data from the hyperspectral MIVIS (102 bands; ~7m) and Hyperion (220 bands; 30m), and the multispectral Landsat-TM (7 bands; 30m). Moreover, to assess the landscape evolution we investigated the hierarchical structure of the study area (landscape, class, patch) by elaborating two Landsat-TM acquired in 1987 and 1998. Preprocessed data were classified by adopting a supervised procedure based on the Minimum Distance classifier. The obtained labelling correspond to Corine level 5 for the high resolution MIVIS data, to Corine level 4 for Hyperion and to an intermediate level 4-3 for TM data. The analysis was performed by taking into account patch density, diversity and evenness at landscape level; mean patch size and interdispersion at class level; patch structure and perimeter regularity at patch level. The three sensors described a landscape with a quite high level of richness and distribution. The high spectral and spatial resolution of MIVIS data provided the highest diversity level (SHDI = 2.05), even if the results obtained for TM were not so different (1.93), Hyperion showed the lowest value (1.79). The obtained evenness index was similar for all the landscapes (~ 0.72). At class level, the interdispersion increases as the spatial and spectral resolution power decrease. Due to the low labelling detail, TM classes represent an aggregation of MIVIS and Hyperion classes; therefore they result larger and more diffused over the territory favouring higher interspersion values in the computation. The investigation of the patch structure highlighted the highest MIVIS capability in describing the patch articulation; Hyperion and TM showed quite similar situation. The historical analysis based on TM imagery showed a fragmentation process for some forested patches (mainly beeches): an increase of structure complexity (higher FRACT) is coupled with a higher patch number and an extension reduction. On the whole, the obtained results showed that the multispectral Landsat-TM images represent a good data source for supporting studies on landscape structure of forested areas and that for analyzing the articulation of particular species the high spectral resolution needs to be coupled with a high spatial resolution, i.e. Hyperion sampling is not adequate for such a purpose.

  2. Self-Determination and Meaningful Work: Exploring Socioeconomic Constraints.

    PubMed

    Allan, Blake A; Autin, Kelsey L; Duffy, Ryan D

    2016-01-01

    This study examined a model of meaningful work among a diverse sample of working adults. From the perspectives of Self-Determination Theory and the Psychology of Working Framework, we tested a structural model with social class and work volition predicting SDT motivation variables, which in turn predicted meaningful work. Partially supporting hypotheses, work volition was positively related to internal regulation and negatively related to amotivation, whereas social class was positively related to external regulation and amotivation. In turn, internal regulation was positively related to meaningful work, whereas external regulation and amotivation were negatively related to meaningful work. Indirect effects from work volition to meaningful work via internal regulation and amotivation were significant, and indirect effects from social class to meaningful work via external regulation and amotivation were significant. This study highlights the important relations between SDT motivation variables and meaningful work, especially the large positive relation between internal regulation and meaningful work. However, results also reveal that work volition and social class may play critical roles in predicting internal regulation, external regulation, and amotivation.

  3. On origin and evolution of carbonic anhydrase isozymes: A phylogenetic analysis from whole-enzyme to active site.

    PubMed

    Banerjee, Srijoni; Deshpande, Parag A

    2016-04-01

    Genetic evolution of carbonic anhydrase enzyme provides an interesting instance of functional similarity in spite of structural diversity of the members of a given family of enzymes. Phylogenetic analysis of α-, β- and γ-carbonic anhydrase was carried out to determine the evolutionary relationships among various members of the family with the enzyme marking its presence in a wide range of cellular and chromosomal locations. The presence of more than one class of enzymes in a particular organism was revealed by phylogenetic time tree. The evolutionary relationships among the members of animal, plant and microbial kingdom were developed. The study revises a long-established notion of kingdom-specificity of the different classes of carbonic anhydrases and provides a new version of the presence of multiple classes of carbonic anhydrases in a single organism and the presence of a given class of carbonic anhydrase across different kingdoms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    DOE PAGES

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin; ...

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen asmore » a candidate human vaccine prime. Lastly, these methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.« less

  5. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen asmore » a candidate human vaccine prime. Lastly, these methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.« less

  6. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen.

    PubMed

    Jardine, Joseph G; Kulp, Daniel W; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereño-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C; Julien, Jean-Philippe; Wilson, Ian A; Burton, Dennis R; Crotty, Shane; Schief, William R

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens. Copyright © 2016, American Association for the Advancement of Science.

  7. Global patterns of the beta diversity-energy relationship in terrestrial vertebrates

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Xiao, Ming

    2012-02-01

    Patterns in beta diversity or species turnover, describing the change in species composition between places, have their wide implication for ecological and evolutionary issues. It is thought that beta diversity increases with increasing energy availability, but very few studies have directly tested this hypothesis. We examined the beta diversity-energy relationship for four classes of terrestrial vertebrates (mammals, birds, reptiles, and amphibians) in ecoregions across the world. The relationship was examined for each class in each of six biogeographic realms. We show that beta diversity is generally higher in areas with higher energy availability, measured as annual potential evapotranspiration. A higher level of beta diversity in areas with higher energy availability may have contributed to the well-known latitudinal diversity gradient (i.e., species richness increases towards the equator).

  8. Emerging Scholars: Class of 2011

    ERIC Educational Resources Information Center

    Menard, Valerie; Oguntoyinbo, Lekan; Davis, Crystal D.; Hawkins, B. Denise; Lum, Lydia; Cooper, Kenneth; Pluviose, David; Pember, Mary Annette; Watson, Jamal Eric; Nealy, Michelle J.; Hernandez, Christina

    2011-01-01

    This article presents "Diverse"'s 2011 Emerging Scholars. This year's class of award-winning academics consists of twelve gifted and passionate scholars who make their mark with relevant, impactful scholarship. The 2011 Emerging Scholars are: (1) Dr. Guillermina G. Nunez-Mchiri; (2) Dr. Ashlesh Murthy; (3) Charles O. Anderson; (4) Chekesha M.…

  9. Diversity and evolution of class 2 CRISPR–Cas systems

    PubMed Central

    Shmakov, Sergey; Smargon, Aaron; Scott, David; Cox, David; Pyzocha, Neena; Yan, Winston; Abudayyeh, Omar O.; Gootenberg, Jonathan S.; Makarova, Kira S.; Wolf, Yuri I.; Severinov, Konstantin; Zhang, Feng; Koonin, Eugene V.

    2018-01-01

    Class 2 CRISPR–Cas systems are characterized by effector modules that consist of a single multidomain protein, such as Cas9 or Cpf1. We designed a computational pipeline for the discovery of novel class 2 variants and used it to identify six new CRISPR–Cas subtypes. The diverse properties of these new systems provide potential for the development of versatile tools for genome editing and regulation. In this Analysis article, we present a comprehensive census of class 2 types and class 2 subtypes in complete and draft bacterial and archaeal genomes, outline evolutionary scenarios for the independent origin of different class 2 CRISPR–Cas systems from mobile genetic elements, and propose an amended classification and nomenclature of CRISPR–Cas. PMID:28111461

  10. Diversity in medical school: perceptions of first-year students at four southeastern U.S. medical schools.

    PubMed

    Elam, C L; Johnson, M M; Wiggs, J S; Messmer, J M; Brown, P I; Hinkley, R

    2001-01-01

    To assess students' perceptions of the extent of diversity in their classes, the role of diversity in their first-year curriculum, and their predictions of the amount of diversity in their future patient populations. In 1998, students at four southeastern U.S. medical schools that had distinct demographics and differing institutional missions completed a questionnaire on diversity at the end of the first year. In the instrument, diversity was defined according to nine population characteristics: age, sex, race, ethnic background, physical disability, religious affiliation, sexual orientation, socioeconomic status, and rural background (growing up in a community of less than 5,000). Responses were compared according to students' institution, sex, and race. Questionnaires were returned by 349 of 474 students (74%). Students at the school with the most diverse first-year class placed the greatest value on the contributions of diversity to the learning environment. Women students placed more value on the inclusion of diversity issues in the curriculum than did men students, and they placed greater value on understanding diversity issues in their future medical practices than did men. Compared with Asian American, Hispanic, and white students, African American students were the least likely to think that the curriculum contained adequate information about diversity. The results indicate that perceptions of diversity were influenced by the students' own demographic characteristics and those of their medical school. The more diverse the class, the more comfortable the students were with diversity and the more they valued its contribution to their medical education.

  11. Evolutionary profiles from the QR factorization of multiple sequence alignments

    PubMed Central

    Sethi, Anurag; O'Donoghue, Patrick; Luthey-Schulten, Zaida

    2005-01-01

    We present an algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of the homologous group. The method, based on the multidimensional QR factorization of numerically encoded multiple sequence alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. We observe a general trend that these smaller, more evolutionarily balanced profiles have comparable and, in many cases, better performance in database searches than conventional profiles containing hundreds of sequences, constructed in an iterative and computationally intensive procedure. For more diverse families or superfamilies, with sequence identity <30%, structural alignments, based purely on the geometry of the protein structures, provide better alignments than pure sequence-based methods. Merging the structure and sequence information allows the construction of accurate profiles for distantly related groups. These structure-based profiles outperformed other sequence-based methods for finding distant homologs and were used to identify a putative class II cysteinyl-tRNA synthetase (CysRS) in several archaea that eluded previous annotation studies. Phylogenetic analysis showed the putative class II CysRSs to be a monophyletic group and homology modeling revealed a constellation of active site residues similar to that in the known class I CysRS. PMID:15741270

  12. TIM Barrel Protein Structure Classification Using Alignment Approach and Best Hit Strategy

    NASA Astrophysics Data System (ADS)

    Chu, Jia-Han; Lin, Chun Yuan; Chang, Cheng-Wen; Lee, Chihan; Yang, Yuh-Shyong; Tang, Chuan Yi

    2007-11-01

    The classification of protein structures is essential for their function determination in bioinformatics. It has been estimated that around 10% of all known enzymes have TIM barrel domains from the Structural Classification of Proteins (SCOP) database. With its high sequence variation and diverse functionalities, TIM barrel protein becomes to be an attractive target for protein engineering and for the evolution study. Hence, in this paper, an alignment approach with the best hit strategy is proposed to classify the TIM barrel protein structure in terms of superfamily and family levels in the SCOP. This work is also used to do the classification for class level in the Enzyme nomenclature (ENZYME) database. Two testing data sets, TIM40D and TIM95D, both are used to evaluate this approach. The resulting classification has an overall prediction accuracy rate of 90.3% for the superfamily level in the SCOP, 89.5% for the family level in the SCOP and 70.1% for the class level in the ENZYME. These results demonstrate that the alignment approach with the best hit strategy is a simple and viable method for the TIM barrel protein structure classification, even only has the amino acid sequences information.

  13. Vulnerability of coral reef fisheries to a loss of structural complexity.

    PubMed

    Rogers, Alice; Blanchard, Julia L; Mumby, Peter J

    2014-05-05

    Coral reefs face a diverse array of threats, from eutrophication and overfishing to climate change. As live corals are lost and their skeletons eroded, the structural complexity of reefs declines. This may have important consequences for the survival and growth of reef fish because complex habitats mediate predator-prey interactions [1, 2] and influence competition [3-5] through the provision of prey refugia. A positive correlation exists between structural complexity and reef fish abundance and diversity in both temperate and tropical ecosystems [6-10]. However, it is not clear how the diversity of available refugia interacts with individual predator-prey relationships to explain emergent properties at the community scale. Furthermore, we do not yet have the ability to predict how habitat loss might affect the productivity of whole reef communities and the fisheries they support. Using data from an unfished reserve in The Bahamas, we find that structural complexity is associated not only with increased fish biomass and abundance, but also with nonlinearities in the size spectra of fish, implying disproportionately high abundances of certain size classes. By developing a size spectrum food web model that links the vulnerability of prey to predation with the structural complexity of a reef, we show that these nonlinearities can be explained by size-structured prey refugia that reduce mortality rates and alter growth rates in different parts of the size spectrum. Fitting the model with data from a structurally complex habitat, we predict that a loss of complexity could cause more than a 3-fold reduction in fishery productivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Structure, diversity, and biophysical properties of old-growth forestsin the Klamath region, USA

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Starr, Daniel A

    2015-01-01

    The diverse old-growth forests in Klamath region of northern California and southern Oregon provide valuable ecosystem services (e.g., maintaining watersheds, wildlife habitat, recreation), but may be vulnerable to a wide range of stressors, including invasive species, disrupted disturbance regimes, and climatic change. Yet our understanding of how forest structure in the Klamath region relates to the current physical environment is limited. Here we provide present-day benchmarks for old-growth forest structure across a climatic gradient ranging from coastal to dry interior sites. We established 16 large (1 ha) forest plots where all stems > 5 cm in diameter were identified to species and mapped. Climate across these sites was highly variable, with estimated actual evapotranspiration correlated to several basic measures of forest structure, including plot basal area, stem size-class inequality, tree species diversity and, to a lesser extent, tree species richness. Analyses of the spatial arrangement of stems indicated a high degree of non-uniformity, with 75% of plots showing significant stem clumping at small spatial scales (0 to 10 m). Downscaled predictions of future site water balance suggest changes will be dominated by rapidly increasing climatic water deficit (D, a biologically meaningful index of drought). While these plots give a picture of current conditions, continued monitoring of these stands is needed to describe forest dynamics and to detect forest responses to ongoing and future stressors.

  15. Inorganic and methane clathrates: Versatility of guest–host compounds for energy harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, Lakshmi; Koh, Carolyn A.

    ABSTRACT This review article evaluates the structure–property relations of inorganic clathrates and clathrate hydrates and their potential role in energy harvesting. There is potential cross-fertilization between the two research areas. Guest–host clathrate compounds exhibit unique structural and physical properties, which lead to their versatile roles in energy applications. Prominent classes of clathrate compounds are gas hydrates and inorganic clathrates. That said, there is limited cross-fertilization between the clathrate hydrate and inorganic clathrate communities, with researchers in the respective fields being less informed on the other field. Yet the structures and unique guest–host interactions in both these compounds are common importantmore » features of these clathrates. Common features and procedures can inspire and inform development between the compound classes, which may be important to the technological advancements for the different clathrate materials, e.g., structure characterization techniques and guest–host dynamics in which the “guest” tends to be imprisoned in the host structure, until external forces are applied. Conversely, the diversity in chemical compositions of these two classes of materials leads to the different applications from methane capture and storage to converting waste heat to electricity (thermoelectrics). This article highlights the structural and physical similarities and differences of inorganic and methane clathrates. The most promising state-of-the-art applications of the clathrates are highlighted for harvesting energy from methane (clathrate) hydrate deposits under the ocean and for inorganic clathrates as promising thermoelectric materials.« less

  16. Inorganic and methane clathrates: Versatility of guest–host compounds for energy harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, Lakshmi; Koh, Carolyn A.

    2015-01-01

    ABSTRACT This review article evaluates the structure–property relations of inorganic clathrates and clathrate hydrates and their potential role in energy harvesting. There is potential cross-fertilization between the two research areas. Guest–host clathrate compounds exhibit unique structural and physical properties, which lead to their versatile roles in energy applications. Prominent classes of clathrate compounds are gas hydrates and inorganic clathrates. That said, there is limited cross-fertilization between the clathrate hydrate and inorganic clathrate communities, with researchers in the respective fields being less informed on the other field. Yet the structures and unique guest–host interactions in both these compounds are common importantmore » features of these clathrates. Common features and procedures can inspire and inform development between the compound classes, which may be important to the technological advancements for the different clathrate materials, e.g., structure characterization techniques and guest–host dynamics in which the “guest” tends to be imprisoned in the host structure, until external forces are applied. Conversely, the diversity in chemical compositions of these two classes of materials leads to the different applications from methane capture and storage to converting waste heat to electricity (thermoelectrics). This article highlights the structural and physical similarities and differences of inorganic and methane clathrates. The most promising state-of-the-art applications of the clathrates are highlighted for harvesting energy from methane (clathrate) hydrate deposits under the ocean and for inorganic clathrates as promising thermoelectric materials.« less

  17. Structural Analysis of the Tobramycin and Gentamicin Clinical Resistome Reveals Limitations for Next-generation Aminoglycoside Design.

    PubMed

    Bassenden, Angelia V; Rodionov, Dmitry; Shi, Kun; Berghuis, Albert M

    2016-05-20

    Widespread use and misuse of antibiotics has allowed for the selection of resistant bacteria capable of avoiding the effects of antibiotics. The primary mechanism for resistance to aminoglycosides, a broad-spectrum class of antibiotics, is through covalent enzymatic modification of the drug, waning their bactericidal effect. Tobramycin and gentamicin are two medically important aminoglycosides targeted by several different resistance factors, including aminoglycoside 2″-nucleotidyltransferase [ANT(2″)], the primary cause of aminoglycoside resistance in North America. We describe here two crystal structures of ANT(2″), each in complex with AMPCPP, Mn(2+), and either tobramycin or gentamicin. Together these structures outline ANT(2″)'s specificity for clinically used substrates. Importantly, these structures complete our structural knowledge for the set of enzymes that most frequently confer clinically observed resistance to tobramycin and gentamicin. Comparison of tobramycin and gentamicin binding to enzymes in this resistome, as well as to the intended target, the bacterial ribosome, reveals surprising diversity in observed drug-target interactions. Analysis of the diverse binding modes informs that there are limited opportunities for developing aminoglycoside analogs capable of evading resistance.

  18. New Perspectives on Acetate and One-Carbon Metabolism in the Methanoarchaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferry, James

    Carbonic anhydrases catalyze the reversible hydration of carbon dioxide to bicarbonate. Although widespread in prokaryotes of the domains Bacteria and Archaea, few have been investigated and the physiological functions are largely unknown. Carbonic anhydrases are of biotechnological interest for carbon dioxide capture and sequestration at point sources. Prokaryotes encode three independently evolved classes. The alpha-class is restricted to a few pathogens and the other two are uniformly distributed in phylogenetically and physiologically diverse species. Although wide-spread in prokaryotes, only three gamma-class enzymes have been biochemically characterized and the physiological functions have not been investigated. The gamma-class is prominent in anaerobicmore » acetate-utilizing methane-producing species of the genus Methanosarcina that encode three subclasses. Enzymes from two of the subclasses, Cam and CamH from Methanosarcina thermophila, have been characterized and found to utilize iron in the active site which is the first example of an iron-containing carbonic anhydrase. No representative of the third subclass has been isolated, although this subclass constitutes the great majority of the β-class. This grant application proposed to characterize gamma-class carbonic anhydrases from diverse anaerobic prokaryotes from the domains Bacteria and Archaea to broaden the understanding of this enzyme. In particular, the three subclasses present the genetically tractable acetate-utilizing methanogen Methanosarcina acetivorans will be investigated to extend studies of acetate and one-carbon metabolism in this species. A genetic approach will be taken to ascertain the physiological functions. It is also proposed to delve deeper into the mechanism of Cam from M. thermophila, the archetype of the gamma-class, via a high resolution neutron structure and kinetic analysis of site-specific amino acid replacement variants. In the course of the investigation, goals were added to take advantage of discoveries on enzymes responding to oxidative stress.« less

  19. Self-assembling enzymes and the origins of the cytoskeleton

    PubMed Central

    Barry, Rachael; Gitai, Zemer

    2011-01-01

    The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal role. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. PMID:22014508

  20. Revealing the Diversity of Introduced Coffea canephora Germplasm in Ecuador: Towards a National Strategy to Improve Robusta.

    PubMed

    Loor Solórzano, Rey Gastón; De Bellis, Fabien; Leroy, Thierry; Plaza, Luis; Guerrero, Hilton; Subia, Cristian; Calderón, Darío; Fernández, Fabián; Garzón, Iván; Lopez, Diana; Vera, Danilo

    2017-01-01

    Genetic resources of Coffea canephora have been introduced in several tropical countries with potential for crop development. In Ecuador, the species has been cultivated since the mid-20th century. However, little is known about the diversity and genetic structure of introduced germplasm. This paper provides an overview of the genetic and phenotypic diversity of C. canephora in Ecuador and some proposals for implementing a breeding program. Twelve SSR markers were used to analyze 1491 plants of C. canephora grown in different living collections in Ecuador, compared to 29 genotypes representing the main genetic and geographic diversity groups identified within the species. Results indicated that most of the genotypes introduced are of Congolese origin, with accessions from both main subgroups, SG1 and SG2. Some genotypes were classed as hybrids between both subgroups. Substantial phenotypic diversity was also found, and correlations were observed with genetic diversity. Ecuadorian Robusta coffee displays wide genetic diversity and we propose some ways of improving Robusta in Ecuador. A breeding program could be based on three operations: the choice of elite clones, the introduction of new material from other countries (Ivory Coast, Uganda), and the creation of new hybrid material using genotypes from the different diversity groups.

  1. Revealing the Diversity of Introduced Coffea canephora Germplasm in Ecuador: Towards a National Strategy to Improve Robusta

    PubMed Central

    De Bellis, Fabien; Leroy, Thierry; Plaza, Luis; Guerrero, Hilton; Subia, Cristian; Calderón, Darío; Fernández, Fabián; Garzón, Iván; Lopez, Diana; Vera, Danilo

    2017-01-01

    Genetic resources of Coffea canephora have been introduced in several tropical countries with potential for crop development. In Ecuador, the species has been cultivated since the mid-20th century. However, little is known about the diversity and genetic structure of introduced germplasm. This paper provides an overview of the genetic and phenotypic diversity of C. canephora in Ecuador and some proposals for implementing a breeding program. Twelve SSR markers were used to analyze 1491 plants of C. canephora grown in different living collections in Ecuador, compared to 29 genotypes representing the main genetic and geographic diversity groups identified within the species. Results indicated that most of the genotypes introduced are of Congolese origin, with accessions from both main subgroups, SG1 and SG2. Some genotypes were classed as hybrids between both subgroups. Substantial phenotypic diversity was also found, and correlations were observed with genetic diversity. Ecuadorian Robusta coffee displays wide genetic diversity and we propose some ways of improving Robusta in Ecuador. A breeding program could be based on three operations: the choice of elite clones, the introduction of new material from other countries (Ivory Coast, Uganda), and the creation of new hybrid material using genotypes from the different diversity groups. PMID:29214204

  2. The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler.

    PubMed

    Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S

    2014-05-01

    Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  3. The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler

    PubMed Central

    Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S

    2014-01-01

    Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. PMID:24689851

  4. Genetic Control and Evolution of Anthocyanin Methylation1[W

    PubMed Central

    Provenzano, Sofia; Spelt, Cornelis; Hosokawa, Satoko; Nakamura, Noriko; Brugliera, Filippa; Demelis, Linda; Geerke, Daan P.; Schubert, Andrea; Tanaka, Yoshikazu; Quattrocchio, Francesca; Koes, Ronald

    2014-01-01

    Anthocyanins are a chemically diverse class of secondary metabolites that color most flowers and fruits. They consist of three aromatic rings that can be substituted with hydroxyl, sugar, acyl, and methyl groups in a variety of patterns depending on the plant species. To understand how such chemical diversity evolved, we isolated and characterized METHYLATION AT THREE2 (MT2) and the two METHYLATION AT FIVE (MF) loci from Petunia spp., which direct anthocyanin methylation in petals. The proteins encoded by MT2 and the duplicated MF1 and MF2 genes and a putative grape (Vitis vinifera) homolog Anthocyanin O-Methyltransferase1 (VvAOMT1) are highly similar to and apparently evolved from caffeoyl-Coenzyme A O-methyltransferases by relatively small alterations in the active site. Transgenic experiments showed that the Petunia spp. and grape enzymes have remarkably different substrate specificities, which explains part of the structural anthocyanin diversity in both species. Most strikingly, VvAOMT1 expression resulted in the accumulation of novel anthocyanins that are normally not found in Petunia spp., revealing how alterations in the last reaction can reshuffle the pathway and affect (normally) preceding decoration steps in an unanticipated way. Our data show how variations in gene expression patterns, loss-of-function mutations, and alterations in substrate specificities all contributed to the anthocyanins’ structural diversity. PMID:24830298

  5. Diversity and Structure of Fungal Communities in Neotropical Rainforest Soils: The Effect of Host Recurrence.

    PubMed

    Schimann, Heidy; Bach, Cyrille; Lengelle, Juliette; Louisanna, Eliane; Barantal, Sandra; Murat, Claude; Buée, Marc

    2017-02-01

    The patterns of the distribution of fungal species and their potential interactions with trees remain understudied in Neotropical rainforests, which harbor more than 16,000 tree species, mostly dominated by endomycorrhizal trees. Our hypothesis was that tree species shape the non-mycorrhizal fungal assemblages in soil and litter and that the diversity of fungal communities in these two compartments is partly dependent on the coverage of trees in the Neotropical rainforest. In French Guiana, a long-term plantation and a natural forest were selected to test this hypothesis. Fungal ITS1 regions were sequenced from soil and litter samples from within the vicinity of tree species. A broad range of fungal taxa was found, with 42 orders and 14 classes. Significant spatial heterogeneity in the fungal communities was found without strong variation in the species richness and evenness among the tree plots. However, tree species shaped the fungal assemblages in the soil and litter, explaining up to 18 % of the variation among the communities in the natural forest. These results demonstrate that vegetation cover has an important effect on the structure of fungal assemblages inhabiting the soil and litter in Amazonian forests, illustrating the relative impact of deterministic processes on fungal community structures in these highly diverse ecosystems.

  6. Plasticity, dynamics, and inhibition of emerging tetracycline-resistance enzymes

    PubMed Central

    Park, Jooyoung; Gasparrini, Andrew J.; Reck, Margaret R.; Symister, Chanez T.; Elliott, Jennifer L.; Vogel, Joseph P.; Wencewicz, Timothy A.; Dantas, Gautam; Tolia, Niraj H.

    2017-01-01

    While tetracyclines are an important class of antibiotics in agriculture and the clinic, their efficacy is threatened by increasing resistance. Resistance to tetracyclines can occur through efflux, ribosomal protection, or enzymatic inactivation. Surprisingly, tetracycline enzymatic inactivation has remained largely unexplored despite providing the distinct advantage of antibiotic clearance. The tetracycline destructases are a recently-discovered family of tetracycline-inactivating flavoenzymes from pathogens and soil metagenomes with a high potential for broad dissemination. Here, we show tetracycline destructases accommodate tetracycline-class antibiotics in diverse and novel orientations for catalysis, and antibiotic binding drives unprecedented structural dynamics facilitating tetracycline inactivation. We identify a key inhibitor binding mode that locks the flavin adenine dinucleotide cofactor in an inactive state, functionally rescuing tetracycline activity. Our results reveal the potential of a novel tetracycline/tetracycline destructase inhibitor combination therapy strategy to overcome resistance by enzymatic inactivation and restore the use of an important class of antibiotics. PMID:28481346

  7. Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes.

    PubMed

    Park, Jooyoung; Gasparrini, Andrew J; Reck, Margaret R; Symister, Chanez T; Elliott, Jennifer L; Vogel, Joseph P; Wencewicz, Timothy A; Dantas, Gautam; Tolia, Niraj H

    2017-07-01

    Although tetracyclines are an important class of antibiotics for use in agriculture and the clinic, their efficacy is threatened by increasing resistance. Resistance to tetracyclines can occur through efflux, ribosomal protection, or enzymatic inactivation. Surprisingly, tetracycline enzymatic inactivation has remained largely unexplored, despite providing the distinct advantage of antibiotic clearance. The tetracycline destructases are a recently discovered family of tetracycline-inactivating flavoenzymes from pathogens and soil metagenomes that have a high potential for broad dissemination. Here, we show that tetracycline destructases accommodate tetracycline-class antibiotics in diverse and novel orientations for catalysis, and antibiotic binding drives unprecedented structural dynamics facilitating tetracycline inactivation. We identify a key inhibitor binding mode that locks the flavin adenine dinucleotide cofactor in an inactive state, functionally rescuing tetracycline activity. Our results reveal the potential of a new tetracycline and tetracycline destructase inhibitor combination therapy strategy to overcome resistance by enzymatic inactivation and restore the use of an important class of antibiotics.

  8. Prediction of bacterial small RNAs in the RsmA (CsrA) and ToxT pathways: a machine learning approach.

    PubMed

    Fakhry, Carl Tony; Kulkarni, Prajna; Chen, Ping; Kulkarni, Rahul; Zarringhalam, Kourosh

    2017-08-22

    Small RNAs (sRNAs) constitute an important class of post-transcriptional regulators that control critical cellular processes in bacteria. Recent research using high-throughput transcriptomic approaches has led to a dramatic increase in the discovery of bacterial sRNAs. However, it is generally believed that the currently identified sRNAs constitute a limited subset of the bacterial sRNA repertoire. In several cases, sRNAs belonging to a specific class are already known and the challenge is to identify additional sRNAs belonging to the same class. In such cases, machine-learning approaches can be used to predict novel sRNAs in a given class. In this work, we develop novel bioinformatics approaches that integrate sequence and structure-based features to train machine-learning models for the discovery of bacterial sRNAs. We show that features derived from recurrent structural motifs in the ensemble of low energy secondary structures can distinguish the RNA classes with high accuracy. We apply this approach to predict new members in two broad classes of bacterial small RNAs: 1) sRNAs that bind to the RNA-binding protein RsmA/CsrA in diverse bacterial species and 2) sRNAs regulated by the master regulator of virulence, ToxT, in Vibrio cholerae. The involvement of sRNAs in bacterial adaptation to changing environments is an increasingly recurring theme in current research in microbiology. It is likely that future research, combining experimental and computational approaches, will discover many more examples of sRNAs as components of critical regulatory pathways in bacteria. We have developed a novel approach for prediction of small RNA regulators in important bacterial pathways. This approach can be applied to specific classes of sRNAs for which several members have been identified and the challenge is to identify additional sRNAs.

  9. Participatory Deep Learning in a Diverse Class on Minority Literatures

    ERIC Educational Resources Information Center

    Mwangi, Evan

    2010-01-01

    This paper is a reflexive exploration of my teaching and evaluation techniques in a diverse class on minority literature. I explain my classroom evaluation and teaching techniques in offering an African literature course as a junior African professor trained outside the United States and teaching in a predominantly white institution. Using Paulo…

  10. Student-Generated Content: An Approach to Harnessing the Power of Diversity in Higher Education

    ERIC Educational Resources Information Center

    Snowball, J. D.; McKenna, S.

    2017-01-01

    Internationally, classes in higher education institutions are becoming larger and more diverse. Support for "non-traditional" students has often taken the form of additional remedial classes offered outside the main curriculum, which has met with limited success. Sociocultural theories of learning argue that the potential clash between…

  11. Predicting College Students' Intergroup Friendships across Race/Ethnicity, Religion, Sexual Orientation, and Social Class

    ERIC Educational Resources Information Center

    Goldstein, Susan B.

    2013-01-01

    This study seeks to expand the literature on predicting friendship diversity beyond race/ethnicity to include religion, social class, and sexual orientation. Survey packets elicited information regarding up to four close friendships developed during college. Additional measures assessed pre-college friendship diversity, participation in college…

  12. The Impact of Group Diversity on Class Performance: Evidence from College Classrooms

    ERIC Educational Resources Information Center

    Hansen, Zeynep; Owan, Hideo; Pan, Jie

    2015-01-01

    We combine class performance data from an undergraduate management course with students' personal records to examine how group diversity affects group work performance and individual learning. Students are exogenously assigned to groups. We find that, on average, male-dominant groups performed worse in their group work and learned less (based…

  13. Integration of a Faculty's Ongoing Research into an Undergraduate Laboratory Teaching Class in Developmental Biology

    ERIC Educational Resources Information Center

    Nam, Sang-Chul

    2018-01-01

    Traditional developmental biology laboratory classes have utilized a number of different model organisms to allow students to be exposed to diverse biological phenomena in developing organisms. This traditional approach has mainly focused on the diverse morphological and anatomical descriptions of the developing organisms. However, modern…

  14. Influence of long-term land application of class B biosolids on soil bacterial diversity

    USDA-ARS?s Scientific Manuscript database

    This project evaluated the influence of annual land applications of Class B biosolids on soil bacterial diversity monitored over a 20 year period. Each annual land application was followed by a cotton crop. The study was initiated in 1986 at the University of Arizona Marana Agricultural Center, 21 m...

  15. Naval Academy Continues Its Diversity Trend

    ERIC Educational Resources Information Center

    Cooper, Kenneth J.

    2009-01-01

    Sixty years after graduating its first Black midshipman, Wesley Brown, the U.S. Naval Academy has admitted its most diverse class, which boasts the largest numbers and percentages of African-Americans and Hispanics ever to enter Annapolis. The academy has touted the racial and ethnic composition of the class of 2013 as the result of aggressive…

  16. The evolution of plant secretory structures and emergence of terpenoid chemical diversity.

    PubMed

    Lange, Bernd Markus

    2015-01-01

    Secretory structures in terrestrial plants appear to have first emerged as intracellular oil bodies in liverworts. In vascular plants, internal secretory structures, such as resin ducts and laticifers, are usually found in conjunction with vascular bundles, whereas subepidermal secretory cavities and epidermal glandular trichomes generally have more complex tissue distribution patterns. The primary function of plant secretory structures is related to defense responses, both constitutive and induced, against herbivores and pathogens. The ability to sequester secondary (or specialized) metabolites and defense proteins in secretory structures was a critical adaptation that shaped plant-herbivore and plant-pathogen interactions. Although this review places particular emphasis on describing the evolution of pathways leading to terpenoids, it also assesses the emergence of other metabolite classes to outline the metabolic capabilities of different plant lineages.

  17. Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases

    PubMed Central

    Vardakou, Maria; Salmon, Melissa; Faraldos, Juan A.; O’Maille, Paul E.

    2014-01-01

    Terpenes are the largest group of natural products with important and diverse biological roles, while of tremendous economic value as fragrances, flavours and pharmaceutical agents. Class-I terpene synthases (TPSs), the dominant type of TPS enzymes, catalyze the conversion of prenyl diphosphates to often structurally diverse bioactive terpene hydrocarbons, and inorganic pyrophosphate (PPi). To measure their kinetic properties, current bio-analytical methods typically rely on the direct detection of hydrocarbon products by radioactivity measurements or gas chromatography–mass spectrometry (GC–MS). In this study we employed an established, rapid colorimetric assay, the pyrophosphate/malachite green assay (MG), as an alternative means for the biochemical characterization of class I TPSs activity.•We describe the adaptation of the MG assay for turnover and catalytic efficiency measurements of TPSs.•We validate the method by direct comparison with established assays. The agreement of kcat/KM among methods makes this adaptation optimal for rapid evaluation of TPSs.•We demonstrate the application of the MG assay for the high-throughput screening of TPS gene libraries. PMID:26150952

  18. Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases.

    PubMed

    Vardakou, Maria; Salmon, Melissa; Faraldos, Juan A; O'Maille, Paul E

    2014-01-01

    Terpenes are the largest group of natural products with important and diverse biological roles, while of tremendous economic value as fragrances, flavours and pharmaceutical agents. Class-I terpene synthases (TPSs), the dominant type of TPS enzymes, catalyze the conversion of prenyl diphosphates to often structurally diverse bioactive terpene hydrocarbons, and inorganic pyrophosphate (PPi). To measure their kinetic properties, current bio-analytical methods typically rely on the direct detection of hydrocarbon products by radioactivity measurements or gas chromatography-mass spectrometry (GC-MS). In this study we employed an established, rapid colorimetric assay, the pyrophosphate/malachite green assay (MG), as an alternative means for the biochemical characterization of class I TPSs activity.•We describe the adaptation of the MG assay for turnover and catalytic efficiency measurements of TPSs.•We validate the method by direct comparison with established assays. The agreement of k cat/K M among methods makes this adaptation optimal for rapid evaluation of TPSs.•We demonstrate the application of the MG assay for the high-throughput screening of TPS gene libraries.

  19. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End Joining Pathway

    PubMed Central

    Lieber, Michael R.

    2011-01-01

    Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination and nonhomologous DNA end joining (NHEJ). The diverse causes of DSBs result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, polymerases and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during V(D)J recombination and class switch recombination. Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation, but also severely immunodeficient. PMID:20192759

  20. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time

    PubMed Central

    Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil. PMID:27187071

  1. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time.

    PubMed

    Nguyen, Ngoc-Lan; Kim, Yeon-Ju; Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.

  2. Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica.

    PubMed

    Xu, Yuan; Vick-Majors, Trista; Morgan-Kiss, Rachael; Priscu, John C; Amaral-Zettler, Linda

    2014-10-01

    We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions-that is, high salinity, low oxygen, and extreme changes in day length-did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies. © 2014 Marine Biological Laboratory.

  3. The evolutionary diversity of insect retinal mosaics: Common design principles and emerging molecular logic

    PubMed Central

    Wernet, Mathias F.; Perry, Michael W.; Desplan, Claude

    2015-01-01

    Independent evolution has resulted in a vast diversity of eyes. Despite the lack of a common Bauplan or ancestral structure, similar developmental strategies are used. For instance, different classes of photoreceptor cells (PRs) are distributed stochastically and/or localized in different regions of the retina. Here we focus on recent progress made towards understanding the molecular principles behind patterning retinal mosaics of insects, one of the most diverse groups of animals adapted to life on land, in the air, under water, or on the water surface. Morphological, physiological, and behavioral studies from many species provide detailed descriptions of the vast variation in retinal design and function. By integrating this knowledge with recent progress in the characterization of insect Rhodopsins as well as insight from the model organism Drosophila melanogaster, we seek to identify the molecular logic behind the adaptation of retinal mosaics to an animal’s habitat and way of life. PMID:26025917

  4. HFB7 - A novel orphan hydrophobin of the Harzianum and Virens clades of Trichoderma, is involved in response to biotic and abiotic stresses.

    PubMed

    Przylucka, Agnes; Akcapinar, Gunseli Bayram; Chenthamara, Komal; Cai, Feng; Grujic, Marica; Karpenko, Juriy; Livoi, Miriam; Shen, Qirong; Kubicek, Christian P; Druzhinina, Irina S

    2017-05-01

    Hydrophobins are small secreted cysteine-rich proteins exclusively found in fungi. They are able to self-assemble in single molecular layers at hydrophobic-hydrophilic interfaces and can therefore be directly involved in establishment of fungi in their habitat. The genomes of filamentous mycotrophic fungi Trichoderma encode a rich diversity of hydrophobins, which are divided in several groups based on their structure and evolution. Here we describe a new member of class II hydrophobins, HFB7, that has a taxonomically restricted occurrence in Harzianum and Virens clades of Trichoderma. Evolutionary analysis reveals that HFB7 proteins form a separate clade distinct from other Trichoderma class II hydrophobins and that genes encoding them evolve under positive selection pressure. Homology modelling of HFB7 structure in comparison to T. reesei HFB2 reveals that the two large hydrophobic patches on the surface of the protein are remarkably conserved between the two hydrophobins despite significant difference in their primary structures. Expression of hfb7 gene in T. virens increases at interactions with other fungi and a plant and in response to a diversity of abiotic stress conditions, and is also upregulated during formation of aerial mycelium in a standing liquid culture. This upregulation significantly exceeds that of expression of hfb7 under a strong constitutive promoter, and T. virens strains overexpressing hfb7 thus display only changes in traits characterized by low hfb7 expression, i.e. faster growth in submerged liquid culture. The hfb7 gene is not expressed in conidia. Our data allow to conclude that this protein is involved in defence of Trichoderma against a diversity of stress factors related to the oxidative stress. Moreover, HFB7 likely helps in the establishment of the fungus in wetlands or other conditions related to high humidity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Phylogenetic characterization of Clonorchis sinensis proteins homologous to the sigma-class glutathione transferase and their differential expression profiles.

    PubMed

    Bae, Young-An; Kim, Jeong-Geun; Kong, Yoon

    2016-01-01

    Glutathione transferase (GST) is one of the major antioxidant proteins with diverse supplemental activities including peroxidase, isomerase, and thiol transferase. GSTs are classified into multiple classes on the basis of their primary structures and substrate/inhibitor specificity. However, the evolutionary routes and physiological environments specific to each of the closely related bioactive enzymes remain elusive. The sigma-like GSTs exhibit amino acid conservation patterns similar to the prostaglandin D synthases (PGDSs). In this study, we analyzed the phylogenetic position of the GSTs of the biocarcinogenic liver fluke, Clonorchis sinensis. We also observed induction profile of the GSTs in association with the parasite's maturation and in response to exogenous oxidative stresses, with special attention to sigma-class GSTs and PGDSs. The C. sinensis genome encoded 12 GST protein species, which were separately assigned to cytosolic (two omega-, one zeta-, two mu-, and five sigma-class), mitochondrial (one kappa-class), and microsomal (one membrane-associated proteins in eicosanoid and glutathione metabolism-like protein) GST families. Multiple sigma GST (or PGDS) orthologs were also detected in Opisthorchis viverrini. Other trematode species possessed only a single sigma-like GST gene. A phylogenetic analysis demonstrated that one of the sigma GST lineages duplicated in the common ancestor of trematodes were specifically expanded in the opisthorchiids, but deleted in other trematodes. The induction profiles of these sigma GST genes along with the development and aging of C. sinensis, and against various exogenous chemical stimuli strongly suggest that the paralogous sigma GST genes might be undergone specialized evolution to cope with the diverse hostile biochemical environments within the mammalian hepatobiliary ductal system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Selection and Trans-Species Polymorphism of Major Histocompatibility Complex Class II Genes in the Order Crocodylia

    PubMed Central

    Jaratlerdsiri, Weerachai; Isberg, Sally R.; Higgins, Damien P.; Miles, Lee G.; Gongora, Jaime

    2014-01-01

    Major Histocompatibility Complex (MHC) class II genes encode for molecules that aid in the presentation of antigens to helper T cells. MHC characterisation within and between major vertebrate taxa has shed light on the evolutionary mechanisms shaping the diversity within this genomic region, though little characterisation has been performed within the Order Crocodylia. Here we investigate the extent and effect of selective pressures and trans-species polymorphism on MHC class II α and β evolution among 20 extant species of Crocodylia. Selection detection analyses showed that diversifying selection influenced MHC class II β diversity, whilst diversity within MHC class II α is the result of strong purifying selection. Comparison of translated sequences between species revealed the presence of twelve trans-species polymorphisms, some of which appear to be specific to the genera Crocodylus and Caiman. Phylogenetic reconstruction clustered MHC class II α sequences into two major clades representing the families Crocodilidae and Alligatoridae. However, no further subdivision within these clades was evident and, based on the observation that most MHC class II α sequences shared the same trans-species polymorphisms, it is possible that they correspond to the same gene lineage across species. In contrast, phylogenetic analyses of MHC class II β sequences showed a mixture of subclades containing sequences from Crocodilidae and/or Alligatoridae, illustrating orthologous relationships among those genes. Interestingly, two of the subclades containing sequences from both Crocodilidae and Alligatoridae shared specific trans-species polymorphisms, suggesting that they may belong to ancient lineages pre-dating the divergence of these two families from the common ancestor 85–90 million years ago. The results presented herein provide an immunogenetic resource that may be used to further assess MHC diversity and functionality in Crocodylia. PMID:24503938

  7. β-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan

    PubMed Central

    López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto

    2013-01-01

    Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity –possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and correlates that are not apparent when focusing on overall woody plant diversity, and that have important implications for ecological theory and biodiversity conservation. PMID:24040014

  8. CELDA – an ontology for the comprehensive representation of cells in complex systems

    PubMed Central

    2013-01-01

    Background The need for detailed description and modeling of cells drives the continuous generation of large and diverse datasets. Unfortunately, there exists no systematic and comprehensive way to organize these datasets and their information. CELDA (Cell: Expression, Localization, Development, Anatomy) is a novel ontology for the association of primary experimental data and derived knowledge to various types of cells of organisms. Results CELDA is a structure that can help to categorize cell types based on species, anatomical localization, subcellular structures, developmental stages and origin. It targets cells in vitro as well as in vivo. Instead of developing a novel ontology from scratch, we carefully designed CELDA in such a way that existing ontologies were integrated as much as possible, and only minimal extensions were performed to cover those classes and areas not present in any existing model. Currently, ten existing ontologies and models are linked to CELDA through the top-level ontology BioTop. Together with 15.439 newly created classes, CELDA contains more than 196.000 classes and 233.670 relationship axioms. CELDA is primarily used as a representational framework for modeling, analyzing and comparing cells within and across species in CellFinder, a web based data repository on cells (http://cellfinder.org). Conclusions CELDA can semantically link diverse types of information about cell types. It has been integrated within the research platform CellFinder, where it exemplarily relates cell types from liver and kidney during development on the one hand and anatomical locations in humans on the other, integrating information on all spatial and temporal stages. CELDA is available from the CellFinder website: http://cellfinder.org/about/ontology. PMID:23865855

  9. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil.

    PubMed

    Lynn, Tin Mar; Liu, Qiong; Hu, Yajun; Yuan, Hongzhao; Wu, Xiaohong; Khai, Aye Aye; Wu, Jinshui; Ge, Tida

    2017-07-01

    Studying shifts in microbial communities under different land use can help in determining the impact of land use on microbial diversity. In this study, we analyzed four different land-use types to determine their bacterial and archaeal diversity and abundance. Three natural ecosystems, that is, wetland (WL), grassland (GL), and forest (FR) soils, and one agricultural soil, that is, tea plantation (TP) soil, were investigated to determine how land use shapes bacterial and archaeal diversity. For this purpose, molecular analyses, such as quantitative polymerase chain reaction (Q-PCR), 16S rRNA gene sequencing, and terminal restriction fragment length polymorphism (T-RFLP), were used. Soil physicochemical properties were determined, and statistical analyses were performed to identify the key factors affecting microbial diversity in these soils. Phylogenetic affiliations determined using the Ribosomal Database Project (RDP) database and T-RFLP revealed that the soils had differing bacterial diversity. WL soil was rich in only Proteobacteria, whereas GR soil was rich in Proteobacteria, followed by Actinobacteria. FR soil had higher abundance of Chloroflexi species than these soils. TP soil was rich in Actinobacteria, followed by Chloroflexi, Acidobacteria, Proteobacteria, and Firmicutes. The archaeal diversity of GL and FR soils was similar in that most of their sequences were closely related to Nitrososphaerales (Thaumarchaeota phylum). In contrast, WL soil, followed by TP soil, had greater archaeal diversity than other soils. Eight different archaeal classes were found in WL soil, and Pacearchaeota class was the richest one. The abundance of bacterial and archaeal 16S rRNA gene copies in WL and GL soils was significantly higher than that in FR and TP soils. Redundancy analysis showed that bacterial diversity was influenced by abiotic factors, e.g., total organic carbon and pH, whereas total nitrogen, pH, and cation exchange capacity (CEC) significantly affected archaeal community composition. Pearson correlation analysis showed that bacterial and archaeal 16S rRNA gene abundance had the highest correlation with clay content (r > 0.905, P < 0.01), followed by total-P, CEC, pH, and silt (%). These results will lead to more comprehensive understanding of how land use affects microbial distribution.

  10. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    PubMed

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for links among species diversity, environmental variation and ecosystem function.

  11. Forest Structure in Low-Diversity Tropical Forests: A Study of Hawaiian Wet and Dry Forests

    PubMed Central

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P.; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai‘i forests were characterized by low species richness and very high relative dominance. The two Hawai‘i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5–>50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai‘i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15–1182 species), six-fold variation in mean annual rainfall (835–5272 mm yr−1) and 1.8-fold variation in mean annual temperature (16.0–28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for links among species diversity, environmental variation and ecosystem function. PMID:25162731

  12. Site-specific genetic recombination: hops, flips, and flops.

    PubMed

    Sadowski, P D

    1993-06-01

    Genetic recombination plays a key role in the life of organisms as diverse as bacteriophages and humans. Contrary to our idea that chromosomes are stable structures, studies of recombination over the past few decades have shown that in fact DNA replicons are remarkably plastic, undergoing frequent recombination-induced rearrangements. This review summarizes our recent knowledge of the biochemistry of the two major classes of site-specific recombination: 1) transpositional recombination, and 2) conservative site-specific recombination.

  13. The t-Butylsulfinamide Lynchpin in Transition Metal-Mediated Multiscaffold Library Synthesis

    PubMed Central

    Bauer, Renato A.; DiBlasi, Christine M.; Tan, Derek S.

    2010-01-01

    A unified synthetic approach to diverse polycyclic scaffolds has been developed using transition metal-mediated cycloaddition and cyclization reactions of enynes and diynes. The t-butylsulfinamide group has been identified as a particularly versatile lynchpin in these reactions, with a reactivity profile uniquely suited for efficient, stereoselective substrate synthesis and downstream transformations. This approach provides ten distinct, functionalized scaffold classes related to common core structures in alkaloid and terpenoid natural products. PMID:20356070

  14. Toward diversity-responsive medical education: taking an intersectionality-based approach to a curriculum evaluation.

    PubMed

    Muntinga, M E; Krajenbrink, V Q E; Peerdeman, S M; Croiset, G; Verdonk, P

    2016-08-01

    Recent years have seen a rise in the efforts to implement diversity topics into medical education, using either a 'narrow' or a 'broad' definition of culture. These developments urge that outcomes of such efforts are systematically evaluated by mapping the curriculum for diversity-responsive content. This study was aimed at using an intersectionality-based approach to define diversity-related learning objectives and to evaluate how biomedical and sociocultural aspects of diversity were integrated into a medical curriculum in the Netherlands. We took a three-phase mixed methods approach. In phase one and two, we defined essential learning objectives based on qualitative interviews with school stakeholders and diversity literature. In phase three, we screened the written curriculum for diversity content (culture, sex/gender and class) and related the results to learning objectives defined in phase two. We identified learning objectives in three areas of education (medical knowledge and skills, patient-physician communication, and reflexivity). Most diversity content pertained to biomedical knowledge and skills. Limited attention was paid to sociocultural issues as determinants of health and healthcare use. Intersections of culture, sex/gender and class remained mostly unaddressed. The curriculum's diversity-responsiveness could be improved by an operationalization of diversity that goes beyond biomedical traits of assumed homogeneous social groups. Future efforts to take an intersectionality-based approach to curriculum evaluations should include categories of difference other than culture, sex/gender and class as separate, equally important patient identities or groups.

  15. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats

    PubMed Central

    Denzinger, Annette; Schnitzler, Hans-Ulrich

    2013-01-01

    Throughout evolution the foraging and echolocation behaviors as well as the motor systems of bats have been adapted to the tasks they have to perform while searching and acquiring food. When bats exploit the same class of environmental resources in a similar way, they perform comparable tasks and thus share similar adaptations independent of their phylogeny. Species with similar adaptations are assigned to guilds or functional groups. Habitat type and foraging mode mainly determine the foraging tasks and thus the adaptations of bats. Therefore, we use habitat type and foraging mode to define seven guilds. The habitat types open, edge and narrow space are defined according to the bats' echolocation behavior in relation to the distance between bat and background or food item and background. Bats foraging in the aerial, trawling, flutter detecting, or active gleaning mode use only echolocation to acquire their food. When foraging in the passive gleaning mode bats do not use echolocation but rely on sensory cues from the food item to find it. Bat communities often comprise large numbers of species with a high diversity in foraging areas, foraging modes, and diets. The assignment of species living under similar constraints into guilds identifies patterns of community structure and helps to understand the factors that underlie the organization of highly diverse bat communities. Bat species from different guilds do not compete for food as they differ in their foraging behavior and in the environmental resources they use. However, sympatric living species belonging to the same guild often exploit the same class of resources. To avoid competition they should differ in their niche dimensions. The fine grain structure of bat communities below the rather coarse classification into guilds is determined by mechanisms that result in niche partitioning. PMID:23840190

  16. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    PubMed

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  17. Structural and Evolutionary Aspects of Antenna Chromophore Usage by Class II Photolyases*

    PubMed Central

    Kiontke, Stephan; Gnau, Petra; Haselsberger, Reinhard; Batschauer, Alfred; Essen, Lars-Oliver

    2014-01-01

    Light-harvesting and resonance energy transfer to the catalytic FAD cofactor are key roles for the antenna chromophores of light-driven DNA photolyases, which remove UV-induced DNA lesions. So far, five chemically diverse chromophores have been described for several photolyases and related cryptochromes, but no correlation between phylogeny and used antenna has been found. Despite a common protein topology, structural analysis of the distantly related class II photolyase from the archaeon Methanosarcina mazei (MmCPDII) as well as plantal orthologues indicated several differences in terms of DNA and FAD binding and electron transfer pathways. For MmCPDII we identify 8-hydroxydeazaflavin (8-HDF) as cognate antenna by in vitro and in vivo reconstitution, whereas the higher plant class II photolyase from Arabidopsis thaliana fails to bind any of the known chromophores. According to the 1.9 Å structure of the MmCPDII·8-HDF complex, its antenna binding site differs from other members of the photolyase-cryptochrome superfamily by an antenna loop that changes its conformation by 12 Å upon 8-HDF binding. Additionally, so-called N- and C-motifs contribute as conserved elements to the binding of deprotonated 8-HDF and allow predicting 8-HDF binding for most of the class II photolyases in the whole phylome. The 8-HDF antenna is used throughout the viridiplantae ranging from green microalgae to bryophyta and pteridophyta, i.e. mosses and ferns, but interestingly not in higher plants. Overall, we suggest that 8-hydroxydeazaflavin is a crucial factor for the survival of most higher eukaryotes which depend on class II photolyases to struggle with the genotoxic effects of solar UV exposure. PMID:24849603

  18. Food allergens: molecular and immunological aspects, allergen databases and cross-reactivity.

    PubMed

    Lorenz, Anne-Regine; Scheurer, Stephan; Vieths, Stefan

    2015-01-01

    The currently known food allergens are assigned to a relatively small number of protein families. Food allergens grouped into protein families share common functional and structural features that can be attributed to the allergenic potency and potential cross-reactivity of certain proteins. Molecular data, in terms of structural information, biochemical characteristics and clinical relevance for each known allergen, including isoforms and variants, are mainly compiled into four open-access databases. Allergens are designated according to defined criteria by the World Health Organization and the International Union of Immunological Societies Allergen Nomenclature Sub-committee. Food allergies are caused by primary sensitisation to the disease-eliciting food allergens (class I food allergen), or they can be elicited as a consequence of a primary sensitisation to inhalant allergens and subsequent IgE cross-reaction to homologous proteins in food (class II food allergens). Class I and class II allergens display different clinical significance in children and adults and are characterised by different molecular features. In line with this, high stability when exposed to gastrointestinal digestion and heat treatment is attributed to many class I food allergens that frequently induce severe reactions. The stability of a food allergen is determined by its molecular characteristics and can be influenced by structural (chemical) modifications due to thermal processing. Moreover, the immunogenicity and allergenicity of food allergens further depends on specific T cell and B cell epitopes. Although the T cell epitope pattern can be highly diverse for individual patients, several immuno-prominent T cell epitopes have been identified. Such conserved T cell epitopes and IgE cross-reactive B cell epitopes contribute to cross-reactivity between food allergens of the same family and to clinical cross-reactivity, similar to the birch pollen-food syndrome. © 2015 S. Karger AG, Basel.

  19. Hit 'em where it hurts: The growing and structurally diverse family of peptides that target lipid-II.

    PubMed

    Oppedijk, Sabine F; Martin, Nathaniel I; Breukink, Eefjan

    2016-05-01

    Understanding the mode of action of antibiotics is becoming more and more important in the time that microorganisms start to develop resistance. One very well validated target of several classes of antibiotics is the peptidoglycan precursor lipid II. In this review different classes of lipid II targeting antibiotics will be discussed in detail, including the lantibiotics, human invertebrate defensins and the recently discovered teixobactin. By hitting bacteria where it hurts, at the level of lipid II, we expect to be able to develop efficient antibacterial agents in the future. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Towards the Improved Discovery and Design of Functional Peptides: Common Features of Diverse Classes Permit Generalized Prediction of Bioactivity

    PubMed Central

    Mooney, Catherine; Haslam, Niall J.; Pollastri, Gianluca; Shields, Denis C.

    2012-01-01

    The conventional wisdom is that certain classes of bioactive peptides have specific structural features that endow their particular functions. Accordingly, predictions of bioactivity have focused on particular subgroups, such as antimicrobial peptides. We hypothesized that bioactive peptides may share more general features, and assessed this by contrasting the predictive power of existing antimicrobial predictors as well as a novel general predictor, PeptideRanker, across different classes of peptides. We observed that existing antimicrobial predictors had reasonable predictive power to identify peptides of certain other classes i.e. toxin and venom peptides. We trained two general predictors of peptide bioactivity, one focused on short peptides (4–20 amino acids) and one focused on long peptides ( amino acids). These general predictors had performance that was typically as good as, or better than, that of specific predictors. We noted some striking differences in the features of short peptide and long peptide predictions, in particular, high scoring short peptides favour phenylalanine. This is consistent with the hypothesis that short and long peptides have different functional constraints, perhaps reflecting the difficulty for typical short peptides in supporting independent tertiary structure. We conclude that there are general shared features of bioactive peptides across different functional classes, indicating that computational prediction may accelerate the discovery of novel bioactive peptides and aid in the improved design of existing peptides, across many functional classes. An implementation of the predictive method, PeptideRanker, may be used to identify among a set of peptides those that may be more likely to be bioactive. PMID:23056189

  1. Intersectionality and Social Work: Omissions of Race, Class, and Sexuality in Graduate School Education

    ERIC Educational Resources Information Center

    Bubar, Roe; Cespedes, Karina; Bundy-Fazioli, Kimberly

    2016-01-01

    In 2008 EPAS Standards on "Engaging Diversity and Difference in Practice" (2.1.4) added intersectionality (a theory developed by feminist of color) as one aspect to understand diversity, difference, and power in social work curriculum. We consider how intersectionality is omitted in graduate student learning even when class assignments…

  2. Career and Technical Education Teachers' Perceptions of Culturally Diverse Classes: Rewards, Difficulties, and Useful Teaching Strategies

    ERIC Educational Resources Information Center

    Rehm, Marsha L.

    2008-01-01

    The purpose of this study was to identify CTE teachers' perceptions of selected rewards, difficulties, and useful teaching strategies in culturally diverse classes. The sample was comprised of 41 trade and industrial, business technology, and family and consumer sciences teachers who taught students from 30 cultural backgrounds. The data were…

  3. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase

    DOE PAGES

    Wei, Yifeng; Li, Bin; Prakash, Divya; ...

    2015-11-04

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRsmore » reflects the diversity of electron carriers used in anaerobic metabolism« less

  4. Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis.

    PubMed

    Morehouse, Benjamin R; Kumar, Ramasamy P; Matos, Jason O; Olsen, Sarah Naomi; Entova, Sonya; Oprian, Daniel D

    2017-03-28

    Terpenes make up the largest and most diverse class of natural compounds and have important commercial and medical applications. Limonene is a cyclic monoterpene (C 10 ) present in nature as two enantiomers, (+) and (-), which are produced by different enzymes. The mechanism of production of the (-)-enantiomer has been studied in great detail, but to understand how enantiomeric selectivity is achieved in this class of enzymes, it is important to develop a thorough biochemical description of enzymes that generate (+)-limonene, as well. Here we report the first cloning and biochemical characterization of a (+)-limonene synthase from navel orange (Citrus sinensis). The enzyme obeys classical Michaelis-Menten kinetics and produces exclusively the (+)-enantiomer. We have determined the crystal structure of the apoprotein in an "open" conformation at 2.3 Å resolution. Comparison with the structure of (-)-limonene synthase (Mentha spicata), which is representative of a fully closed conformation (Protein Data Bank entry 2ONG ), reveals that the short H-α1 helix moves nearly 5 Å inward upon substrate binding, and a conserved Tyr flips to point its hydroxyl group into the active site.

  5. Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China.

    PubMed

    Qian, Hong; Chen, Shengbin; Zhang, Jin-Long

    2017-07-17

    Niche-based and neutrality-based theories are two major classes of theories explaining the assembly mechanisms of local communities. Both theories have been frequently used to explain species diversity and composition in local communities but their relative importance remains unclear. Here, we analyzed 57 assemblages of angiosperm trees in 0.1-ha forest plots across China to examine the effects of environmental heterogeneity (relevant to niche-based processes) and spatial contingency (relevant to neutrality-based processes) on phylogenetic structure of angiosperm tree assemblages distributed across a wide range of environment and space. Phylogenetic structure was quantified with six phylogenetic metrics (i.e., phylogenetic diversity, mean pairwise distance, mean nearest taxon distance, and the standardized effect sizes of these three metrics), which emphasize on different depths of evolutionary histories and account for different degrees of species richness effects. Our results showed that the variation in phylogenetic metrics explained independently by environmental variables was on average much greater than that explained independently by spatial structure, and the vast majority of the variation in phylogenetic metrics was explained by spatially structured environmental variables. We conclude that niche-based processes have played a more important role than neutrality-based processes in driving phylogenetic structure of angiosperm tree species in forest communities in China.

  6. School climate and bullying victimization: a latent class growth model analysis.

    PubMed

    Gage, Nicholas A; Prykanowski, Debra A; Larson, Alvin

    2014-09-01

    Researchers investigating school-level approaches for bullying prevention are beginning to discuss and target school climate as a construct that (a) may predict prevalence and (b) be an avenue for school-wide intervention efforts (i.e., increasing positive school climate). Although promising, research has not fully examined and established the social-ecological link between school climate factors and bullying/peer aggression. To address this gap, we examined the association between school climate factors and bullying victimization for 4,742 students in Grades 3-12 across 3 school years in a large, very diverse urban school district using latent class growth modeling. Across 3 different models (elementary, secondary, and transition to middle school), a 3-class model was identified, which included students at high-risk for bullying victimization. Results indicated that, for all students, respect for diversity and student differences (e.g., racial diversity) predicted within-class decreases in reports of bullying. High-risk elementary students reported that adult support in school was a significant predictor of within-class reduction of bullying, and high-risk secondary students report peer support as a significant predictor of within-class reduction of bullying. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  7. SkateBase, an elasmobranch genome project and collection of molecular resources for chondrichthyan fishes

    PubMed Central

    Wyffels, Jennifer; L. King, Benjamin; Vincent, James; Chen, Chuming; Wu, Cathy H.; Polson, Shawn W.

    2014-01-01

    Chondrichthyan fishes are a diverse class of gnathostomes that provide a valuable perspective on fundamental characteristics shared by all jawed and limbed vertebrates. Studies of phylogeny, species diversity, population structure, conservation, and physiology are accelerated by genomic, transcriptomic and protein sequence data. These data are widely available for many sarcopterygii (coelacanth, lungfish and tetrapods) and actinoptergii (ray-finned fish including teleosts) taxa, but limited for chondrichthyan fishes.  In this study, we summarize available data for chondrichthyes and describe resources for one of the largest projects to characterize one of these fish, Leucoraja erinacea, the little skate.  SkateBase ( http://skatebase.org) serves as the skate genome project portal linking data, research tools, and teaching resources. PMID:25309735

  8. Ca2+-binding Motif of βγ-Crystallins*

    PubMed Central

    Srivastava, Shanti Swaroop; Mishra, Amita; Krishnan, Bal; Sharma, Yogendra

    2014-01-01

    βγ-Crystallin-type double clamp (N/D)(N/D)XX(S/T)S motif is an established but sparsely investigated motif for Ca2+ binding. A βγ-crystallin domain is formed of two Greek key motifs, accommodating two Ca2+-binding sites. βγ-Crystallins make a separate class of Ca2+-binding proteins (CaBP), apparently a major group of CaBP in bacteria. Paralleling the diversity in βγ-crystallin domains, these motifs also show great diversity, both in structure and in function. Although the expression of some of them has been associated with stress, virulence, and adhesion, the functional implications of Ca2+ binding to βγ-crystallins in mediating biological processes are yet to be elucidated. PMID:24567326

  9. Teaching the Class with "The Class": Debunking the Need for Heroes

    ERIC Educational Resources Information Center

    Miretzky, Debra

    2017-01-01

    The French film "Entre Les Murs" ("The Class") is a somewhat unusual film in its portrayal of a Parisian working class school and its protagonist, Mr. Marin, who attempts to teach an unruly class of young and very diverse teenagers. This article explores the ways the author used the film "The Class" as a culminating…

  10. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, Kelley A.; Jensen, Paul R.

    Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemicalmore » scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites. We found ABBA PTase homologs in all of the MAR4 genomes, which averaged five copies per strain, compared with 21 % of the non-MAR4 genomes, which averaged one copy per strain. Phylogenetic analyses suggest that MAR4 PTase diversity has arisen by a combination of horizontal gene transfer and gene duplication. Furthermore, there is evidence that HI gene cluster diversity is generated by the horizontal exchange of orthologous PTases among clusters. Many putative HI gene clusters have not been linked to their secondary metabolic products, suggesting that MAR4 strains will yield additional new compounds in this structure class. Finally, we confirm that the mevalonate pathway is not always present in genomes that contain HI gene clusters and thus is not a reliable query for identifying strains with the potential to produce HI secondary metabolites. In conclusion: We found that marine-derived MAR4 streptomycetes possess a relatively high genetic potential for HI biosynthesis. The combination of horizontal gene transfer, duplication, and rearrangement indicate that complex evolutionary processes account for the high level of HI gene cluster diversity in these bacteria, the products of which may provide a yet to be defined adaptation to the marine environment.« less

  11. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade

    DOE PAGES

    Gallagher, Kelley A.; Jensen, Paul R.

    2015-11-17

    Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemicalmore » scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites. We found ABBA PTase homologs in all of the MAR4 genomes, which averaged five copies per strain, compared with 21 % of the non-MAR4 genomes, which averaged one copy per strain. Phylogenetic analyses suggest that MAR4 PTase diversity has arisen by a combination of horizontal gene transfer and gene duplication. Furthermore, there is evidence that HI gene cluster diversity is generated by the horizontal exchange of orthologous PTases among clusters. Many putative HI gene clusters have not been linked to their secondary metabolic products, suggesting that MAR4 strains will yield additional new compounds in this structure class. Finally, we confirm that the mevalonate pathway is not always present in genomes that contain HI gene clusters and thus is not a reliable query for identifying strains with the potential to produce HI secondary metabolites. In conclusion: We found that marine-derived MAR4 streptomycetes possess a relatively high genetic potential for HI biosynthesis. The combination of horizontal gene transfer, duplication, and rearrangement indicate that complex evolutionary processes account for the high level of HI gene cluster diversity in these bacteria, the products of which may provide a yet to be defined adaptation to the marine environment.« less

  12. Characterization of Two Distinct Structural Classes of Selective Aldehyde Dehydrogenase 1A1 Inhibitors

    DOE PAGES

    Morgan, Cynthia A.; Hurley, Thomas D.

    2015-01-29

    Aldehyde dehydrogenases (ALDH) catalyze the irreversible oxidation of aldehydes to their corresponding carboxylic acid. Alterations in ALDH1A1 activity are associated with such diverse diseases as cancer, Parkinson’s disease, obesity, and cataracts. Inhibitors of ALDH1A1 could aid in illuminating the role of this enzyme in disease processes. However, there are no commercially available selective inhibitors for ALDH1A1. Here we characterize two distinct chemical classes of inhibitors that are selective for human ALDH1A1 compared to eight other ALDH isoenzymes. The prototypical members of each structural class, CM026 and CM037, exhibit sub-micromolar inhibition constants, but have different mechanisms of inhibition. The crystal structuresmore » of these compounds bound to ALDH1A1 demonstrate that they bind within the aldehyde binding pocket of ALDH1A1 and exploit the presence of a unique Glycine residue to achieve their selectivity. Lastly, these two novel and selective ALDH1A1 inhibitors may serve as chemical tools to better understand the contributions of ALDH1A1 to normal biology and to disease states.« less

  13. Contrasting epidemic histories reveal pathogen-mediated balancing selection on class II MHC diversity in a wild songbird.

    PubMed

    Hawley, Dana M; Fleischer, Robert C

    2012-01-01

    The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.

  14. Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria.

    PubMed

    Ross, Avena C; Xu, Ying; Lu, Liang; Kersten, Roland D; Shao, Zongze; Al-Suwailem, Abdulaziz M; Dorrestein, Pieter C; Qian, Pei-Yuan; Moore, Bradley S

    2013-01-23

    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multimodule skipping and iteration. Preliminary biochemical analysis of the N-terminal nonribosomal peptide synthetase module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N terminus.

  15. Biosynthetic Multitasking Facilitates Thalassospiramide Structural Diversity in Marine Bacteria

    PubMed Central

    Ross, Avena C.; Xu, Ying; Lu, Liang; Kersten, Roland D.; Shao, Zongze; Al-Suwailem, Abdulaziz M.; Dorrestein, Pieter C.; Qian, Pei-Yuan; Moore, Bradley S.

    2013-01-01

    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multi-module skipping and iteration. Preliminary biochemical analysis of the N-terminal NRPS module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N-terminus. PMID:23270364

  16. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge

    PubMed Central

    Chen, Ping; Zhang, Limin; Guo, Xiaoxuan; Dai, Xin; Liu, Li; Xi, Lijun; Wang, Jian; Song, Lei; Wang, Yuezhu; Zhu, Yaxin; Huang, Li; Huang, Ying

    2016-01-01

    The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling. PMID:27621725

  17. New data from basal Australian songbird lineages show that complex structure of MHC class II β genes has early evolutionary origins within passerines.

    PubMed

    Balasubramaniam, Shandiya; Bray, Rebecca D; Mulder, Raoul A; Sunnucks, Paul; Pavlova, Alexandra; Melville, Jane

    2016-05-21

    The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. We identified 177 alleles of the MHC class II β exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II β exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC in non-passerine lineages. These findings indicate an early evolutionary origin of highly polymorphic MHC paralogs in passerines and shed light on the evolutionary forces shaping the avian MHC.

  18. A new class of HIV-1 protease inhibitor: the crystallographic structure, inhibition and chemical synthesis of an aminimide peptide isostere.

    PubMed

    Rutenber, E E; McPhee, F; Kaplan, A P; Gallion, S L; Hogan, J C; Craik, C S; Stroud, R M

    1996-09-01

    The essential role of HIV-1 protease (HIV-1 PR) in the viral life cycle makes it an attractive target for the development of substrate-based inhibitors that may find efficacy as anti-AIDS drugs. However, resistance has arisen to potent peptidomimetic drugs necessitating the further development of novel chemical backbones for diversity based chemistry focused on probing the active site for inhibitor interactions and binding modes that evade protease resistance. AQ148 is a potent inhibitor of HIV-1 PR and represents a new class of transition state analogues incorporating an aminimide peptide isostere. A 3-D crystallographic structure of AQ148, a tetrapeptide isostere, has been determined in complex with its target HIV-1 PR to a resolution of 2.5 A and used to evaluate the specific structural determinants of AQ148 potency and to correlate structure-activity relationships within the class of related compounds. AQ148 is a competitive inhibitor of HIV-1 PR with a Ki value of 137 nM. Twenty-nine derivatives have been synthesized and chemical modifications have been made at the P1, P2, P1', and P2' sites. The atomic resolution structure of AQ148 bound to HIV-1 PR reveals both an inhibitor binding mode that closely resembles that of other peptidomimetic inhibitors and specific protein/inhibitor interactions that correlate with structure-activity relationships. The structure provides the basis for the design, synthesis and evaluation of the next generation of hydroxyethyl aminimide inhibitors. The aminimide peptide isostere is a scaffold with favorable biological properties well suited to both the combinatorial methods of peptidomimesis and the rational design of potent and specific substrate-based analogues.

  19. Limited variation in vaccine candidate Plasmodium falciparum Merozoite Surface Protein-6 over multiple transmission seasons.

    PubMed

    Neal, Aaron T; Jordan, Stephen J; Oliveira, Ana L; Hernandez, Jean N; Branch, Oralee H; Rayner, Julian C

    2010-05-24

    Plasmodium falciparum Merozoite Surface Protein-6 (PfMSP6) is a component of the complex proteinacious coat that surrounds P. falciparum merozoites. This location, and the presence of anti-PfMSP6 antibodies in P. falciparum-exposed individuals, makes PfMSP6 a potential blood stage vaccine target. However, genetic diversity has proven to be a major hurdle for vaccines targeting other blood stage P. falciparum antigens, and few endemic field studies assessing PfMSP6 gene diversity have been conducted. This study follows PfMSP6 diversity in the Peruvian Amazon from 2003 to 2006 and is the first longitudinal assessment of PfMSP6 sequence dynamics. Parasite DNA was extracted from 506 distinct P. falciparum infections spanning the transmission seasons from 2003 to 2006 as part of the Malaria Immunology and Genetics in the Amazon (MIGIA) cohort study near Iquitos, Peru. PfMSP6 was amplified from each sample using a nested PCR protocol, genotyped for allele class by agarose gel electrophoresis, and sequenced to detect diversity. Allele frequencies were analysed using JMP v.8.0.1.0 and correlated with clinical and epidemiological data collected as part of the MIGIA project. Both PfMSP6 allele classes, K1-like and 3D7-like, were detected at the study site, confirming that both are globally distributed. Allele frequencies varied significantly between transmission seasons, with 3D7-class alleles dominating and K1-class alleles nearly disappearing in 2005 and 2006. There was a significant association between allele class and village location (p-value = 0.0008), but no statistically significant association between allele class and age, sex, or symptom status. No intra-allele class sequence diversity was detected. Both PfMSP6 allele classes are globally distributed, and this study shows that allele frequencies can fluctuate significantly between communities separated by only a few kilometres, and over time in the same community. By contrast, PfMSP6 was highly stable at the sequence level, with no SNPs detected in the 506 samples analysed. This limited diversity supports further investigation of PfMSP6 as a blood stage vaccine candidate, with the clear caveat that any such vaccine must either contain both alleles or generate cross-protective responses that react against both allele classes. Detailed immunoepidemiology studies are needed to establish the viability of these approaches before PfMSP6 advances further down the vaccine development pipeline.

  20. Genetic diversity analysis of common beans based on molecular markers

    PubMed Central

    Gill-Langarica, Homar R.; Muruaga-Martínez, José S.; Vargas-Vázquez, M.L. Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-01-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation. PMID:22215964

  1. Genetic diversity analysis of common beans based on molecular markers.

    PubMed

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  2. Chemometric Analysis of Bacterial Peptidoglycan Reveals Atypical Modifications That Empower the Cell Wall against Predatory Enzymes and Fly Innate Immunity.

    PubMed

    Espaillat, Akbar; Forsmo, Oskar; El Biari, Khouzaima; Björk, Rafael; Lemaitre, Bruno; Trygg, Johan; Cañada, Francisco Javier; de Pedro, Miguel A; Cava, Felipe

    2016-07-27

    Peptidoglycan is a fundamental structure for most bacteria. It contributes to the cell morphology and provides cell wall integrity against environmental insults. While several studies have reported a significant degree of variability in the chemical composition and organization of peptidoglycan in the domain Bacteria, the real diversity of this polymer is far from fully explored. This work exploits rapid ultraperformance liquid chromatography and multivariate data analysis to uncover peptidoglycan chemical diversity in the Class Alphaproteobacteria, a group of Gram negative bacteria that are highly heterogeneous in terms of metabolism, morphology and life-styles. Indeed, chemometric analyses revealed novel peptidoglycan structures conserved in Acetobacteria: amidation at the α-(l)-carboxyl of meso-diaminopimelic acid and the presence of muropeptides cross-linked by (1-3) l-Ala-d-(meso)-diaminopimelate cross-links. Both structures are growth-controlled modifications that influence sensitivity to Type VI secretion system peptidoglycan endopeptidases and recognition by the Drosophila innate immune system, suggesting relevant roles in the environmental adaptability of these bacteria. Collectively our findings demonstrate the discriminative power of chemometric tools on large cell wall-chromatographic data sets to discover novel peptidoglycan structural properties in bacteria.

  3. The complex and specific pMHC interactions with diverse HIV-1 TCR clonotypes reveal a structural basis for alterations in CTL function

    PubMed Central

    Xia, Zhen; Chen, Huabiao; Kang, Seung-gu; Huynh, Tien; Fang, Justin W.; Lamothe, Pedro A.; Walker, Bruce D.; Zhou, Ruhong

    2014-01-01

    Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function. PMID:24522437

  4. Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology.

    PubMed

    Gupta, Rani; Kumari, Arti; Syal, Poonam; Singh, Yogesh

    2015-01-01

    Lipase catalyzes hydrolysis of fats in lipid water interphase and perform variety of biotransformation reactions under micro aqueous conditions. The major sources include microbial lipases; among these yeast and fungal lipases are of special interest because they can carry out various stereoselective reactions. These lipases are highly diverse and are categorized into three classes on the basis of oxyanion hole: GX, GGGX and Y. The detailed phylogenetic analysis showed that GX family is more diverse than GGGX and Y family. Sequence and structural comparisons revealed that lipases are conserved only in the signature sequence region. Their characteristic structural determinants viz. lid, binding pocket and oxyanion hole are hotspots for mutagenesis. Few examples are cited in this review to highlight the multidisciplinary approaches for designing novel enzyme variants with improved thermo stability and substrate specificity. In addition, we present a brief account on biotechnological applications of lipases. Lipases have also gained attention as virulence factors, therefore, we surveyed the role of lipases in yeast physiology related to colonization, adhesion, biofilm formation and pathogenesis. The new genomic era has opened numerous possibilities to genetically manipulate lipases for food, fuel and pharmaceuticals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions.

    PubMed

    Wang, Ludi; Clarke, Lisa A; Eason, Russell J; Parker, Christopher C; Qi, Baoxiu; Scott, Rod J; Doughty, James

    2017-01-01

    The establishment of pollen-pistil compatibility is strictly regulated by factors derived from both male and female reproductive structures. Highly diverse small cysteine-rich proteins (CRPs) have been found to play multiple roles in plant reproduction, including the earliest stages of the pollen-stigma interaction. Secreted CRPs found in the pollen coat of members of the Brassicaceae, the pollen coat proteins (PCPs), are emerging as important signalling molecules that regulate the pollen-stigma interaction. Using a combination of protein characterization, expression and phylogenetic analyses we identified a novel class of Arabidopsis thaliana pollen-borne CRPs, the PCP-Bs (for pollen coat protein B-class) that are related to embryo surrounding factor (ESF1) developmental regulators. Single and multiple PCP-B mutant lines were utilized in bioassays to assess effects on pollen hydration, adhesion and pollen tube growth. Our results revealed that pollen hydration is severely impaired when multiple PCP-Bs are lost from the pollen coat. The hydration defect also resulted in reduced pollen adhesion and delayed pollen tube growth in all mutants studied. These results demonstrate that AtPCP-Bs are key regulators of the hydration 'checkpoint' in establishment of pollen-stigma compatibility. In addition, we propose that interspecies diversity of PCP-Bs may contribute to reproductive barriers in the Brassicaceae. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Functional Biomimetic Architectures

    NASA Astrophysics Data System (ADS)

    Levine, Paul M.

    N-substituted glycine oligomers, or 'peptoids,' are a class of sequence--specific foldamers composed of tertiary amide linkages, engendering proteolytic stability and enhanced cellular permeability. Peptoids are notable for their facile synthesis, sequence diversity, and ability to fold into distinct secondary structures. In an effort to establish new functional peptoid architectures, we utilize the copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) reaction to generate peptidomimetic assemblies bearing bioactive ligands that specifically target and modulate Androgen Receptor (AR) activity, a major therapeutic target for prostate cancer. Additionally, we explore chemical ligation protocols to generate semi-synthetic hybrid biomacromolecules capable of exhibiting novel structures and functions not accessible to fully biosynthesized proteins.

  7. Substrate Scope of O-Methyltransferase from Streptomyces peucetius for Biosynthesis of Diverse Natural Products Methoxides.

    PubMed

    Parajuli, Prakash; Pandey, Ramesh Prasad; Nguyen, Thi Huyen Trang; Dhakal, Dipesh; Sohng, Jae Kyung

    2018-04-01

    Methylation is a common post-modification reaction that is observed during the biosynthesis of secondary metabolites produced by plants and microorganisms. Based on the sequence information from Streptomyces peucetius ATCC27952, a putative O-methyltransferase (OMT) gene SpOMT7740 was polymerase chain reaction amplified and cloned into E. coli BL21 (DE3) host to test the substrate promiscuity and conduct functional characterization. In vitro and in vivo reaction assays were carried out over various classes of substrates: flavonoids (flavonol, flavones, and isoflavonoid), chalcones, anthraquinones, anthracyclines, and sterol molecules, and the applications in synthesizing diverse classes of O-methoxy natural products were also illustrated. SpOMT7740 catalyzed the O-methylation reaction to form various natural and non-natural O-methoxides, includes 7-hydroxy-8-O-methoxy flavone, 3-O-methoxy flavone, three mono-, di-, and tri-O-methoxy genistein, mono-O-methoxy phloretin, mono-O-methoxy luteolin, 3-O-methoxy β-sitosterol, and O-methoxy anthraquinones (emodin and aloe emodin) and O-methoxy anthracycline (daunorubicin) exhibiting diverse substrate flexibility. Daunorubicin is a native secondary metabolite of S. peucetius. Among the compounds tested, 7,8-dihydroxyflavone was the best substrate for bioconversion to 7-hydroxy-8-O-methoxy flavone, and it was structurally elucidated. This enzyme showed a flexible catalysis over the given ranges of temperature, pH, and divalent cationic conditions for O-methylation.

  8. Diverse Actions and Target-Site Selectivity of Neonicotinoids: Structural Insights

    PubMed Central

    Matsuda, Kazuhiko; Kanaoka, Satoshi; Akamatsu, Miki; Sattelle, David B.

    2009-01-01

    The nicotinic acetylcholine receptors (nAChRs) are targets for human and veterinary medicines as well as insecticides. Subtype-selectivity among the diverse nAChR family members is important for medicines targeting particular disorders, and pest-insect selectivity is essential for the development of safer, environmentally acceptable insecticides. Neonicotinoid insecticides selectively targeting insect nAChRs have important applications in crop protection and animal health. Members of this class exhibit strikingly diverse actions on their nAChR targets. Here we review the chemistry and diverse actions of neonicotinoids on insect and mammalian nAChRs. Electrophysiological studies on native nAChRs and on wild-type and mutagenized recombinant nAChRs have shown that basic residues particular to loop D of insect nAChRs are likely to interact electrostatically with the nitro group of neonicotinoids. In 2008, the crystal structures were published showing neonicotinoids docking into the acetylcholine binding site of molluscan acetylcholine binding proteins with homology to the ligand binding domain (LBD) of nAChRs. The crystal structures showed that 1) glutamine in loop D, corresponding to the basic residues of insect nAChRs, hydrogen bonds with the NO2 group of imidacloprid and 2) neonicotinoid-unique stacking and CH-π bonds at the LBD. A neonicotinoid-resistant strain obtained by laboratory-screening has been found to result from target site mutations, and possible reasons for this are also suggested by the crystal structures. The prospects of designing neonicotinoids that are safe not only for mammals but also for beneficial insects such as honey bees (Apis mellifera) are discussed in terms of interactions with non-α nAChR subunits. PMID:19321668

  9. Changes in bacterial diversity associated with bioremediation of used lubricating oil in tropical soils.

    PubMed

    Meeboon, Naruemon; Leewis, Mary-Cathrine; Kaewsuwan, Sireewan; Maneerat, Suppasil; Leigh, Mary Beth

    2017-08-01

    Used lubricating oil (ULO) is a widespread contaminant, particularly throughout tropical regions, and may be a candidate for bioremediation. However, little is known about the biodegradation potential or basic microbial ecology of ULO-contaminated soils. This study aims to determine the effects of used ULO on bacterial community structure and diversity. Using a combination of culture-based (agar plate counts) and molecular techniques (16S rRNA gene sequencing and DGGE), we investigated changes in soil bacterial communities from three different ULO-contaminated soils collected from motorcycle mechanical workshops (soil A, B, and C). We further explored the relationship between bacterial community structure, physiochemical soil parameters, and ULO composition in three ULO-contaminated soils. Results indicated that the three investigated soils had different community structures, which may be a result of the different ULO characteristics and physiochemical soil parameters of each site. Soil C had the highest ULO concentration and also the greatest diversity and richness of bacteria, which may be a result of higher nutrient retention, organic matter and cation exchange capacity, as well as freshness of oil compared to the other soils. In soils A and B, Proteobacteria (esp. Gammaproteobacteria) dominated the bacterial community, and in soil C, Actinobacteria and Firmicutes dominated. The genus Enterobacter, a member of the class Gammaproteobacteria, is known to include ULO-degraders, and this genus was the only one found in all three soils, suggesting that it could play a key role in the in situ degradation of ULO-contaminated tropical Thai soils. This study provides insights into our understanding of soil microbial richness, diversity, composition, and structure in tropical ULO-contaminated soils, and may be useful for the development of strategies to improve bioremediation.

  10. Extending CATH: increasing coverage of the protein structure universe and linking structure with function

    PubMed Central

    Cuff, Alison L.; Sillitoe, Ian; Lewis, Tony; Clegg, Andrew B.; Rentzsch, Robert; Furnham, Nicholas; Pellegrini-Calace, Marialuisa; Jones, David; Thornton, Janet; Orengo, Christine A.

    2011-01-01

    CATH version 3.3 (class, architecture, topology, homology) contains 128 688 domains, 2386 homologous superfamilies and 1233 fold groups, and reflects a major focus on classifying structural genomics (SG) structures and transmembrane proteins, both of which are likely to add structural novelty to the database and therefore increase the coverage of protein fold space within CATH. For CATH version 3.4 we have significantly improved the presentation of sequence information and associated functional information for CATH superfamilies. The CATH superfamily pages now reflect both the functional and structural diversity within the superfamily and include structural alignments of close and distant relatives within the superfamily, annotated with functional information and details of conserved residues. A significantly more efficient search function for CATH has been established by implementing the search server Solr (http://lucene.apache.org/solr/). The CATH v3.4 webpages have been built using the Catalyst web framework. PMID:21097779

  11. Structural characterization of constituents with molecular diversity in fractions from Lysidice brevicalyx by liquid chromatography/diode-array detection/electrospray ionization tandem mass spectrometry and liquid chromatography/nuclear magnetic resonance.

    PubMed

    Qu, Jing; Hu, You-cai; Li, Jian-bei; Wang, Ying-hong; Zhang, Jin-lan; Abliz, Zeper; Yu, Shi-shan; Liu, Yun-bao

    2008-01-01

    A combination of electrospray ionization tandem mass spectrometry with high-performance liquid chromatography (HPLC/ESI-MSn), and hyphenation of liquid chromatography to nuclear magnetic resonance spectroscopy (HPLC/NMR), have been extensively utilized for on-line analysis of natural products, analyzing metabolite and drug impurity. In our last paper, we reported an on-line analytical method for structural identification of trace alkaloids in the same class. However, the structural types of the constituents in plants were various, such as flavanoids, terpenoids and steroids. It is important to establish an effective analytical method for on-line structural identification of constituents with molecular diversity in extracts of plants. So, in the present study, the fragmentation patterns of some isolated stilbenes, phloroglucinols and flavanoids from Lysidice rhodostegia were investigated by ESI-MSn. Their fragmentation rules and UV characteristics are summarized, and the relationship between the spectral characteristics, rules and the structures is described. According to the fragmentation rules, NMR and UV spectral characteristics, 24 constituents of different types in the fractions from L. brevicalyx of the same genus were structurally characterized on the basis of HPLC/HRMS, HPLC-UV/ESI-MSn, HPLC/1H NMR and HPLC/1H-1H COSY rapidly. Of these, six (10, 13, 14, 16, 17 and 23) are new compounds and all of them are reported from L. brevicalyx for the first time. The aim is to develop an effective analytical method for on-line structural identification of natural products with molecular diversity in plants, and to guide the rapid and direct isolation of novel compounds by chemical screening.

  12. Genetic environment of metallo-β-lactamase genes in Pseudomonas aeruginosa isolates from the UK.

    PubMed

    Wright, Laura L; Turton, Jane F; Hopkins, Katie L; Livermore, David M; Woodford, Neil

    2015-12-01

    We sought to characterize the genetic environment of blaVIM and blaIMP genes in Pseudomonas aeruginosa isolates from the UK; these included members of six previously described prevalent complexes, A-F, which correspond to international 'high-risk clones', along with diverse strains. Metallo-β-lactamase (MBL)-encoding class 1 integrons were amplified by PCR from 218 P. aeruginosa isolates producing VIM-type (n = 196) or IMP-type (n = 22) enzymes, referred from UK hospital laboratories between 2003 and 2012. The variable regions of selected integrons were sequenced using a primer walking method. One-hundred-and-nineteen isolates had an MBL-encoding integron with the 3' conserved sequence (3'CS), 65 had Tn5090-like 3' regions and 17 had the sul1 gene, but lacked the qacEΔ1 gene; the 3' region could not be amplified using any primer combinations for the remaining 17 isolates. Six integron profiles were each seen in more than five isolates. Predominant integron types were seen amongst isolates belonging to STs 111, 233, 654/964 and 773 (complexes A, C, D and F, respectively), whereas diverse integron profiles were seen in isolates belonging to ST235 (complex B) and ST357 (complex E). In UK P. aeruginosa isolates, MBL genes occur in diverse class 1 integron structures, though commonly with 3' regions containing the classical 3'CS or Tn5090-like regions. Four of the six main clonal complexes, referred from multiple laboratories, carried a predominant integron type, whereas the remaining two had more diverse types. © Crown copyright 2015.

  13. Size matters at deep-sea hydrothermal vents: different diversity and habitat fidelity patterns of meio- and macrofauna

    PubMed Central

    Gollner, Sabine; Govenar, Breea; Fisher, Charles R.; Bright, Monika

    2015-01-01

    Species with markedly different sizes interact when sharing the same habitat. Unravelling mechanisms that control diversity thus requires consideration of a range of size classes. We compared patterns of diversity and community structure for meio- and macrofaunal communities sampled along a gradient of environmental stress at deep-sea hydrothermal vents on the East Pacific Rise (9° 50′ N) and neighboring basalt habitats. Both meio- and macrofaunal species richnesses were lowest in the high-stress vent habitat, but macrofaunal richness was highest among intermediate-stress vent habitats. Meiofaunal species richness was negatively correlated with stress, and highest on the basalt. In these deep-sea basalt habitats surrounding hydrothermal vents, meiofaunal species richness was consistently higher than that of macrofauna. Consideration of the physiological capabilities and life history traits of different-sized animals suggests that different patterns of diversity may be caused by different capabilities to deal with environmental stress in the 2 size classes. In contrast to meiofauna, adaptations of macrofauna may have evolved to allow them to maintain their physiological homeostasis in a variety of hydrothermal vent habitats and exploit this food-rich deep-sea environment in high abundances. The habitat fidelity patterns also differed: macrofaunal species occurred primarily at vents and were generally restricted to this habitat, but meiofaunal species were distributed more evenly across proximate and distant basalt habitats and were thus not restricted to vent habitats. Over evolutionary time scales these contrasting patterns are likely driven by distinct reproduction strategies and food demands inherent to fauna of different sizes. PMID:26166922

  14. Using Poetry in Social Studies Classes to Teach about Cultural Diversity and Social Justice

    ERIC Educational Resources Information Center

    McCall, Ava L.

    2004-01-01

    As a teacher educator committed to raising issues of racial, economic, and gender equality and those related to an appreciation for diversity, the author finds poetry to be a powerful resource in social studies methods classes. When preparing preservice teachers for elementary and middle school levels, she finds that poetry can often capture their…

  15. Instruction of Diverse Students in Mainstream Classrooms

    ERIC Educational Resources Information Center

    Chang, Sau Hou

    2013-01-01

    This chapter focuses on the instruction of diverse students in mainstream classrooms. The first part summarizes academic achievement of diverse students from different ethnicity, gender, language and social class. The second part discusses the characteristics of different diverse instruction. The third part suggests specific instructional…

  16. Indole diterpenoid natural products as the inspiration for new synthetic methods and strategies.

    PubMed

    Corsello, Michael A; Kim, Junyong; Garg, Neil K

    2017-09-01

    Indole terpenoids comprise a large class of natural products with diverse structural topologies and a broad range of biological activities. Accordingly, indole terpenoids have and continue to serve as attractive targets for chemical synthesis. Many synthetic efforts over the past few years have focused on a subclass of this family, the indole diterpenoids. This minireview showcases the role indole diterpenoids have played in inspiring the recent development of clever synthetic strategies, and new chemical reactions.

  17. Internal genetic structure and outcrossing rate in a natural population of Araucaria angustifolia (Bert.) O. Kuntze.

    PubMed

    Mantovani, Adelar; Morellato, L Patrícia C; Dos Reis, Maurício S

    2006-01-01

    The internal genetic structure and outcrossing rate of a population of Araucaria angustifolia (Bert.) O. Kuntze were investigated using 16 allozyme loci. Estimates of the mean number of alleles per loci (1.6), percentage of polymorphic loci (43.8%), and expected genetic diversity (0.170) were similar to those obtained for other gymnosperms. The analysis of spatial autocorrelation demonstrated the presence of internal structure in the first distance classes (up to 70 m), suggesting the presence of family structure. The outcrossing rate was high (0.956), as expected for a dioecious species. However, it was different from unity, indicating outcrossings between related individuals and corroborating the presence of internal genetic structure. The results of this study have implications for the methodologies used in conservation collections and for the use or analysis of this forest species.

  18. Structure-guided design of fluorescent S-adenosylmethionine analogs for a high-throughput screen to target SAM-I riboswitch RNAs.

    PubMed

    Hickey, Scott F; Hammond, Ming C

    2014-03-20

    Many classes of S-adenosylmethionine (SAM)-binding RNAs and proteins are of interest as potential drug targets in diverse therapeutic areas, from infectious diseases to cancer. In the former case, the SAM-I riboswitch is an attractive target because this structured RNA element is found only in bacterial mRNAs and regulates multiple genes in several human pathogens. Here, we describe the synthesis of stable and fluorescent analogs of SAM in which the fluorophore is introduced through a functionalizable linker to the ribose. A Cy5-labeled SAM analog was shown to bind several SAM-I riboswitches via in-line probing and fluorescence polarization assays, including one from Staphylococcus aureus that controls the expression of SAM synthetase in this organism. A fluorescent ligand displacement assay was developed and validated for high-throughput screening of compounds to target the SAM-I riboswitch class. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Detection and Quantification of Ribosome Inhibition by Aminoglycoside Antibiotics in Living Bacteria Using an Orthogonal Ribosome-Controlled Fluorescent Reporter.

    PubMed

    Huang, Shijie; Zhu, Xuechen; Melançon, Charles E

    2016-01-15

    The ribosome is the quintessential antibacterial drug target, with many structurally and mechanistically distinct classes of antibacterial agents acting by inhibiting ribosome function. Detecting and quantifying ribosome inhibition by small molecules and investigating their binding modes and mechanisms of action are critical to antibacterial drug discovery and development efforts. To develop a ribosome inhibition assay that is operationally simple, yet provides direct information on the drug target and the mechanism of action, we have developed engineered E. coli strains harboring an orthogonal ribosome-controlled green fluorescent protein (GFP) reporter that produce fluorescent signal when the orthogonal ribosome is inhibited. As a proof of concept, we demonstrate that these strains, when coexpressing homogeneous populations of aminoglycoside resistant ribosomes, act as sensitive and quantitative detectors of ribosome inhibition by a set of 12 structurally diverse aminoglycoside antibiotics. We suggest that this strategy can be extended to quantifying ribosome inhibition by other drug classes.

  20. Direct analysis of terpenes from biological buffer systems using SESI and IR-MALDESI.

    PubMed

    Nazari, Milad; Malico, Alexandra A; Ekelöf, Måns; Lund, Sean; Williams, Gavin J; Muddiman, David C

    2018-01-01

    Terpenes are the largest class of natural products with a wide range of applications including use as pharmaceuticals, fragrances, flavorings, and agricultural products. Terpenes are biosynthesized by the condensation of a variable number of isoprene units resulting in linear polyisoprene diphosphate units, which can then be cyclized by terpene synthases into a range of complex structures. While these cyclic structures have immense diversity and potential in different applications, their direct analysis in biological buffer systems requires intensive sample preparation steps such as salt cleanup, extraction with organic solvents, and chromatographic separations. Electrospray post-ionization can be used to circumvent many sample cleanup and desalting steps. SESI and IR-MALDESI are two examples of ionization methods that employ electrospray post-ionization at atmospheric pressure and temperature. By coupling the two techniques and doping the electrospray solvent with silver ions, olefinic terpenes of different classes and varying degrees of volatility were directly analyzed from a biological buffer system with no sample workup steps.

  1. Self-Determination and Meaningful Work: Exploring Socioeconomic Constraints

    PubMed Central

    Allan, Blake A.

    2016-01-01

    This study examined a model of meaningful work among a diverse sample of working adults. From the perspectives of Self-Determination Theory and the Psychology of Working Framework, we tested a structural model with social class and work volition predicting SDT motivation variables, which in turn predicted meaningful work. Partially supporting hypotheses, work volition was positively related to internal regulation and negatively related to amotivation, whereas social class was positively related to external regulation and amotivation. In turn, internal regulation was positively related to meaningful work, whereas external regulation and amotivation were negatively related to meaningful work. Indirect effects from work volition to meaningful work via internal regulation and amotivation were significant, and indirect effects from social class to meaningful work via external regulation and amotivation were significant. This study highlights the important relations between SDT motivation variables and meaningful work, especially the large positive relation between internal regulation and meaningful work. However, results also reveal that work volition and social class may play critical roles in predicting internal regulation, external regulation, and amotivation. PMID:26869970

  2. Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus.

    PubMed

    Shi, Pibiao; Guy, Kateta Malangisha; Wu, Weifang; Fang, Bingsheng; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-04-12

    The plant-specific TCP transcription factor family, which is involved in the regulation of cell growth and proliferation, performs diverse functions in multiple aspects of plant growth and development. However, no comprehensive analysis of the TCP family in watermelon (Citrullus lanatus) has been undertaken previously. A total of 27 watermelon TCP encoding genes distributed on nine chromosomes were identified. Phylogenetic analysis clustered the genes into 11 distinct subgroups. Furthermore, phylogenetic and structural analyses distinguished two homology classes within the ClTCP family, designated Class I and Class II. The Class II genes were differentiated into two subclasses, the CIN subclass and the CYC/TB1 subclass. The expression patterns of all members were determined by semi-quantitative PCR. The functions of two ClTCP genes, ClTCP14a and ClTCP15, in regulating plant height were confirmed by ectopic expression in Arabidopsis wild-type and ortholog mutants. This study represents the first genome-wide analysis of the watermelon TCP gene family, which provides valuable information for understanding the classification and functions of the TCP genes in watermelon.

  3. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy.

    PubMed

    Smith, Emily; Zhou, Wei; Shindiapina, Polina; Sif, Said; Li, Chenglong; Baiocchi, Robert A

    2018-05-21

    Exploration in the field of epigenetics has revealed the diverse roles of the protein arginine methyltransferase (PRMT) family of proteins in multiple disease states. These findings have led to the development of specific inhibitors and discovery of several new classes of drugs with potential to treat both benign and malignant conditions. Areas covered: We provide an overview on the role of PRMT enzymes in healthy and malignant cells, highlighting the role of arginine methylation in specific pathways relevant to cancer pathogenesis. Additionally, we describe structure and catalytic activity of PRMT and discuss the mechanisms of action of novel small molecule inhibitors of specific members of the arginine methyltransferase family. Expert opinion: As the field of PRMT biology advances, it's becoming clear that this class of enzymes is highly relevant to maintaining normal physiologic processes as well and disease pathogenesis. We discuss the potential impact of PRMT inhibitors as a broad class of drugs, including the pleiotropic effects, off target effects the need for more detailed PRMT-centric interactomes, and finally, the potential for targeting this class of enzymes in clinical development of experimental therapeutics for cancer.

  4. The γ Class of Carbonic Anhydrases

    PubMed Central

    Ferry, James G.

    2009-01-01

    Homologs of the γ class of carbonic anhydrases, one of five independently evolved classes, are found in the genomic sequences of diverse species from all three domains of life. The archetype (Cam) from the Archaea domain is a homotrimer of which the crystal structure reveals monomers with a distinctive left-handed parallel β-helix fold. Histidines from adjacent monomers ligate the three active site metals surrounded by residues in a hydrogen bond network essential for activity. Cam is most active with iron, the physiologically relevant metal. Although the active site residues bear little resemblance to the other classes, kinetic analyses indicate a two-step mechanism analogous to all carbonic anhydrases investigated. Phylogenetic analyses of Cam homologs derived from the databases show that Cam is representative of a minor subclass with the great majority belonging to a subclass (CamH) with significant differences in active site residues and apparent mechanism from Cam. A physiological function for any of the Cam and CamH homologs is unknown, although roles in transport of carbon dioxide and bicarbonate across membranes has been proposed. PMID:19747990

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Yifeng; Li, Bin; Prakash, Divya

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRsmore » reflects the diversity of electron carriers used in anaerobic metabolism« less

  6. Exploration of Microbial Diversity and Community Structure of Lonar Lake: The Only Hypersaline Meteorite Crater Lake within Basalt Rock

    PubMed Central

    Paul, Dhiraj; Kumbhare, Shreyas V.; Mhatre, Snehit S.; Chowdhury, Somak P.; Shetty, Sudarshan A.; Marathe, Nachiket P.; Bhute, Shrikant; Shouche, Yogesh S.

    2016-01-01

    Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world situated in basalt rocks. Although culture-dependent studies have been reported, a comprehensive understanding of microbial community composition and structure in Lonar Lake remains elusive. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high-throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet largely consistent communities. Proteobacteria (30%), Actinobacteria (24%), Firmicutes (11%), and Cyanobacteria (5%) predominated in the sequencing survey, whereas Bacteroidetes (1.12%), BD1-5 (0.5%), Nitrospirae (0.41%), and Verrucomicrobia (0.28%) were detected in relatively minor abundances in the Lonar Lake ecosystem. Within the Proteobacteria phylum, the Gammaproteobacteria represented the most abundantly detected class (21–47%) within sediment samples, but only a minor population in the water samples. Proteobacteria and Firmicutes were found at significantly higher abundance (p ≥ 0.05) in sediment samples, whereas members of Actinobacteria, Candidate division TM7 and Cyanobacteria (p ≥ 0.05) were significantly abundant in water samples. Compared to the microbial communities of other hypersaline soda lakes, those of Lonar Lake formed a distinct cluster, suggesting a different microbial community composition and structure. Here we report for the first time, the difference in composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. An improved census of microbial community structure in this Lake ecosystem provides a foundation for exploring microbial biogeochemical cycling and microbial function in hypersaline lake environments. PMID:26834712

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Yang; Glover, Karen; Su, Minfei

    BECN1 (Beclin 1), a highly conserved eukaryotic protein, is a key regulator of autophagy, a cellular homeostasis pathway, and also participates in vacuolar protein sorting, endocytic trafficking, and apoptosis. BECN1 is important for embryonic development, the innate immune response, tumor suppression, and protection against neurodegenerative disorders, diabetes, and heart disease. BECN1 mediates autophagy as a core component of the class III phosphatidylinositol 3-kinase complexes. However, the exact mechanism by which it regulates the activity of these complexes, or mediates its other diverse functions is unclear. BECN1 interacts with several diverse protein partners, perhaps serving as a scaffold or interaction hubmore » for autophagy. Based on extensive structural, biophysical and bioinformatics analyses, BECN1 consists of an intrinsically disordered region (IDR), which includes a BH3 homology domain (BH3D); a flexible helical domain (FHD); a coiled-coil domain (CCD); and a β-α-repeated autophagy-specific domain (BARAD). Each of these BECN1 domains mediates multiple diverse interactions that involve concomitant conformational changes. Thus, BECN1 conformational flexibility likely plays a key role in facilitating diverse protein interactions. Further, BECN1 conformation and interactions are also modulated by numerous post-translational modifications. A better structure-based understanding of the interplay between different BECN1 conformational and binding states, and the impact of post-translational modifications will be essential to elucidating the mechanism of its multiple biological roles.« less

  8. Genetic Control and Evolution of Anthocyanin Methylation.

    PubMed

    Provenzano, Sofia; Spelt, Cornelis; Hosokawa, Satoko; Nakamura, Noriko; Brugliera, Filippa; Demelis, Linda; Geerke, Daan P; Schubert, Andrea; Tanaka, Yoshikazu; Quattrocchio, Francesca; Koes, Ronald

    2014-07-01

    Anthocyanins are a chemically diverse class of secondary metabolites that color most flowers and fruits. They consist of three aromatic rings that can be substituted with hydroxyl, sugar, acyl, and methyl groups in a variety of patterns depending on the plant species. To understand how such chemical diversity evolved, we isolated and characterized METHYLATION AT THREE2 (MT2) and the two METHYLATION AT FIVE (MF) loci from Petunia spp., which direct anthocyanin methylation in petals. The proteins encoded by MT2 and the duplicated MF1 and MF2 genes and a putative grape (Vitis vinifera) homolog Anthocyanin O-Methyltransferase1 (VvAOMT1) are highly similar to and apparently evolved from caffeoyl-Coenzyme A O-methyltransferases by relatively small alterations in the active site. Transgenic experiments showed that the Petunia spp. and grape enzymes have remarkably different substrate specificities, which explains part of the structural anthocyanin diversity in both species. Most strikingly, VvAOMT1 expression resulted in the accumulation of novel anthocyanins that are normally not found in Petunia spp., revealing how alterations in the last reaction can reshuffle the pathway and affect (normally) preceding decoration steps in an unanticipated way. Our data show how variations in gene expression patterns, loss-of-function mutations, and alterations in substrate specificities all contributed to the anthocyanins' structural diversity. © 2014 American Society of Plant Biologists. All Rights Reserved.

  9. Previously unknown class of metalorganic compounds revealed in meteorites

    PubMed Central

    Ruf, Alexander; Kanawati, Basem; Hertkorn, Norbert; Yin, Qing-Zhu; Moritz, Franco; Harir, Mourad; Lucio, Marianna; Michalke, Bernhard; Wimpenny, Joshua; Shilobreeva, Svetlana; Bronsky, Basil; Saraykin, Vladimir; Gabelica, Zelimir; Gougeon, Régis D.; Quirico, Eric; Ralew, Stefan; Jakubowski, Tomasz; Haack, Henning; Gonsior, Michael; Jenniskens, Peter; Hinman, Nancy W.; Schmitt-Kopplin, Philippe

    2017-01-01

    The rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)2MgO2CR]−, in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies. PMID:28242686

  10. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice

    PubMed Central

    Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright’s F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance. PMID:27494320

  11. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    PubMed

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai; Pandit, Elssa

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  12. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    PubMed Central

    Young, Carolyn A.; Schardl, Christopher L.; Panaccione, Daniel G.; Florea, Simona; Takach, Johanna E.; Charlton, Nikki D.; Moore, Neil; Webb, Jennifer S.; Jaromczyk, Jolanta

    2015-01-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  13. Genetic structure and demographic history of the endangered tree species Dysoxylum malabaricum (Meliaceae) in Western Ghats, India: implications for conservation in a biodiversity hotspot.

    PubMed

    Bodare, Sofia; Tsuda, Yoshiaki; Ravikanth, Gudasalamani; Uma Shaanker, Ramanan; Lascoux, Martin

    2013-09-01

    The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range-wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species' evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old-growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (F IS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation-based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies.

  14. Lectindb: a plant lectin database.

    PubMed

    Chandra, Nagasuma R; Kumar, Nirmal; Jeyakani, Justin; Singh, Desh Deepak; Gowda, Sharan B; Prathima, M N

    2006-10-01

    Lectins, a class of carbohydrate-binding proteins, are now widely recognized to play a range of crucial roles in many cell-cell recognition events triggering several important cellular processes. They encompass different members that are diverse in their sequences, structures, binding site architectures, quaternary structures, carbohydrate affinities, and specificities as well as their larger biological roles and potential applications. It is not surprising, therefore, that the vast amount of experimental data on lectins available in the literature is so diverse, that it becomes difficult and time consuming, if not impossible to comprehend the advances in various areas and obtain the maximum benefit. To achieve an effective use of all the data toward understanding the function and their possible applications, an organization of these seemingly independent data into a common framework is essential. An integrated knowledge base ( Lectindb, http://nscdb.bic.physics.iisc.ernet.in ) together with appropriate analytical tools has therefore been developed initially for plant lectins by collating and integrating diverse data. The database has been implemented using MySQL on a Linux platform and web-enabled using PERL-CGI and Java tools. Data for each lectin pertain to taxonomic, biochemical, domain architecture, molecular sequence, and structural details as well as carbohydrate and hence blood group specificities. Extensive links have also been provided for relevant bioinformatics resources and analytical tools. Availability of diverse data integrated into a common framework is expected to be of high value not only for basic studies in lectin biology but also for basic studies in pursuing several applications in biotechnology, immunology, and clinical practice, using these molecules.

  15. Distinct bacterial communities across a gradient of vegetation from a preserved Brazilian Cerrado.

    PubMed

    de Araujo, Ademir Sergio Ferreira; Bezerra, Walderly Melgaço; Dos Santos, Vilma Maria; Rocha, Sandra Mara Barbosa; Carvalho, Nilza da Silva; de Lyra, Maria do Carmo Catanho Pereira; Figueiredo, Marcia do Vale Barreto; de Almeida Lopes, Ângela Celis; Melo, Vania Maria Maciel

    2017-04-01

    The Cerrado biome in the Sete Cidades National Park, an Ecological Reserve in Northeastern Brazil, has conserved its native biodiversity and presents a variety of plants found in other savannas in Brazil. Despite this finding the soil microbial diversity and community structure are poorly understood. Therefore, we described soil bacterial diversity and distribution along a savanna vegetation gradient taking into account the prevailing environmental factors. The bacterial composition was retrieved by sequencing a fragment of the 16S ribosomal RNA gene. The bacterial operational taxonomic units (OTUs) were assigned to 37 different phyla, 96 classes, and 83 genera. At the phylum level, a core comprised by Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Verrucomicrobia and Planctomycetes, was detected in all areas of Cerrado. 'Cerrado stricto sensu' and 'Cerradao' share more similarities between edaphic properties and vegetation and also present more similar bacterial communities, while 'Floresta decidual' and 'Campo graminoide' show the largest environmental differences and also more distinct bacterial communities. Proteobacteria (26%), Acidobacteria (21%) and Actinobacteria (21%) were the most abundant phyla within the four areas. All the samples present similar bacteria richness (alpha diversity) and the observed differences among them (beta diversity) were more related to the abundance of specific taxon OTUs compared to their presence or absence. Total organic C, N and P are the main abiotic factors structuring the bacterial communities. In summary, our findings show the bacterial community structure was clearly different across the Cerrado gradient, but that these environments share a bacterial phylum-core comprising Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia and Planctomycetes with other Brazilian savannas.

  16. Genetic structure and demographic history of the endangered tree species Dysoxylum malabaricum (Meliaceae) in Western Ghats, India: implications for conservation in a biodiversity hotspot

    PubMed Central

    Bodare, Sofia; Tsuda, Yoshiaki; Ravikanth, Gudasalamani; Uma Shaanker, Ramanan; Lascoux, Martin

    2013-01-01

    The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range-wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species’ evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old-growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (FIS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation-based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies. PMID:24223264

  17. Blood parasites shape extreme major histocompatibility complex diversity in a migratory passerine.

    PubMed

    Biedrzycka, Aleksandra; Bielański, Wojciech; Ćmiel, Adam; Solarz, Wojciech; Zając, Tadeusz; Migalska, Magdalena; Sebastian, Alvaro; Westerdahl, Helena; Radwan, Jacek

    2018-06-01

    Pathogens are one of the main forces driving the evolution and maintenance of the highly polymorphic genes of the vertebrate major histocompatibility complex (MHC). Although MHC proteins are crucial in pathogen recognition, it is still poorly understood how pathogen-mediated selection promotes and maintains MHC diversity, and especially so in host species with highly duplicated MHC genes. Sedge warblers (Acrocephalus schoenobaenus) have highly duplicated MHC genes, and using data from high-throughput MHC genotyping, we were able to investigate to what extent avian malaria parasites explain temporal MHC class I supertype fluctuations in a long-term study population. We investigated infection status and infection intensities of two different strains of Haemoproteus, that is avian malaria parasites that are known to have significant fitness consequences in sedge warblers. We found that prevalence of avian malaria in carriers of specific MHC class I supertypes was a significant predictor of their frequency changes between years. This finding suggests that avian malaria infections partly drive the temporal fluctuations of the MHC class I supertypes. Furthermore, we found that individuals with a large number of different supertypes had higher resistance to avian malaria, but there was no evidence for an optimal MHC class I diversity. Thus, the two studied malaria parasite strains appear to select for a high MHC class I supertype diversity. Such selection may explain the maintenance of the extremely high number of MHC class I gene copies in sedge warblers and possibly also in other passerines where avian malaria is a common disease. © 2018 John Wiley & Sons Ltd.

  18. Harnessing glycomics technologies: integrating structure with function for glycan characterization

    PubMed Central

    Robinson, Luke N.; Artpradit, Charlermchai; Raman, Rahul; Shriver, Zachary H.; Ruchirawat, Mathuros; Sasisekharan, Ram

    2013-01-01

    Glycans, or complex carbohydrates, are a ubiquitous class of biological molecules which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In comparison to DNA and proteins, glycans present unique challenges to the study of their structure and function owing to their complex and heterogeneous structures and the dominant role played by multivalency in their sequence-specific biological interactions. Arising from these challenges, there is a need to integrate information from multiple complementary methods to decode structure-function relationships. Focusing on acidic glycans, we describe here key glycomics technologies for characterizing their structural attributes, including linkage, modifications, and topology, as well as for elucidating their role in biological processes. Two cases studies, one involving sialylated branched glycans and the other sulfated glycosaminoglycans, are used to highlight how integration of orthogonal information from diverse datasets enables rapid convergence of glycan characterization for development of robust structure-function relationships. PMID:22522536

  19. Alkaloid diversity in the leaves of Australian Flindersia (Rutaceae) species driven by adaptation to aridity.

    PubMed

    Robertson, Luke P; Hall, Casey R; Forster, Paul I; Carroll, Anthony R

    2018-05-04

    The genus Flindersia (Rutaceae) comprises 17 species of mostly Australian endemic trees. Although most species are restricted to rainforests, four have evolved to grow in semi-arid and arid environments. In this study, the leaf alkaloid diversity of rainforest and semi-arid/arid zone adapted Australian Flindersia were compared by LC/MS-MS and NMR spectroscopy. Contrary to expectations, Flindersia alkaloid diversity was strongly correlated with environmental aridity, where species predominating in drier regions produced more alkaloids than their wet rainforest congenerics. Rainforest species were also more chemically similar to each other than were the four semi-arid/arid zone species. There was a significant relationship between the presence of alkaloid structural classes and phylogenetic distance, suggesting that alkaloid profiles are influenced by both genetic and environmental factors. The results suggest that the radiation of Flindersia species out of the rainforest and into drier environments has promoted the evolution of unique alkaloid diversity. Plants growing in arid and semi-arid regions of Australia may represent an untapped source of undescribed specialised metabolites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The evolution of highly variable immunity genes across a passerine bird radiation.

    PubMed

    O'Connor, E A; Strandh, M; Hasselquist, D; Nilsson, J-Å; Westerdahl, H

    2016-02-01

    To survive, individuals must be able to recognize and eliminate pathogens. The genes of the major histocompatibility complex (MHC) play an essential role in this process in vertebrates as their diversity affects the repertoire of pathogens that can be recognized by the immune system. Emerging evidence suggests that birds within the parvorder Passerida possess an exceptionally high number of MHC genes. However, this has yet to be directly investigated using a consistent framework, and the question of how this MHC diversity has evolved has not been addressed. We used next-generation sequencing to investigate how MHC class I gene copy number and sequence diversity varies across the Passerida radiation using twelve species chosen to represent the phylogenetic range of this group. Additionally, we performed phylogenetic analyses on this data to identify, for the first time, the evolutionary model that best describes how MHC class I gene diversity has evolved within Passerida. We found evidence of multiple MHC class I genes in every family tested, with an extremely broad range in gene copy number across Passerida. There was a strong phylogenetic signal in MHC gene copy number and diversity, and these traits appear to have evolved through a process of Brownian motion in the species studied, that is following the pattern of genetic drift or fluctuating selection, as opposed to towards a single optimal value or through evolutionary 'bursts'. By characterizing MHC class I gene diversity across Passerida in a systematic framework, this study provides a first step towards understanding this huge variation. © 2016 John Wiley & Sons Ltd.

  1. Stress, Mental Health, and Substance Abuse Problems in a Sample of Diversion Program Youths: An Exploratory Latent Class Analysis

    ERIC Educational Resources Information Center

    Dembo, Richard; Briones, Rhissa; Gulledge, Laura; Karas, Lora; Winters, Ken C.; Belenko, Steven; Greenbaum, Paul E.

    2012-01-01

    Reflective of interest in mental health and substance abuse issues among youths involved with the justice system, we performed a latent class analysis on baseline information collected on 100 youths involved in two diversion programs. Results identified two groups of youths: Group 1: a majority of the youths, who had high levels of delinquency,…

  2. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03464d

    PubMed Central

    Zheng, Xueyun; Aly, Noor A.; Zhou, Yuxuan; Dupuis, Kevin T.; Bilbao, Aivett; Paurus, Vanessa L.; Orton, Daniel J.; Wilson, Ryan; Payne, Samuel H.; Smith, Richard D.

    2017-01-01

    The confident identification of metabolites and xenobiotics in biological and environmental studies is an analytical challenge due to their immense dynamic range, vast chemical space and structural diversity. Ion mobility spectrometry (IMS) is widely used for small molecule analyses since it can separate isomeric species and be easily coupled with front end separations and mass spectrometry for multidimensional characterizations. However, to date IMS metabolomic and exposomic studies have been limited by an inadequate number of accurate collision cross section (CCS) values for small molecules, causing features to be detected but not confidently identified. In this work, we utilized drift tube IMS (DTIMS) to directly measure CCS values for over 500 small molecules including primary metabolites, secondary metabolites and xenobiotics. Since DTIMS measurements do not need calibrant ions or calibration like some other IMS techniques, they avoid calibration errors which can cause problems in distinguishing structurally similar molecules. All measurements were performed in triplicate in both positive and negative polarities with nitrogen gas and seven different electric fields, so that relative standard deviations (RSD) could be assessed for each molecule and structural differences studied. The primary metabolites analyzed to date have come from key metabolism pathways such as glycolysis, the pentose phosphate pathway and the tricarboxylic acid cycle, while the secondary metabolites consisted of classes such as terpenes and flavonoids, and the xenobiotics represented a range of molecules from antibiotics to polycyclic aromatic hydrocarbons. Different CCS trends were observed for several of the diverse small molecule classes and when urine features were matched to the database, the addition of the IMS dimension greatly reduced the possible number of candidate molecules. This CCS database and structural information are freely available for download at http://panomics.pnnl.gov/metabolites/ with new molecules being added frequently. PMID:29568436

  3. Diversity in Secondary English Classrooms: Conceptions and Enactments

    ERIC Educational Resources Information Center

    Angus, Ryan; de Oliveira, Luciana C.

    2012-01-01

    Diversity is conceptualised in many different ways in terms of race, ethnicity, sexual orientation, language and class. Much has been written about these conceptions of diversity in educational settings and how teacher education programs should prepare pre-service teachers to address diversity in their future classrooms. In this article, however,…

  4. The biology of Mur ligases as an antibacterial target.

    PubMed

    Kouidmi, Imène; Levesque, Roger C; Paradis-Bleau, Catherine

    2014-10-01

    With antibiotic resistance mechanisms increasing in diversity and spreading among bacterial pathogens, the development of new classes of antibacterial agents against judiciously chosen targets is a high-priority task. The biochemical pathway for peptidoglycan biosynthesis is one of the best sources of antibacterial targets. Within this pathway are the Mur ligases, described in this review as highly suitable targets for the development of new classes of antibacterial agents. The amide ligases MurC, MurD, MurE and MurF function with the same catalytic mechanism and share conserved amino acid regions and structural features that can conceivably be exploited for the design of inhibitors that simultaneously target more than one enzyme. This would provide multi-target antibacterial weapons with minimized likelihood of target-mediated resistance development. © 2014 John Wiley & Sons Ltd.

  5. Genetic Organization of the Chromosome Region Surrounding mecA in Clinical Staphylococcal Strains: Role of IS431-Mediated mecI Deletion in Expression of Resistance in mecA-Carrying, Low-Level Methicillin- Resistant Staphylococcus haemolyticus

    PubMed Central

    Katayama, Yuki; Ito, Teruyo; Hiramatsu, Keiichi

    2001-01-01

    We report on the structural diversity of mecA gene complexes carried by 38 methicillin-resistant Staphylococcus aureus and 91 methicillin-resistant coagulase-negative Staphylococcus strains of seven different species with a special reference to its correlation with phenotypic expression of methicillin resistance. The most prevalent and widely disseminated mec complex had the structure mecI-mecR1-mecA-IS431R (or IS431mec), designated the class A mecA gene complex. In contrast, in S. haemolyticus, mecA was bracketed by two copies of IS431, forming the structure IS431L-mecA-IS431R. Of the 38 S. haemolyticus strains, 5 had low-level methicillin resistance (MIC, 1 to 4 mg/liter) and characteristic heterogeneous methicillin resistance as judged by population analysis. In these five strains, IS431L was located to the left of an intact mecI gene, forming the structure IS431L-class A mecA-gene complex. In other S. haemolyticus strains, IS431L was associated with the deletion of mecI and mecR1, forming the structure IS431L-ΔmecR1-mecA-IS431mec, designated the class C mecA gene complex. Mutants with the class C mecA gene complex were obtained in vitro by selecting strain SH621, containing the IS431L-class A mecA gene complex with low concentrations of methicillin (1 and 3 mg/liter). The mutants had intermediate level of methicillin resistance (MIC, 16 to 64 mg/liter). The mecA gene transcription was shown to be derepressed in a representative mutant strain, SH621-37. Our study indicated that the mecI-encoded repressor function is responsible for the low-level methicillin resistance of some S. haemolyticus clinical strains and that the IS431-mediated mecI gene deletion causes the expression of methicillin resistance through the derepression of mecA gene transcription. PMID:11408208

  6. United in Diversity: Mechanosensitive Ion Channels in Plants

    PubMed Central

    Hamilton, Eric S.; Schlegel, Angela M.; Haswell, Elizabeth S.

    2015-01-01

    Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems. PMID:25494462

  7. The DSF Family of Cell–Cell Signals: An Expanding Class of Bacterial Virulence Regulators

    PubMed Central

    Ryan, Robert P.; An, Shi-qi; Allan, John H.; McCarthy, Yvonne; Dow, J. Maxwell

    2015-01-01

    Many pathogenic bacteria use cell–cell signaling systems involving the synthesis and perception of diffusible signal molecules to control virulence as a response to cell density or confinement to niches. Bacteria produce signals of diverse structural classes. Signal molecules of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids. The paradigm is cis-11-methyl-2-dodecenoic acid from Xanthomonas campestris pv. campestris (Xcc), which controls virulence in this plant pathogen. Although DSF synthesis was thought to be restricted to the xanthomonads, it is now known that structurally related molecules are produced by the unrelated bacteria Burkholderia cenocepacia and Pseudomonas aeruginosa. Furthermore, signaling involving these DSF family members contributes to bacterial virulence, formation of biofilms and antibiotic tolerance in these important human pathogens. Here we review the recent advances in understanding DSF signaling and its regulatory role in different bacteria. These advances include the description of the pathway/mechanism of DSF biosynthesis, identification of novel DSF synthases and new members of the DSF family, the demonstration of a diversity of DSF sensors to include proteins with a Per-Arnt-Sim (PAS) domain and the description of some of the signal transduction mechanisms that impinge on virulence factor expression. In addition, we address the role of DSF family signals in interspecies signaling that modulates the behavior of other microorganisms. Finally, we consider a number of recently reported approaches for the control of bacterial virulence through the modulation of DSF signaling. PMID:26181439

  8. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms

    PubMed Central

    Soderstrom, Ken; Soliman, Eman; Van Dross, Rukiyah

    2017-01-01

    Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets. PMID:29066974

  9. Co-evolution of Human Leukocyte Antigen (HLA) Class I Ligands with Killer-Cell Immunoglobulin-Like Receptors (KIR) in a Genetically Diverse Population of Sub-Saharan Africans

    PubMed Central

    Norman, Paul J.; Hollenbach, Jill A.; Nemat-Gorgani, Neda; Guethlein, Lisbeth A.; Hilton, Hugo G.; Pando, Marcelo J.; Koram, Kwadwo A.; Riley, Eleanor M.; Abi-Rached, Laurent; Parham, Peter

    2013-01-01

    Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1–14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous associations of cerebral malaria with HLA-B*53:01 and KIR, Plasmodium falciparum is a candidate pathogen. PMID:24204327

  10. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The proposed AI models can be useful tools in screening the chemicals for their binding affinities toward carbon for their safe management.

  11. Diversity of Ktedonobacteria with Actinomycetes-Like Morphology in Terrestrial Environments

    PubMed Central

    Yabe, Shuhei; Sakai, Yasuteru; Abe, Keietsu; Yokota, Akira

    2017-01-01

    Bacteria with an actinomycetes-like morphology have recently been discovered, and the class Ktedonobacteria was created for these bacteria in the phylum Chloroflexi. They may prove to be a valuable resource with the potential to produce unprecedented secondary metabolites. However, our understanding of their diversity, richness, habitat, and ecological significance is very limited. We herein developed a 16S rRNA gene-targeted, Ktedonobacteria-specific primer and analyzed ktedonobacterial amplicons. We investigated abundance, diversity, and community structure in forest and garden soils, sand, bark, geothermal sediment, and compost. Forest soils had the highest diversity among the samples tested (1181–2934 operational taxonomic units [OTUs]; Chao 1 estimate, 2503–5613; Shannon index, 4.21–6.42). A phylogenetic analysis of representative OTUs revealed at least eight groups within unclassified Ktedonobacterales, expanding the known diversity of this order. Ktedonobacterial communities markedly varied among our samples. The common mesic environments (soil, sand, and bark) were dominated by diverse phylotypes within the eight groups. In contrast, compost and geothermal sediment samples were dominated by known ktedonobacterial families (Thermosporotrichaceae and Thermogemmatisporaceae, respectively). The relative abundance of Ktedonobacteria in the communities, based on universal primers, was ≤0.8%, but was 12.9% in the geothermal sediment. These results suggest that unknown diverse Ktedonobacteria inhabit common environments including forests, gardens, and sand at low abundances, as well as extreme environments such as geothermal areas. PMID:28321007

  12. 2-Guanidino-quinazolines as a novel class of translation inhibitors.

    PubMed

    Komarova Andreyanova, E S; Osterman, I A; Pletnev, P I; Ivanenkov, Y A; Majouga, A G; Bogdanov, A A; Sergiev, P V

    2017-02-01

    A variety of structurally unrelated organic compounds has been reported to have antibacterial activity. Among these, certain small-molecule translation inhibitors have attracted a great deal of attention, due to their relatively high selectivity against prokaryotes, and an appropriate therapeutic index with minor "off target" effects. However, ribosomes are being considered as poorly druggable biological targets, thereby making some routine computational-based approaches to rational drug design and its development rather ineffective. Taking this into account, diversity-oriented biological screening can reasonably be considered as the most advantageous strategy. Thus, using a high-throughput screening (HTS) platform, we applied a unique biological assay for in vitro evaluation of thousands of organic molecules, especially targeted against bacterial ribosomes and translation. As a result, we have identified a series of structurally diverse small-molecule compounds that induce a reporter strain sensitive to translation and DNA biosynthesis inhibitors. In a cell free system, several molecules were found to strongly inhibit protein biosynthesis. Among them, compounds bearing a 2-guanidino-quinazoline core demonstrated the most promising antibacterial activity. With regard to the preliminary structure-activity relationship (SAR) study, we revealed that relatively small substituents at positions 4, 6 and 8 of the quinazoline ring significantly enhance the target activity whereas modification of the guanidine group leads to decrease or loss of antibacterial potency. This novel class of translation inhibitors can properly be regarded as a promising starting point for the development of novel antibacterial therapeutic or screening tools. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. The Central Nervous Connections Involved in the Vomiting Reflex

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Mehler, W. R.

    1986-01-01

    The vomiting reflex may be elicited by a number of different types or classes of stimuli involving many varieties of receptor structures and considerable diversity in afferent pathways and central connections. Central relay or mediating structures thus may vary widely according to the type of initial emetic stimulus. The emetic circuits which have been most completely delineated to date are probably those in which the Chemoreceptor Trigger Zone (CTZ) in the Area Postrema (AP) functions as a key mediating structure. Even in this system, however, there are large gaps in our knowledge of the nerve tracts and central nervous connections involved. Knowledge of most other emetic circuits subserving the emetic reflex resulting from many diverse types of stimuli such, for example, as emotional stress (e.g. psychogenic vomiting, Wruble et al. 1982), pain (e.g. testicular trauma), and chemical or mechanical irritation of the gastrointestinal tract or urinary tract is quite incomplete at this time, thus precluding any very adequate description of their central connections at present. One physiological system, however, which has received considerable attention recently in relation to the vomiting reflex elicited by motion stimuli is the vestibular system. Due to the paucity of data on central nervous connections of several or the non-vestibular types of emetic stimuli cited above, we will devote most of our attention in this brief review to the central connections of the vestibular system which seem likely to be involved in the vomiting response to motion stimuli. However, the latter part of the review will be concerned with the concept of the reticular vomiting centre in relation to the ParviCellular Reticular Formation (PCRF), and will thus probably pertain to all of the many classes of emetic stimuli since it will address the question of the final common emetic pathway.

  14. Diversity of Poissonian populations.

    PubMed

    Eliazar, Iddo I; Sokolov, Igor M

    2010-01-01

    Populations represented by collections of points scattered randomly on the real line are ubiquitous in science and engineering. The statistical modeling of such populations leads naturally to Poissonian populations-Poisson processes on the real line with a distinguished maximal point. Poissonian populations are infinite objects underlying key issues in statistical physics, probability theory, and random fractals. Due to their infiniteness, measuring the diversity of Poissonian populations depends on the lower-bound cut-off applied. This research characterizes the classes of Poissonian populations whose diversities are invariant with respect to the cut-off level applied and establishes an elemental connection between these classes and extreme-value theory. The measures of diversity considered are variance and dispersion, Simpson's index and inverse participation ratio, Shannon's entropy and Rényi's entropy, and Gini's index.

  15. The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic.

    PubMed

    Wernet, Mathias F; Perry, Michael W; Desplan, Claude

    2015-06-01

    Independent evolution has resulted in a vast diversity of eyes. Despite the lack of a common Bauplan or ancestral structure, similar developmental strategies are used. For instance, different classes of photoreceptor cells (PRs) are distributed stochastically and/or localized in different regions of the retina. Here, we focus on recent progress made towards understanding the molecular principles behind patterning retinal mosaics of insects, one of the most diverse groups of animals adapted to life on land, in the air, under water, or on the water surface. Morphological, physiological, and behavioral studies from many species provide detailed descriptions of the vast variation in retinal design and function. By integrating this knowledge with recent progress in the characterization of insect Rhodopsins as well as insight from the model organism Drosophila melanogaster, we seek to identify the molecular logic behind the adaptation of retinal mosaics to the habitat and way of life of an animal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A diversity oriented synthesis of natural product inspired molecular libraries.

    PubMed

    Chauhan, Jyoti; Luthra, Tania; Gundla, Rambabu; Ferraro, Antonio; Holzgrabe, Ulrike; Sen, Subhabrata

    2017-11-07

    Natural products are the source of innumerable pharmaceutical drug candidates and also form an important aspect of herbal remedies. They are also a source of various bioactive compounds. Herein we have leveraged the structural attributes of several natural products in building a library of architecturally diverse chiral molecules by harnessing R-tryptophan as the chiral auxiliary. It is converted to its corresponding methyl ester 1 which in turn provided a bevy of 1-aryl-tetrahydro-β-carbolines 2a-d, which were then converted to chiral compounds via a diversity oriented synthetic strategy (DOS). In general, intermolecular and intramolecular ring rearrangements facilitated the formation of the final compounds. Four different classes of molecules with distinct architectures were generated, adding up to nearly twenty-two individual molecules. Phenotypic screening of a representative section of the library revealed two molecules that selectively inhibit MCF7 breast cancer cells with IC 50 of ∼5 μg mL -1 potency.

  17. Evolutionary dynamics on any population structure

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Lippner, Gabor; Chen, Yu-Ting; Fotouhi, Babak; Momeni, Naghmeh; Yau, Shing-Tung; Nowak, Martin A.

    2017-03-01

    Evolution occurs in populations of reproducing individuals. The structure of a population can affect which traits evolve. Understanding evolutionary game dynamics in structured populations remains difficult. Mathematical results are known for special structures in which all individuals have the same number of neighbours. The general case, in which the number of neighbours can vary, has remained open. For arbitrary selection intensity, the problem is in a computational complexity class that suggests there is no efficient algorithm. Whether a simple solution for weak selection exists has remained unanswered. Here we provide a solution for weak selection that applies to any graph or network. Our method relies on calculating the coalescence times of random walks. We evaluate large numbers of diverse population structures for their propensity to favour cooperation. We study how small changes in population structure—graph surgery—affect evolutionary outcomes. We find that cooperation flourishes most in societies that are based on strong pairwise ties.

  18. Sierra Nevada meadows: species alpha diversity

    Treesearch

    Raymond D. Ratliff

    1993-01-01

    Plant species diversity refers to variety and abundance; it does not necessarily relate to meadow health but may provide information important in an ecosystem context. Monitoring to detect change in diversity usually begins with estimating alpha (within) diversity of plant communities. Because few such estimates exist for meadow site classes or specific sites of the...

  19. The properties and origin of magnetic fields in white dwarfs

    NASA Astrophysics Data System (ADS)

    Kawka, A.

    2018-01-01

    A significant fraction of white dwarfs harbour a magnetic field with strengths ranging from a few kG up to about 1000 MG. The fraction appears to depend on the specific class of white dwarfs being investigated and may hold some clues to the origin of their magnetic field. The number of white dwarfs with variable fields as a function of their rotation phase have revealed a large field structure diversity, from a simple offset dipole to structures with spots or multipoles. A review of the current challenges in modelling white dwarf atmospheres in the presence of a magnetic field is presented, and the proposed scenarios for the formation of magnetic fields in white dwarfs are examined.

  20. Increased structure and active learning reduce the achievement gap in introductory biology.

    PubMed

    Haak, David C; HilleRisLambers, Janneke; Pitre, Emile; Freeman, Scott

    2011-06-03

    Science, technology, engineering, and mathematics instructors have been charged with improving the performance and retention of students from diverse backgrounds. To date, programs that close the achievement gap between students from disadvantaged versus nondisadvantaged educational backgrounds have required extensive extramural funding. We show that a highly structured course design, based on daily and weekly practice with problem-solving, data analysis, and other higher-order cognitive skills, improved the performance of all students in a college-level introductory biology class and reduced the achievement gap between disadvantaged and nondisadvantaged students--without increased expenditures. These results support the Carnegie Hall hypothesis: Intensive practice, via active-learning exercises, has a disproportionate benefit for capable but poorly prepared students.

  1. High intralocus variability and interlocus recombination promote immunological diversity in a minimal major histocompatibility system.

    PubMed

    Wilson, Anthony B; Whittington, Camilla M; Bahr, Angela

    2014-12-20

    The genes of the major histocompatibility complex (MHC/MH) have attracted considerable scientific interest due to their exceptional levels of variability and important function as part of the adaptive immune system. Despite a large number of studies on MH class II diversity of both model and non-model organisms, most research has focused on patterns of genetic variability at individual loci, failing to capture the functional diversity of the biologically active dimeric molecule. Here, we take a systematic approach to the study of MH variation, analyzing patterns of genetic variation at MH class IIα and IIβ loci of the seahorse, which together form the immunologically active peptide binding cleft of the MH class II molecule. The seahorse carries a minimal class II system, consisting of single copies of both MH class IIα and IIβ, which are physically linked and inherited in a Mendelian fashion. Both genes are ubiquitously expressed and detectible in the brood pouch of male seahorses throughout pregnancy. Genetic variability of the two genes is high, dominated by non-synonymous variation concentrated in their peptide-binding regions. Coding variation outside these regions is negligible, a pattern thought to be driven by intra- and interlocus recombination. Despite the tight physical linkage of MH IIα and IIβ loci, recombination has produced novel composite alleles, increasing functional diversity at sites responsible for antigen recognition. Antigen recognition by the adaptive immune system of the seahorse is enhanced by high variability at both MH class IIα and IIβ loci. Strong positive selection on sites involved in pathogen recognition, coupled with high levels of intra- and interlocus recombination, produce a patchwork pattern of genetic variation driven by genetic hitchhiking. Studies focusing on variation at individual MH loci may unintentionally overlook an important component of ecologically relevant variation.

  2. The Dimanganese(II) Site of Bacillus subtilis Class Ib Ribonucleotide Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boal, Amie K.; Cotruvo, Jr., Joseph A.; Stubbe, JoAnne

    2014-10-02

    Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn{sub 2}{sup III}-Y{sm_bullet}, in their homodimeric NrdF ({beta}2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn{sub 2}{sup II} form of NrdF is an important component in understanding O{sub 2}-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is thatmore » of Escherichia coli Mn{sub 2}{sup II}-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 {angstrom} resolution crystal structure of Bacillus subtilis Mn{sub 2}{sup II}-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the {beta}2 dimer are distinct from those observed in E. coli Mn{sub 2}{sup II}-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn{sub 2}{sup II} cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn{sub 2}{sup III}-Y{sm_bullet} cofactor assembly in class Ib RNRs.« less

  3. Effect of copper sulphate treatment on natural phytoplanktonic communities.

    PubMed

    Le Jeune, Anne-Hélène; Charpin, Marie; Deluchat, Véronique; Briand, Jean-François; Lenain, Jean-François; Baudu, Michel; Amblard, Christian

    2006-12-01

    Copper sulphate treatment is widely used as a global and empirical method to remove or control phytoplankton blooms without precise description of the impact on phytoplanktonic populations. The effects of two copper sulphate treatments on natural phytoplanktonic communities sampled in the spring and summer seasons, were assessed by indoor mesocosm experiments. The initial copper-complexing capacity of each water sample was evaluated before each treatment. The copper concentrations applied were 80 microg l(-1) and 160 microg l(-1) of copper, below and above the water complexation capacity, respectively. The phytoplanktonic biomass recovered within a few days after treatment. The highest copper concentration, which generated a highly toxic environment, caused a global decrease in phytoplankton diversity, and led to the development and dominance of nanophytoplanktonic Chlorophyceae. In mesocosms treated with 80 microg l(-1) of copper, the effect on phytoplanktonic community size-class structure and composition was dependent on seasonal variation. This could be related to differences in community composition, and thus to species sensitivity to copper and to differences in copper bioavailability between spring and summer. Both treatments significantly affected cyanobacterial biomass and caused changes in the size-class structure and composition of phytoplanktonic communities which may imply modifications of the ecosystem structure and function.

  4. Mechanism for the Inhibition of the Carboxyl-transferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L Yu; Y Kim; L Tong

    Acetyl-CoA carboxylases (ACCs) are crucial metabolic enzymes and have been targeted for drug development against obesity, diabetes, and other diseases. The carboxyltransferase (CT) domain of this enzyme is the site of action for three different classes of herbicides, as represented by haloxyfop, tepraloxydim, and pinoxaden. Our earlier studies have demonstrated that haloxyfop and tepraloxydim bind in the CT active site at the interface of its dimer. However, the two compounds probe distinct regions of the dimer interface, sharing primarily only two common anchoring points of interaction with the enzyme. We report here the crystal structure of the CT domain ofmore » yeast ACC in complex with pinoxaden at 2.8-{angstrom} resolution. Despite their chemical diversity, pinoxaden has a similar binding mode as tepraloxydim and requires a small conformational change in the dimer interface for binding. Crystal structures of the CT domain in complex with all three classes of herbicides confirm the importance of the two anchoring points for herbicide binding. The structures also provide a foundation for understanding the molecular basis of the herbicide resistance mutations and cross resistance among the herbicides, as well as for the design and development of new inhibitors against plant and human ACCs.« less

  5. Study of structural and conformational change in cytochrome, C through molecular dynamic simulation in presence of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Moudgil, Lovika; Singh, Baljinder; Kaura, Aman; Singh, Gurinder; Tripathi, S. K.; Saini, G. S. S.

    2017-05-01

    Proteins are the most abundant organic molecules in living system having diverse structures and various functions than the other classes of macromolecules. We have done Molecular Dynamics (MD) simulation of the Cytochrome,C (Cyt,c) protein found in plants, animals and many unicellular animals in the presence of gold nanoparticles (Au NPs). MD results helped to recognize the amino acids that play important role to make the interaction possible between protein and gold surface. In the present study we have examined the structural change of protein in the presence of gold surface and its adsorption on the surface through MD simulations with the help of Gold-Protein (GolP) force field. Results were further analyzed to understand the protein interaction up to molecular level.

  6. Structure and Function of Mammalian Carbohydrate-Lectin Interactions

    NASA Astrophysics Data System (ADS)

    Anderson, Kevin; Evers, David; Rice, Kevin G.

    Over the past three decades the field of glycobiology has expanded beyond a basic understanding of the structure and biosynthesis of glycoprotein, proteoglycans, and glycolipids toward a more detailed picture of how these molecules afford communication through binding to mammalian lectins. Although the number of different mammalian lectin domains appears to be finite and even much smaller than early estimates predicated based on the diversity of glycan structures, nature appears capable of using these in numerous combinations to fine tune specificity. The following provides an overview of the major classes of mammalian lectins and discusses their glycan binding specificity. The review provides a snapshot of the field of glycobiology that continues to grow providing an increasing number of examples of biological processes that rely upon glycan-lectin binding.

  7. On the versatility of electronic structures in polymethine dyes

    NASA Astrophysics Data System (ADS)

    Pascal, Simon; Haefele, Alexandre; Monnereau, Cyrille; Charaf-Eddin, Azzam; Jacquemin, Denis; Le Guennic, Boris; Maury, Olivier; Andraud, Chantal

    2014-10-01

    This article provides an overview of the photophysical behavior diversity of polymethine chromophores which are ubiquitous in biological imaging and material sciences. One major challenge in this class of chromophore is to correlate the chemical structure to the observed optical properties, especially when symmetry-breaking phenomena occur. With the constant concern for rationalization of their spectroscopy, we propose an extended classification of polymethine dyes based on their ground state electronic configuration using three limit forms namely: cyanine, dipole and bis-dipole. The chemical modifications of the dye and the influence of exogenous parameters can promote dramatic spectroscopic changes that can be correlated to significant electronic reorganization between the three-abovementioned forms. The deep understanding of such phenomena should allow to identify, predict and take advantage of the versatile electronic structure of polymethines.

  8. Evolutionary insight into the functional amyloids of the pseudomonads.

    PubMed

    Dueholm, Morten S; Otzen, Daniel; Nielsen, Per Halkjær

    2013-01-01

    Functional bacterial amyloids (FuBA) are important components in many environmental biofilms where they provide structural integrity to the biofilm, mediate bacterial aggregation and may function as virulence factor by binding specifically to host cell molecules. A novel FuBA system, the Fap system, was previously characterized in the genus Pseudomonas, however, very little is known about the phylogenetic diversity of bacteria with the genetic capacity to apply this system. Studies of genomes and public metagenomes from a diverse range of habitats showed that the Fap system is restricted to only three classes in the phylum Proteobacteria, the Beta-, Gamma- and Deltaproteobacteria. The structural organization of the fap genes into a single fapABCDEF operon is well conserved with minor variations such as a frequent deletion of fapA. A high degree of variation was seen within the primary structure of the major Fap fibril monomers, FapC, whereas the minor monomers, FapB, showed less sequence variation. Comparison of phylogenetic trees based on Fap proteins and the 16S rRNA gene of the corresponding bacteria showed remarkably similar overall topology. This indicates, that horizontal gene transfer is an infrequent event in the evolution of the Fap system.

  9. Evolutionary Insight into the Functional Amyloids of the Pseudomonads

    PubMed Central

    Dueholm, Morten S.; Otzen, Daniel; Nielsen, Per Halkjær

    2013-01-01

    Functional bacterial amyloids (FuBA) are important components in many environmental biofilms where they provide structural integrity to the biofilm, mediate bacterial aggregation and may function as virulence factor by binding specifically to host cell molecules. A novel FuBA system, the Fap system, was previously characterized in the genus Pseudomonas, however, very little is known about the phylogenetic diversity of bacteria with the genetic capacity to apply this system. Studies of genomes and public metagenomes from a diverse range of habitats showed that the Fap system is restricted to only three classes in the phylum Proteobacteria, the Beta-, Gamma- and Deltaproteobacteria. The structural organization of the fap genes into a single fapABCDEF operon is well conserved with minor variations such as a frequent deletion of fapA. A high degree of variation was seen within the primary structure of the major Fap fibril monomers, FapC, whereas the minor monomers, FapB, showed less sequence variation. Comparison of phylogenetic trees based on Fap proteins and the 16S rRNA gene of the corresponding bacteria showed remarkably similar overall topology. This indicates, that horizontal gene transfer is an infrequent event in the evolution of the Fap system. PMID:24116129

  10. [Community structure of soil fauna in Eucalyptus grandis plantations at different slope locations].

    PubMed

    Zhao, Yu; Zhong, Yu; Zhang, Jian; Yang, Wan-qin

    2010-09-01

    To understand the effects of slope location on the community structure of soil fauna in Eucalyptus grandis plantation, an investigation was made on the soil fauna in 3 E. grandis plantations at different slope locations in the hilly area of Sichuan Province from January to October 2009. A total of 39,2762 individuals were observed, belonging to 146 groups, 7 phyla, 16 classes, and 31 orders. The community composition, trophic group, diversity, and seasonal dynamics of soil fauna in the plantations all varied with slope. The abundance of macro-fauna, xeric meso- and micro-fauna, saprophagous macro-fauna, and omnivorous xeric meso- and micro-fauna increased with the decrease of slope, indicating that soil fauna had sensitive responses to the soil environmental factors affected by slope. Significant differences in the diversity of soil saprophagous macro-fauna and hygrophilous meso- and micro-fauna were observed at different slope locations, suggesting that these two faunal groups could be used as the indicators of the habitat heterogeneity of E. grandis plantations at different slope. Overall, slope location had definite effects on the community structure and distribution of soil fauna in the E. grandis plantations, but the effects were not statistically significant.

  11. Luminescent Porous Polymers Based on Aggregation-Induced Mechanism: Design, Synthesis and Functions.

    PubMed

    Dalapati, Sasanka; Gu, Cheng; Jiang, Donglin

    2016-12-01

    Enormous research efforts are focusing on the design and synthesis of advanced luminescent systems, owing to their diverse capability in scientific studies and technological developments. In particular, fluorescence systems based on aggregation-induced emission (AIE) have emerged to show great potential for sensing, bio-imaging, and optoelectronic applications. Among them, integrating AIE mechanisms to design porous polymers is unique because it enables the combination of porosity and luminescence activity in one molecular skeleton for functional design. In recent years rapid progress in exploring AIE-based porous polymers has developed a new class of luminescent materials that exhibit broad structural diversity, outstanding properties and functions and promising applications. By classifying the structural nature of the skeleton, herein the design principle, synthetic development and structural features of different porous luminescent materials are elucidated, including crystalline covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and amorphous porous organic polymers (POPs). The functional exploration of these luminescent porous polymers are highlighted by emphasizing electronic interplay within the confined nanospace, fundamental issues to be addressed are disclosed, and future directions from chemistry, physics and materials science perspectives are proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Variegated tropical landscapes conserve diverse dung beetle communities.

    PubMed

    Costa, Cristiane; Oliveira, Victor Hugo F; Maciel, Rafaella; Beiroz, Wallace; Korasaki, Vanesca; Louzada, Julio

    2017-01-01

    Conserving biodiversity in tropical landscapes is a major challenge to scientists and conservationists. Current rates of deforestation, fragmentation, and land use intensification are producing variegated landscapes with undetermined values for the conservation of biological communities and ecosystem functioning. Here, we investigate the importance of tropical variegated landscapes to biodiversity conservation, using dung beetle as focal taxa. The study was carried out in 12 variegated landscapes where dung beetles were sampled using six pitfall traps, 30 m apart from each other, along a transect in each studied landscape use and cover classes-LUCC (forest fragment and corridor, coffee plantation, and pasture). We baited each pitfall trap with 30 g of human feces and left open for a 48 h period. We also measured three environmental variables reflecting structural differences among the studied classes: canopy cover, local vegetation heterogeneity and soil sand content. We collected 52 species and 2,695 individuals of dung beetles. We observed significant differences in the mean species richness, abundance and biomass among classes, with forest fragments presenting the highest values, forest corridors and coffee plantations presenting intermediate values, and pastures the lowest values. Regarding community structure, we also found significant differences among classes. Canopy cover was the only variable explaining variation in dung beetle species richness, abundance, biomass, and community structure. The relative importance of spatial turnover was greater than nestedness-resultant component in all studied landscapes. This study evaluated the ecological patterns of dung beetle communities in variegated tropical landscapes highlighting the importance of these landscapes for conservation of tropical biodiversity. However, we encourage variegation for the management of landscapes that have already been fragmented or as a complementary initiative of current conservation practices (e.g., protection of natural habitats and establishment of reserves).

  13. Statistical Evaluation of the Rodin–Ohno Hypothesis: Sense/Antisense Coding of Ancestral Class I and II Aminoacyl-tRNA Synthetases

    PubMed Central

    Chandrasekaran, Srinivas Niranj; Yardimci, Galip Gürkan; Erdogan, Ozgün; Roach, Jeffrey; Carter, Charles W.

    2013-01-01

    We tested the idea that ancestral class I and II aminoacyl-tRNA synthetases arose on opposite strands of the same gene. We assembled excerpted 94-residue Urgenes for class I tryptophanyl-tRNA synthetase (TrpRS) and class II Histidyl-tRNA synthetase (HisRS) from a diverse group of species, by identifying and catenating three blocks coding for secondary structures that position the most highly conserved, active-site residues. The codon middle-base pairing frequency was 0.35 ± 0.0002 in all-by-all sense/antisense alignments for 211 TrpRS and 207 HisRS sequences, compared with frequencies between 0.22 ± 0.0009 and 0.27 ± 0.0005 for eight different representations of the null hypothesis. Clustering algorithms demonstrate further that profiles of middle-base pairing in the synthetase antisense alignments are correlated along the sequences from one species-pair to another, whereas this is not the case for similar operations on sets representing the null hypothesis. Most probable reconstructed sequences for ancestral nodes of maximum likelihood trees show that middle-base pairing frequency increases to approximately 0.42 ± 0.002 as bacterial trees approach their roots; ancestral nodes from trees including archaeal sequences show a less pronounced increase. Thus, contemporary and reconstructed sequences all validate important bioinformatic predictions based on descent from opposite strands of the same ancestral gene. They further provide novel evidence for the hypothesis that bacteria lie closer than archaea to the origin of translation. Moreover, the inverse polarity of genetic coding, together with a priori α-helix propensities suggest that in-frame coding on opposite strands leads to similar secondary structures with opposite polarity, as observed in TrpRS and HisRS crystal structures. PMID:23576570

  14. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    PubMed

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out to dissect the PHB gene function. The conserved gene evolution indicated that the study in the model species can be translated to human and mammalian studies.

  15. Diversity of bacteriome associated with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations from China

    PubMed Central

    Li, Kaili; Chen, Huiying; Jiang, Jinjin; Li, Xiangyu; Xu, Jiannong; Ma, Yajun

    2016-01-01

    Sand fly Phlebotomus chinensis is a primary vector of transmission of visceral leishmaniasis in China. The sand flies have adapted to various ecological niches in distinct ecosystems. Characterization of the microbial structure and function will greatly facilitate the understanding of the sand fly ecology, which would provide critical information for developing intervention strategy for sand fly control. In this study we compared the bacterial composition between two populations of Ph. chinensis from Henan and Sichuan, China. The phylotypes were taxonomically assigned to 29 genera of 19 families in 9 classes of 5 phyla. The core bacteria include Pseudomonas and enterobacteria, both are shared in the sand flies in the two regions. Interestingly, the endosymbionts Wolbachia and Rickettsia were detected only in Henan, while the Rickettsiella and Diplorickettsia only in Sichuan. The intracellular bacteria Rickettsia, Rickettsiella and Diplorickettsia were reported for the first time in sand flies. The influence of sex and feeding status on the microbial structure was also detected in the two populations. The findings suggest that the ecological diversity of sand fly in Sichuan and Henan may contribute to shaping the structure of associated microbiota. The structural classification paves the way to function characterization of the sand fly associated microbiome. PMID:27819272

  16. The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities.

    PubMed

    Brucker, Robert M; Bordenstein, Seth R

    2012-02-01

    The comparative structure of bacterial communities among closely related host species remains relatively unexplored. For instance, as speciation events progress from incipient to complete stages, does divergence in the composition of the species' microbial communities parallel the divergence of host nuclear genes? To address this question, we used the recently diverged species of the parasitoid wasp genus Nasonia to test whether the evolutionary relationships of their bacterial microbiotas recapitulate the Nasonia phylogenetic history. We also assessed microbial diversity in Nasonia at different stages of development to determine the role that host age plays in microbiota structure. The results indicate that all three species of Nasonia share simple larval microbiotas dominated by the γ-proteobacteria class; however, bacterial species diversity increases as Nasonia develop into pupae and adults. Finally, under identical environmental conditions, the relationships of the microbial communities reflect the phylogeny of the Nasonia host species at multiple developmental stages, which suggests that the structure of an animal's microbial community is closely allied with divergence of host genes. These findings highlight the importance of host evolutionary relationships on microbiota composition and have broad implications for future studies of microbial symbiosis and animal speciation. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  17. Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus).

    PubMed

    Marsden, Clare D; Woodroffe, Rosie; Mills, Michael G L; McNutt, J Weldon; Creel, Scott; Groom, Rosemary; Emmanuel, Masenga; Cleaveland, Sarah; Kat, Pieter; Rasmussen, Gregory S A; Ginsberg, Joshua; Lines, Robin; André, Jean-Marc; Begg, Colleen; Wayne, Robert K; Mable, Barbara K

    2012-03-01

    Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA-DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (N(e)  < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift. © 2012 Blackwell Publishing Ltd.

  18. Patterns of selection and allele diversity of class I and class II major histocompatibility loci across the species range of sockeye salmon (Oncorhynchus nerka).

    PubMed

    McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Kaukinen, Karia H; Beacham, Terry D; Withler, Ruth E; Miller, Kristina M

    2013-09-01

    The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non-neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations. © 2013 John Wiley & Sons Ltd.

  19. Social Justice and Cultural Diversity Issues

    ERIC Educational Resources Information Center

    Harley, Debra A.; Alston, Reginald J.; Turner-Whittaker, Tyra

    2008-01-01

    Early definitions of cultural diversity focused primarily on race/ethnicity, with subsequent inclusion of age, gender, sexual orientation, class, religion, geography, and a combination of positionalities. More recently, social justice has resurfaced as a component of cultural diversity to explain experiences of people of color, women, and…

  20. Systematic Analysis of Primary Sequence Domain Segments for the Discrimination Between Class C GPCR Subtypes.

    PubMed

    König, Caroline; Alquézar, René; Vellido, Alfredo; Giraldo, Jesús

    2018-03-01

    G-protein-coupled receptors (GPCRs) are a large and diverse super-family of eukaryotic cell membrane proteins that play an important physiological role as transmitters of extracellular signal. In this paper, we investigate Class C, a member of this super-family that has attracted much attention in pharmacology. The limited knowledge about the complete 3D crystal structure of Class C receptors makes necessary the use of their primary amino acid sequences for analytical purposes. Here, we provide a systematic analysis of distinct receptor sequence segments with regard to their ability to differentiate between seven class C GPCR subtypes according to their topological location in the extracellular, transmembrane, or intracellular domains. We build on the results from the previous research that provided preliminary evidence of the potential use of separated domains of complete class C GPCR sequences as the basis for subtype classification. The use of the extracellular N-terminus domain alone was shown to result in a minor decrease in subtype discrimination in comparison with the complete sequence, despite discarding much of the sequence information. In this paper, we describe the use of Support Vector Machine-based classification models to evaluate the subtype-discriminating capacity of the specific topological sequence segments.

  1. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.

    PubMed

    Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali

    2013-09-01

    The research aims to develop global modeling tools capable of categorizing structurally diverse chemicals in various toxicity classes according to the EEC and European Community directives, and to predict their acute toxicity in fathead minnow using set of selected molecular descriptors. Accordingly, artificial intelligence approach based classification and regression models, such as probabilistic neural networks (PNN), generalized regression neural networks (GRNN), multilayer perceptron neural network (MLPN), radial basis function neural network (RBFN), support vector machines (SVM), gene expression programming (GEP), and decision tree (DT) were constructed using the experimental toxicity data. Diversity and non-linearity in the chemicals' data were tested using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. Predictive and generalization abilities of various models constructed here were compared using several statistical parameters. PNN and GRNN models performed relatively better than MLPN, RBFN, SVM, GEP, and DT. Both in two and four category classifications, PNN yielded a considerably high accuracy of classification in training (95.85 percent and 90.07 percent) and validation data (91.30 percent and 86.96 percent), respectively. GRNN rendered a high correlation between the measured and model predicted -log LC50 values both for the training (0.929) and validation (0.910) data and low prediction errors (RMSE) of 0.52 and 0.49 for two sets. Efficiency of the selected PNN and GRNN models in predicting acute toxicity of new chemicals was adequately validated using external datasets of different fish species (fathead minnow, bluegill, trout, and guppy). The PNN and GRNN models showed good predictive and generalization abilities and can be used as tools for predicting toxicities of structurally diverse chemical compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Design, Synthesis, and Crystal Structures of 6-Alkylidene-2 -Substituted Penicillanic Acid Sulfones as Potent Inhibitors of Acinetobacter baumannii OXA-24 Carbapenemase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bou, G.; Santillana, E; Sheri, A

    Class D {beta}-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial {beta}-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel {beta}-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2{prime}-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important {beta}-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 {beta}-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influencesmore » inhibitor recognition. IC{sub 50} values against OXA-24 and two OXA-24 {beta}-lactamase variants ranged from 10 {+-} 1 (4 vs WT) to 338 {+-} 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest K{sub i} (500 {+-} 80 nM vs WT), and 1 possessed the highest inactivation efficiency (k{sub inact}/K{sub i} = 0.21 {+-} 0.02 {micro}M{sup -1}s{sup -1}). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 {angstrom}) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2{prime}-substituted penicillin sulfones are effective mechanism-based inactivators of class D {beta}-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D {beta}-lactamases is proposed.« less

  3. Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products: New Insights Into the Role of Leader and Core Peptides During Biosynthesis

    PubMed Central

    Yang, Xiao; van der Donk, Wilfred A.

    2013-01-01

    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with a high degree of structural diversity and a wide variety of bioactivities. Understanding the biosynthetic machinery of these RiPPs will benefit the discovery and development of new molecules with potential pharmaceutical applications. In this review, we discuss the features of the biosynthetic pathways to different RiPP classes, and propose mechanisms regarding recognition of the precursor peptide by the posttranslational modification enzymes. We propose that the leader peptides function as allosteric regulators that bind the active form of the biosynthetic enzymes in a conformational selection process. We also speculate how enzymes that generate polycyclic products of defined topologies may have been selected for during evolution. PMID:23666908

  4. Gene duplication and fragmentation in the zebra finch major histocompatibility complex.

    PubMed

    Balakrishnan, Christopher N; Ekblom, Robert; Völker, Martin; Westerdahl, Helena; Godinez, Ricardo; Kotkiewicz, Holly; Burt, David W; Graves, Tina; Griffin, Darren K; Warren, Wesley C; Edwards, Scott V

    2010-04-01

    Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages.

  5. Diversity and evolutionary patterns of immune genes in free-ranging Namibian leopards (Panthera pardus pardus).

    PubMed

    Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Sommer, Simone

    2011-01-01

    The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for fitness-related genetic variation in wildlife populations. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, we isolated and characterized genetic variation at the adaptively most important region of MHC class I and MHC class II-DRB genes in 25 free-ranging African leopards from Namibia and investigated the mechanisms that generate and maintain MHC polymorphism in the species. Using single-stranded conformation polymorphism analysis and direct sequencing, we detected 6 MHC class I and 6 MHC class II-DRB sequences, which likely correspond to at least 3 MHC class I and 3 MHC class II-DRB loci. Amino acid sequence variation in both MHC classes was higher or similar in comparison to other reported felids. We found signatures of positive selection shaping the diversity of MHC class I and MHC class II-DRB loci during the evolutionary history of the species. A comparison of MHC class I and MHC class II-DRB sequences of the leopard to those of other felids revealed a trans-species mode of evolution. In addition, the evolutionary relationships of MHC class II-DRB sequences between African and Asian leopard subspecies are discussed.

  6. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data

    PubMed Central

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F.; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases. PMID:26226014

  7. Diversity at the major histocompatibility complex Class II in the platypus, Ornithorhynchus anatinus.

    PubMed

    Lillie, Mette; Woodward, Rachael E; Sanderson, Claire E; Eldridge, Mark D B; Belov, Katherine

    2012-07-01

    The platypus (Ornithorhynchus anatinus) is the sole survivor of a previously widely distributed and diverse lineage of ornithorhynchid monotremes. Its dependence on healthy water systems imposes an inherent sensitivity to habitat degradation and climate change. Here, we compare genetic diversity at the major histocompatibility complex (MHC) Class II-DZB gene and 3 MHC-associated microsatellite markers with diversity at 6 neutral microsatellite markers in 70 platypuses from across their range, including the mainland of Australia and the isolated populations of Tasmania, King Island, and Kangaroo Island. Overall, high DZB diversity was observed in the platypus, with 57 DZB β1 alleles characterized. Significant positive selection was detected within the DZB peptide-binding region, promoting variation in this domain. Low levels of genetic diversity were detected at all markers in the 2 island populations, King Island (endemic) and Kangaroo Island (introduced), with the King Island platypuses monomorphic at the DZB locus. Loss of MHC diversity on King Island is of concern, as the population may have compromised immunological fitness and reduced ability to resist changing environmental conditions.

  8. Synthesis and serotonin transporter activity of sulphur-substituted alpha-alkyl phenethylamines as a new class of anticancer agents.

    PubMed

    Cloonan, Suzanne M; Keating, John J; Butler, Stephen G; Knox, Andrew J S; Jørgensen, Anne M; Peters, Günther H; Rai, Dilip; Corrigan, Desmond; Lloyd, David G; Williams, D Clive; Meegan, Mary J

    2009-12-01

    The discovery that some serotonin reuptake transporter (SERT) ligands have the potential to act as pro-apoptotic agents in the treatment of cancer adds greatly to their diverse pharmacological application. 4-Methylthioamphetamine (MTA) is a selective ligand for SERT over other monoamine transporters. In this study, a novel library of structurally diverse 4-MTA analogues were synthesised with or without N-alkyl and/or C-alpha methyl or ethyl groups so that their potential SERT-dependent antiproliferative activity could be assessed. Many of the compounds displayed SERT-binding activity as well as cytotoxic activity. While there was no direct correlation between these two effects, a number of derivatives displayed anti-tumour effects in lymphoma, leukaemia and breast cancer cell lines, showing further potential to be developed as possible chemotherapeutic agents.

  9. Fragment library design: using cheminformatics and expert chemists to fill gaps in existing fragment libraries.

    PubMed

    Kutchukian, Peter S; So, Sung-Sau; Fischer, Christian; Waller, Chris L

    2015-01-01

    Fragment based screening (FBS) has emerged as a mainstream lead discovery strategy in academia, biotechnology start-ups, and large pharma. As a prerequisite of FBS, a structurally diverse library of fragments is desirable in order to identify chemical matter that will interact with the range of diverse target classes that are prosecuted in contemporary screening campaigns. In addition, it is also desirable to offer synthetically amenable starting points to increase the probability of a successful fragment evolution through medicinal chemistry. Herein we describe a method to identify biologically relevant chemical substructures that are missing from an existing fragment library (chemical gaps), and organize these chemical gaps hierarchically so that medicinal chemists can efficiently navigate the prioritized chemical space and subsequently select purchasable fragments for inclusion in an enhanced fragment library.

  10. Ape parasite origins of human malaria virulence genes

    PubMed Central

    Larremore, Daniel B.; Sundararaman, Sesh A.; Liu, Weimin; Proto, William R.; Clauset, Aaron; Loy, Dorothy E.; Speede, Sheri; Plenderleith, Lindsey J.; Sharp, Paul M.; Hahn, Beatrice H.; Rayner, Julian C.; Buckee, Caroline O.

    2015-01-01

    Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. PMID:26456841

  11. Scientist Spotlight Homework Assignments Shift Students’ Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    PubMed Central

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments (“Scientist Spotlights”) that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  12. Differentiated Pedagogy to Address Learner Diversity in Secondary Physical Education

    ERIC Educational Resources Information Center

    Jarvis, Jane M.; Pill, Shane A.; Noble, Anna G.

    2017-01-01

    This article discusses the challenge of addressing student diversity in secondary physical education (PE) classes. Contemporary curriculum documents and teacher standards emphasize differentiated pedagogy in order to engage and challenge all learners. However, the reality of designing effective learning experiences for diverse students represents…

  13. Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity

    PubMed Central

    Messier, Christian; Kembel, Steven W.

    2017-01-01

    ABSTRACT Tree leaf-associated microbiota have been studied in natural ecosystems but less so in urban settings, where anthropogenic pressures on trees could impact microbial communities and modify their interaction with their hosts. Additionally, trees act as vectors spreading bacterial cells in the air in urban environments due to the density of microbial cells on aerial plant surfaces. Characterizing tree leaf bacterial communities along an urban gradient is thus key to understand the impact of anthropogenic pressures on urban tree-bacterium interactions and on the overall urban microbiome. In this study, we aimed (i) to characterize phyllosphere bacterial communities of seven tree species in urban environments and (ii) to describe the changes in tree phyllosphere bacterial community structure and diversity along a gradient of increasing urban intensity and at two degrees of tree isolation. Our results indicate that, as anthropogenic pressures increase, urban leaf bacterial communities show a reduction in the abundance of the dominant class in the natural plant microbiome, the Alphaproteobacteria. Our work in the urban environment here reveals that the structures of leaf bacterial communities differ along the gradient of urban intensity. The diversity of phyllosphere microbial communities increases at higher urban intensity, also displaying a greater number and variety of associated indicator taxa than the low and medium urban gradient sites. In conclusion, we find that urban environments influence tree bacterial community composition, and our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. IMPORTANCE In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban microbiome studies have focused on the built environment, improving our understanding of indoor microbial communities but leaving much to be understood, especially in the nonbuilt microbiome. Here, we provide the first multiple-species comparison of tree phyllosphere bacterial structures and diversity along a gradient of urban intensity. We demonstrate that urban trees possess characteristic bacterial communities that differ from those seen with trees in nonurban environments, with microbial community structure on trees influenced by host species identity but also by the gradient of urban intensity and by the degree of isolation from other trees. Our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. PMID:29238751

  14. Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity.

    PubMed

    Laforest-Lapointe, Isabelle; Messier, Christian; Kembel, Steven W

    2017-01-01

    Tree leaf-associated microbiota have been studied in natural ecosystems but less so in urban settings, where anthropogenic pressures on trees could impact microbial communities and modify their interaction with their hosts. Additionally, trees act as vectors spreading bacterial cells in the air in urban environments due to the density of microbial cells on aerial plant surfaces. Characterizing tree leaf bacterial communities along an urban gradient is thus key to understand the impact of anthropogenic pressures on urban tree-bacterium interactions and on the overall urban microbiome. In this study, we aimed (i) to characterize phyllosphere bacterial communities of seven tree species in urban environments and (ii) to describe the changes in tree phyllosphere bacterial community structure and diversity along a gradient of increasing urban intensity and at two degrees of tree isolation. Our results indicate that, as anthropogenic pressures increase, urban leaf bacterial communities show a reduction in the abundance of the dominant class in the natural plant microbiome, the Alphaproteobacteria . Our work in the urban environment here reveals that the structures of leaf bacterial communities differ along the gradient of urban intensity. The diversity of phyllosphere microbial communities increases at higher urban intensity, also displaying a greater number and variety of associated indicator taxa than the low and medium urban gradient sites. In conclusion, we find that urban environments influence tree bacterial community composition, and our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. IMPORTANCE In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban microbiome studies have focused on the built environment, improving our understanding of indoor microbial communities but leaving much to be understood, especially in the nonbuilt microbiome. Here, we provide the first multiple-species comparison of tree phyllosphere bacterial structures and diversity along a gradient of urban intensity. We demonstrate that urban trees possess characteristic bacterial communities that differ from those seen with trees in nonurban environments, with microbial community structure on trees influenced by host species identity but also by the gradient of urban intensity and by the degree of isolation from other trees. Our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes.

  15. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci.

    PubMed

    Schardl, Christopher L; Young, Carolyn A; Hesse, Uljana; Amyotte, Stefan G; Andreeva, Kalina; Calie, Patrick J; Fleetwood, Damien J; Haws, David C; Moore, Neil; Oeser, Birgitt; Panaccione, Daniel G; Schweri, Kathryn K; Voisey, Christine R; Farman, Mark L; Jaromczyk, Jerzy W; Roe, Bruce A; O'Sullivan, Donal M; Scott, Barry; Tudzynski, Paul; An, Zhiqiang; Arnaoudova, Elissaveta G; Bullock, Charles T; Charlton, Nikki D; Chen, Li; Cox, Murray; Dinkins, Randy D; Florea, Simona; Glenn, Anthony E; Gordon, Anna; Güldener, Ulrich; Harris, Daniel R; Hollin, Walter; Jaromczyk, Jolanta; Johnson, Richard D; Khan, Anar K; Leistner, Eckhard; Leuchtmann, Adrian; Li, Chunjie; Liu, JinGe; Liu, Jinze; Liu, Miao; Mace, Wade; Machado, Caroline; Nagabhyru, Padmaja; Pan, Juan; Schmid, Jan; Sugawara, Koya; Steiner, Ulrike; Takach, Johanna E; Tanaka, Eiji; Webb, Jennifer S; Wilson, Ella V; Wiseman, Jennifer L; Yoshida, Ruriko; Zeng, Zheng

    2013-01-01

    The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.

  16. Seeking inclusion in an exclusive process: discourses of medical school student selection.

    PubMed

    Razack, Saleem; Hodges, Brian; Steinert, Yvonne; Maguire, Mary

    2015-01-01

    Calls to increase medical class representativeness to better reflect the diversity of society represent a growing international trend. There is an inherent tension between these calls and competitive student selection processes driven by academic achievement. How is this tension manifested? Our three-phase interdisciplinary research programme focused on the discourses of excellence, equity and diversity in the medical school selection process, as conveyed by key stakeholders: (i) institutions and regulatory bodies (the websites of 17 medical schools and 15 policy documents from national regulatory bodies); (ii) admissions committee members (ACMs) (according to semi-structured interviews [n = 9]), and (iii) successful applicants (according to semi-structured interviews [n = 14]). The work is theoretically situated within the works of Foucault, Bourdieu and Bakhtin. The conceptual framework is supplemented by critical hermeneutics and the performance theories of Goffman. Academic excellence discourses consistently predominate over discourses calling for greater representativeness in medical classes. Policy addressing demographic representativeness in medicine may unwittingly contribute to the reproduction of historical patterns of exclusion of under-represented groups. In ACM selection practices, another discursive tension is exposed as the inherent privilege in the process is marked, challenging the ideal of medicine as a meritocracy. Applicants' representations of self in the 'performance' of interviewing demonstrate implicit recognition of the power inherent in the act of selection and are manifested in the use of explicit strategies to 'fit in'. How can this critical discourse analysis inform improved inclusiveness in student selection? Policymakers addressing diversity and equity issues in medical school admissions should explicitly recognise the power dynamics at play between the profession and marginalised groups. For greater inclusion and to avoid one authoritative definition of excellence, we suggest a transformative model of faculty development aimed at promoting multiple kinds of excellence. Through this multi-pronged approach, we call for the profession to courageously confront the cherished notion of the medical meritocracy in order to avoid unwanted aspects of elitism. © 2014 John Wiley & Sons Ltd.

  17. Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci

    PubMed Central

    Schardl, Christopher L.; Young, Carolyn A.; Hesse, Uljana; Amyotte, Stefan G.; Andreeva, Kalina; Calie, Patrick J.; Fleetwood, Damien J.; Haws, David C.; Moore, Neil; Oeser, Birgitt; Panaccione, Daniel G.; Schweri, Kathryn K.; Voisey, Christine R.; Farman, Mark L.; Jaromczyk, Jerzy W.; Roe, Bruce A.; O'Sullivan, Donal M.; Scott, Barry; Tudzynski, Paul; An, Zhiqiang; Arnaoudova, Elissaveta G.; Bullock, Charles T.; Charlton, Nikki D.; Chen, Li; Cox, Murray; Dinkins, Randy D.; Florea, Simona; Glenn, Anthony E.; Gordon, Anna; Güldener, Ulrich; Harris, Daniel R.; Hollin, Walter; Jaromczyk, Jolanta; Johnson, Richard D.; Khan, Anar K.; Leistner, Eckhard; Leuchtmann, Adrian; Li, Chunjie; Liu, JinGe; Liu, Jinze; Liu, Miao; Mace, Wade; Machado, Caroline; Nagabhyru, Padmaja; Pan, Juan; Schmid, Jan; Sugawara, Koya; Steiner, Ulrike; Takach, Johanna E.; Tanaka, Eiji; Webb, Jennifer S.; Wilson, Ella V.; Wiseman, Jennifer L.; Yoshida, Ruriko; Zeng, Zheng

    2013-01-01

    The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses. PMID:23468653

  18. The Collective Construction of Middle-Class White Womanhood: Investigations of Teaching and Teacher Professionalization in a Diverse Elementary School

    ERIC Educational Resources Information Center

    Yoon, Irene H.

    2011-01-01

    This dissertation investigates how the intersections of race, class, and gender operate in the everyday teaching and professional norms of middle-class White women teachers--particularly in schools such as the one in this study, where a majority of middle-class, White women teachers serve predominantly low-income, racially and ethnically diverse…

  19. Teenage Expectations of Going to University: The EBB and Flow of Influences from 14 to 18

    ERIC Educational Resources Information Center

    Winterton, Mandy Teresa; Irwin, Sarah

    2012-01-01

    The expansion of higher education in the UK has been accompanied by ongoing class related inequalities in expectations about, and access to, university. In the context of detailed research into middle-class and working-class experiences and difference, there have been calls for more detailed analysis of internal class diversity, and for…

  20. Crystal structure of PnpCD, a two-subunit hydroquinone 1,2-dioxygenase, reveals a novel structural class of Fe2+-dependent dioxygenases.

    PubMed

    Liu, Shiheng; Su, Tiantian; Zhang, Cong; Zhang, Wen-Mao; Zhu, Deyu; Su, Jing; Wei, Tiandi; Wang, Kang; Huang, Yan; Guo, Liming; Xu, Sujuan; Zhou, Ning-Yi; Gu, Lichuan

    2015-10-02

    Aerobic microorganisms have evolved a variety of pathways to degrade aromatic and heterocyclic compounds. However, only several classes of oxygenolytic fission reaction have been identified for the critical ring cleavage dioxygenases. Among them, the most well studied dioxygenases proceed via catecholic intermediates, followed by noncatecholic hydroxy-substituted aromatic carboxylic acids. Therefore, the recently reported hydroquinone 1,2-dioxygenases add to the diversity of ring cleavage reactions. Two-subunit hydroquinone 1,2-dioxygenase PnpCD, the key enzyme in the hydroquinone pathway of para-nitrophenol degradation, catalyzes the ring cleavage of hydroquinone to γ-hydroxymuconic semialdehyde. Here, we report three PnpCD structures, named apo-PnpCD, PnpCD-Fe(3+), and PnpCD-Cd(2+)-HBN (substrate analog hydroxyenzonitrile), respectively. Structural analysis showed that both the PnpC and the C-terminal domains of PnpD comprise a conserved cupin fold, whereas PnpC cannot form a competent metal binding pocket as can PnpD cupin. Four residues of PnpD (His-256, Asn-258, Glu-262, and His-303) were observed to coordinate the iron ion. The Asn-258 coordination is particularly interesting because this coordinating residue has never been observed in the homologous cupin structures of PnpCD. Asn-258 is proposed to play a pivotal role in binding the iron prior to the enzymatic reaction, but it might lose coordination to the iron when the reaction begins. PnpD also consists of an intriguing N-terminal domain that might have functions other than nucleic acid binding in its structural homologs. In summary, PnpCD has no apparent evolutionary relationship with other iron-dependent dioxygenases and therefore defines a new structural class. The study of PnpCD might add to the understanding of the ring cleavage of dioxygenases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Crystal Structure of PnpCD, a Two-subunit Hydroquinone 1,2-Dioxygenase, Reveals a Novel Structural Class of Fe2+-dependent Dioxygenases*

    PubMed Central

    Liu, Shiheng; Su, Tiantian; Zhang, Cong; Zhang, Wen-Mao; Zhu, Deyu; Su, Jing; Wei, Tiandi; Wang, Kang; Huang, Yan; Guo, Liming; Xu, Sujuan; Zhou, Ning-Yi; Gu, Lichuan

    2015-01-01

    Aerobic microorganisms have evolved a variety of pathways to degrade aromatic and heterocyclic compounds. However, only several classes of oxygenolytic fission reaction have been identified for the critical ring cleavage dioxygenases. Among them, the most well studied dioxygenases proceed via catecholic intermediates, followed by noncatecholic hydroxy-substituted aromatic carboxylic acids. Therefore, the recently reported hydroquinone 1,2-dioxygenases add to the diversity of ring cleavage reactions. Two-subunit hydroquinone 1,2-dioxygenase PnpCD, the key enzyme in the hydroquinone pathway of para-nitrophenol degradation, catalyzes the ring cleavage of hydroquinone to γ-hydroxymuconic semialdehyde. Here, we report three PnpCD structures, named apo-PnpCD, PnpCD-Fe3+, and PnpCD-Cd2+-HBN (substrate analog hydroxyenzonitrile), respectively. Structural analysis showed that both the PnpC and the C-terminal domains of PnpD comprise a conserved cupin fold, whereas PnpC cannot form a competent metal binding pocket as can PnpD cupin. Four residues of PnpD (His-256, Asn-258, Glu-262, and His-303) were observed to coordinate the iron ion. The Asn-258 coordination is particularly interesting because this coordinating residue has never been observed in the homologous cupin structures of PnpCD. Asn-258 is proposed to play a pivotal role in binding the iron prior to the enzymatic reaction, but it might lose coordination to the iron when the reaction begins. PnpD also consists of an intriguing N-terminal domain that might have functions other than nucleic acid binding in its structural homologs. In summary, PnpCD has no apparent evolutionary relationship with other iron-dependent dioxygenases and therefore defines a new structural class. The study of PnpCD might add to the understanding of the ring cleavage of dioxygenases. PMID:26304122

  2. Electron delocalization and charge mobility as a function of reduction in a metal-organic framework.

    PubMed

    Aubrey, Michael L; Wiers, Brian M; Andrews, Sean C; Sakurai, Tsuneaki; Reyes-Lillo, Sebastian E; Hamed, Samia M; Yu, Chung-Jui; Darago, Lucy E; Mason, Jarad A; Baeg, Jin-Ook; Grandjean, Fernande; Long, Gary J; Seki, Shu; Neaton, Jeffrey B; Yang, Peidong; Long, Jeffrey R

    2018-06-04

    Conductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of K x Fe 2 (BDP) 3 (0 ≤ x ≤ 2; BDP 2-  = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics. Through a battery of spectroscopic methods, computational techniques and single-microcrystal field-effect transistor measurements, we demonstrate that fractional reduction of Fe 2 (BDP) 3 results in a metal-organic framework that displays a nearly 10,000-fold enhancement in conductivity along a single crystallographic axis. The attainment of such properties in a K x Fe 2 (BDP) 3 field-effect transistor represents the realization of a general synthetic strategy for the creation of new porous conductor-based devices.

  3. Measuring and Predicting the Internal Structure of Semiconductor Nanocrystals through Raman Spectroscopy.

    PubMed

    Mukherjee, Prabuddha; Lim, Sung Jun; Wrobel, Tomasz P; Bhargava, Rohit; Smith, Andrew M

    2016-08-31

    Nanocrystals composed of mixed chemical domains have diverse properties that are driving their integration in next-generation electronics, light sources, and biosensors. However, the precise spatial distribution of elements within these particles is difficult to measure and control, yet profoundly impacts their quality and performance. Here we synthesized a unique series of 42 different quantum dot nanocrystals, composed of two chemical domains (CdS:CdSe), arranged in 7 alloy and (core)shell structural classes. Chemometric analyses of far-field Raman spectra accurately classified their internal structures from their vibrational signatures. These classifications provide direct insight into the elemental arrangement of the alloy as well as an independent prediction of fluorescence quantum yield. This nondestructive, rapid approach can be broadly applied to greatly enhance our capacity to measure, predict and monitor multicomponent nanomaterials for precise tuning of their structures and properties.

  4. Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials.

    PubMed

    Knowles, Tuomas P J; Mezzenga, Raffaele

    2016-08-01

    Proteinaceous materials based on the amyloid core structure have recently been discovered at the origin of biological functionality in a remarkably diverse set of roles, and attention is increasingly turning towards such structures as the basis of artificial self-assembling materials. These roles contrast markedly with the original picture of amyloid fibrils as inherently pathological structures. Here we outline the salient features of this class of functional materials, both in the context of the functional roles that have been revealed for amyloid fibrils in nature, as well as in relation to their potential as artificial materials. We discuss how amyloid materials exemplify the emergence of function from protein self-assembly at multiple length scales. We focus on the connections between mesoscale structure and material function, and demonstrate how the natural examples of functional amyloids illuminate the potential applications for future artificial protein based materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biomaterials Made from Coiled-Coil Peptides.

    PubMed

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  6. A Fair Go for All? The Impact of Intragroup Diversity and Diversity-Management Skills on Student Experiences and Outcomes in Team-Based Class Projects

    ERIC Educational Resources Information Center

    Shaw, James B.

    2004-01-01

    A longitudinal study of 390 students in 64 Practical Organizational Behavior Education (PROBE) project teams was conducted on the effects of intragroup diversity and student diversity-management skills. The impact of gender, age, and nationality variables on student grades, cognitive processes, perceptions of team effectiveness, and satisfaction…

  7. Optimization of an extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry: selectivity and biases

    NASA Astrophysics Data System (ADS)

    Chu, R. K.; Tfaily, M. M.; Tolic, N.; Kyle, J. E.; Robinson, E. R.; Hess, N. J.; Paša-Tolić, L.

    2015-12-01

    Soil organic matter (SOM) is a complex mixture of above and belowground plant litter and microbial residues, and is a key reservoir for carbon (C) and nutrient biogeochemical cycling in different ecosystems. A limited understanding of the molecular composition of SOM prohibits the ability to routinely decipher chemical processes within soil and predict how terrestrial C fluxes will response to changing climatic conditions. Here, we present that the choice of solvent can be used to selectively extract different compositional fractions from SOM to either target a specific class of compounds or gain a better understanding of the entire composition of the soil sample using 12T Fourier transform ion cyclotron resonance mass spectrometry. Specifically, we found that hexane and chloroform were selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin polyphenolic compounds with O:C > 0.5; methanol has higher selectivity towards lignin and lipid compounds characterized with relatively low O:C < 0.5. Hexane, chloroform, methanol, acetonitrile and water increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Since each solvent extracts a selective group of compounds, using a suite of solvents with varying polarity for analysis results in more comprehensive representation of the diversity of organic molecules present in soil and a better representation of the whole spectrum of available substrates for microorganisms. Moreover, we have developed a sequential extraction protocol that permits sampling diverse classes of organic compounds while minimizing ionization competition during ESI while increasing sample throughput and decreasing sample volume. This allowed us to hypothesize about possible chemical reactions relating classes of organic molecules that reflect abiotic and biotic processes impacting SOM composition.

  8. Community structure of macrozoobenthos as bioindicator of pepe river quality, Mojosongo Boyolali

    NASA Astrophysics Data System (ADS)

    Tarwotjo, Udi; Rahadian, Rully; Hadi, Mochammad

    2018-05-01

    The main problem that arises so far is the declining water quality of Pepe river due to increased human population and industrial activities along the Pepe River. This research was conducted in August 2017 using purposive random sampling method in three stations. Theobjective of this research is to provide basic information about the change of macrozoobenthos community structure which can be used as bioindicator of environmental quality in downstream of Pepe River. The results of this study showed that 72 macrozoobenthos species were found in 4 Class and 3 Fillum. The biological parameters showed that the upstream, center and downstream of the Pepe River was highly polluted, characterized by low diversity index, high density and high dominance index and low diversity. This study foundthree tolerant species that can be used as bioindicator of quality of water in the lower part of the Pepe River, i.e., Chirronomus sp, Pheretima sp, Cheumatopsyche,Melanoides maculata, Melanoides punctata and Thiara scabra. Based on the calculation of mFBI that can be used as an initial estimation of water quality status, Pepe river is very heavy polluted by organic matter.

  9. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    PubMed

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  10. sc-PDB: a database for identifying variations and multiplicity of 'druggable' binding sites in proteins.

    PubMed

    Meslamani, Jamel; Rognan, Didier; Kellenberger, Esther

    2011-05-01

    The sc-PDB database is an annotated archive of druggable binding sites extracted from the Protein Data Bank. It contains all-atoms coordinates for 8166 protein-ligand complexes, chosen for their geometrical and physico-chemical properties. The sc-PDB provides a functional annotation for proteins, a chemical description for ligands and the detailed intermolecular interactions for complexes. The sc-PDB now includes a hierarchical classification of all the binding sites within a functional class. The sc-PDB entries were first clustered according to the protein name indifferent of the species. For each cluster, we identified dissimilar sites (e.g. catalytic and allosteric sites of an enzyme). SCOPE AND APPLICATIONS: The classification of sc-PDB targets by binding site diversity was intended to facilitate chemogenomics approaches to drug design. In ligand-based approaches, it avoids comparing ligands that do not share the same binding site. In structure-based approaches, it permits to quantitatively evaluate the diversity of the binding site definition (variations in size, sequence and/or structure). The sc-PDB database is freely available at: http://bioinfo-pharma.u-strasbg.fr/scPDB.

  11. Antifungal potential of marine natural products.

    PubMed

    El-Hossary, Ebaa M; Cheng, Cheng; Hamed, Mostafa M; El-Sayed Hamed, Ashraf Nageeb; Ohlsen, Knut; Hentschel, Ute; Abdelmohsen, Usama Ramadan

    2017-01-27

    Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Civilizing Teacher Education? Learning with Diversity

    ERIC Educational Resources Information Center

    Allan, Julie

    2011-01-01

    Social capital theorist Robert Putnam (2007) argued that diversity produces fear and leads people to disconnect from one another. For student teachers, diversity of whatever kind--ethnicity, religion, class, disability, gender, or sexuality--generates fear and an expectation that it has to be managed. Civic education within teacher education has a…

  13. Preparing Bilingual Teachers for the Future: Developing Culture and Linguistic Global Competence

    ERIC Educational Resources Information Center

    Alfaro, Cristina

    2008-01-01

    Increasing diversity and linguistics complexity in classrooms is occurring in schools throughout the world. Bilingual teachers need to develop knowledge and skills to succees in teaching diverse students. Demographic shifts are bringing increasing numbers of international students from diverse racial, ethnic, religious, class, and linguistic…

  14. Exploring Diversity in Supervision and Practice

    ERIC Educational Resources Information Center

    Heffron, Mary Claire; Grunstein, Sara; Tilmon, Shawniese

    2007-01-01

    Issues of diversity, such as culture, class, race, and ethnicity, affect all relationships. It can be difficult to explore these issues in supervision, but doing so is imperative to understanding and working effectively with each other and with families. This article explores the challenges associated with discussing issues of diversity, and…

  15. Privilege Monopoly: An Opportunity to Engage in Diversity Awareness

    ERIC Educational Resources Information Center

    Griffin, Rachel Alicia; Jackson, Noell Ross

    2011-01-01

    Today, more than ever before, college educators are being asked to address diversity issues and to teach in ways that foster self-reflexivity and social consciousness. As the world becomes increasingly diverse at the intersections of age, gender, sexual orientation, class, region, religion, race, ethnicity, ability, and nationality, students need…

  16. Functional roles affect diversity-succession relationships for boreal beetles.

    PubMed

    Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim

    2013-01-01

    Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.

  17. Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering

    PubMed Central

    Yu, Xinfei; Yue, Kan; Hsieh, I-Fan; Li, Yiwen; Dong, Xue-Hui; Liu, Chang; Xin, Yu; Wang, Hsiao-Fang; Shi, An-Chang; Newkome, George R.; Chen, Er-Qiang; Zhang, Wen-Bin; Cheng, Stephen Z. D.

    2013-01-01

    The engineering of structures across different length scales is central to the design of novel materials with controlled macroscopic properties. Herein, we introduce a unique class of self-assembling materials, which are built upon shape- and volume-persistent molecular nanoparticles and other structural motifs, such as polymers, and can be viewed as a size-amplified version of the corresponding small-molecule counterparts. Among them, “giant surfactants” with precise molecular structures have been synthesized by “clicking” compact and polar molecular nanoparticles to flexible polymer tails of various composition and architecture at specific sites. Capturing the structural features of small-molecule surfactants but possessing much larger sizes, giant surfactants bridge the gap between small-molecule surfactants and block copolymers and demonstrate a duality of both materials in terms of their self-assembly behaviors. The controlled structural variations of these giant surfactants through precision synthesis further reveal that their self-assemblies are remarkably sensitive to primary chemical structures, leading to highly diverse, thermodynamically stable nanostructures with feature sizes around 10 nm or smaller in the bulk, thin-film, and solution states, as dictated by the collective physical interactions and geometric constraints. The results suggest that this class of materials provides a versatile platform for engineering nanostructures with sub-10-nm feature sizes. These findings are not only scientifically intriguing in understanding the chemical and physical principles of the self-assembly, but also technologically relevant, such as in nanopatterning technology and microelectronics. PMID:23716680

  18. Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers

    PubMed Central

    Chiu, Chun-Huo; Chao, Anne

    2014-01-01

    Hill numbers (or the “effective number of species”) are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify “the effective number of equally abundant and (functionally) equally distinct species” in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of the classic Jaccard, Sørensen, Horn and Morisita-Horn similarity indices. The proposed measures are applied to artificial and real data for illustration. PMID:25000299

  19. Distance-based functional diversity measures and their decomposition: a framework based on Hill numbers.

    PubMed

    Chiu, Chun-Huo; Chao, Anne

    2014-01-01

    Hill numbers (or the "effective number of species") are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify "the effective number of equally abundant and (functionally) equally distinct species" in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of the classic Jaccard, Sørensen, Horn and Morisita-Horn similarity indices. The proposed measures are applied to artificial and real data for illustration.

  20. Study of the Microbial Diversity of a Newly Discovered East Antarctic Freshwater Lake, L27C, and of a Perennially Ice-Covered Lake Untersee

    NASA Technical Reports Server (NTRS)

    Huang, Jonathan P.; Hoover, Richard B.; Andersen, Dale; Bej, Asim K.

    2010-01-01

    The microbial communities that reside within freshwater lakes of Schirmacher and Untersee Oases in East Antarctica must cope with extreme conditions that may include cold temperature, annual freeze-thaw cycles, exposure to UV radiation, especially during the austral summer months, low light beneath thick ice-cover, followed by seasonal darkness. The objective of this study was to assess the microbial biodiversity and distribution from samples taken from two freshwater lakes (L27C and Lake Untersee) that were collected during the Tawani 2008 International Antarctic Expedition that conducted research in this region of Antarctica. L27C is a small, previously unreported lake residing 2 km WNW of Maitri Station at Schirmacher Oasis. Biodiversity and distribution of microorganisms within the lake were studied using both culture-independent and culture-dependent methodologies based upon the analysis of eubacterial 16S rRNA gene sequences. Lake Untersee, a perennially ice-covered, ultra-oligotrophic, lake in the Otto-von-Gruber-Gebirge (Gruber Mountains) of central Dronning Maud Land was also sampled and the microbial diversity was analyzed by eubacterial 16S rRNA gene sequences derived from pure cultures. Direct culturing of water samples from each lake on separate R2A growth medium exhibited a variety of microorganisms including: Janthinobacterium, Hymenobacter, Sphingamonas, Subtercola, Deinococcus, Arthrobacter, Flavobacterium, Polaromonas, Rhodoferax and Duganella. The evaluation of samples from L27C through culture-independent methodology identified a rich microbial diversity consisting of six different phyla of bacteria. The culture-independent analysis also displayed the majority of bacteria (56%) belonged to the Class gamma-proteobacteria within the phylum Proteobacteria. Within the Class gamma-proteobacteria, Acinetobacter dominated (48%) the total microbial load. Overall, L27C exhibited 7 different phyla of bacteria and 20 different genera. Statistical analysis (Shannon-Weaver Diversity Index and Simpson Diversity Index) of the biodiversity of L27C displayed a moderately rich and diverse community. Investigations of the biodiversity and distribution of microorganisms in these lakes will help further our understanding of how the physical environment impact the structure and function within these microbially dominated ecosystems.

  1. Dihydroresveratrol Type Dihydrostilbenoids: Chemical Diversity, Chemosystematics, and Bioactivity.

    PubMed

    Vitalini, Sara; Cicek, Serhat S; Granica, Sebastian; Zidorn, Christian

    2018-01-01

    Dihydrostilbenoids, a diverse class of natural products differing from stilbenoids by the missing double bond in the ethylene chain linking the aromatic moieties, have been reported from fungi, mosses, ferns, and flowering plants. Occurrence, structure, and bioactivity of naturally occurring dihydroresveratrol type dihydrostilbenoids are discussed in this review. A Reaxys database search for dihydroresveratrol derivatives with possible substitutions on all atoms, but excluding non-natural products and compounds featuring additional rings involving the ethyl connecting chain, was performed. Structures include simple dihydroresveratrol derivatives, compounds substituted with complex side chains composed of acyl moieties and sugars, and compounds containing polycyclic cores attached to dihydrostilbenoid units. Dihydrostilbenoids have a wide spectrum of bioactivities ranging from expectable antioxidant and anti-inflammatory activities to interesting neuroprotective and anticancer activity. The anticancer activity in particular is very pronounced for some plant-derived dihydrostilbenoids and makes them interesting lead compounds for drug development. Apart from some reports on dihydroresveratrol derivatives as phytoalexins against plant-pathogenic fungi, only very limited information is available on the ecological role of these compounds for the organisms producing them. Dihydrostilbenoids are a class of natural products possessing significant biological activities; their scattered but not ubiquitous occurrence throughout the kingdoms of plants and fungi is not easily explained. We are convinced that future studies will identify new sources of dihydrostilbenoids, and we hope that the present review will inspire such studies and will help in directing such efforts to suitable source organisms and towards promising bioactivities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography.

    PubMed

    Xie, Sheng-Ming; Zhang, Mei; Fei, Zhi-Xin; Yuan, Li-Ming

    2014-10-10

    Chiral metal-organic frameworks (MOFs) are a new class of multifunctional material, which possess diverse structures and unusual properties such as high surface area, uniform and permanent cavities, as well as good chemical and thermal stability. Their chiral functionality makes them attractive as novel enantioselective adsorbents and stationary phases in separation science. In this paper, the experimental comparison of a chiral MOF [In₃O(obb)₃(HCO₂)(H₂O)] solvent used as a stationary phase was investigated in gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The potential relationship between the structure and components of chiral MOFs with their chiral recognition ability and selectivity are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Discovery of new antimalarial chemotypes through chemical methodology and library development.

    PubMed

    Brown, Lauren E; Chih-Chien Cheng, Ken; Wei, Wan-Guo; Yuan, Pingwei; Dai, Peng; Trilles, Richard; Ni, Feng; Yuan, Jing; MacArthur, Ryan; Guha, Rajarshi; Johnson, Ronald L; Su, Xin-zhuan; Dominguez, Melissa M; Snyder, John K; Beeler, Aaron B; Schaus, Scott E; Inglese, James; Porco, John A

    2011-04-26

    In an effort to expand the stereochemical and structural complexity of chemical libraries used in drug discovery, the Center for Chemical Methodology and Library Development at Boston University has established an infrastructure to translate methodologies accessing diverse chemotypes into arrayed libraries for biological evaluation. In a collaborative effort, the NIH Chemical Genomics Center determined IC(50)'s for Plasmodium falciparum viability for each of 2,070 members of the CMLD-BU compound collection using quantitative high-throughput screening across five parasite lines of distinct geographic origin. Three compound classes displaying either differential or comprehensive antimalarial activity across the lines were identified, and the nascent structure activity relationships (SAR) from this experiment used to initiate optimization of these chemotypes for further development.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendon, Christopher H.; Rieth, Adam J.; Korzyński, Maciej D.

    Metal–organic frameworks (MOFs) allow compositional and structural diversity beyond conventional solid-state materials. Continued interest in the field is justified by potential applications of exceptional breadth, ranging from gas storage and separation, which takes advantage of the inherent pores and their volume, to electronic applications, which requires precise control of electronic structure. In this Outlook we present some of the pertinent challenges that MOFs face in their conventional implementations, as well as opportunities in less traditional areas. Here the aim is to discuss select design concepts and future research goals that emphasize nuances relevant to this class of materials as amore » whole. Particular emphasis is placed on synthetic aspects, as they influence the potential for MOFs in gas separation, electrical conductivity, and catalytic applications.« less

  5. Associative memory through rigid origami

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Brenner, Michael

    2015-03-01

    Mechanisms such as Miura Ori have proven useful in diverse contexts since they have only one degree of freedom that is easily controlled. We combine the theory of rigid origami and associative memory in frustrated neural networks to create structures that can ``learn'' multiple generic folding mechanisms and yet can be robustly controlled. We show that such rigid origami structures can ``recall'' a specific learned mechanism when induced by a physical impulse that only need resemble the desired mechanism (i.e. robust recall through association). Such associative memory in matter, seen before in self-assembly, arises due to a balance between local promiscuity (i.e., many local degrees of freedom) and global frustration which minimizes interference between different learned behaviors. Origami with associative memory can lead to a new class of deployable structures and kinetic architectures with multiple context-dependent behaviors.

  6. The disruptive effect of lysozyme on the bacterial cell wall explored by an in-silico structural outlook.

    PubMed

    Primo, Emiliano D; Otero, Lisandro H; Ruiz, Francisco; Klinke, Sebastián; Giordano, Walter

    2018-01-01

    The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall and disrupt the bacterial life cycle by cleaving the linkage between the NAG and NAM carbohydrates. Lab exercises focused on the effects of lysozyme on the bacterial cell wall are frequently incorporated in biochemistry classes designed for undergraduate students in diverse fields as biology, microbiology, chemistry, agronomy, medicine, and veterinary medicine. Such exercises typically do not include structural data. We describe here a sequence of computer tasks designed to illustrate and reinforce both physiological and structural concepts involved in lysozyme effects on the bacterial cell-wall structure. This lab class usually lasts 3.5 hours. First, the instructor presents introductory concepts of the bacterial cell wall and the effect of lysozyme on its structure. Then, students are taught to use computer modeling to visualize the three-dimensional structure of a lysozyme in complex with bacterial cell-wall fragments. Finally, the lysozyme inhibitory effect on a bacterial culture is optionally proposed as a simple microbiological assay. The computer lab exercises described here give students a realistic understanding of the disruptive effect of lysozymes on the bacterial cell wall, a crucial component in bacterial survival. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):83-90, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  7. Class, Gender, (Hetero)Sexuality and Schooling: Paradoxes within Working-Class Girls' Engagement with Education and Post-16 Aspirations

    ERIC Educational Resources Information Center

    Archer, Louise; Halsall, Anna; Hollingworth, Sumi

    2007-01-01

    This paper discusses the ways in which inner-city, ethnically diverse, working-class girls' constructions of hetero-femininities mediate and shape their dis/engagement with education and schooling. Drawing on data from a study conducted with 89 urban, working-class young people in London, attention is drawn to three main ways through which young…

  8. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon.

    PubMed

    Memiaghe, Hervé R; Lutz, James A; Korte, Lisa; Alonso, Alfonso; Kenfack, David

    2016-01-01

    Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate.

  9. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon

    PubMed Central

    Memiaghe, Hervé R.; Lutz, James A.; Korte, Lisa; Alonso, Alfonso; Kenfack, David

    2016-01-01

    Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate. PMID:27186658

  10. [Genetic diversity and genetic structure of endangered wild Sinopodophyllum emodi by start codon targeted polymorphism].

    PubMed

    Chen, Da-Xia; Zhao, Ji-Feng; Liu, Xiang; Wang, Chang-Hua; Zhang, Zhi-Wei; Qin, Song-Yun; Zhong, Guo-Yue

    2013-01-01

    Revealed the genetic diversity level and genetic structure characteristics in Sinopodophyllum emodi, a rare and endangered species in China. We detected the genetic polymorphism within and among six wild populations (45 individuals) by the approach of Start Codon Targeted (SCoT) Polymorphism. The associated genetic parameters were calculated by POP-GENE1.31 and the relationship was constructed based on UPGMA method. A total of 350 bands were scored by 27 primers and 284 bands of them were polymorphic. The average polymorphic bands of each primer were 10.52. At species level, there was a high level of genetic diversity among six populations (PPB = 79.27%, N(e) = 1.332 7, H = 0.210 9 and H(sp) = 0.328 6). At population level, the genetic diversity level was low (PPB = 10.48% (4.00% -23.71%), N(e) = 1.048 7 (1.020 7-1.103 7), H = 0.029 7 (0.012 9-0.063 1), H(pop) = 0.046 2 (0.019 9-0.098 6). The Nei's coefficient of genetic differentiation was 0.841 1, which was consistent with the Shannon's coefficient of genetic differentiation (0.849 4). Two calculated methods all showed that most of the genetic variation existed among populations. The gene flow (N(m) = 0.094 4) was less among populations, indicating that the degree of genetic differentiation was higher. Genetic similarity coefficient were changed from 0.570 8 to 0.978 7. By clustering analysis, the tested populations were divided into two classes and had a tendency that the same geographical origin or material of similar habitats clustered into one group. The genetic diversity of samples of S. emodi is high,which laid a certain foundation for effective protection and improvement of germplasm resources.

  11. 33 CFR 67.25-1 - Class “B” structures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Class âBâ structures. 67.25-1... NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Class âBâ Requirements § 67.25-1 Class “B” structures. Class “B” structures shall be the structures erected in an area where Class “B...

  12. Subcellular Relocalization and Positive Selection Play Key Roles in the Retention of Duplicate Genes of Populus Class III Peroxidase Family[W][OPEN

    PubMed Central

    Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin

    2014-01-01

    Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172

  13. High Diversity of Antimicrobial Resistance Genes, Class 1 Integrons, and Genotypes of Multidrug-Resistant Escherichia coli in Beef Carcasses.

    PubMed

    Chen, Chih-Ming; Ke, Se-Chin; Li, Chia-Ru; Wu, Ying-Chen; Chen, Ter-Hsin; Lai, Chih-Ho; Wu, Xin-Xia; Wu, Lii-Tzu

    2017-10-01

    Multidrug-resistant Escherichia coli can contaminate food meat during processing and cause human infection. Phenotypic and genotypic characterization of the antimicrobial resistance were conducted for 45 multidrug-resistant E. coli isolates from 208 samples of beef carcasses. The mechanisms of resistance were evaluated using polymerase chain reaction and sequencing methods, and the clonal relationship among isolates was evaluated using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Different variants of bla, tet, flo, dfrA, and aadA genes were detected in most of the strains resistant to β-lactam, tetracycline, chloramphenicol, sulfonamides, and aminoglycosides, respectively. Extended-spectrum β-lactamase (ESBL)-producing E. coli was found in 42.2% of the 45 E. coli isolates and the most commonly detected ESBL genotypes were CTX-M group 1 and 9. Class 1 integrons with nine different arrangements of gene cassettes were present in 28 of 45 E. coli isolates. Twenty-nine PFGE groups and 24 MLST types were identified in their clonal structure. This study revealed that E. coli isolates from beef contained high diversity of antimicrobial resistance genes, integrons, and genotypes. These results highlighted the role of beef meat as a potential source for multidrug-resistant E. coli strains and the need for controlling beef safety.

  14. Elementary School Children's Reasoning about Social Class: A Mixed-Methods Study

    ERIC Educational Resources Information Center

    Mistry, Rashmita S.; Brown, Christia S.; White, Elizabeth S.; Chow, Kirby A.; Gillen-O'Neel, Cari

    2015-01-01

    The current study examined children's identification and reasoning about their subjective social status (SSS), their beliefs about social class groups (i.e., the poor, middle class, and rich), and the associations between the two. Study participants were 117 10- to 12-year-old children of diverse racial, ethnic, and socioeconomic backgrounds…

  15. Latent Class Analysis of Peer Conformity: Who Is Yielding to Pressure and Why?

    ERIC Educational Resources Information Center

    Kosten, Paul A.; Scheier, Lawrence M.; Grenard, Jerry L.

    2013-01-01

    This study used latent class analysis to examine typologies of peer conformity in a community sample of middle school students. Students responded to 31 items assessing diverse facets of conformity dispositions. The most parsimonious model produced three qualitatively distinct classes that differed on the basis of conformity to recreational…

  16. Taxonomic composition of phytoplankton in the Vakh River (Western Siberia)

    NASA Astrophysics Data System (ADS)

    Skorobogatova, O. N.

    2018-03-01

    This paper provides data on the hydrological and hydrochemical parameters of the Vakh River in the Middle Ob region. In 2005-2008 we have identified 404 taxonomic units represented by 463 species, types and forms of algae, belonging to 140 genera, 52 families, 13 classes and 7 divisions. 386 species were identified for the first time, 141 taxa were identified as rare and 22 taxa as new for Western Siberia. Leading divisions, Bacillariophyta and Chlorophyta, make up for 78.9% of total phytoplankton diversity. Cyanobacteria, Chrysophyta and Euglenophyta form a community of 88 taxonomic units having a rank lower than genus level, and represent 19.0% of the total number. The floral role of Xanthophyta and Dinophyta is insignificant (2.1%). The main structure-forming species are 14: vegetating throughout the year (Aulacoseira italica, Asterionella formosa), summer taxa (Microcystis aeruginosa, Melosira varians, Aulacoseira granulata, Pandorina morum, Pediastrum boryanum, P. duplex, Lacunastrum gracillimum, Scenedesmus quadricauda) and summer-autumn (Microcystis pulverea, Tabellaria fenestrata, T. flocculosa, Mucidosphaerium pulchellum). The Vakh River demonstrates specific characteristics of boreal flowing waterways. The northern composition is represented in a big rate of families (44.2%) and genera (109 77.9) with one to three species. The richest genera Closterium (31 taxa), Eunotia (27 taxa), Pinnularia (22 taxa), Desmidium (11 taxa) and the family Desmidiaceae (45 taxa) ensure diversity of phytoplankton. Ecological and geographical analysis demonstrates predominance of cosmopolitan algae (56.6%). Plankton represents 44.7% of all algae, oligogalobs - 78.8% and indifferent algae – 36.7%. Water meets the requirements for β-mezosaprobian pollution zone, class of satisfactory purity (III class).

  17. Rational Design of Novel Allosteric Dihydrofolate Reductase Inhibitors Showing Antibacterial Effects on Drug-Resistant Escherichia coli Escape Variants.

    PubMed

    Srinivasan, Bharath; Rodrigues, João V; Tonddast-Navaei, Sam; Shakhnovich, Eugene; Skolnick, Jeffrey

    2017-07-21

    In drug discovery, systematic variations of substituents on a common scaffold and bioisosteric replacements are often used to generate diversity and obtain molecules with better biological effects. However, this could saturate the small-molecule diversity pool resulting in drug resistance. On the other hand, conventional drug discovery relies on targeting known pockets on protein surfaces leading to drug resistance by mutations of critical pocket residues. Here, we present a two-pronged strategy of designing novel drugs that target unique pockets on a protein's surface to overcome the above problems. Dihydrofolate reductase, DHFR, is a critical enzyme involved in thymidine and purine nucleotide biosynthesis. Several classes of compounds that are structural analogues of the substrate dihydrofolate have been explored for their antifolate activity. Here, we describe 10 novel small-molecule inhibitors of Escherichia coli DHFR, EcDHFR, belonging to the stilbenoid, deoxybenzoin, and chalcone family of compounds discovered by a combination of pocket-based virtual ligand screening and systematic scaffold hopping. These inhibitors show a unique uncompetitive or noncompetitive inhibition mechanism, distinct from those reported for all known inhibitors of DHFR, indicative of binding to a unique pocket distinct from either substrate or cofactor-binding pockets. Furthermore, we demonstrate that rescue mutants of EcDHFR, with reduced affinity to all known classes of DHFR inhibitors, are inhibited at the same concentration as the wild-type. These compounds also exhibit antibacterial activity against E. coli harboring the drug-resistant variant of DHFR. This discovery is the first report on a novel class of inhibitors targeting a unique pocket on EcDHFR.

  18. Durango diversity panel: abiotic and biotic stress characterization and potential for introducing new germplasm into East Africa

    USDA-ARS?s Scientific Manuscript database

    The Durango Diversity Panel (DDP) consists of 192 old and newly released US and Canadian cultivars and germplasm lines in the pinto, great northern, red, and pink bean market classes. The Durango Race provides genetic diversity for drought stress tolerance, and biotic stress resistance. Much disea...

  19. Do Student Perceptions of Diversity Emphasis Relate to Perceived Learning of Psychology?

    ERIC Educational Resources Information Center

    Elicker, Joelle D.; Snell, Andrea F.; O'Malley, Alison L.

    2010-01-01

    We examined the extent to which students' perceived inclusion of diversity issues in the Introduction to Psychology course related to perceptions of learning. Based on the responses of 625 students, multilevel linear modeling analyses revealed that student perceptions of diversity emphasis in the class were positively related to how well students…

  20. Achieving Political Trans-Correctness: Integrating Sensitivity and Authenticity in Diversity Management Education

    ERIC Educational Resources Information Center

    Avery, Derek R.; Steingard, David S.

    2008-01-01

    Due to mounting pressures to avoid offending individuals on the basis of demographic group membership, political correctness has begun to restrict student participation in our diversity courses. This restriction diminishes what can be learned from class dialogue, an important component of diversity instruction. This article offers a model of…

  1. Silos of Academe Thwart Diversity on Campuses

    ERIC Educational Resources Information Center

    Gilbert, Juan E.

    2008-01-01

    Although the author is a computer scientist, he has been involved with issues of diversity for many years. He developed an online gamelike environment to teach inner-city kids algebra, using culturally relevant learning technologies, and he has applied data-mining techniques to help universities admit diverse classes without relying on just one…

  2. Preservice Teachers and Teacher Educators: Are They Sensitive about Cultural Diversity Issues.

    ERIC Educational Resources Information Center

    Taylor, Pamela A.

    This study assessed the beliefs about and sensitivity toward cultural diversity issues of teacher educators and preservice teachers. A group of 78 predominantly white preservice teachers and 45 predominantly white teacher educators completed the Beliefs About Diversity Scale, which assessed beliefs about race, gender, social class, ability,…

  3. Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread

    USGS Publications Warehouse

    Ramey, Andy M.; Reeves, Andrew B.; Ogawa, Haruko; Ip, Hon S.; Imai, Kunitoshi; Bui, V. N.; Yamaguchi, Emi; Silko, N. Y.; Afonso, C.L.

    2013-01-01

    Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease, one of the most economically important diseases for poultry production worldwide and a cause of periodic epizootics in wild birds in North America. In this study, we examined the genetic diversity of APMV-1 isolated from migratory birds sampled in Alaska, Japan, and Russia and assessed the evidence for intercontinental virus spread using phylogenetic methods. Additionally, we predicted viral virulence using deduced amino acid residues for the fusion protein cleavage site and estimated mutation rates for the fusion gene of class I and class II migratory bird isolates. All 73 isolates sequenced as part of this study were most closely related to virus genotypes previously reported for wild birds; however, five class II genotype I isolates formed a monophyletic clade exhibiting previously unreported genetic diversity, which met criteria for the designation of a new sub-genotype. Phylogenetic analysis of wild-bird isolates provided evidence for intercontinental virus spread, specifically viral lineages of APMV-1 class II genotype I sub-genotypes Ib and Ic. This result supports migratory bird movement as a possible mechanism for the redistribution of APMV-1. None of the predicted deduced amino acid motifs for the fusion protein cleavage site of APMV-1 strains isolated from migratory birds in Alaska, Japan, and Russia were consistent with those of previously identified virulent viruses. These data therefore provide no support for these strains contributing to the emergence of avian pathogens. The estimated mutation rates for fusion genes of class I and class II wild-bird isolates were faster than those reported previously for non-virulent APMV-1 strains. Collectively, these findings provide new insight into the diversity, spread, and evolution of APMV-1 in wild birds.

  4. Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread.

    PubMed

    Ramey, Andrew M; Reeves, Andrew B; Ogawa, Haruko; Ip, Hon S; Imai, Kunitoshi; Bui, Vuong Nghia; Yamaguchi, Emi; Silko, Nikita Y; Afonso, Claudio L

    2013-12-01

    Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease, one of the most economically important diseases for poultry production worldwide and a cause of periodic epizootics in wild birds in North America. In this study, we examined the genetic diversity of APMV-1 isolated from migratory birds sampled in Alaska, Japan, and Russia and assessed the evidence for intercontinental virus spread using phylogenetic methods. Additionally, we predicted viral virulence using deduced amino acid residues for the fusion protein cleavage site and estimated mutation rates for the fusion gene of class I and class II migratory bird isolates. All 73 isolates sequenced as part of this study were most closely related to virus genotypes previously reported for wild birds; however, five class II genotype I isolates formed a monophyletic clade exhibiting previously unreported genetic diversity, which met criteria for the designation of a new sub-genotype. Phylogenetic analysis of wild-bird isolates provided evidence for intercontinental virus spread, specifically viral lineages of APMV-1 class II genotype I sub-genotypes Ib and Ic. This result supports migratory bird movement as a possible mechanism for the redistribution of APMV-1. None of the predicted deduced amino acid motifs for the fusion protein cleavage site of APMV-1 strains isolated from migratory birds in Alaska, Japan, and Russia were consistent with those of previously identified virulent viruses. These data therefore provide no support for these strains contributing to the emergence of avian pathogens. The estimated mutation rates for fusion genes of class I and class II wild-bird isolates were faster than those reported previously for non-virulent APMV-1 strains. Collectively, these findings provide new insight into the diversity, spread, and evolution of APMV-1 in wild birds.

  5. Estuarine Habitat Assessment for Construction of a Submarine Transmission Line

    NASA Astrophysics Data System (ADS)

    Hamouda, Amr Z.; Abdel-Salam, Khaled M.

    2010-07-01

    The present paper describes a submarine survey using the acoustic discrimination system QTC VIEW (Series V) as an exploratory tool to adjust final route alignment of a new pipeline. By using acoustic sound survey as an exploratory tool described in this paper to adjust final route alignment of a new pipeline to minimize the environmental impact caused and ultimately to avoid any mitigation measures. The transmission pipeline extended from the shore line of Abu-Qir Bay, on the Mediterranean Sea in Egypt, out to 70 nautical miles at sea (60 m water depth). Four main surface sediment types were defined in the study area, namely fine sand, silty sand, silt and clay. Results of the acoustic classification revealed four acoustic classes. The first acoustic class corresponded to fine sand, absence of shell debris and very poor habitats characteristics. The second acoustic class is predominant in the study area and corresponds to the region occupied by silt. It is also characterized by intermediate diversity of macrobenthic invertebrate community which is mainly characterized by polychaeta. The third acoustic class is characterized by silt to silty clay. It is characterized by a high diversity of macrobenthic invertebrate community which is mainly polychaeta with an intermediate diversity of gastropoda and bivalvia. The final acoustic class is characterized by clay and high occurrence of shell debris of gastropoda, bivalvia and polychaeta.

  6. Co-evolution of MHC class I and variable NK cell receptors in placental mammals.

    PubMed

    Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo G; Parham, Peter

    2015-09-01

    Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Microbial diversity in Paris polyphylla var. yunnanensis rhizomes of varying ages.

    PubMed

    Yang, Y; Yang, S C; Zhao, J; Udikeri, S; Liu, T

    2015-12-21

    Endophyte microorganisms live inside plants without causing them any apparent damage. Recently, endophytic microorganisms have attracted attention because they can produce bioactive compounds of biotechnological interest. The endophytic microorganisms in Paris polyphylla var. yunnanensis (Liliaceae) - a species used since antiquity in traditional Chinese medicine - are under scrutiny because they may be responsible for producing the bioactive metabolites associated with the plant. The levels of bioactive metabolites in the rhizomes of P. polyphylla increase with rhizome age. To elucidate the roles played by endophytes in the accumulation of bioactive metabolites, we investigated the community structure and diversity of the endophytic microorganisms in P. polyphylla rhizomes of different ages (4, 6, and 8 years) using 16S rRNA and internal transcribed spacer (ITS) sequence analysis. 16S rDNA amplicon pyrosequencing revealed that the number of operational taxonomic units was lower in the 8-year-old samples than in the other samples. A total of 28 phyla were observed in the P. polyphylla samples and the predominant bacteria were of the Cyanobacteria and Proteobacteria phyla. Moreover, the percentage of Cyanobacteria increased with rhizome age. Similarly, ITS1 amplicon pyrosequencing identified developmental changes in the most abundant fungal classes; some classes were more prevalent in the 8-year-old rhizomes than in younger rhizomes, indicating the importance in secondary metabolism in older rhizomes. Our study showed that endophyte microorganism diversity and prevalence depend on P. polyphylla rhizome age. There was also an indication that some endophyte microorganisms contribute to the higher saponin content in older P. polyphylla specimens.

  8. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi

    PubMed Central

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabian; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2012-01-01

    The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress. PMID:23236275

  9. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard

    The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appearsmore » to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.« less

  10. Transposable elements in Drosophila.

    PubMed

    McCullers, Tabitha J; Steiniger, Mindy

    2017-01-01

    Transposable elements (TEs) are mobile genetic elements that can mobilize within host genomes. As TEs comprise more than 40% of the human genome and are linked to numerous diseases, understanding their mechanisms of mobilization and regulation is important. Drosophila melanogaster is an ideal model organism for the study of eukaryotic TEs as its genome contains a diverse array of active TEs. TEs universally impact host genome size via transposition and deletion events, but may also adopt unique functional roles in host organisms. There are 2 main classes of TEs: DNA transposons and retrotransposons. These classes are further divided into subgroups of TEs with unique structural and functional characteristics, demonstrating the significant variability among these elements. Despite this variability, D. melanogaster and other eukaryotic organisms utilize conserved mechanisms to regulate TEs. This review focuses on the transposition mechanisms and regulatory pathways of TEs, and their functional roles in D. melanogaster .

  11. Fluorescent nucleobases as tools for studying DNA and RNA

    NASA Astrophysics Data System (ADS)

    Xu, Wang; Chan, Ke Min; Kool, Eric T.

    2017-11-01

    Understanding the diversity of dynamic structures and functions of DNA and RNA in biology requires tools that can selectively and intimately probe these biomolecules. Synthetic fluorescent nucleobases that can be incorporated into nucleic acids alongside their natural counterparts have emerged as a powerful class of molecular reporters of location and environment. They are enabling new basic insights into DNA and RNA, and are facilitating a broad range of new technologies with chemical, biological and biomedical applications. In this Review, we will present a brief history of the development of fluorescent nucleobases and explore their utility as tools for addressing questions in biophysics, biochemistry and biology of nucleic acids. We provide chemical insights into the two main classes of these compounds: canonical and non-canonical nucleobases. A point-by-point discussion of the advantages and disadvantages of both types of fluorescent nucleobases is made, along with a perspective into the future challenges and outlook for this burgeoning field.

  12. Firmicutes dominate the bacterial taxa within sugar-cane processing plants

    PubMed Central

    Sharmin, Farhana; Wakelin, Steve; Huygens, Flavia; Hargreaves, Megan

    2013-01-01

    Sugar cane processing sites are characterised by high sugar/hemicellulose levels, available moisture and warm conditions, and are relatively unexplored unique microbial environments. The PhyloChip microarray was used to investigate bacterial diversity and community composition in three Australian sugar cane processing plants. These ecosystems were highly complex and dominated by four main Phyla, Firmicutes (the most dominant), followed by Proteobacteria, Bacteroidetes, and Chloroflexi. Significant variation (p < 0.05) in community structure occurred between samples collected from ‘floor dump sediment’, ‘cooling tower water’, and ‘bagasse leachate’. Many bacterial Classes contributed to these differences, however most were of low numerical abundance. Separation in community composition was also linked to Classes of Firmicutes, particularly Bacillales, Lactobacillales and Clostridiales, whose dominance is likely to be linked to their physiology as ‘lactic acid bacteria’, capable of fermenting the sugars present. This process may help displace other bacterial taxa, providing a competitive advantage for Firmicutes bacteria. PMID:24177592

  13. Transposable elements in Drosophila

    PubMed Central

    McCullers, Tabitha J.; Steiniger, Mindy

    2017-01-01

    ABSTRACT Transposable elements (TEs) are mobile genetic elements that can mobilize within host genomes. As TEs comprise more than 40% of the human genome and are linked to numerous diseases, understanding their mechanisms of mobilization and regulation is important. Drosophila melanogaster is an ideal model organism for the study of eukaryotic TEs as its genome contains a diverse array of active TEs. TEs universally impact host genome size via transposition and deletion events, but may also adopt unique functional roles in host organisms. There are 2 main classes of TEs: DNA transposons and retrotransposons. These classes are further divided into subgroups of TEs with unique structural and functional characteristics, demonstrating the significant variability among these elements. Despite this variability, D. melanogaster and other eukaryotic organisms utilize conserved mechanisms to regulate TEs. This review focuses on the transposition mechanisms and regulatory pathways of TEs, and their functional roles in D. melanogaster. PMID:28580197

  14. Synthesis of Mikto-Arm Star Peptide Conjugates.

    PubMed

    Koo, Jin Mo; Su, Hao; Lin, Yi-An; Cui, Honggang

    2018-01-01

    Mikto-arm star peptide conjugates are an emerging class of self-assembling peptide-based structural units that contain three or more auxiliary segments of different chemical compositions and/or functionalities. This group of molecules exhibit interesting self-assembly behavior in solution due to their chemically asymmetric topology. Here we describe the detailed procedure for synthesis of an ABC Mikto-arm star peptide conjugate in which two immiscible entities (a saturated hydrocarbon and a hydrophobic and lipophobic fluorocarbon) are conjugated onto a short β-sheet forming peptide sequence, GNNQQNY, derived from the Sup35 prion, through a lysine junction. Automated and manual Fmoc-solid phase synthesis techniques are used to synthesize the Mikto-arm star peptide conjugates, followed by HPLC purification. We envision that this set of protocols can afford a versatile platform to synthesize a new class of peptidic building units for diverse applications.

  15. Classification and Characterization of Therapeutic Antibody Aggregates

    PubMed Central

    Joubert, Marisa K.; Luo, Quanzhou; Nashed-Samuel, Yasser; Wypych, Jette; Narhi, Linda O.

    2011-01-01

    A host of diverse stress techniques was applied to a monoclonal antibody (IgG2) to yield protein particles with varying attributes and morphologies. Aggregated solutions were evaluated for percent aggregation, particle counts, size distribution, morphology, changes in secondary and tertiary structure, surface hydrophobicity, metal content, and reversibility. Chemical modifications were also identified in a separate report (Luo, Q., Joubert, M. K., Stevenson, R., Narhi, L. O., and Wypych, J. (2011) J. Biol. Chem. 286, 25134–25144). Aggregates were categorized into seven discrete classes, based on the traits described. Several additional molecules (from the IgG1 and IgG2 subtypes as well as intravenous IgG) were stressed and found to be defined with the same classification system. The mechanism of protein aggregation and the type of aggregate formed depends on the nature of the stress applied. Different IgG molecules appear to aggregate by a similar mechanism under the same applied stress. Aggregates created by harsh mechanical stress showed the largest number of subvisible particles, and the class generated by thermal stress displayed the largest number of visible particles. Most classes showed a disruption of the higher order structure, with the degree of disorder depending on the stress process. Particles in all classes (except thermal stress) were at least partially reversible upon dilution in pH 5 buffer. High copper content was detected in isolated metal-catalyzed aggregates, a stress previously shown to produce immunogenic aggregates. In conclusion, protein aggregates can be a very heterogeneous population, whose qualities are the result of the type of stress that was experienced. PMID:21454532

  16. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany.

    PubMed

    Dănescu, Adrian; Albrecht, Axel T; Bauhus, Jürgen

    2016-10-01

    Forest diversity-productivity relationships have been intensively investigated in recent decades. However, few studies have considered the interplay between species and structural diversity in driving productivity. We analyzed these factors using data from 52 permanent plots in southwestern Germany with more than 53,000 repeated tree measurements. We used basal area increment as a proxy for productivity and hypothesized that: (1) structural diversity would increase tree and stand productivity, (2) diversity-productivity relationships would be weaker for species diversity than for structural diversity, and (3) species diversity would also indirectly impact stand productivity via changes in size structure. We measured diversity using distance-independent indices. We fitted separate linear mixed-effects models for fir, spruce and beech at the tree level, whereas at the stand level we pooled all available data. We tested our third hypothesis using structural equation modeling. Structural and species diversity acted as direct and independent drivers of stand productivity, with structural diversity being a slightly better predictor. Structural diversity, but not species diversity, had a significant, albeit asymmetric, effect on tree productivity. The functioning of structurally diverse, mixed forests is influenced by both structural and species diversity. These sources of trait diversity contribute to increased vertical stratification and crown plasticity, which in turn diminish competitive interferences and lead to more densely packed canopies per unit area. Our research highlights the positive effects of species diversity and structural diversity on forest productivity and ecosystem dynamics.

  17. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments.

    PubMed

    Rocha, Lidianne L; Colares, Geórgia B; Nogueira, Vanessa L R; Paes, Fernanda A; Melo, Vânia M M

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  18. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    PubMed Central

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  19. Synthesis, characterization, and evaluation of ionizable lysine-based lipids for siRNA delivery.

    PubMed

    Walsh, Colin L; Nguyen, Juliane; Tiffany, Matthew R; Szoka, Francis C

    2013-01-16

    We report the synthesis and characterization of a series of ionizable lysine-based lipids (ILL), novel lipids containing a lysine headgroup linked to a long-chain dialkylamine through an amide linkage at the lysine α-amine. These ILLs contain two ionizable amines and a carboxylate, and exhibit pH-dependent lipid ionization that varies with lipid structure. The synthetic scheme employed allows for the simple, orthogonal manipulation of lipids. This provides a method for the development of a compositionally diverse library with varying ionizable headgroups, tail structures, and linker regions. A focused library of four ILLs was synthesized to determine the impact of hydrophobic fluidity, lipid net charge, and lipid pK(a) on the biophysical and siRNA transfection characteristics of this new class of lipids. We found that manipulation of lipid structure impacts the protonation behavior, electrostatically driven membrane disruption, and ability to promote siRNA mediated knockdown in vitro. ILL-siRNA liposomal formulations were tested in a murine Factor VII model; however, no significant siRNA-mediated knockdown was observed. These results indicate that ILL may be useful in vitro transfection reagents, but further optimization of this new class of lipids is required to develop an effective in vivo siRNA delivery system.

  20. Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics.

    PubMed

    Root, Samuel E; Savagatrup, Suchol; Printz, Adam D; Rodriquez, Daniel; Lipomi, Darren J

    2017-05-10

    Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical "imperceptibility" if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.

  1. Structural and Functional Diversity of Plant Virus 3'-Cap-Independent Translation Enhancers (3'-CITEs).

    PubMed

    Truniger, Verónica; Miras, Manuel; Aranda, Miguel A

    2017-01-01

    Most of the positive-strand RNA plant viruses lack the 5'-cap and/or the poly(A)-tail that act synergistically to stimulate canonical translation of cellular mRNAs. However, they have RNA elements in the 5'- or 3'-untranslated regions of their RNAs that are required for their cap-independent translation. Cap-independent translation enhancers (CITEs) have been identified in the genomic 3'-end of viruses belonging to the family Tombusviridae and the genus Luteovirus . Seven classes of 3'-CITEs have been described to date based on their different RNA structures. They generally control the efficient formation of the translation initiation complex by varying mechanisms. Some 3'-CITEs bind eukaryotic translation initiation factors, others ribosomal subunits, bridging these to the 5'-end by different mechanisms, often long-distance RNA-RNA interactions. As previously proposed and recently found in one case in nature, 3'-CITEs are functionally independent elements that are transferable through recombination between viral genomes, leading to potential advantages for virus multiplication. In this review, the knowledge on 3'-CITEs and their functioning is updated. We also suggest that there is local structural conservation in the regions interacting with eIF4E of 3'-CITEs belonging to different classes.

  2. Structural and Functional Diversity of Plant Virus 3′-Cap-Independent Translation Enhancers (3′-CITEs)

    PubMed Central

    Truniger, Verónica; Miras, Manuel; Aranda, Miguel A.

    2017-01-01

    Most of the positive-strand RNA plant viruses lack the 5′-cap and/or the poly(A)-tail that act synergistically to stimulate canonical translation of cellular mRNAs. However, they have RNA elements in the 5′- or 3′-untranslated regions of their RNAs that are required for their cap-independent translation. Cap-independent translation enhancers (CITEs) have been identified in the genomic 3′-end of viruses belonging to the family Tombusviridae and the genus Luteovirus. Seven classes of 3′-CITEs have been described to date based on their different RNA structures. They generally control the efficient formation of the translation initiation complex by varying mechanisms. Some 3′-CITEs bind eukaryotic translation initiation factors, others ribosomal subunits, bridging these to the 5′-end by different mechanisms, often long-distance RNA–RNA interactions. As previously proposed and recently found in one case in nature, 3′-CITEs are functionally independent elements that are transferable through recombination between viral genomes, leading to potential advantages for virus multiplication. In this review, the knowledge on 3′-CITEs and their functioning is updated. We also suggest that there is local structural conservation in the regions interacting with eIF4E of 3′-CITEs belonging to different classes. PMID:29238357

  3. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naify, Christina J., E-mail: christina.naify@nrl.navy.mil; Rohde, Charles A.; Martin, Theodore P.

    2016-05-30

    Here, we present a class of metamaterial-based acoustic vortex generators which are both geometrically simple and broadly tunable. The aperture overcomes the significant limitations of both active phasing systems and existing passive coded apertures. The metamaterial approach generates topologically diverse acoustic vortex waves motivated by recent advances in leaky wave antennas by wrapping the antenna back upon itself to produce an acoustic vortex wave antenna. We demonstrate both experimentally and analytically that this single analog structure is capable of creating multiple orthogonal orbital angular momentum modes using only a single transducer. The metamaterial design makes the aperture compact, with amore » diameter nearly equal to the excitation wavelength and can thus be easily integrated into high-density systems. Applications range from acoustic communications for high bit-rate multiplexing to biomedical devices such as microfluidic mixers.« less

  4. From disorganized capitalism to transnational fine tuning? Recent trends in wage development, industrial relations, and 'work' as a sociological category.

    PubMed

    Hasse, Raimund; Leiulfsrud, Håkon

    2002-03-01

    The disorganization thesis concentrates upon globalization and market dynamics, which are believed to trigger the breakdown of any kind of institutional structures. The diversity of capitalism approach, by contrast, places much emphasis on the persistence of distinct paths of national economies. Referring to comparative data from the OECD and other sources it is shown that some variables indicate a robustness of national styles of capitalism. Others hint at resemblance: e.g. there is a striking synchronization of the overall and sectoral wage development, there is a significant decrease in industrial disputes, and the class composition tends to become more similar. A move beyond the disorganization thesis and diversity of capitalism approach is suggested. Special attention should be paid to the profound impacts of transnational institutions and knowledge carriers in the form of experts and guidelines.

  5. Premature terminator analysis sheds light on a hidden world of bacterial transcriptional attenuation.

    PubMed

    Naville, Magali; Gautheret, Daniel

    2010-01-01

    Bacterial transcription attenuation occurs through a variety of cis-regulatory elements that control gene expression in response to a wide range of signals. The signal-sensing structures in attenuators are so diverse and rapidly evolving that only a small fraction have been properly annotated and characterized to date. Here we apply a broad-spectrum detection tool in order to achieve a more complete view of the transcriptional attenuation complement of key bacterial species. Our protocol seeks gene families with an unusual frequency of 5' terminators found across multiple species. Many of the detected attenuators are part of annotated elements, such as riboswitches or T-boxes, which often operate through transcriptional attenuation. However, a significant fraction of candidates were not previously characterized in spite of their unmistakable footprint. We further characterized some of these new elements using sequence and secondary structure analysis. We also present elements that may control the expression of several non-homologous genes, suggesting co-transcription and response to common signals. An important class of such elements, which we called mobile attenuators, is provided by 3' terminators of insertion sequences or prophages that may be exapted as 5' regulators when inserted directly upstream of a cellular gene. We show here that attenuators involve a complex landscape of signal-detection structures spanning the entire bacterial domain. We discuss possible scenarios through which these diverse 5' regulatory structures may arise or evolve.

  6. Diversity and functions of protein glycosylation in insects.

    PubMed

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. BRFS: TOXICOLOGY AND RISK

    EPA Science Inventory

    Brominated flame retardants are a large class of diverse chemicals which are being used in increasing amounts world wide to protect against fires. The major classes include the polybrominated diphenyl ethers (PBDEs), the brominated bisphenols (e.g., tetrabromobisphenol A, TBBPA)...

  8. Phylogeny, phylogeography, phylobetadiversity and the molecular analysis of biological communities

    PubMed Central

    Emerson, Brent C.; Cicconardi, Francesco; Fanciulli, Pietro P.; Shaw, Peter J. A.

    2011-01-01

    There has been much recent interest and progress in the characterization of community structure and community assembly processes through the application of phylogenetic methods. To date most focus has been on groups of taxa for which some relevant detail of their ecology is known, for which community composition is reasonably easily quantified and where the temporal scale is such that speciation is not likely to feature. Here, we explore how we might apply a molecular genetic approach to investigate community structure and assembly at broad taxonomic and geographical scales, where we have little knowledge of species ecology, where community composition is not easily quantified, and where speciation is likely to be of some importance. We explore these ideas using the class Collembola as a focal group. Gathering molecular evidence for cryptic diversity suggests that the ubiquity of many species of Collembola across the landscape may belie greater community complexity than would otherwise be assumed. However, this morphologically cryptic species-level diversity poses a challenge for attempts to characterize diversity both within and among local species assemblages. Recent developments in high throughput parallel sequencing technology, combined with mtDNA barcoding, provide an advance that can bring together the fields of phylogenetic and phylogeographic analysis to bear on this problem. Such an approach could be standardized for analyses at any geographical scale for a range of taxonomic groups to quantify the formation and composition of species assemblages. PMID:21768154

  9. Phenolics and Terpenoids; the Promising New Search for Anthelmintics: A Critical Review.

    PubMed

    Mukherjee, Niladri; Mukherjee, Suprabhat; Saini, Prasanta; Roy, Priya; Sinha Babu, Santi P

    2015-02-26

    Ailments caused by helminth parasites are global causing different types of clinical complications with permanent and long term morbidity in humans. Although huge advances have been made in medical sciences the effectiveness of available anthelmintics are still quite limited. Starting from the 50's, most importance was given to synthetic compounds for developing remedies from them, however, the traditional knowledge of medicine of different countries continued to provide us clues against this widespread health problem. Natural products or structural analogs with diverse structures are always been the major sources for discovering new therapeutics and in recent past different active compounds have also been identified form these plant sources having anthelmintic properties. Although compounds of diverse chemical nature and classes were identified most active ones belong to either phenol or terpene in broad chemical nature. The mechanism of action of these phytotherapeutics is usually multi-targeted and can act against the helminth parasites through diverse spectrum of activities. In this reviewwe summarized the effective anthelmintics belong to either phenolics or terpenoids and highlighted the major way of their effectiveness. This also highlights the recent development of new therapeutic strategies against helminth parasites in the light of recent advances of knowledge. In addition, developing efficient strategies to promote apoptosis and disturbing redox status in them by natural products can provide us a clue in antifilarial drug developmental research and crucial unmet medical need.

  10. Phenolics and Terpenoids; the Promising New Search for Anthelmintics: A Critical Review.

    PubMed

    Mukherjee, Niladri; Mukherjee, Suprabhat; Saini, Prasanta; Roy, Priya; Babu, Santi P Sinha

    2016-01-01

    Ailments caused by helminth parasites are global causing different types of clinical complications with permanent and long term morbidity in humans. Although huge advances have been made in medical sciences the effectiveness of available anthelmintics are still quite limited. Starting from the 50's, most importance was given to synthetic compounds for developing remedies from them, however, the traditional knowledge of medicine of different countries continued to provide us clues against this widespread health problem. Natural products or structural analogs with diverse structures are always been the major sources for discovering new therapeutics and in recent past different active compounds have also been identified form these plant sources having anthelmintic properties. Although compounds of diverse chemical nature and classes were identified, most active ones belong to either phenol or terpene in broad chemical nature. The mechanism of action of these phytotherapeutics is usually multi-targeted and can act against the helminth parasites through diverse spectrum of activities. In this review we summarized the effective anthelmintics belong to either phenolics or terpenoids and highlighted the major way of their effectiveness. This also highlights the recent development of new therapeutic strategies against helminth parasites in the light of recent advances of knowledge. In addition, developing efficient strategies to promote apoptosis and disturbing redox status in them by natural products can provide us a clue in antifilarial drug developmental research and crucial unmet medical need.

  11. Bacterial diversity across a highly stratified ecosystem: A salt-wedge Mediterranean estuary.

    PubMed

    Korlević, M; Šupraha, L; Ljubešić, Z; Henderiks, J; Ciglenečki, I; Dautović, J; Orlić, S

    2016-09-01

    Highly stratified Mediterranean estuaries are unique environments where the tidal range is low and the tidal currents are almost negligible. The main characteristics of these environments are strong salinity gradients and other environmental parameters. In this study, 454 pyrosequencing of the 16S rRNA gene in combination with catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) was used to estimate the bacterial diversity across the Krka estuary in February and July 2013. The comparison of the data derived from these two techniques resulted in a significant but weak positive correlation (R=0.28) indicating a substantial difference in the bacterial community structure, depending on the applied method. The phytoplankton bloom observed in February was identified as one of the main factors shaping the bacterial community structure between the two environmentally contrasting sampling months. Roseobacter, Bacteroidetes and Gammaproteobacteria differed substantially between February and July. Typical freshwater bacterial classes (Actinobacteria and Betaproteobacteria) showed strong vertical distribution patterns depending on the salinity gradient. Cyanobacteria decreased in abundance in February due to competition with phytoplankton, while the SAR11 clade increased its abundance in July as a result of a better adaptation toward more oligotrophic conditions. The results provided the first detailed insight into the bacterial diversity in a highly stratified Mediterranean karstic estuary. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Vertical zonation of soil fungal community structure in a Korean pine forest on Changbai Mountain, China.

    PubMed

    Ping, Yuan; Han, Dongxue; Wang, Ning; Hu, Yanbo; Mu, Liqiang; Feng, Fujuan

    2017-01-01

    Changbai Mountain, with intact montane vertical vegetation belts, is located at a sensitive area of global climate change and a central distribution area of Korean pine forest. Broad-leaved Korean pine mixed forest (Pinus koraiensis as an edificator) is the most representative zonal climax vegetation in the humid region of northeastern China; their vertical zonation is the most intact and representative on Changbai Mountain. In this study, we analyzed the composition and diversity of soil fungal communities in the Korean pine forest on Changbai Mountain at elevations ranging from 699 to 1177 m using Illumina High-throughput sequencing. We obtained a total 186,663 optimized sequences, with an average length of 268.81 bp. We found soil fungal diversity index was decreased with increasing elevation from 699 to 937 m and began to rise after reaching 1044 m; the richness and evenness indices were decreased with an increase in elevation. Soil fungal compositions at the phylum, class and genus levels varied significantly at different elevations, but with the same dominant fungi. Beta-diversity analysis indicated that the similarity of fungal communities decreased with an increased vertical distance between the sample plots, showing a distance-decay relationship. Variation partition analysis showed that geographic distance (mainly elevation gradient) only explained 20.53 % of the total variation of fungal community structure, while soil physicochemical factors explained 69.78 %.

  13. Glycan Engineering for Cell and Developmental Biology.

    PubMed

    Griffin, Matthew E; Hsieh-Wilson, Linda C

    2016-01-21

    Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    PubMed

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. © 2016 Elsevier Inc. All rights reserved.

  15. A case study of middle school food policy and persisting barriers to healthful eating.

    PubMed

    Jara, Eddy; Ozer, Emily J; Seyer-Ochi, Ingrid

    2014-01-01

    Decreasing access to competitive foods in schools has produced only modest effects on adolescents' eating patterns. This qualitative case study investigated persistent barriers to healthful eating among students attending an ethnically diverse middle school in a working-class urban neighborhood that had banned on campus competitive food sales. Participant observations, semi-structured interviews and document reviews were conducted. Unappealing school lunches and easily accessible unhealthful foods, combined with peer and family influences, increased the appeal of unhealthy foods. Areas for further inquiry into strategies to improve urban middle school students' school and neighborhood food environments are discussed.

  16. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    PubMed Central

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306

  17. Fore! Forward on the Course of Diversity (Focus on Teaching).

    ERIC Educational Resources Information Center

    Pomerenke, Paula J.

    1994-01-01

    Presents a case study and writing assignment used in a business communication class that help students uncover assumptions that may disadvantage both females and males when diversity within and between gender groups is ignored. (SR)

  18. Effect of selective logging on genetic diversity and gene flow in Cariniana legalis sampled from a cacao agroforestry system.

    PubMed

    Leal, J B; Santos, R P; Gaiotto, F A

    2014-01-28

    The fragments of the Atlantic Forest of southern Bahia have a long history of intense logging and selective cutting. Some tree species, such as jequitibá rosa (Cariniana legalis), have experienced a reduction in their populations with respect to both area and density. To evaluate the possible effects of selective logging on genetic diversity, gene flow, and spatial genetic structure, 51 C. legalis individuals were sampled, representing the total remaining population from the cacao agroforestry system. A total of 120 alleles were observed from the 11 microsatellite loci analyzed. The average observed heterozygosity (0.486) was less than the expected heterozygosity (0.721), indicating a loss of genetic diversity in this population. A high fixation index (FIS = 0.325) was found, which is possibly due to a reduction in population size, resulting in increased mating among relatives. The maximum (1055 m) and minimum (0.095 m) distances traveled by pollen or seeds were inferred based on paternity tests. We found 36.84% of unique parents among all sampled seedlings. The progenitors of the remaining seedlings (63.16%) were most likely out of the sampled area. Positive and significant spatial genetic structure was identified in this population among classes 10 to 30 m away with an average coancestry coefficient between pairs of individuals of 0.12. These results suggest that the agroforestry system of cacao cultivation is contributing to maintaining levels of diversity and gene flow in the studied population, thus minimizing the effects of selective logging.

  19. Unveiling a phytoplankton hotspot at a narrow boundary between coastal and offshore waters

    PubMed Central

    Ribalet, Francois; Marchetti, Adrian; Hubbard, Katherine A.; Brown, Kristina; Durkin, Colleen A.; Morales, Rhonda; Robert, Marie; Swalwell, Jarred E.; Tortell, Philippe D.; Armbrust, E. Virginia

    2010-01-01

    In terrestrial ecosystems, transitional areas between different plant communities (ecotones) are formed by steep environmental gradients and are commonly characterized by high species diversity and primary productivity, which in turn influences the foodweb structure of these regions. Whether comparable zones of elevated diversity and productivity characterize ecotones in the oceans remains poorly understood. Here we describe a previously hidden hotspot of phytoplankton diversity and productivity in a narrow but seasonally persistent transition zone at the intersection of iron-poor, nitrate-rich offshore waters and iron-rich, nitrate-poor coastal waters of the Northeast Pacific Ocean. Novel continuous measurements of phytoplankton cell abundance and composition identified a complex succession of blooms of five distinct size classes of phytoplankton populations within a 100-km–wide transition zone. The blooms appear to be fueled by natural iron enrichment of offshore communities as they are transported toward the coast. The observed succession of phytoplankton populations is likely driven by spatial gradients in iron availability or time since iron enrichment. Regardless of the underlying mechanism, the resulting communities have a strong impact on the regional biogeochemistry as evidenced by the low partial pressure of CO2 and the nearly complete depletion of nutrients. Enhanced phytoplankton productivity and diversity associated with steep environmental gradients are expected wherever water masses with complementary nutrient compositions mix to create a region more favorable for phytoplankton growth. The ability to detect and track these important but poorly characterized marine ecotones is critical for understanding their impact on productivity and ecosystem structure in the oceans. PMID:20823224

  20. Unveiling a phytoplankton hotspot at a narrow boundary between coastal and offshore waters.

    PubMed

    Ribalet, Francois; Marchetti, Adrian; Hubbard, Katherine A; Brown, Kristina; Durkin, Colleen A; Morales, Rhonda; Robert, Marie; Swalwell, Jarred E; Tortell, Philippe D; Armbrust, E Virginia

    2010-09-21

    In terrestrial ecosystems, transitional areas between different plant communities (ecotones) are formed by steep environmental gradients and are commonly characterized by high species diversity and primary productivity, which in turn influences the foodweb structure of these regions. Whether comparable zones of elevated diversity and productivity characterize ecotones in the oceans remains poorly understood. Here we describe a previously hidden hotspot of phytoplankton diversity and productivity in a narrow but seasonally persistent transition zone at the intersection of iron-poor, nitrate-rich offshore waters and iron-rich, nitrate-poor coastal waters of the Northeast Pacific Ocean. Novel continuous measurements of phytoplankton cell abundance and composition identified a complex succession of blooms of five distinct size classes of phytoplankton populations within a 100-km-wide transition zone. The blooms appear to be fueled by natural iron enrichment of offshore communities as they are transported toward the coast. The observed succession of phytoplankton populations is likely driven by spatial gradients in iron availability or time since iron enrichment. Regardless of the underlying mechanism, the resulting communities have a strong impact on the regional biogeochemistry as evidenced by the low partial pressure of CO(2) and the nearly complete depletion of nutrients. Enhanced phytoplankton productivity and diversity associated with steep environmental gradients are expected wherever water masses with complementary nutrient compositions mix to create a region more favorable for phytoplankton growth. The ability to detect and track these important but poorly characterized marine ecotones is critical for understanding their impact on productivity and ecosystem structure in the oceans.

  1. Working-Class Students: Lost in a College's Middle-Class Culture

    ERIC Educational Resources Information Center

    DiMaria, Frank

    2006-01-01

    Diversity in higher education, most everyone would agree, is a positive. Janet Galligani Casey, who serves in the capacity of visiting associate professor at Skidmore College in New York, agrees with it, but she thinks that sometimes all the talk about it hides complicated realities, especially for the working-class student. This article describes…

  2. Local Integration Ontological Model of Creative Class Migrants for Creative Cities

    ERIC Educational Resources Information Center

    Sangkakorn, Korawan; Chakpitak, Nopasit; Yodmongkol, Pitipong

    2015-01-01

    An innovative creative class drives creative cities, urban areas in which diverse cultures are integrated into social and economic functions. The creative city of Chiang Mai, Thailand is renowned for its vibrant Lan Na culture and traditions, and draws new migrants from other areas in Thailand seeking to become part of the creative class. This…

  3. Comparison of Cramer classification between Toxtree, the OECD QSAR Toolbox and expert judgment.

    PubMed

    Bhatia, Sneha; Schultz, Terry; Roberts, David; Shen, Jie; Kromidas, Lambros; Marie Api, Anne

    2015-02-01

    The Threshold of Toxicological Concern (TTC) is a pragmatic approach in risk assessment. In the absence of data, it sets up levels of human exposure that are considered to have no appreciable risk to human health. The Cramer decision tree is used extensively to determine these exposure thresholds by categorizing non-carcinogenic chemicals into three different structural classes. Therefore, assigning an accurate Cramer class to a material is a crucial step to preserve the integrity of the risk assessment. In this study the Cramer class of over 1000 fragrance materials across diverse chemical classes were determined by using Toxtree (TT), the OECD QSAR Toolbox (TB), and expert judgment. Disconcordance was observed between TT and the TB. A total of 165 materials (16%) showed different results from the two programs. The overall concordance for Cramer classification between TT and expert judgment is 83%, while the concordance between the TB and expert judgment is 77%. Amines, lactones and heterocycles have the lowest percent agreement with expert judgment for TT and the TB. For amines, the expert judgment agreement is 45% for TT and 55% for the TB. For heterocycles, the expert judgment agreement is 55% for TT and the TB. For lactones, the expert judgment agreement is 56% for TT and 50% for the TB. Additional analyses were conducted to determine the concordance within various chemical classes. Critical checkpoints in the decision tree are identified. Strategies and guidance on determining the Cramer class for various chemical classes are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The year-class phenomenon and the storage effect in marine fishes

    NASA Astrophysics Data System (ADS)

    Secor, David H.

    2007-02-01

    Factors contributing to population growth through strong year-class formation have driven a century of directed research in fisheries science. A central discovery of Hjort's paradigm was that multiple generations overlap and longevity is matched with frequency of strong recruitments. Here, I elaborate on this tenet by examining how intra-population modalities in spawning and early habitat use favour population resiliency. A modern theory that has application is the storage effect [Warner, R.R., Chesson, P.L., 1985. Coexistence mediated by recruitment fluctuations - a field guide to the storage effect. Am. Nat. 125, 769-787], whereby spawning stock biomass accumulates each year so that when early survival conditions are favourable, stored egg production can result in explosive population growth. I review two early life history behaviours that contribute to the storage effect: split cohorts (i.e., seasonal pulses of eggs and larvae) and contingent behaviour (i.e., dispersive and retentive patterns in early dispersal). Episodic and pulsed production of larvae is a common feature for marine fishes, well documented through otolith microstructure and hatch-date analyses. In temperate and boreal fishes, early and late spawned cohorts of larvae and juveniles may have differing fates dependent upon seasonal and inter-annual fluctuations in weather and climate. Often, a coastal fish may spawn for a protracted period, yet only a few days' egg production will result in successful recruitment. In these and other instances, it is clear that diversity in spawning behaviour can confer resilience against temporal variations in early survival conditions. Although many factors contribute to intra-population spawning modalities, size and age structure of adults play an important role. Contingent structure, an idea dating to Hjort (herring contingents) and Gilbert (salmon contingents), has been resurrected to describe the diversity of intra-population modalities observed through otolith microchemical and electronic tagging approaches. Retentive and dispersive behaviours confer resiliency against early survival conditions that vary spatially. Examples of contingent structure are increasingly numerous for diadromous fishes. Here, a nursery habitat associated with a contingent behaviour may make a small contribution in a given year, but over a decade contribute significantly to spawning stock biomass. For flatfish and other marine fishes, contingent structure is probable but not well documented. Proximate factors leading to contingent structure are poorly known, but for diadromous fishes, time of spawning and early life history energetic thresholds is hypothesized to lead to alternative life cycles. Here again time of spawning may lead to the storage effect by hedging against spatial variance in early vital rates. Managing for the storage effect will be promoted by conservation of adult age structure and early habitats upon which both strong and weak year-classes rely.

  5. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages

    PubMed Central

    2017-01-01

    Bark beetles play an important role as agents of natural renovation and regeneration in coniferous forests. Several studies have documented the metabolic capacity of bacteria associated with the gut, body surface, and oral secretions of these insects; however, little is known about how the bacterial community structure changes during the life cycle of the beetles. This study represents the first comprehensive analysis of the bacterial community of the gut of the bark beetle D. rhizophagus during the insect’s life cycle using 454 pyrosequencing. A total of 4 bacterial phyla, 7 classes, 15 families and 23 genera were identified. The α-diversity was low, as demonstrated in previous studies. The dominant bacterial taxa belonged to the Enterobacteriaceae and Pseudomonadaceae families. This low α-diversity can be attributed to the presence of defensive chemical compounds in conifers or due to different morpho-physiological factors in the gut of these insects acting as strong selective factors. Members of the genera Rahnella, Serratia, Pseudomonas and Propionibacterium were found at all life stages, and the first three genera, particularly Rahnella, were predominant suggesting the presence of a core microbiome in the gut. Significant differences in β-diversity were observed, mainly due to bacterial taxa present at low frequencies and only in certain life stages. The predictive functional profiling indicated metabolic pathways related to metabolism of amino acids and carbohydrates, and membrane transport as the most significant in the community. These differences in the community structure might be due to several selective factors, such as gut compartmentalization, physicochemical conditions, and microbial interactions. PMID:28406998

  6. Is Meeting the Diverse Needs of All Students Possible?

    ERIC Educational Resources Information Center

    Ladson-Billings, Gloria

    2011-01-01

    For many years, the notion of "diversity" was a code word for talking simply about race and ethnicity. To say one had a diverse class was to say one was not teaching European-American students. Much of the literature, curriculum materials, and instructional practices was geared toward teaching particular groups of students--African Americans,…

  7. Exploring an In-Service Staff Development System for Classroom Teachers in Culturally and Linguistically Diverse Classrooms

    ERIC Educational Resources Information Center

    Heiligenstein, Janna X.

    2010-01-01

    Population data across the nation demonstrates the growing number of students in public schools who are from culturally and linguistically diverse backgrounds, while public school data reflects a teacher population that is mainly white, middle class and female. While new teacher programs are beginning to respond to this diversity, in-service…

  8. The Limits on Trypanosomatid Morphological Diversity

    PubMed Central

    Wheeler, Richard John; Gluenz, Eva; Gull, Keith

    2013-01-01

    Cell shape is one, often overlooked, way in which protozoan parasites have adapted to a variety of host and vector environments and directional transmissions between these environments. Consequently, different parasite life cycle stages have characteristic morphologies. Trypanosomatid parasites are an excellent example of this in which large morphological variations between species and life cycle stage occur, despite sharing well-conserved cytoskeletal and membranous structures. Here, using previously published reports in the literature of the morphology of 248 isolates of trypanosomatid species from different hosts, we perform a meta-analysis of the occurrence and limits on morphological diversity of different classes of trypanosomatid morphology (trypomastigote, promastigote, etc.) in the vertebrate bloodstream and invertebrate gut environments. We identified several limits on cell body length, cell body width and flagellum length diversity which can be interpreted as biomechanical limits on the capacity of the cell to attain particular dimensions. These limits differed for morphologies with and without a laterally attached flagellum which we suggest represent two morphological superclasses, the ‘juxtaform’ and ‘liberform’ superclasses. Further limits were identified consistent with a selective pressure from the mechanical properties of the vertebrate bloodstream environment; trypanosomatid size showed limits relative to host erythrocyte dimensions. This is the first comprehensive analysis of the limits of morphological diversity in any protozoan parasite, revealing the morphogenetic constraints and extrinsic selection pressures associated with the full diversity of trypanosomatid morphology. PMID:24260255

  9. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes.

    PubMed

    Xu, Lin; Jiang, Zhe; Qing, Quan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M

    2013-02-13

    Functional kinked nanowires (KNWs) represent a new class of nanowire building blocks, in which functional devices, for example, nanoscale field-effect transistors (nanoFETs), are encoded in geometrically controlled nanowire superstructures during synthesis. The bottom-up control of both structure and function of KNWs enables construction of spatially isolated point-like nanoelectronic probes that are especially useful for monitoring biological systems where finely tuned feature size and structure are highly desired. Here we present three new types of functional KNWs including (1) the zero-degree KNW structures with two parallel heavily doped arms of U-shaped structures with a nanoFET at the tip of the "U", (2) series multiplexed functional KNW integrating multi-nanoFETs along the arm and at the tips of V-shaped structures, and (3) parallel multiplexed KNWs integrating nanoFETs at the two tips of W-shaped structures. First, U-shaped KNWs were synthesized with separations as small as 650 nm between the parallel arms and used to fabricate three-dimensional nanoFET probes at least 3 times smaller than previous V-shaped designs. In addition, multiple nanoFETs were encoded during synthesis in one of the arms/tip of V-shaped and distinct arms/tips of W-shaped KNWs. These new multiplexed KNW structures were structurally verified by optical and electron microscopy of dopant-selective etched samples and electrically characterized using scanning gate microscopy and transport measurements. The facile design and bottom-up synthesis of these diverse functional KNWs provides a growing toolbox of building blocks for fabricating highly compact and multiplexed three-dimensional nanoprobes for applications in life sciences, including intracellular and deep tissue/cell recordings.

  10. Two diverse models of embedding class one

    NASA Astrophysics Data System (ADS)

    Kuhfittig, Peter K. F.

    2018-05-01

    Embedding theorems have continued to be a topic of interest in the general theory of relativity since these help connect the classical theory to higher-dimensional manifolds. This paper deals with spacetimes of embedding class one, i.e., spacetimes that can be embedded in a five-dimensional flat spacetime. These ideas are applied to two diverse models, a complete solution for a charged wormhole admitting a one-parameter group of conformal motions and a new model to explain the flat rotation curves in spiral galaxies without the need for dark matter.

  11. Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases

    PubMed Central

    Das, Sayoni; Dawson, Natalie L.; Dobrijevic, Dragana; Orengo, Christine

    2016-01-01

    Beta-lactamases represent the main bacterial mechanism of resistance to beta-lactam antibiotics and are a significant challenge to modern medicine. We have developed an automated classification and analysis protocol that exploits structure- and sequence-based approaches and which allows us to propose a grouping of serine beta-lactamases that more consistently captures and rationalizes the existing three classification schemes: Classes, (A, C and D, which vary in their implementation of the mechanism of action); Types (that largely reflect evolutionary distance measured by sequence similarity); and Variant groups (which largely correspond with the Bush-Jacoby clinical groups). Our analysis platform exploits a suite of in-house and public tools to identify Functional Determinants (FDs), i.e. residue sites, responsible for conferring different phenotypes between different classes, different types and different variants. We focused on Class A beta-lactamases, the most highly populated and clinically relevant class, to identify FDs implicated in the distinct phenotypes associated with different Class A Types and Variants. We show that our FunFHMMer method can separate the known beta-lactamase classes and identify those positions likely to be responsible for the different implementations of the mechanism of action in these enzymes. Two novel algorithms, ASSP and SSPA, allow detection of FD sites likely to contribute to the broadening of the substrate profiles. Using our approaches, we recognise 151 Class A types in UniProt. Finally, we used our beta-lactamase FunFams and ASSP profiles to detect 4 novel Class A types in microbiome samples. Our platforms have been validated by literature studies, in silico analysis and some targeted experimental verification. Although developed for the serine beta-lactamases they could be used to classify and analyse any diverse protein superfamily where sub-families have diverged over both long and short evolutionary timescales. PMID:27332861

  12. Rigor and academic achievement: Career academies versus traditional class structure

    NASA Astrophysics Data System (ADS)

    Kyees, Linda L.

    The purpose of this study was to determine if students who attended high school Career Academy classes, as part of Career and Technical Education, showed greater academic achievement than students who attended traditional high school classes. While all participants attended schools in the same school district, and were seeking the same goal of graduation with a standard diploma, the Career Academy students had the benefit of all classes being directed by a team of teachers who helped them connect their learning to their desired career through collaborative learning projects and assignments. The traditional high school classes taught each subject independent of other subjects and did not have specific connections to desired career goals of the students. The study used a causal-comparative research design and the participants included 1,142 students from 11th and 12th grades who attended 9 high schools in a diversely populated area of central Florida with 571 enrolled in the Career Academies and 571 enrolled in traditional classes. The 10th-grade FCAT scores served as the dependent variable. All students attended similar classes with similar content, making the primary variable the difference in academic gains between students participating in the Career Academy design and the traditional design classes. Using the Man-Whitney U Test resulted in the Career Academy group achieving the higher scores overall. This resulted in rejection of the first null-hypothesis. Further examination determined that the 10th-grade FCAT scores were greater for the average students group, which comprised the largest portion of the participant group, also resulted in rejection of the second null-hypothesis. The gifted and at-risk student group scores resulted in failure to reject the third and fourth null-hypotheses.

  13. Histopathological Image Classification using Discriminative Feature-oriented Dictionary Learning

    PubMed Central

    Vu, Tiep Huu; Mousavi, Hojjat Seyed; Monga, Vishal; Rao, Ganesh; Rao, UK Arvind

    2016-01-01

    In histopathological image analysis, feature extraction for classification is a challenging task due to the diversity of histology features suitable for each problem as well as presence of rich geometrical structures. In this paper, we propose an automatic feature discovery framework via learning class-specific dictionaries and present a low-complexity method for classification and disease grading in histopathology. Essentially, our Discriminative Feature-oriented Dictionary Learning (DFDL) method learns class-specific dictionaries such that under a sparsity constraint, the learned dictionaries allow representing a new image sample parsimoniously via the dictionary corresponding to the class identity of the sample. At the same time, the dictionary is designed to be poorly capable of representing samples from other classes. Experiments on three challenging real-world image databases: 1) histopathological images of intraductal breast lesions, 2) mammalian kidney, lung and spleen images provided by the Animal Diagnostics Lab (ADL) at Pennsylvania State University, and 3) brain tumor images from The Cancer Genome Atlas (TCGA) database, reveal the merits of our proposal over state-of-the-art alternatives. Moreover, we demonstrate that DFDL exhibits a more graceful decay in classification accuracy against the number of training images which is highly desirable in practice where generous training is often not available. PMID:26513781

  14. Multiple-component covalent organic frameworks

    PubMed Central

    Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin

    2016-01-01

    Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor–acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts. PMID:27460607

  15. Multiple-component covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin

    2016-07-01

    Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor-acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts.

  16. Classification of climate-change-induced stresses on biological diversity.

    PubMed

    Geyer, Juliane; Kiefer, Iris; Kreft, Stefan; Chavez, Veronica; Salafsky, Nick; Jeltsch, Florian; Ibisch, Pierre L

    2011-08-01

    Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. © 2011 Society for Conservation Biology.

  17. Leveraging Diversity Of Thought Through Inclusion: Advantages, Disadvantages, And Taking Advantage

    DTIC Science & Technology

    2017-03-17

    groups are cross- fertilizing one another within the organization .”30 Specifically, diversity and inclusion stimulate creativity by providing a...Squadron Officer College instructor once informed her class, “My squadron commander wanted me in his organization purely for diversity reasons.” The...better way for an Alabama Crimson Tide fan to get diversity of thought in his organization than to include an Auburn Tigers fan?” This example

  18. Structural and Functional Studies of a Pyran Synthase Domain from a trans-Acyltransferase Assembly Line.

    PubMed

    Wagner, Drew T; Zhang, Zhicheng; Meoded, Roy A; Cepeda, Alexis J; Piel, Jörn; Keatinge-Clay, Adrian T

    2018-04-20

    trans-Acyltransferase assembly lines possess enzymatic domains often not observed in their better characterized cis-acyltransferase counterparts. Within this repertoire of largely unexplored biosynthetic machinery is a class of enzymes called the pyran synthases that catalyze the formation of five- and six-membered cyclic ethers from diverse polyketide chains. The 1.55 Å resolution crystal structure of a pyran synthase domain excised from the ninth module of the sorangicin assembly line highlights the similarity of this enzyme to the ubiquitous dehydratase domain and provides insight into the mechanism of ring formation. Functional assays of point mutants reveal the central importance of the active site histidine that is shared with the dehydratases as well as the supporting role of a neighboring semiconserved asparagine.

  19. Grand Challenges and Future Opportunities for Metal–Organic Frameworks

    PubMed Central

    2017-01-01

    Metal–organic frameworks (MOFs) allow compositional and structural diversity beyond conventional solid-state materials. Continued interest in the field is justified by potential applications of exceptional breadth, ranging from gas storage and separation, which takes advantage of the inherent pores and their volume, to electronic applications, which requires precise control of electronic structure. In this Outlook we present some of the pertinent challenges that MOFs face in their conventional implementations, as well as opportunities in less traditional areas. Here the aim is to discuss select design concepts and future research goals that emphasize nuances relevant to this class of materials as a whole. Particular emphasis is placed on synthetic aspects, as they influence the potential for MOFs in gas separation, electrical conductivity, and catalytic applications. PMID:28691066

  20. Tryptophan-Containing Non-Cationizable Opioid Peptides - a new chemotype with unusual structure and in vivo activity.

    PubMed

    Marco, Rossella De; Gentilucci, Luca

    2017-11-01

    Recently, a new family of opioid peptides containing tryptophan came to the spotlight for the absence of the fundamental protonable tyramine 'message' pharmacophore. Structure-activity relationship investigations led to diverse compounds, characterized by different selectivity profiles and agonist or antagonist effects. Substitution at the indole of Trp clearly impacted peripheral/central antinociceptivity. These peculiarities prompted to gather all the compounds in a new class, and to coin the definition 'Tryptophan-Containing Non-Cationizable Opioid Peptides', in short 'TryCoNCOPs'. Molecular docking analysis suggested that the TryCoNCOPs can still interact with the receptors in an agonist-like fashion. However, most TryCoNCOPs showed significant differences between the in vitro and in vivo activities, suggesting that opioid activity may be elicited also via alternative mechanisms.

Top