Science.gov

Sample records for diverse yeast genes

  1. RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes

    SciTech Connect

    Vidal, M.; Gaber, R.F. ); Strich, R.; Esposito, R.E. )

    1991-12-01

    The authors show that the extent of transcriptional regulation of many, apparently unrelated, genes in Saccharomyces cerevisiae is dependent on RPD1 (and RPD3). Genes regulated by stimuli as diverse as external signals (PH05), cell differentiation processes (SPO11 and SPO13), cell type (RME1, FUS1, H0, TY2, STE6, STE3, and BAR1), and genes whose regulatory signals remain unknown (TRK2) depend on RPD1 to achieve maximal states of transcriptional regulation. RPD1 enhances both positive and negative regulation of these genes: in rpdl{Delta} mutants, higher levels of expression are observed under repression conditions and lower levels are observed under activation conditions. They show that several independent genetic screens, designed to identify yeast transcriptional regulator, have detected the RPD1 locus (also known as SIN3, SD11, and UME4). The inferred RPD1 protein contains four regions predicted to take on helix-loop-helix-like secondary structures and three regions (acidic, glutamine rich, and proline rich) reminiscent of the activating domains of transcriptional activators.

  2. Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy).

    PubMed

    Branda, Eva; Turchetti, Benedetta; Diolaiuti, Guglielmina; Pecci, Massimo; Smiraglia, Claudio; Buzzini, Pietro

    2010-06-01

    The present study reports the characterization of psychrophilic yeast and yeast-like diversity in cold habitats (superficial and deep sediments, ice cores and meltwaters) of the Calderone Glacier (Italy), which is the southernmost glacier in Europe. After incubation at 4 and 20 degrees C, sediments contained about 10(2)-10(3) CFU of yeasts g(-1). The number of viable yeast cells in ice and meltwaters was several orders of magnitude lower. The concomitant presence of viable bacteria and filamentous fungi has also been observed. In all, 257 yeast strains were isolated and identified by 26S rRNA gene D1/D2 and internal transcribed spacers (1 and 2) sequencing as belonging to 28 ascomycetous and basidiomycetous species of 11 genera (Candida, Cystofilobasidium, Cryptococcus, Dioszegia, Erythrobasidium, Guehomyces, Mastigobasidium, Mrakia, Mrakiella, Rhodotorula and Sporobolomyces). Among them, the species Cryptococcus gastricus accounted for almost 40% of the total isolates. In addition, 12 strains were identified as belonging to the yeast-like species Aureobasidium pullulans and Exophiala dermatitidis, whereas 15 strains, presumably belonging to new species, yet to be described, were also isolated. Results herein reported indicate that the Calderone Glacier, although currently considered a vanishing ice body due to the ongoing global-warming phenomenon, still harbors viable psychrophilic yeast populations. Differences of yeast and yeast-like diversity between the glacier under study and other worldwide cold habitats are also discussed.

  3. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    PubMed Central

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  4. Functional Diversity of Silencers in Budding Yeasts

    PubMed Central

    Sjöstrand, Jimmy O. O.; Kegel, Andreas; Åström, Stefan U.

    2002-01-01

    We studied the silencing of the cryptic mating-type loci HMLα and HMRa in the budding yeast Kluyveromyces lactis. A 102-bp minimal silencer fragment was defined that was both necessary and sufficient for silencing of HMLα. Mutagenesis of the silencer revealed three distinct regions (A, B, and C) that were important for silencing. Recombinant K. lactis ribosomal DNA enhancer binding protein 1 (Reb1p) could bind the silencer in vitro, and point mutations in the B box abolished both Reb1p binding and silencer function. Furthermore, strains carrying temperature-sensitive alleles of the REB1 gene derepressed the transcription of the HMLα1 gene at the nonpermissive temperature. A functional silencer element from the K. lactis cryptic HMRa locus was also identified, which contained both Reb1p binding sites and A boxes, strongly suggesting a general role for these sequences in K. lactis silencing. Our data indicate that different proteins bind to Kluyveromyces silencers than to Saccharomyces silencers. We suggest that the evolution of silencers is rapid in budding yeasts and discuss the similarities and differences between silencers in Saccharomyces and Kluyveromyces. PMID:12456003

  5. Yeasts Diversity in Fermented Foods and Beverages

    NASA Astrophysics Data System (ADS)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  6. Improving industrial yeast strains: exploiting natural and artificial diversity

    PubMed Central

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  7. Yeast diversity and native vigor for flavor phenotypes.

    PubMed

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation.

  8. Genetic diversity of the yeast Candida utilis.

    PubMed

    Stoltenburg, R; Klinner, U; Ritzerfeld, P; Zimmermann, M; Emeis, C C

    1992-12-01

    The electrophoretic karyotypes and some mtDNA restriction fragment patterns of 13 strains of Candida utilis and one strain of Hansenula jadinii were compared. PFGE separations revealed remarkable chromosome length polymorphisms between two groups of strains suggesting that perhaps they do not belong to the same species. However, all strains had the same or similar EcoRI, HindIII and BamHI mtDNA restriction patterns. The mtDNA genomes had an average size range of 55 kb. These results support the supposition that C. utilis is a yeast with a highly variable electrophoretic karyotype as already known for another imperfect yeast species, Candida albicans.

  9. Yeast diversity of sourdoughs and associated metabolic properties and functionalities.

    PubMed

    De Vuyst, Luc; Harth, Henning; Van Kerrebroeck, Simon; Leroy, Frédéric

    2016-12-19

    Together with acidifying lactic acid bacteria, yeasts play a key role in the production process of sourdough, where they are either naturally present or added as a starter culture. Worldwide, a diversity of yeast species is encountered, with Saccharomyces cerevisiae, Candida humilis, Kazachstania exigua, Pichia kudriavzevii, Wickerhamomyces anomalus, and Torulaspora delbrueckii among the most common ones. Sourdough-adapted yeasts are able to withstand the stress conditions encountered during their growth, including nutrient starvation as well as the effects of acidic, oxidative, thermal, and osmotic stresses. From a technological point of view, their metabolism primarily contributes to the leavening and flavour of sourdough products. Besides ethanol and carbon dioxide, yeasts can produce metabolites that specifically affect flavour, such as organic acids, diacetyl, higher alcohols from branched-chain amino acids, and esters derived thereof. Additionally, several yeast strains possess functional properties that can potentially lead to nutritional and safety advantages. These properties encompass the production of vitamins, an improvement of the bioavailability of phenolic compounds, the dephosphorylation of phytic acid, the presence of probiotic potential, and the inhibition of fungi and their mycotoxin production. Strains of diverse species are new candidate functional starter cultures, offering opportunities beyond the conventional use of baker's yeast.

  10. Yeast diversity on grapes in two German wine growing regions.

    PubMed

    Brysch-Herzberg, Michael; Seidel, Martin

    2015-12-02

    The yeast diversity on wine grapes in Germany, one of the most northern wine growing regions of the world, was investigated by means of a culture dependent approach. All yeast isolates were identified by sequence analysis of the D1/D2 domain of the 26S rDNA and the ITS region. Besides Hanseniaspora uvarum and Metschnikowia pulcherrima, which are well known to be abundant on grapes, Metschnikowia viticola, Rhodosporidium babjevae, and Curvibasidium pallidicorallinum, as well as two potentially new species related to Sporidiobolus pararoseus and Filobasidium floriforme, turned out to be typical members of the grape yeast community. We found M. viticola in about half of the grape samples in high abundance. Our data strongly suggest that M. viticola is one of the most important fermenting yeast species on grapes in the temperate climate of Germany. The frequent occurrence of Cu. pallidicorallinum and strains related to F. floriforme is a new finding. The current investigation provides information on the distribution of recently described yeast species, some of which are known from a very few strains up to now. Interestingly yeasts known for their role in the wine making process, such as Saccharomyces cerevisiae, Saccharomyces bayanus ssp. uvarum, Torulaspora delbrueckii, and Zygosaccharomyces bailii, were not found in the grape samples.

  11. Studying Functions of All Yeast Genes Simultaneously

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Eason, Robert G.; Poumand, Nader; Herman, Zelek S.; Davis, Ronald W.; Anthony Kevin; Jejelowo, Olufisayo

    2006-01-01

    A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain.

  12. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome

  13. Diversity of soil yeasts isolated from South Victoria Land, Antarctica

    USGS Publications Warehouse

    Connell, L.; Redman, R.; Craig, S.; Scorzetti, G.; Iszard, M.; Rodriguez, R.

    2008-01-01

    Unicellular fungi, commonly referred to as yeasts, were found to be components of the culturable soil fungal population in Taylor Valley, Mt. Discovery, Wright Valley, and two mountain peaks of South Victoria Land, Antarctica. Samples were taken from sites spanning a diversity of soil habitats that were not directly associated with vertebrate activity. A large proportion of yeasts isolated in this study were basidiomycetous species (89%), of which 43% may represent undescribed species, demonstrating that culturable yeasts remain incompletely described in these polar desert soils. Cryptococcus species represented the most often isolated genus (33%) followed by Leucosporidium (22%). Principle component analysis and multiple linear regression using stepwise selection was used to model the relation between abiotic variables (principle component 1 and principle component 2 scores) and yeast biodiversity (the number of species present at a given site). These analyses identified soil pH and electrical conductivity as significant predictors of yeast biodiversity. Species-specific PCR primers were designed to rapidly discriminate among the Dioszegia and Leucosporidium species collected in this study. ?? 2008 Springer Science+Business Media, LLC.

  14. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts.

    PubMed

    Morel, Guillaume; Sterck, Lieven; Swennen, Dominique; Marcet-Houben, Marina; Onesime, Djamila; Levasseur, Anthony; Jacques, Noémie; Mallet, Sandrine; Couloux, Arnaux; Labadie, Karine; Amselem, Joëlle; Beckerich, Jean-Marie; Henrissat, Bernard; Van de Peer, Yves; Wincker, Patrick; Souciet, Jean-Luc; Gabaldón, Toni; Tinsley, Colin R; Casaregola, Serge

    2015-06-25

    The evolutionary history of the characters underlying the adaptation of microorganisms to food and biotechnological uses is poorly understood. We undertook comparative genomics to investigate evolutionary relationships of the dairy yeast Geotrichum candidum within Saccharomycotina. Surprisingly, a remarkable proportion of genes showed discordant phylogenies, clustering with the filamentous fungus subphylum (Pezizomycotina), rather than the yeast subphylum (Saccharomycotina), of the Ascomycota. These genes appear not to be the result of Horizontal Gene Transfer (HGT), but to have been specifically retained by G. candidum after the filamentous fungi-yeasts split concomitant with the yeasts' genome contraction. We refer to these genes as SRAGs (Specifically Retained Ancestral Genes), having been lost by all or nearly all other yeasts, and thus contributing to the phenotypic specificity of lineages. SRAG functions include lipases consistent with a role in cheese making and novel endoglucanases associated with degradation of plant material. Similar gene retention was observed in three other distantly related yeasts representative of this ecologically diverse subphylum. The phenomenon thus appears to be widespread in the Saccharomycotina and argues that, alongside neo-functionalization following gene duplication and HGT, specific gene retention must be recognized as an important mechanism for generation of biodiversity and adaptation in yeasts.

  15. Optogenetic switches for light-controlled gene expression in yeast.

    PubMed

    Salinas, Francisco; Rojas, Vicente; Delgado, Verónica; Agosin, Eduardo; Larrondo, Luis F

    2017-04-01

    Light is increasingly recognized as an efficient means of controlling diverse biological processes with high spatiotemporal resolution. Optogenetic switches are molecular devices for regulating light-controlled gene expression, protein localization, signal transduction and protein-protein interactions. Such molecular components have been mainly developed through the use of photoreceptors, which upon light stimulation undergo conformational changes passing to an active state. The current repertoires of optogenetic switches include red, blue and UV-B light photoreceptors and have been implemented in a broad spectrum of biological platforms. In this review, we revisit different optogenetic switches that have been used in diverse biological platforms, with emphasis on those used for light-controlled gene expression in the budding yeast Saccharomyces cerevisiae. The implementation of these switches overcomes the use of traditional chemical inducers, allowing precise control of gene expression at lower costs, without leaving chemical traces, and positively impacting the production of high-value metabolites and heterologous proteins. Additionally, we highlight the potential of utilizing this technology beyond laboratory strains, by optimizing it for use in yeasts tamed for industrial processes. Finally, we discuss how fungal photoreceptors could serve as a source of biological parts for the development of novel optogenetic switches with improved characteristics. Although optogenetic tools have had a strong impact on basic research, their use in applied sciences is still undervalued. Therefore, the invitation for the future is to utilize this technology in biotechnological and industrial settings.

  16. Yeast Diversity and Persistence in Botrytis-Affected Wine Fermentations

    PubMed Central

    Mills, David A.; Johannsen, Eric A.; Cocolin, Luca

    2002-01-01

    Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected (“botrytized”) wine fermentations carried out at high (∼30°C) and ambient (∼20°C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by Saccharomyces. In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>106 cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of Candida. Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations. PMID:12324335

  17. The sensitive [SWI (+)] prion: new perspectives on yeast prion diversity.

    PubMed

    Hines, Justin K; Craig, Elizabeth A

    2011-01-01

    Yeast prions are heritable protein-based genetic elements which rely on molecular chaperone proteins for stable transmission to cell progeny. Within the past few years, five new prions have been validated and 18 additional putative prions identified in Saccharomyces cerevisiae. The exploration of the physical and biological properties of these "nouveau prions" has begun to reveal the extent of prion diversity in yeast. We recently reported that one such prion, [SWI(+)], differs from the best studied, archetypal prion [PSI(+)] in several significant ways. ( 1) Notably, [SWI(+)] is highly sensitive to alterations in Hsp70 system chaperone activity and is lost upon growth at elevated temperatures. In that report we briefly noted a correlation amongst prions regarding amino acid composition, seed number and sensitivity to the activity of the Hsp70 chaperone system. Here we extend that analysis and put forth the idea that [SWI(+)] may be representative of a class of asparagine-rich yeast prions which also includes [URE3], [MOT3(+)] and [ISP(+)], distinct from the glutamine-rich prions such as [PSI(+)] and [RNQ(+)]. While much work remains, it is apparent that our understanding of the extent of the diversity of prion characteristics is in its infancy.

  18. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts

    PubMed Central

    Morel, Guillaume; Sterck, Lieven; Swennen, Dominique; Marcet-Houben, Marina; Onesime, Djamila; Levasseur, Anthony; Jacques, Noémie; Mallet, Sandrine; Couloux, Arnaux; Labadie, Karine; Amselem, Joëlle; Beckerich, Jean-Marie; Henrissat, Bernard; Van de Peer, Yves; Wincker, Patrick; Souciet, Jean-Luc; Gabaldón, Toni; Tinsley, Colin R.; Casaregola, Serge

    2015-01-01

    The evolutionary history of the characters underlying the adaptation of microorganisms to food and biotechnological uses is poorly understood. We undertook comparative genomics to investigate evolutionary relationships of the dairy yeast Geotrichum candidum within Saccharomycotina. Surprisingly, a remarkable proportion of genes showed discordant phylogenies, clustering with the filamentous fungus subphylum (Pezizomycotina), rather than the yeast subphylum (Saccharomycotina), of the Ascomycota. These genes appear not to be the result of Horizontal Gene Transfer (HGT), but to have been specifically retained by G. candidum after the filamentous fungi–yeasts split concomitant with the yeasts’ genome contraction. We refer to these genes as SRAGs (Specifically Retained Ancestral Genes), having been lost by all or nearly all other yeasts, and thus contributing to the phenotypic specificity of lineages. SRAG functions include lipases consistent with a role in cheese making and novel endoglucanases associated with degradation of plant material. Similar gene retention was observed in three other distantly related yeasts representative of this ecologically diverse subphylum. The phenomenon thus appears to be widespread in the Saccharomycotina and argues that, alongside neo-functionalization following gene duplication and HGT, specific gene retention must be recognized as an important mechanism for generation of biodiversity and adaptation in yeasts. PMID:26108467

  19. Yeast diversity of Ghanaian cocoa bean heap fermentations.

    PubMed

    Daniel, Heide-Marie; Vrancken, Gino; Takrama, Jemmy F; Camu, Nicholas; De Vos, Paul; De Vuyst, Luc

    2009-08-01

    The fermentation of the Theobroma cacao beans, involving yeasts, lactic acid bacteria, and acetic acid bacteria, has a major influence on the quality of the resulting cocoa. An assessment of the microbial community of cocoa bean heap fermentations in Ghana resulted in 91 yeast isolates. These were grouped by PCR-fingerprinting with the primer M13. Representative isolates were identified using the D1/D2 region of the large subunit rRNA gene, internal transcribed spacer sequences and partial actin gene sequences leading to the detection of 15 species. Properties of importance for cocoa bean fermentation, namely sucrose, glucose, and citrate assimilation capacity, pH-, ethanol-, and heat-tolerance, were examined for selected isolates. Pichia kudriavzevii (Issatchenkia orientalis), Saccharomyces cerevisiae, and Hanseniaspora opuntiae formed the major components of the yeast community. Hanseniaspora opuntiae was identified conclusively for the first time from cocoa fermentations. Among the less frequently encountered species, Candida carpophila, Candida orthopsilosis, Kodamaea ohmeri, Meyerozyma (Pichia) caribbica, Pichia manshurica, Saccharomycodes ludwigii, and Yamadazyma (Pichia) mexicana were not yet documented from this substrate. Hanseniaspora opuntiae was preferably growing during the earlier phase of fermentation, reflecting its tolerance to low pH and its citrate-negative phenotype, while no specific temporal distribution was recognized for P. kudriavzevii and S. cerevisiae.

  20. French Jura flor yeasts: genotype and technological diversity.

    PubMed

    Charpentier, Claudine; Colin, Anne; Alais, Anne; Legras, Jean-Luc

    2009-03-01

    Fifty-four Saccharomyces cerevisiae strains were isolated from Jura "Vin Jaune" velum and characterized by conventional physiological and molecular tests including ITS RFLP and sequence analysis, karyotyping and inter delta typing. ITS RFLP and sequence revealed a specific group of related strains different from the specific profile of Sherry flor yeast caused by a 24 bp deletion in the ITS1 region described by Esteve-Zarzoso et al. (Antonie Van Leeuwenhoek 85:151-158, 2004). Interdelta typing, the most discriminative method, revealed a high diversity of Jura flor yeast strains and gathered strains in clusters unequally shared between the northern and southern part of the Jura vineyard. The assessment of phenotypic diversity among the isolated strains was investigated for three wine metabolites (ethanal, acetic acid, and sotolon) from micro scale velum tests. Except at an early stage of ageing, the production of these metabolites was not correlated to the five genetic groups obtained by interdelta typing, but correlated to the cellar where strains had been isolated. The different strains isolated in a cellar produced mostly one type of velum (thin or thick, grey or white); but thin and grey velums, recognized as responsible for high quality wines, were obtained more frequently for one of the five groups of delta genotypes.

  1. In vivo continuous evolution of genes and pathways in yeast

    PubMed Central

    Crook, Nathan; Abatemarco, Joseph; Sun, Jie; Wagner, James M.; Schmitz, Alexander; Alper, Hal S.

    2016-01-01

    Directed evolution remains a powerful, highly generalizable approach for improving the performance of biological systems. However, implementations in eukaryotes rely either on in vitro diversity generation or limited mutational capacities. Here we synthetically optimize the retrotransposon Ty1 to enable in vivo generation of mutant libraries up to 1.6 × 107 l−1 per round, which is the highest of any in vivo mutational generation approach in yeast. We demonstrate this approach by using in vivo-generated libraries to evolve single enzymes, global transcriptional regulators and multi-gene pathways. When coupled to growth selection, this approach enables in vivo continuous evolution (ICE) of genes and pathways. Through a head-to-head comparison, we find that ICE libraries yield higher-performing variants faster than error-prone PCR-derived libraries. Finally, we demonstrate transferability of ICE to divergent yeasts, including Kluyveromyces lactis and alternative S. cerevisiae strains. Collectively, this work establishes a generic platform for rapid eukaryotic-directed evolution across an array of target cargo. PMID:27748457

  2. Fine Structure of Tibetan Kefir Grains and Their Yeast Distribution, Diversity, and Shift

    PubMed Central

    Lu, Man; Wang, Xingxing; Sun, Guowei; Qin, Bing; Xiao, Jinzhou; Yan, Shuling; Pan, Yingjie; Wang, Yongjie

    2014-01-01

    Tibetan kefir grains (TKGs), a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i) yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii) the diversity of yeasts is relatively low on genus level with three dominant species – Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii) S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic associations between S

  3. Application of temperature gradient gel electrophoresis to the study of yeast diversity in the estuary of the Tagus river, Portugal.

    PubMed

    Gadanho, Mário; Sampaio, José Paulo

    2004-12-01

    Temperature gradient gel electrophoresis (TGGE) was employed for the assessment of yeast diversity in the estuary of the Tagus river (Portugal). The molecular detection of yeasts was carried out directly from water samples and, in parallel, a cultivation approach by means of an enrichment step was employed. A nested PCR was employed to obtain a fungal amplicon containing the D2 domain of the 26S rRNA gene. For identification the TGGE bands were extracted, re-amplified, and sequenced. Fourteen fungal taxa were detected and all except one were yeasts. Most yeast sequences corresponded to members of the Ascomycota and only three belonged to the Basidiomycota. Five yeasts (four ascomycetes and one basidiomycete) could not be identified to the species level due to the uniqueness of their sequences. The number of species detected after enrichment was higher than the number of taxa found using the direct detection method. This suggests that some yeast populations are present in densities that are below the detection threshold of the method. With respect to the analysis of the yeast community structure, our results indicate that the dominant populations belong to Debaryomyces hansenii, Rhodotorula mucilaginosa, Cryptococcus longus, and to an uncultured basidiomycetous yeast phylogenetically close to Cr. longus. The combined analysis of direct detection and cultivation approaches indicates a similar community structure at the two sampled sites since nine species were present at both localities.

  4. Posttranscriptional Control of Gene Expression in Yeast

    PubMed Central

    McCarthy, John E. G.

    1998-01-01

    Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5′ untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling

  5. The yeast ubiquitin genes: a family of natural gene fusions.

    PubMed Central

    Ozkaynak, E; Finley, D; Solomon, M J; Varshavsky, A

    1987-01-01

    Ubiquitin is a 76-residue protein highly conserved among eukaryotes. Conjugation of ubiquitin to intracellular proteins mediates their selective degradation in vivo. We describe a family of four ubiquitin-coding loci in the yeast Saccharomyces cerevisiae. UB11, UB12 and UB13 encode hybrid proteins in which ubiquitin is fused to unrelated ('tail') amino acid sequences. The ubiquitin coding elements of UB11 and UB12 are interrupted at identical positions by non-homologous introns. UB11 and UB12 encode identical 52-residue tails, whereas UB13 encodes a different 76-residue tail. The tail amino acid sequences are highly conserved between yeast and mammals. Each tail contains a putative metal-binding, nucleic acid-binding domain of the form Cys-X2-4-Cys-X2-15-Cys-X2-4-Cys, suggesting that these proteins may function by binding to DNA. The fourth gene, UB14, encodes a polyubiquitin precursor protein containing five ubiquitin repeats in a head-to-tail, spacerless arrangement. All four ubiquitin genes are expressed in exponentially growing cells, while in stationary-phase cells the expression of UB11 and UB12 is repressed. The UB14 gene, which is strongly inducible by starvation, high temperatures and other stresses, contains in its upstream region strong homologies to the consensus 'heat shock box' nucleotide sequence. Elsewhere we show that the essential function of the UB14 gene is to provide ubiquitin to cells under stress. Images Fig. 1. Fig. 7. PMID:3038523

  6. Homologous versus heterologous gene expression in the yeast, Saccharomyces cerevisiae.

    PubMed Central

    Chen, C Y; Oppermann, H; Hitzeman, R A

    1984-01-01

    DNA sequences normally flanking the highly expressed yeast 3-phosphoglycerate kinase (PGK) gene have been placed adjacent to heterologous mammalian genes on high copy number plasmid vectors and used for expression experiments in yeast. For many genes thus far expressed with this system, expression has been 15-50 times lower than the expression of the natural homologous PGK gene on the same plasmid. We have extensively investigated this dramatic difference and have found that in most cases it is directly proportional to the steady-state levels of mRNAs. We demonstrate this phenomenon and suggest possible causes for this effect on mRNA levels. Images PMID:6096814

  7. Presence of STA gene sequences in brewer's yeast genome.

    PubMed

    Balogh, I; Maráz, A

    1996-06-01

    STA genes are responsible for producing extracellular glucoamylase enzymes in Saccharomyces cerevisiae var. diastaticus. These genes exist in three forms, which are located on three different chromosomes. The nucleotide sequences of the STA genes are highly homologous. A sporulation-specific glucoamylase gene called SGA1 exists in every Saccharomyces cerevisiae strain, this also having a partly homologous DNA sequence with the STA genes. In this study S. cerevisiae var. diastaticus and brewer's yeast strains were characterized by pulsed-field gel electrophoresis. In many cases chromosome length polymorphism (CLP) was found. The chromosomes were hybridized with a DNA probe which was homologous with STA genes and the SGA1 gene. Presence of the SGA1 gene was detected in each strain used. Four brewing yeasts were found to have homologous sequences with the STA3 gene on chromosome XIV despite the fact that these strains were not able to produce extracellular glucoamylase enzyme.

  8. Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing

    PubMed Central

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A.

    2014-01-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. PMID:24814796

  9. Assessing genetic diversity among Brettanomyces yeasts by DNA fingerprinting and whole-genome sequencing.

    PubMed

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A; Verstrepen, Kevin J; Lievens, Bart

    2014-07-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis.

  10. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum

    NASA Astrophysics Data System (ADS)

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David James; Marullo, Philippe; Todd Hittinger, Chris; Gonçalves, Paula; Sampaio, José Paulo

    2014-06-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum.

  11. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum.

    PubMed

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David James; Marullo, Philippe; Hittinger, Chris Todd; Gonçalves, Paula; Sampaio, José Paulo

    2014-06-02

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum.

  12. A Gondwanan Imprint on Global Diversity and Domestication of Wine and Cider Yeast Saccharomyces uvarum

    PubMed Central

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David; Marullo, Philippe; Hittinger, Chris Todd; Gonçalves, Paula; Sampaio, José Paulo

    2016-01-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum. PMID:24887054

  13. Yeast diversity associated to sediments and water from two Colombian artificial lakes.

    PubMed

    Silva-Bedoya, L M; Ramírez-Castrillón, M; Osorio-Cadavid, E

    2014-01-01

    In Colombia, knowledge of the yeast and yeast-like fungi community is limited because most studies have focused on species with clinical importance. Sediments and water represent important habitats for the study of yeast diversity, especially for yeast species with industrial, biotechnological, and bioremediation potential. The main purpose of this study was to identify and compare the diversity of yeast species associated with sediment and water samples from two artificial lakes in Universidad del Valle (Cali-Colombia). Yeast samplings were performed from fifteen sediment samples and ten water samples. Grouping of similar isolates was initially based on colony and cell morphology, which was then complemented by micro/mini satellite primed PCR banding pattern analysis by using GTG5 as single primer. A representative isolate for each group established was chosen for D1/D2 domain sequencing and identification. In general, the following yeast species were identified: Candida albicans, Candida diversa, Candida glabrata, Candida pseudolambica, Cryptococcus podzolicus, Cryptococcus rajasthanensis, Cryptococcus laurentii, Williopsis saturnus, Hanseniaspora thailandica, Hanseniaspora uvarum, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Torulaspora delbrueckii, Torulaspora pretoriensis, Tricosporon jirovecii, Trichosporon laibachii and Yarrowia lypolitica. Two possible new species were also found, belonging to the Issatchenkia sp. and Bullera sp. genera. In conclusion, the lakes at the Universidad del Valle campus have significant differences in yeast diversity and species composition between them.

  14. Yeast diversity associated to sediments and water from two Colombian artificial lakes

    PubMed Central

    Silva-Bedoya, L.M.; Ramírez-Castrillón, M.; Osorio-Cadavid, E.

    2014-01-01

    In Colombia, knowledge of the yeast and yeast-like fungi community is limited because most studies have focused on species with clinical importance. Sediments and water represent important habitats for the study of yeast diversity, especially for yeast species with industrial, biotechnological, and bioremediation potential. The main purpose of this study was to identify and compare the diversity of yeast species associated with sediment and water samples from two artificial lakes in Universidad del Valle (Cali-Colombia). Yeast samplings were performed from fifteen sediment samples and ten water samples. Grouping of similar isolates was initially based on colony and cell morphology, which was then complemented by micro/mini satellite primed PCR banding pattern analysis by using GTG5 as single primer. A representative isolate for each group established was chosen for D1/D2 domain sequencing and identification. In general, the following yeast species were identified: Candida albicans, Candida diversa, Candida glabrata, Candida pseudolambica, Cryptococcus podzolicus, Cryptococcus rajasthanensis, Cryptococcus laurentii, Williopsis saturnus, Hanseniaspora thailandica, Hanseniaspora uvarum, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Torulaspora delbrueckii, Torulaspora pretoriensis, Tricosporon jirovecii, Trichosporon laibachii and Yarrowia lypolitica. Two possible new species were also found, belonging to the Issatchenkia sp. and Bullera sp. genera. In conclusion, the lakes at the Universidad del Valle campus have significant differences in yeast diversity and species composition between them. PMID:24948924

  15. The influence of Aster x salignus Willd. Invasion on the diversity of soil yeast communities

    NASA Astrophysics Data System (ADS)

    Glushakova, A. M.; Kachalkin, A. V.; Chernov, I. Yu.

    2016-07-01

    The annual dynamics of yeast communities were studied in the soddy-podzolic soil under the thickets of Aster x salignus Willd., one of the widespread invasive plant species in central Russia. Yeast groups in the soils under continuous aster thickets were found to differ greatly from the yeast communities in the soils under the adjacent indigenous meadow vegetation. In both biotopes the same species ( Candida vartiovaarae, Candida sake, and Cryptococcus terreus) are dominants. However, in the soils under indigenous grasses, eurybiontic yeasts Rhodotorula mucilaginosa, which almost never occur in the soil under aster, are widespread. In the soil under aster, the shares of other typical epiphytic and pedobiontic yeast fungi (ascomycetic species Wickerhamomyces aniomalus, Barnettozyma californica and basidiomycetic species Cystofilobasidium macerans, Guehomyces pullulans) significantly increase. Thus, the invasion of Aster x salignus has a clear effect on soil yeast complexes reducing their taxonomic and ecological diversity.

  16. A Complete Set of Nascent Transcription Rates for Yeast Genes

    PubMed Central

    Pelechano, Vicent; Chávez, Sebastián; Pérez-Ortín, José E.

    2010-01-01

    The amount of mRNA in a cell is the result of two opposite reactions: transcription and mRNA degradation. These reactions are governed by kinetics laws, and the most regulated step for many genes is the transcription rate. The transcription rate, which is assumed to be exercised mainly at the RNA polymerase recruitment level, can be calculated using the RNA polymerase densities determined either by run-on or immunoprecipitation using specific antibodies. The yeast Saccharomyces cerevisiae is the ideal model organism to generate a complete set of nascent transcription rates that will prove useful for many gene regulation studies. By combining genomic data from both the GRO (Genomic Run-on) and the RNA pol ChIP-on-chip methods we generated a new, more accurate nascent transcription rate dataset. By comparing this dataset with the indirect ones obtained from the mRNA stabilities and mRNA amount datasets, we are able to obtain biological information about posttranscriptional regulation processes and a genomic snapshot of the location of the active transcriptional machinery. We have obtained nascent transcription rates for 4,670 yeast genes. The median RNA polymerase II density in the genes is 0.078 molecules/kb, which corresponds to an average of 0.096 molecules/gene. Most genes have transcription rates of between 2 and 30 mRNAs/hour and less than 1% of yeast genes have >1 RNA polymerase molecule/gene. Histone and ribosomal protein genes are the highest transcribed groups of genes and other than these exceptions the transcription of genes is an infrequent phenomenon in a yeast cell. PMID:21103382

  17. Seasonal and altitudinal changes of culturable bacterial and yeast diversity in Alpine forest soils.

    PubMed

    França, Luís; Sannino, Ciro; Turchetti, Benedetta; Buzzini, Pietro; Margesin, Rosa

    2016-11-01

    The effect of altitude and season on abundance and diversity of the culturable heterotrophic bacterial and yeast community was examined at four forest sites in the Italian Alps along an altitude gradient (545-2000 m). Independently of altitude, bacteria isolated at 0 °C (psychrophiles) were less numerous than those recovered at 20 °C. In autumn, psychrophilic bacterial population increased with altitude. The 1194 bacterial strains were primarily affiliated with the classes Alpha-, Beta-, Gammaproteobacteria, Spingobacteriia and Flavobacteriia. Fifty-seven of 112 operational taxonomic units represented potential novel species. Strains isolated at 20 °C had a higher diversity and showed similarities in taxa composition and abundance, regardless of altitude or season, while strains isolated at 0 °C showed differences in community composition at lower and higher altitudes. In contrast to bacteria, yeast diversity was season-dependent: site- and altitude-specific effects on yeast diversity were only detected in spring. Isolation temperature affected the relative proportions of yeast genera. Isolations recovered 719 strains, belonging to the classes Dothideomycetes, Saccharomycetes, Tremellomycetes and Mycrobotryomycetes. The presence of few dominant bacterial OTUs and yeast species indicated a resilient microbial population that is not affected by season or altitude. Soil nutrient contents influenced significantly abundance and diversity of culturable bacteria, but not of culturable yeasts.

  18. Advances in Gene Expression in Non-Conventional Yeasts

    NASA Astrophysics Data System (ADS)

    Nel, Sanet; Labuschagne, Michel; Albertyn, Jacobus

    Yeast has been a favoured lower eukaryotic system for the expression and production of recombinant proteins for both basic research and practical applications, and the demand for foreign-gene expression systems is increasing rapidly. Despite the vast amount of information on the molecular biology and physiology of Saccharomyces cerevisiae, which has consequently been the first choice as host system for recombinant protein production in the past, several limitations have been identified in this expression system. These limitations have recently been relieved by the development of expression systems in other yeast species known as ‘ non-conventional yeasts’ or ‘non-Saccharomyces ’ yeasts. With the increasing interest in the biotechnological applications of these yeasts in applied and fundamental studies and processes, the term ‘ non-conventional ’ yeast may well soon become redundant. As there is no universal expression system for heterologous protein production, it is necessary to recognize the merits and demerits of each system in order to make a right choice. This chapter will evaluate the competitive environment of non-conventional expression platforms represented by some of the best-known alternative yeasts systems including Kluyveromyces lactis, Yarrowia lipolytica, Hansenula polymorpha, Pichia pastoris and more recently, Arxula adeninivorans.

  19. Yeast metabolic chassis designs for diverse biotechnological products

    PubMed Central

    Jouhten, Paula; Boruta, Tomasz; Andrejev, Sergej; Pereira, Filipa; Rocha, Isabel; Patil, Kiran Raosaheb

    2016-01-01

    The diversity of industrially important molecules for which microbial production routes have been experimentally demonstrated is rapidly increasing. The development of economically viable producer cells is, however, lagging behind, as it requires substantial engineering of the host metabolism. A chassis strain suitable for production of a range of molecules is therefore highly sought after but remains elusive. Here, we propose a genome-scale metabolic modeling approach to design chassis strains of Saccharomyces cerevisiae – a widely used microbial cell factory. For a group of 29 products covering a broad range of biochemistry and applications, we identified modular metabolic engineering strategies for re-routing carbon flux towards the desired product. We find distinct product families with shared targets forming the basis for the corresponding chassis cells. The design strategies include overexpression targets that group products by similarity in precursor and cofactor requirements, as well as gene deletion strategies for growth-product coupling that lead to non-intuitive product groups. Our results reveal the extent and the nature of flux re-routing necessary for producing a diverse range of products in a widely used cell factory and provide blueprints for constructing pre-optimized chassis strains. PMID:27430744

  20. Maintenance and Integrity of the Mitochondrial Genome: a Plethora of Nuclear Genes in the Budding Yeast

    PubMed Central

    Contamine, Véronique; Picard, Marguerite

    2000-01-01

    Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho+ mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho0 petites) and/or lead to truncated forms (rho−) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho+ genome depends on a centromere-like structure dispensable for the maintenance of rho− mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes. PMID:10839818

  1. Identifying genes required for respiratory growth of fission yeast

    PubMed Central

    2016-01-01

    We have used both auxotroph and prototroph versions of the latest deletion-mutant library to identify genes required for respiratory growth on solid glycerol medium in fission yeast. This data set complements and enhances our recent study on functional and regulatory aspects of energy metabolism by providing additional proteins that are involved in respiration. Most proteins identified in this mutant screen have not been implicated in respiration in budding yeast. We also provide a protocol to generate a prototrophic mutant library, and data on technical and biological reproducibility of colony-based high-throughput screens. PMID:27918601

  2. Oral yeast flora and its ITS sequence diversity among a large cohort of medical students in Hainan, China.

    PubMed

    Wang, Huamin; Wang, Yin; Chen, Jinglong; Zhan, Zilong; Li, Yinglin; Xu, Jianping

    2007-08-01

    The most prevalent fungal infection of humans is candidiasis which is caused by species of Candida that are typical members of the commensal microbial flora of the oral mucosa and other body surfaces. Since species of Candida differ in virulence properties and susceptibilities to anti-fungal drugs, understanding the human commensal yeast flora will have a significant impact on designing treatment and prevention strategies against yeast infections. However, although there is a global interest in Candida species, the global distributions of Candida species remain largely unknown, especially among healthy hosts. Here we report the oral yeast flora from the surveys of over 1,000 medical students in China. Our results showed that this population had a yeast carriage rate (4.5%) much lower than other population samples reported previously from Mainland China (40-70%). In addition, C. albicans was isolated at a much higher frequency than those from other Chinese samples, with a frequency (80.9%) more similar to those in developed regions such as North America. The oral yeast carriage rates and yeast species compositions were similar between male and female students and between the hosts borne and raised on Hainan Island and those borne and raised on Mainland China. Furthermore, the sequence variation at the internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA gene cluster was analyzed for strains of the dominant species, C. albicans. Our analysis identified 14 ITS types among the 41 Hainan isolates of C. albicans. However, only four of the 14 ITS types were identical to those in reference strains from Europe and North America. Taken together, our analyses suggest that the oral yeast flora among host populations in China is highly heterogeneous and that there is a high ITS sequence diversity in the Hainan population of C. albicans.

  3. Natural gene expression variation studies in yeast.

    PubMed

    Thompson, Dawn A; Cubillos, Francisco A

    2017-01-01

    The rise of sequence information across different yeast species and strains is driving an increasing number of studies in the emerging field of genomics to associate polymorphic variants, mRNA abundance and phenotypic differences between individuals. Here, we gathered evidence from recent studies covering several layers that define the genotype-phenotype gap, such as mRNA abundance, allele-specific expression and translation efficiency to demonstrate how genetic variants co-evolve and define an individual's genome. Moreover, we exposed several antecedents where inter- and intra-specific studies led to opposite conclusions, probably owing to genetic divergence. Future studies in this area will benefit from the access to a massive array of well-annotated genomes and new sequencing technologies, which will allow the fine breakdown of the complex layers that delineate the genotype-phenotype map. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome.

    PubMed

    Yurkov, Andrey M; Röhl, Oliver; Pontes, Ana; Carvalho, Cláudia; Maldonado, Cristina; Sampaio, José Paulo

    2016-02-01

    Soil yeasts represent a poorly known fraction of the soil microbiome due to limited ecological surveys. Here, we provide the first comprehensive inventory of cultivable soil yeasts in a Mediterranean ecosystem, which is the leading biodiversity hotspot for vascular plants and vertebrates in Europe. We isolated and identified soil yeasts from forested sites of Serra da Arrábida Natural Park (Portugal), representing the Mediterranean forests, woodlands and scrub biome. Both cultivation experiments and the subsequent species richness estimations suggest the highest species richness values reported to date, resulting in a total of 57 and 80 yeast taxa, respectively. These values far exceed those reported for other forest soils in Europe. Furthermore, we assessed the response of yeast diversity to microclimatic environmental factors in biotopes composed of the same plant species but showing a gradual change from humid broadleaf forests to dry maquis. We observed that forest properties constrained by precipitation level had strong impact on yeast diversity and on community structure and lower precipitation resulted in an increased number of rare species and decreased evenness values. In conclusion, the structure of soil yeast communities mirrors the environmental factors that affect aboveground phytocenoses, aboveground biomass and plant projective cover.

  5. The diversity of yeasts associated with grapes and musts of the Strekov winegrowing region, Slovakia.

    PubMed

    Nemcová, Kornélia; Breierová, Emília; Vadkertiová, Renáta; Molnárová, Jana

    2015-03-01

    Many different yeast species have been isolated from grapes and musts worldwide. The diversity and frequency of yeasts depend on a number of factors such as the grape variety, the physical damage of the grapes, the weather conditions and the chemical composition of must. A total of 366 isolates were associated with the three grape cultivars: Blue Frankish, Green Veltliner and Sauvignon blanc over four consecutive years. Yeast cultures were isolated from the grapes and from the fermenting musts after the first and seventh days. The ascomycetous yeasts of the genera Aureobasidium, Candida, Hanseniaspora, Metschnikowia, Pichia, Saccharomyces and Saccharomycopsis together with basidiomycetous yeasts of the genera Cryptococcus, Dioszegia, Filobasidium, Rhodotorula and Sporidiobolus were associated with the three grape varieties. Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia kluyveri, Pichia kudriavzevii and Sporidiobolus pararoseus were found on the berries in significant amounts. P. kluyveri and P. kudriavzevii were more associated with the damaged grapes, whereas Sp. pararoseus with intact ones. H. uvarum and M. pulcherrima were present on both types of grapes almost equally. The yeast composition and quantitative representation of yeast species varied over the grape varieties and the years examined. Although the basidiomycetous species formed a significant proportion of the yeast population in some individual grape variety/year combinations, the ascomycetous species were dominant.

  6. Yeast Communities of Diverse Drosophila Species: Comparison of Two Symbiont Groups in the Same Hosts

    PubMed Central

    Eisen, Jonathan A.; Kopp, Artyom

    2012-01-01

    The combination of ecological diversity with genetic and experimental tractability makes Drosophila a powerful model for the study of animal-associated microbial communities. Despite the known importance of yeasts in Drosophila physiology, behavior, and fitness, most recent work has focused on Drosophila-bacterial interactions. In order to get a more complete understanding of the Drosophila microbiome, we characterized the yeast communities associated with different Drosophila species collected around the world. We focused on the phylum Ascomycota because it constitutes the vast majority of the Drosophila-associated yeasts. Our sampling strategy allowed us to compare the distribution and structure of the yeast and bacterial communities in the same host populations. We show that yeast communities are dominated by a small number of abundant taxa, that the same yeast lineages are associated with different host species and populations, and that host diet has a greater effect than host species on yeast community composition. These patterns closely parallel those observed in Drosophila bacterial communities. However, we do not detect a significant correlation between the yeast and bacterial communities of the same host populations. Comparative analysis of different symbiont groups provides a more comprehensive picture of host-microbe interactions. Future work on the role of symbiont communities in animal physiology, ecological adaptation, and evolution would benefit from a similarly holistic approach. PMID:22885750

  7. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast

    NASA Technical Reports Server (NTRS)

    Sze, H.; Liang, F.; Hwang, I.; Curran, A. C.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The spatial and temporal regulation of calcium concentration in plant cells depends on the coordinate activities of channels and active transporters located on different organelles and membranes. Several Ca2+ pumps have been identified and characterized by functional expression of plant genes in a yeast mutant (K616). This expression system has opened the way to a genetic and biochemical characterization of the regulatory and catalytic features of diverse Ca2+ pumps. Plant Ca(2+)-ATPases fall into two major types: AtECA1 represents one of four or more members of the type IIA (ER-type) Ca(2+)-ATPases in Arabidopsis, and AtACA2 is one of seven or more members of the type IIB (PM-type) Ca(2+)-ATPases that are regulated by a novel amino terminal domain. Type IIB pumps are widely distributed on membranes, including the PM (plasma membrane), vacuole, and ER (endoplasmic reticulum). The regulatory domain serves multiple functions, including autoinhibition, calmodulin binding, and sites for modification by phosphorylation. This domain, however, is considerably diverse among several type IIB ATPases, suggesting that the pumps are differentially regulated. Understanding of Ca2+ transporters at the molecular level is providing insights into their roles in signaling networks and in regulating fundamental processes of cell biology.

  8. A hammerhead ribozyme inhibits ADE1 gene expression in yeast.

    PubMed

    Ferbeyre, G; Bratty, J; Chen, H; Cedergren, R

    1995-03-21

    To study factors that affect in vivo ribozyme (Rz) activity, a model system has been devised in Saccharomyces cerevisiae based on the inhibition of ADE1 gene expression. This gene was chosen because Rz action can be evaluated visually by the Red phenotype produced when the activity of the gene product is inhibited. Different plasmid constructs allowed the expression of the Rz either in cis or in trans with respect to ADE1. Rz-related inhibition of ADE1 expression was correlated with a Red phenotype and a diminution of ADE1 mRNA levels only when the Rz gene was linked 5' to ADE1. The presence of the expected 3' cleavage fragment was demonstrated using a technique combining RNA ligation and PCR. This yeast system and detection technique are suited to the investigation of general factors affecting Rz-catalyzed inhibition of gene expression under in vivo conditions.

  9. Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers.

    PubMed

    Turchetti, Benedetta; Goretti, Marta; Branda, Eva; Diolaiuti, Guglielmina; D'Agata, Carlo; Smiraglia, Claudio; Onofri, Andrea; Buzzini, Pietro

    2013-11-01

    The influence of some abiotic variables (pH, dry weight, organic carbon, nitrogen and phosphorous) on culturable yeast diversity in two distinct, but adjacent Alpine glaciers (Glacier du Géant, France, and Miage Glacier, Italy) was investigated. In all, 682 yeast strains were isolated and identified by D1/D2 and ITS sequencing as belonging to species of the genera Aureobasidium, Candida, Bulleromyces, Cryptococcus, Cystofilobasidium, Dioszegia, Guehomyces, Holtermanniella, Leucosporidiella, Mrakia, Mrakiella, Rhodotorula, Sporidiobolus, Sporobolomyces and Udenyomyces. Overall, the most represented genera were Cryptococcus (55% of isolates), Rhodotorula (17%) and Mrakia (10%). About 10% of strains, presumably belonging to new species (yet to be described), were preliminarily identified at the genus level. Principal component analysis (PCA) revealed that organic carbon, nitrogen and phosphorous are apparently mostly related to culturable yeast abundance and diversity. In this context, the hypothesis that the frequency of isolation of certain species may be correlated with some organic nutrients (with special emphasis for phosphorous) is discussed.

  10. Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential.

    PubMed

    Buzzini, Pietro; Branda, Eva; Goretti, Marta; Turchetti, Benedetta

    2012-11-01

    Glacial habitats (cryosphere) include some of the largest unexplored and extreme biospheres on Earth. These habitats harbor a wide diversity of psychrophilic prokaryotic and eukaryotic microorganisms. These highly specialized microorganisms have developed adaptation strategies to overcome the direct and indirect life-endangering influence of low temperatures. For many years Antarctica has been the geographic area preferred by microbiologists for studying the diversity of psychrophilic microorganisms (including yeasts). However, there have been an increasing number of studies on psychrophilic yeasts sharing the non-Antarctic cryosphere. The present paper provides an overview of the distribution and adaptation strategies of psychrophilic yeasts worldwide. Attention is also focused on their biotechnological potential, especially on their exploitation as a source of cold-active enzymes and for bioremediation purposes.

  11. A Survey of Essential Gene Function in the Yeast Cell Division Cycle

    PubMed Central

    Yu, Lisa; Castillo, Lourdes Peña; Mnaimneh, Sanie

    2006-01-01

    Mutations impacting specific stages of cell growth and division have provided a foundation for dissecting mechanisms that underlie cell cycle progression. We have undertaken an objective examination of the yeast cell cycle through flow cytometric analysis of DNA content in TetO7 promoter mutant strains representing 75% of all essential yeast genes. More than 65% of the strains displayed specific alterations in DNA content, suggesting that reduced function of an essential gene in most cases impairs progression through a specific stage of the cell cycle. Because of the large number of essential genes required for protein biosynthesis, G1 accumulation was the most common phenotype observed in our analysis. In contrast, relatively few mutants displayed S-phase delay, and most of these were defective in genes required for DNA replication or nucleotide metabolism. G2 accumulation appeared to arise from a variety of defects. In addition to providing a global view of the diversity of essential cellular processes that influence cell cycle progression, these data also provided predictions regarding the functions of individual genes: we identified four new genes involved in protein trafficking (NUS1, PHS1, PGA2, PGA3), and we found that CSE1 and SMC4 are important for DNA replication. PMID:16943325

  12. Black yeast diversity on creosoted railway sleepers changes with ambient climatic conditions.

    PubMed

    Gümral, Ramazan; Tümgör, Ayşegül; Saraçlı, Mehmet Ali; Yıldıran, Şinasi Taner; Ilkit, Macit; de Hoog, G Sybren

    2014-11-01

    The environmental isolation of opportunistic pathogenic black yeasts, which are responsible for a wide spectrum of human infections, is essential to understanding the ecology of clinical fungi. Extreme outdoor environments polluted with aromatic hydrocarbons support the growth of black yeasts in unlikely places, such as railway sleepers. However, there are limited data concerning the diversity of these fungi growing on polluted railway sleepers. In this investigation, we examined 845 railway sleeper samples, obtained from 11 Turkish cities representing altitudes from 25 to 1,893 m, and inoculated the samples onto mycological media for the isolation of black yeasts. Ninety-four samples (11.1 %) yielded positive results for black yeast, with creosoted oak sleepers having a significantly higher number of isolates than concrete sleepers (p < 0.05). Identification based on the ribosomal DNA (rDNA) internal transcribed spacer region revealed the highest prevalence of Exophiala phaeomuriformis, followed by Exophiala dermatitidis, Exophiala heteromorpha, Exophiala xenobiotica, and Exophiala crusticola. This study revealed that railway sleepers harboring black yeasts were predominantly (>75 %) populated with thermophilic species. We observed that altitude might have a significant effect on species diversity. Briefly, E. phaeomuriformis exhibited growth over a wide altitude range, from 30 to 1,893 m. In contrast, E. dermatitidis had a remarkable aversion to low altitudes and exhibited maximum growth at 1,285 m. In conclusion, we speculate that one can predict what species will be found on railway sleepers and their probability and that species diversity primarily depends on sleeper type and altitude height. We believe that this study can contribute new insights into the ecology of black yeasts on railway sleepers and the railway factors that influence their diversity.

  13. The longevity assurance homologue of yeast lag1 (Lass) gene family (review).

    PubMed

    Teufel, Andreas; Maass, Thorsten; Galle, Peter R; Malik, Nasir

    2009-02-01

    The Lass gene family contains a group of highly conserved genes that are found in eukaryotic species. The founding member, lag1, was discovered in a screen for yeast longevity genes. Subsequently, lag1 homologs were discovered in other organisms including six mammalian paralogs. All Lass genes encode a highly conserved Lag1 domain and many also have an additional Hox domain. Lass proteins are ceramide synthases and therefore are critical for ceramide biosynthesis. Ceramide synthase is also a critical enzyme in the sphingolipid biosynthetic pathway. As ceramide and sphingolipids are key intermediates in diverse cellular processes such as cell growth, apoptosis, and stress response and may also play a role in cancer development, the function of Lass proteins is of great interest. In this review, we summarize the state of knowledge regarding Lass protein structure, biological function, and their emerging role in cancer development.

  14. Genetic and phenotypic diversity of autochthonous cider yeasts in a cellar from Asturias.

    PubMed

    Pando Bedriñana, R; Querol Simón, A; Suárez Valles, B

    2010-06-01

    This paper analyses yeast diversity and dynamics during the production of Asturian cider. Yeasts were isolated from apple juice and at different stages of fermentation in a cellar in Villaviciosa during two Asturian cider-apple harvests. The species identified by ITS-RFLP corresponded to Hanseniaspora valbyensis, Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia guilliermondii, Candida parapsilosis, Saccharomyces cerevisiae and Saccharomyces bayanus/Saccharomyces pastorianus/Saccharomyces kudriavzevii/Saccharomyces mikatae. The species C. parapsilosis is reported here for the first time in cider. The analysis of Saccharomyces mtDNA patterns showed great diversity, sequential substitution and the presence of a small number of yeast patterns (up to 8), present in both harvests. Killer (patterns nos. 22' and 47), sensitive (patterns nos. 12, 15, 33 and 61) and neutral phenotypes were found among the S. cerevisiae isolates. The detection of beta-glucosidase activity, with arbutin as the sole carbon source, allowed two S. cerevisiae strains (patterns nos. 3' and 19') to be differentiated by means of this enzymatic activity. Yeast strains producing the killer toxin or with beta-glucosidase activity are reported for the first time in autochthonous cider yeasts.

  15. Aptamer-guided gene targeting in yeast and human cells

    PubMed Central

    Ruff, Patrick; Koh, Kyung Duk; Keskin, Havva; Pai, Rekha B.; Storici, Francesca

    2014-01-01

    Gene targeting is a genetic technique to modify an endogenous DNA sequence in its genomic location via homologous recombination (HR) and is useful both for functional analysis and gene therapy applications. HR is inefficient in most organisms and cell types, including mammalian cells, often limiting the effectiveness of gene targeting. Therefore, increasing HR efficiency remains a major challenge to DNA editing. Here, we present a new concept for gene correction based on the development of DNA aptamers capable of binding to a site-specific DNA binding protein to facilitate the exchange of homologous genetic information between a donor molecule and the desired target locus (aptamer-guided gene targeting). We selected DNA aptamers to the I-SceI endonuclease. Bifunctional oligonucleotides containing an I-SceI aptamer sequence were designed as part of a longer single-stranded DNA molecule that contained a region with homology to repair an I-SceI generated double-strand break and correct a disrupted gene. The I-SceI aptamer-containing oligonucleotides stimulated gene targeting up to 32-fold in yeast Saccharomyces cerevisiae and up to 16-fold in human cells. This work provides a novel concept and research direction to increase gene targeting efficiency and lays the groundwork for future studies using aptamers for gene targeting. PMID:24500205

  16. Natural variation in non-coding regions underlying phenotypic diversity in budding yeast.

    PubMed

    Salinas, Francisco; de Boer, Carl G; Abarca, Valentina; García, Verónica; Cuevas, Mara; Araos, Sebastian; Larrondo, Luis F; Martínez, Claudio; Cubillos, Francisco A

    2016-02-22

    Linkage mapping studies in model organisms have typically focused their efforts in polymorphisms within coding regions, ignoring those within regulatory regions that may contribute to gene expression variation. In this context, differences in transcript abundance are frequently proposed as a source of phenotypic diversity between individuals, however, until now, little molecular evidence has been provided. Here, we examined Allele Specific Expression (ASE) in six F1 hybrids from Saccharomyces cerevisiae derived from crosses between representative strains of the four main lineages described in yeast. ASE varied between crosses with levels ranging between 28% and 60%. Part of the variation in expression levels could be explained by differences in transcription factors binding to polymorphic cis-regulations and to differences in trans-activation depending on the allelic form of the TF. Analysis on highly expressed alleles on each background suggested ASN1 as a candidate transcript underlying nitrogen consumption differences between two strains. Further promoter allele swap analysis under fermentation conditions confirmed that coding and non-coding regions explained aspartic and glutamic acid consumption differences, likely due to a polymorphism affecting Uga3 binding. Together, we provide a new catalogue of variants to bridge the gap between genotype and phenotype.

  17. Natural variation in non-coding regions underlying phenotypic diversity in budding yeast

    PubMed Central

    Salinas, Francisco; de Boer, Carl G.; Abarca, Valentina; García, Verónica; Cuevas, Mara; Araos, Sebastian; Larrondo, Luis F.; Martínez, Claudio; Cubillos, Francisco A.

    2016-01-01

    Linkage mapping studies in model organisms have typically focused their efforts in polymorphisms within coding regions, ignoring those within regulatory regions that may contribute to gene expression variation. In this context, differences in transcript abundance are frequently proposed as a source of phenotypic diversity between individuals, however, until now, little molecular evidence has been provided. Here, we examined Allele Specific Expression (ASE) in six F1 hybrids from Saccharomyces cerevisiae derived from crosses between representative strains of the four main lineages described in yeast. ASE varied between crosses with levels ranging between 28% and 60%. Part of the variation in expression levels could be explained by differences in transcription factors binding to polymorphic cis-regulations and to differences in trans-activation depending on the allelic form of the TF. Analysis on highly expressed alleles on each background suggested ASN1 as a candidate transcript underlying nitrogen consumption differences between two strains. Further promoter allele swap analysis under fermentation conditions confirmed that coding and non-coding regions explained aspartic and glutamic acid consumption differences, likely due to a polymorphism affecting Uga3 binding. Together, we provide a new catalogue of variants to bridge the gap between genotype and phenotype. PMID:26898953

  18. Regulation of methanol utilisation pathway genes in yeasts

    PubMed Central

    Hartner, Franz S; Glieder, Anton

    2006-01-01

    Methylotrophic yeasts such as Candida boidinii, Hansenula polymorpha, Pichia methanolica and Pichia pastoris are an emerging group of eukaryotic hosts for recombinant protein production with an ever increasing number of applications during the last 30 years. Their applications are linked to the use of strong methanol-inducible promoters derived from genes of the methanol utilisation pathway. These promoters are tightly regulated, highly repressed in presence of non-limiting concentrations of glucose in the medium and strongly induced if methanol is used as carbon source. Several factors involved in this tight control and their regulatory effects have been described so far. This review summarises available data about the regulation of promoters from methanol utilisation pathway genes. Furthermore, the role of cis and trans acting factors (e.g. transcription factors, glucose processing enzymes) in the expression of methanol utilisation pathway genes is reviewed both in the context of the native cell environment as well as in heterologous hosts. PMID:17169150

  19. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.

    PubMed

    Wu, Hong; Watanabe, Tomoko; Araki, Yoshio; Kitagaki, Hiroshi; Akao, Takeshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2009-06-01

    Sake yeast can produce high levels of ethanol in concentrated rice mash. While both sake and laboratory yeast strains belong to the species Saccharomyces cerevisiae, the laboratory strains produce much less ethanol. This disparity in fermentation activity may be due to the strains' different responses to environmental stresses, including ethanol accumulation. To obtain more insight into the stress response of yeast cells under sake brewing conditions, we carried out small-scale sake brewing tests using laboratory yeast strains disrupted in specific stress-related genes. Surprisingly, yeast strains with disrupted ubiquitin-related genes produced more ethanol than the parental strain during sake brewing. The elevated fermentation ability conferred by disruption of the ubiquitin-coding gene UBI4 was confined to laboratory strains, and the ubi4 disruptant of a sake yeast strain did not demonstrate a comparable increase in ethanol production. These findings suggest different roles for ubiquitin in sake and laboratory yeast strains.

  20. Pheromone-regulated genes required for yeast mating differentiation.

    PubMed

    Erdman, S; Lin, L; Malczynski, M; Snyder, M

    1998-02-09

    Yeast cells mate by an inducible pathway that involves agglutination, mating projection formation, cell fusion, and nuclear fusion. To obtain insight into the mating differentiation of Saccharomyces cerevisiae, we carried out a large-scale transposon tagging screen to identify genes whose expression is regulated by mating pheromone. 91,200 transformants containing random lacZ insertions were screened for beta-galactosidase (beta-gal) expression in the presence and absence of alpha factor, and 189 strains containing pheromone-regulated lacZ insertions were identified. Transposon insertion alleles corresponding to 20 genes that are novel or had not previously been known to be pheromone regulated were examined for effects on the mating process. Mutations in four novel genes, FIG1, FIG2, KAR5/ FIG3, and FIG4 were found to cause mating defects. Three of the proteins encoded by these genes, Fig1p, Fig2p, and Fig4p, are dispensible for cell polarization in uniform concentrations of mating pheromone, but are required for normal cell polarization in mating mixtures, conditions that involve cell-cell communication. Fig1p and Fig2p are also important for cell fusion and conjugation bridge shape, respectively. The fourth protein, Kar5p/Fig3p, is required for nuclear fusion. Fig1p and Fig2p are likely to act at the cell surface as Fig1:: beta-gal and Fig2::beta-gal fusion proteins localize to the periphery of mating cells. Fig4p is a member of a family of eukaryotic proteins that contain a domain homologous to the yeast Sac1p. Our results indicate that a variety of novel genes are expressed specifically during mating differentiation to mediate proper cell morphogenesis, cell fusion, and other steps of the mating process.

  1. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica

    PubMed Central

    Vaz, Aline B. M.; Rosa, Luiz H.; Vieira, Mariana L. A.; de Garcia, Virginia; Brandão, Luciana R.; Teixeira, Lia C. R. S.; Moliné, Martin; Libkind, Diego; van Broock, Maria; Rosa, Carlos A.

    2011-01-01

    The diversity of yeasts collected from different sites in Antarctica (Admiralty Bay, King George Island and Port Foster Bay and Deception Island) and their ability to produce extracellular enzymes and mycosporines were studied. Samples were collected during the austral summer season, between November 2006 and January 2007, from the rhizosphere of Deschampsia antarctica, ornithogenic (penguin guano) soil, soil, marine and lake sediments, marine water and freshwater from lakes. A total of 89 isolates belonging to the following genera were recovered: Bensingtonia, Candida, Cryptococcus, Debaryomyces, Dioszegia, Exophiala, Filobasidium, Issatchenkia (Pichia), Kodamaea, Leucosporidium, Leucosporidiella, Metschnikowia, Nadsonia, Pichia, Rhodotorula, and Sporidiobolus, and the yeast-like fungi Aureobasidium, Leuconeurospora and Microglossum. Cryptococcus victoriae was the most frequently identified species. Several species isolated in our study have been previously reported to be Antarctic psychophilic yeasts, including Cr. antarcticus, Cr. victoriae, Dioszegia hungarica and Leucosporidium scottii. The cosmopolitan yeast species A. pullulans, C. zeylanoides, D. hansenii, I. orientalis, K. ohmeri, P. guilliermondii, Rh. mucilaginosa, and S. salmonicolor were also isolated. Five possible new species were identified. Sixty percent of the yeasts had at least one detectable extracellular enzymatic activity. Cryptococcus antarcticus, D. aurantiaca, D. crocea, D. hungarica, Dioszegia sp., E. xenobiotica, Rh. glaciales, Rh. laryngis, Microglossum sp. 1 and Microglossum sp. 2 produced mycosporines. Of the yeast isolates, 41.7% produced pigments and/or mycosporines and could be considered adapted to survive in Antarctica. Most of the yeasts had extracellular enzymatic activities at 4°C and 20°C, indicating that they could be metabolically active in the sampled substrates. PMID:24031709

  2. [Yeast diversity in Bulnesia retama and Larrea divaricata canopies and associated soils].

    PubMed

    Toro, M E; Oro, N P; Vega, A D; Maturano, Y P; Nally, M C; Fernandez, E; Pucheta, E; Vázquez, F

    2005-01-01

    Bush like vegetation dominates arid environments, and there is nutrients accumulation under shrub canopies and relatively unfertile soils between vegetal patches areas. Plants are one of the most common habitats for yeasts. There are many reports about yeasts inhabiting different plant components. Nevertheless, there are no reports about yeasts associated with Zygophyllaceae, an important shrub family of the Argentinean Province of Monte. The objective of this work was to analyzed yeast biodiversity of Bulnesia retama and Larrea divaricata canopies and associated soils, at Medanos Grandes of Caucete, San Juan, Argentina. Eighty seven (87) isolated yeasts were identified. From B. retama canopy and associated soil was observed a larger taxonomical diversity respect to L. divaricata. Nine (9) and ten (10) species were isolated from canopy and associated soil of B. retama, respectively. From L. divaricata canopy were 4 species and 3 species from its associated soil isolated. Identified genera were: Candida, Debaryomyces, Dekkera, Saccharomyces, Torulaspora, Sporidiobolus and Pichia. Fourteen (14) species were found at all microenvironments.

  3. Generalized gene adjacencies, graph bandwidth, and clusters in yeast evolution.

    PubMed

    Zhu, Qian; Adam, Zaky; Choi, Vicky; Sankoff, David

    2009-01-01

    We present a parameterized definition of gene clusters that allows us to control the emphasis placed on conserved order within a cluster. Though motivated by biological rather than mathematical considerations, this parameter turns out to be closely related to the bandwidth parameter of a graph. Our focus will be on how this parameter affects the characteristics of clusters: how numerous they are, how large they are, how rearranged they are, and to what extent they are preserved from ancestor to descendant in a phylogenetic tree. We infer the latter property by dynamic programming optimization of the presence of individual edges at the ancestral nodes of the phylogeny. We apply our analysis to a set of genomes drawn from the Yeast Gene Order Browser.

  4. The molecular characterization of new types of Saccharomyces cerevisiae×S. kudriavzevii hybrid yeasts unveils a high genetic diversity.

    PubMed

    Peris, David; Belloch, Carmela; Lopandić, Ksenija; Álvarez-Pérez, José Manuel; Querol, Amparo; Barrio, Eladio

    2012-02-01

    New double- and triple-hybrid Saccharomyces yeasts were characterized using PCR-restriction fragment length polymorphism of 35 nuclear genes, located on different chromosome arms, and the sequencing of one nuclear and one mitochondrial gene. Most of these new hybrids were originally isolated from fermentations; however, two of them correspond to clinical and dietary supplement isolates. This is the first time that the presence of double-hybrid S. cerevisiae×S. kudriavzevii in non-fermentative substrates has been reported and investigated. Phylogenetic analysis of the MET6 nuclear gene confirmed the double or triple parental origin of the new hybrids. Restriction analysis of gene regions in these hybrids revealed a high diversity of genome types. From these molecular characterizations, a reduction of the S. kudriavzevii fraction of the hybrid genomes is observed in most hybrids. Mitochondrial inheritance in hybrids was deduced from the analysis of mitochondrial COX2 gene sequences, which showed that most hybrids received the mitochondrial genome from the S. kudriavzevii parent. However, two strains inherited a S. cerevisiae COX2, being the first report of S. cerevisiae×S. kudriavzevii hybrids with S. cerevisiae mitochondrial genomes. These two strains are those showing a higher S. kudriavzevii nuclear genome reduction, especially in the wine hybrid AMH. This may be due to the release of selective pressures acting on the other hybrids to maintain kudriavzevii mitochondria-interacting genes.

  5. A Genetic Screen for Fission Yeast Gene Deletion Mutants Exhibiting Hypersensitivity to Latrunculin A

    PubMed Central

    Asadi, Farzad; Michalski, Dorothy; Karagiannis, Jim

    2016-01-01

    Fission yeast cells treated with low doses of the actin depolymerizing drug, latrunculin A (LatA), delay entry into mitosis via a mechanism that is dependent on both the Clp1p and Rad24p proteins. During this delay, cells remain in a cytokinesis-competent state that is characterized by continuous repair and/or reestablishment of the actomyosin ring. In this manner, cells ensure the faithful completion of the preceding cytokinesis in response to perturbation of the cell division machinery. To uncover other genes with a role in this response, or simply genes with roles in adapting to LatA-induced stress, we carried out a genome-wide screen and identified a group of 38 gene deletion mutants that are hyper-sensitive to the drug. As expected, we found genes affecting cytokinesis and/or the actin cytoskeleton within this set (ain1, acp2, imp2). We also identified genes with roles in histone modification (tra1, ngg1), intracellular transport (apl5, aps3), and glucose-mediated signaling (git3, git5, git11, pka1, cgs2). Importantly, while the identified gene deletion mutants are prone to cytokinesis failure in the presence of LatA, they are nevertheless fully capable of cell division in the absence of the drug. These results indicate that fission yeast cells make use of a diverse set of regulatory modules to counter abnormal cytoskeletal perturbations, and furthermore, that these modules act redundantly to ensure cell survival and proliferation. PMID:27466272

  6. [CITRULLINUREIDASE GENE DIVERSITY IN THE GENUS FRANCISELLA].

    PubMed

    Timofeev, V S; Bakhteeva, I V; Pavlov, V M; Mokrievich, A N

    2015-01-01

    This work describes the results, of the in silico analysis of the genetic diversity of the citrullinureidase gene (ctu) in two species of bacteria of the genus Francisella: tularensis (ssp. tularensis, holarctica, mediasiatica, novicida) and philomiragia. The strains of the Central Asiatic subspecies possessing the citrullinureidase activity differ in the gene ctu from the ssp tularensis Schu by three nucleotide substitutions leading to two insignificant amino acid substitutions in the encoded polypeptide. In the strain F. tularensis of the ssp. holarctica the gene ctu encodes inactive enzyme, which is probably due to amino acid substitutions: 151 Gly --> Asp, 183 Pro --> Leu, 222 Asp --> Asn. Except for the Japan biovar bacteria, in all strains of the Holarctic subspecies there are two stop codons in the gene ctu. The bacteria of the subspecies novicida contain the ctu gene only in the strain 3523, whereas the other strains contain the gene FTN_0827 encoding the C-N hydrolase, which probably provides the citrullinureidase activity.

  7. Analysis of the structural integrity of YACs comprising human immunoglobulin genes in yeast and in embryonic stem cells

    SciTech Connect

    Mendez, M.J.; Abderrahim, H.; Noguchi, M.

    1995-03-20

    With the goal of creating a strain of mice capable of producing human antibodies, we are cloning and reconstructing the human immunoglobulin germline repertoire in yeast artificial chromosomes (YACs). We describe the identification of YACs containing variable and constant region sequences from the human heavy chain (IgH) and kappa light chain (IgK) loci and the characterization of their integrity in yeast and in mouse embryonic stem (ES) cells. The IgH locus-derived YAC contains five variable (V{sub H}) genes, the major diversity (D) gene cluster, the joining (J{sub H}) genes, the intronic enhancer (E{sub H}), and the constant region genes, mu (C{mu}) and delta (C{delta}). Two IgK locus-derived YACs each contain three variable (V{kappa}) genes, the joining (J{kappa}) region, the intronic enhancer (E{kappa}), the constant gene (C{kappa}), and the kappa deleting element (kde). The IgH YAC was unstable in yeast, generating a variety of deletion derivatives, whereas both IgK YACs were stable. YACs encoding heavy chain and kappa light chain, retrofitted with the mammalian selectable marker, hypoxanthine phosphoribosyltransferase (HPRT), were each introduced into HPRT-deficient mouse ES cells. Analysis of YAC integrity in ES cell lines revealed that the majority of DNA inserts were integrated in substantially intact form. 78 refs., 7 figs.

  8. The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression.

    PubMed

    Swinkels, B W; van Ooyen, A J; Bonekamp, F J

    Several different yeast species have been developed into systems for efficient heterologous gene expression. In this paper we review foreign gene expression in the dairy yeast Kluyveromyces lactis. This yeast presents several advantageous properties in comparison to other yeast species. These include its impressive secretory capacities, its excellent fermentation characteristics on large scale, its food grade status and the availability of both episomal and integrative expression vectors. Moreover, in contrast to the methylotrophic yeasts that are frequently used for the expression of foreign genes, K. lactis does not require explosion-proof fermentation equipment. Here, we present an overview of the available tools for heterologous gene expression in K. lactis (available promoters, vector systems, etc). Also, the production of prochymosin, human serum albumin and pancreatic phospholipase by K. lactis is discussed in more detail, and used to rate the achievements of K. lactis with respect to other micro-organisms in which these proteins have been produced.

  9. A yeast functional screen predicts new candidate ALS disease genes

    PubMed Central

    Couthouis, Julien; Hart, Michael P.; Shorter, James; DeJesus-Hernandez, Mariely; Erion, Renske; Oristano, Rachel; Liu, Annie X.; Ramos, Daniel; Jethava, Niti; Hosangadi, Divya; Epstein, James; Chiang, Ashley; Diaz, Zamia; Nakaya, Tadashi; Ibrahim, Fadia; Kim, Hyung-Jun; Solski, Jennifer A.; Williams, Kelly L.; Mojsilovic-Petrovic, Jelena; Ingre, Caroline; Boylan, Kevin; Graff-Radford, Neill R.; Dickson, Dennis W.; Clay-Falcone, Dana; Elman, Lauren; McCluskey, Leo; Greene, Robert; Kalb, Robert G.; Lee, Virginia M.-Y.; Trojanowski, John Q.; Ludolph, Albert; Robberecht, Wim; Andersen, Peter M.; Nicholson, Garth A.; Blair, Ian P.; King, Oliver D.; Bonini, Nancy M.; Van Deerlin, Vivianna; Rademakers, Rosa; Mourelatos, Zissimos; Gitler, Aaron D.

    2011-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of these genes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having a more severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery. PMID:22065782

  10. Genetic diversity of FLO1 and FLO5 genes in wine flocculent Saccharomyces cerevisiae strains.

    PubMed

    Tofalo, Rosanna; Perpetuini, Giorgia; Di Gianvito, Paola; Schirone, Maria; Corsetti, Aldo; Suzzi, Giovanna

    2014-11-17

    Twenty-eight flocculent wine strains were tested for adhesion and flocculation phenotypic variability. Moreover, the expression patterns of the main genes involved in flocculation (FLO1, FLO5 and FLO8) were studied both in synthetic medium and in presence of ethanol stress. Molecular identification and typing were achieved by PCR-RFLP of the 5.8S ITS rRNA region and microsatellite PCR fingerprinting, respectively. All isolates belong to Saccharomyces cerevisiae species. The analysis of microsatellites highlighted the intraspecific genetic diversity of flocculent wine S. cerevisiae strains allowing obtaining strain-specific profiles. Moreover, strains were characterized on the basis of adhesive properties. A wide biodiversity was observed even if none of the tested strains were able to form biofilms (or 'mats'), or to adhere to polystyrene. Moreover, genetic diversity of FLO1 and FLO5 flocculating genes was determined by PCR. Genetic diversity was detected for both genes, but a relationship with the flocculation degree was not found. So, the expression patterns of FLO1, FLO5 and FLO8 genes was investigated in a synthetic medium and a relationship between the expression of FLO5 gene and the flocculation capacity was established. To study the expression of FLO1, FLO5 and FLO8 genes in floc formation and ethanol stress resistance qRT-PCR was carried out and also in this case strains with flocculent capacity showed higher levels of FLO5 gene expression. This study confirmed the diversity of flocculation phenotype and genotype in wine yeasts. Moreover, the importance of FLO5 gene in development of high flocculent characteristic of wine yeasts was highlighted. The obtained collection of S. cerevisiae flocculent wine strains could be useful to study the relationship between the genetic variation and flocculation phenotype in wine yeasts.

  11. Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae.

    PubMed

    Park, Yang-Nim; Masison, Daniel; Eisenberg, Evan; Greene, Lois E

    2011-09-01

    The yeast Saccharomyces cerevisiae has proved to be an excellent model organism to study the function of proteins. One of the many advantages of yeast is the many genetic tools available to manipulate gene expression, but there are still limitations. To complement the many methods used to control gene expression in yeast, we have established a conditional gene deletion system by using the FLP/FRT system on yeast vectors to conditionally delete specific yeast genes. Expression of Flp recombinase, which is under the control of the GAL1 promoter, was induced by galactose, which in turn excised FRT sites flanked genes. The efficacy of this system was examined using the FRT site-flanked genes HSP104, URA3 and GFP. The pre-excision frequency of this system, which might be caused by the basal activity of the GAL1 promoter or by spontaneous recombination between FRT sites, was detected ca. 2% under the non-selecting condition. After inducing expression of Flp recombinase, the deletion efficiency achieved ca. 96% of cells in a population within 9 h. After conditional deletion of the specific gene, protein degradation and cell division then diluted out protein that was expressed from this gene prior to its excision. Most importantly, the specific protein to be deleted could be expressed under its own promoter, so that endogenous levels of protein expression were maintained prior to excision by the Flp recombinase. Therefore, this system provides a useful tool for the conditional deletion of genes in yeast.

  12. A yeast transcription system for the 5S rRNA gene.

    PubMed Central

    van Keulen, H; Thomas, D Y

    1982-01-01

    A cell-free extract of yeast nuclei that can specifically transcribe cloned yeast 5S rRNA genes has been developed. Optima for transcription of 5S rDNA were determined and conditions of extract preparation leading to reproducible activities and specificities established. The major in vitro product has the same size and oligonucleotide composition as in vivo 5S rRNA. The in vitro transcription extract does not transcribe yeast tRNA genes. The extract does increase the transcription of tRNA genes packaged in chromatin. Images PMID:7145700

  13. An eYFP reporter gene for the yeast two-hybrid system.

    PubMed

    Damon, Coralie; Boxus, Mathieu; Twizere, Jean-Claude; Portetelle, Daniel; Vandenbol, Micheline

    2013-02-01

    The yeast two-hybrid system is a powerful tool for detecting binary protein interactions, widely used in large-scale interactome mapping. We modified two yeast strains commonly used in yeast two-hybrid experiments by integrating into their genomes a new reporter gene encoding the enhanced yellow fluorescent protein eYFP. The suitability of this reporter gene for interaction screening was evaluated by fluorescence microscopy and fluorescence-activated cell sorting analysis. The gene shows good potential as a two-hybrid reporter gene for detecting strong interactions. Gal4 transcriptional activation gives rise to sufficient fluorescence for detection with a flow cytometer, but the eYFP reporter is not sensitive enough for detecting weak or moderate interactions. This study highlights the advantages of a fluorescent reporter gene in yeast two-hybrid screening.

  14. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    PubMed

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  15. Genomic diversity of Saccharomyces cerevisiae yeasts associated with alcoholic fermentation of bacanora produced by artisanal methods.

    PubMed

    Álvarez-Ainza, M L; Zamora-Quiñonez, K A; Moreno-Ibarra, G M; Acedo-Félix, E

    2015-03-01

    Bacanora is a spirituous beverage elaborated with Agave angustifolia Haw in an artisanal process. Natural fermentation is mostly performed with native yeasts and bacteria. In this study, 228 strains of yeast like Saccharomyces were isolated from the natural alcoholic fermentation on the production of bacanora. Restriction analysis of the amplified region ITS1-5.8S-ITS2 of the ribosomal DNA genes (RFLPr) were used to confirm the genus, and 182 strains were identified as Saccharomyces cerevisiae. These strains displayed high genomic variability in their chromosomes profiles by karyotyping. Electrophoretic profiles of the strains evaluated showed a large number of chromosomes the size of which ranged between 225 and 2200 kpb approximately.

  16. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region

    PubMed Central

    2012-01-01

    Background Antarctica has been successfully colonized by microorganisms despite presenting adverse conditions for life such as low temperatures, high solar radiation, low nutrient availability and dryness. Although these “cold-loving” microorganisms are recognized as primarily responsible for nutrient and organic matter recycling/mineralization, the yeasts, in particular, remain poorly characterized and understood. The aim of this work was to study the yeast microbiota in soil and water samples collected on King George Island. Results A high number of yeast isolates was obtained from 34 soil and 14 water samples. Molecular analyses based on rDNA sequences revealed 22 yeast species belonging to 12 genera, with Mrakia and Cryptococcus genera containing the highest species diversity. The species Sporidiobolus salmonicolor was by far the most ubiquitous, being identified in 24 isolates from 13 different samples. Most of the yeasts were psychrotolerant and ranged widely in their ability to assimilate carbon sources (consuming from 1 to 27 of the 29 carbon sources tested). All species displayed at least 1 of the 8 extracellular enzyme activities tested. Lipase, amylase and esterase activity dominated, while chitinase and xylanase were less common. Two yeasts identified as Leuconeurospora sp. and Dioszegia fristingensis displayed 6 enzyme activities. Conclusions A high diversity of yeasts was isolated in this work including undescribed species and species not previously isolated from the Antarctic region, including Wickerhamomyces anomalus, which has not been isolated from cold regions in general. The diversity of extracellular enzyme activities, and hence the variety of compounds that the yeasts may degrade or transform, suggests an important nutrient recycling role of microorganisms in this region. These yeasts are of potential use in industrial applications requiring high enzyme activities at low temperatures. PMID:23131126

  17. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.

    PubMed

    Choudhary, Jairam; Singh, Surender; Nain, Lata

    2017-03-01

    Lignocellulosic biomass, a promising renewable energy source, can be used for the production of second generation bioethanol. Simultaneous saccharification and fermentation (SSF), the process which alleviates the problem of separate hydrolysis and fermentation (SHF), requires thermotolerant ethanologenic yeast for bioethanol production. Therefore, ten yeast strains isolated from diverse sources, belonging to various genera like Saccharomyces, Candida, Pichia and Wickerhamomyces were evaluated for their thermotolerance, sugar utilization pattern, inhibitor tolerance and ethanol production potential with glucose, xylose and alkali pretreated paddy straw. All the tested strains were found to be thermotolerant, capable of significant growth at 40°C. Candida tropicalis Y6 was capable of utilizing a wide range of sugars as compared with other yeast isolates. Strains of Candida showed better inhibitor tolerance as compared to Saccharomyces and Pichia strains and exhibited only 5.1-18.8% and 4.7-7.9% reduction in growth with furfural and 5-hydroxymethyl furfural, respectively. Saccharomyces cerevisiae JRC6, isolated from distillery waste, produced ethanol with 88.3% and 89.1% theoretical efficiency at 40°C and 42°C, respectively, from glucose. This strain also produced significantly higher amount of ethanol (3.8 g/L) with better fermentation efficiency (87.9%) from alkali pretreated paddy straw at 40°C, as compared with the other yeast strains. Therefore, S. cerevisiae JRC6, based on its ability to ferment sugars at a higher temperature, can be a promising candidate for production of ethanol from lignocellulosic biomass via SSF process.

  18. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.

    PubMed

    Varela, Cristian; Cárdenas, Javier; Melo, Francisco; Agosin, Eduardo

    2005-04-15

    Wine fermentation is a dynamic and complex process in which the yeast cell is subjected to multiple stress conditions. A successful adaptation involves changes in gene expression profiles where a large number of genes are up- or downregulated. Functional genomic approaches are commonly used to obtain global gene expression profiles, thereby providing a comprehensive view of yeast physiology. We used SAGE to quantify gene expression profiles in an industrial strain of Saccharomyces cerevisiae under winemaking conditions. The transcriptome of wine yeast was analysed at three stages during the fermentation process, mid-exponential phase, and early- and late-stationary phases. Upon correlation with the yeast genome, we found three classes of transcripts: (a) sequences that corresponded to ORFs; (b) expressed sequences from intergenic regions; and (c) messengers that did not match the published reference yeast genome. In all fermentation phases studied, the most highly expressed genes related to energy production and stress response. For many pathways, including glycolysis, different transcript levels were observed during each phase. Different isoenzymes, including hexose transporters (HXT), were differentially induced, depending on the growth phase. About 10% of transcripts matched non-annotated ORF regions within the yeast genome and could correspond to small novel genes originally omitted in the first gene annotation effort. Up to 22% of transcripts, particularly at late-stationary phase, did not match any known location within the genome. As the available reference yeast genome was obtained from a laboratory strain, these expressed sequences could represent genes only expressed by an industrial yeast strain. Further studies are necessary to identify the role of these potential genes during wine fermentation.

  19. Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology.

    PubMed

    Gupta, Rani; Kumari, Arti; Syal, Poonam; Singh, Yogesh

    2015-01-01

    Lipase catalyzes hydrolysis of fats in lipid water interphase and perform variety of biotransformation reactions under micro aqueous conditions. The major sources include microbial lipases; among these yeast and fungal lipases are of special interest because they can carry out various stereoselective reactions. These lipases are highly diverse and are categorized into three classes on the basis of oxyanion hole: GX, GGGX and Y. The detailed phylogenetic analysis showed that GX family is more diverse than GGGX and Y family. Sequence and structural comparisons revealed that lipases are conserved only in the signature sequence region. Their characteristic structural determinants viz. lid, binding pocket and oxyanion hole are hotspots for mutagenesis. Few examples are cited in this review to highlight the multidisciplinary approaches for designing novel enzyme variants with improved thermo stability and substrate specificity. In addition, we present a brief account on biotechnological applications of lipases. Lipases have also gained attention as virulence factors, therefore, we surveyed the role of lipases in yeast physiology related to colonization, adhesion, biofilm formation and pathogenesis. The new genomic era has opened numerous possibilities to genetically manipulate lipases for food, fuel and pharmaceuticals.

  20. Global Gene Expression Analysis of Yeast Cells during Sake Brewing▿ †

    PubMed Central

    Wu, Hong; Zheng, Xiaohong; Araki, Yoshio; Sahara, Hiroshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2006-01-01

    During the brewing of Japanese sake, Saccharomyces cerevisiae cells produce a high concentration of ethanol compared with other ethanol fermentation methods. We analyzed the gene expression profiles of yeast cells during sake brewing using DNA microarray analysis. This analysis revealed some characteristics of yeast gene expression during sake brewing and provided a scaffold for a molecular level understanding of the sake brewing process. PMID:16997994

  1. Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease

    PubMed Central

    Hartman, John L.; Stisher, Chandler; Outlaw, Darryl A.; Guo, Jingyu; Shah, Najaf A.; Tian, Dehua; Santos, Sean M.; Rodgers, John W.; White, Richard A.

    2015-01-01

    The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease. PMID:25668739

  2. Molecular cloning and analysis of the CRY1 gene: a yeast ribosomal protein gene.

    PubMed Central

    Larkin, J C; Woolford, J L

    1983-01-01

    Using cloned DNA from the vicinity of the yeast mating type locus (MAT) as a probe, the wild type allele of the cryptopleurine resistance gene CRY1 has been isolated by the technique of chromosome walking and has been shown to be identical to the gene for ribosomal protein 59. A recessive cryR1 allele has also been cloned, using the integration excision method. The genetic distance from MAT to CRY1 is 2.2 cM, while the physical distance is 21 kb, giving a ratio of about 10 kb/cM for this interval. The phenotypic expression of both plasmid borne alleles of the gene can be detected in vivo. The use of this gene as a hybridization probe to examine RNA processing defects in the rna 2, rna 3, rna 4, rna 8, and rna 11 mutants is also discussed. Images PMID:6338478

  3. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    PubMed

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-08-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond.

  4. Origins and kinetic consequences of diversity in Sup35 yeast prion fibers.

    PubMed

    DePace, Angela H; Weissman, Jonathan S

    2002-05-01

    A remarkable feature of prions is that infectious particles composed of the same prion protein can give rise to different phenotypes. This strain phenomenon suggests that a single prion protein can adopt multiple infectious conformations. Here we use a novel single fiber growth assay to examine the heterogeneity of amyloid fibers formed by the yeast Sup35 prion protein. Sup35 spontaneously forms multiple, distinct and faithfully propagating fiber types, which differ dramatically both in their degrees of polarity and overall growth rates. Both in terms of the number of distinct self-propagating fiber types, as well as the ability of these differences to dictate the rate of prion growth, this diversity is well suited to account for the range of prion strain phenotypes observed in vivo.

  5. Yeast Pho85 kinase is required for proper gene expression during the diauxic shift.

    PubMed

    Nishizawa, Masafumi; Katou, Yuki; Shirahige, Katsuhiko; Toh-e, Akio

    2004-08-01

    The budding yeast Saccharomyces cerevisiae changes its gene expression profile when environmental nutritional conditions are changed. Protein kinases including cyclic AMP-dependent kinase, Snf1 and Tor kinases play important roles in this process. Pho85 kinase, a member of the yeast cyclin-dependent kinase family, is involved in the regulation of phosphate metabolism and reserve carbohydrates, and thus is implicated to function as a nutrient-sensing kinase. Upon depletion of glucose in the medium, yeast cells undergo a diauxic shift, accompanied by a carbon metabolic pathway shift, stimulation of mitochondrial function and downregulation of ribosome biogenesis and protein synthesis. We analysed the effect of a pho85Delta mutation on the expression profiles of the genes in this process to investigate whether Pho85 kinase participates in the yeast diauxy. We found that, in the absence of PHO85, a majority of mitochondrial genes were not properly induced, that proteasome-related and chaperonin genes were more repressed, and that, when glucose was still present in the medium, a certain class of genes involved in ribosome biogenesis (ribosomal protein and rRNA processing genes) was repressed, whereas those involved in gluconeogenesis and the glyoxylate cycle were induced. We also found that PHO85 is required for proper expression of several metal sensor genes and their regulatory genes. These results suggest that Pho85 is required for proper onset of changes in expression profiles of genes responsible for the diauxic shift.

  6. Loss of the Yeast SR Protein Npl3 Alters Gene Expression Due to Transcription Readthrough

    PubMed Central

    Holmes, Rebecca K.; Tuck, Alex C.; Zhu, Chenchen; Dunn-Davies, Hywel R.; Kudla, Grzegorz; Clauder-Munster, Sandra; Granneman, Sander; Steinmetz, Lars M.; Guthrie, Christine; Tollervey, David

    2015-01-01

    Yeast Npl3 is a highly abundant, nuclear-cytoplasmic shuttling, RNA-binding protein, related to metazoan SR proteins. Reported functions of Npl3 include transcription elongation, splicing and RNA 3’ end processing. We used UV crosslinking and analysis of cDNA (CRAC) to map precise RNA binding sites, and strand-specific tiling arrays to look at the effects of loss of Npl3 on all transcripts across the genome. We found that Npl3 binds diverse RNA species, both coding and non-coding, at sites indicative of roles in both early pre-mRNA processing and 3’ end formation. Tiling arrays and RNAPII mapping data revealed 3’ extended RNAPII-transcribed RNAs in the absence of Npl3, suggesting that defects in pre-mRNA packaging events result in termination readthrough. Transcription readthrough was widespread and frequently resulted in down-regulation of neighboring genes. We conclude that the absence of Npl3 results in widespread 3' extension of transcripts with pervasive effects on gene expression. PMID:26694144

  7. A series of promoters for constitutive expression of heterologous genes in fission yeast.

    PubMed

    Matsuyama, Akihisa; Shirai, Atsuko; Yoshida, Minoru

    2008-05-01

    Inducible/repressible promoters are useful for the maintenance of toxic genes or timely expression. For ectopic expression of cloned genes in the fission yeast Schizosaccharomyces pombe, the thiamine-regulatable nmt1 promoter has been widely used, since the transcriptional activity of this promoter can be controlled by thiamine. However, this property sometimes limits a certain type of research, since the expression inevitably requires cells to be cultivated under the conditions that induce promoter activation. To allow constitutive expression of heterologous genes, we cloned three promoters of cam1+, tif51+ and ef1a-c+. Construction of a series of vectors comprising these promoters and their introduction into the fission yeast cells demonstrated that the activity was different among these promoters but was not affected by cultured media commonly used in fission yeast. Therefore, a promoter with appropriate strength would be selectable from these promoters, depending on the genes to be expressed.

  8. Segregation of yeast polymorphic STA genes in meiotic recombinants and analysis of glucoamylase production.

    PubMed

    Balogh, I; Maráz, A

    1996-12-01

    Hybrid yeast strains were constructed using haploid Saccharomyces cerevisiae and Saccharomyces cerevisiae var. diastaticus strains to get haploid meiotic recombinants having more than one copy of STA1, STA2, and STA3 genes. STA genes were localized on the chromosomes by pulsed field gel electrophoresis. Working gene dosage effects were found among STA genes in liquid starch medium, indicating low levels of glucose repression. Growth of strains, however, was not influenced by their STA copy number.

  9. [HSM6 gene is identical to PSY4 gene in Saccharomyces cerevisiae yeasts].

    PubMed

    Fedorov, D V; Koval'tsova, S V; Evstukhina, T A; Peshekhonov, V T; Chernenkov, A Iu; Korolev, V G

    2013-03-01

    Previously, we isolated mutant yeasts Saccharomyces cerevisiae with an increased rate of spontaneous mutagenesis. Here, we studied the properties of HSM6 gene, the hsm6-1 mutation of which increased the frequency of UV-induced mutagenesis and decreased the level of UV-induced mitotic crossover at the centromere gene region, ADE2. HSM6 gene was mapped on the left arm of chromosome 11 in the region where the PSY4 gene is located. The epistatic analysis has shown that the hsm6-1 mutation represents an allele of PSY4 gene. Sequencing of hsm6-1 mutant allele has revealed a frameshift mutation, which caused the substitution of Lys218Glu and the generation of a stop codon in the next position. The interactions of hsm6-1 and rad52 mutations were epistatic. Our data show that the PSY4 gene plays a key role in the regulation of cell withdrawal from checkpoint induced by DNA disturbances.

  10. Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene

    NASA Astrophysics Data System (ADS)

    Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.

    1986-08-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  11. The Insertion Green Monster (iGM) Method for Expression of Multiple Exogenous Genes in Yeast

    PubMed Central

    Labunskyy, Vyacheslav M.; Suzuki, Yo; Hanly, Timothy J.; Murao, Ayako; Roth, Frederick P.; Gladyshev, Vadim N.

    2014-01-01

    Being a simple eukaryotic organism, Saccharomyces cerevisiae provides numerous advantages for expression and functional characterization of proteins from higher eukaryotes, including humans. However, studies of complex exogenous pathways using yeast as a host have been hampered by the lack of tools to engineer strains expressing a large number of genetic components. In addition to inserting multiple genes, it is often desirable to knock out or replace multiple endogenous genes that might interfere with the processes studied. Here, we describe the “insertion Green Monster” (iGM) set of expression vectors that enable precise insertion of many heterologous genes into the yeast genome in a rapid and reproducible manner and permit simultaneous replacement of selected yeast genes. As a proof of principle, we have used the iGM method to replace components of the yeast pathway for methionine sulfoxide reduction with genes encoding the human selenoprotein biosynthesis machinery and generated a single yeast strain carrying 11 exogenous components of the selenoprotein biosynthetic pathway in precisely engineered loci. PMID:24776987

  12. Yeast DNA plasmids.

    PubMed

    Gunge, N

    1983-01-01

    The study of yeast DNA plasmids has been initiated with the discovery of the 2-micron DNA in Saccharomyces cerevisiae. This multiple copy plasmid, organized into chromatin structure in vivo, probably exists in the nucleus and provides a good system to obtain information on eukaryotic DNA replication. Yeast transformation with the 2-micron DNA or artificially constructed chimeric plasmids had contributed significantly to the study of the molecular biology of yeast and eukaryotes, allowing the isolation and characterization of various genes, ars, centromeres, and telomeres, and also serving as a tool to study the expression of various heterologous genes. Encouraged by these fruitful results, new yeast plasmids have been screened among phylogenetically distant yeasts. The linear DNA plasmids (pGKl1 and pGKl2) from Kluyveromyces lactis are the first case of yeast plasmids associated with biological function (killer phenotype). This plasmid system would be ideal as a model to study the structure and function of eukaryotic linear chromosomes. The extracellular secretion of protein toxin suggests the plasmids to be an excellent candidate for a secretion vector. The importance of yeasts as suitable materials for the study of eukaryotic cell biology would be much enhanced by the advent of new transformation systems with diverse host yeasts of genetically and phylogenetically distinct properties.

  13. Seasonal and plant-dependent variations in diversity, abundance and stress tolerance of epiphytic yeasts in desert habitats.

    PubMed

    Abu-Ghosh, Said; Droby, Samir; Korine, Carmi

    2014-08-01

    We studied the epiphytic yeast species of the plants of the Negev Desert and the Dead Sea region, Israel, which are considered one of the most extreme hyper-arid lands in the world. For this purpose, we developed isolation protocols; we performed morphological, cultural and molecular identification tests and compared yeast diversity between the locations and the plants. The composition of the yeast populations present in the study's plants underwent seasonal fluctuations, whereas differences in community compositions were significant within sites. The maximum number of species of yeast occurred in autumn and Cryptococcus spp. were predominant year round. The isolated yeast strains showed an unusual tolerance to extreme growth conditions, such as high temperatures (up to 72% viability at 50°C), lethal hydrogen peroxide and NaCl concentrations. These results suggest that epiphytic yeasts inhabit the plants of the Dead Sea region and the Negev Desert have a community structure that is unique to the plant species and have a high tolerance to the harsh conditions that enables them to adapt to an arid ecosystem.

  14. Cloning of three human multifunctional de novo purine biosynthetic genes by functional complementation of yeast mutations.

    PubMed Central

    Schild, D; Brake, A J; Kiefer, M C; Young, D; Barr, P J

    1990-01-01

    Functional complementation of mutations in the yeast Saccharomyces cerevisiae has been used to clone three multifunctional human genes involved in de novo purine biosynthesis. A HepG2 cDNA library constructed in a yeast expression vector was used to transform yeast strains with mutations in adenine biosynthetic genes. Clones were isolated that complement mutations in the yeast ADE2, ADE3, and ADE8 genes. The cDNA that complemented the ade8 (phosphoribosylglycinamide formyltransferase, GART) mutation, also complemented the ade5 (phosphoribosylglycinamide synthetase) and ade7 [phosphoribosylaminoimidazole synthetase (AIRS; also known as PAIS)] mutations, indicating that it is the human trifunctional GART gene. Supporting data include homology between the AIRS and GART domains of this gene and the published sequence of these domains from other organisms, and localization of the cloned gene to human chromosome 21, where the GART gene has been shown to map. The cDNA that complemented ade2 (phosphoribosylaminoimidazole carboxylase) also complemented ade1 (phosphoribosylaminoimidazole succinocarboxamide synthetase), supporting earlier data suggesting that in some organisms these functions are part of a bifunctional protein. The cDNA that complemented ade3 (formyltetrahydrofolate synthetase) is different from the recently isolated human cDNA encoding this enzyme and instead appears to encode a related mitochondrial enzyme. Images PMID:2183217

  15. Gene regulatory changes in yeast during life extension by nutrient limitation.

    PubMed

    Wang, Jinqing; Jiang, James C; Jazwinski, S Michal

    2010-08-01

    Genetic analyses aimed at identification of the pathways and downstream effectors of calorie restriction (CR) in the yeast Saccharomyces cerevisiae suggest the importance of central metabolism for the extension of replicative life span by CR. However, the limited gene expression studies to date are not informative, because they have been conducted using cells grown in batch culture which markedly departs from the conditions under which yeasts are grown during life span determinations. In this study, we have examined the gene expression changes that occur during either glucose limitation or elimination of nonessential-amino acids, both of which enhance yeast longevity, culturing cells in a chemostat at equilibrium, which closely mimics conditions they encounter during life span determinations. Expression of 59 genes was examined quantitatively by real-time, reverse transcriptase polymerase chain reaction (qRT-PCR), and the physiological state of the cultures was monitored. Extensive gene expression changes were detected, some of which were common to both CR regimes. The most striking of these was the induction of tricarboxylic acid (TCA) cycle and retrograde response target genes, which appears to be at least partially due to the up-regulation of the HAP4 gene. These gene regulatory events portend an increase in the generation of biosynthetic intermediates necessary for the production of daughter cells, which is the measure of yeast replicative life span.

  16. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses

    PubMed Central

    Panavas, Tadas; Serviene, Elena; Brasher, Jeremy; Nagy, Peter D.

    2005-01-01

    Viruses are devastating pathogens of humans, animals, and plants. To further our understanding of how viruses use the resources of infected cells, we systematically tested the yeast single-gene-knockout library for the effect of each host gene on the replication of tomato bushy stunt virus (TBSV), a positive-strand RNA virus of plants. The genome-wide screen identified 96 host genes whose absence either reduced or increased the accumulation of the TBSV replicon. The identified genes are involved in the metabolism of nucleic acids, lipids, proteins, and other compounds and in protein targeting/transport. Comparison with published genome-wide screens reveals that the replication of TBSV and brome mosaic virus (BMV), which belongs to a different supergroup among plus-strand RNA viruses, is affected by vastly different yeast genes. Moreover, a set of yeast genes involved in vacuolar targeting of proteins and vesicle-mediated transport both affected replication of the TBSV replicon and enhanced the cytotoxicity of the Parkinson's disease-related α-synuclein when this protein was expressed in yeast. In addition, a set of host genes involved in ubiquitin-dependent protein catabolism affected both TBSV replication and the cytotoxicity of a mutant huntingtin protein, a candidate agent in Huntington's disease. This finding suggests that virus infection and disease-causing proteins might use or alter similar host pathways and may suggest connections between chronic diseases and prior virus infection. PMID:15883361

  17. Yeast diversity associated with invasive Dendroctonus valens killing Pinus tabuliformis in China using culturing and molecular methods.

    PubMed

    Lou, Qiao-Zhe; Lu, Min; Sun, Jiang-Hua

    2014-08-01

    Bark beetle-associated yeasts are much less studied than filamentous fungi, yet they are also considered to play important roles in beetle nutrition, detoxification, and chemical communication. The red turpentine beetle, Dendroctonus valens, an invasive bark beetle introduced from North America, became one of the most destructive pests in China, having killed more than 10 million Pinus tabuliformis as well as other pine species. No investigation of yeasts associated with this bark beetle in its invaded ranges has been conducted so far. The aim of this study was to assess the diversity of yeast communities in different microhabitats and during different developmental stages of Den. valens in China using culturing and denaturing gradient gel electrophoresis (DGGE) approaches and to compare the yeast flora between China and the USA. The yeast identity was confirmed by sequencing the D1/D2 domain of LSU ribosomal DNA (rDNA). In total, 21 species (13 ascomycetes and eight basidiomycetes) were detected by culturing method, and 12 species (11 ascomycetes and one basidiomycetes) were detected by molecular methods from China. The most frequent five species in China were Candida piceae (Ogataea clade), Cyberlindnera americana, Candida oregonensis (Metschnikowia clade), Candida nitratophila (Ogataea clade) and an undescribed Saccharomycopsis sp., detected by both methods. Seven species were exclusively detected by DGGE. Ca. oregonensis (Metschnikowia clade) was the most frequently detected species by DGGE method. Eight species (all were ascomycetes) from the USA were isolated; seven of those were also found in China. We found significant differences in yeast total abundance as well as community composition between different developmental stages and significant differences between the surface and the gut. The frass yeast community was more similar to that of Den. valens surface or larvae than to the community of the gut or adults. Possible functions of the yeast associates are

  18. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    PubMed

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.

  19. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneously fermenting grapes from an Italian "heroic vine-growing area".

    PubMed

    Capece, A; Romaniello, R; Siesto, G; Romano, P

    2012-09-01

    The main aim of this work was to analyse the diversity of wild Saccharomyces cerevisiae isolated from spontaneous fermentations of grapes collected from heroic vine-growing area. A first screening based on several technological traits was used to select 39 strains among 132 isolates. By using three molecular typing techniques (evaluation of cell wall gene polymorphisms, mtDNA restriction analysis, inter-delta amplification analysis) a significant genetic variability was found. The analysis of principal aromatic compounds produced during inoculated fermentation of two grape musts demonstrated the strain impact on wine flavour and a significant influence of grape must on strain metabolic behavior. One selected strain was used in fermentation at cellar level and the analysis of inter-delta region on yeast colonies isolated during the process revealed the high-implantation ability of this strain. The obtained results demonstrate the usefulness of different molecular and technological markers for the evaluation of natural biodiversity among S. cerevisiae strains. This study represents an essential step towards the exploitation and the preservation of biodiversity of strains isolated from heroic vine-growing area. Selected S. cerevisiae strains could represent starter cultures available for winemakers addressed to production of quality premium wines maintaining differential properties of their own area.

  20. Distribution of the trehalase activation response and the regulatory trehalase gene among yeast species.

    PubMed

    Soto, T; Fernández, J; Cansado, J; Vicente, J; Gacto, M

    1997-12-01

    In Saccharomyces cerevisiae and other yeasts the activity of regulatory trehalases increases in response to the addition of glucose and to thermal changes in the extracellular medium. We have performed an screening on the extent of this response among different representative yeast species and the results show that this ability is displayed only by a few members of the Saccharomycetaceae family. However, all yeasts examined contain a gene related to that coding for regulatory trehalase in S. cerevisiae. This finding reveals that the operational distinction between regulatory and nonregulatory trehalase in yeasts is not a property of the enzyme by itself but relays on the expression of accompanying mechanisms able to modulate trehalase activity.

  1. Inducible Amplification of Gene Copy Number and Heterologous Protein Production in the Yeast Kluyveromyces lactis

    PubMed Central

    Morlino, Giovanni B.; Tizzani, Lorenza; Fleer, Reinhard; Frontali, Laura; Bianchi, Michele M.

    1999-01-01

    Heterologous protein production can be doubled by increasing the copy number of the corresponding heterologous gene. We constructed a host-vector system in the yeast Kluyveromyces lactis that was able to induce copy number amplification of pKD1 plasmid-based vectors upon expression of an integrated copy of the plasmid recombinase gene. We increased the production and secretion of two heterologous proteins, glucoamylase from the yeast Arxula adeninivorans and mammalian interleukin-1β, following gene dosage amplification when the heterologous genes were carried by pKD1-based vectors. The choice of the promoters for expression of the integrated recombinase gene and of the episomal heterologous genes are critical for the mitotic stability of the host-vector system. PMID:10543790

  2. Inducible amplification of gene copy number and heterologous protein production in the yeast Kluyveromyces lactis.

    PubMed

    Morlino, G B; Tizzani, L; Fleer, R; Frontali, L; Bianchi, M M

    1999-11-01

    Heterologous protein production can be doubled by increasing the copy number of the corresponding heterologous gene. We constructed a host-vector system in the yeast Kluyveromyces lactis that was able to induce copy number amplification of pKD1 plasmid-based vectors upon expression of an integrated copy of the plasmid recombinase gene. We increased the production and secretion of two heterologous proteins, glucoamylase from the yeast Arxula adeninivorans and mammalian interleukin-1beta, following gene dosage amplification when the heterologous genes were carried by pKD1-based vectors. The choice of the promoters for expression of the integrated recombinase gene and of the episomal heterologous genes are critical for the mitotic stability of the host-vector system.

  3. Large-scale analysis of the yeast genome by transposon tagging and gene disruption.

    PubMed

    Ross-Macdonald, P; Coelho, P S; Roemer, T; Agarwal, S; Kumar, A; Jansen, R; Cheung, K H; Sheehan, A; Symoniatis, D; Umansky, L; Heidtman, M; Nelson, F K; Iwasaki, H; Hager, K; Gerstein, M; Miller, P; Roeder, G S; Snyder, M

    1999-11-25

    Economical methods by which gene function may be analysed on a genomic scale are relatively scarce. To fill this need, we have developed a transposon-tagging strategy for the genome-wide analysis of disruption phenotypes, gene expression and protein localization, and have applied this method to the large-scale analysis of gene function in the budding yeast Saccharomyces cerevisiae. Here we present the largest collection of defined yeast mutants ever generated within a single genetic background--a collection of over 11,000 strains, each carrying a transposon inserted within a region of the genome expressed during vegetative growth and/or sporulation. These insertions affect nearly 2,000 annotated genes, representing about one-third of the 6,200 predicted genes in the yeast genome. We have used this collection to determine disruption phenotypes for nearly 8,000 strains using 20 different growth conditions; the resulting data sets were clustered to identify groups of functionally related genes. We have also identified over 300 previously non-annotated open reading frames and analysed by indirect immunofluorescence over 1,300 transposon-tagged proteins. In total, our study encompasses over 260,000 data points, constituting the largest functional analysis of the yeast genome ever undertaken.

  4. The euryhaline yeast Debaryomyces hansenii has two catalase genes encoding enzymes with differential activity profile.

    PubMed

    Segal-Kischinevzky, Claudia; Rodarte-Murguía, Beatriz; Valdés-López, Victor; Mendoza-Hernández, Guillermo; González, Alicia; Alba-Lois, Luisa

    2011-03-01

    Debaryomyces hansenii is a spoilage yeast able to grow in a variety of ecological niches, from seawater to dairy products. Results presented in this article show that (i) D. hansenii has an inherent resistance to H2O2 which could be attributed to the fact that this yeast has a basal catalase activity which is several-fold higher than that observed in Saccharomyces cerevisiae under the same culture conditions, (ii) D. hansenii has two genes (DhCTA1 and DhCTT1) encoding two catalase isozymes with a differential enzymatic activity profile which is not strictly correlated with a differential expression profile of the encoding genes.

  5. Yeasts from native Brazilian Cerrado plants: Occurrence, diversity and use in the biocontrol of citrus green mould.

    PubMed

    Sperandio, Eugenio Miranda; do Vale, Helson Mario Martins; Moreira, Geisianny Augusta Monteiro

    2015-11-01

    Yeasts are some of the most important postharvest biocontrol agents. Postharvest oranges frequently deteriorate due to green mould (Penicillium digitatum), which causes significant losses. The aims of this study were to determine the composition and diversity of yeasts on plants of the Brazilian Cerrado and to explore their potential for inhibiting citrus green mould. Leaves and fruit of Byrsonima crassifolia and Eugenia dysenterica were collected from Cerrado conservation areas, and thirty-five yeasts were isolated and identified by sequencing the D1-D2 domain of the rDNA large subunit (26S). The isolates represented the Aureobasidium, Meyerozyma, Candida, and Pichia genera. Three isolates identified as Aureobasidium pullulans exhibited potential for the control of P. digitatum in both in vitro and in vivo tests; these isolates reduced the incidence of disease and increased the storage time of fruit. Aureobasidium. pullulans has immense potential for the biological control of filamentous fungi.

  6. Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts.

    PubMed

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Natkanska, Urszula; Kwiatkowska, Aleksandra; Rawska, Ewa; Potocki, Leszek; Kuna, Ewelina; Panek, Anita; Lewinska, Anna; Wnuk, Maciej

    2016-09-01

    The yeast strains of the Saccharomyces sensu stricto complex involved in beer production are a heterogeneous group whose genetic and genomic features are not adequately determined. Thus, the aim of the present study was to provide a genetic characterization of selected group of commercially available brewing yeasts both ale top-fermenting and lager bottom-fermenting strains. Molecular karyotyping revealed that the diversity of chromosome patterns and four strains with the most accented genetic variabilities were selected and subjected to genome-wide array-based comparative genomic hybridization (array-CGH) analysis. The differences in the gene copy number were found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity (p < 0.05). In the Saflager W-34/70 strain (Fermentis) with the most affected array-CGH profile, loss of aryl-alcohol dehydrogenase (AAD) gene dosage correlated with an imbalanced redox state, oxidative DNA damage and breaks, lower levels of nucleolar proteins Nop1 and Fob1, and diminished tolerance to fermentation-associated stress stimuli compared to other strains. We suggest that compromised stress response may not only promote oxidant-based changes in the nucleolus state that may affect fermentation performance but also provide novel directions for future strain improvement.

  7. A densely overlapping gene fragmentation approach improves yeast two-hybrid screens for Plasmodium falciparum proteins.

    PubMed

    Brown, Hakeenah F; Wang, Ling; Khadka, Sudip; Fields, Stanley; LaCount, Douglas J

    2011-01-01

    Use of the yeast two-hybrid assay to study Plasmodium falciparum protein-protein interactions is limited by poor expression of P. falciparum genes in yeast and lack of easily implemented assays to confirm the results. We report here two methods to create gene fragments - random fragmentation by partial DNAse I digestion and generation of densely overlapping fragments by PCR - that enable most portions of P. falciparum genes to be expressed and screened in the yeast two-hybrid assay. The PCR-based method is less technically challenging and facilitates fine-scale mapping of protein interaction domains. Both approaches revealed a putative interaction between PfMyb2 (PF10_0327) and PFC0365w. We developed new plasmids to express the proteins in wheat germ extracts and confirmed the interaction in both the split-luciferase assay and in co-purification experiments with glutathione-S-transferase and HA-tagged proteins. The combination of improved yeast two-hybrid screening approaches and convenient systems to validate interactions enhances the utility of yeast two-hybrid assays for P. falciparum.

  8. Yeast omnipotent supressor SUP1 (SUP45): nucleotide sequence of the wildtype and a mutant gene.

    PubMed

    Breining, P; Piepersberg, W

    1986-07-11

    The primary structures of the yeast recessive omnipotent suppressor gene SUP1 (SUP45) and one of its mutant alleles (sup1-ts36) was determined. The gene codes for a protein of 49 kD. The mutant protein differs from the wildtype form in one amino acid residue (Ser instead of Leu) in the N-terminal part. The codon usage differs significantly from that of yeast ribosomal protein genes. However, an upstream element resembling a conserved oligonucleotide in the region 5' to ribosomal protein genes in S. cerevisiae has been found. A DNA probe internal to the SUP1 gene does not exhibit detectable homology to genomic DNA neither from higher eucaryotes nor from eu- or archaebacteria. The hypothetical function of this protein in control of translational fidelity is discussed.

  9. An IF-FISH Approach for Covisualization of Gene Loci and Nuclear Architecture in Fission Yeast.

    PubMed

    Kim, K-D; Iwasaki, O; Noma, K

    2016-01-01

    Recent genomic studies have revealed that chromosomal structures are formed by a hierarchy of organizing processes ranging from gene associations, including interactions among enhancers and promoters, to topologically associating domain formations. Gene associations identified by these studies can be characterized by microscopic analyses. Fission yeast is a model organism, in which gene associations have been broadly mapped across the genome, although many of those associations have not been further examined by cell biological approaches. To address the technically challenging process of the visualization of associating gene loci in the fission yeast nuclei, we provide, in detail, an IF-FISH procedure that allows for covisualizing both gene loci and nuclear structural markers such as the nuclear membrane and nucleolus.

  10. Expression of the yeast cpd1 gene in tobacco confers resistance to the fungal toxin cercosporin.

    PubMed

    Panagiotis, Madesis; Kritonas, Kalantidis; Irini, Nianiou Obeidat; Kiriaki, Chatzidimitriou; Nicolaos, Panopoulos; Athanasios, Tsaftaris

    2007-06-01

    Many phytopathogenic species of the fungus Cercospora produce cercosporin, a photoactivated perylenequinone toxin that belongs to a family of photosensitizers, which absorb light energy and produce extremely cytotoxic, reactive oxygen species. The cpd1 (cercosporin photosensitizer detoxification) gene of yeast (Saccharomyces cerevisiae), which encodes for a novel protein with significant similarity to the FAD-dependent pyridine nucleotide reductases, confers resistance to cercosporin when over-expressed in yeast. The aim of this work was to investigate the potential ability of cpd1 gene to confer resistance to cercosporin when expressed in tobacco plants (Nicotiana tabacum). Transgenic tobacco plants were produced using Agrobacterium tumefaciens, with cpd1 integrated as the gene of interest. We report here that expression of cpd1 gene in tobacco can mediate resistance to cercosporin. The involvement of cpd1 gene in the detoxification of the cercosporin reinforces previous observations, which suggested that resistance to cercosporin is mediated by a mechanism involving toxin reduction.

  11. Identification and characterization of a gene and protein required for glycosylation in the yeast Golgi.

    PubMed

    Devlin, C; Ballou, C E

    1990-11-01

    The MNN2 gene of Saccharomyces cerevisiae has been cloned by complementation of the mnn2 mutant phenotype scored by a change in cell surface carbohydrate structure resulting from a lack of alpha 1----2-mannose branching in the outer chain. The gene was subcloned as a 3 kb DNA fragment that integrated at the MNN2 locus, and a gene disruption yielded the mnn2 phenotype. A lacZ-MNN2 gene fusion protein, produced in Escherichia coli, was used to raise a specific antiserum that recognized a 65 kD wild-type yeast protein. This MNN2 gene product lacks N-linked carbohydrate but appears to be an integral membrane protein. Overproduction of MNN2p does not enhance the alpha 1----2-mannosyltransferase activity of yeast cells. The results suggest that MNN2p is a Golgi-associated protein that is involved in mannoprotein sorting rather than glycosylation.

  12. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression.

    PubMed

    Rautio, Jari J; Huuskonen, Anne; Vuokko, Heikki; Vidgren, Virve; Londesborough, John

    2007-09-01

    Brewer's yeast experiences constantly changing environmental conditions during wort fermentation. Cells can rapidly adapt to changing surroundings by transcriptional regulation. Changes in genomic expression can indicate the physiological condition of yeast in the brewing process. We monitored, using the transcript analysis with aid of affinity capture (TRAC) method, the expression of some 70 selected genes relevant to wort fermentation at high frequency through 9-10 day fermentations of very high gravity wort (25 degrees P) by an industrial lager strain. Rapid changes in expression occurred during the first hours of fermentations for several genes, e.g. genes involved in maltose metabolism, glycolysis and ergosterol synthesis were strongly upregulated 2-6 h after pitching. By the time yeast growth had stopped (72 h) and total sugars had dropped by about 50%, most selected genes had passed their highest expression levels and total mRNA was less than half the levels during growth. There was an unexpected upregulation of some genes of oxygen-requiring pathways during the final fermentation stages. For five genes, expression of both the Saccharomyces cerevisiae and S. bayanus components of the hybrid lager strain were determined. Expression profiles were either markedly different (ADH1, ERG3) or very similar (MALx1, ILV5, ATF1) between these two components. By frequent analysis of a chosen set of genes, TRAC provided a detailed and dynamic picture of the physiological state of the fermenting yeast. This approach offers a possible way to monitor and optimize the performance of yeast in a complex process environment.

  13. Dynamics and modeling of temperature-regulated gene product expression in recombinant yeast fermentation.

    PubMed

    Cheng, C; Yang, S T

    1996-06-20

    The dynamic response of temperature-regulated gene expression in the recombinant yeast Saccharomyces cerevisiae, strain XK1-C2 carrying plasmid pSXR125, to temperature changes during fed-batch and continuous (chemostat) cultures was studied. The production of the gene product, beta-galactosidase, in the yeast cell is sensitive to the growth temperature. Gene expression of this product was fully turned on or off by temperature shifts between 24 and 30 degrees C. However, the response for gene turn-on and turn-off in this recombinant yeast was slow, requiring from several hours to over 10 h to fully appear. The continuous reactor took 30-60 h after the temperature shift to reach a new steady state. A dynamic process model was developed to simulate the reactor and cell responses to temperature shift. A first-order model was used to account for the effect of dilution rate on the change of protein concentration in the chemostat. It was found that cell response in gene expression to temperature shift followed first-order plus dead-time dynamics. Also, the response time for gene expression to temperature shift varied with specific growth rate or dilution rate of the continuous reactor. In general, the response was slower at a higher dilution rate and for gene turn-on than for gene turn-off.

  14. Genome-wide array-CGH analysis reveals YRF1 gene copy number variation that modulates genetic stability in distillery yeasts.

    PubMed

    Deregowska, Anna; Skoneczny, Marek; Adamczyk, Jagoda; Kwiatkowska, Aleksandra; Rawska, Ewa; Skoneczna, Adrianna; Lewinska, Anna; Wnuk, Maciej

    2015-10-13

    Industrial yeasts, economically important microorganisms, are widely used in diverse biotechnological processes including brewing, winemaking and distilling. In contrast to a well-established genome of brewer's and wine yeast strains, the comprehensive evaluation of genomic features of distillery strains is lacking. In the present study, twenty two distillery yeast strains were subjected to electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH). The strains analyzed were assigned to the Saccharomyces sensu stricto complex and grouped into four species categories: S. bayanus, S. paradoxus, S. cerevisiae and S. kudriavzevii. The genomic diversity was mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX were the most frequently observed. Statistically significant differences in the gene copy number were documented in six functional gene categories: 1) telomere maintenance via recombination, DNA helicase activity or DNA binding, 2) maltose metabolism process, glucose transmembrane transporter activity; 3) asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4) siderophore transport, 5) response to copper ion, cadmium ion binding and 6) L-iditol 2- dehydrogenase activity. The losses of YRF1 genes (Y' element ATP-dependent helicase) were accompanied by decreased level of Y' sequences and an increase in DNA double and single strand breaks, and oxidative DNA damage in the S. paradoxus group compared to the S. bayanus group. We postulate that naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the S. bayanus group of distillery yeast strains.

  15. Genome-wide array-CGH analysis reveals YRF1 gene copy number variation that modulates genetic stability in distillery yeasts

    PubMed Central

    Adamczyk, Jagoda; Kwiatkowska, Aleksandra; Rawska, Ewa; Skoneczna, Adrianna

    2015-01-01

    Industrial yeasts, economically important microorganisms, are widely used in diverse biotechnological processes including brewing, winemaking and distilling. In contrast to a well-established genome of brewer's and wine yeast strains, the comprehensive evaluation of genomic features of distillery strains is lacking. In the present study, twenty two distillery yeast strains were subjected to electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH). The strains analyzed were assigned to the Saccharomyces sensu stricto complex and grouped into four species categories: S. bayanus, S. paradoxus, S. cerevisiae and S. kudriavzevii. The genomic diversity was mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX were the most frequently observed. Statistically significant differences in the gene copy number were documented in six functional gene categories: 1) telomere maintenance via recombination, DNA helicase activity or DNA binding, 2) maltose metabolism process, glucose transmembrane transporter activity; 3) asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4) siderophore transport, 5) response to copper ion, cadmium ion binding and 6) L-iditol 2- dehydrogenase activity. The losses of YRF1 genes (Y' element ATP-dependent helicase) were accompanied by decreased level of Y' sequences and an increase in DNA double and single strand breaks, and oxidative DNA damage in the S. paradoxus group compared to the S. bayanus group. We postulate that naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the S. bayanus group of distillery yeast strains. PMID:26384347

  16. Using a Euclid distance discriminant method to find protein coding genes in the yeast genome.

    PubMed

    Zhang, Chun-Ting; Wang, Ju; Zhang, Ren

    2002-02-01

    The Euclid distance discriminant method is used to find protein coding genes in the yeast genome, based on the single nucleotide frequencies at three codon positions in the ORFs. The method is extremely simple and may be extended to find genes in prokaryotic genomes or eukaryotic genomes with less introns. Six-fold cross-validation tests have demonstrated that the accuracy of the algorithm is better than 93%. Based on this, it is found that the total number of protein coding genes in the yeast genome is less than or equal to 5579 only, about 3.8-7.0% less than 5800-6000, which is currently widely accepted. The base compositions at three codon positions are analyzed in details using a graphic method. The result shows that the preference codons adopted by yeast genes are of the RGW type, where R, G and W indicate the bases of purine, non-G and A/T, whereas the 'codons' in the intergenic sequences are of the form NNN, where N denotes any base. This fact constitutes the basis of the algorithm to distinguish between coding and non-coding ORFs in the yeast genome. The names of putative non-coding ORFs are listed here in detail.

  17. Yeast prion architecture explains how proteins can be genes

    NASA Astrophysics Data System (ADS)

    Wickner, Reed

    2013-03-01

    Prions (infectious proteins) transmit information without an accompanying DNA or RNA. Most yeast prions are self-propagating amyloids that inactivate a normally functional protein. A single protein can become any of several prion variants, with different manifestations due to different amyloid structures. We showed that the yeast prion amyloids of Ure2p, Sup35p and Rnq1p are folded in-register parallel beta sheets using solid state NMR dipolar recoupling experiments, mass-per-filament-length measurements, and filament diameter measurements. The extent of beta sheet structure, measured by chemical shifts in solid-state NMR and acquired protease-resistance on amyloid formation, combined with the measured filament diameters, imply that the beta sheets must be folded along the long axis of the filament. We speculate that prion variants of a single protein sequence differ in the location of these folds. Favorable interactions between identical side chains must hold these structures in-register. The same interactions must guide an unstructured monomer joining the end of a filament to assume the same conformation as molecules already in the filament, with the turns at the same locations. In this way, a protein can template its own conformation, in analogy to the ability of a DNA molecule to template its sequence by specific base-pairing. Bldg. 8, Room 225, NIH, 8 Center Drive MSC 0830, Bethesda, MD 20892-0830, wickner@helix.nih.gov, 301-496-3452

  18. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans.

    PubMed

    Hayashi, Kazuhiro; Ogiyama, Yuki; Yokomi, Kazumasa; Nakagawa, Tsuyoshi; Kaino, Tomohiro; Kawamukai, Makoto

    2014-01-01

    Coenzyme Q (CoQ) is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3-9) that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana) to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.

  19. sigma, a repetitive element found adjacent to tRNA genes of yeast.

    PubMed Central

    del Rey, F J; Donahue, T F; Fink, G R

    1982-01-01

    sigma is a DNA element of about 340 base pairs (bp) that is repeated many times in the yeast genome. The element has 8-bp inverted repeats at its ends and is flanked by 5-bp direct repeats. The 5-bp repeats are different for each sigma and have no homology with the ends of the sigma sequence. sigma is located 16 or 18 bp from the 5' end of several tRNA genes. Southern analysis of different yeast strains shows that the pattern of hybridization is different even for closely related strains. Images PMID:6287468

  20. The use of yeast genetic diversity for agricultural and biotechnological applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many yeasts have been shown to be effective for biocontrol of field, greenhouse, and storage diseases of agricultural crops. Yeasts are generally regarded as safe for a wide variety of applications and some species establish large populations on leaf and fruit surfaces, resulting in disease control ...

  1. The use of yeast genetic diversity for agricultural and biotechnological applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many types of yeast have been shown to be effective for biocontrol of field, greenhouse, and storage diseases of agricultural crops. Yeasts are generally regarded as safe for a wide variety of applications and some species establish large populations on leaf and fruit surfaces, resulting in disease ...

  2. Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast.

    PubMed

    Narcross, Lauren; Bourgeois, Leanne; Fossati, Elena; Burton, Euan; Martin, Vincent J J

    2016-12-16

    The ever-increasing quantity of data deposited to GenBank is a valuable resource for mining new enzyme activities. Falling costs of DNA synthesis enables metabolic engineers to take advantage of this resource for identifying superior or novel enzymes for pathway optimization. Previously, we reported synthesis of the benzylisoquinoline alkaloid dihydrosanguinarine in yeast from norlaudanosoline at a molar conversion of 1.5%. Molar conversion could be improved by reduction of the side-product N-methylcheilanthifoline, a key bottleneck in dihydrosanguinarine biosynthesis. Two pathway enzymes, an N-methyltransferase and a cytochrome P450 of the CYP719A subfamily, were implicated in the synthesis of the side-product. Here, we conducted an extensive screen to identify enzyme homologues whose coexpression reduces side-product synthesis. Phylogenetic trees were generated from multiple sources of sequence data to identify a library of candidate enzymes that were purchased codon-optimized and precloned into expression vectors designed to facilitate high-throughput analysis of gene expression as well as activity assay. Simple in vivo assays were sufficient to guide the selection of superior enzyme homologues that ablated the synthesis of the side-product, and improved molar conversion of norlaudanosoline to dihydrosanguinarine to 10%.

  3. Yeast mitochondrial protein-protein interactions reveal diverse complexes and disease-relevant functional relationships.

    PubMed

    Jin, Ke; Musso, Gabriel; Vlasblom, James; Jessulat, Matthew; Deineko, Viktor; Negroni, Jacopo; Mosca, Roberto; Malty, Ramy; Nguyen-Tran, Diem-Hang; Aoki, Hiroyuki; Minic, Zoran; Freywald, Tanya; Phanse, Sadhna; Xiang, Qian; Freywald, Andrew; Aloy, Patrick; Zhang, Zhaolei; Babu, Mohan

    2015-02-06

    Although detailed, focused, and mechanistic analyses of associations among mitochondrial proteins (MPs) have identified their importance in varied biological processes, a systematic understanding of how MPs function in concert both with one another and with extra-mitochondrial proteins remains incomplete. Consequently, many questions regarding the role of mitochondrial dysfunction in the development of human disease remain unanswered. To address this, we compiled all existing mitochondrial physical interaction data for over 1200 experimentally defined yeast MPs and, through bioinformatic analysis, identified hundreds of heteromeric MP complexes having extensive associations both within and outside the mitochondria. We provide support for these complexes through structure prediction analysis, morphological comparisons of deletion strains, and protein co-immunoprecipitation. The integration of these MP complexes with reported genetic interaction data reveals substantial crosstalk between MPs and non-MPs and identifies novel factors in endoplasmic reticulum-mitochondrial organization, membrane structure, and mitochondrial lipid homeostasis. More than one-third of these MP complexes are conserved in humans, with many containing members linked to clinical pathologies, enabling us to identify genes with putative disease function through guilt-by-association. Although still remaining incomplete, existing mitochondrial interaction data suggests that the relevant molecular machinery is modular, yet highly integrated with non-mitochondrial processes.

  4. A shuttle mutagenesis system for tagging genes in the yeast Yarrowia lipolytica.

    PubMed

    Neuvéglise, C; Nicauda, J M; Ross-Macdonald, P; Gaillardin, C

    1998-06-15

    A shuttle mutagenesis system was developed for the dimorphic yeast Yarrowia lipolytica. This system combines transposon insertions generated in Escherichia coli with the transformation of yeast with the Tn-mutagenized DNA. The mini-transposon mTn-3xHA/GFP, used in Saccharomyces cerevisiae for producing stable insertions, was adapted for use in the yeast Y. lipolytica. The mTnYl1 transposon (for mini-Tn of Y. lipolytica) confers resistance to tetracycline in E. coli. It also contains the Y. lipolytica URA3 gene for selection of yeast transformants, and the coding sequence for the S65T mutant form of GFP. The rare cutter endonuclease, I-SceI, restriction site, which enables identification of the chromosomal localization of mutagenized genes, was also incorporated. mTnYl1 was first tested on the ACO1 gene, which encodes an Acyl CoA oxidase isozyme. The mutagenesis system was further validated on a Y. lipolytica genomic DNA library constructed in a pHSS6 derivative vector. Mutants with a particular morphology or defective for alkane, fatty acids and oil degradation were obtained.

  5. Analysis of gene expression profiles of Lactobacillus paracasei induced by direct contact with Saccharomyces cerevisiae through recognition of yeast mannan

    PubMed Central

    YAMASAKI-YASHIKI, Shino; SAWADA, Hiroshi; KINO-OKA, Masahiro; KATAKURA, Yoshio

    2016-01-01

    Co-culture of lactic acid bacteria (LAB) and yeast induces specific responses that are not observed in pure culture. Gene expression profiles of Lactobacillus paracasei ATCC 334 co-cultured with Saccharomyces cerevisiae IFO 0216 were analyzed by DNA microarray, and the responses induced by direct contact with the yeast cells were investigated. Coating the LAB cells with recombinant DnaK, which acts as an adhesive protein between LAB and yeast cells, enhanced the ratio of adhesion of the LAB cells to the yeast cells. The signals induced by direct contact were clarified by removal of the LAB cells unbound to the yeast cells. The genes induced by direct contact with heat-inactivated yeast cells were very similar to both those induced by the intact yeast cells and those induced by a soluble mannan. The top 20 genes upregulated by direct contact with the heat-inactivated yeast cells mainly encoded proteins related to exopolysaccharide synthesis, modification of surface proteins, and transport systems. In the case of the most upregulated gene, LSEI_0669, encoding a protein that has a region homologous to polyprenyl glycosylphosphotransferase, the expression level was upregulated 7.6-, 11.0-, and 8.8-fold by the heat-inactivated yeast cells, the intact yeast cells, and the soluble mannan, respectively, whereas it was only upregulated 1.8-fold when the non-adherent LAB cells were not removed before RNA extraction. Our results indicated that the LAB responded to direct contact with the yeast cells through recognition of mannan on the surface of the yeast. PMID:28243547

  6. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    PubMed Central

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  7. Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses

    PubMed Central

    Liu, X.-Z.; Wang, Q.-M.; Theelen, B.; Groenewald, M.; Bai, F.-Y.; Boekhout, T.

    2015-01-01

    The Tremellomycetes (Basidiomycota) contains a large number of unicellular and dimorphic fungi with stable free-living unicellular states in their life cycles. These fungi have been conventionally classified as basidiomycetous yeasts based on physiological and biochemical characteristics. Many currently recognised genera of these yeasts are mainly defined based on phenotypical characters and are highly polyphyletic. Here we reconstructed the phylogeny of the majority of described anamorphic and teleomorphic tremellomycetous yeasts using Bayesian inference, maximum likelihood, and neighbour-joining analyses based on the sequences of seven genes, including three rRNA genes, namely the small subunit of the ribosomal DNA (rDNA), D1/D2 domains of the large subunit rDNA, and the internal transcribed spacer regions (ITS 1 and 2) of rDNA including 5.8S rDNA; and four protein-coding genes, namely the two subunits of the RNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1) and the mitochondrial gene cytochrome b (CYTB). With the consideration of morphological, physiological and chemotaxonomic characters and the congruence of phylogenies inferred from analyses using different algorithms based on different data sets consisting of the combined seven genes, the three rRNA genes, and the individual protein-coding genes, five major lineages corresponding to the orders Cystofilobasidiales, Filobasidiales, Holtermanniales, Tremellales, and Trichosporonales were resolved. A total of 45 strongly supported monophyletic clades with multiple species and 23 single species clades were recognised. This phylogenetic framework will be the basis for the proposal of an updated taxonomic system of tremellomycetous yeasts that will be compatible with the current taxonomic system of filamentous basidiomycetes accommodating the ‘one fungus, one name’ principle. PMID:26955196

  8. Using Multi-Instance Hierarchical Clustering Learning System to Predict Yeast Gene Function

    PubMed Central

    Liao, Bo; Li, Yun; Jiang, Yan; Cai, Lijun

    2014-01-01

    Time-course gene expression datasets, which record continuous biological processes of genes, have recently been used to predict gene function. However, only few positive genes can be obtained from annotation databases, such as gene ontology (GO). To obtain more useful information and effectively predict gene function, gene annotations are clustered together to form a learnable and effective learning system. In this paper, we propose a novel multi-instance hierarchical clustering (MIHC) method to establish a learning system by clustering GO and compare this method with other learning system establishment methods. Multi-label support vector machine classifier and multi-label K-nearest neighbor classifier are used to verify these methods in four yeast time-course gene expression datasets. The MIHC method shows good performance, which serves as a guide to annotators or refines the annotation in detail. PMID:24621610

  9. Hsp12p and PAU genes are involved in ecological interactions between natural yeast strains.

    PubMed

    Rivero, Damaríz; Berná, Luisa; Stefanini, Irene; Baruffini, Enrico; Bergerat, Agnes; Csikász-Nagy, Attila; De Filippo, Carlotta; Cavalieri, Duccio

    2015-08-01

    The coexistence of different yeasts in a single vineyard raises the question on how they communicate and why slow growers are not competed out. Genetically modified laboratory strains of Saccharomyces cerevisiae are extensively used to investigate ecological interactions, but little is known about the genes regulating cooperation and competition in ecologically relevant settings. Here, we present evidences of Hsp12p-dependent altruistic and contact-dependent competitive interactions between two natural yeast isolates. Hsp12p is released during cell death for public benefit by a fast-growing strain that also produces a killer toxin to inhibit growth of a slow grower that can enjoy the benefits of released Hsp12p. We also show that the protein Pau5p is essential in the defense against the killer effect. Our results demonstrate that the combined action of Hsp12p, Pau5p and a killer toxin is sufficient to steer a yeast community.

  10. A general lack of compensation for gene dosage in yeast

    PubMed Central

    Springer, Michael; Weissman, Jonathan S; Kirschner, Marc W

    2010-01-01

    Gene copy number variation has been discovered in humans, between related species, and in different cancer tissues, but it is unclear how much of this genomic-level variation leads to changes in the level of protein abundance. To address this, we eliminated one of the two genomic copies of 730 different genes in Saccharomyces cerevisiae and asked how often a 50% reduction in gene dosage leads to a 50% reduction in protein level. For at least 80% of genes tested, and under several environmental conditions, it does: protein levels in the heterozygous strain are close to 50% of wild type. For <5% of the genes tested, the protein levels in the heterozygote are maintained at nearly wild-type levels. These experiments show that protein levels are not, in general, directly monitored and adjusted to a desired level. Combined with fitness data, this implies that proteins are expressed at levels higher than necessary for survival. PMID:20461075

  11. Splicing Functions and Global Dependency on Fission Yeast Slu7 Reveal Diversity in Spliceosome Assembly

    PubMed Central

    Banerjee, Shataparna; Khandelia, Piyush; Melangath, Geetha; Bashir, Samirul; Nagampalli, Vijaykrishna

    2013-01-01

    The multiple short introns in Schizosaccharomyces pombe genes with degenerate cis sequences and atypically positioned polypyrimidine tracts make an interesting model to investigate canonical and alternative roles for conserved splicing factors. Here we report functions and interactions of the S. pombe slu7+ (spslu7+) gene product, known from Saccharomyces cerevisiae and human in vitro reactions to assemble into spliceosomes after the first catalytic reaction and to dictate 3′ splice site choice during the second reaction. By using a missense mutant of this essential S. pombe factor, we detected a range of global splicing derangements that were validated in assays for the splicing status of diverse candidate introns. We ascribe widespread, intron-specific SpSlu7 functions and have deduced several features, including the branch nucleotide-to-3′ splice site distance, intron length, and the impact of its A/U content at the 5′ end on the intron's dependence on SpSlu7. The data imply dynamic substrate-splicing factor relationships in multiintron transcripts. Interestingly, the unexpected early splicing arrest in spslu7-2 revealed a role before catalysis. We detected a salt-stable association with U5 snRNP and observed genetic interactions with spprp1+, a homolog of human U5-102k factor. These observations together point to an altered recruitment and dependence on SpSlu7, suggesting its role in facilitating transitions that promote catalysis, and highlight the diversity in spliceosome assembly. PMID:23754748

  12. The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts.

    PubMed

    Kowalska, Ewa; Kozik, Andrzej

    2008-01-01

    Thiamin (vitamin B1) is an essential molecule for all living organisms. Its major biologically active derivative is thiamin diphosphate, which serves as a cofactor for several enzymes involved in carbohydrate and amino acid metabolism. Important new functions for thiamin and its phosphate esters have recently been suggested, e.g. in gene expression regulation by influencing mRNA structure, in DNA repair after UV illumination, and in the protection of some organelles against reactive oxygen species. Unlike higher animals, which rely on nutritional thiamin intake, yeasts can synthesize thiamin de novo. The biosynthesis pathways include the separate synthesis of two precursors, 4-amino-5-hydroxymethyl-2-methylpyrimidine diphosphate and 5-(2-hydroxyethyl)-4-methylthiazole phosphate, which are then condensed into thiamin monophosphate. Additionally, yeasts evolved salvage mechanisms to utilize thiamin and its dephosphorylated late precursors, 4-amino-5-hydroxymethyl-2-methylpyrimidine and 5-(2-hydroxyethyl)-4-methylthiazole, from the environment. The current state of knowledge on the discrete steps of thiamin biosynthesis in yeasts is far from satisfactory; many intermediates are postulated only by analogy to the much better understood biosynthesis process in bacteria. On the other hand, the genetic mechanisms regulating thiamin biosynthesis in yeasts are currently under extensive exploration. Only recently, the structures of some of the yeast enzymes involved in thiamin biosynthesis, such as thiamin diphosphokinase and thiazole synthase, were determined at the atomic resolution, and mechanistic proposals for the catalysis of particular biosynthetic steps started to emerge.

  13. New families of single integration vectors and gene tagging plasmids for genetic manipulations in budding yeast.

    PubMed

    Wosika, Victoria; Durandau, Eric; Varidel, Clémence; Aymoz, Delphine; Schmitt, Marta; Pelet, Serge

    2016-12-01

    The tractability of the budding yeast genome has provided many insights into the fundamental mechanisms regulating cellular life. With the advent of synthetic biology and single-cell measurements, novel tools are required to manipulate the yeast genome in a more controlled manner. We present, here, a new family of yeast shuttle vectors called single integration vectors (pSIV). Upon transformation in yeast, these plasmids replace the entire deficient auxotrophy marker locus by a cassette containing an exogenous marker. As shown using flow cytometry, this complete replacement results in a unique integration of the desired DNA fragment at the marker locus. In addition, a second transcriptional unit can be inserted to achieve the simultaneous integration of two constructs. The selection marker cassettes, present in the pSIV, were also used to generate a complete set of gene tagging plasmids (pGT) encompassing a large palette of fluorescent proteins, from a cyan fluorescent protein to a near-infrared tandem dimer red fluorescent protein. These tagging cassettes are orthogonal to each other thanks to the use of different TEF promoter and terminator couples, thereby avoiding marker cassette switching and favoring integration in the desired locus. In summary, we have created two sets of robust molecular tools for the precise genetic manipulation of the budding yeast.

  14. UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme.

    PubMed Central

    McGrath, J P; Jentsch, S; Varshavsky, A

    1991-01-01

    All known functions of ubiquitin are mediated through its covalent attachment to other proteins. The post-translational formation of ubiquitin--protein conjugates is preceded by an ATP-requiring step in which the carboxyl terminus of ubiquitin is adenylated and subsequently joined, through a thiolester bond, to a cysteine residue in the ubiquitin-activating enzyme, also known as E1. We report the isolation and functional analysis of the gene (UBA1) for the ubiquitin-activating enzyme of the yeast Saccharomyces cerevisiae. UBA1 encodes a 114 kd protein whose amino acid sequence contains motifs characteristic of nucleotide-binding sites. Expression of catalytically active UBA1 protein in E. coli, which lacks the ubiquitin system, confirmed that the yeast UBA1 gene encodes a ubiquitin-activating enzyme. Deletion of the UBA1 gene is lethal, demonstrating that the formation of ubiquitin--protein conjugates is essential for cell viability. Images PMID:1989885

  15. Microbial Terroir in Chilean Valleys: Diversity of Non-conventional Yeast.

    PubMed

    Jara, Carla; Laurie, V Felipe; Mas, Albert; Romero, Jaime

    2016-01-01

    In this study, the presence of non-conventional yeast associated with vineyards located between latitudes 30°S and 36°S was examined, including the valleys of Limarí, Casablanca, Maipo, Colchagua, Maule, and Itata. The microbial fingerprinting in each valley was examined based on the specific quantification of yeast of enological interest. Grape-berries were sampled to evaluate the presence and load of non-conventional yeast with enological potential, such as Metschnikowia, Hanseniaspora, Torulaspora, Debaryomyces, Meyerozyma, and Rhodotorula. These yeasts were present in all vineyards studied but with varying loads depending on the valley sampled. No identical fingerprints were observed; however, similarities and differences could be observed among the microbial profiles of each valley. A co-variation in the loads of Metschnikowia and Hanseniaspora with latitude was observed, showing high loads in the Casablanca and Itata valleys, which was coincident with the higher relative humidity or rainfall of those areas. Non-conventional yeasts were also isolated and identified after sequencing molecular markers. Potentially good aromatic properties were also screened among the isolates, resulting in the selection of mostly Metschnikowia and Hanseniaspora isolates. Finally, our results suggest that microbial terroir might be affected by climatic conditions such as relative humidity and rainfall, especially impacting the load of non-conventional yeast. In this study, the microbial fingerprint for yeast in Chilean vineyards is reported for the first time revealing an opportunity to study the contribution of this assembly of microorganisms to the final product.

  16. Microbial Terroir in Chilean Valleys: Diversity of Non-conventional Yeast

    PubMed Central

    Jara, Carla; Laurie, V. Felipe; Mas, Albert; Romero, Jaime

    2016-01-01

    In this study, the presence of non-conventional yeast associated with vineyards located between latitudes 30°S and 36°S was examined, including the valleys of Limarí, Casablanca, Maipo, Colchagua, Maule, and Itata. The microbial fingerprinting in each valley was examined based on the specific quantification of yeast of enological interest. Grape–berries were sampled to evaluate the presence and load of non-conventional yeast with enological potential, such as Metschnikowia, Hanseniaspora, Torulaspora, Debaryomyces, Meyerozyma, and Rhodotorula. These yeasts were present in all vineyards studied but with varying loads depending on the valley sampled. No identical fingerprints were observed; however, similarities and differences could be observed among the microbial profiles of each valley. A co-variation in the loads of Metschnikowia and Hanseniaspora with latitude was observed, showing high loads in the Casablanca and Itata valleys, which was coincident with the higher relative humidity or rainfall of those areas. Non-conventional yeasts were also isolated and identified after sequencing molecular markers. Potentially good aromatic properties were also screened among the isolates, resulting in the selection of mostly Metschnikowia and Hanseniaspora isolates. Finally, our results suggest that microbial terroir might be affected by climatic conditions such as relative humidity and rainfall, especially impacting the load of non-conventional yeast. In this study, the microbial fingerprint for yeast in Chilean vineyards is reported for the first time revealing an opportunity to study the contribution of this assembly of microorganisms to the final product. PMID:27242693

  17. Yeast model identifies ENTPD6 as a potential non-obstructive azoospermia pathogenic gene

    PubMed Central

    Wang, Qian; Liu, Chao; Tang, Chaoming; Guo, Huiping; Liu, Yujiao; Wang, Lina; Zhao, Haichao; Shang, Yongliang; Wen, Yang; Lin, Yuan; Zhou, Tao; Zhou, Zuomin; Dong, Wen; Hu, Zhibin; Guo, Xuejiang; Sha, Jiahao; Li, Wei

    2015-01-01

    Approximately ten percent of male infertility is caused by non-obstructive azoospermia (NOA), but the etiologies of many NOA remain elusive. Recently, a genome-wide association study (GWAS) of NOA in Han Chinese men was conducted, and only a few genetic variants associated with NOA were found, which might have resulted from genetic heterogeneity. However, those variants that lack genome-wide significance might still be essential for fertility. Functional analysis of genes surrounding these variants in Drosophila identified some spermatogenesis-essential genes. As a complementary method of Drosophila screening, SK1 background Saccharomvces cerevisiae was used as a model to screen meiosis-related genes from the NOA GWAS data in this study. After functional screening, GDA1 (orthologous to humanENTPD6) was found to be a novel meiosis-related gene. The deletion of GDA1 resulted in the failure of yeast sporulation. Further investigations showed that Gda1p was important for pre-meiotic S phase entry. Interestingly, the meiotic role of Gda1p was dependent on its guanosine diphosphatase activity, but not it’s cytoplasmic, transmembrane or stem domains. These yeast data suggest that ENTPD6 may be a novel meiosis-associated NOA-related gene, and the yeast model provides a good approach to analyze GWAS results of NOA. PMID:26152596

  18. Fission Yeast CSL Transcription Factors: Mapping Their Target Genes and Biological Roles

    PubMed Central

    Převorovský, Martin; Oravcová, Martina; Tvarůžková, Jarmila; Zach, Róbert; Folk, Petr; Půta, František; Bähler, Jürg

    2015-01-01

    Background Cbf11 and Cbf12, the fission yeast CSL transcription factors, have been implicated in the regulation of cell-cycle progression, but no specific roles have been described and their target genes have been only partially mapped. Methodology/Principal Findings Using a combination of transcriptome profiling under various conditions and genome-wide analysis of CSL-DNA interactions, we identify genes regulated directly and indirectly by CSL proteins in fission yeast. We show that the expression of stress-response genes and genes that are expressed periodically during the cell cycle is deregulated upon genetic manipulation of cbf11 and/or cbf12. Accordingly, the coordination of mitosis and cytokinesis is perturbed in cells with genetically manipulated CSL protein levels, together with other specific defects in cell-cycle progression. Cbf11 activity is nutrient-dependent and Δcbf11-associated defects are mitigated by inactivation of the protein kinase A (Pka1) and stress-activated MAP kinase (Sty1p38) pathways. Furthermore, Cbf11 directly regulates a set of lipid metabolism genes and Δcbf11 cells feature a stark decrease in the number of storage lipid droplets. Conclusions/Significance Our results provide a framework for a more detailed understanding of the role of CSL proteins in the regulation of cell-cycle progression in fission yeast. PMID:26366556

  19. Yeast model identifies ENTPD6 as a potential non-obstructive azoospermia pathogenic gene.

    PubMed

    Wang, Qian; Liu, Chao; Tang, Chaoming; Guo, Huiping; Liu, Yujiao; Wang, Lina; Zhao, Haichao; Shang, Yongliang; Wen, Yang; Lin, Yuan; Zhou, Tao; Zhou, Zuomin; Dong, Wen; Hu, Zhibin; Guo, Xuejiang; Sha, Jiahao; Li, Wei

    2015-07-08

    Approximately ten percent of male infertility is caused by non-obstructive azoospermia (NOA), but the etiologies of many NOA remain elusive. Recently, a genome-wide association study (GWAS) of NOA in Han Chinese men was conducted, and only a few genetic variants associated with NOA were found, which might have resulted from genetic heterogeneity. However, those variants that lack genome-wide significance might still be essential for fertility. Functional analysis of genes surrounding these variants in Drosophila identified some spermatogenesis-essential genes. As a complementary method of Drosophila screening, SK1 background Saccharomvces cerevisiae was used as a model to screen meiosis-related genes from the NOA GWAS data in this study. After functional screening, GDA1 (orthologous to humanENTPD6) was found to be a novel meiosis-related gene. The deletion of GDA1 resulted in the failure of yeast sporulation. Further investigations showed that Gda1p was important for pre-meiotic S phase entry. Interestingly, the meiotic role of Gda1p was dependent on its guanosine diphosphatase activity, but not it's cytoplasmic, transmembrane or stem domains. These yeast data suggest that ENTPD6 may be a novel meiosis-associated NOA-related gene, and the yeast model provides a good approach to analyze GWAS results of NOA.

  20. Retrovirus-like vectors for Saccharomyces cerevisiae: integration of foreign genes controlled by efficient promoters into yeast chromosomal DNA.

    PubMed

    Jacobs, E; Dewerchin, M; Boeke, J D

    1988-07-30

    Using modified Saccharomyces cerevisiae Ty1 elements located on a 2 mu plasmid, reverse-transcriptase-mediated transposition into yeast chromosomes of expression cassettes containing a foreign gene can be induced. These expression cassettes consist of the yeast ARG3 and CUP1 promoter sequences fused to the Escherichia coli galK structural gene. Expression cassettes as large as 2 kb can be inserted into Ty elements and transposed efficiently to various sites in the yeast genome. A third yeast promoter (from the yeast CAR1 gene) seems to be unsuitable for use in the expression cassette. This may be because it does not allow the transcription run-through necessary for Ty1 transposition. Ways of improving this vector system are discussed, as are its advantages over episomal vector systems.

  1. Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid.

    PubMed

    Limtong, Savitree; Kaewwichian, Rungluk; Yongmanitchai, Wichien; Kawasaki, Hiroko

    2014-06-01

    Yeasts were isolated by the enrichment technique from the phylloplane of 94 samples of sugarcane leaf collected from seven provinces in Thailand. All sugarcane leaf samples contained yeasts and 158 yeast strains were obtained. On the basis of the D1/D2 domain of the large subunit rRNA gene sequence analysis, 144 strains were identified to 24 known species in 14 genera belonging to the Ascomycota viz. Candida akabanensis, Candida dendronema, Candida mesorugosa, Candida michaelii, Candida nivariensis, Candida rugosa, Candida orthopsilosis, Candida quercitrusa, Candida tropicalis, Candida xylopsoci, Cyberlindnera fabianii, Cyberlindnera rhodanensis, Debaryomyces nepalensis, Hannaella aff. coprosmaensis, Hanseniaspora guilliermondii, Kluyveromyces marxianus, Lachancea thermotolerans, Lodderomyces elongisporus, Metschnikowia koreensis, Meyerozyma caribbica, Millerozyma koratensis, Pichia kudriavzevii, Torulaspora delbrueckii and Wickerhamomyces edaphicus, and 12 species in six genera of the Basidiomycota viz . Cryptococcus flavescens, Cryptococcus laurentii, Cryptococcus rajasthanensis, Kwoniella heveanensis, Rhodosporidium fluviale, Rhodosporidium paludigenum, Rhodotorula mucilaginosa, Rhodotorula sesimbrana, Rhodotorula taiwanensis, Sporidiobolus ruineniae, Sporobolomyces carnicolor and Sporobolomyces nylandii. Seven strains were identical or similar to four undescribed species. Another seven strains represented four novels species in the genus Metschnikowia, Nakazawaea, Wickerhamomyces and Yamadazyma. The results revealed 69 % of the isolated strains were ascomycete yeasts and 31 % were basidiomycete yeast. The most prevalent species was M. caribbica with a 23 % frequency of occurrence followed by Rh. taiwanensis (11 %) and C. tropicalis (10 %). All strains were assessed for indole-3-acetic acid (IAA) producing capability showing that 69 strains had the capability of producing IAA when cultivated in yeast extract peptone dextrose broth supplemented with 1

  2. Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota).

    PubMed

    Teixeira, M M; Moreno, L F; Stielow, B J; Muszewska, A; Hainaut, M; Gonzaga, L; Abouelleil, A; Patané, J S L; Priest, M; Souza, R; Young, S; Ferreira, K S; Zeng, Q; da Cunha, M M L; Gladki, A; Barker, B; Vicente, V A; de Souza, E M; Almeida, S; Henrissat, B; Vasconcelos, A T R; Deng, S; Voglmayr, H; Moussa, T A A; Gorbushina, A; Felipe, M S S; Cuomo, C A; de Hoog, G Sybren

    2017-03-01

    The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and

  3. Changes in expression of oxidative stress related genes in grapefruit peel in response to yeast Metschnikowia fructicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain insight into the mode of action of the yeast biocontrol agent, Metschnikowia fructicola, the transcription profiles of genes involved in oxidative stress were studied in grapefruit (Citrus paradis, 'Star Ruby') surface wounds following the application of the yeast antagonist. Three transcri...

  4. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans

    PubMed Central

    Chaillot, Julien; Cook, Michael A.; Corbeil, Jacques; Sellam, Adnane

    2016-01-01

    One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host. PMID:28040776

  5. Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress.

    PubMed

    James, Tharappel C; Usher, Jane; Campbell, Susan; Bond, Ursula

    2008-03-01

    A long-term goal of the brewing industry is to identify yeast strains with increased tolerance to the stresses experienced during the brewing process. We have characterised the genomes of a number of stress-tolerant mutants, derived from the lager yeast strain CMBS-33, that were selected for tolerance to high temperatures and to growth in high specific gravity wort. Our results indicate that the heat-tolerant strains have undergone a number of gross chromosomal rearrangements when compared to the parental strain. To determine if such rearrangements can spontaneously arise in response to exposure to stress conditions experienced during the brewing process, we examined the chromosome integrity of both the stress-tolerant strains and their parent during a single round of fermentation under a variety of environmental stresses. Our results show that the lager yeast genome shows tremendous plasticity during fermentation, especially when fermentations are carried out in high specific gravity wort and at higher than normal temperatures. Many localised regions of gene amplification were observed especially at the telomeres and at the rRNA gene locus on chromosome XII, and general chromosomal instability was evident. However, gross chromosomal rearrangements were not detected, indicating that continued selection in the stress conditions are required to obtain clonal isolates with stable rearrangements. Taken together, the data suggest that lager yeasts display a high degree of genomic plasticity and undergo genomic changes in response to environmental stress.

  6. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe.

    PubMed Central

    Ha, S B; Smith, A P; Howden, R; Dietrich, W M; Bugg, S; O'Connell, M J; Goldsbrough, P B; Cobbett, C S

    1999-01-01

    Phytochelatins (PCs), a family of heavy metal-inducible peptides important in the detoxification of heavy metals, have been identified in plants and some microorganisms, including Schizosaccharomyces pombe, but not in animals. PCs are synthesized enzymatically from glutathione (GSH) by PC synthase in the presence of heavy metal ions. In Arabidopsis, the CAD1 gene, identified by using Cd-sensitive, PC-deficient cad1 mutants, has been proposed to encode PC synthase. Using a positional cloning strategy, we have isolated the CAD1 gene. Database searches identified a homologous gene in S. pombe, and a mutant with a targeted deletion of this gene was also Cd sensitive and PC deficient. Extracts of Escherichia coli cells expressing a CAD1 cDNA or the S. pombe gene catalyzing GSH-dependent, heavy metal-activated synthesis of PCs in vitro demonstrated that both genes encode PC synthase activity. Both enzymes were activated by a range of metal ions. In contrast, reverse transcription-polymerase chain reaction experiments showed that expression of the CAD1 mRNA is not influenced by the presence of Cd. A comparison of the two predicted amino acid sequences revealed a highly conserved N-terminal region, which is presumed to be the catalytic domain, and a variable C-terminal region containing multiple Cys residues, which is proposed to be involved in activation of the enzyme by metal ions. Interestingly, a similar gene was identified in the nematode, Caenorhabditis elegans, suggesting that PCs may also be expressed in some animal species. PMID:10368185

  7. SUMO functions in constitutive transcription and during activation of inducible genes in yeast.

    PubMed

    Rosonina, Emanuel; Duncan, Sarah M; Manley, James L

    2010-06-15

    Transcription factors represent one of the largest groups of proteins regulated by SUMO (small ubiquitin-like modifier) modification, and their sumoylation is usually associated with transcriptional repression. To investigate whether sumoylation plays a general role in regulating transcription in yeast, we determined the occupancy of sumoylated proteins at a variety of genes by chromatin immunoprecipitation (ChIP) using an antibody that recognizes the yeast SUMO peptide. Surprisingly, we detected sumoylated proteins at all constitutively transcribed genes tested but not at repressed genes. Ubc9, the SUMO conjugation enzyme, was not present on these genes, but its inactivation reduced SUMO at the constitutive promoters and modestly decreased RNA polymerase II levels. In contrast, activation of the inducible GAL1, STL1, and ARG1 genes caused not only a striking accumulation of SUMO at all three promoter regions, but also recruitment of Ubc9, indicating that gene activation involves sumoylation of promoter-bound factors. However, Ubc9 inactivation, while reducing sumoylation at the induced promoters, paradoxically resulted in increased transcription. Providing an explanation for this, the reduced sumoylation impaired the cell's ability to appropriately shut off transcription of the induced ARG1 gene, indicating that SUMO can facilitate transcriptional silencing. Our findings thus establish unexpected roles for sumoylation in both constitutive and activated transcription, and provide a novel mechanism for regulating gene expression.

  8. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-02-07

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.

  9. Comparison of the MTT1- and MAL31-like maltose transporter genes in lager yeast strains.

    PubMed

    Dietvorst, Judith; Walsh, Mike C; van Heusden, G Paul H; Steensma, H Yde

    2010-09-01

    Maltose transporter genes were isolated from four lager yeast strains and sequenced. All four strains contain at least two different types of maltose transporter genes, MTT1 and MAL31. In addition, 'long' 2.7 kb, and 'short' 2.4 kb, versions of each type exist. The size difference is caused by the insertion of two repeats of 147 bp into the promoter regions of the long versions of the genes. As a consequence of the insertion, two Mal63-binding sites move 294 bp away from the transcription initiation site. The 2.4- and 2.7-kb versions are further highly similar. Only the 2.4-kb versions and not the 2.7-kb versions of MTT1 could restore the rapid growth of lager yeast strain A15 on maltotriose in the presence of antimycin A. These results suggest that insertion of the two repeats into the promoter region of the 'long versions' of MTT1 genes led to a diminished expression of these genes. None of the tested long and short versions of the MAL31 genes were able to restore this growth. As the promoter regions of the MTT1 and MAL31 genes are identical, small differences in the protein sequence may be responsible for the different properties of these genes.

  10. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    SciTech Connect

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  11. Tomato Fruits Show Wide Phenomic Diversity but Fruit Developmental Genes Show Low Genomic Diversity.

    PubMed

    Mohan, Vijee; Gupta, Soni; Thomas, Sherinmol; Mickey, Hanjabam; Charakana, Chaitanya; Chauhan, Vineeta Singh; Sharma, Kapil; Kumar, Rakesh; Tyagi, Kamal; Sarma, Supriya; Gupta, Suresh Kumar; Kilambi, Himabindu Vasuki; Nongmaithem, Sapana; Kumari, Alka; Gupta, Prateek; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2016-01-01

    Domestication of tomato has resulted in large diversity in fruit phenotypes. An intensive phenotyping of 127 tomato accessions from 20 countries revealed extensive morphological diversity in fruit traits. The diversity in fruit traits clustered the accessions into nine classes and identified certain promising lines having desirable traits pertaining to total soluble salts (TSS), carotenoids, ripening index, weight and shape. Factor analysis of the morphometric data from Tomato Analyzer showed that the fruit shape is a complex trait shared by several factors. The 100% variance between round and flat fruit shapes was explained by one discriminant function having a canonical correlation of 0.874 by stepwise discriminant analysis. A set of 10 genes (ACS2, COP1, CYC-B, RIN, MSH2, NAC-NOR, PHOT1, PHYA, PHYB and PSY1) involved in various plant developmental processes were screened for SNP polymorphism by EcoTILLING. The genetic diversity in these genes revealed a total of 36 non-synonymous and 18 synonymous changes leading to the identification of 28 haplotypes. The average frequency of polymorphism across the genes was 0.038/Kb. Significant negative Tajima'D statistic in two of the genes, ACS2 and PHOT1 indicated the presence of rare alleles in low frequency. Our study indicates that while there is low polymorphic diversity in the genes regulating plant development, the population shows wider phenotype diversity. Nonetheless, morphological and genetic diversity of the present collection can be further exploited as potential resources in future.

  12. Tomato Fruits Show Wide Phenomic Diversity but Fruit Developmental Genes Show Low Genomic Diversity

    PubMed Central

    Mohan, Vijee; Gupta, Soni; Thomas, Sherinmol; Mickey, Hanjabam; Charakana, Chaitanya; Chauhan, Vineeta Singh; Sharma, Kapil; Kumar, Rakesh; Tyagi, Kamal; Sarma, Supriya; Gupta, Suresh Kumar; Kilambi, Himabindu Vasuki; Nongmaithem, Sapana; Kumari, Alka; Gupta, Prateek; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2016-01-01

    Domestication of tomato has resulted in large diversity in fruit phenotypes. An intensive phenotyping of 127 tomato accessions from 20 countries revealed extensive morphological diversity in fruit traits. The diversity in fruit traits clustered the accessions into nine classes and identified certain promising lines having desirable traits pertaining to total soluble salts (TSS), carotenoids, ripening index, weight and shape. Factor analysis of the morphometric data from Tomato Analyzer showed that the fruit shape is a complex trait shared by several factors. The 100% variance between round and flat fruit shapes was explained by one discriminant function having a canonical correlation of 0.874 by stepwise discriminant analysis. A set of 10 genes (ACS2, COP1, CYC-B, RIN, MSH2, NAC-NOR, PHOT1, PHYA, PHYB and PSY1) involved in various plant developmental processes were screened for SNP polymorphism by EcoTILLING. The genetic diversity in these genes revealed a total of 36 non-synonymous and 18 synonymous changes leading to the identification of 28 haplotypes. The average frequency of polymorphism across the genes was 0.038/Kb. Significant negative Tajima’D statistic in two of the genes, ACS2 and PHOT1 indicated the presence of rare alleles in low frequency. Our study indicates that while there is low polymorphic diversity in the genes regulating plant development, the population shows wider phenotype diversity. Nonetheless, morphological and genetic diversity of the present collection can be further exploited as potential resources in future. PMID:27077652

  13. Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast

    PubMed Central

    Conconi, Antonio; Bespalov, Vyacheslav A.; Smerdon, Michael J.

    2002-01-01

    Nucleotide excision repair (NER) of UV-induced cyclobutane pyrimidine dimers (CPDs) was measured in the individual strands of transcriptionally active and inactive ribosomal genes of yeast. Ribosomal genes (rDNA) are present in multiple copies, but only a fraction of them is actively transcribed. Restriction enzyme digestion was used to specifically release the transcriptionally active fraction from yeast nuclei, and selective psoralen crosslinking was used to distinguish between active and inactive rDNA chromatin. Removal of CPDs was followed in both rDNA populations, and the data clearly show that strand-specific repair occurs in transcriptionally active rDNA while being absent in the inactive rDNA fraction. Thus, transcription-coupled repair occurs in RNA polymerase I-transcribed genes in yeast. Moreover, the nontranscribed strand of active rDNA is repaired faster than either strand of inactive rDNA, implying that NER has preferred access to the active, non-nucleosomal rDNA chromatin. Finally, restriction enzyme accessibility to active rDNA varies during NER, suggesting that there is a change in ribosomal gene chromatin structure during or soon after CPD removal. PMID:11782531

  14. Life-history strategies and carbon metabolism gene dosage in the Nakaseomyces yeasts.

    PubMed

    Legrand, Judith; Bolotin-Fukuhara, Monique; Bourgais, Aurélie; Fairhead, Cécile; Sicard, Delphine

    2016-03-01

    The Nakaseomyces clade consists of a group of six hemiascomyceteous yeasts (Candida glabrata, Nakaseomyces delphensis, C. nivarensis, C. bracarensis, C. castelli, N. bacillisporus), phylogenetically close to the yeast Saccharomyces cerevisiae, their representative being the well-known pathogenic yeast C. glabrata. Four species had been previously examined for their carbon assimilation properties and found to have similar properties to S. cerevisiae (repression of respiration in high glucose-i.e. Crabtree positivity-and being a facultative anaerobe). We examined here the complete set of the six species for their carbon metabolic gene content. We also measured different metabolic and life-history traits (glucose consumption rate, population growth rate, carrying capacity, cell size, cell and biomass yield). We observed deviations from the glycolytic gene redundancy observed in S. cerevisiae presumed to be an important property for the Crabtree positivity, especially for the two species C. castelli and N. bacillisporus which frequently have only one gene copy, but different life strategies. Therefore, we show that the decrease in carbon metabolic gene copy cannot be simply associated with a reduction of glucose consumption rate and can be counterbalanced by other beneficial genetic variations.

  15. Rtm1: A Member of a New Family of Telomeric Repeated Genes in Yeast

    PubMed Central

    Ness, F.; Aigle, M.

    1995-01-01

    We have isolated a new yeast gene called RTM1 whose overexpression confers resistance to the toxicity of molasses. The RTM1 gene encodes a hydrophobic 34-kD protein that contains seven potential transmembrane-spanning segments. Analysis of a series of industrial strains shows that the sequence is present in multiple copies and in variable locations in the genome. RTM loci are always physically associated with SUC telomeric loci. The SUC-RTM sequences are located between X and Y' subtelomeric sequences at chromosome ends. Surprisingly RTM sequences are not detected in the laboratory strain X2180. The lack of this sequence is associated with the absence of any SUC telomeric gene previously described. This observation raises the question of the origin of this nonessential gene. The particular subtelomeric position might explain the SUC-RTM sequence amplification observed in the genome of yeasts used in industrial biomass or ethanol production with molasses as substrate. This SUC-RTM sequence dispersion seems to be a good example of genomic rearrangement playing a role in evolution and environmental adaptation in these industrial yeasts. PMID:7672593

  16. Yeast and bacterial diversity along a transect in an acidic, As-Fe rich environment revealed by cultural approaches.

    PubMed

    Delavat, François; Lett, Marie-Claire; Lièvremont, Didier

    2013-10-01

    Acid mine drainages (AMDs) are often thought to harbour low biodiversity, yet little is known about the diversity distribution along the drainages. Using culture-dependent approaches, the microbial diversity from the Carnoulès AMD sediment was investigated for the first time along a transect showing progressive environmental stringency decrease. In total, 20 bacterial genera were detected, highlighting a higher bacterial diversity than previously thought. Moreover, this approach led to the discovery of 16 yeast species, demonstrating for the first time the presence of this important phylogenetic group in this AMD. All in all, the location of the microbes along the transect helps to better understand their distribution in a pollution gradient.

  17. Over-expression of GSH1 gene and disruption of PEP4 gene in self-cloning industrial brewer's yeast.

    PubMed

    Wang, Zhao-Yue; He, Xiu-Ping; Zhang, Bo-Run

    2007-11-01

    Foam stability is often influenced by proteinase A, and flavor stability is often affected by oxidation during beer storage. In this study, PEP4, the gene coding for proteinase A, was disrupted in industrial brewing yeast. In the meantime, one copy of GSH1 gene increased in the same strain. GSH1 is responsible for gamma-glutamylcysteine synthetase, a rate-limiting enzyme for synthesis of glutathione which is one kind of important antioxidant and beneficial to beer flavor stability. In order to improve the brewer's yeast, plasmid pYPEP, pPC and pPCG1 were firstly constructed, which were recombined plasmids with PEP4 gene, PEP4's disruption and PEP4's disruption+GSH1 gene respectively. These plasmids were verified to be correct by restriction enzymes' assay. By digesting pPCG1 with AatII and PstI, the DNA fragment for homologous recombination was obtained carrying PEP4 sequence in the flank and GSH1 gene internal to the fragment. Since self-cloning technique was applied in the study and the modified genes were from industrial brewing yeast itself, the improved strains, self-cloning strains, were safe to public. The genetic stability of the improved strains was 100%. The results of PCR analysis of genome DNA showed that coding sequence of PEP4 gene had been deleted and GSH1 gene had been inserted into the locus of PEP4 gene in self-cloning strains. The fermentation ability of self-cloning strain, SZ-1, was similar to that of the host. Proteinase A could not be detected in beer brewed with SZ-1, and GSH content in the beer increased 35% compared to that of the host, Z-1.

  18. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Oshiro, Satoshi; Shima, Jun; Takagi, Hiroshi

    2013-08-01

    During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast.

  19. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    PubMed Central

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation. PMID:26579166

  20. Effects of dietary supplementation of active dried yeast on fecal methanogenic archaea diversity in dairy cows.

    PubMed

    Jin, Dingxing; Kang, Kun; Wang, Hongze; Wang, Zhisheng; Xue, Bai; Wang, Lizhi; Xu, Feng; Peng, Quanhui

    2017-02-07

    This study aimed to investigate the effects of dietary supplementation of different dosages of active dried yeast (ADY) on the fecal methanogenic archaea community of dairy cattle. Twelve multiparous, healthy, mid-lactating Holstein dairy cows (body weight: 584 ± 23.2 kg, milk produced: 26.3 ± 1.22 kg/d) were randomly assigned to one of three treatments (control, ADY2, and ADY4) according to body weight with four replicates per treatment. Cows in the control group were fed conventional rations without ADY supplementation, while cows in the ADY2 and ADY4 group were fed rations supplemented with ADY at 2 or 4 g/d/head. Real-time PCR analysis showed the populations of total methanogens in the feces were significantly decreased (P < 0.05) in the ADY4 group compared with control. High-throughput sequencing technology was applied to examine the differences in methanogenic archaea diversity in the feces of the three treatment groups. A total of 155,609 sequences were recovered (a mean of 12,967 sequences per sample) from the twelve fecal samples, which consisted of a number of operational taxonomic units (OTUs) ranging from 1451 to 1,733, were assigned to two phyla, four classes, five orders, five families and six genera. Bioinformatic analyses illustrated that the natural fecal archaeal community of the control group was predominated by Methanobrevibacter (86.9% of the total sequence reads) and Methanocorpusculum (10.4%), while the relative abundance of the remaining four genera were below 1% with Methanosphaera comprising 0.8%, Thermoplasma composing 0.4%, and the relative abundance of Candidatus Nitrososphaera and Halalkalicoccus being close to zero. At the genus level, the relative abundances of Methanocorpusculum and Thermoplasma were increased (P < 0.05) with increasing dosage of ADY. Conversely, the predominant methanogen genus Methanobrevibacter was decreased with ADY dosage (P < 0.05). Dietary supplementation of ADY had no significant effect (P

  1. Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature

    PubMed Central

    López-Malo, María; García-Ríos, Estéfani; Chiva, Rosana; Guillamon, José M.

    2014-01-01

    Wine produced by low-temperature fermentation is mostly considered to have improved sensory qualities. However few commercial wine strains available on the market are well-adapted to ferment at low temperature (10 - 15°C). The lipid metabolism of Saccharomyces cerevisiae plays a central role in low temperature adaptation. One strategy to modify lipid composition is to alter transcriptional activity by deleting or overexpressing the key genes of lipid metabolism. In a previous study, we identified the genes of the phospholipid, sterol and sphingolipid pathways, which impacted on growth capacity at low temperature. In the present study, we aimed to determine the influence of these genes on fermentation performance and growth during low-temperature wine fermentations. We analyzed the phenotype during fermentation at the low and optimal temperature of the lipid mutant and overexpressing strains in the background of a derivative commercial wine strain. The increase in the gene dosage of some of these lipid genes, e.g., PSD1, LCB3, DPL1 and OLE1, improved fermentation activity during low-temperature fermentations, thus confirming their positive role during wine yeast adaptation to cold. Genes whose overexpression improved fermentation activity at 12°C were overexpressed by chromosomal integration into commercial wine yeast QA23. Fermentations in synthetic and natural grape must were carried out by this new set of overexpressing strains. The strains overexpressing OLE1 and DPL1 were able to finish fermentation before commercial wine yeast QA23. Only the OLE1 gene overexpression produced a specific aroma profile in the wines produced with natural grape must. PMID:28357215

  2. Dissecting the regulation of yeast genes by the osmotin receptor

    PubMed Central

    Kupchak, Brian R.; Villa, Nancy Y.; Kulemina, Lidia; Lyons, Thomas J.

    2008-01-01

    The Izh2p protein from Saccharomyces cerevisiae is a receptor for the plant antifungal protein, osmotin. Since Izh2p is conserved in fungi, understanding its biochemical function could inspire novel strategies for the prevention of fungal growth. However, it has been difficult to determine the exact role of Izh2p because it has pleiotropic effects on cellular biochemistry. Herein, we demonstrate that Izh2p negatively regulates functionally divergent genes through a CCCTC promoter motif. Moreover, we show that Izh2p-dependent promoters containing this motif are regulated by the Nrg1p/Nrg2p and Msn2p/Msn4p transcription factors. The fact that Izh2p can regulate gene expression through this widely dispersed element presents a reasonable explanation of its pleiotropy. The involvement of Nrg1p/Nrgp2 in Izh2p-dependent gene regulation also suggests a role for this receptor in regulating fungal differentiation in response to stimuli produced by plants. PMID:18625204

  3. Identification of a Functional Homolog of the Yeast Copper Homeostasis Gene ATX1 from Arabidopsis1

    PubMed Central

    Himelblau, Edward; Mira, Helena; Lin, Su-Ju; Cizewski Culotta, Valeria; Peñarrubia, Lola; Amasino, Richard M.

    1998-01-01

    A cDNA clone encoding a homolog of the yeast (Saccharomyces cerevisiae) gene Anti-oxidant 1 (ATX1) has been identified from Arabidopsis. This gene, referred to as Copper CHaperone (CCH), encodes a protein that is 36% identical to the amino acid sequence of ATX1 and has a 48-amino acid extension at the C-terminal end, which is absent from ATX1 homologs identified in animals. ATX1-deficient yeast (atx1) displayed a loss of high-affinity iron uptake. Expression of CCH in the atx1 strain restored high-affinity iron uptake, demonstrating that CCH is a functional homolog of ATX1. When overexpressed in yeast lacking the superoxide dismutase gene SOD1, both ATX1 and CCH protected the cell from the reactive oxygen toxicity that results from superoxide dismutase deficiency. CCH was unable to rescue the sod1 phenotype in the absence of copper, indicating that CCH function is copper dependent. In Arabidopsis CCH mRNA is present in the root, leaf, and inflorescence and is up-regulated 7-fold in leaves undergoing senescence. In plants treated with 800 nL/L ozone for 30 min, CCH mRNA levels increased by 30%. In excised leaves and whole plants treated with high levels of exogenous CuSO4, CCH mRNA levels decreased, indicating that CCH is regulated differently than characterized metallothionein proteins in Arabidopsis. PMID:9701579

  4. Four Inducible Promoters for Controlled Gene Expression in the Oleaginous Yeast Rhodotorula toruloides

    PubMed Central

    Johns, Alexander M. B.; Love, John; Aves, Stephen J.

    2016-01-01

    Rhodotorula (Rhodosporidium) toruloides is an oleaginous yeast with great biotechnological potential, capable of accumulating lipid up to 70% of its dry biomass, and of carotenoid biosynthesis. However, few molecular genetic tools are available for manipulation of this basidiomycete yeast and its high genomic GC content can make routine cloning difficult. We have developed plasmid vectors for transformation of R. toruloides which include elements for Saccharomyces cerevisiae in-yeast assembly; this method is robust to the assembly of GC-rich DNA and of large plasmids. Using such vectors we screened for controllable promoters, and identified inducible promoters from the genes NAR1, ICL1, CTR3, and MET16. These four promoters have independent induction/repression conditions and exhibit different levels and rates of induction in R. toruloides, making them appropriate for controllable transgene expression in different experimental situations. Nested deletions were used to identify regulatory regions in the four promoters, and to delimit the minimal inducible promoters, which are as small as 200 bp for the NAR1 promoter. The NAR1 promoter shows very tight regulation under repressed conditions as determined both by an EGFP reporter gene and by conditional rescue of a leu2 mutant. These new tools facilitate molecular genetic manipulation and controllable gene expression in R. toruloides. PMID:27818654

  5. Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis

    SciTech Connect

    Himelblau, E.; Amasino, R.M.; Mira, H.; Penarrubia, L.; Lin, S.J.; Culotta, V.C.

    1998-08-01

    A cDNA clone encoding a homolog of the yeast (Saccharomyces cerevisiae) gene Anti-oxidant 1 (ATX1) has been identified from Arabidopsis. This gene, referred to as Copper CHaperone (CCH), encodes a protein that is 36% identical to the amino acid sequence of ATX1 and has a 48-amino acid extension at the C-terminal end, which is absent from ATX1 homologs identified in animals. ATX1-deficient yeast (atx1) displayed a loss of high-affinity iron uptake. Expression of CCH in the atx1 strain restored high-affinity iron uptake, demonstrating that CCH is a functional homolog of ATX1. When overexpressed in yeast lacking the superoxide dismutase gene SOD1, both ATX1 and CCH protected the cell from the reactive oxygen toxicity that results from superoxide dismutase deficiency. CCH was unable to rescue the sod1 phenotype in the absence of copper, indicating that CCH function is copper dependent. In Arabidopsis CCH mRNA is present in the root, leaf, and in fluorescence and is up-regulated 7-fold in leaves undergoing senescence. In plants treated with 800 nL/L ozone for 30 min, CCH mRNA levels increased by 30%. In excised leaves and whole plants treated with high levels of exogenous CuSO{sub 4}, CCH mRNA levels decreased, indicating that CCH is regulated differently than characterized metallothionein proteins in Arabidopsis.

  6. The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton.

    PubMed

    Hermann, G J; King, E J; Shaw, J M

    1997-04-07

    In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament-binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20 delta cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton.

  7. Nucleotide sequence and expression of the Enterobacter aerogenes alpha-acetolactate decarboxylase gene in brewer's yeast.

    PubMed Central

    Sone, H; Fujii, T; Kondo, K; Shimizu, F; Tanaka, J; Inoue, T

    1988-01-01

    The nucleotide sequence of a 1.4-kilobase DNA fragment containing the alpha-acetolactate decarboxylase gene of Enterobacter aerogenes was determined. The sequence contains an entire protein-coding region of 780 nucleotides which encodes an alpha-acetolactate decarboxylase of 260 amino acids. The DNA sequence coding for alpha-acetolactate decarboxylase was placed under the control of the alcohol dehydrogenase I promoter of the yeast Saccharomyces cerevisiae in a plasmid capable of autonomous replication in both S. cerevisiae and Escherichia coli. Brewer's yeast cells transformed by this plasmid showed alpha-acetolactate decarboxylase activity and were used in laboratory-scale fermentation experiments. These experiments revealed that the diacetyl concentration in wort fermented by the plasmid-containing yeast strain was significantly lower than that in wort fermented by the parental strain. These results indicated that the alpha-acetolactate decarboxylase activity produced by brewer's yeast cells degraded alpha-acetolactate and that this degradation caused a decrease in diacetyl production. PMID:3278689

  8. Nucleotide sequence of the glucoamylase gene GLU1 in the yeast Saccharomycopsis fibuligera.

    PubMed Central

    Itoh, T; Ohtsuki, I; Yamashita, I; Fukui, S

    1987-01-01

    The complete nucleotide sequence of the glucoamylase gene GLU1 from the yeast Saccharomycopsis fibuligera has been determined. The GLU1 DNA hybridized to a polyadenylated RNA of 2.1 kilobases. A single open reading frame codes for a 519-amino-acid protein which contains four potential N-glycosylation sites. The putative precursor begins with a hydrophobic segment that presumably acts as a signal sequence for secretion. Glucoamylase was purified from a culture fluid of the yeast Saccharomyces cerevisiae which had been transformed with a plasmid carrying GLU1. The molecular weight of the protein was 57,000 by both gel filtration and acrylamide gel electrophoresis. The protein was glycosylated with asparagine-linked glycosides whose molecular weight was 2,000. The amino-terminal sequence of the protein began from the 28th amino acid residue from the first methionine of the putative precursor. The amino acid composition of the purified protein matched the predicted amino acid composition. These results confirmed that GLU1 encodes glucoamylase. A comparison of the amino acid sequence of glucoamylases from several fungi and yeast shows five highly conserved regions. One homology region is absent from the yeast enzyme and so may not be essential to glucoamylase function. Images PMID:3114236

  9. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.

    PubMed Central

    Clemens, S; Kim, E J; Neumann, D; Schroeder, J I

    1999-01-01

    Phytochelatins play major roles in metal detoxification in plants and fungi. However, genes encoding phytochelatin synthases have not yet been identified. By screening for plant genes mediating metal tolerance we identified a wheat cDNA, TaPCS1, whose expression in Saccharomyces cerevisiae results in a dramatic increase in cadmium tolerance. TaPCS1 encodes a protein of approximately 55 kDa with no similarity to proteins of known function. We identified homologs of this new gene family from Arabidopsis thaliana, Schizosaccharomyces pombe, and interestingly also Caenorhabditis elegans. The Arabidopsis and S.pombe genes were also demonstrated to confer substantial increases in metal tolerance in yeast. PCS-expressing cells accumulate more Cd2+ than controls. PCS expression mediates Cd2+ tolerance even in yeast mutants that are either deficient in vacuolar acidification or impaired in vacuolar biogenesis. PCS-induced metal resistance is lost upon exposure to an inhibitor of glutathione biosynthesis, a process necessary for phytochelatin formation. Schizosaccharomyces pombe cells disrupted in the PCS gene exhibit hypersensitivity to Cd2+ and Cu2+ and are unable to synthesize phytochelatins upon Cd2+ exposure as determined by HPLC analysis. Saccharomyces cerevisiae cells expressing PCS produce phytochelatins. Moreover, the recombinant purified S.pombe PCS protein displays phytochelatin synthase activity. These data demonstrate that PCS genes encode phytochelatin synthases and mediate metal detoxification in eukaryotes. PMID:10369673

  10. Two novel gene expression systems based on the yeasts Schwanniomyces occidentalis and Pichia stipitis.

    PubMed

    Piontek, M; Hagedorn, J; Hollenberg, C P; Gellissen, G; Strasser, A W

    1998-09-01

    Two non-Saccharomyces yeasts have been developed as hosts for heterologous gene expression. The celD gene from Clostridium thermocellum, encoding a heat-stable cellulase, served as the test sequence. The first system is based on the amylolytic species Schwanniomyces occidentalis, the second on the xylolytic species Pichia stipitis. The systems comprise auxotrophic host strains (trp5 in the case of S. occidentalis; trp5-10, his3 in the case of P. stipitis) and suitable transformation vectors. Vector components consist of an S. occidentalis-derived autonomously replicating sequence (SwARS) and the Saccharomyces cerevisiae-derived TRP5 sequence for plasmid propagation and selection in the yeast hosts, an ori and an ampicillin-resistance sequence for propagation and selection in a bacterial host. A range of vectors has been engineered employing different promoter elements for heterologous gene expression control in both species. Homologous elements derived from highly expressed genes of the respective hosts appeared to be of superior quality: in the case of S. occidentalis that of the GAM1 gene, in the case of P. stipitis that of the XYL1 gene. Further elements tested are the S. cerevisiae-derived ADH1 and PDC1 promoter sequences.

  11. Transcript analysis of 250 novel yeast genes from chromosome XIV.

    PubMed

    Planta, R J; Brown, A J; Cadahia, J L; Cerdan, M E; de Jonge, M; Gent, M E; Hayes, A; Kolen, C P; Lombardia, L J; Sefton, M; Oliver, S G; Thevelein, J; Tournu, H; van Delft, Y J; Verbart, D J; Winderickx, J

    1999-03-15

    The European Functional Analysis Network (EUROFAN) is systematically analysing the function of novel Saccharomyces cerevisiae genes revealed by genome sequencing. As part of this effort our consortium has performed a detailed transcript analysis for 250 novel ORFs on chromosome XIV. All transcripts were quantified by Northern analysis under three quasi-steady-state conditions (exponential growth on rich fermentative, rich non-fermentative, and minimal fermentative media) and eight transient conditions (glucose derepression, glucose upshift, stationary phase, nitrogen starvation, osmo-stress, heat-shock, and two control conditions). Transcripts were detected for 82% of the 250 ORFs, and only one ORF did not yield a transcript of the expected length (YNL285w). Transcripts ranged from low (62%), moderate (16%) to high abundance (2%) relative to the ACT1 mRNA. The levels of 73% of the 206 chromosome XIV transcripts detected fluctuated in response to the transient states tested. However, only a small number responded strongly to the transients: eight ORFs were induced upon glucose upshift; five were repressed by glucose; six were induced in response to nitrogen starvation; three were induced in stationary phase; five were induced by osmo-stress; four were induced by heat-shock. These data provide useful clues about the general function of these ORFs and add to our understanding of gene regulation on a genome-wide basis.

  12. Development of a plant viral-vector-based gene expression assay for the screening of yeast cytochrome p450 monooxygenases.

    PubMed

    Hanley, Kathleen; Nguyen, Long V; Khan, Faizah; Pogue, Gregory P; Vojdani, Fakhrieh; Panda, Sanjay; Pinot, Franck; Oriedo, Vincent B; Rasochova, Lada; Subramanian, Mani; Miller, Barbara; White, Earl L

    2003-02-01

    Development of a gene discovery tool for heterologously expressed cytochrome P450 monooxygenases has been inherently difficult. The activity assays are labor-intensive and not amenable to parallel screening. Additionally, biochemical confirmation requires coexpression of a homologous P450 reductase or complementary heterologous activity. Plant virus gene expression systems have been utilized for a diverse group of organisms. In this study we describe a method using an RNA vector expression system to phenotypically screen for cytochrome P450-dependent fatty acid omega-hydroxylase activity. Yarrowia lipolytica CYP52 gene family members involved in n-alkane assimilation were amplified from genomic DNA, cloned into a plant virus gene expression vector, and used as a model system for determining heterologous expression. Plants infected with virus vectors expressing the yeast CYP52 genes (YlALK1-YlALK7) showed a distinct necrotic lesion phenotype on inoculated plant leaves. No phenotype was detected on negative control constructs. YlALK3-, YlALK5-, and YlALK7-inoculated plants all catalyzed the terminal hydroxylation of lauric acid as confirmed using thin-layer and gas chromatography/mass spectrometry methods. The plant-based cytochrome P450 phenotypic screen was tested on an n-alkane-induced Yarrowia lipolytica plant virus expression library. A subset of 1,025 random library clones, including YlALK1-YlALK7 constructs, were tested on plants. All YlALK gene constructs scored positive in the randomized screen. Following nucleotide sequencing of the clones that scored positive using a phenotypic screen, approximately 5% were deemed appropriate for further biochemical analysis. This report illustrates the utility of a plant-based system for expression of heterologous cytochrome P450 monooxygenases and for the assignment of gene function.

  13. Molecular identification of yeasts associated with traditional Egyptian dairy products.

    PubMed

    El-Sharoud, W M; Belloch, C; Peris, D; Querol, A

    2009-09-01

    This study aimed to examine the diversity and ecology of yeasts associated with traditional Egyptian dairy products employing molecular techniques in yeast identification. A total of 120 samples of fresh and stored Domiati cheese, kariesh cheese, and "Matared" cream were collected from local markets and examined. Forty yeast isolates were cultured from these samples and identified using the restriction-fragment length polymorphism (RFLPs) of 5.8S-ITS rDNA region and sequencing of the domains D1 and D2 of the 26S rRNA gene. Yeasts were identified as Issatchenkia orientalis (13 isolates), Candida albicans (4 isolates), Clavispora lusitaniae (Candida lusitaniae) (9 isolates), Kodamaea ohmeri (Pichia ohmeri) (1 isolate), Kluyveromyces marxianus (6 isolates), and Candida catenulata (7 isolates). With the exception of C. lusitaniae, the D1/D2 26S rRNA gene sequences were 100% identical for the yeast isolates within the same species. Phylogenetic reconstruction of C. lusitaniae isolates grouped them into 3 distinguished clusters. Kariesh cheese was found to be the most diverse in its yeast floras and contained the highest total yeast count compared with other examined dairy products. This was linked to the acidic pH and lower salt content of this cheese, which favor the growth and survival of yeasts in foodstuffs. Stored Domiati cheese also contained diverse yeast species involving isolates of the pathogenic yeast C. albicans. This raises the possibility of dairy products being vehicles of transmission of pathogenic yeasts.

  14. Characterization of two genes required for the position-effect control of yeast mating-type genes.

    PubMed Central

    Shore, D; Squire, M; Nasmyth, K A

    1984-01-01

    The mating type of haploid yeast (a or alpha) is determined by information present at the MAT locus. Identical copies of a and alpha information are present at distal loci (HMR and HML), but transcription of these copies is repressed by the action, in trans, of four unlinked genes called SIR (silent information regulator). Repression by SIR also requires, in cis, DNA sequences called E which are found to the left of HML and HMR (but not MAT) and are greater than 1 kb from the mating-type gene promoters. SIR control can act on other promoters when they are brought near the E sequence, and thus the SIR gene products act in some general manner to repress transcription. We have determined the DNA sequence of two fragments which complement mutations in the SIR2 and SIR3 genes and show that these contain the structural genes by mapping the cloned sequences onto the yeast chromosome. The SIR2 and SIR3 coding sequences were identified by constructing gene disruptions and using these mutations to replace the normal chromosomal copies. Such null mutants of both SIR2 and SIR3 are defective in the position-effect control of the silent loci but have no other detectable phenotype. We have mapped the 5' and 3' ends of the SIR2 and SIR3 mRNAs and show that their level is unaffected by mutations in any of the four known SIR complementation groups. Images Fig. 2. Fig. 3. Fig. 4. PMID:6098447

  15. Gene duplication can impart fragility, not robustness, in the yeast protein interaction network.

    PubMed

    Diss, Guillaume; Gagnon-Arsenault, Isabelle; Dion-Coté, Anne-Marie; Vignaud, Hélène; Ascencio, Diana I; Berger, Caroline M; Landry, Christian R

    2017-02-10

    The maintenance of duplicated genes is thought to protect cells from genetic perturbations, but the molecular basis of this robustness is largely unknown. By measuring the interaction of yeast proteins with their partners in wild-type cells and in cells lacking a paralog, we found that 22 out of 56 paralog pairs compensate for the lost interactions. An equivalent number of pairs exhibit the opposite behavior and require each other's presence for maintaining their interactions. These dependent paralogs generally interact physically, regulate each other's abundance, and derive from ancestral self-interacting proteins. This reveals that gene duplication may actually increase mutational fragility instead of robustness in a large number of cases.

  16. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  17. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.

    PubMed

    Kofoed, Megan; Milbury, Karissa L; Chiang, Jennifer H; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C

    2015-07-14

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes.

  18. Identification of bottom-fermenting yeast genes expressed during lager beer fermentation.

    PubMed

    Yoshida, Satoshi; Hashimoto, Kaori; Shimada, Emiko; Ishiguro, Tatsuji; Minato, Toshiko; Mizutani, Satoru; Yoshimoto, Hiroyuki; Tashiro, Kosuke; Kuhara, Satoru; Kobayashi, Osamu

    2007-07-01

    It has been proposed that bottom-fermenting yeast strains of Saccharomyces pastorianus possess at least two types of genomes. Sequences of genes of one genome [S. cerevisiae (Sc)-type] have been found to be highly homologous (more than 90% identity) to S. cerevisiae S288C sequences, while those of the other [Lager (Lg)-type] are less so. To identify and discriminate Lg-type from Sc-type genes expressed during lager beer fermentation, normalized cDNA libraries were constructed and analysed. From approximately 22 000 ESTs, 3892 Sc-type and 2695 Lg-type ORFs were identified. Expression patterns of Sc- and Lg-type genes did not correlate with particular cell functions in KEGG classification system. Moreover, 405 independent clones were isolated that have no significant homology with sequences in the S288C database, suggesting that they include the bottom-fermenting yeast-specific (BFY) genes. Most of BFY genes have significant homology with the S. bayanus genome.

  19. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes

    PubMed Central

    Kofoed, Megan; Milbury, Karissa L.; Chiang, Jennifer H.; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C.

    2015-01-01

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. PMID:26175450

  20. CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast.

    PubMed

    Převorovský, Martin; Oravcová, Martina; Zach, Róbert; Jordáková, Anna; Bähler, Jürg; Půta, František; Folk, Petr

    2016-11-16

    For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.

  1. Evaluation of microbial quality and yeast diversity in fresh-cut apple.

    PubMed

    Graça, Ana; Santo, David; Esteves, Eduardo; Nunes, Carla; Abadias, Maribel; Quintas, Célia

    2015-10-01

    The present work's aim was to study the microbial quality of minimally processed apples commercialized in Portugal. Sixty eight samples of fresh-cut apple were analyzed before their best-before date in 2011 and 2012 for aerobic mesophilic and psychrotrophic microorganisms, total coliforms, lactic-acid bacteria (LAB), coagulase-positive staphylococci and fungi. The parameters of food safety studied were Cronobacter sakazakii, Salmonella spp. and Listeria sp. Samples were analyzed according to standard methodologies and using Chromocult Agar for coliforms and Escherichia coli. The yeasts were identified by restriction analysis of the ITS-5.8S rDNA-region and 26S rDNA partial sequencing. The mesophilic and psychrotrophic microorganisms ranged from 3.3 to 8.9 and from 4.9 to 8.4 log CFU/g, respectively. Coliforms were detected in all the samples and staphylococci in 5.8% of them. LAB numbers varied from 2.8 to 8.7 and fungi (yeast and molds) from 3.6 to 7.1 log CFU/g. The most common yeasts were Candida sake and Pichia fermentans followed by Hanseniaspora spp., Candida spp., Meyerozyma guilliermondii, Metschnikowia pulcherrima, Cryptococcus spp. and the psychrotrophic Cystofilobasidium infirmominiatum. Foodborne bacteria and opportunistic pathogenic yeasts were not detected in the apples studied. The results obtained respected the European Commission regulation regarding criteria of food hygiene and safety.

  2. The enrichment of TATA box and the scarcity of depleted proximal nucleosome in the promoters of duplicated yeast genes.

    PubMed

    Kim, Yuseob; Lee, Jang H; Babbitt, Gregory A

    2010-01-01

    Population genetic theory of gene duplication suggests that the preservation of duplicate copies requires functional divergence upon duplication. Genes that can be readily modified to produce new gene expression patterns may thus be duplicated often. In yeast, genes exhibit dichotomous expression patterns based on their promoter architectures. The expression of genes that contain TATA box or occupied proximal nucleosome (OPN) tends to be variable and respond to external signals. On the other hand, genes without TATA box or with depleted proximal nucleosome (DPN) are expressed constitutively. We find that recent duplicates in the yeast genome are heavily biased to be TATA box containing genes and not to be DPN genes. This suggests that variably expressed genes, due to the functional organization in their promoters, have higher duplicability than constitutively expressed genes.

  3. ORF Organization and Gene Recognition in the Yeast Genome

    PubMed Central

    Li, Hong; Zhang, Lirong

    2003-01-01

    Some rules on gene recognition and ORF organization in the Saccharomyces cerevisiae genome are demonstrated by statistical analyses of sequence data. This study includes: (a) The random frame rule—that the six reading frames W1, W2, W3, C1, C2 and C3 in the double-stranded genome are randomly occupied by ORFs (related phenomena on ORF overlapping are also discussed). (b) The inhomogeneity rule—coding and non-coding ORFs differ in inhomogeneity of base composition in the three codon positions. By use of the inhomogeneity index (IHI), one can make a distinction between coding (IHI > 14) and non-coding (IHI ≤ 14) ORFs at 95% accuracy. We find that ‘spurious’ ORFs (with IHI ≤ 14) are distributed mainly in three classes of ORFs, namely, those with ‘similarity to unknown proteins’, those with ‘no similarity’, or ‘questionable ORFs’. The total number of spurious ORFs (which are unlikely to be regarded as coding ORFs) is estimated to be 470. (c) The evaluation of ORF length distribution shows that below 200 amino acids the occurrence of ATG initiator ORFs is close to random. PMID:18629282

  4. Phylogenomic analyses reveal the diversity of laccase-coding genes in Fonsecaea genomes.

    PubMed

    Moreno, Leandro Ferreira; Feng, Peiying; Weiss, Vinicius Almir; Vicente, Vania Aparecida; Stielow, J Benjamin; de Hoog, Sybren

    2017-01-01

    The genus Fonsecaea comprises black yeast-like fungi of clinical relevance, including etiologic agents of chromoblastomycosis and cerebral phaeohyphomycosis. Presence of melanin and assimilation of monoaromatic hydrocarbons and alkylbenzenes have been proposed as virulence factors. Multicopper oxidase (MCO) is a family of enzymes including laccases, ferroxidases and ascorbate oxidases which are able to catalyze the oxidation of various aromatic organic compounds with the reduction of molecular oxygen to water. Additionally, laccases are required for the production of fungal melanins, a cell-wall black pigment recognized as a key polymer for pathogenicity and extremotolerance in black yeast-like fungi. Although the activity of laccase enzymes has previously been reported in many wood-rotting fungi, the diversity of laccase genes in Fonsecaea has not yet been assessed. In this study, we identified and characterized laccase-coding genes and determined their genomic location in five clinical and environmental Fonsecaea species. The identification of laccases sensu stricto will provide insights into carbon acquisition strategies as well as melanin production in Fonsecaea.

  5. Phylogenomic analyses reveal the diversity of laccase-coding genes in Fonsecaea genomes

    PubMed Central

    Feng, Peiying; Weiss, Vinicius Almir; Vicente, Vania Aparecida; Stielow, J. Benjamin; de Hoog, Sybren

    2017-01-01

    The genus Fonsecaea comprises black yeast-like fungi of clinical relevance, including etiologic agents of chromoblastomycosis and cerebral phaeohyphomycosis. Presence of melanin and assimilation of monoaromatic hydrocarbons and alkylbenzenes have been proposed as virulence factors. Multicopper oxidase (MCO) is a family of enzymes including laccases, ferroxidases and ascorbate oxidases which are able to catalyze the oxidation of various aromatic organic compounds with the reduction of molecular oxygen to water. Additionally, laccases are required for the production of fungal melanins, a cell-wall black pigment recognized as a key polymer for pathogenicity and extremotolerance in black yeast-like fungi. Although the activity of laccase enzymes has previously been reported in many wood-rotting fungi, the diversity of laccase genes in Fonsecaea has not yet been assessed. In this study, we identified and characterized laccase-coding genes and determined their genomic location in five clinical and environmental Fonsecaea species. The identification of laccases sensu stricto will provide insights into carbon acquisition strategies as well as melanin production in Fonsecaea. PMID:28187150

  6. Cloning, sequencing and application of the LEU2 gene from the sour dough yeast Candida milleri.

    PubMed

    Turakainen, Hilkka; Korhola, Matti

    2005-07-30

    We have cloned by complementation in Saccharomyces cerevisiae and sequenced a LEU2 gene from the sour dough yeast Candida milleri CBS 8195 and studied its chromosomal location. The LEU2 coding sequence was 1092 nt long encoding a putative beta-isopropylmalate dehydrogenase protein of 363 amino acids. The nucleotide sequence in the coding region had 71.6% identity to S. cerevisiae LEU2 sequence. On the protein level, the identity of C. milleri Leu2p to S. cerevisiae Leu2p was 84.1%. The CmLEU2 DNA probe hybridized to one to three chromosomal bands and two or three BamHI restriction fragments in C. milleri but did not give any signal to chromosomes or restriction fragments of C. albicans, S. cerevisiae, S. exiguus or Torulaspora delbrueckii. Using CmLEU2 probe for DNA hybridization makes it easy to quickly identify C. milleri among other sour dough yeasts.

  7. Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic acid production in yeast

    PubMed Central

    Misra, Ashish; Conway, Matthew F.; Johnnie, Joseph; Qureshi, Tabish M.; Lige, Bao; Derrick, Anne M.; Agbo, Eddy C.; Sriram, Ganesh

    2013-01-01

    Synthetic biology enables metabolic engineering of industrial microbes to synthesize value-added molecules. In this, a major challenge is the efficient redirection of carbon to the desired metabolic pathways. Pinpointing strategies toward this goal requires an in-depth investigation of the metabolic landscape of the organism, particularly primary metabolism, to identify precursor and cofactor availability for the target compound. The potent antimalarial therapeutic artemisinin and its precursors are promising candidate molecules for production in microbial hosts. Recent advances have demonstrated the production of artemisinin precursors in engineered yeast strains as an alternative to extraction from plants. We report the application of in silico and in vivo metabolic pathway analyses to identify metabolic engineering targets to improve the yield of the direct artemisinin precursor dihydroartemisinic acid (DHA) in yeast. First, in silico extreme pathway (ExPa) analysis identified NADPH-malic enzyme and the oxidative pentose phosphate pathway (PPP) as mechanisms to meet NADPH demand for DHA synthesis. Next, we compared key DHA-synthesizing ExPas to the metabolic flux distributions obtained from in vivo 13C metabolic flux analysis of a DHA-synthesizing strain. This comparison revealed that knocking out ethanol synthesis and overexpressing glucose-6-phosphate dehydrogenase in the oxidative PPP (gene YNL241C) or the NADPH-malic enzyme ME2 (YKL029C) are vital steps toward overproducing DHA. Finally, we employed in silico flux balance analysis and minimization of metabolic adjustment on a yeast genome-scale model to identify gene knockouts for improving DHA yields. The best strategy involved knockout of an oxaloacetate transporter (YKL120W) and an aspartate aminotransferase (YKL106W), and was predicted to improve DHA yields by 70-fold. Collectively, our work elucidates multiple non-trivial metabolic engineering strategies for improving DHA yield in yeast. PMID:23898325

  8. Life History Responses and Gene Expression Profiles of the Nematode Pristionchus pacificus Cultured on Cryptococcus Yeasts.

    PubMed

    Sanghvi, Gaurav V; Baskaran, Praveen; Röseler, Waltraud; Sieriebriennikov, Bogdan; Rödelsperger, Christian; Sommer, Ralf J

    2016-01-01

    Nematodes, the earth's most abundant metazoa are found in all ecosystems. In order to survive in diverse environments, they have evolved distinct feeding strategies and they can use different food sources. While some nematodes are specialists, including parasites of plants and animals, others such as Pristionchus pacificus are omnivorous feeders, which can live on a diet of bacteria, protozoans, fungi or yeast. In the wild, P. pacificus is often found in a necromenic association with beetles and is known to be able to feed on a variety of microbes as well as on nematode prey. However, in laboratory studies Escherichia coli OP50 has been used as standard food source, similar to investigations in Caenorhabditis elegans and it is unclear to what extent this biases the obtained results and how relevant findings are in real nature. To gain first insight into the variation in traits induced by a non-bacterial food source, we study Pristionchus-fungi interactions under laboratory conditions. After screening different yeast strains, we were able to maintain P. pacificus for at least 50-60 generations on Cryptococcus albidus and Cryptococcus curvatus. We describe life history traits of P. pacificus on both yeast strains, including developmental timing, survival and brood size. Despite a slight developmental delay and problems to digest yeast cells, which are both reflected at a transcriptomic level, all analyses support the potential of Cryptococcus strains as food source for P. pacificus. In summary, our work establishes two Cryptococcus strains as alternative food source for P. pacificus and shows change in various developmental, physiological and morphological traits, including the transcriptomic profiles.

  9. Life History Responses and Gene Expression Profiles of the Nematode Pristionchus pacificus Cultured on Cryptococcus Yeasts

    PubMed Central

    Sanghvi, Gaurav V.; Baskaran, Praveen; Röseler, Waltraud; Sieriebriennikov, Bogdan; Rödelsperger, Christian; Sommer, Ralf J.

    2016-01-01

    Nematodes, the earth’s most abundant metazoa are found in all ecosystems. In order to survive in diverse environments, they have evolved distinct feeding strategies and they can use different food sources. While some nematodes are specialists, including parasites of plants and animals, others such as Pristionchus pacificus are omnivorous feeders, which can live on a diet of bacteria, protozoans, fungi or yeast. In the wild, P. pacificus is often found in a necromenic association with beetles and is known to be able to feed on a variety of microbes as well as on nematode prey. However, in laboratory studies Escherichia coli OP50 has been used as standard food source, similar to investigations in Caenorhabditis elegans and it is unclear to what extent this biases the obtained results and how relevant findings are in real nature. To gain first insight into the variation in traits induced by a non-bacterial food source, we study Pristionchus-fungi interactions under laboratory conditions. After screening different yeast strains, we were able to maintain P. pacificus for at least 50–60 generations on Cryptococcus albidus and Cryptococcus curvatus. We describe life history traits of P. pacificus on both yeast strains, including developmental timing, survival and brood size. Despite a slight developmental delay and problems to digest yeast cells, which are both reflected at a transcriptomic level, all analyses support the potential of Cryptococcus strains as food source for P. pacificus. In summary, our work establishes two Cryptococcus strains as alternative food source for P. pacificus and shows change in various developmental, physiological and morphological traits, including the transcriptomic profiles. PMID:27741297

  10. Diversity and Physiological Characterization of D-Xylose-Fermenting Yeasts Isolated from the Brazilian Amazonian Forest

    PubMed Central

    Cadete, Raquel M.; Melo, Monaliza A.; Dussán, Kelly J.; Rodrigues, Rita C. L. B.; Silva, Silvio S.; Zilli, Jerri E.; Vital, Marcos J. S.; Gomes, Fátima C. O.; Lachance, Marc-André; Rosa, Carlos A.

    2012-01-01

    Background This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates. Methodology/Principal Findings A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB)-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L) culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g) and productivities (0.62 g/L·h to 0.75 g/L·h). Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g), with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g) and productivity (0.2 g/L·h), while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers. Conclusions/Significance This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates. PMID:22912807

  11. Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene.

    PubMed Central

    Kitamoto, K; Oda, K; Gomi, K; Takahashi, K

    1991-01-01

    Urea is reported to be a main precursor of ethyl carbamate (ECA), which is suspected to be a carcinogen, in wine and sake. In order to minimize production of urea, arginase-deficient mutants (delta car1/delta car1) were constructed from a diploid sake yeast, Kyokai no. 9, by successive disruption of the two copies of the CAR1 gene. First, the yeast strain was transformed with plasmid pCAT2 (delta car1 SMR1), and strains heterozygous for CAR1 gene were isolated on sulfometuron methyl plates. Successively, the other CAR1 gene was disrupted by transformation with plasmid pCAT1 (delta car1 G418r) and the resulting car1 mutants were isolated on a G418 plate. Arginase assay of the total cell lysate of the mutants showed that 70% of transformants isolated on G418 plates had no detectable enzyme activity, possibly as a result of the disruption of the two copies of the CAR1 gene. Further genomic Southern analysis confirmed this result. We could brew sake containing no urea with the delta car1/delta car1 homozygous mutant. It is of additional interest that no ECA was detected in the resulting sake, even after storage for 5 months at 30 degrees C. This molecular biological study suggests that ECA in sake originates mainly from urea that is produced by the arginase. Images PMID:2036017

  12. A dynamin-like protein encoded by the yeast sporulation gene SPO15.

    PubMed

    Yeh, E; Driscoll, R; Coltrera, M; Olins, A; Bloom, K

    1991-02-21

    The tightly centromere-linked gene SPO15 is essential for meiotic cell division in the yeast Saccharomyces cerevisiae. Diploid cells without the intact SPO15 gene product are able to complete premeiotic DNA synthesis and genetic recombination, but are unable to traverse the division cycles. Electron microscopy of blocked cells reveals a duplicated but unseparated spindle-pole body. Thus cells are unable to form a bipolar spindle. Sequence analysis of SPO15 DNA reveals an open reading frame that predicts a protein of 704 amino acids. This protein is identical to VPS1, a gene involved in vacuolar protein sorting in yeast which has significant sequence homology (45% overall, 66% over 300 amino acids) to the microtubule bundling-protein, dynamin. The SPO15 gene product expressed in Escherichia coli can be affinity-purified with microtubules. SPO15 encodes a protein that is likely to be involved in a microtubule-dependent process required for the timely separation of spindle-pole bodies in meiosis.

  13. [Soil microbial ecological process and microbial functional gene diversity].

    PubMed

    Zhang, Jing; Zhang, Huiwen; Li, Xinyu; Su, Zhencheng; Zhang, Chenggang

    2006-06-01

    Soil microbes in terrestrial ecosystem carry out a series of important ecological functions, such as geo-chemical cycling of elements, degradation of pollutants, and buffering to the acute changes of environment, etc. Soil microbial ecological function has a close relation with soil function, and the changes in the structure and composition of soil microbial populations can directly affect the realization of soil function. Through their produced enzymes, soil microbes take part in a series of metabolic activities, and the functional genes of coded enzymes are the functional markers of microbes. In recent ten years, molecular ecology focusing on the functional gene diversity has been developed rapidly, which gives us a new cut-in point to understand soil microbial ecological function from the point of functional gene. This paper reviewed the research advances in the functional gene diversity correlated to soil microbial ecological function, with the perspectives in this field discussed.

  14. Metabolic Genes within Cyanophage Genomes: Implications for Diversity and Evolution

    PubMed Central

    Gao, E-Bin; Huang, Youhua; Ning, Degang

    2016-01-01

    Cyanophages, a group of viruses specifically infecting cyanobacteria, are genetically diverse and extensively abundant in water environments. As a result of selective pressure, cyanophages often acquire a range of metabolic genes from host genomes. The host-derived genes make a significant contribution to the ecological success of cyanophages. In this review, we summarize the host-derived metabolic genes, as well as their origin and roles in cyanophage evolution and important host metabolic pathways, such as the light-dependent reactions of photosynthesis, the pentose phosphate pathway, nutrient acquisition and nucleotide biosynthesis. We also discuss the suitability of the host-derived metabolic genes as potential diagnostic markers for the detection of genetic diversity of cyanophages in natural environments. PMID:27690109

  15. The mouse Enhancer trap locus 1 (Etl-1): a novel mammalian gene related to Drosophila and yeast transcriptional regulator genes.

    PubMed

    Soininen, R; Schoor, M; Henseling, U; Tepe, C; Kisters-Woike, B; Rossant, J; Gossler, A

    1992-11-01

    A novel mouse gene, Enhancer trap locus 1 (Etl-1), was identified in close proximity to a lacZ enhancer trap integration in the mouse genome showing a specific beta-galactosidase staining pattern during development. In situ analysis revealed a widespread but not ubiquitous expression of Etl-1 throughout development with particularly high levels in the central nervous system and epithelial cells. The amino acid sequence of the Etl-1 protein deduced from the cDNA shows strong similarity, over a stretch of 500 amino acids, to the Drosophila brahma protein involved in the regulation of homeotic genes and to the yeast transcriptional activator protein SNF2/SWI2 as well as to the RAD54 protein and the recently described helicase-related yeast proteins STH1 and MOT1. Etl-1 is the first mammalian member of this group of proteins that are implicated in gene regulation and/or influencing chromatin structure. The homology to the regulatory proteins SNF2/SWI2 and brahma and the expression pattern during embryogenesis suggest that Etl-1 protein might be involved in gene regulating pathways during mouse development.

  16. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks.

    PubMed

    Zhou, Chunshui; Elia, Andrew E H; Naylor, Maria L; Dephoure, Noah; Ballif, Bryan A; Goel, Gautam; Xu, Qikai; Ng, Aylwin; Chou, Danny M; Xavier, Ramnik J; Gygi, Steven P; Elledge, Stephen J

    2016-06-28

    The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast.

  17. Evaluation of fungal and yeast diversity in Slovakian wine-related microbial communities.

    PubMed

    Brežná, Barbara; Zenišová, Katarína; Chovanová, Katarína; Chebeňová, Viera; Kraková, Lucia; Kuchta, Tomáš; Pangallo, Domenico

    2010-11-01

    Since the yeast flora of Slovakian enology has not previously been investigated by culture-independent methods, this approach was applied to two most common cultivars Frankovka (red wine) and Veltlin (white wine), and complemented by cultivation. Model samples included grapes, initial must, middle fermenting must and must in the end-fermentation phase. The cultured isolates were characterized by length polymorphism of rDNA spacer two region using fluorescence PCR and capillary electrophoresis (f-ITS PCR), and some were identified by sequencing. The microbial DNA extracted directly from the samples without cultivation was analysed by f-ITS PCR, amplicons were cloned and sequenced. The use of universal fungal primers led to detection of both yeasts and filamentous fungi. The amplicon of highest intensity and present in all the samples corresponded to Hanseniaspora uvarum. Other species demonstrated by both approaches included Saccharomyces sp., Metschnikowia pulcherrima or M. chrysoperlae, Candida zemplinina, Cladosporium cladosporioides, Botryotinia fuckeliana, Pichia anomala, Candida railenensis, Cryptococcus magnus, Metschnikowia viticola or Candida kofuensis, Pichia kluyveri or Pichia fermentas, Pichia membranifaciens, Aureobasidium pullulans, Alternaria alternata, Erysiphe necator, Rhodotorula glutinis, Issatchenkia terricola and Debaryomyces hansenii. Endemism of Slovakian enological yeasts was suggested on the level of minor genetic variations of the known species and probably not accounting for novel species. The prevalence of H. uvarum over Saccharomyces sp. in the samples was indicated. This is the first culture-independent study of Slovakian enology and the first time f-ITS PCR profiling was used on wine-related microbial communities.

  18. Diversity of yeast and mold species from a variety of cheese types.

    PubMed

    Banjara, Nabaraj; Suhr, Mallory J; Hallen-Adams, Heather E

    2015-06-01

    To generate a comprehensive profile of viable fungi (yeasts and molds) on cheese as it is purchased by consumers, 44 types of cheese were obtained from a local grocery store from 1 to 4 times each (depending on availability) and sampled. Pure cultures were obtained and identified by DNA sequence of the ITS region, as well as growth characteristics and colony morphology. The yeast Debaryomyces hansenii was the most abundant fungus, present in 79 % of all cheeses and 63 % of all samples. Penicillium roqueforti was the most common mold, isolated from a variety of cheeses in addition to the blue cheeses. Eighteen other fungal species were isolated, ten from only one sample each. Most fungi isolated have been documented from dairy products; a few raise potential food safety concerns (i.e. Aspergillus flavus, isolated from a single sample and capable of producing aflatoxins; and Candida parapsilosis, an emerging human pathogen isolated from three cheeses). With the exception of D. hansenii (present in most cheese) and P. roqueforti (a necessary component of blue cheese), no strong correlation was observed between cheese type, manufacturer, or sampling time with the yeast or mold species composition.

  19. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks

    PubMed Central

    Zhou, Chunshui; Elia, Andrew E. H.; Naylor, Maria L.; Ballif, Bryan A.; Goel, Gautam; Xu, Qikai; Ng, Aylwin; Chou, Danny M.; Xavier, Ramnik J.; Gygi, Steven P.; Elledge, Stephen J.

    2016-01-01

    The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast. PMID:27298372

  20. Diversity and activities of yeasts from different parts of a Stilton cheese.

    PubMed

    Gkatzionis, Konstantinos; Yunita, Dewi; Linforth, Robert S T; Dickinson, Matthew; Dodd, Christine E R

    2014-05-02

    Blue cheeses are very complex food matrices presenting significant spatial differentiation between sections and the Stilton variety also has a hard brown crust making its matrix even more complex. The mycobiota communities in the three sections (blue veins, white core and outer crust) of a Stilton blue cheese were studied by employing culture-independent (TRFLP, DGGE) and culture-dependent analyses. Yeasts isolated from the cheese were studied for aroma production in a dairy model system with and without the starter Lactococcus lactis and filamentous fungus Penicillium roqueforti using SPME GC-MS. Significant qualitative and quantitative differences were observed in the yeast communities between the cheese sections with all the techniques. Yarrowia lipolytica presented strong synergistic activity with P. roqueforti enhancing the production of ketone aroma compounds, characteristic of blue cheeses. Culture techniques allowed the observation of the presence and uneven distribution of two different morphological groups of Debaryomyces hansenii in the different sections and of Trichosporon ovoides but failed to isolate Candida catenulata which dominated some parts of the cheese in the culture-independent analysis. This suggests that this species may be an important early coloniser but fails to survive into the final cheese. The study indicated that the yeast flora in the cheese sections differ including isolates that could affect their aroma profiles.

  1. Winemaking and Bioprocesses Strongly Shaped the Genetic Diversity of the Ubiquitous Yeast Torulaspora delbrueckii

    PubMed Central

    Comte, Guillaume; Panfili, Aurélie; Delcamp, Adline; Salin, Franck; Marullo, Philippe; Bely, Marina

    2014-01-01

    The yeast Torulaspora delbrueckii is associated with several human activities including oenology, bakery, distillery, dairy industry, etc. In addition to its biotechnological applications, T. delbrueckii is frequently isolated in natural environments (plant, soil, insect). T. delbrueckii is thus a remarkable ubiquitous yeast species with both wild and anthropic habitats, and appears to be a perfect yeast model to search for evidence of human domestication. For that purpose, we developed eight microsatellite markers that were used for the genotyping of 110 strains from various substrates and geographical origins. Microsatellite analysis showed four genetic clusters: two groups contained most nature strains from Old World and Americas respectively, and two clusters were associated with winemaking and other bioprocesses. Analysis of molecular variance (AMOVA) confirmed that human activities significantly shaped the genetic variability of T. delbrueckii species. Natural isolates are differentiated on the basis of geographical localisation, as expected for wild population. The domestication of T. delbrueckii probably dates back to the Roman Empire for winemaking (∼1900 years ago), and to the Neolithic era for bioprocesses (∼4000 years ago). Microsatellite analysis also provided valuable data regarding the life-cycle of the species, suggesting a mostly diploid homothallic life. In addition to population genetics and ecological studies, the microsatellite tool will be particularly useful for further biotechnological development of T. delbrueckii strains for winemaking and other bioprocesses. PMID:24718638

  2. Genomes, diversity and resistance gene analogues in Musa species.

    PubMed

    Azhar, M; Heslop-Harrison, J S

    2008-01-01

    Resistance genes (R genes) in plants are abundant and may represent more than 1% of all the genes. Their diversity is critical to the recognition and response to attack from diverse pathogens. Like many other crops, banana and plantain face attacks from potentially devastating fungal and bacterial diseases, increased by a combination of worldwide spread of pathogens, exploitation of a small number of varieties, new pathogen mutations, and the lack of effective, benign and cheap chemical control. The challenge for plant breeders is to identify and exploit genetic resistances to diseases, which is particularly difficult in banana and plantain where the valuable cultivars are sterile, parthenocarpic and mostly triploid so conventional genetic analysis and breeding is impossible. In this paper, we review the nature of R genes and the key motifs, particularly in the Nucleotide Binding Sites (NBS), Leucine Rich Repeat (LRR) gene class. We present data about identity, nature and evolutionary diversity of the NBS domains of Musa R genes in diploid wild species with the Musa acuminata (A), M. balbisiana (B), M. schizocarpa (S), M. textilis (T), M. velutina and M. ornata genomes, and from various cultivated hybrid and triploid accessions, using PCR primers to isolate the domains from genomic DNA. Of 135 new sequences, 75% of the sequenced clones had uninterrupted open reading frames (ORFs), and phylogenetic UPGMA tree construction showed four clusters, one from Musa ornata, one largely from the B and T genomes, one from A and M. velutina, and the largest with A, B, T and S genomes. Only genes of the coiled-coil (non-TIR) class were found, typical of the grasses and presumably monocotyledons. The analysis of R genes in cultivated banana and plantain, and their wild relatives, has implications for identification and selection of resistance genes within the genus which may be useful for plant selection and breeding and also for defining relationships and genome evolution

  3. Mobile Introns Shape the Genetic Diversity of Their Host Genes

    PubMed Central

    Repar, Jelena; Warnecke, Tobias

    2017-01-01

    Self-splicing introns populate several highly conserved protein-coding genes in fungal and plant mitochondria. In fungi, many of these introns have retained their ability to spread to intron-free target sites, often assisted by intron-encoded endonucleases that initiate the homing process. Here, leveraging population genomic data from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Lachancea kluyveri, we expose nonrandom patterns of genetic diversity in exons that border self-splicing introns. In particular, we show that, in all three species, the density of single nucleotide polymorphisms increases as one approaches a mobile intron. Through multiple lines of evidence, we rule out relaxed purifying selection as the cause of uneven nucleotide diversity. Instead, our findings implicate intron mobility as a direct driver of host gene diversity. We discuss two mechanistic scenarios that are consistent with the data: either endonuclease activity and subsequent error-prone repair have left a mutational footprint on the insertion environment of mobile introns or nonrandom patterns of genetic diversity are caused by exonic coconversion, which occurs when introns spread to empty target sites via homologous recombination. Importantly, however, we show that exonic coconversion can only explain diversity gradients near intron–exon boundaries if the conversion template comes from outside the population. In other words, there must be pervasive and ongoing horizontal gene transfer of self-splicing introns into extant fungal populations. PMID:28193728

  4. Allozyme gene diversities in some leaf beetles (Coleoptera: Chrysomelidae).

    PubMed

    Krafsur, E S

    1999-08-01

    Gene diversity at allozyme loci was investigated in the bean leaf beetle, Ceratoma trifurcata Forster; the elm leaf beetle, Xanthogaleruca luteola (Muller); the cottonwood leaf beetle, Chrysomela scripta Fabricus; the western corn rootworm, Diabrotica virgifera virgifera LeConte; the southern corn rootworm, also called the spotted cucumber beetle, D. undecimpunctata howardi Baker; the northern corn rootworm, D. barberi Smith and Lawrence; and the Colorado potato beetle, Leptinotarsa decemlineata (Say). Six of these species are economically important pests of crops and display adaptive traits that may correlate with genetic diversity. Gene diversity H(E) in bean leaf beetles was 17.7 +/- 4.0% among 32 loci. In western corn rootworms, H(E) = 4.8 +/- 2.0% among 36 loci, and in spotted cucumber beetles, H(E) = 11.9 +/- 2.7% among 39 loci. Diversity among 27 loci was 10.5 +/- 4.3% in the Colorado potato beetle. The data were compared with gene diversity estimates from other leaf beetle species in which heterozygosities varied from 0.3 to 21% and no correlation was detected among heterozygosities, geographic ranges, or population densities. Distributions of single-locus heterozygosities were consistent with selective neutrality of alleles.

  5. Species Accumulation Curves and Incidence-Based Species Richness Estimators to Appraise the Diversity of Cultivable Yeasts from Beech Forest Soils

    PubMed Central

    Yurkov, Andrey M.; Kemler, Martin; Begerow, Dominik

    2011-01-01

    Background Yeast-like fungi inhabit soils throughout all climatic zones in a great abundance. While recent estimations predicted a plethora of prokaryotic taxa in one gram of soil, similar data are lacking for fungi, especially yeasts. Methodology/Principal Findings We assessed the diversity of soil yeasts in different forests of central Germany using cultivation-based techniques with subsequent identification based on rDNA sequence data. Based on experiments using various pre-cultivation sample treatment and different cultivation media we obtained the highest number of yeasts by analysing mixed soil samples with a single nutrient-rich medium. Additionally, several species richness estimators were applied to incidence-based data of 165 samples. All of them predicted a similar range of yeast diversity, namely 14 to 16 species. Randomized species richness curves reached saturation in all applied estimators, thus indicating that the majority of species is detected after approximately 30 to 50 samples analysed. Conclusions/Significance In this study we demonstrate that robust species identification as well as mathematical approaches are essential to reliably estimate the sampling effort needed to describe soil yeast communities. This approach has great potential for optimisation of cultivation techniques and allows high throughput analysis in the future. PMID:21858201

  6. In silico design and in vivo implementation of yeast gene Boolean gates

    PubMed Central

    2014-01-01

    In our previous computational work, we showed that gene digital circuits can be automatically designed in an electronic fashion. This demands, first, a conversion of the truth table into Boolean formulas with the Karnaugh map method and, then, the translation of the Boolean formulas into circuit schemes organized into layers of Boolean gates and Pools of signal carriers. In our framework, gene digital circuits that take up to three different input signals (chemicals) arise from the composition of three kinds of basic Boolean gates, namely YES, NOT, and AND. Here we present a library of YES, NOT, and AND gates realized via plasmidic DNA integration into the yeast genome. Boolean behavior is reproduced via the transcriptional control of a synthetic bipartite promoter that contains sequences of the yeast VPH1 and minimal CYC1 promoters together with operator binding sites for bacterial (i.e. orthogonal) repressor proteins. Moreover, model-driven considerations permitted us to pinpoint a strategy for re-designing gates when a better digital performance is required. Our library of well-characterized Boolean gates is the basis for the assembly of more complex gene digital circuits. As a proof of concepts, we engineered two 2-input OR gates, designed by our software, by combining YES and NOT gates present in our library. PMID:24485181

  7. Transfer RNA Genes Are Genomic Targets for De Novo Transposition of the Yeast Retrotransposon Ty3

    PubMed Central

    Chalker, D. L.; Sandmeyer, S. B.

    1990-01-01

    Insertions of the yeast element Ty3 resulting from induced retrotransposition were characterized in order to identify the genomic targets of transposition. The DNA sequences of the junctions between Ty3 and flanking DNA were determined for two insertions of an unmarked element. Each insertion was at position -17 from the 5' end of a tRNA-coding sequence. Ninety-one independent insertions of a marked Ty3 element were studied by Southern blot analysis. Pairs of independent insertions into seven genomic loci accounted for 14 of these insertions. The DNA sequence flanking the insertion site was determined for at least one member of each pair of integrated elements. In each case, insertion was at position -16 or -17 relative to the 5' end of one of seven different tRNA genes. This proportion of genomic loci used twice for Ty3 integration is consistent with that predicted by a Poisson distribution for a number of genomic targets roughly equivalent to the estimated number of yeast tRNA genes. In addition, insertions upstream of the same tRNA gene in one case were at different positions, but in all cases were in the same orientation. Thus, genomic insertions of Ty3 in a particular orientation are apparently specified by the target, while the actual position of the insertion relative to the tRNA-coding sequence can vary slightly. PMID:1963869

  8. Yeast mutant affected for viability upon nutrient starvation: characterization and cloning of the RVS161 gene.

    PubMed

    Crouzet, M; Urdaci, M; Dulau, L; Aigle, M

    1991-10-01

    In yeast, nutrient starvation leads to entry into stationary phase. Mutants that do not respond properly to starvation conditions have been isolated in Saccharomyces cerevisiae. Among them the rvs161 mutant (RVS for Reduced Viability upon Starvation) is sensitive to carbon, nitrogen and sulphur starvation. When these nutrients are depleted in the medium, mutant cells show cellular viability loss with morphological changes. The mutation rvs161-1 is very pleiotropic, and besides the defects in stationary phase entry, the mutant strain presents other alterations: sensitivity to high salt concentrations, hypersensitivity to amino acid analogs, no growth on lactate or acetate medium. The addition of salts or amino acid analogs leads to the same morphological defects observed in starved cells, suggesting that the gene could be implicated mainly in the control of cellular viability. The gene RVS161 was cloned; it codes for a 30,252 daltons protein. No homology was detected with the proteins contained in the databases. Moreover, Southern analysis revealed the presence of other sequences homologous to the RVS161 gene in the yeast genome.

  9. In silico design and in vivo implementation of yeast gene Boolean gates.

    PubMed

    Marchisio, Mario A

    2014-02-02

    In our previous computational work, we showed that gene digital circuits can be automatically designed in an electronic fashion. This demands, first, a conversion of the truth table into Boolean formulas with the Karnaugh map method and, then, the translation of the Boolean formulas into circuit schemes organized into layers of Boolean gates and Pools of signal carriers. In our framework, gene digital circuits that take up to three different input signals (chemicals) arise from the composition of three kinds of basic Boolean gates, namely YES, NOT, and AND. Here we present a library of YES, NOT, and AND gates realized via plasmidic DNA integration into the yeast genome. Boolean behavior is reproduced via the transcriptional control of a synthetic bipartite promoter that contains sequences of the yeast VPH1 and minimal CYC1 promoters together with operator binding sites for bacterial (i.e. orthogonal) repressor proteins. Moreover, model-driven considerations permitted us to pinpoint a strategy for re-designing gates when a better digital performance is required. Our library of well-characterized Boolean gates is the basis for the assembly of more complex gene digital circuits. As a proof of concepts, we engineered two 2-input OR gates, designed by our software, by combining YES and NOT gates present in our library.

  10. Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation.

    PubMed

    Dhar, Riddhiman; Sägesser, Rudolf; Weikert, Christian; Wagner, Andreas

    2013-03-01

    Organisms can protect themselves against future environmental change. An example is cross-protection, where physiological adaptation against a present environmental stressor can protect an organism against a future stressor. Another is anticipation, where an organism uses information about its present environment to trigger gene expression and other physiological changes adaptive in future environments. "Predictive" abilities like this exist in organisms that have been exposed to periodic changes in environments. It is unknown how readily they can evolve. To answer this question, we carried out laboratory evolution experiments in the yeast Saccharomyces cerevisiae. Specifically, we exposed three replicate populations of yeast to environments that varied cyclically between two stressors, salt stress and oxidative stress, every 10 generations, for a total of 300 generations. We evolved six replicate control populations in only one of these stressors for the same amount of time. We analyzed fitness changes and genome-scale expression changes in all these evolved populations. Our populations evolved asymmetric cross protection, where oxidative stress protects against salt stress but not vice versa. Gene expression data also suggest the evolution of anticipation and basal gene expression changes that occur uniquely in cyclic environments. Our study shows that highly complex physiological states that are adaptive in future environments can evolve on very short evolutionary time scales.

  11. [Effects of knockout ECM25/YJL201W gene in brewing yeast on beer flavor stability].

    PubMed

    Zhang, Yixin; Li, Qi; Shen, Wei; Xie, Yan; Gu, Guoxian

    2008-08-01

    The ECM25 deletion mutant of industrial brewing yeast, G03/a, was constructed by replacing the ECM25 gene with the kanMX gene. The transformant was verified to be genetically stable. The PCR analysis showed that ECM25 gene in the G-03/a was deleted. Under aerobic conditions of ll degrees C and 28 degrees C, compared with the host strain G-03, the excretive glutathione concentration of G-03/a increased by 21.4% and 14.7%, respectively. Strains G-03 and G-03/a were inoculated in flasks and cultivated continuously for 4 generations. Compared with the host strain G-03, the glutathione concentration in the main fermentation broth and final beer of strain G-03/a increased by 32.1% and 13.8%, the stability index (SI) increased by 7.7% and 5.3%, respectively, and the flavor resistance staling value (RSV value) in final beer increased by 45.0%. During EBC fermentation, the glutathione concentration in the main fermentation broth of strain G-03/a increased by 34.0%, compared with the host strain G-03. Furthermore, no significant difference in routine fermentation parameters was found. The strain G-03/a is proved to be an excellent anti-staling brewing yeast to improve beer flavor stability.

  12. Cloning and sequencing of the PIF gene involved in repair and recombination of yeast mitochondrial DNA.

    PubMed Central

    Foury, F; Lahaye, A

    1987-01-01

    The nuclear gene PIF of Saccharomyces cerevisiae is required for both repair of mitochondrial DNA (mtDNA) and recognition of a recombinogenic signal characterized by a 26-bp palindromic AT sequence in the ery region of mtDNA. This gene has been cloned in yeast by genetic complementation of pif mutants. Its chromosomal disruption does not destroy the genetic function of mitochondria. The nucleotide sequence of the 3.5-kb insert from a complementing plasmid reveals an open reading frame encoding a potential protein of 857 amino acids and Mr = 97,500. An ATP-binding domain is present in the central part of the gene and in the carboxy-terminal region a putative DNA-binding site is present. Its alpha helix-turn-alpha helix motif is found in DNA-binding proteins such as lambda and lactose repressors which recognize symmetric sequences. Significant amino acid homology is observed with yeast RAD3 and E. coli UvrD (helicase II) proteins which are required for excision repair of damaged DNA. Images Fig. 1. Fig. 2. PMID:3038524

  13. Extraordinary diversity of visual opsin genes in dragonflies.

    PubMed

    Futahashi, Ryo; Kawahara-Miki, Ryouka; Kinoshita, Michiyo; Yoshitake, Kazutoshi; Yajima, Shunsuke; Arikawa, Kentaro; Fukatsu, Takema

    2015-03-17

    Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15-33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies.

  14. Extraordinary diversity of visual opsin genes in dragonflies

    PubMed Central

    Futahashi, Ryo; Kawahara-Miki, Ryouka; Kinoshita, Michiyo; Yoshitake, Kazutoshi; Yajima, Shunsuke; Arikawa, Kentaro; Fukatsu, Takema

    2015-01-01

    Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15–33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies. PMID:25713365

  15. The AWA1 Gene Is Required for the Foam-Forming Phenotype and Cell Surface Hydrophobicity of Sake Yeast

    PubMed Central

    Shimoi, Hitoshi; Sakamoto, Kazutoshi; Okuda, Masaki; Atthi, Ratchanee; Iwashita, Kazuhiro; Ito, Kiyoshi

    2002-01-01

    Sake, a traditional alcoholic beverage in Japan, is brewed with sake yeasts, which are classified as Saccharomyces cerevisiae. Almost all sake yeasts form a thick foam layer on sake mash during the fermentation process because of their cell surface hydrophobicity, which increases the cells' affinity for bubbles. To reduce the amount of foam, nonfoaming mutants were bred from foaming sake yeasts. Nonfoaming mutants have hydrophilic cell surfaces and no affinity for bubbles. We have cloned a gene from a foam-forming sake yeast that confers foaming ability to a nonfoaming mutant. This gene was named AWA1 and structures of the gene and its product were analyzed. The N- and C-terminal regions of Awa1p have the characteristic sequences of a glycosylphosphatidylinositol anchor protein. The entire protein is rich in serine and threonine residues and has a lot of repetitive sequences. These results suggest that Awa1p is localized in the cell wall. This was confirmed by immunofluorescence microscopy and Western blotting analysis using hemagglutinin-tagged Awa1p. Moreover, an awa1 disruptant of sake yeast was hydrophilic and showed a nonfoaming phenotype in sake mash. We conclude that Awa1p is a cell wall protein and is required for the foam-forming phenotype and the cell surface hydrophobicity of sake yeast. PMID:11916725

  16. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].

    PubMed

    Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V

    2014-06-01

    The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.

  17. Diversity and abundance of phosphonate biosynthetic genes in nature

    PubMed Central

    Yu, Xiaomin; Doroghazi, James R.; Janga, Sarath C.; Zhang, Jun Kai; Circello, Benjamin; Griffin, Benjamin M.; Labeda, David P.; Metcalf, William W.

    2013-01-01

    Phosphonates, molecules containing direct carbon–phosphorus bonds, compose a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than 50 y ago, the extent and diversity of phosphonate production in nature remains poorly characterized. The rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate, catalyzed by the enzyme PEP mutase (PepM), is shared by the vast majority of known phosphonate biosynthetic pathways. Thus, the pepM gene can be used as a molecular marker to examine the occurrence and abundance of phosphonate-producing organisms. Based on the presence of this gene, phosphonate biosynthesis is common in microbes, with ∼5% of sequenced bacterial genomes and 7% of genome equivalents in metagenomic datasets carrying pepM homologs. Similarly, we detected the pepM gene in ∼5% of random actinomycete isolates. The pepM-containing gene neighborhoods from 25 of these isolates were cloned, sequenced, and compared with those found in sequenced genomes. PEP mutase sequence conservation is strongly correlated with conservation of other nearby genes, suggesting that the diversity of phosphonate biosynthetic pathways can be predicted by examining PEP mutase diversity. We used this approach to estimate the range of phosphonate biosynthetic pathways in nature, revealing dozens of discrete groups in pepM amplicons from local soils, whereas hundreds were observed in metagenomic datasets. Collectively, our analyses show that phosphonate biosynthesis is both diverse and relatively common in nature, suggesting that the role of phosphonate molecules in the biosphere may be more important than is often recognized. PMID:24297932

  18. Diverse Antibiotic Resistance Genes in Dairy Cow Manure

    PubMed Central

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-01-01

    ABSTRACT Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. PMID:24757214

  19. Yeast diversity in a traditional French cheese "Tomme d'orchies" reveals infrequent and frequent species with associated benefits.

    PubMed

    Ceugniez, Alexandre; Drider, Djamel; Jacques, Philippe; Coucheney, Françoise

    2015-12-01

    This study is aimed at unrevealing the yeast diversity of handmade cheese, Tomme d'orchies, produced and marketed in the north of France. A total of 185 yeast colonies were isolated from the surface and core of this cheese. From these, 80 morphologically different colonies were selected and subjected to rep-PCR analysis. The isolates were clustered into six distinct groups based on their DNA fingerprints. From each group, at least 30% of isolates were selected and identified to species level by biochemical characteristics (ID32C Api system) and sequencing of the ITS1-5.8S-ITS2 and 26S rDNA regions. The isolates belonged to Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Kluyveromyces marxianus, frequently isolated, and less frequently isolated Saturnispora mendoncae and Clavispora lusitaniae. Two isolates designated as Kluyveromyces lactis (isolate S-3-05) and Kluyveromyces marxianus (isolate S-2-05) were non-hemolytic, sensitive to antifungal compounds and able to inhibit the growth of pathogens including Candida albicans, Listeria monocytogenes and some bacilli.

  20. CASCADE, a platform for controlled gene amplification for high, tunable and selection-free gene expression in yeast

    PubMed Central

    Strucko, Tomas; Buron, Line Due; Jarczynska, Zofia Dorota; Nødvig, Christina Spuur; Mølgaard, Louise; Halkier, Barbara Ann; Mortensen, Uffe Hasbro

    2017-01-01

    Over-expression of a gene by increasing its copy number is often desirable in the model yeast Saccharomyces cerevisiae. It may facilitate elucidation of enzyme functions, and in cell factory design it is used to increase production of proteins and metabolites. Current methods are typically exploiting expression from the multicopy 2 μ-derived plasmid or by targeting genes repeatedly into sequences like Ty or rDNA; in both cases, high gene expression levels are often reached. However, with 2 μ-based plasmid expression, the population of cells is very heterogeneous with respect to protein production; and for integration into repeated sequences it is difficult to determine the genetic setup of the resulting strains and to achieve specific gene doses. For both types of systems, the strains often suffer from genetic instability if proper selection pressure is not applied. Here we present a gene amplification system, CASCADE, which enables construction of strains with defined gene copy numbers. One or more genes can be amplified simultaneously and the resulting strains can be stably propagated on selection-free medium. As proof-of-concept, we have successfully used CASCADE to increase heterologous production of two fluorescent proteins, the enzyme β-galactosidase the fungal polyketide 6-methyl salicylic acid and the plant metabolite vanillin glucoside. PMID:28134264

  1. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    PubMed

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  2. Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation

    PubMed Central

    Honigberg, Saul M.

    2016-01-01

    Diploid budding yeast (Saccharomyces cerevisiae) can adopt one of several alternative differentiation fates in response to nutrient limitation, and each of these fates provides distinct biological functions. When different strain backgrounds are taken into account, these various fates occur in response to similar environmental cues, are regulated by the same signal transduction pathways, and share many of the same master regulators. I propose that the relationships between fate choice, environmental cues and signaling pathways are not Boolean, but involve graded levels of signals, pathway activation and master-regulator activity. In the absence of large differences between environmental cues, small differences in the concentration of cues may be reinforced by cell-to-cell signals. These signals are particularly essential for fate determination within communities, such as colonies and biofilms, where fate choice varies dramatically from one region of the community to another. The lack of Boolean relationships between cues, signaling pathways, master regulators and cell fates may allow yeast communities to respond appropriately to the wide range of environments they encounter in nature. PMID:27917388

  3. Evaluation of Gene Modification Strategies for the Development of Low-Alcohol-Wine Yeasts

    PubMed Central

    Kutyna, D. R.; Solomon, M. R.; Black, C. A.; Borneman, A.; Henschke, P. A.; Pretorius, I. S.; Chambers, P. J.

    2012-01-01

    Saccharomyces cerevisiae has evolved a highly efficient strategy for energy generation which maximizes ATP energy production from sugar. This adaptation enables efficient energy generation under anaerobic conditions and limits competition from other microorganisms by producing toxic metabolites, such as ethanol and CO2. Yeast fermentative and flavor capacity forms the biotechnological basis of a wide range of alcohol-containing beverages. Largely as a result of consumer demand for improved flavor, the alcohol content of some beverages like wine has increased. However, a global trend has recently emerged toward lowering the ethanol content of alcoholic beverages. One option for decreasing ethanol concentration is to use yeast strains able to divert some carbon away from ethanol production. In the case of wine, we have generated and evaluated a large number of gene modifications that were predicted, or known, to impact ethanol formation. Using the same yeast genetic background, 41 modifications were assessed. Enhancing glycerol production by increasing expression of the glyceraldehyde-3-phosphate dehydrogenase gene, GPD1, was the most efficient strategy to lower ethanol concentration. However, additional modifications were needed to avoid negatively affecting wine quality. Two strains carrying several stable, chromosomally integrated modifications showed significantly lower ethanol production in fermenting grape juice. Strain AWRI2531 was able to decrease ethanol concentrations from 15.6% (vol/vol) to 13.2% (vol/vol), whereas AWRI2532 lowered ethanol content from 15.6% (vol/vol) to 12% (vol/vol) in both Chardonnay and Cabernet Sauvignon juices. Both strains, however, produced high concentrations of acetaldehyde and acetoin, which negatively affect wine flavor. Further modifications of these strains allowed reduction of these metabolites. PMID:22729542

  4. Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts.

    PubMed

    Varela, C; Kutyna, D R; Solomon, M R; Black, C A; Borneman, A; Henschke, P A; Pretorius, I S; Chambers, P J

    2012-09-01

    Saccharomyces cerevisiae has evolved a highly efficient strategy for energy generation which maximizes ATP energy production from sugar. This adaptation enables efficient energy generation under anaerobic conditions and limits competition from other microorganisms by producing toxic metabolites, such as ethanol and CO(2). Yeast fermentative and flavor capacity forms the biotechnological basis of a wide range of alcohol-containing beverages. Largely as a result of consumer demand for improved flavor, the alcohol content of some beverages like wine has increased. However, a global trend has recently emerged toward lowering the ethanol content of alcoholic beverages. One option for decreasing ethanol concentration is to use yeast strains able to divert some carbon away from ethanol production. In the case of wine, we have generated and evaluated a large number of gene modifications that were predicted, or known, to impact ethanol formation. Using the same yeast genetic background, 41 modifications were assessed. Enhancing glycerol production by increasing expression of the glyceraldehyde-3-phosphate dehydrogenase gene, GPD1, was the most efficient strategy to lower ethanol concentration. However, additional modifications were needed to avoid negatively affecting wine quality. Two strains carrying several stable, chromosomally integrated modifications showed significantly lower ethanol production in fermenting grape juice. Strain AWRI2531 was able to decrease ethanol concentrations from 15.6% (vol/vol) to 13.2% (vol/vol), whereas AWRI2532 lowered ethanol content from 15.6% (vol/vol) to 12% (vol/vol) in both Chardonnay and Cabernet Sauvignon juices. Both strains, however, produced high concentrations of acetaldehyde and acetoin, which negatively affect wine flavor. Further modifications of these strains allowed reduction of these metabolites.

  5. Diverse antibiotic resistance genes in dairy cow manure.

    PubMed

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-04-22

    Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. IMPORTANCE The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected

  6. Genes involved in sister chromatid separation and segregation in the budding yeast Saccharomyces cerevisiae.

    PubMed Central

    Biggins, S; Bhalla, N; Chang, A; Smith, D L; Murray, A W

    2001-01-01

    Accurate chromosome segregation requires the precise coordination of events during the cell cycle. Replicated sister chromatids are held together while they are properly attached to and aligned by the mitotic spindle at metaphase. At anaphase, the links between sisters must be promptly dissolved to allow the mitotic spindle to rapidly separate them to opposite poles. To isolate genes involved in chromosome behavior during mitosis, we microscopically screened a temperature-sensitive collection of budding yeast mutants that contain a GFP-marked chromosome. Nine LOC (loss of cohesion) complementation groups that do not segregate sister chromatids at anaphase were identified. We cloned the corresponding genes and performed secondary tests to determine their function in chromosome behavior. We determined that three LOC genes, PDS1, ESP1, and YCS4, are required for sister chromatid separation and three other LOC genes, CSE4, IPL1, and SMT3, are required for chromosome segregation. We isolated alleles of two genes involved in splicing, PRP16 and PRP19, which impair alpha-tubulin synthesis thus preventing spindle assembly, as well as an allele of CDC7 that is defective in DNA replication. We also report an initial characterization of phenotypes associated with the SMT3/SUMO gene and the isolation of WSS1, a high-copy smt3 suppressor. PMID:11606525

  7. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae.

    PubMed

    Godard, Patrice; Urrestarazu, Antonio; Vissers, Stéphan; Kontos, Kevin; Bontempi, Gianluca; van Helden, Jacques; André, Bruno

    2007-04-01

    We compared the transcriptomes of Saccharomyces cerevisiae cells growing under steady-state conditions on 21 unique sources of nitrogen. We found 506 genes differentially regulated by nitrogen and estimated the activation degrees of all identified nitrogen-responding transcriptional controls according to the nitrogen source. One main group of nitrogenous compounds supports fast growth and a highly active nitrogen catabolite repression (NCR) control. Catabolism of these compounds typically yields carbon derivatives directly assimilable by a cell's metabolism. Another group of nitrogen compounds supports slower growth, is associated with excretion by cells of nonmetabolizable carbon compounds such as fusel oils, and is characterized by activation of the general control of amino acid biosynthesis (GAAC). Furthermore, NCR and GAAC appear interlinked, since expression of the GCN4 gene encoding the transcription factor that mediates GAAC is subject to NCR. We also observed that several transcriptional-regulation systems are active under a wider range of nitrogen supply conditions than anticipated. Other transcriptional-regulation systems acting on genes not involved in nitrogen metabolism, e.g., the pleiotropic-drug resistance and the unfolded-protein response systems, also respond to nitrogen. We have completed the lists of target genes of several nitrogen-sensitive regulons and have used sequence comparison tools to propose functions for about 20 orphan genes. Similar studies conducted for other nutrients should provide a more complete view of alternative metabolic pathways in yeast and contribute to the attribution of functions to many other orphan genes.

  8. A Mutator Affecting the Region of the Iso-1-Cytochrome c Gene in Yeast

    PubMed Central

    Liebman, Susan W.; Singh, Arjun; Sherman, Fred

    1979-01-01

    The mutator gene DEL1 in the yeast Saccharomyces cerevisiae causes a high rate of formation of multisite mutations that encompass the following three adjacent genes: CYC1, which determines the structure of iso-1-cytochrome c; RAD7, which controls UV sensitivity; and OSM1, which controls osomotic sensitivity. The simplest hypothesis is that these multisite mutations are deletions, although it has not been excluded that they may involve other types of gross chromosomal aberrations. In contrast, normal strains do not produce such multisite mutations even after mutagenic treatments.—The multisite mutations arise at a rate of approximately 10-5 to 10-6 per cell per division in DEL1 strains, which is much higher than rates observed for mutation of genes in normal strains. For example, normal strains produce all types of cyc1 mutants at a low rate of approximately 10-8 to 10-9. No evidence for multisite mutations was obtained upon analysis of numerous spontaneous ade1, ade2, met2 and met15 mutants isolated in a DEL1 strain. DEL1 segregates as a single Mendelian gene closely linked to the CYC1 locus. DEL1 appears to be both cis- and trans-dominant. The location of the DEL1 gene and the lack of effect on other genes suggest that the mutator acts only on a region adjacent to itself. PMID:231539

  9. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.

    PubMed

    Inskeep, William P; Macur, Richard E; Hamamura, Natsuko; Warelow, Thomas P; Ward, Seamus A; Santini, Joanne M

    2007-04-01

    The arsenic (As) drinking water crisis in south and south-east Asia has stimulated intense study of the microbial processes controlling the redox cycling of As in soil-water systems. Microbial oxidation of arsenite is a critical link in the global As cycle, and phylogenetically diverse arsenite-oxidizing microorganisms have been isolated from various aquatic and soil environments. However, despite progress characterizing the metabolism of As in various pure cultures, no functional gene approaches have been developed to determine the importance and distribution of arsenite-oxidizing genes in soil-water-sediment systems. Here we report for the first time the successful amplification of arsenite oxidase-like genes (aroA/asoA/aoxB) from a variety of soil-sediment and geothermal environments where arsenite is known to be oxidized. Prior to the current work, only 16 aroA/asoA/aoxB-like gene sequences were available in GenBank, most of these being putative assignments from homology searches of whole genomes. Although aroA/asoA/aoxB gene sequences are not highly conserved across disparate phyla, degenerate primers were used successfully to characterize over 160 diverse aroA-like sequences from 10 geographically isolated, arsenic-contaminated sites and from 13 arsenite-oxidizing organisms. The primer sets were also useful for confirming the expression of aroA-like genes in an arsenite-oxidizing organism and in geothermal environments where arsenite is oxidized to arsenate. The phylogenetic and ecological diversity of aroA-like sequences obtained from this study suggests that genes for aerobic arsenite oxidation are widely distributed in the bacterial domain, are widespread in soil-water systems containing As, and play a critical role in the biogeochemical cycling of As.

  10. Mutational specificity analysis: assay for mutations in the yeast SUP4-o gene.

    PubMed

    Kunz, Bernard A

    2014-01-01

    Mutational specificity analysis can yield valuable insights into processes that generate genetic change or maintain genetic stability. Powerful diagnostic tools for such analysis have been created by combining genetic assays for mutation with DNA sequencing. Here, steps for isolating spontaneous mutations in the yeast (Saccharomyces cerevisiae) suppressor tRNA gene SUP4-o as a prelude to sequence characterization are described (modifications of this protocol can be used to study induction of mutations by various physical or chemical agents). Mutations in SUP4-o are selected on drug-containing medium by virtue of their inactivation of suppressor activity. The small size, detailed knowledge of detectably mutable sites, and other features of the target gene facilitate subsequent analysis of these mutations.

  11. Detection of maltose fermentation genes in the baking yeast strains of Saccharomyces cerevisiae.

    PubMed

    Oda, Y; Tonomura, K

    1996-10-01

    The presence of any one of the five unlinked MAL loci (MAL1, MAL2, MAL3, MAL4 and MAL6) confers the ability to ferment maltose on the yeast Saccharomyces cerevisiae. Each locus is composed of three genes encoding maltose permease, alpha-glucosidase and MAL activator. Chromosomal DNA of seven representative baking strains has been separated by pulse-field gel electrophoresis and probed with three genes in MAL6 locus. The DNA bands to which all of the three MAL-derived probes simultaneously hybridized were chromosome VII carrying MAL1 in all of the strains tested, chromosome XI carrying MAL4 in six strains, chromosome III carrying MAL2 in three strains and chromosomes II and VIII carrying MAL3 and MAL6, respectively, in the one strain. The number of MAL loci in baking strains was comparable to those of brewing strains.

  12. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    PubMed

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-05

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase.

  13. Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae.

    PubMed

    Bakkali, F; Averbeck, S; Averbeck, D; Zhiri, A; Idaomar, M

    2005-08-01

    In order to get an insight into the possible genotoxicity of essential oils (EOs) used in traditional pharmacological applications we tested five different oils extracted from the medicinal plants Origanum compactum, Coriandrum sativum, Artemisia herba alba, Cinnamomum camphora (Ravintsara aromatica) and Helichrysum italicum (Calendula officinalis) for genotoxic effects using the yeast Saccharomyces cerevisiae. Clear cytotoxic effects were observed in the diploid yeast strain D7, with the cells being more sensitive to EOs in exponential than in stationary growth phase. The cytotoxicity decreased in the following order: Origanum compactum>Coriandrum sativum>Artemisia herba alba>Cinnamomum camphora>Helichrysum italicum. In the same order, all EOs, except that derived from Helichrysum italicum, clearly induced cytoplasmic petite mutations indicating damage to mitochondrial DNA. However, no nuclear genetic events such as point mutations or mitotic intragenic or intergenic recombination were induced. The capacity of EOs to induce nuclear DNA damage-responsive genes was tested using suitable Lac-Z fusion strains for RNR3 and RAD51, which are genes involved in DNA metabolism and DNA repair, respectively. At equitoxic doses, all EOs demonstrated significant gene induction, approximately the same as that caused by hydrogen peroxide, but much lower than that caused by methyl methanesulfonate (MMS). EOs affect mitochondrial structure and function and can stimulate the transcriptional expression of DNA damage-responsive genes. The induction of mitochondrial damage by EOs appears to be closely linked to overall cellular cytotoxicity and appears to mask the occurrence of nuclear genetic events. EO-induced cytotoxicity involves oxidative stress, as is evident from the protection observed in the presence of ROS inhibitors such as glutathione, catalase or the iron-chelating agent deferoxamine.

  14. Gene Catchr—Gene Cloning And Tagging for Caenorhabditis elegans using yeast Homologous Recombination: a novel approach for the analysis of gene expression

    PubMed Central

    Sassi, Holly E.; Renihan, Stephanie; Spence, Andrew M.; Cooperstock, Ramona L.

    2005-01-01

    Expression patterns of gene products provide important insights into gene function. Reporter constructs are frequently used to analyze gene expression in Caenorhabditis elegans, but the sequence context of a given gene is inevitably altered in such constructs. As a result, these transgenes may lack regulatory elements required for proper gene expression. We developed Gene Catchr, a novel method of generating reporter constructs that exploits yeast homologous recombination (YHR) to subclone and tag worm genes while preserving their local sequence context. YHR facilitates the cloning of large genomic regions, allowing the isolation of regulatory sequences in promoters, introns, untranslated regions and flanking DNA. The endogenous regulatory context of a given gene is thus preserved, producing expression patterns that are as accurate as possible. Gene Catchr is flexible: any tag can be inserted at any position without introducing extra sequence. Each step is simple and can be adapted to process multiple genes in parallel. We show that expression patterns derived from Gene Catchr transgenes are consistent with previous reports and also describe novel expression data. Mutant rescue assays demonstrate that Gene Catchr-generated transgenes are functional. Our results validate the use of Gene Catchr as a valuable tool to study spatiotemporal gene expression. PMID:16254074

  15. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Morris, Katrina M; Wright, Belinda; Grueber, Catherine E; Hogg, Carolyn; Belov, Katherine

    2015-08-01

    The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll-like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome-level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole-genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29-220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long-term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad-scale immunogenetic diversity analysis in threatened species.

  16. Rapid Expansion and Functional Divergence of Subtelomeric Gene Families in Yeasts

    PubMed Central

    Brown, Chris A.; Murray, Andrew W.; Verstrepen, Kevin J.

    2010-01-01

    Summary Background Subtelomeres, regions proximal to telomeres, exhibit characteristics unique to eukaryotic genomes. Genes residing in these loci are subject to epigenetic regulation and elevated rates of both meiotic and mitotic recombination. However, most genome sequences do not contain assembled subtelomeric sequences, and, as a result, subtelomeres are often overlooked in comparative genomics. Results We study the evolution and functional divergence of subtelomeric gene families in the yeast lineage. Our computational results show that subtelomeric families are evolving and expanding much faster than families that do not contain subtelomeric genes. Focusing on three related subtelomeric MAL gene families involved in disaccharide metabolism that show typical patterns of rapid expansion and evolution, we show experimentally how frequent duplication events followed by functional divergence yields novel alleles that allow metabolism of different carbohydrates. Conclusions Taken together, our computational and experimental analyses show that the extraordinary instability of eukaryotic subtelomeres supports rapid adaptation to novel niches by promoting gene recombination and duplication followed by functional divergence of the alleles. PMID:20471265

  17. Analysis of low temperature-induced genes (LTIG) in wine yeast during alcoholic fermentation.

    PubMed

    Chiva, Rosana; López-Malo, Maria; Salvadó, Zoel; Mas, Albert; Guillamón, Jósé Manuel

    2012-11-01

    Fermentations carried out at low temperatures, that is, 10-15 °C, not only enhance the production and retention of flavor volatiles, but also increase the chances of slowing or arresting the process. In this study, we determined the transcriptional activity of 10 genes that were previously reported as induced by low temperatures and involved in cold adaptation, during fermentation with the commercial wine yeast strain QA23. Mutant and overexpressing strains of these genes were constructed in a haploid derivative of this strain to determine the importance of these genes in growth and fermentation at low temperature. In general, the deletion and overexpression of these genes did affect fermentation performance at low temperature. Most of the mutants were unable to complete fermentation, while overexpression of CSF1, HSP104, and TIR2 decreased the lag phase, increased the fermentation rate, and reached higher populations than that of the control strain. Another set of overexpressing strains were constructed by integrating copies of these genes in the delta regions of the commercial wine strain QA23. These new stable overexpressing strains again showed improved fermentation performance at low temperature, especially during the lag and exponential phases. Our results demonstrate the convenience of carrying out functional analysis in commercial strains and in an experimental set-up close to industrial conditions.

  18. Genetic diversity in the feline leukemia virus gag gene.

    PubMed

    Kawamura, Maki; Watanabe, Shinya; Odahara, Yuka; Nakagawa, So; Endo, Yasuyuki; Tsujimoto, Hajime; Nishigaki, Kazuo

    2015-06-02

    Feline leukemia virus (FeLV) belongs to the Gammaretrovirus genus and is horizontally transmitted among cats. FeLV is known to undergo recombination with endogenous retroviruses already present in the host during FeLV-subgroup A infection. Such recombinant FeLVs, designated FeLV-subgroup B or FeLV-subgroup D, can be generated by transduced endogenous retroviral env sequences encoding the viral envelope. These recombinant viruses have biologically distinct properties and may mediate different disease outcomes. The generation of such recombinant viruses resulted in structural diversity of the FeLV particle and genetic diversity of the virus itself. FeLV env diversity through mutation and recombination has been studied, while gag diversity and its possible effects are less well understood. In this study, we investigated recombination events in the gag genes of FeLVs isolated from naturally infected cats and reference isolates. Recombination and phylogenetic analyses indicated that the gag genes often contain endogenous FeLV sequences and were occasionally replaced by entire endogenous FeLV gag genes. Phylogenetic reconstructions of FeLV gag sequences allowed for classification into three distinct clusters, similar to those previously established for the env gene. Analysis of the recombination junctions in FeLV gag indicated that these variants have similar recombination patterns within the same genotypes, indicating that the recombinant viruses were horizontally transmitted among cats. It remains to be investigated whether the recombinant sequences affect the molecular mechanism of FeLV transmission. These findings extend our understanding of gammaretrovirus evolutionary patterns in the field.

  19. Prioritization of gene regulatory interactions from large-scale modules in yeast

    PubMed Central

    Lee, Ho-Joon; Manke, Thomas; Bringas, Ricardo; Vingron, Martin

    2008-01-01

    Background The identification of groups of co-regulated genes and their transcription factors, called transcriptional modules, has been a focus of many studies about biological systems. While methods have been developed to derive numerous modules from genome-wide data, individual links between regulatory proteins and target genes still need experimental verification. In this work, we aim to prioritize regulator-target links within transcriptional modules based on three types of large-scale data sources. Results Starting with putative transcriptional modules from ChIP-chip data, we first derive modules in which target genes show both expression and function coherence. The most reliable regulatory links between transcription factors and target genes are established by identifying intersection of target genes in coherent modules for each enriched functional category. Using a combination of genome-wide yeast data in normal growth conditions and two different reference datasets, we show that our method predicts regulatory interactions with significantly higher predictive power than ChIP-chip binding data alone. A comparison with results from other studies highlights that our approach provides a reliable and complementary set of regulatory interactions. Based on our results, we can also identify functionally interacting target genes, for instance, a group of co-regulated proteins related to cell wall synthesis. Furthermore, we report novel conserved binding sites of a glycoprotein-encoding gene, CIS3, regulated by Swi6-Swi4 and Ndd1-Fkh2-Mcm1 complexes. Conclusion We provide a simple method to prioritize individual TF-gene interactions from large-scale transcriptional modules. In comparison with other published works, we predict a complementary set of regulatory interactions which yields a similar or higher prediction accuracy at the expense of sensitivity. Therefore, our method can serve as an alternative approach to prioritization for further experimental studies. PMID

  20. Mutations on the DNA binding surface of TBP discriminate between yeast TATA and TATA-less gene transcription.

    PubMed

    Kamenova, Ivanka; Warfield, Linda; Hahn, Steven

    2014-08-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription.

  1. Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts.

    PubMed

    Fierro-Risco, Jesús; Rincón, Ana María; Benítez, Tahía; Codón, Antonio C

    2013-08-01

    Flor formation and flor endurance have been related to ability by Saccharomyces cerevisiae flor yeasts to resist hostile conditions such as oxidative stress and the presence of acetaldehyde and ethanol. Ethanol and acetaldehyde toxicity give rise to formation of reactive oxygen species (ROS) and loss of cell viability. Superoxide dismutases Sod1p and Sod2p and other proteins such as Hsp12p are involved in oxidative stress tolerance. In this study, genes SOD1, SOD2, and HSP12 were overexpressed in flor yeast strains FJF206, FJF414 and B16. In the SOD1 and SOD2 transformant strains superoxide dismutases encoded by genes SOD1 and SOD2 increased their specific activity considerably as a direct result of overexpression of genes SOD1 and SOD2, indirectly, catalase, glutathione reductase, and glutathione peroxidase activities increased too. The HSP12 transformant strains showed higher levels of glutathione peroxidase and reductase activities. These transformant strains showed an increase in intracellular glutathione content, a reduction in peroxidized lipid concentration, and higher resistance to oxidative stress conditions. As a result, flor formation by these strains took place more rapidly than by their parental strains, velum being thicker and with higher percentages of viable cells. In addition, a slight decrease in ethanol and glycerol concentrations, and an increase in acetaldehyde were detected in wines matured under velum formed by transformant strains, as compared to their parental strains. In the industry, velum formed by transformant strains with increased viability may result in acceleration of both metabolism and wine aging, thus reducing time needed for wine maturation.

  2. Generation of Diversity in Streptococcus mutans Genes Demonstrated by MLST

    PubMed Central

    Do, Thuy; Gilbert, Steven C.; Clark, Douglas; Ali, Farida; Fatturi Parolo, Clarissa C.; Maltz, Marisa; Russell, Roy R.; Holbrook, Peter; Wade, William G.; Beighton, David

    2010-01-01

    Streptococcus mutans, consisting of serotypes c, e, f and k, is an oral aciduric organism associated with the initiation and progression of dental caries. A total of 135 independent Streptococcus mutans strains from caries-free and caries-active subjects isolated from various geographical locations were examined in two versions of an MLST scheme consisting of either 6 housekeeping genes [accC (acetyl-CoA carboxylase biotin carboxylase subunit), gki (glucokinase), lepA (GTP-binding protein), recP (transketolase), sodA (superoxide dismutase), and tyrS (tyrosyl-tRNA synthetase)] or the housekeeping genes supplemented with 2 extracellular putative virulence genes [gtfB (glucosyltransferase B) and spaP (surface protein antigen I/II)] to increase sequence type diversity. The number of alleles found varied between 20 (lepA) and 37 (spaP). Overall, 121 sequence types (STs) were defined using the housekeeping genes alone and 122 with all genes. However π, nucleotide diversity per site, was low for all loci being in the range 0.019–0.007. The virulence genes exhibited the greatest nucleotide diversity and the recombination/mutation ratio was 0.67 [95% confidence interval 0.3–1.15] compared to 8.3 [95% confidence interval 5.0–14.5] for the 6 concatenated housekeeping genes alone. The ML trees generated for individual MLST loci were significantly incongruent and not significantly different from random trees. Analysis using ClonalFrame indicated that the majority of isolates were singletons and no evidence for a clonal structure or evidence to support serotype c strains as the ancestral S. mutans strain was apparent. There was also no evidence of a geographical distribution of individual isolates or that particular isolate clusters were associated with caries. The overall low sequence diversity suggests that S. mutans is a newly emerged species which has not accumulated large numbers of mutations but those that have occurred have been shuffled as a consequence of intra

  3. Diverse alkane hydroxylase genes in microorganisms and environments

    PubMed Central

    Nie, Yong; Chi, Chang-Qiao; Fang, Hui; Liang, Jie-Liang; Lu, She-Lian; Lai, Guo-Li; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-01-01

    AlkB and CYP153 are important alkane hydroxylases responsible for aerobic alkane degradation in bioremediation of oil-polluted environments and microbial enhanced oil recovery. Since their distribution in nature is not clear, we made the investigation among thus-far sequenced 3,979 microbial genomes and 137 metagenomes from terrestrial, freshwater, and marine environments. Hundreds of diverse alkB and CYP153 genes including many novel ones were found in bacterial genomes, whereas none were found in archaeal genomes. Moreover, these genes were detected with different distributional patterns in the terrestrial, freshwater, and marine metagenomes. Hints for horizontal gene transfer, gene duplication, and gene fusion were found, which together are likely responsible for diversifying the alkB and CYP153 genes adapt to the ubiquitous distribution of different alkanes in nature. In addition, different distributions of these genes between bacterial genomes and metagenomes suggested the potentially important roles of unknown or less common alkane degraders in nature. PMID:24829093

  4. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication.

    PubMed

    Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke

    2016-01-01

    Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under

  5. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication*

    PubMed Central

    Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke

    2016-01-01

    Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under

  6. The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast.

    PubMed

    Mostovoy, Yulia; Thiemicke, Alexander; Hsu, Tiffany Y; Brem, Rachel B

    2016-06-27

    Genes encoded close to one another on the chromosome are often coexpressed, by a mechanism and regulatory logic that remain poorly understood. We surveyed the yeast genome for tandem gene pairs oriented tail-to-head at which expression antisense to the upstream gene was conserved across species. The intergenic region at most such tandem pairs is a bidirectional promoter, shared by the downstream gene mRNA and the upstream antisense transcript. Genomic analyses of these intergenic loci revealed distinctive patterns of transcription factor regulation. Mutation of a given transcription factor verified its role as a regulator in trans of tandem gene pair loci, including the proximally initiating upstream antisense transcript and downstream mRNA and the distally initiating upstream mRNA. To investigate cis-regulatory activity at such a locus, we focused on the stress-induced NAD(P)H dehydratase YKL151C and its downstream neighbor, the metabolic enzyme GPM1 Previous work has implicated the region between these genes in regulation of GPM1 expression; our mutation experiments established its function in rich medium as a repressor in cis of the distally initiating YKL151C sense RNA, and an activator of the proximally initiating YKL151C antisense RNA. Wild-type expression of all three transcripts required the transcription factor Gcr2. Thus, at this locus, the intergenic region serves as a focal point of regulatory input, driving antisense expression and mediating the coordinated regulation of YKL151C and GPM1 Together, our findings implicate transcription factors in the joint control of neighboring genes specialized to opposing conditions and the antisense transcripts expressed between them.

  7. Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast.

    PubMed

    Choi, Kyung-Mi; Kwon, Young-Yon; Lee, Cheol-Koo

    2013-12-01

    Caloric restriction (CR) is the best-studied intervention known to delay aging and extend lifespan in evolutionarily distant organisms ranging from yeast to mammals in the laboratory. Although the effect of CR on lifespan extension has been investigated for nearly 80years, the molecular mechanisms of CR are still elusive. Consequently, it is important to understand the fundamental mechanisms of when and how lifespan is affected by CR. In this study, we first identified the time-windows during which CR assured cellular longevity by switching cells from culture media containing 2% or 0.5% glucose to water, which allows us to observe CR and non-calorically-restricted cells under the same conditions. We also constructed time-dependent gene expression profiles and selected 646 genes that showed significant changes and correlations with the lifespan-extending effect of CR. The positively correlated genes participated in transcriptional regulation, ribosomal RNA processing and nuclear genome stability, while the negatively correlated genes were involved in the regulation of several metabolic pathways, endoplasmic reticulum function, stress response and cell cycle progression. Furthermore, we discovered major upstream regulators of those significantly changed genes, including AZF1 (YOR113W), HSF1 (YGL073W) and XBP1 (YIL101C). Deletions of two genes, AZF1 and XBP1 (HSF1 is essential and was thus not tested), were confirmed to lessen the lifespan extension mediated by CR. The absence of these genes in the tor1Δ and ras2Δ backgrounds did show non-overlapping effects with regard to CLS, suggesting differences between the CR mechanism for Tor and Ras signaling.

  8. The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast

    PubMed Central

    Mostovoy, Yulia; Thiemicke, Alexander; Hsu, Tiffany Y.; Brem, Rachel B.

    2016-01-01

    Genes encoded close to one another on the chromosome are often coexpressed, by a mechanism and regulatory logic that remain poorly understood. We surveyed the yeast genome for tandem gene pairs oriented tail-to-head at which expression antisense to the upstream gene was conserved across species. The intergenic region at most such tandem pairs is a bidirectional promoter, shared by the downstream gene mRNA and the upstream antisense transcript. Genomic analyses of these intergenic loci revealed distinctive patterns of transcription factor regulation. Mutation of a given transcription factor verified its role as a regulator in trans of tandem gene pair loci, including the proximally initiating upstream antisense transcript and downstream mRNA and the distally initiating upstream mRNA. To investigate cis-regulatory activity at such a locus, we focused on the stress-induced NAD(P)H dehydratase YKL151C and its downstream neighbor, the metabolic enzyme GPM1. Previous work has implicated the region between these genes in regulation of GPM1 expression; our mutation experiments established its function in rich medium as a repressor in cis of the distally initiating YKL151C sense RNA, and an activator of the proximally initiating YKL151C antisense RNA. Wild-type expression of all three transcripts required the transcription factor Gcr2. Thus, at this locus, the intergenic region serves as a focal point of regulatory input, driving antisense expression and mediating the coordinated regulation of YKL151C and GPM1. Together, our findings implicate transcription factors in the joint control of neighboring genes specialized to opposing conditions and the antisense transcripts expressed between them. PMID:27190003

  9. Molecular phylogenetics of the genus Rhodotorula and related basidiomycetous yeasts inferred from the mitochondrial cytochrome b gene.

    PubMed

    Biswas, S K; Yokoyama, K; Nishimura, K; Miyaji, M

    2001-05-01

    Phylogenetic relationships of basidiomycetous yeasts, especially of the genus Rhodotorula, were studied using partial sequences of the mitochondrial cytochrome b gene. The results demonstrated that the basidiomycetous yeasts under investigation distributed into two main clusters: one containing Tremellales, Filobasidiales and their anamorphs and the other containing Ustilaginales, Sporidiales and their anamorphs. This clustering in turn correlates with cell wall biochemistry, presence or absence of xylose, and septal ultrastructure, dolipore or simple pore. Bullera, Bulleromyces, Filobasidiella, Cryptococcus and Trichosporon, yeasts of the former cluster, contain xylose in the cell wall and have dolipore septa. In contrast yeasts of the latter cluster, which included Bensingtonia, Erythrobasidium, Leucosporidium, Malassezia, Rhodosporidium, Rhodotorula, Sporidiobolus, Sporobolomyces and Ustilago, have no xylose in the cell wall and have a simple pore septum. Yeasts of the latter group could be further divided into four clades (A-D). Species of Rhodotorula were distributed in all of these clades, indicating the polyphyletic nature of the genus. A limited number of Rhodotorula species demonstrated identical sequences, for example Rhodotorula bacarum and Rhodotorula foliorum, Rhodotorula fujisanensis and Rhodotorula futronensis, Rhodotorula glutinis var. dairenensis and Rhodotorula mucilaginosa. However, all the other test species of the genus Rhodotorula were well separated based on their 396 bp nucleotide sequences. These results demonstrate the effectiveness of the use of cytochrome b sequences for both species identification and the study of phylogenetic relationships among basidiomycetous yeasts.

  10. Transcript analysis of 1003 novel yeast genes using high-throughput northern hybridizations.

    PubMed

    Brown, A J; Planta, R J; Restuhadi, F; Bailey, D A; Butler, P R; Cadahia, J L; Cerdan, M E; De Jonge, M; Gardner, D C; Gent, M E; Hayes, A; Kolen, C P; Lombardia, L J; Murad, A M; Oliver, R A; Sefton, M; Thevelein, J M; Tournu, H; van Delft, Y J; Verbart, D J; Winderickx, J; Oliver, S G

    2001-06-15

    The expression of 1008 open reading frames (ORFs) from the yeast Saccharomyces cerevisiae has been examined under eight different physiological conditions, using classical northern analysis. These northern data have been compared with publicly available data from a microarray analysis of the diauxic transition in S.cerevisiae. The results demonstrate the importance of comparing biologically equivalent situations and of the standardization of data normalization procedures. We have also used our northern data to identify co-regulated gene clusters and define the putative target sites of transcriptional activators responsible for their control. Clusters containing genes of known function identify target sites of known activators. In contrast, clusters comprised solely of genes of unknown function usually define novel putative target sites. Finally, we have examined possible global controls on gene expression. It was discovered that ORFs that are highly expressed following a nutritional upshift tend to employ favoured codons, whereas those overexpressed in starvation conditions do not. These results are interpreted in terms of a model in which competition between mRNA molecules for translational capacity selects for codons translated by abundant tRNAs.

  11. Transcript analysis of 1003 novel yeast genes using high-throughput northern hybridizations

    PubMed Central

    Brown, Alistair J.P.; Planta, Rudi J.; Restuhadi, Fajar; Bailey, David A.; Butler, Philip R.; Cadahia, Jose L.; Cerdan, M.Esperanza; De Jonge, Martine; Gardner, David C.J.; Gent, Manda E.; Hayes, Andrew; Kolen, Carin P.A.M.; Lombardia, Luis J.; Murad, Abdul Munir Abdul; Oliver, Rachel A.; Sefton, Mark; Thevelein, Johan M.; Tournu, Helene; van Delft, Yvon J.; Verbart, Dennis J.; Winderickx, Joris; Oliver, Stephen G.

    2001-01-01

    The expression of 1008 open reading frames (ORFs) from the yeast Saccharomyces cerevisiae has been examined under eight different physiological conditions, using classical northern analysis. These northern data have been compared with publicly available data from a microarray analysis of the diauxic transition in S.cerevisiae. The results demonstrate the importance of comparing biologically equivalent situations and of the standardization of data normalization procedures. We have also used our northern data to identify co-regulated gene clusters and define the putative target sites of transcriptional activators responsible for their control. Clusters containing genes of known function identify target sites of known activators. In contrast, clusters comprised solely of genes of unknown function usually define novel putative target sites. Finally, we have examined possible global controls on gene expression. It was discovered that ORFs that are highly expressed following a nutritional upshift tend to employ favoured codons, whereas those overexpressed in starvation conditions do not. These results are interpreted in terms of a model in which competition between mRNA molecules for translational capacity selects for codons translated by abundant tRNAs. PMID:11406594

  12. Histones are required for transcription of yeast rRNA genes by RNA polymerase I.

    PubMed

    Tongaonkar, Prasad; French, Sarah L; Oakes, Melanie L; Vu, Loan; Schneider, David A; Beyer, Ann L; Nomura, Masayasu

    2005-07-19

    Nucleosomes and their histone components have generally been recognized to act negatively on transcription. However, purified upstream activating factor (UAF), a transcription initiation factor required for RNA polymerase (Pol) I transcription in Saccharomyces cerevisiae, contains histones H3 and H4 and four nonhistone protein subunits. Other studies have shown that histones H3 and H4 are associated with actively transcribed rRNA genes. To examine their functional role in Pol I transcription, we constructed yeast strains in which synthesis of H3 is achieved from the glucose-repressible GAL10 promoter. We found that partial depletion of H3 (approximately 50% depletion) resulted in a strong inhibition (>80%) of Pol I transcription. A combination of biochemical analysis and electron microscopic (EM) analysis of Miller chromatin spreads indicated that initiation and elongation steps and rRNA processing were compromised upon histone depletion. A clear decrease in relative amounts of UAF, presumably caused by reduced stability, was also observed under the conditions of H3 depletion. Therefore, the observed inhibition of initiation can be explained, in part, by the decrease in UAF concentration. In addition, the EM results suggested that the defects in rRNA transcript elongation and processing may be a result of loss of histones from rRNA genes rather than (or in addition to) an indirect consequence of effects of histone depletion on expression of other genes. Thus, these results show functional importance of histones associated with actively transcribed rRNA genes.

  13. Characterization and expression analysis of a gene cluster for nitrate assimilation from the yeast Arxula adeninivorans.

    PubMed

    Böer, Erik; Schröter, Anja; Bode, Rüdiger; Piontek, Michael; Kunze, Gotthard

    2009-02-01

    In Arxula adeninivorans nitrate assimilation is mediated by the combined actions of a nitrate transporter, a nitrate reductase and a nitrite reductase. Single-copy genes for these activities (AYNT1, AYNR1, AYNI1, respectively) form a 9103 bp gene cluster localized on chromosome 2. The 3210 bp AYNI1 ORF codes for a protein of 1070 amino acids, which exhibits a high degree of identity to nitrite reductases from the yeasts Pichia anomala (58%), Hansenula polymorpha (58%) and Dekkera bruxellensis (54%). The second ORF (AYNR1, 2535 bp) encodes a nitrate reductase of 845 residues that shows significant (51%) identity to nitrate reductases of P. anomala and H. polymorpha. The third ORF in the cluster (AYNT1, 1518 bp) specifies a nitrate transporter with 506 amino acids, which is 46% identical to that of H. polymorpha. The three genes are independently expressed upon induction with NaNO(3). We quantitatively analysed the promoter activities by qRT-PCR and after fusing individual promoter fragments to the phytase (phyK) gene from Klebsiella sp. ASR1. The AYNI1 promoter was found to exhibit the highest activity, followed by the AYNT1 and AYNR1 elements. Direct measurements of nitrate and nitrite reductase activities performed after induction with NaNO(3) are compatible with these results. Both enzymes show optimal activity at around 42 degrees C and near-neutral pH, and require FAD as a co-factor and NADPH as electron donor.

  14. Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome.

    PubMed

    Legras, Jean-Luc; Erny, Claude; Charpentier, Claudine

    2014-01-01

    Wine biological aging is a wine making process used to produce specific beverages in several countries in Europe, including Spain, Italy, France, and Hungary. This process involves the formation of a velum at the surface of the wine. Here, we present the first large scale comparison of all European flor strains involved in this process. We inferred the population structure of these European flor strains from their microsatellite genotype diversity and analyzed their ploidy. We show that almost all of these flor strains belong to the same cluster and are diploid, except for a few Spanish strains. Comparison of the array hybridization profile of six flor strains originating from these four countries, with that of three wine strains did not reveal any large segmental amplification. Nonetheless, some genes, including YKL221W/MCH2 and YKL222C, were amplified in the genome of four out of six flor strains. Finally, we correlated ICR1 ncRNA and FLO11 polymorphisms with flor yeast population structure, and associate the presence of wild type ICR1 and a long Flo11p with thin velum formation in a cluster of Jura strains. These results provide new insight into the diversity of flor yeast and show that combinations of different adaptive changes can lead to an increase of hydrophobicity and affect velum formation.

  15. Population Structure and Comparative Genome Hybridization of European Flor Yeast Reveal a Unique Group of Saccharomyces cerevisiae Strains with Few Gene Duplications in Their Genome

    PubMed Central

    Legras, Jean-Luc; Erny, Claude; Charpentier, Claudine

    2014-01-01

    Wine biological aging is a wine making process used to produce specific beverages in several countries in Europe, including Spain, Italy, France, and Hungary. This process involves the formation of a velum at the surface of the wine. Here, we present the first large scale comparison of all European flor strains involved in this process. We inferred the population structure of these European flor strains from their microsatellite genotype diversity and analyzed their ploidy. We show that almost all of these flor strains belong to the same cluster and are diploid, except for a few Spanish strains. Comparison of the array hybridization profile of six flor strains originating from these four countries, with that of three wine strains did not reveal any large segmental amplification. Nonetheless, some genes, including YKL221W/MCH2 and YKL222C, were amplified in the genome of four out of six flor strains. Finally, we correlated ICR1 ncRNA and FLO11 polymorphisms with flor yeast population structure, and associate the presence of wild type ICR1 and a long Flo11p with thin velum formation in a cluster of Jura strains. These results provide new insight into the diversity of flor yeast and show that combinations of different adaptive changes can lead to an increase of hydrophobicity and affect velum formation. PMID:25272156

  16. Yeast community survey in the Tagus estuary.

    PubMed

    de Almeida, João M G C F

    2005-07-01

    The yeast community in the waters of the Tagus estuary, Portugal, was followed for over a year in order to assess its dynamics. Yeast occurrence and incidence were measured and this information was related to relevant environmental data. Yeast occurrence did not seem to depend upon tides, but river discharge had a dramatic impact both on the density and diversity of the community. The occurrence of some yeasts was partially correlated with faecal pollution indicators. Yeast isolates were characterized by microsatellite primed PCR (MSP-PCR) fingerprinting and rRNA gene sequencing. The principal species found were Candida catenulata, C. intermedia, C. parapsilosis, Clavispora lusitaniae, Debaryomyces hansenii, Pichia guilliermondii, Rhodotorula mucilaginosa and Rhodosporidium diobovatum. The incidence of these species was evaluated against the environmental context of the samples and the current knowledge about the substrates from which they are usually isolated.

  17. Identification of Targetable FGFR Gene Fusions in Diverse Cancers

    PubMed Central

    Wu, Yi-Mi; Su, Fengyun; Kalyana-Sundaram, Shanker; Khazanov, Nick; Ateeq, Bushra; Cao, Xuhong; Lonigro, Robert J.; Vats, Pankaj; Wang, Rui; Lin, Su-Fang; Cheng, Ann-Joy; Kunju, Lakshmi P.; Siddiqui, Javed; Tomlins, Scott A.; Wyngaard, Peter; Sadis, Seth; Roychowdhury, Sameek; Hussain, Maha H.; Feng, Felix Y.; Zalupski, Mark M.; Talpaz, Moshe; Pienta, Kenneth J.; Rhodes, Daniel R.; Robinson, Dan R.; Chinnaiyan, Arul M.

    2013-01-01

    Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2 including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR gene fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Due to the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts which incorporate transcriptome analysis for gene fusions are poised to identify rare, targetable FGFR fusions across diverse cancer types. PMID:23558953

  18. A robust gene-stacking method utilizing yeast assembly for plant synthetic biology

    PubMed Central

    Shih, Patrick M.; Vuu, Khanh; Mansoori, Nasim; Ayad, Leïla; Louie, Katherine B.; Bowen, Benjamin P.; Northen, Trent R.; Loqué, Dominique

    2016-01-01

    The advent and growth of synthetic biology has demonstrated its potential as a promising avenue of research to address many societal needs. However, plant synthetic biology efforts have been hampered by a dearth of DNA part libraries, versatile transformation vectors and efficient assembly strategies. Here, we describe a versatile system (named jStack) utilizing yeast homologous recombination to efficiently assemble DNA into plant transformation vectors. We demonstrate how this method can facilitate pathway engineering of molecules of pharmaceutical interest, production of potential biofuels and shuffling of disease-resistance traits between crop species. Our approach provides a powerful alternative to conventional strategies for stacking genes and traits to address many impending environmental and agricultural challenges. PMID:27782150

  19. Localization of genes for the double-stranded RNA killer virus of yeast.

    PubMed Central

    Welsh, J D; Leibowitz, M J

    1982-01-01

    The M double-stranded RNA (ds RNA) genome segment of the cytoplasmically inherited killer virus of yeast codes for two polypeptides when denatured and translated in vitro: a previously known 32,000-dalton peptide and a newly discovered 19,000-dalton peptide (NaDodSO4/polyacrylamide gel electrophoresis). An internal 190-base-pair region of the ds RNA is selectively degraded by S1 nuclease treatment at 65 degrees C, resulting in two ds RNA fragments which contain the termini of the original ds RNA. The larger fragment codes for the 32,000-dalton polypeptide and the smaller fragment codes for the 19,000-dalton polypeptide. Thus, the two gene products of M are encoded by distinct regions of this ds RNA. Images PMID:7038685

  20. [RAD18 gene product of yeast Saccharomyces cerevisiae controls mutagenesis induced by hydrogen peroxide].

    PubMed

    Kozhina, T N; Korolev, V G

    2012-04-01

    Within eukaryotes, tolerance to DNA damage is determined primarily by the repair pathway controlled by the members of the RAD6 epistasis group. Genetic studies on a yeast Saccharomyces cerevisiae model showed that the initial stage of postreplication repair (PRR), i.e., initiation of replication through DNA damage, is controlled by Rad6-Rad18 ubiquitin-conjugating enzyme complex. Mutants of these genes are highly sensitive to various genotoxic agents and reduce the level of induced mutagenesis. In this case, the efficiency of mutagenesis suppression depends on the type of damage. In this study we showed that DNA damage induced by hydrogen peroxide at the same mutagen doses causes significantly more mutations and lethal events in the rad18 mutant cells compared to control wild-type cells.

  1. Sequence diversity of mating-type genes in Phaeosphaeria avenaria.

    PubMed

    Ueng, Peter P; Dai, Qun; Cui, Kai-rong; Czembor, Paweł C; Cunfer, Barry M; Tsang, H; Arseniuk, Edward; Bergstrom, Gary C

    2003-05-01

    Phaeosphaeria avenaria, one of the causal agents of stagonospora leaf blotch diseases in cereals, is composed of two subspecies, P. avenaria f. sp. triticea (Pat) and P. avenaria f. sp. avenaria (Paa). The Pat subspecies was grouped into Pat1-Pat3, based on restriction fragment length polymorphism (RFLP) and ribosomal DNA (rDNA) internal transcribed spacer (ITS) sequences in previous studies. Mating-type genes and their potential use in phylogeny and molecular classification were studied by DNA hybridization and PCR amplification. The majority of Pat1 isolates reported to be homothallic and producing sexual reproduction structures on cultural media had only the MAT1-1 gene. Minor sequence variations were found in the conserved region of MAT1-1 gene in Pat1 isolates. However, both mating-type genes, MAT1-1 and MAT1-2, were identified in P. avenaria isolates represented by ATCC12277 from oats (Paa) and the Pat2 isolates from foxtail barley ( Hordeum jubatum L.). Cluster analyses based on mating-type gene conserved regions revealed that cereal Phaeosphaeria is not phylogenetically closely related to other ascomycetes, including Mycosphaerella graminicola (anamorph Septoria tritici). The sequence diversity of mating-type genes in Pat and Paa supports our previous phylogenetic relationship and molecular classification based on RFLP fingerprinting and rDNA ITS sequences.

  2. GLK gene pairs regulate chloroplast development in diverse plant species.

    PubMed

    Fitter, David W; Martin, David J; Copley, Martin J; Scotland, Robert W; Langdale, Jane A

    2002-09-01

    Chloroplast biogenesis is a complex process that requires close co-ordination between two genomes. Many of the proteins that accumulate in the chloroplast are encoded by the nuclear genome, and the developmental transition from proplastid to chloroplast is regulated by nuclear genes. Here we show that a pair of Golden 2-like (GLK) genes regulates chloroplast development in Arabidopsis. The GLK proteins are members of the GARP superfamily of transcription factors, and phylogenetic analysis demonstrates that the maize, rice and Arabidopsis GLK gene pairs comprise a distinct group within the GARP superfamily. Further phylogenetic analysis suggests that the gene pairs arose through separate duplication events in the monocot and dicot lineages. As in rice, AtGLK1 and AtGLK2 are expressed in partially overlapping domains in photosynthetic tissue. Insertion mutants demonstrate that this expression pattern reflects a degree of functional redundancy as single mutants display normal phenotypes in most photosynthetic tissues. However, double mutants are pale green in all photosynthetic tissues and chloroplasts exhibit a reduction in granal thylakoids. Products of several genes involved in light harvesting also accumulate at reduced levels in double mutant chloroplasts. GLK genes therefore regulate chloroplast development in diverse plant species.

  3. Activation of the cell integrity pathway is channelled through diverse signalling elements in fission yeast.

    PubMed

    Barba, Gregorio; Soto, Teresa; Madrid, Marisa; Núñez, Andrés; Vicente, Jeronima; Gacto, Mariano; Cansado, José

    2008-04-01

    MAPK Pmk1p is the central element of a cascade involved in the maintenance of cell integrity and other functions in Schizosaccharomyces pombe. Pmk1p becomes activated by multiple stressing situations and also during cell separation. GTPase Rho2p acts upstream of the protein kinase C homolog Pck2p to activate the Pmk1 signalling pathway through direct interaction with MAPKKK Mkh1p. In this work we analyzed the functional significance of both Rho2p and Pck2p in the transduction of various stress signals by the cell integrity pathway. The results indicate that basal Pmk1p activity can be positively regulated by alternative mechanisms which are independent on the control by Rho2p and/or Pck2p. Unexpectedly, Pck1p, another protein kinase C homolog, negatively modulates Pmk1p basal activity by an unknown mechanism. Moreover, different elements appear to regulate the stress-induced activation of Pmk1p depending on the nature of the triggering stimuli. Whereas Pmk1p activation induced by hyper- or hypotonic stresses is channeled through Rho2p-Pck2p, other stressors, like glucose deprivation or cell wall disturbance, are transduced via other pathways in addition to that of Rho2p-Pck2p. On the contrary, Pmk1p activation observed during cell separation or after treatment with hydrogen peroxide does not involve Rho2p-Pck2p. Finally, Pck2p function is critical to maintain a Pmk1p basal activity that allows Pmk1p activation induced by heat stress. These data demonstrate the existence of a complex signalling network modulating Pmk1p activation in response to a variety of stresses in fission yeast.

  4. Isolation and Diversity Analysis of Resistance Gene Homologues from Switchgrass

    PubMed Central

    Zhu, Qihui; Bennetzen, Jeffrey L.; Smith, Shavannor M.

    2013-01-01

    Resistance gene homologs (RGHs) were isolated from the switchgrass variety Alamo by a combination of polymerase chain reaction and expressed sequence tag (EST) database mining. Fifty-eight RGHs were isolated by polymerase chain reaction and 295 RGHs were identified in 424,545 switchgrass ESTs. Four nucleotide binding site−leucine-rich repeat RGHs were selected to investigate RGH haplotypic diversity in seven switchgrass varieties chosen for their representation of a broad range of the switchgrass germplasm. Lowland and upland ecotypes were found to be less similar, even from nearby populations, than were more distant populations with similar growth environments. Most (83.5%) of the variability in these four RGHs was found to be attributable to the within-population component. The difference in nucleotide diversity between and within populations was observed to be small, whereas this diversity is maintained to similar degrees at both population and ecotype levels. The results also revealed that the analyzed RGHs were under positive selection in the studied switchgrass accessions. Intragenic recombination was detected in switchgrass RGHs, thereby demonstrating an active genetic process that has the potential to generate new resistance genes with new specificities that might act against newly-arising pathogen races. PMID:23589518

  5. Intrinsic biocontainment: Multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes

    PubMed Central

    Cai, Yizhi; Agmon, Neta; Choi, Woo Jin; Ubide, Alba; Stracquadanio, Giovanni; Caravelli, Katrina; Hao, Haiping; Bader, Joel S.; Boeke, Jef D.

    2015-01-01

    Biocontainment may be required in a wide variety of situations such as work with pathogens, field release applications of engineered organisms, and protection of intellectual properties. Here, we describe the control of growth of the brewer’s yeast, Saccharomyces cerevisiae, using both transcriptional and recombinational “safeguard” control of essential gene function. Practical biocontainment strategies dependent on the presence of small molecules require them to be active at very low concentrations, rendering them inexpensive and difficult to detect. Histone genes were controlled by an inducible promoter and controlled by 30 nM estradiol. The stability of the engineered genes was separately regulated by the expression of a site-specific recombinase. The combined frequency of generating viable derivatives when both systems were active was below detection (<10−10), consistent with their orthogonal nature and the individual escape frequencies of <10−6. Evaluation of escaper mutants suggests strategies for reducing their emergence. Transcript profiling and growth test suggest high fitness of safeguarded strains, an important characteristic for wide acceptance. PMID:25624482

  6. Construction of a yeast artificial chromosome contig spanning the spinal muscular atrophy disease gene region.

    PubMed Central

    Kleyn, P W; Wang, C H; Lien, L L; Vitale, E; Pan, J; Ross, B M; Grunn, A; Palmer, D A; Warburton, D; Brzustowicz, L M

    1993-01-01

    The childhood spinal muscular atrophies (SMAs) are the most common, serious neuromuscular disorders of childhood second to Duchenne muscular dystrophy. A single locus for these disorders has been mapped by recombination events to a region of 0.7 centimorgan (range, 0.1-2.1 centimorgans) between loci D5S435 and MAP1B on chromosome 5q11.2-13.3. By using PCR amplification to screen yeast artificial chromosome (YAC) DNA pools and the PCR-vectorette method to amplify YAC ends, a YAC contig was constructed across the disease gene region. Nine walk steps identified 32 YACs, including a minimum of seven overlapping YAC clones (average size, 460 kb) that span the SMA region. The contig is characterized by a collection of 30 YAC-end sequence tag sites together with seven genetic markers. The entire YAC contig spans a minimum of 3.2 Mb; the SMA locus is confined to roughly half of this region. Microsatellite markers generated along the YAC contig segregate with the SMA locus in all families where the flanking markers (D5S435 and MAP1B) recombine. Construction of a YAC contig across the disease gene region is an essential step in isolation of the SMA-encoding gene. Images Fig. 1 PMID:8341701

  7. Construction of a yeast artifical chromosome contig spanning the spinal muscular atrophy disease gene region

    SciTech Connect

    Kleyn, P.W.; Wang, C.H.; Vitale, E.; Pan, J.; Ross, B.M.; Grunn, A.; Palmer, D.A.; Warburton, D.; Brzustowicz, L.M.; Gilliam, T.G. ); Lien, L.L.; Kunkel, L.M. )

    1993-07-15

    The childhood spinal muscular atrophies (SMAs) are the most common, serious neuromuscular disorders of childhood second to Duchenne muscular dystrophy. A single locus for these disorders has been mapped by recombination events to a region of 0.7 centimorgan (range, 0.1-2.1 centimorgans) between loci D5S435 and MAP1B on chromosome 5q11.2-13.3. By using PCR amplification to screen yeast artificial chromosome (YAC) DNA pools and the PCR-vectorette method to amplify YAC ends, a YAC contig was constructed across the disease gene region. Nine walk steps identified 32 YACs, including a minimum of seven overlapping YAC clones (average size, 460 kb) that span the SMA region. The contig is characterized by a collection of 30 YAC-end sequence tag sites together with seven genetic markers. The entire YAC contig spans a minimum of 3.2 Mb; the SMA locus is confined to roughly half of this region. Microsatellite markers generated along the YAC contig segregate with the SMA locus in all families where the flanking markers (D5S435 and MAP1B) recombine. Construction of a YAC contig across the disease gene region is an essential step in isolation of the SMA-encoding gene. 26 refs., 3 figs., 1 tab.

  8. Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes.

    PubMed

    Cai, Yizhi; Agmon, Neta; Choi, Woo Jin; Ubide, Alba; Stracquadanio, Giovanni; Caravelli, Katrina; Hao, Haiping; Bader, Joel S; Boeke, Jef D

    2015-02-10

    Biocontainment may be required in a wide variety of situations such as work with pathogens, field release applications of engineered organisms, and protection of intellectual properties. Here, we describe the control of growth of the brewer's yeast, Saccharomyces cerevisiae, using both transcriptional and recombinational "safeguard" control of essential gene function. Practical biocontainment strategies dependent on the presence of small molecules require them to be active at very low concentrations, rendering them inexpensive and difficult to detect. Histone genes were controlled by an inducible promoter and controlled by 30 nM estradiol. The stability of the engineered genes was separately regulated by the expression of a site-specific recombinase. The combined frequency of generating viable derivatives when both systems were active was below detection (<10(-10)), consistent with their orthogonal nature and the individual escape frequencies of <10(-6). Evaluation of escaper mutants suggests strategies for reducing their emergence. Transcript profiling and growth test suggest high fitness of safeguarded strains, an important characteristic for wide acceptance.

  9. Conserved Gene Expression Programs in Developing Roots from Diverse Plants

    PubMed Central

    Huang, Ling; Schiefelbein, John

    2015-01-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants. PMID:26265761

  10. Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

    PubMed

    Huang, Ling; Schiefelbein, John

    2015-08-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.

  11. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).

    PubMed

    Barozai, Muhammad Younas Khan; Bashir, Farrukh; Muzaffar, Shafia; Afzal, Saba; Behlil, Farida; Khan, Muzaffar

    2014-10-15

    To study the life processes of all eukaryotes, yeast (Saccharomyces cerevisiae) is a significant model organism. It is also one of the best models to study the responses of genes at transcriptional level. In a living organism, gene expression is changed by chemical stresses. The genes that give response to chemical stresses will provide good source for the strategies in engineering and formulating mechanisms which are chemical stress resistant in the eukaryotic organisms. The data available through microarray under the chemical stresses like lithium chloride, lactic acid, weak organic acids and tomatidine were studied by using computational tools. Out of 9335 yeast genes, 388 chemical stress responding genes were identified and characterized under different chemical stresses. Some of these are: Enolases 1 and 2, heat shock protein-82, Yeast Elongation Factor 3, Beta Glucanase Protein, Histone H2A1 and Histone H2A2 Proteins, Benign Prostatic Hyperplasia, ras GTPase activating protein, Establishes Silent Chromatin protein, Mei5 Protein, Nondisjunction Protein and Specific Mitogen Activated Protein Kinase. Characterization of these genes was also made on the basis of their molecular functions, biological processes and cellular components.

  12. Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics

    PubMed Central

    2012-01-01

    Background Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results Three different chemogenomic fitness assays, haploinsufficiency (HIP), homozygous deletion (HOP), and multicopy suppression (MSP) profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms), membrane functions (e.g. signalling, transport and targeting), membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress) and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane trafficking, provides

  13. Origin and evolution of laminin gene family diversity.

    PubMed

    Fahey, Bryony; Degnan, Bernard M

    2012-07-01

    Laminins are a family of multidomain glycoproteins that are important contributors to the structure of metazoan extracellular matrices. To investigate the origin and evolution of the laminin family, we characterized the full complement of laminin-related genes in the genome of the sponge, Amphimedon queenslandica. As a representative of the Demospongiae, a group consistently placed within the earliest diverging branch of animals by molecular phylogenies, Amphimedon is uniquely placed to provide insight into early steps in the evolution of metazoan gene families. Five Amphimedon laminin-related genes possess the conserved molecular features, and most of the domains found in bilaterian laminins, but all display domain architectures distinct from those of the canonical laminin chain types known from model bilaterians. This finding prompted us to perform a comparative genomic analysis of laminins and related genes from a choanoflagellate and diverse metazoans and to conduct phylogenetic analyses using the conserved Laminin N-terminal domain in order to explore the relationships between genes with distinct architectures. Laminin-like genes appear to have originated in the holozoan lineage (choanoflagellates + metazoans + several other unicellular opisthokont taxa), with several laminin domains originating later and appearing only in metazoan (animal) or eumetazoan (placozoans + ctenophores + cnidarians + bilaterians) laminins. Typical bilaterian α, β, and γ laminin chain forms arose in the eumetazoan stem and another chain type that is conserved in Amphimedon, the cnidarian, Nematostella vectensis, and the echinoderm, Strongylocentrotus purpuratus, appears to have been lost independently from the placozoan, Trichoplax adhaerens, and from multiple bilaterians. Phylogenetic analysis did not clearly reconstruct relationships between the distinct laminin chain types (with the exception of the α chains) but did reveal how several members of the netrin family were

  14. Yeast Microcapsule-Mediated Targeted Delivery of Diverse Nanoparticles for Imaging and Therapy via the Oral Route.

    PubMed

    Zhou, Xing; Zhang, Xiangjun; Han, Songling; Dou, Yin; Liu, Mengyu; Zhang, Lin; Guo, Jiawei; Shi, Qing; Gong, Genghao; Wang, Ruibing; Hu, Jiang; Li, Xiaohui; Zhang, Jianxiang

    2017-02-08

    Targeting of nanoparticles to distant diseased sites after oral delivery remains highly challenging due to the existence of many biological barriers in the gastrointestinal tract. Here we report targeted oral delivery of diverse nanoparticles in multiple disease models, via a "Trojan horse" strategy based on a bioinspired yeast capsule (YC). Diverse charged nanoprobes including quantum dots (QDs), iron oxide nanoparticles (IONPs), and assembled organic fluorescent nanoparticles can be effectively loaded into YC through electrostatic force-driven spontaneous deposition, resulting in different diagnostic YC assemblies. Also, different positive nanotherapies containing an anti-inflammatory drug indomethacin (IND) or an antitumor drug paclitaxel (PTX) are efficiently packaged into YC. YCs containing either nanoprobes or nanotherapies may be rapidly endocytosed by macrophages and maintained in cells for a relatively long period of time. Post oral administration, nanoparticles packaged in YC are first transcytosed by M cells and sequentially endocytosed by macrophages, then transported to neighboring lymphoid tissues, and finally delivered to remote diseased sites of inflammation or tumor in mice or rats, all through the natural route of macrophage activation, recruitment, and deployment. For the examined acute inflammation model, the targeting efficiency of YC-delivered QDs or IONPs is even higher than that of control nanoprobes administered at the same dose via intravenous injection. Assembled IND or PTX nanotherapies orally delivered via YCs exhibit remarkably potentiated efficacies as compared to nanotherapies alone in animal models of inflammation and tumor, which is consistent with the targeting effect and enhanced accumulation of drug molecules at diseased sites. Consequently, through the intricate transportation route, nanoprobes or nanotherapies enveloped in YC can be preferentially delivered to desired targets, affording remarkably improved efficacies for the

  15. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance.

    PubMed

    Shima, Jun; Takagi, Hiroshi

    2009-05-29

    During the fermentation of dough and the production of baker's yeast (Saccharomyces cerevisiae), cells are exposed to numerous environmental stresses (baking-associated stresses) such as freeze-thaw, high sugar concentrations, air-drying and oxidative stresses. Cellular macromolecules, including proteins, nucleic acids and membranes, are seriously damaged under stress conditions, leading to the inhibition of cell growth, cell viability and fermentation. To avoid lethal damage, yeast cells need to acquire a variety of stress-tolerant mechanisms, for example the induction of stress proteins, the accumulation of stress protectants, changes in membrane composition and repression of translation, and by regulating the corresponding gene expression via stress-triggered signal-transduction pathways. Trehalose and proline are considered to be critical stress protectants, as is glycerol. It is known that these molecules are effective for providing protection against various types of environmental stresses. Modifications of the metabolic pathways of trehalose and proline by self-cloning methods have significantly increased tolerance to baking-associated stresses. To clarify which genes are required for stress tolerance, both a comprehensive phenomics analysis and a functional genomics analysis were carried out under stress conditions that simulated those occurring during the commercial baking process. These analyses indicated that many genes are involved in stress tolerance in yeast. In particular, it was suggested that vacuolar H+-ATPase plays important roles in yeast cells under stress conditions.

  16. Diversity, evolution, and horizontal gene transfer (HGT) in soda lakes

    NASA Astrophysics Data System (ADS)

    Pinkart, Holly C.; Storrie-Lombardi, Michael C.

    2007-09-01

    Soap Lake is a hypersaline, alkaline lake in Central Washington State (USA). For the past five years the lake has been the site of an NSF Microbial Observatory project devoted to identifying critical geochemical and microbial characteristics of the monimolimnion sediment and water column, and has demonstrated rich multispecies communities occupy all areas of the lake. Soap Lake and similar soda lakes are subject to repeated transient periods of extreme evaporation characterized by significant repetitive alterations in salinity, pH, and total water volume, yet maintain high genetic and metabolic diversity. It has been argued that this repetitive cycle for salinity, alkalinity, and sulfur concentration has been a major driver for prokaryote evolution and diversity. The rapidity of wet-dry cycling places special demands on genome evolution, requirements that are beyond the relatively conservative eukaryotic evolutionary strategy of serial alteration of existing gene sequences in a relatively stable genome. Although HGT is most likely responsible for adding a significant amount of noise to the genetic record, analysis of HGT activity can also provide us with a much-needed probe for exploration of prokaryotic genome evolution and the origin of diversity. Packaging of genetic information within the protective protein capsid of a bacteriophage would seem preferable to exposing naked DNA to the highly alkaline conditions in the lake. In this study, we present preliminary data demonstrating the presence of a diverse group of phage integrases in Soap Lake. Integrase is the viral enzyme responsible for the insertion of phage DNA into the bacterial host's chromosome. The presence of the integrase sequence in bacterial chromosomes is evidence of lysogeny, and the diversity of integrase sequences reported here suggests a wide variety of temperate phage exist in this system, and are especially active in transition zones.

  17. Identification of targetable FGFR gene fusions in diverse cancers.

    PubMed

    Wu, Yi-Mi; Su, Fengyun; Kalyana-Sundaram, Shanker; Khazanov, Nickolay; Ateeq, Bushra; Cao, Xuhong; Lonigro, Robert J; Vats, Pankaj; Wang, Rui; Lin, Su-Fang; Cheng, Ann-Joy; Kunju, Lakshmi P; Siddiqui, Javed; Tomlins, Scott A; Wyngaard, Peter; Sadis, Seth; Roychowdhury, Sameek; Hussain, Maha H; Feng, Felix Y; Zalupski, Mark M; Talpaz, Moshe; Pienta, Kenneth J; Rhodes, Daniel R; Robinson, Dan R; Chinnaiyan, Arul M

    2013-06-01

    Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2, including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Because of the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts, which incorporate transcriptome analysis for gene fusions, are poised to identify rare, targetable FGFR fusions across diverse cancer types.

  18. phoD Alkaline Phosphatase Gene Diversity in Soil

    PubMed Central

    Kertesz, Michael A.; Bünemann, Else K.

    2015-01-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples. PMID:26253682

  19. Large-scale phenotypic analysis reveals identical contributions to cell functions of known and unknown yeast genes.

    PubMed

    Bianchi, M M; Ngo, S; Vandenbol, M; Sartori, G; Morlupi, A; Ricci, C; Stefani, S; Morlino, G B; Hilger, F; Carignani, G; Slonimski, P P; Frontali, L

    2001-11-01

    Sequencing of the yeast genome has shown that about one-third of the yeast ORFs code for unknown proteins. Many other have similarity to known genes, but still the cellular functions of the gene products are unknown. The aim of the B1 Consortium of the EUROFAN project was to perform a qualitative phenotypic analysis on yeast strains deleted for functionally orphan genes. To this end we set up a simple approach to detect growth defects of a relatively large number of strains in the presence of osmolytes, ethanol, high temperature, inhibitory compounds or drugs affecting protein biosynthesis, phosphorylation level or nucleic acids biosynthesis. We have now developed this procedure to a semi-quantitative level, we have included new inhibitors, such as hygromycin B, benomyl, metals and additional drugs interfering with synthesis of nucleic acids, and we have performed phenotypic analysis on the deleted strains of 564 genes poorly characterized in respect to their cellular functions. About 30% of the deleted strains showed at least one phenotype: many of them were pleiotropic. For many gene deletions, the linkage between the deletion marker and the observed phenotype(s) was studied by tetrad analysis and their co-segregation was demonstrated. Co-segregation was found in about two-thirds of the analysed strains showing phenotype(s).

  20. Increased biomass production of industrial bakers' yeasts by overexpression of Hap4 gene.

    PubMed

    Dueñas-Sánchez, Rafael; Codón, Antonio C; Rincón, Ana M; Benítez, Tahía

    2010-10-15

    HAP4 encodes a transcriptional activator of respiration-related genes and so, redirection from fermentation to respiration flux should give rise to an increase in biomass production in Saccharomyces cerevisiae transformants that overexpress HAP4. With this aim, three bakers' yeasts, that is, V1 used for lean doughs, its 2-deoxy-D-glucose resistant derivative DOG21, and V3 employed for sweet doughs, were transformed with integrative cassettes that carried HAP4 gene under the control of constitutive promoter pTEF2; in addition VTH, DTH and 3TH transformants were selected and characterized. Transformants showed increased expression of HAP4 and respiration-related genes such as QCR7 and QCR8 with regard to parental, and similar expression of SUC2 and MAL12; these genes are relevant in bakers' industry. Invertase (Suc2p) and maltase (Mal12p) activities, growth and sugar consumption rates in laboratory (YPD) or industrial media (MAB) were also comparable in bakers' strains and their transformants, but VTH, DTH and 3TH increased their final biomass production by 9.5, 5.0 and 5.0% respectively as compared to their parentals in MAB. Furthermore, V1 and its transformant VTH had comparable capacity to ferment lean doughs (volume increase rate and final volume) while V3 and its transformant 3TH fermented sweet doughs in a similar manner. Therefore transformants possessed increased biomass yield and appropriate characteristics to be employed in bakers' industry because they lacked drug resistant markers and bacterial DNA, and were genetically stable.

  1. Gene regulation networks generate diverse pigmentation patterns in plants.

    PubMed

    Albert, Nick W; Davies, Kevin M; Schwinn, Kathy E

    2014-01-01

    The diversity of pigmentation patterns observed in plants occurs due to the spatial distribution and accumulation of colored compounds, which may also be associated with structural changes to the tissue. Anthocyanins are flavonoids that provide red/purple/blue coloration to plants, often forming complex patterns such as spots, stripes, and vein-associated pigmentation, particularly in flowers. These patterns are determined by the activity of MYB-bHLH-WDR (MBW) transcription factor complexes, which activate the anthocyanin biosynthesis genes, resulting in anthocyanin pigment accumulation. Recently, we established that the MBW complex controlling anthocyanin synthesis acts within a gene regulation network that is conserved within at least the Eudicots. This network involves hierarchy, reinforcement, and feedback mechanisms that allow for stringent and responsive regulation of the anthocyanin biosynthesis genes. The gene network and mobile nature of the WDR and R3-MYB proteins provide exciting new opportunities to explore the basis of pigmentation patterning, and to investigate the evolutionary history of the MBW components in land plants.

  2. Combinatorial control of diverse metabolic and physiological functions by transcriptional regulators of the yeast sulfur assimilation pathway.

    PubMed

    Petti, Allegra A; McIsaac, R Scott; Ho-Shing, Olivia; Bussemaker, Harmen J; Botstein, David

    2012-08-01

    Methionine abundance affects diverse cellular functions, including cell division, redox homeostasis, survival under starvation, and oxidative stress response. Regulation of the methionine biosynthetic pathway involves three DNA-binding proteins-Met31p, Met32p, and Cbf1p. We hypothesized that there exists a "division of labor" among these proteins that facilitates coordination of methionine biosynthesis with diverse biological processes. To explore combinatorial control in this regulatory circuit, we deleted CBF1, MET31, and MET32 individually and in combination in a strain lacking methionine synthase. We followed genome-wide gene expression as these strains were starved for methionine. Using a combination of bioinformatic methods, we found that these regulators control genes involved in biological processes downstream of sulfur assimilation; many of these processes had not previously been documented as methionine dependent. We also found that the different factors have overlapping but distinct functions. In particular, Met31p and Met32p are important in regulating methionine metabolism, whereas p functions as a "generalist" transcription factor that is not specific to methionine metabolism. In addition, Met31p and Met32p appear to regulate iron-sulfur cluster biogenesis through direct and indirect mechanisms and have distinguishable target specificities. Finally, CBF1 deletion sometimes has the opposite effect on gene expression from MET31 and MET32 deletion.

  3. Combinatorial control of diverse metabolic and physiological functions by transcriptional regulators of the yeast sulfur assimilation pathway

    PubMed Central

    Petti, Allegra A.; McIsaac, R. Scott; Ho-Shing, Olivia; Bussemaker, Harmen J.; Botstein, David

    2012-01-01

    Methionine abundance affects diverse cellular functions, including cell division, redox homeostasis, survival under starvation, and oxidative stress response. Regulation of the methionine biosynthetic pathway involves three DNA-binding proteins—Met31p, Met32p, and Cbf1p. We hypothesized that there exists a “division of labor” among these proteins that facilitates coordination of methionine biosynthesis with diverse biological processes. To explore combinatorial control in this regulatory circuit, we deleted CBF1, MET31, and MET32 individually and in combination in a strain lacking methionine synthase. We followed genome-wide gene expression as these strains were starved for methionine. Using a combination of bioinformatic methods, we found that these regulators control genes involved in biological processes downstream of sulfur assimilation; many of these processes had not previously been documented as methionine dependent. We also found that the different factors have overlapping but distinct functions. In particular, Met31p and Met32p are important in regulating methionine metabolism, whereas p functions as a “generalist” transcription factor that is not specific to methionine metabolism. In addition, Met31p and Met32p appear to regulate iron–sulfur cluster biogenesis through direct and indirect mechanisms and have distinguishable target specificities. Finally, CBF1 deletion sometimes has the opposite effect on gene expression from MET31 and MET32 deletion. PMID:22696679

  4. Agrobacterium-mediated transformation of rough lemon (Citrus jambhiri Lush) with yeast HAL2 gene

    PubMed Central

    2012-01-01

    Background Rough lemon (Citrus jambhiri Lush.) is the most commonly used Citrus rootstock in south Asia. It is extremely sensitive to salt stress that decreases the growth and yield of Citrus crops in many areas worldwide. Over expression of the yeast halotolerant gene (HAL2) results in increasing the level of salt tolerance in transgenic plants. Results Transformation of rough lemon was carried out by using Agrobacterium tumefaciens strains LBA4404 harboring plasmid pJRM17. Transgenic shoots were selected on kanamycin 100 mg L-1 along with 250 mg L-1 each of cefotaxime and vancomycin for effective inhibition of Agrobacterium growth. The Murashige and Skoog (MS) medium containing 200 μM acetoseryngone (AS) proved to be the best inoculation and co-cultivation medium for transformation. MS medium supplemented with 3 mg L-1 of 6-benzylaminopurine (BA) showed maximum regeneration efficiency of the transformed explants. The final selection of the transformed plants was made on the basis of PCR and Southern blot analysis. Conclusion Rough lemon has been successfully transformed via Agrobacterium tumefaciens with β-glucuronidase (GUS) and HAL2. Various factors affecting gene transformation and regeneration efficiency were also investigated. PMID:22691292

  5. Nuclear RNA Decay Pathways Aid Rapid Remodeling of Gene Expression in Yeast.

    PubMed

    Bresson, Stefan; Tuck, Alex; Staneva, Desislava; Tollervey, David

    2017-03-02

    In budding yeast, the nuclear RNA surveillance system is active on all pre-mRNA transcripts and modulated by nutrient availability. To test the role of nuclear surveillance in reprogramming gene expression, we identified transcriptome-wide binding sites for RNA polymerase II and the exosome cofactors Mtr4 (TRAMP complex) and Nab3 (NNS complex) by UV crosslinking immediately following glucose withdrawal (0, 4, and 8 min). In glucose, mRNA binding by Nab3 and Mtr4 was mainly restricted to promoter-proximal sites, reflecting early transcription termination. Following glucose withdrawal, many growth-related mRNAs showed reduced transcription but increased Nab3 binding, accompanied by downstream recruitment of Mtr4, and oligo(A) tailing. We conclude that transcription termination is followed by TRAMP-mediated RNA decay. Upregulated transcripts evaded increased surveillance factor binding following glucose withdrawal. Some upregulated genes showed use of alternative transcription starts to bypass strong NNS binding sites. We conclude that nuclear surveillance pathways regulate both positive and negative responses to glucose availability.

  6. Manganese Complexes: Diverse Metabolic Routes to Oxidative Stress Resistance in Prokaryotes and Yeast

    PubMed Central

    2013-01-01

    Abstract Significance: Antioxidant enzymes are thought to provide critical protection to cells against reactive oxygen species (ROS). However, many organisms can fully compensate for the loss of such enzymatic defenses by accumulating metabolites and Mn2+, which can form catalytic Mn-antioxidants. Accumulated metabolites can direct reactivity of Mn2+ with superoxide and specifically shield proteins from oxidative damage. Recent Advances: There is mounting evidence that Mn-Pi (orthophosphate) complexes act as potent scavengers of superoxide in all three branches of life. Moreover, it is evident that Mn2+ in complexes with carbonates, peptides, nucleosides, and organic acids can also form catalytic Mn-antioxidants, pointing to diverse metabolic routes to oxidative stress resistance. Critical Issues: What conditions favor utility of Mn-metabolites versus enzymatic means for removing ROS? Mn2+-metabolite defenses are critical for preserving the activity of repair enzymes in Deinococcus radiodurans exposed to intense radiation stress, and in Lactobacillus plantarum, which lacks antioxidant enzymes. In other microorganisms, Mn-antioxidants can serve as an auxiliary protection when enzymatic antioxidants are insufficient or fail. These findings of a critical role of Mn-antioxidants in the survival of prokaryotes under oxidative stress parallel the trends developing for the simple eukaryote Saccharomyces cerevisiae. Future Directions: Phosphates, peptides and organic acids are just a snapshot of the types of anionic metabolites that promote such reactivity of Mn2+. Their probable roles in pathogen defense against the host immune response and in ROS-mediated signaling pathways are also areas that are worthy of serious investigation. Moreover, it is clear that these protective chemical processes can be harnessed for practical purposes. Antioxid. Redox Signal. 19, 933–944. PMID:23249283

  7. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments.

    PubMed

    Jiang, Xuexia; Dang, Hongyue; Jiao, Nianzhi

    2015-01-01

    Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be

  8. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking

    PubMed Central

    2013-01-01

    Background Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS), while glycerol extends it. Results Different age-related gene classes have been modified by deletion or overexpression to test their role in longevity and metabolism. Overexpression of histone deacetylase SIR2 extends CLS and reduces acetate production, while overexpression of SIR2 homolog HST3 shortens CLS, increases the ethanol level, and reduces acetic acid production. HST3 overexpression also enhances ethanol tolerance. Increasing tolerance to oxidative stress by superoxide dismutase SOD2 overexpression has only a moderate positive effect on CLS. CLS during grape juice fermentation has also been studied for mutants on several mRNA binding proteins that are regulators of gene expression at the posttranscriptional level; we found that NGR1 and UTH4 deletions decrease CLS, while PUF3 and PUB1 deletions increase it. Besides, the pub1Δ mutation increases glycerol production and blocks stress granule formation during grape juice fermentation. Surprisingly, factors relating to apoptosis, such as caspase Yca1 or apoptosis-inducing factor Aif1, play a positive role in yeast longevity during winemaking as their deletions shorten CLS. Conclusions Manipulation of regulators of gene expression at both transcriptional (i.e., sirtuins) and posttranscriptional (i.e., mRNA binding protein Pub1) levels allows to modulate yeast life span during its biotechnological use. Due to links between aging and

  9. Genomics and the making of yeast biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  10. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations.

    PubMed

    Boer, Viktor M; Crutchfield, Christopher A; Bradley, Patrick H; Botstein, David; Rabinowitz, Joshua D

    2010-01-01

    Microbes tailor their growth rate to nutrient availability. Here, we measured, using liquid chromatography-mass spectrometry, >100 intracellular metabolites in steady-state cultures of Saccharomyces cerevisiae growing at five different rates and in each of five different limiting nutrients. In contrast to gene transcripts, where approximately 25% correlated with growth rate irrespective of the nature of the limiting nutrient, metabolite concentrations were highly sensitive to the limiting nutrient's identity. Nitrogen (ammonium) and carbon (glucose) limitation were characterized by low intracellular amino acid and high nucleotide levels, whereas phosphorus (phosphate) limitation resulted in the converse. Low adenylate energy charge was found selectively in phosphorus limitation, suggesting the energy charge may actually measure phosphorus availability. Particularly strong concentration responses occurred in metabolites closely linked to the limiting nutrient, e.g., glutamine in nitrogen limitation, ATP in phosphorus limitation, and pyruvate in carbon limitation. A simple but physically realistic model involving the availability of these metabolites was adequate to account for cellular growth rate. The complete data can be accessed at the interactive website http://growthrate.princeton.edu/metabolome.

  11. Diversity and Evolutionary History of Iron Metabolism Genes in Diatoms

    PubMed Central

    Groussman, Ryan D.; Parker, Micaela S.; Armbrust, E. Virginia

    2015-01-01

    Ferroproteins arose early in Earth’s history, prior to the emergence of oxygenic photosynthesis and the subsequent reduction of bioavailable iron. Today, iron availability limits primary productivity in about 30% of the world’s oceans. Diatoms, responsible for nearly half of oceanic primary production, have evolved molecular strategies for coping with variable iron concentrations. Our understanding of the evolutionary breadth of these strategies has been restricted by the limited number of species for which molecular sequence data is available. To uncover the diversity of strategies marine diatoms employ to meet cellular iron demands, we analyzed 367 newly released marine microbial eukaryotic transcriptomes, which include 47 diatom species. We focused on genes encoding proteins previously identified as having a role in iron management: iron uptake (high-affinity ferric reductase, multi-copper oxidase, and Fe(III) permease); iron storage (ferritin); iron-induced protein substitutions (flavodoxin/ferredoxin, and plastocyanin/cytochrome c6) and defense against reactive oxygen species (superoxide dismutases). Homologs encoding the high-affinity iron uptake system components were detected across the four diatom Classes suggesting an ancient origin for this pathway. Ferritin transcripts were also detected in all Classes, revealing a more widespread utilization of ferritin throughout diatoms than previously recognized. Flavodoxin and plastocyanin transcripts indicate possible alternative redox metal strategies. Predicted localization signals for ferredoxin identify multiple examples of gene transfer from the plastid to the nuclear genome. Transcripts encoding four superoxide dismutase metalloforms were detected, including a putative nickel-coordinating isozyme. Taken together, our results suggest that the majority of iron metabolism genes in diatoms appear to be vertically inherited with functional diversity achieved via possible neofunctionalization of paralogs. This

  12. Diversity and Evolutionary History of Iron Metabolism Genes in Diatoms.

    PubMed

    Groussman, Ryan D; Parker, Micaela S; Armbrust, E Virginia

    2015-01-01

    Ferroproteins arose early in Earth's history, prior to the emergence of oxygenic photosynthesis and the subsequent reduction of bioavailable iron. Today, iron availability limits primary productivity in about 30% of the world's oceans. Diatoms, responsible for nearly half of oceanic primary production, have evolved molecular strategies for coping with variable iron concentrations. Our understanding of the evolutionary breadth of these strategies has been restricted by the limited number of species for which molecular sequence data is available. To uncover the diversity of strategies marine diatoms employ to meet cellular iron demands, we analyzed 367 newly released marine microbial eukaryotic transcriptomes, which include 47 diatom species. We focused on genes encoding proteins previously identified as having a role in iron management: iron uptake (high-affinity ferric reductase, multi-copper oxidase, and Fe(III) permease); iron storage (ferritin); iron-induced protein substitutions (flavodoxin/ferredoxin, and plastocyanin/cytochrome c6) and defense against reactive oxygen species (superoxide dismutases). Homologs encoding the high-affinity iron uptake system components were detected across the four diatom Classes suggesting an ancient origin for this pathway. Ferritin transcripts were also detected in all Classes, revealing a more widespread utilization of ferritin throughout diatoms than previously recognized. Flavodoxin and plastocyanin transcripts indicate possible alternative redox metal strategies. Predicted localization signals for ferredoxin identify multiple examples of gene transfer from the plastid to the nuclear genome. Transcripts encoding four superoxide dismutase metalloforms were detected, including a putative nickel-coordinating isozyme. Taken together, our results suggest that the majority of iron metabolism genes in diatoms appear to be vertically inherited with functional diversity achieved via possible neofunctionalization of paralogs. This

  13. Synthetic gene expression perturbation systems with rapid, tunable, single-gene specificity in yeast

    PubMed Central

    McIsaac, R. Scott; Oakes, Benjamin L.; Wang, Xin; Dummit, Krysta A.; Botstein, David; Noyes, Marcus B.

    2013-01-01

    A general method for the dynamic control of single gene expression in eukaryotes, with no off-target effects, is a long-sought tool for molecular and systems biologists. We engineered two artificial transcription factors (ATFs) that contain Cys2His2 zinc-finger DNA-binding domains of either the mouse transcription factor Zif268 (9 bp of specificity) or a rationally designed array of four zinc fingers (12 bp of specificity). These domains were expressed as fusions to the human estrogen receptor and VP16 activation domain. The ATFs can rapidly induce a single gene driven by a synthetic promoter in response to introduction of an otherwise inert hormone with no detectable off-target effects. In the absence of inducer, the synthetic promoter is inactive and the regulated gene product is not detected. Following addition of inducer, transcripts are induced >50-fold within 15 min. We present a quantitative characterization of these ATFs and provide constructs for making their implementation straightforward. These new tools allow for the elucidation of regulatory network elements dynamically, which we demonstrate with a major metabolic regulator, Gcn4p. PMID:23275543

  14. Synthetic gene expression perturbation systems with rapid, tunable, single-gene specificity in yeast.

    PubMed

    McIsaac, R Scott; Oakes, Benjamin L; Wang, Xin; Dummit, Krysta A; Botstein, David; Noyes, Marcus B

    2013-02-01

    A general method for the dynamic control of single gene expression in eukaryotes, with no off-target effects, is a long-sought tool for molecular and systems biologists. We engineered two artificial transcription factors (ATFs) that contain Cys(2)His(2) zinc-finger DNA-binding domains of either the mouse transcription factor Zif268 (9 bp of specificity) or a rationally designed array of four zinc fingers (12 bp of specificity). These domains were expressed as fusions to the human estrogen receptor and VP16 activation domain. The ATFs can rapidly induce a single gene driven by a synthetic promoter in response to introduction of an otherwise inert hormone with no detectable off-target effects. In the absence of inducer, the synthetic promoter is inactive and the regulated gene product is not detected. Following addition of inducer, transcripts are induced >50-fold within 15 min. We present a quantitative characterization of these ATFs and provide constructs for making their implementation straightforward. These new tools allow for the elucidation of regulatory network elements dynamically, which we demonstrate with a major metabolic regulator, Gcn4p.

  15. Immune gene expression profile of Penaeus monodon in response to marine yeast glucan application and white spot syndrome virus challenge.

    PubMed

    Wilson, Wilsy; Lowman, Douglas; Antony, Swapna P; Puthumana, Jayesh; Bright Singh, I S; Philip, Rosamma

    2015-04-01

    Immunostimulant potential of eight marine yeast glucans (YG) from Candida parapsilosis R20, Hortaea werneckii R23, Candida spencermartinsiae R28, Candida haemulonii R63, Candida oceani R89, Debaryomyces fabryi R100, Debaryomyces nepalensis R305 and Meyerozyma guilliermondii R340 were tested against WSSV challenge in Penaeus monodon post larvae (PL). Structural characterization of these marine yeast glucans by proton nuclear magnetic resonance (NMR) indicated structures containing (1-6)-branched (1-3)-β-D-glucan. PL were fed 0.2% glucan incorporated diet once in seven days for a period of 45 days and the animals were challenged with white spot syndrome virus (WSSV). The immunostimulatory activity of yeast glucans were assessed pre- and post-challenge WSSV by analysing the expression profile of six antimicrobial peptide (AMP) genes viz., anti-lipopolysaccharide factor (ALF), crustin-1, crustin-2, crustin-3, penaeidin-3 and penaeidin-5 and 13 immune genes viz., alpha-2-macroglobulin (α-2-M), astakine, caspase, catalase, glutathione peroxidase, glutathione-s-transferase, haemocyanin, peroxinectin, pmCathepsinC, prophenol oxidase (proPO), Rab-7, superoxide dismutase and transglutaminase. Expression of seven WSSV genes viz., DNA polymerase, endonuclease, protein kinase, immediate early gene, latency related gene, thymidine kinase and VP28 were also analysed to detect the presence and intensity of viral infection in the experimental animals post-challenge. The study revealed that yeast glucans (YG) do possess immunostimulatory activity against WSSV and also supported higher survival (40-70 %) post-challenge WSSV. Among the various glucans tested, YG23 showed maximum survival (70.27%), followed by YG20 (66.66%), YG28 (60.97%), YG89 (58.53%), YG100 (54.05%), YG63 (48.64%), YG305 (45.7%) and YG340 (43.24%).

  16. Isolation and characterization of rice cesium transporter genes from a rice-transporter-enriched yeast expression library.

    PubMed

    Yamaki, Tomohiro; Otani, Masahiro; Ono, Kohei; Mimura, Takuro; Oda, Koshiro; Minamii, Takeshi; Matsumoto, Shingo; Matsuo, Yuzy; Kawamukai, Makoto; Akihiro, Takashi

    2017-03-28

    A considerable portion of agricultural land in central-east Japan has been contaminated by radioactive material, particularly radioactive Cs, due to the industrial accident at the Fukushima Daiichi nuclear power plant. Understanding the mechanism of absorption, translocation, and accumulation of Cs(+) in plants will greatly assist in developing approaches to help reduce the radioactive contamination of agricultural products. At present, however, little is known regarding the Cs(+) transporters in rice. A transporter-enriched yeast expression library was constructed and the library was screened for Cs(+) transporter genes. The 1452 full length cDNAs encoding transporter genes were obtained from the Rice Genome Resource Center and 1358 clones of these transporter genes were successively subcloned into yeast expression vectors; which were then transferred into yeast. Using this library, both positive and negative selection screens can be performed, which have not been previously possible. The constructed library is an excellent tool for the isolation of novel transporter genes. This library was screened for clones that were sensitive to Cs(+) using a SD-Gal medium containing either 30 or 70 mM CsCl; resulting in the isolation of thirteen Cs(+) sensitive clones. (137) Cs absorption experiments were conducted and confirmed that all of the identified clones were able to absorb (137) Cs. Three potassium transporters, two ABC transporters, and one NRAMP transporter were among the thirteen identified clones.

  17. Unusual Diversity of Myoglobin Genes in the Lungfish.

    PubMed

    Koch, Jonas; Lüdemann, Julia; Spies, Rieke; Last, Marco; Amemiya, Chris T; Burmester, Thorsten

    2016-12-01

    Myoglobin is a respiratory protein that serves as a model system in a variety of biological fields. Its main function is to deliver and store O2 in the heart and skeletal muscles, but myoglobin is also instrumental in homeostasis of nitric oxide (NO) and detoxification of reactive oxygen species (ROS). Almost every vertebrate harbors a single myoglobin gene; only some cyprinid fishes have two recently duplicated myoglobin genes. Here we show that the West African lungfish Protopterus annectens has at least seven distinct myoglobin genes (PanMb1-7), which diverged early in the evolution of lungfish and showed an enhanced evolutionary rate. These myoglobins are lungfish specific, and no other globin gene was found amplified. The myoglobins are differentially expressed in various lungfish tissues, and the brain is the main site of myoglobin expression. The typical myoglobin-containing tissues, the skeletal muscle and the heart, have much lower myoglobin mRNA levels. Muscle and heart express distinct myoglobins (PanMb1 and PanMb3, respectively). In cell culture, lungfish myoglobins improved cellular survival under hypoxia albeit with different efficiencies and reduced the production of reactive oxygen species. Only Mb2 and Mb6 enhanced the energy status of the cells. The unexpected diversity of myoglobin hints to a functional diversification of this gene: some myoglobins may have adapted to the O2 requirements of the specific tissue and help the lungfish to survive hypoxic periods; other myoglobins may have taken over the roles of neuroglobin and cytoglobin, which appear to be missing in the West African lungfish.

  18. Diverse nucleotide compositions and sequence fluctuation in Rubisco protein genes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Dehipawala, S.; Cheung, E.; Bienaime, R.; Ye, J.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2011-10-01

    The Rubisco protein-enzyme is arguably the most abundance protein on Earth. The biology dogma of transcription and translation necessitates the study of the Rubisco genes and Rubisco-like genes in various species. Stronger correlation of fractal dimension of the atomic number fluctuation along a DNA sequence with Shannon entropy has been observed in the studied Rubisco-like gene sequences, suggesting a more diverse evolutionary pressure and constraints in the Rubisco sequences. The strategy of using metal for structural stabilization appears to be an ancient mechanism, with data from the porphobilinogen deaminase gene in Capsaspora owczarzaki and Monosiga brevicollis. Using the chi-square distance probability, our analysis supports the conjecture that the more ancient Rubisco-like sequence in Microcystis aeruginosa would have experienced very different evolutionary pressure and bio-chemical constraint as compared to Bordetella bronchiseptica, the two microbes occupying either end of the correlation graph. Our exploratory study would indicate that high fractal dimension Rubisco sequence would support high carbon dioxide rate via the Michaelis- Menten coefficient; with implication for the control of the whooping cough pathogen Bordetella bronchiseptica, a microbe containing a high fractal dimension Rubisco-like sequence (2.07). Using the internal comparison of chi-square distance probability for 16S rRNA (~ E-22) versus radiation repair Rec-A gene (~ E-05) in high GC content Deinococcus radiodurans, our analysis supports the conjecture that high GC content microbes containing Rubisco-like sequence are likely to include an extra-terrestrial origin, relative to Deinococcus radiodurans. Similar photosynthesis process that could utilize host star radiation would not compete with radiation resistant process from the biology dogma perspective in environments such as Mars and exoplanets.

  19. Yeast extracellular proteases.

    PubMed

    Ogrydziak, D M

    1993-01-01

    Many species of yeast secrete significant amounts of protease(s). In this article, results of numerous surveys of yeast extracellular protease production have been compiled and inconsistencies in the data and limitations of the methodology have been examined. Regulation, purification, characterization, and processing of yeast extracellular proteases are reviewed. Results obtained from the sequences of cloned genes, especially the Saccharomyces cerevisiae Bar protease, the Candida albicans acid protease, and the Yarrowia lipolytica alkaline protease, have been emphasized. Biotechnological applications and the medical relevance of yeast extracellular proteases are covered. Yeast extracellular proteases have potential in beer and wine stabilization, and they probably contribute to pathogenicity of Candida spp. Yeast extracellular protease genes also provide secretion and processing signals for yeast expression systems designed for secretion of heterologous proteins. Coverage of the secretion of foreign proteases such as prochymosin, urokinase, and tissue plasminogen activator by yeast in included.

  20. The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking.

    PubMed

    Warner, T S; Sinclair, D A; Fitzpatrick, K A; Singh, M; Devlin, R H; Honda, B M

    1998-04-01

    Mutations in a number of genes affect eye colour in Drosophila melanogaster; some of these "eye-colour" genes have been shown to be involved in various aspects of cellular transport processes. In addition, combinations of viable mutant alleles of some of these genes, such as carnation (car) combined with either light (lt) or deep-orange (dor) mutants, show lethal interactions. Recently, dor was shown to be homologous to the yeast gene PEP3 (VPS18), which is known to be involved in intracellular trafficking. We have undertaken to extend our earlier work on the lt gene, in order to examine in more detail its expression pattern and to characterize its gene product via sequencing of a cloned cDNA. The gene appears to be expressed at relatively high levels in all stages and tissues examined, and shows strong homology to VPS41, a gene involved in cellular-protein trafficking in yeast and higher eukaryotes. Further genetic experiments also point to a role for lt in transport processes: we describe lethal interactions between viable alleles of lt and dor, as well as phenotypic interactions (reductions in eye pigment) between allels of lt and another eye-colour gene, garnet (g), whose gene product has close homology to a subunit of the human adaptor complex, AP-3.

  1. Diversity of the Lactic Acid Bacterium and Yeast Microbiota in the Switch from Firm- to Liquid-Sourdough Fermentation

    PubMed Central

    Di Cagno, Raffaella; Pontonio, Erica; Buchin, Solange; De Angelis, Maria; Lattanzi, Anna; Valerio, Francesca; Calasso, Maria

    2014-01-01

    Four traditional type I sourdoughs were comparatively propagated (28 days) under firm (dough yield, 160) and liquid (dough yield, 280) conditions to mimic the alternative technology options frequently used for making baked goods. After 28 days of propagation, liquid sourdoughs had the lowest pH and total titratable acidity (TTA), the lowest concentrations of lactic and acetic acids and free amino acids, and the most stable density of presumptive lactic acid bacteria. The cell density of yeasts was the highest in liquid sourdoughs. Liquid sourdoughs showed simplified microbial diversity and harbored a low number of strains, which were persistent. Lactobacillus plantarum dominated firm sourdoughs over time. Leuconostoc lactis and Lactobacillus brevis dominated only some firm sourdoughs, and Lactobacillus sanfranciscensis persisted for some time only in some firm sourdoughs. Leuconostoc citreum persisted in all firm and liquid sourdoughs, and it was the only species detected in liquid sourdoughs at all times; it was flanked by Leuconostoc mesenteroides in some sourdoughs. Saccharomyces cerevisiae, Candida humilis, Saccharomyces servazzii, Saccharomyces bayanus-Kazachstania sp., and Torulaspora delbrueckii were variously identified in firm and liquid sourdoughs. A total of 197 volatile components were identified through purge and trap–/solid-phase microextraction–gas chromatography-mass spectrometry (PT–/SPME–GC-MS). Aldehydes, several alcohols, and some esters were at the highest levels in liquid sourdoughs. Firm sourdoughs mainly contained ethyl acetate, acetic acid, some sulfur compounds, and terpenes. The use of liquid fermentation would change the main microbial and biochemical features of traditional baked goods, which have been manufactured under firm conditions for a long time. PMID:24632249

  2. Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit.

    PubMed

    Kolotilin, Igor; Koltai, Hinanit; Bar-Or, Carmiya; Chen, Lea; Nahon, Sahadia; Shlomo, Haviva; Levin, Ilan; Reuveni, Moshe

    2011-07-01

    Tomato (Solanum lycopersicum) fruits expressing a yeast S-adenosyl methionine decarboxylase (ySAMdc) gene under control of a ripening-induced promoter show altered phytonutrient content and broad changes in gene expression. Genome-wide transcriptional alterations in pericarp tissues of the ySAMdc-expressing fruits are shown. Consistent with the ySAMdc expression pattern from the ripening-induced promoter, very minor transcriptional alterations were detected at the mature green developmental stage. At the breaker and red stages, altered levels of numerous transcripts were observed with a general tendency toward upregulation in the transgenic fruits. Ontological analysis of up- and downregulated transcript groups revealed various affected metabolic processes, mainly carbohydrate and amino acid metabolism, and protein synthesis, which appeared to be intensified in the ripening transgenic fruits. Other functional ontological categories of altered transcripts represented signal transduction, transcription regulation, RNA processing, molecular transport and stress response, as well as metabolism of lipids, glycans, xenobiotics, energy, cofactors and vitamins. In addition, transcript levels of genes encoding structural enzymes for several biosynthetic pathways showed strong correlations to levels of specific metabolites that displayed altered levels in transgenic fruits. Increased transcript levels of fatty acid biosynthesis enzymes were accompanied by a change in the fatty acid profile of transgenic fruits, most notably increasing ω-3 fatty acids at the expense of other lipids. Thus, SAMdc is a prime target in manipulating the nutritional value of tomato fruits. Combined with analyses of selected metabolites in the overripe fruits, a model of enhanced homeostasis of the pericarp tissue in the polyamine-accumulating tomatoes is proposed.

  3. Identification of Yeast Genes Involved in K+ Homeostasis: Loss of Membrane Traffic Genes Affects K+ Uptake

    PubMed Central

    Fell, Gillian L.; Munson, Amanda M.; Croston, Merriah A.; Rosenwald, Anne G.

    2011-01-01

    Using the homozygous diploid Saccharomyces deletion collection, we searched for strains with defects in K+ homeostasis. We identified 156 (of 4653 total) strains unable to grow in the presence of hygromycin B, a phenotype previously shown to be indicative of ion defects. The most abundant group was that with deletions of genes known to encode membrane traffic regulators. Nearly 80% of these membrane traffic defective strains showed defects in uptake of the K+ homolog, 86Rb+. Since Trk1, a plasma membrane protein localized to lipid microdomains, is the major K+ influx transporter, we examined the subcellular localization and Triton-X 100 insolubility of Trk1 in 29 of the traffic mutants. However, few of these showed defects in the steady state levels of Trk1, the localization of Trk1 to the plasma membrane, or the localization of Trk1 to lipid microdomains, and most defects were mild compared to wild-type. Three inositol kinase mutants were also identified, and in contrast, loss of these genes negatively affected Trk1 protein levels. In summary, this work reveals a nexus between K+ homeostasis and membrane traffic, which does not involve traffic of the major influx transporter, Trk1. PMID:22384317

  4. Identification of yeast genes involved in k homeostasis: loss of membrane traffic genes affects k uptake.

    PubMed

    Fell, Gillian L; Munson, Amanda M; Croston, Merriah A; Rosenwald, Anne G

    2011-06-01

    Using the homozygous diploid Saccharomyces deletion collection, we searched for strains with defects in K(+) homeostasis. We identified 156 (of 4653 total) strains unable to grow in the presence of hygromycin B, a phenotype previously shown to be indicative of ion defects. The most abundant group was that with deletions of genes known to encode membrane traffic regulators. Nearly 80% of these membrane traffic defective strains showed defects in uptake of the K(+) homolog, (86)Rb(+). Since Trk1, a plasma membrane protein localized to lipid microdomains, is the major K(+) influx transporter, we examined the subcellular localization and Triton-X 100 insolubility of Trk1 in 29 of the traffic mutants. However, few of these showed defects in the steady state levels of Trk1, the localization of Trk1 to the plasma membrane, or the localization of Trk1 to lipid microdomains, and most defects were mild compared to wild-type. Three inositol kinase mutants were also identified, and in contrast, loss of these genes negatively affected Trk1 protein levels. In summary, this work reveals a nexus between K(+) homeostasis and membrane traffic, which does not involve traffic of the major influx transporter, Trk1.

  5. Identification of target genes regulated by homeotic proteins in Drosophila melanogaster through genetic selection of Ultrabithorax protein-binding sites in yeast

    SciTech Connect

    Mastick, G.S.; McKay, R.; Oligino, T.

    1995-01-01

    A method based on the transcriptional activation of a selectable reporter in yeast cells was used to identify genes regulated by the Utrabithorax homeoproteins in Drosophila melanogaster. Fifty-three DNA fragments that can mediate activation by UBX isoform Ia in this test were recovered after screening 15% of the Drosophila genome. Half of these fragments represent single-copy sequences in the genome. Six single-copy fragments were investigated in detail, and each was found to reside near a transcription unit whose expression in the embryo is segmentally modulated as expected for targets of homeotic genes. Four of these putative target genes are expressed in patterns that suggest roles in the development of regional specializations within mesoderm derivatives; in three cases these expression patterns depend on Ultrabithorax function. Extrapolation from this pilot study indicates that 85-170 candidate target genes can be identified by screening the entire Drosophila genome with UBX isoform Ia. With appropriate modifications, this approach should be applicable to other transcriptional regulators in diverse organisms. 69 refs., 9 figs., 2 tabs.

  6. Evolutionary history of Ascomyceteous Yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 20 ascomyceteous yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comp...

  7. Repair of uv damaged DNA: Genes and proteins of yeast and human

    SciTech Connect

    Prakash, L.

    1992-04-01

    Our objectives are to determine the molecular mechanism of the incision step of excision repair of ultraviolet (UV) light damaged DNA in eukaryotic organisms, using the yeast Saccharomyces cerevisiae as a model system, and to study the human homologs of yeast excision repair and postreplication repair proteins progress is described.

  8. Isolation, characterization, and inactivation of the APA1 gene encoding yeast diadenosine 5',5'''-P1,P4-tetraphosphate phosphorylase.

    PubMed Central

    Plateau, P; Fromant, M; Schmitter, J M; Buhler, J M; Blanquet, S

    1989-01-01

    The gene encoding diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) phosphorylase from yeast was isolated from a lambda gt11 library. The DNA sequence of the coding region was determined, and more than 90% of the deduced amino acid sequence was confirmed by peptide sequencing. The Ap4A phosphorylase gene (APA1) is unique in the yeast genome. Disruption experiments with this gene, first, supported the conclusion that, in vivo, Ap4A phosphorylase catabolizes the Ap4N nucleotides (where N is A, C, G, or U) and second, revealed the occurrence of a second Ap4A phosphorylase activity in yeast cells. Finally, evidence is provided that the APA1 gene product is responsible for most of the ADP sulfurylase activity in yeast extracts. Images PMID:2556364

  9. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest.

    PubMed Central

    Stewart, E; Chapman, C R; Al-Khodairy, F; Carr, A M; Enoch, T

    1997-01-01

    In eukaryotic cells, S phase can be reversibly arrested by drugs that inhibit DNA synthesis or DNA damage. Here we show that recovery from such treatments is under genetic control and is defective in fission yeast rqh1 mutants. rqh1+, previously known as hus2+, encodes a putative DNA helicase related to the Escherichia coli RecQ helicase, with particular homology to the gene products of the human BLM and WRN genes and the Saccharomyces cerevisiae SGS1 gene. BLM and WRN are mutated in patients with Bloom's syndrome and Werner's syndrome respectively. Both syndromes are associated with genomic instability and cancer susceptibility. We show that, like BLM and SGS1, rqh1+ is required to prevent recombination and that in fission yeast suppression of inappropriate recombination is essential for reversible S phase arrest. PMID:9184215

  10. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    PubMed

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.

  11. The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability.

    PubMed

    Mendes-Ferreira, Ana; Barbosa, Catarina; Jimenez-Marti, Elena; Del Olmo, Marcel Li; Mendes-Faia, Arlete

    2010-09-01

    Sulfur metabolism in S. cerevisiae is well established, but the mechanisms underlying the formation of sulfide remain obscure. Here we investigated by real time RT-PCR the dependence of expression levels of MET3, MET5/ECM17, MET10, MET16 and MET17 along with SSU1 on nitrogen availability in two wine yeast strains that produce divergent sulfide profiles. MET3 was the most highly expressed of the genes studied in strain PYCC4072, and SSU1 in strain UCD522. Strains behaved differently according to the sampling times, with UCD522 and PYCC4072 showing the highest expression levels at 120h and 72h, respectively. In the presence of 267mg assimilable N/l, the genes were more highly expressed in strain UCD522 than in PYCC4072. MET5/ECM17 and MET17 were only weakly expressed in both strains under any condition tested. MET10 and SSU1 in both strains, but MET16 only in PYCC4072, were consistently up-regulated when sulfide production was inhibited. This study illustrates that strain genotype could be important in determining enzyme activities and therefore the rate of sulfide liberation. This linkage, for some yeast strains, of sulfide production to expression levels of genes associated to sulfate assimilation and sulfur amino acid biosynthesis could be relevant for defining new strategies for genetic improvement of wine yeasts.

  12. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene.

    PubMed Central

    Zou, J; Katavic, V; Giblin, E M; Barton, D L; MacKenzie, S L; Keller, W A; Hu, X; Taylor, D C

    1997-01-01

    A putative yeast sn-2 acyltransferase gene (SLC1-1), reportedly a variant acyltransferase that suppresses a genetic defect in sphingolipid long-chain base biosynthesis, has been expressed in a yeast SLC deletion strain. The SLC1-1 gene product was shown in vitro to encode an sn-2 acyltransferase capable of acylating sn-1 oleoyl-lysophosphatidic acid, using a range of acyl-CoA thioesters, including 18:1-, 22:1-, and 24:0-CoAs. The SLC1-1 gene was introduced into Arabidopsis and a high erucic acid-containing Brassica napus cv Hero under the control of a constitutive (tandem cauliflower mosaic virus 35S) promoter. The resulting transgenic plants showed substantial increases of 8 to 48% in seed oil content (expressed on the basis of seed dry weight) and increases in both overall proportions and amounts of very-long-chain fatty acids in seed triacylglycerols (TAGs). Furthermore, the proportion of very-long-chain fatty acids found at the sn-2 position of TAGs was increased, and homogenates prepared from developing seeds of transformed plants exhibited elevated lysophosphatidic acid acyltransferase (EC 2.3.1.51) activity. Thus, the yeast sn-2 acyltransferase has been shown to encode a protein that can exhibit lysophosphatidic acid acyltransferase activity and that can be used to change total fatty acid content and composition as well as to alter the stereospecific acyl distribution of fatty acids in seed TAGs. PMID:9212466

  13. A Whole Genome Screen for Minisatellite Stability Genes in Stationary-Phase Yeast Cells.

    PubMed

    Alver, Bonnie; Jauert, Peter A; Brosnan, Laura; O'Hehir, Melissa; VanderSluis, Benjamin; Myers, Chad L; Kirkpatrick, David T

    2013-04-09

    Repetitive elements comprise a significant portion of most eukaryotic genomes. Minisatellites, a type of repetitive element composed of repeat units 15-100 bp in length, are stable in actively dividing cells but change in composition during meiosis and in stationary-phase cells. Alterations within minisatellite tracts have been correlated with the onset of a variety of diseases, including diabetes mellitus, myoclonus epilepsy, and several types of cancer. However, little is known about the factors preventing minisatellite alterations. Previously, our laboratory developed a color segregation assay in which a minisatellite was inserted into the ADE2 gene in the yeast Saccharomyces cerevisiae to monitor alteration events. We demonstrated that minisatellite alterations that occur in stationary-phase cells give rise to a specific colony morphology phenotype known as blebbing. Here, we performed a modified version of the synthetic genetic array analysis to screen for mutants that produce a blebbing phenotype. Screens were conducted using two distinctly different minisatellite tracts: the ade2-min3 construct consisting of three identical 20-bp repeats, and the ade2-h7.5 construct, consisting of seven-and-a-half 28-bp variable repeats. Mutations in 102 and 157 genes affect the stability of the ade2-min3 and ade2-h7.5 alleles, respectively. Only seven hits overlapped both screens, indicating that different factors regulate repeat stability depending upon minisatellite size and composition. Importantly, we demonstrate that mismatch repair influences the stability of the ade2-h7.5 allele, indicating that this type of DNA repair stabilizes complex minisatellites in stationary phase cells. Our work provides insight into the factors regulating minisatellite stability.

  14. A novel plant vacuolar Na+/H+ antiporter gene evolved by DNA shuffling confers improved salt tolerance in yeast.

    PubMed

    Xu, Kai; Zhang, Hui; Blumwald, Eduardo; Xia, Tao

    2010-07-23

    Plant vacuolar Na(+)/H(+) antiporters play important roles in maintaining cellular ion homeostasis and mediating the transport of Na(+) out of the cytosol and into the vacuole. Vacuolar antiporters have been shown to play significant roles in salt tolerance; however the relatively low V(max) of the Na(+)/H(+) exchange of the Na(+)/H(+) antiporters identified could limit its application in the molecular breeding of salt tolerant crops. In this study, we applied DNA shuffling methodology to generate and recombine the mutations of Arabidopsis thaliana vacuolar Na(+)/H(+) antiporter gene AtNHX1. Screening using a large scale yeast complementation system identified AtNHXS1, a novel Na(+)/H(+) antiporter. Expression of AtNHXS1 in yeast showed that the antiporter localized to the vacuolar membrane and that its expression improved the tolerance of yeast to NaCl, KCl, LiCl, and hygromycin B. Measurements of the ion transport activity across the intact yeast vacuole demonstrated that the AtNHXS1 protein showed higher Na(+)/H(+) exchange activity and a slightly improved K(+)/H(+) exchange activity.

  15. A genome–wide screen to identify genes controlling the rate of entry into mitosis in fission yeast

    PubMed Central

    Moris, Naomi; Nurse, Paul

    2016-01-01

    ABSTRACT We have carried out a haploinsufficiency (HI) screen in fission yeast using heterozygous deletion diploid mutants of a genome-wide set of cell cycle genes to identify genes encoding products whose level determines the rate of progression through the cell cycle. Cell size at division was used as a measure of advancement or delay of the G2-M transition of rod-shaped fission yeast cells. We found that 13 mutants were significantly longer or shorter (greater than 10%) than control cells at cell division. These included mutants of the cdc2, cdc25, wee1 and pom1 genes, which have previously been shown to play a role in the timing of entry into mitosis, and which validate this approach. Seven of these genes are involved in regulation of the G2-M transition, 5 for nuclear transport and one for nucleotide metabolism. In addition we identified 4 more genes that were 8–10% longer or shorter than the control that also had roles in regulation of the G2-M transition or in nuclear transport. The genes identified here are all conserved in human cells, suggesting that this dataset will be useful as a basis for further studies to identify rate-limiting steps for progression through the cell cycle in other eukaryotes. PMID:27736299

  16. Molecular characterization of hap complex components responsible for methanol-inducible gene expression in the methylotrophic yeast Candida boidinii.

    PubMed

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu; Sakai, Yasuyoshi

    2015-03-01

    We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts.

  17. A genome-wide screen to identify genes controlling the rate of entry into mitosis in fission yeast.

    PubMed

    Moris, Naomi; Shrivastava, Jaya; Jeffery, Linda; Li, Juan-Juan; Hayles, Jacqueline; Nurse, Paul

    2016-11-16

    We have carried out a haploinsufficiency (HI) screen in fission yeast using heterozygous deletion diploid mutants of a genome-wide set of cell cycle genes to identify genes encoding products whose level determines the rate of progression through the cell cycle. Cell size at division was used as a measure of advancement or delay of the G2-M transition of rod-shaped fission yeast cells. We found that 13 mutants were significantly longer or shorter (greater than 10%) than control cells at cell division. These included mutants of the cdc2, cdc25, wee1 and pom1 genes, which have previously been shown to play a role in the timing of entry into mitosis, and which validate this approach. Seven of these genes are involved in regulation of the G2-M transition, 5 for nuclear transport and one for nucleotide metabolism. In addition we identified 4 more genes that were 8-10% longer or shorter than the control that also had roles in regulation of the G2-M transition or in nuclear transport. The genes identified here are all conserved in human cells, suggesting that this dataset will be useful as a basis for further studies to identify rate-limiting steps for progression through the cell cycle in other eukaryotes.

  18. SOA genes encode proteins controlling lipase expression in response to triacylglycerol utilization in the yeast Yarrowia lipolytica.

    PubMed

    Desfougères, Thomas; Haddouche, Ramdane; Fudalej, Franck; Neuvéglise, Cécile; Nicaud, Jean-Marc

    2010-02-01

    The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene (LIP2) was monitored using a LIP2-beta-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol.

  19. Molecular Characterization of Hap Complex Components Responsible for Methanol-Inducible Gene Expression in the Methylotrophic Yeast Candida boidinii

    PubMed Central

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu

    2015-01-01

    We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts. PMID:25595445

  20. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis.

    PubMed

    Shima, Jun; Kuwazaki, Seigo; Tanaka, Fumiko; Watanabe, Hajime; Yamamoto, Hideki; Nakajima, Ryoichi; Tokashiki, Tadaaki; Tamura, Hiromi

    2005-06-25

    Genes whose expression levels are enhanced or reduced during the cultivation process that uses cane molasses in baker's yeast production were identified in this study. The results showed that baker's yeast grown in molasses medium had higher fermentation ability and stress tolerance compared with baker's yeast grown in synthetic medium. Molasses apparently provided not only sugar as a carbon source but also provided functional components that enhanced or reduced expression of genes involved in fermentation ability and stress tolerance. To identify the genes whose expression is enhanced or reduced during cultivation in molasses medium, DNA microarray analysis was then used to compare the gene expression profile of cells grown in molasses with that of cells grown in synthetic medium. To simulate the commercial baker's yeast production process, cells were cultivated using a fed-batch culture system. In molasses medium, genes involved in the synthesis or uptake of vitamins (e.g., biotin, pyridoxine and thiamine) showed enhanced expression, suggesting that vitamin concentrations in molasses medium were lower than those in synthetic medium. Genes involved in formate dehydrogenase and maltose assimilation showed enhanced expression in molasses medium. In contrast, genes involved in iron utilization (e.g., siderophore, iron transporter and ferroxidase) showed enhanced expression in synthetic medium, suggesting that iron starvation occurred. The genes involved in the metabolism of amino acids also showed enhanced expression in synthetic medium. This identification of genes provides information that will help improve the baker's yeast production process.

  1. Genomic Evolution of the Ascomycete Yeasts

    SciTech Connect

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  2. Querying Co-regulated Genes on Diverse Gene Expression Datasets Via Biclustering.

    PubMed

    Deveci, Mehmet; Küçüktunç, Onur; Eren, Kemal; Bozdağ, Doruk; Kaya, Kamer; Çatalyürek, Ümit V

    2016-01-01

    Rapid development and increasing popularity of gene expression microarrays have resulted in a number of studies on the discovery of co-regulated genes. One important way of discovering such co-regulations is the query-based search since gene co-expressions may indicate a shared role in a biological process. Although there exist promising query-driven search methods adapting clustering, they fail to capture many genes that function in the same biological pathway because microarray datasets are fraught with spurious samples or samples of diverse origin, or the pathways might be regulated under only a subset of samples. On the other hand, a class of clustering algorithms known as biclustering algorithms which simultaneously cluster both the items and their features are useful while analyzing gene expression data, or any data in which items are related in only a subset of their samples. This means that genes need not be related in all samples to be clustered together. Because many genes only interact under specific circumstances, biclustering may recover the relationships that traditional clustering algorithms can easily miss. In this chapter, we briefly summarize the literature using biclustering for querying co-regulated genes. Then we present a novel biclustering approach and evaluate its performance by a thorough experimental analysis.

  3. The diversity and antifungal susceptibility of the yeasts isolated from coconut water and reconstituted fruit juices in Brazil.

    PubMed

    Maciel, Natália O P; Piló, Fernanda B; Freitas, Larissa F D; Gomes, Fátima C O; Johann, Susana; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A

    2013-01-01

    The aims of this study were to characterise the yeasts present in the reconstituted fruit juices and coconut water extracted with "coconut machines", both collected from commercial outlets in a Brazilian city, and to investigate the antifungal resistance of isolates from these beverages that were able to grow at 37°C. The yeast population counts in the coconut water samples ranged from 1.7 to >6.5logcfu/ml, and in the reconstituted fruit juices, the counts ranged from 1.5 to >5.5logcfu/ml. Aureobasidium pullulans, Candida boidinii, Candidaintermedia, Candidaoleophila, Candidaparapsilosis, Candidasantamariae, Candidatropicalis, Clavispora lusitaniae, Kloeckera apis, Lachancea fermentati, Pichia fermentans and Rhodotorula mucilaginosa were the most frequent species isolated from these beverages. At least 18 yeast species isolated from these beverages have been reported as opportunistic pathogens. Eight yeast isolates were resistant to fluconazole, seven were resistant to itraconazole, and 26 to amphotericin B. Some yeast species were resistant to more than one of the antifungal drugs tested. Two isolates of C. tropicalis from the reconstituted fruit juices exhibited resistance to all three drugs. The presence of yeast strains that are resistant to commonly used antifungal drugs suggests a potential risk, at least to immunocompromised individuals who consume these beverages.

  4. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    PubMed Central

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-01-01

    Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983

  5. Evidence for two cell division cycle (CDC) genes that govern yeast bud emergence in the pathogenic fungus Wangiella dermatitidis.

    PubMed Central

    Cooper, C R; Szaniszlo, P J

    1993-01-01

    Strains Mc2 and Mc3 are morphological mutants of the melanized, pathogenic fungus Wangiella dermatitidis. These strains possess temperature-sensitive (ts) mutations designated mcm2 and mcm3, respectively. At the restrictive temperature (37 degrees C), uninucleate yeast cells of strains Mc2 and Mc3 cease budding and initiate an isotropic mode of cellular development, which is reflected in the formation of a multicellular and multinucleate morphology. Because W. dermatitidis either lacks or has an undiscovered sexual cycle, parasexual methods of analysis were used to confirm that mcm2 and mcm3 define separate bud emergence control genes in the wild-type strain. Spheroplasts of albino auxotrophs derived from strains Mc2 and Mc3 were fused and then regenerated on minimal medium. The resulting fusion products grew as darkly pigmented, prototrophic colonies. When incubated at 37 degrees C, all fusion products exhibited polarized growth predominantly as uninucleate, budding yeasts and less frequently as pseudohyphae and moniliform hyphae. Subsequent analysis of cultures derived from albino, ts segregants, which were induced from fusion products by using methyl benzimidazole-2-yl-carbamate, revealed three types of cell populations. Two resembled those expressed by strain Mc2 or Mc3. The third consisted of a cell population unlike the former, suggesting the presence of both ts mutations in all cells. These results imply that yeast development in the fusion products resulted from intergenic complementation of mcm2 and mcm3, i.e., they are nonallelic. Because mcm2 and mcm3 are equivalent to certain cdc lesions in the yeast Saccharomyces cerevisiae, we have renamed the analogous genes defined by the mutations in W. dermatitidis as CDC1 and CDC2. To our knowledge, these are the first CDC genes identified in a dematiaceous fungus. Images PMID:8478096

  6. Diverse and abundant antibiotic resistance genes in Chinese swine farms.

    PubMed

    Zhu, Yong-Guan; Johnson, Timothy A; Su, Jian-Qiang; Qiao, Min; Guo, Guang-Xia; Stedtfeld, Robert D; Hashsham, Syed A; Tiedje, James M

    2013-02-26

    Antibiotic resistance genes (ARGs) are emerging contaminants posing a potential worldwide human health risk. Intensive animal husbandry is believed to be a major contributor to the increased environmental burden of ARGs. Despite the volume of antibiotics used in China, little information is available regarding the corresponding ARGs associated with animal farms. We assessed type and concentrations of ARGs at three stages of manure processing to land disposal at three large-scale (10,000 animals per year) commercial swine farms in China. In-feed or therapeutic antibiotics used on these farms include all major classes of antibiotics except vancomycins. High-capacity quantitative PCR arrays detected 149 unique resistance genes among all of the farm samples, the top 63 ARGs being enriched 192-fold (median) up to 28,000-fold (maximum) compared with their respective antibiotic-free manure or soil controls. Antibiotics and heavy metals used as feed supplements were elevated in the manures, suggesting the potential for coselection of resistance traits. The potential for horizontal transfer of ARGs because of transposon-specific ARGs is implicated by the enrichment of transposases--the top six alleles being enriched 189-fold (median) up to 90,000-fold in manure--as well as the high correlation (r(2) = 0.96) between ARG and transposase abundance. In addition, abundance of ARGs correlated directly with antibiotic and metal concentrations, indicating their importance in selection of resistance genes. Diverse, abundant, and potentially mobile ARGs in farm samples suggest that unmonitored use of antibiotics and metals is causing the emergence and release of ARGs to the environment.

  7. Molecular Identification of Unusual Pathogenic Yeast Isolates by Large Ribosomal Subunit Gene Sequencing: 2 Years of Experience at the United Kingdom Mycology Reference Laboratory▿

    PubMed Central

    Linton, Christopher J.; Borman, Andrew M.; Cheung, Grace; Holmes, Ann D.; Szekely, Adrien; Palmer, Michael D.; Bridge, Paul D.; Campbell, Colin K.; Johnson, Elizabeth M.

    2007-01-01

    Rapid identification of yeast isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. We present here an analysis of the utility of PCR amplification and sequence analysis of the hypervariable D1/D2 region of the 26S rRNA gene for the identification of yeast species submitted to the United Kingdom Mycology Reference Laboratory over a 2-year period. A total of 3,033 clinical isolates were received from 2004 to 2006 encompassing 50 different yeast species. While more than 90% of the isolates, corresponding to the most common Candida species, could be identified by using the AUXACOLOR2 yeast identification kit, 153 isolates (5%), comprised of 47 species, could not be identified by using this system and were subjected to molecular identification via 26S rRNA gene sequencing. These isolates included some common species that exhibited atypical biochemical and phenotypic profiles and also many rarer yeast species that are infrequently encountered in the clinical setting. All 47 species requiring molecular identification were unambiguously identified on the basis of D1/D2 sequences, and the molecular identities correlated well with the observed biochemical profiles of the various organisms. Together, our data underscore the utility of molecular techniques as a reference adjunct to conventional methods of yeast identification. Further, we show that PCR amplification and sequencing of the D1/D2 region reliably identifies more than 45 species of clinically significant yeasts and can also potentially identify new pathogenic yeast species. PMID:17251397

  8. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    EPA Science Inventory

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  9. Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast.

    PubMed

    Watanabe, Daisuke; Nogami, Satoru; Ohya, Yoshikazu; Kanno, Yoichiro; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2011-12-01

    Cellular and subcellular morphology reflects the physiological state of a cell. To determine the physiological nature of sake yeast with superior fermentation properties, we quantitatively analyzed the morphology of sake yeast cells by using the CalMorph system. All the sake strains examined here exhibited common morphological traits that are typically observed in the well-characterized whiskey (whi) mutants that show accelerated G(1)/S transition. In agreement with this finding, the sake strain showed less efficient G(0)/G(1) arrest and elevated expression of the G(1) cyclin gene CLN3 throughout the fermentation period. Furthermore, deletion of CLN3 remarkably impaired the fermentation rate in both sake and laboratory strains. Disruption of the SWI6 gene, a transcriptional coactivator responsible for Cln3p-mediated G(1)/S transition, also resulted in a decreased fermentation rate, whereas whi mutants exhibited significant improvement in the fermentation rate, demonstrating positive roles of Cln3p and its downstream signalling pathway in facilitating ethanol fermentation. The combined results indicate that enhanced induction of CLN3 contributes to the high fermentation rate of sake yeast, which are natural whi mutants.

  10. Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation.

    PubMed Central

    Destruelle, M; Holzer, H; Klionsky, D J

    1994-01-01

    Nutrient starvation in the yeast Saccharomyces cerevisiae leads to a number of physiological changes that accompany entry into stationary phase. The expression of genes whose products play a role in stress adaptation is regulated in a manner that allows the cell to sense and respond to changing environmental conditions. We have identified a novel yeast gene, YGP1, that displays homology to the sporulation-specific SPS100 gene. The expression of YGP1 is regulated by nutrient availability. The gene is expressed at a basal level during "respiro-fermentative" (logarithmic) growth. When the glucose concentration in the medium falls below 1%, the YGP1 gene is derepressed and the gene product, gp37, is synthesized at levels up to 50-fold above the basal level. The glucose-sensing mechanism is independent of the SNF1 pathway and does not operate when cells are directly shifted to a low glucose concentration. The expression of YGP1 also responds to the depletion of nitrogen and phosphate, indicating a general response to nutrient deprivation. These results suggest that the YGP1 gene product may be involved in cellular adaptations prior to stationary phase and may be a useful marker protein for monitoring early events associated with the stress response. Images PMID:8139573

  11. Characterization of the ptr5+ gene involved in nuclear mRNA export in fission yeast.

    PubMed

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka; Tani, Tokio

    2012-02-03

    To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A)(+) RNA transport] 1 to 11, which accumulate poly(A)(+) RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5-1 mutant shows dots- or a ring-like accumulation of poly(A)(+) RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5(+) gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5-1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5-1 mutation. In addition, we found that the ptr5-1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5-1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  12. Two types of TATA elements for the CYC1 gene of the yeast Saccharomyces cerevisiae.

    PubMed Central

    Li, W Z; Sherman, F

    1991-01-01

    Functional TATA elements in the 5' untranslated region of the CYC1 gene in the yeast Saccharomyces cerevisiae have been defined by transcriptional analysis of site-directed mutations. Five sites previously suggested to contain functional TATA elements were altered individually and in all possible combinations. The results indicated that only two elements are required for transcription at the normal level and the normal start sites. The two functional TATA elements are located at sites -178 and -123, where the A of the ATG start codon is assigned nucleotide position +1. They direct initiation within windows encompassing -70 to -46 and -46 to -28, respectively. Only when both of the upstream TATA sites were rendered nonfunctional were the third and fourth downstream TATA-like sequences activated, as indicated by the presence of low levels of transcription starting at -28. The two upstream functional TATA elements differed in sequence. The sequence of the most 5' one at site 1, denoted beta-type, was ATATATATAT, whereas that of the second one at site 2, denoted alpha-type, was TATATAAAA. The following rearrangements of the beta-type and alpha-type elements at two sites (1 and 2) were examined: site1 beta-site2 alpha; site 1 alpha-site 2 beta; site1 alpha-site2 alpha; and site1 beta-site2 beta. When different types were at different sites (site1 beta-site2 alpha and site1 alpha-site2 beta), both were used equally. In contrast, when the same type was present at both sites (site1 alpha-site2 alpha and site1 beta-site2 beta), only the upstream element was used. We suggest that the two TATA elements are recognized by different factors of the transcription apparatus. Images PMID:1846668

  13. A genome-wide screen identifies yeast genes required for tolerance to technical toxaphene, an organochlorinated pesticide mixture.

    PubMed

    Gaytán, Brandon D; Loguinov, Alex V; Peñate, Xenia; Lerot, Jan-Michael; Chávez, Sebastián; Denslow, Nancy D; Vulpe, Chris D

    2013-01-01

    Exposure to toxaphene, an environmentally persistent mixture of chlorinated terpenes previously utilized as an insecticide, has been associated with various cancers and diseases such as amyotrophic lateral sclerosis. Nevertheless, the cellular and molecular mechanisms responsible for these toxic effects have not been established. In this study, we used a functional approach in the model eukaryote Saccharomyces cerevisiae to demonstrate that toxaphene affects yeast mutants defective in (1) processes associated with transcription elongation and (2) nutrient utilization. Synergistic growth defects are observed upon exposure to both toxaphene and the known transcription elongation inhibitor mycophenolic acid (MPA). However, unlike MPA, toxaphene does not deplete nucleotides and additionally has no detectable effect on transcription elongation. Many of the yeast genes identified in this study have human homologs, warranting further investigations into the potentially conserved mechanisms of toxaphene toxicity.

  14. A Genome-Wide Screen Identifies Yeast Genes Required for Tolerance to Technical Toxaphene, an Organochlorinated Pesticide Mixture

    PubMed Central

    Gaytán, Brandon D.; Loguinov, Alex V.; Peñate, Xenia; Lerot, Jan-Michael; Chávez, Sebastián; Denslow, Nancy D.; Vulpe, Chris D.

    2013-01-01

    Exposure to toxaphene, an environmentally persistent mixture of chlorinated terpenes previously utilized as an insecticide, has been associated with various cancers and diseases such as amyotrophic lateral sclerosis. Nevertheless, the cellular and molecular mechanisms responsible for these toxic effects have not been established. In this study, we used a functional approach in the model eukaryote Saccharomyces cerevisiae to demonstrate that toxaphene affects yeast mutants defective in (1) processes associated with transcription elongation and (2) nutrient utilization. Synergistic growth defects are observed upon exposure to both toxaphene and the known transcription elongation inhibitor mycophenolic acid (MPA). However, unlike MPA, toxaphene does not deplete nucleotides and additionally has no detectable effect on transcription elongation. Many of the yeast genes identified in this study have human homologs, warranting further investigations into the potentially conserved mechanisms of toxaphene toxicity. PMID:24260565

  15. A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus?

    PubMed

    Paps, Jordi; Holland, Peter W H; Shimeld, Sebastian M

    2012-03-01

    Previous studies of gene diversity in the homeobox superclass have shown that the Florida amphioxus Branchiostoma floridae has undergone remarkably little gene family loss. Here we use a combined BLAST and HMM search strategy to assess the family level diversity of four other transcription factor superclasses: the Paired/Pax genes, Tbx genes, Fox genes and Sox genes. We apply this across genomes from five chordate taxa, including B. floridae and Ciona intestinalis, plus two outgroup taxa. Our results show scattered gene family loss. However, as also found for homeobox genes, B. floridae has retained all ancient Pax, Tbx, Fox and Sox gene families that were present in the common ancestor of living chordates. We conclude that, at least in terms of transcription factor gene complexity, the genome of amphioxus has experienced remarkable stasis compared to the genomes of other chordates.

  16. [Cloning and diversity analysis of microorganism genes from alkalescence soil].

    PubMed

    Hu, Ting-Ting; Jiang, Cheng-Jian; Liang, Xuan; Long, Wen-Jie; Wu, Bo

    2006-10-01

    The metagenomic DNAs were extracted and purified from alkalescence environmental samples directly. On the basis of the metagenomic DNA, the alkaline soil 16S rDNA library composed of 5,562 positive clones was constructed. The phylogenic tree indicated that the bacteria from the alkaline soils were bio-diversity. The metagenomic DNA library named AL01 was constructed by inserting restriction fragments of the purified DNAs into plasmids pGEM-3Zf(+) vector. This library contained 23,650 positive clones and the average foreign DNA fragments were about 3.2 kb. The length of the library covered 75.68 Mb. The efficiency of the metagenomic library was approximately 6,000 clones from 1g dry soil samples. After screening AL01 DNA library with the screening tactics of enzymes, we confirmed that a positive clone, designated pGXAA2011, contained an alkaline protease gene AP01. Enzymatic analysis proved that its reaction optimum pH was 9.5 and the optimum temperature was 40 degrees C. Furthermore, a clone, designated pGXAG142 was screened from metagenomic DNA library, which expresses beta-glucosidase. DNA sequence indicated that the potential ORF of pGXAG142, which was named unglu01, there was no DNA or amino acids identity with the known beta-glucosidase genes in the Genbank. The integrated ORF was cloned into pETBlue-2 vector and was then transformed into Tuner(DE3)pLacI. The recombinant expression clone could express beta-glucosidase on the screening plate clearly and the analysis of SDS-PAGE indicated that the target protein was about 29 kDa.

  17. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus

    PubMed Central

    Vakirlis, Nikolaos; Sarilar, Véronique; Drillon, Guénola; Fleiss, Aubin; Agier, Nicolas; Meyniel, Jean-Philippe; Blanpain, Lou; Carbone, Alessandra; Devillers, Hugo; Dubois, Kenny; Gillet-Markowska, Alexandre; Graziani, Stéphane; Huu-Vang, Nguyen; Poirel, Marion; Reisser, Cyrielle; Schott, Jonathan; Schacherer, Joseph; Lafontaine, Ingrid; Llorente, Bertrand; Neuvéglise, Cécile; Fischer, Gilles

    2016-01-01

    Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements, and protein divergence into a single evolutionary framework. PMID:27247244

  18. Nitrogen depletion in the fission yeast Schizosaccharomyces pombe causes nucleosome loss in both promoters and coding regions of activated genes

    PubMed Central

    Kristell, Carolina; Orzechowski Westholm, Jakub; Olsson, Ida; Ronne, Hans; Komorowski, Jan; Bjerling, Pernilla

    2010-01-01

    Gene transcription is associated with local changes in chromatin, both in nucleosome positions and in chemical modifications of the histones. Chromatin dynamics has mostly been studied on a single-gene basis. Those genome-wide studies that have been made primarily investigated steady-state transcription. However, three studies of genome-wide changes in chromatin during the transcriptional response to heat shock in the budding yeast Saccharomyces cerevisiae revealed nucleosome eviction in promoter regions but only minor effects in coding regions. Here, we describe the short-term response to nitrogen starvation in the fission yeast Schizosaccharomyces pombe. Nitrogen depletion leads to a fast induction of a large number of genes in S. pombe and is thus suitable for genome-wide studies of chromatin dynamics during gene regulation. After 20 min of nitrogen removal, 118 transcripts were up-regulated. The distribution of regulated genes throughout the genome was not random; many up-regulated genes were found in clusters, while large parts of the genome were devoid of up-regulated genes. Surprisingly, this up-regulation was associated with nucleosome eviction of equal magnitudes in the promoters and in the coding regions. The nucleosome loss was not limited to induction by nitrogen depletion but also occurred during cadmium treatment. Furthermore, the lower nucleosome density persisted for at least 60 min after induction. Two highly induced genes, urg1+ and urg2+, displayed a substantial nucleosome loss, with only 20% of the nucleosomes being left in the coding region. We conclude that nucleosome loss during transcriptional activation is not necessarily limited to promoter regions. PMID:20086243

  19. Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray HybridizationD⃞

    PubMed Central

    Spellman, Paul T.; Sherlock, Gavin; Zhang, Michael Q.; Iyer, Vishwanath R.; Anders, Kirk; Eisen, Michael B.; Brown, Patrick O.; Botstein, David; Futcher, Bruce

    1998-01-01

    We sought to create a comprehensive catalog of yeast genes whose transcript levels vary periodically within the cell cycle. To this end, we used DNA microarrays and samples from yeast cultures synchronized by three independent methods: α factor arrest, elutriation, and arrest of a cdc15 temperature-sensitive mutant. Using periodicity and correlation algorithms, we identified 800 genes that meet an objective minimum criterion for cell cycle regulation. In separate experiments, designed to examine the effects of inducing either the G1 cyclin Cln3p or the B-type cyclin Clb2p, we found that the mRNA levels of more than half of these 800 genes respond to one or both of these cyclins. Furthermore, we analyzed our set of cell cycle–regulated genes for known and new promoter elements and show that several known elements (or variations thereof) contain information predictive of cell cycle regulation. A full description and complete data sets are available at http://cellcycle-www.stanford.edu PMID:9843569

  20. Gene expression analysis using strains constructed by NHEJ-mediated one-step promoter cloning in the yeast Kluyveromyces marxianus.

    PubMed

    Suzuki, Ayako; Fujii, Hiroshi; Hoshida, Hisashi; Akada, Rinji

    2015-09-01

    Gene expression analysis provides valuable information to evaluate cellular state. Unlike quantitative mRNA analysis techniques like reverse-transcription PCR and microarray, expression analysis using a reporter gene has not been commonly used for multiple-gene analysis, probably due to the difficulty in preparing multiple reporter-gene constructs. To circumvent this problem, we developed a novel one-step reporter-gene construction system mediated by non-homologous end joining (NHEJ) in the yeast Kluyveromyces marxianus. As a selectable reporter gene, the ScURA3 selection marker was fused in frame with a red fluorescent gene yEmRFP (ScURA3:yEmRFP). The N-terminally truncated ScURA3:yEmRFP fragment was prepared by PCR. Promoter sequences were also prepared by PCR using primers containing the sequence of the deleted ScURA3 N-terminus to attach at their 3(') ends. The two DNA fragments were used for the transformation of a ura3(-) strain of K. marxianus, in which two DNA fragments are randomly joined and integrated into the chromosome through NHEJ. Only the correctly aligned fragments produced transformants on uracil-deficient medium and expressed red fluorescence under the control of the introduced promoters. A total of 36 gene promoters involved in glycolysis and other pathways were analyzed. Fluorescence measurements of these strains allowed real-time gene expression analysis in different culture conditions.

  1. Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock

    PubMed Central

    Vilaprinyo, Ester; Alves, Rui; Sorribas, Albert

    2006-01-01

    Background Understanding the relationship between gene expression changes, enzyme activity shifts, and the corresponding physiological adaptive response of organisms to environmental cues is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock involves a characteristic profile of changes to the expression levels of genes coding for enzymes of the glycolytic pathway and some of its branches. The experimental determination of changes in gene expression profiles provides a descriptive picture of the adaptive response to stress. However, it does not explain why a particular profile is selected for any given response. Results We used mathematical models and analysis of in silico gene expression profiles (GEPs) to understand how changes in gene expression correlate to an efficient response of yeast cells to heat shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was simulated and analyzed. The effectiveness of each profile in the response to heat shock was evaluated according to relevant physiological and functional criteria. The small subset of GEPs that lead to effective physiological responses after heat shock was identified as the result of the tuning of several evolutionary criteria. The experimentally observed transcriptional changes in response to heat shock belong to this set and can be explained by quantitative design principles at the physiological level that ultimately constrain changes in gene expression. Conclusion Our theoretical approach suggests a method for understanding the combined effect of changes in the expression of multiple genes on the activity of metabolic pathways, and consequently on the adaptation of cellular metabolism to heat shock. This method identifies quantitative design principles that facilitate understating the response of the cell to stress. PMID:16584550

  2. Diversity and linkage of genes in the self-incompatibility gene family in Arabidopsis lyrata.

    PubMed Central

    Charlesworth, Deborah; Mable, Barbara K; Schierup, Mikkel H; Bartolomé, Carolina; Awadalla, Philip

    2003-01-01

    We report studies of seven members of the S-domain gene family in Arabidopsis lyrata, a member of the Brassicaceae that has a sporophytic self-incompatibility (SI) system. Orthologs for five loci are identifiable in the self-compatible relative A. thaliana. Like the Brassica stigmatic incompatibility protein locus (SRK), some of these genes have kinase domains. We show that several of these genes are unlinked to the putative A. lyrata SRK, Aly13. These genes have much lower nonsynonymous and synonymous polymorphism than Aly13 in the S-domains within natural populations, and differentiation between populations is higher, consistent with balancing selection at the Aly13 locus. One gene (Aly8) is linked to Aly13 and has high diversity. No departures from neutrality were detected for any of the loci. Comparing different loci within A. lyrata, sites corresponding to hypervariable regions in the Brassica S-loci (SLG and SRK) and in comparable regions of Aly13 have greater replacement site divergence than the rest of the S-domain. This suggests that the high polymorphism in these regions of incompatibility loci is due to balancing selection acting on sites within or near these regions, combined with low selective constraints. PMID:12930757

  3. Water quality and diversity of yeasts from tropical lakes and rivers from the Rio Doce basin in Southeastern Brazil

    PubMed Central

    Medeiros, Adriana O.; Missagia, Beatriz S.; Brandão, Luciana R.; Callisto, Marcos; Barbosa, Francisco A. R.; Rosa, Carlos A.

    2012-01-01

    Yeast communities were assessed in 14 rivers and four lakes from the Doce River basin in Brazil, during the rainy and dry seasons of the years 2000 and 2001. Water samples were collected at the subsurface in all sites. The following physical and chemical parameters were measured: temperature, dissolved oxygen, pH, electrical conductivity, total phosphorus, ortho-phosphate, ammonium, nitrate, nitrite and total nitrogen and the counts of faecal coliforms and heterotrophic bacteria were carried out to characterize the aquatic environmental sampled. The yeast counts were higher in aquatic environments with the highest counts of coliform and heterotrophic bacteria. These environments receive a high influx of domestic and industrial waste. A total of 317 isolates identified in forty eight yeast species were recorded in the sites sampled and the specie Aureobasidium pullulans were found in eleven out of eighteen sites sampled and some opportunistic pathogens such as the yeast species Candida krusei were isolated only in the polluted rivers with a positive correlation with the biotic and abiotic parameters that indicate sewage contamination. PMID:24031990

  4. Occurrence and diversity of yeasts in the mangrove ecosystems in fujian, guangdong and hainan provinces of china.

    PubMed

    Chi, Zhen-Ming; Liu, Tian-Tian; Chi, Zhe; Liu, Guang-Lei; Wang, Zhi-Peng

    2012-09-01

    Mangrove wetland is a unique ecosystem and has rich bioresources. In this article, the roots, stems, branches, leaves, barks, fruits, and flowers from 12 species of the mangrove plants and six species of the accompanying mangrove plants, seawater and sediments in mangrove ecosystems in China were used as sources for isolation of yeasts. A total of 269 yeasts strains were obtained from the samples. The results of routine identification and phylogenetic analysis showed that they belonged to 22 genera and 45 species. Of all the 269 strains, Candida spp. was predominant with the proportion of 44.61%, followed by Kluyveromyces spp. (8.55%), Pichia spp. (7.44%), Kodamaea ohmeri (5.58%), Issatchenkia spp. (4.83%) and Debaryomyces hansenii (4.46%). We also found that strains N02-2.3 and ST3-1Y3 belonged to the undescribed species of Pichia sp. and Trichosporon sp. respectively while strain HN-12 was not related to any known yeast strains. This means that different yeast strains of Candida spp. especially C. tropicalis were widely distributed in the mangrove ecosystems and may have an important role in the mangrove ecosystems. The results also showed that some of them may have potential applications.

  5. Multiplexed CRISPR/Cas9- and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast.

    PubMed

    Kang, Hahk-Soo; Charlop-Powers, Zachary; Brady, Sean F

    2016-09-16

    The use of DNA sequencing to guide the discovery of natural products has emerged as a new paradigm for revealing chemistries encoded in bacterial genomes. A major obstacle to implementing this approach to natural product discovery is the transcriptional silence of biosynthetic gene clusters under laboratory growth conditions. Here we describe an improved yeast-based promoter engineering platform (mCRISTAR) that combines CRISPR/Cas9 and TAR to enable single-marker multiplexed promoter engineering of large gene clusters. mCRISTAR highlights the first application of the CRISPR/Cas9 system to multiplexed promoter engineering of natural product biosynthetic gene clusters. In this method, CRISPR/Cas9 is used to induce DNA double-strand breaks in promoter regions of biosynthetic gene clusters, and the resulting operon fragments are reassembled by TAR using synthetic gene-cluster-specific promoter cassettes. mCRISTAR uses a CRISPR array to simplify the construction of a CRISPR plasmid for multiplex CRISPR and a single auxotrophic selection to improve the inefficiency of using a CRISPR array for multiplex gene cluster refactoring. mCRISTAR is a simple and generic method for multiplexed replacement of promoters in biosynthetic gene clusters that will facilitate the discovery of natural products from the rapidly growing collection of gene clusters found in microbial genome and metagenome sequencing projects.

  6. Fission yeast Cdk7 controls gene expression through both its CAK and C-terminal domain kinase activities.

    PubMed

    Devos, Maxime; Mommaerts, Elise; Migeot, Valerie; van Bakel, Harm; Hermand, Damien

    2015-05-01

    Cyclin-dependent kinase (Cdk) activation and RNA polymerase II transcription are linked by the Cdk7 kinase, which phosphorylates Cdks as a trimeric Cdk-activating kinase (CAK) complex, and serine 5 within the polymerase II (Pol II) C-terminal domain (CTD) as transcription factor TFIIH-bound CAK. However, the physiological importance of integrating these processes is not understood. Besides the Cdk7 ortholog Mcs6, fission yeast possesses a second CAK, Csk1. The two enzymes have been proposed to act redundantly to activate Cdc2. Using an improved analogue-sensitive Mcs6-as kinase, we show that Csk1 is not a relevant CAK for Cdc2. Further analyses revealed that Csk1 lacks a 20-amino-acid sequence required for its budding yeast counterpart, Cak1, to bind Cdc2. Transcriptome profiling of the Mcs6-as mutant in the presence or absence of the budding yeast Cak1 kinase, in order to uncouple the CTD kinase and CAK activities of Mcs6, revealed an unanticipated role of the CAK branch in the transcriptional control of the cluster of genes implicated in ribosome biogenesis and cell growth. The analysis of a Cdc2 CAK site mutant confirmed these data. Our data show that the Cdk7 kinase modulates transcription through its well-described RNA Pol II CTD kinase activity and also through the Cdc2-activating kinase activity.

  7. Fission Yeast Cdk7 Controls Gene Expression through both Its CAK and C-Terminal Domain Kinase Activities

    PubMed Central

    Devos, Maxime; Mommaerts, Elise; Migeot, Valerie; van Bakel, Harm

    2015-01-01

    Cyclin-dependent kinase (Cdk) activation and RNA polymerase II transcription are linked by the Cdk7 kinase, which phosphorylates Cdks as a trimeric Cdk-activating kinase (CAK) complex, and serine 5 within the polymerase II (Pol II) C-terminal domain (CTD) as transcription factor TFIIH-bound CAK. However, the physiological importance of integrating these processes is not understood. Besides the Cdk7 ortholog Mcs6, fission yeast possesses a second CAK, Csk1. The two enzymes have been proposed to act redundantly to activate Cdc2. Using an improved analogue-sensitive Mcs6-as kinase, we show that Csk1 is not a relevant CAK for Cdc2. Further analyses revealed that Csk1 lacks a 20-amino-acid sequence required for its budding yeast counterpart, Cak1, to bind Cdc2. Transcriptome profiling of the Mcs6-as mutant in the presence or absence of the budding yeast Cak1 kinase, in order to uncouple the CTD kinase and CAK activities of Mcs6, revealed an unanticipated role of the CAK branch in the transcriptional control of the cluster of genes implicated in ribosome biogenesis and cell growth. The analysis of a Cdc2 CAK site mutant confirmed these data. Our data show that the Cdk7 kinase modulates transcription through its well-described RNA Pol II CTD kinase activity and also through the Cdc2-activating kinase activity. PMID:25691663

  8. Potential Direct Regulators of the Drosophila yellow Gene Identified by Yeast One-Hybrid and RNAi Screens

    PubMed Central

    Kalay, Gizem; Lusk, Richard; Dome, Mackenzie; Hens, Korneel; Deplancke, Bart; Wittkopp, Patricia J.

    2016-01-01

    The regulation of gene expression controls development, and changes in this regulation often contribute to phenotypic evolution. Drosophila pigmentation is a model system for studying evolutionary changes in gene regulation, with differences in expression of pigmentation genes such as yellow that correlate with divergent pigment patterns among species shown to be caused by changes in cis- and trans-regulation. Currently, much more is known about the cis-regulatory component of divergent yellow expression than the trans-regulatory component, in part because very few trans-acting regulators of yellow expression have been identified. This study aims to improve our understanding of the trans-acting control of yellow expression by combining yeast-one-hybrid and RNAi screens for transcription factors binding to yellow cis-regulatory sequences and affecting abdominal pigmentation in adults, respectively. Of the 670 transcription factors included in the yeast-one-hybrid screen, 45 showed evidence of binding to one or more sequence fragments tested from the 5′ intergenic and intronic yellow sequences from D. melanogaster, D. pseudoobscura, and D. willistoni, suggesting that they might be direct regulators of yellow expression. Of the 670 transcription factors included in the yeast-one-hybrid screen, plus another TF previously shown to be genetically upstream of yellow, 125 were also tested using RNAi, and 32 showed altered abdominal pigmentation. Nine transcription factors were identified in both screens, including four nuclear receptors related to ecdysone signaling (Hr78, Hr38, Hr46, and Eip78C). This finding suggests that yellow expression might be directly controlled by nuclear receptors influenced by ecdysone during early pupal development when adult pigmentation is forming. PMID:27527791

  9. Extremely low-frequency electromagnetic fields do not affect DNA damage and gene expression profiles of yeast and human lymphocytes.

    PubMed

    Luceri, Cristina; De Filippo, Carlotta; Giovannelli, Lisa; Blangiardo, Marta; Cavalieri, Duccio; Aglietti, Filippo; Pampaloni, Monica; Andreuccetti, Daniele; Pieri, Lapo; Bambi, Franco; Biggeri, Annibale; Dolara, Piero

    2005-09-01

    We studied the effects of extremely low-frequency (50 Hz) electromagnetic fields (EMFs) on peripheral human blood lymphocytes and DBY747 Saccharomyces cerevisiae. Graded exposure to 50 Hz magnetic flux density was obtained with a Helmholtz coil system set at 1, 10 or 100 microT for 18 h. The effects of EMFs on DNA damage were studied with the single-cell gel electrophoresis assay (comet assay) in lymphocytes. Gene expression profiles of EMF-exposed human and yeast cells were evaluated with DNA microarrays containing 13,971 and 6,212 oligonucleotides, respectively. After exposure to the EMF, we did not observe an increase in the amount of strand breaks or oxidated DNA bases relative to controls or a variation in gene expression profiles. The results suggest that extremely low-frequency EMFs do not induce DNA damage or affect gene expression in these two different eukaryotic cell systems.

  10. Induction of Ty Recombination in Yeast by Cdna and Transcription: Role of the Rad1 and Rad52 Genes

    PubMed Central

    Nevo-Caspi, Y.; Kupiec, M.

    1996-01-01

    In the yeast Saccharomyces cerevisiae ectopic recombination has been shown to occur at high frequencies for artificially created repeats, but at relatively low frequencies for a natural family of repeated sequences, the Ty family. Little is known about the mechanism(s) that prevent recombination between repeated sequences. We have previously shown that nonreciprocal recombination (gene conversion) of a genetically marked Ty can be induced either by the presence of high levels of Ty cDNA or by transcription of the marked Ty from a GAL1 promoter. These two kinds of induction act in a synergistic manner. To further characterize these two kinds of Ty recombination, we have investigated the role played by the RAD52 and RAD1 genes. We have found that the RAD52 and RAD1 gene products are essential to carry out transcription-induced Ty conversion whereas cDNA-mediated conversion can take place in their absence. PMID:8913740

  11. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough.

    PubMed

    Tan, Haigang; Dong, Jian; Wang, Guanglu; Xu, Haiyan; Zhang, Cuiying; Xiao, Dongguang

    2014-08-01

    Several recombinant strains with overexpressed trehalose-6-phosphate synthase gene (TPS1) and/or deleted trehalase genes were obtained to elucidate the relationships between TPS1, trehalase genes, content of intracellular trehalose and freeze tolerance of baker's yeast, as well as improve the fermentation properties of lean dough after freezing. In this study, strain TL301(TPS1) overexpressing TPS1 showed 62.92 % higher trehalose-6-phosphate synthase (Tps1) activity and enhanced the content of intracellular trehalose than the parental strain. Deleting ATH1 exerted a significant effect on trehalase activities and the degradation amount of intracellular trehalose during the first 30 min of prefermentation. This finding indicates that acid trehalase (Ath1) plays a role in intracellular trehalose degradation. NTH2 encodes a functional neutral trehalase (Nth2) that was significantly involved in intracellular trehalose degradation in the absence of the NTH1 and/or ATH1 gene. The survival ratio, freeze-tolerance ratio and relative fermentation ability of strain TL301(TPS1) were approximately twice as high as those of the parental strain (BY6-9α). The increase in freeze tolerance of strain TL301(TPS1) was accompanied by relatively low trehalase activity, high Tps1 activity and high residual content of intracellular trehalose. Our results suggest that overexpressing TPS1 and deleting trehalase genes are sufficient to improve the freeze tolerance of baker's yeast in frozen dough. The present study provides guidance for the commercial baking industry as well as the research on the intracellular trehalose mobilization and freeze tolerance of baker's yeast.

  12. Acetate ester production by Chinese yellow rice wine yeast overexpressing the alcohol acetyltransferase-encoding gene ATF2.

    PubMed

    Zhang, J; Zhang, C; Qi, Y; Dai, L; Ma, H; Guo, X; Xiao, D

    2014-11-27

    Acetate ester, which are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction, are responsible for the fruity character of fermented alcoholic beverages such as Chinese yellow rice wine. Alcohol acetyltransferase (AATase) is currently believed to be the key enzyme responsible for the production of acetate ester. In order to determine the precise role of the ATF2 gene in acetate ester production, an ATF2 gene encoding a type of AATase was overexpressed and the ability of the mutant to form acetate esters (including ethyl acetate, isoamyl acetate, and isobutyl acetate) was investigated. The results showed that after 5 days of fermentation, the concentrations of ethyl acetate, isoamyl acetate, and isobutyl acetate in yellow rice wines fermented with EY2 (pUC-PIA2K) increased to 137.79 mg/L (an approximate 4.9-fold increase relative to the parent cell RY1), 26.68 mg/L, and 7.60 mg/L, respectively. This study confirms that the ATF2 gene plays an important role in the production of acetate ester production during Chinese yellow rice wine fermentation, thereby offering prospects for the development of yellow rice wine yeast starter strains with optimized ester-producing capabilities.

  13. Gene conversion in yeast as a function of linear energy transfer (LET) for low-LET radiation

    SciTech Connect

    Unrau, P.; Morrison, D.P.; Johnson, J.R.

    1992-05-01

    The relative biological effectiveness (RBE) for low-LET radiation is known to depend on such factors as LET and dose rate. Microdosimetric calculations indicate that the biological target size could also be an important parameter, and calculations predict that the RBE for effects produced by hits in target sizes below about 100 nm should be unity for all low LET radiation. We have measured that RBE for gene conversion in yeast (a small target) for five different low LET photon sources, and the results were consistent with an RBE of unity, which agrees with microdosimetric predictions. 4 refs.

  14. Using Gene Essentiality and Synthetic Lethality Information to Correct Yeast and CHO Cell Genome-Scale Models

    PubMed Central

    Chowdhury, Ratul; Chowdhury, Anupam; Maranas, Costas D.

    2015-01-01

    Essentiality (ES) and Synthetic Lethality (SL) information identify combination of genes whose deletion inhibits cell growth. This information is important for both identifying drug targets for tumor and pathogenic bacteria suppression and for flagging and avoiding gene deletions that are non-viable in biotechnology. In this study, we performed a comprehensive ES and SL analysis of two important eukaryotic models (S. cerevisiae and CHO cells) using a bilevel optimization approach introduced earlier. Information gleaned from this study is used to propose specific model changes to remedy inconsistent with data model predictions. Even for the highly curated Yeast 7.11 model we identified 50 changes (metabolic and GPR) leading to the correct prediction of an additional 28% of essential genes and 36% of synthetic lethals along with a 53% reduction in the erroneous identification of essential genes. Due to the paucity of mutant growth phenotype data only 12 changes were made for the CHO 1.2 model leading to an additional correctly predicted 11 essential and eight non-essential genes. Overall, we find that CHO 1.2 was 76% less accurate than the Yeast 7.11 metabolic model in predicting essential genes. Based on this analysis, 14 (single and double deletion) maximally informative experiments are suggested to improve the CHO cell model by using information from a mouse metabolic model. This analysis demonstrates the importance of single and multiple knockout phenotypes in assessing and improving model reconstructions. The advent of techniques such as CRISPR opens the door for the global assessment of eukaryotic models. PMID:26426067

  15. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast.

    PubMed

    Lin, Xue; Zhang, Cui-Ying; Bai, Xiao-Wen; Feng, Bing; Xiao, Dong-Guang

    2015-03-16

    During the bread-making process, industrial baker's yeast cells are exposed to multiple baking-associated stresses, such as elevated high-temperature, high-sucrose and freeze-thaw stresses. There is a high demand for baker's yeast strains that could withstand these stresses with high leavening ability. The SNR84 gene encodes H/ACA snoRNA (small nucleolar RNA), which is known to be involved in pseudouridylation of the large subunit rRNA. However, the function of the SNR84 gene in baker's yeast coping with baking-associated stresses remains unclear. In this study, we explored the effect of SNR84 overexpression on baker's yeast which was exposed to high-temperature, high-sucrose and freeze-thaw stresses. These results suggest that overexpression of the SNR84 gene conferred tolerance of baker's yeast cells to high-temperature, high-sucrose and freeze-thaw stresses and enhanced their leavening ability in high-sucrose and freeze-thaw dough. These findings could provide a valuable insight for breeding of novel stress-resistant baker's yeast strains that are useful for baking.

  16. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway.

    PubMed

    Aranda, Agustín; del Olmo Ml, Marcel lí

    2003-06-01

    One of the stress conditions that yeast may encounter is the presence of acetaldehyde. In a previous study we identified that, in response to this stress, several HSP genes are induced that are also involved in the response to other forms of stress. Aldehyde dehydrogenases (ALDH) play an important role in yeast acetaldehyde metabolism (e.g. when cells are growing in ethanol). In this work we analyse the expression of the genes encoding these enzymes (ALD) and also the corresponding enzymatic activities under several growth conditions. We investigate three kinds of yeast strains: laboratory strains, strains involved in the alcoholic fermentation stage of wine production and flor yeasts (responsible for the biological ageing of sherry wines). The latter are very important to consider because they grow in media containing high ethanol concentrations, and produce important amounts of acetaldehyde. Under several growth conditions, further addition of acetaldehyde or ethanol in flor yeasts induced the expression of some ALD genes and led to an increase in ALDH activity. This result is consistent with their need to obtain energy from ethanol during biological ageing processes. Our data also suggest that post-transcriptional and/or post-translational mechanisms are involved in regulating the activity of these enzymes. Finally, analyses indicate that the Msn2/4p and Hsf1p transcription factors are necessary for HSP26, ALD2/3 and ALD4 gene expression under acetaldehyde stress, while PKA represses the expression of these genes.

  17. The level of MXR1 gene expression in brewing yeast during beer fermentation is a major determinant for the concentration of dimethyl sulfide in beer.

    PubMed

    Hansen, Jørgen; Bruun, Susanne V; Bech, Lene M; Gjermansen, Claes

    2002-05-01

    DMS (dimethyl sulfide) is an important beer flavor compound which is derived either from the beer wort production process or via the brewing yeast metabolism. We investigated the contribution of yeast MXR1 gene activity to the final beer DMS content. The MXR1-CA gene from Saccharomyces carlsbergensis (synonym of Saccharomyces pastorianus) lager brewing yeast was isolated and sequenced, and found to be 88% identical with Saccharomyces cerevisiae MXR1. Inactive deletion alleles of both genes were substituted for their functional counterparts in S. carlsbergensis. Such yeasts fermented well and did not form DMS from dimethyl sulfoxide. Overexpression in brewing yeast of MXR1 from non-native promoters with various strengths and transcription profiles resulted in an enhanced and correlated DMS production. The promoters of MXR1 and MXR1-CA contain conserved Met31p/Met32p binding sites, and in accordance with this were found to be co-regulated with the genes of the sulfur assimilation pathway. In addition, conserved YRE-like DNA sequences are present in these promoters, indicating that Yap1p may also take part in the control of these genes.

  18. Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast.

    PubMed

    St-André, Olivier; Lemieux, Caroline; Perreault, Audrey; Lackner, Daniel H; Bähler, Jürg; Bachand, François

    2010-09-03

    Meiosis is a cellular differentiation process in which hundreds of genes are temporally induced. Because the expression of meiotic genes during mitosis is detrimental to proliferation, meiotic genes must be negatively regulated in the mitotic cell cycle. Yet, little is known about mechanisms used by mitotic cells to repress meiosis-specific genes. Here we show that the poly(A)-binding protein Pab2, the fission yeast homolog of mammalian PABPN1, controls the expression of several meiotic transcripts during mitotic division. Our results from chromatin immunoprecipitation and promoter-swapping experiments indicate that Pab2 controls meiotic genes post-transcriptionally. Consistently, we show that the nuclear exosome complex cooperates with Pab2 in the negative regulation of meiotic genes. We also found that Pab2 plays a role in the RNA decay pathway orchestrated by Mmi1, a previously described factor that functions in the post-transcriptional elimination of meiotic transcripts. Our results support a model in which Mmi1 selectively targets meiotic transcripts for degradation via Pab2 and the exosome. Our findings have therefore uncovered a mode of gene regulation whereby a poly(A)-binding protein promotes RNA degradation in the nucleus to prevent untimely expression.

  19. The Drosophila Meiotic Recombination Gene Mei-9 Encodes a Homologue of the Yeast Excision Repair Protein Rad1

    PubMed Central

    Sekelsky, J. J.; McKim, K. S.; Chin, G. M.; Hawley, R. S.

    1995-01-01

    Meiotic recombination and DNA repair are mediated by overlapping sets of genes. In the yeast Saccharomyces cerevisiae, many genes required to repair DNA double-strand breaks are also required for meiotic recombination. In contrast, mutations in genes required for nucleotide excision repair (NER) have no detectable effects on meiotic recombination in S. cerevisiae. The Drosophila melanogaster mei-9 gene is unique among known recombination genes in that it is required for both meiotic recombination and NER. We have analyzed the mei-9 gene at the molecular level and found that it encodes a homologue of the S. cerevisiae excision repair protein Rad1, the probable homologue of mammalian XPF/ERCC4. Hence, the predominant process of meiotic recombination in Drosophila proceeds through a pathway that is at least partially distinct from that of S. cerevisiae, in that it requires an NER protein. The biochemical properties of the Rad1 protein allow us to explain the observation that mei-9 mutants suppress reciprocal exchange without suppressing the frequency of gene conversion. PMID:8647398

  20. Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III–transcribed genes in budding yeast

    PubMed Central

    Belagal, Praveen; Normand, Christophe; Shukla, Ashutosh; Wang, Renjie; Léger-Silvestre, Isabelle; Dez, Christophe; Bhargava, Purnima; Gadal, Olivier

    2016-01-01

    The association of RNA polymerase III (Pol III)–transcribed genes with nucleoli seems to be an evolutionarily conserved property of the spatial organization of eukaryotic genomes. However, recent studies of global chromosome architecture in budding yeast have challenged this view. We used live-cell imaging to determine the intranuclear positions of 13 Pol III–transcribed genes. The frequency of association with nucleolus and nuclear periphery depends on linear genomic distance from the tethering elements—centromeres or telomeres. Releasing the hold of the tethering elements by inactivating centromere attachment to the spindle pole body or changing the position of ribosomal DNA arrays resulted in the association of Pol III–transcribed genes with nucleoli. Conversely, ectopic insertion of a Pol III–transcribed gene in the vicinity of a centromere prevented its association with nucleolus. Pol III–dependent transcription was independent of the intranuclear position of the gene, but the nucleolar recruitment of Pol III–transcribed genes required active transcription. We conclude that the association of Pol III–transcribed genes with the nucleolus, when permitted by global chromosome architecture, provides nucleolar and/or nuclear peripheral anchoring points contributing locally to intranuclear chromosome organization. PMID:27559135

  1. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid

    PubMed Central

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-01-01

    Background Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Results Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by

  2. Use of CYP52A2A promoter to increase gene expression in yeast

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-01-06

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  3. Diversity and abundance of phosphonate biosynthetic genes in nature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphonates, molecules containing direct C-P bonds, comprise a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than fifty years ago, the extent and diversity of phosphonate production in natur...

  4. Molecular Characterization and Functional Analysis of Cytochrome b5 Reductase (CBR) Encoding Genes from the Carotenogenic Yeast Xanthophyllomyces dendrorhous

    PubMed Central

    Gutiérrez, María Soledad; Rojas, María Cecilia; Sepúlveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor; Alcaíno, Jennifer

    2015-01-01

    The eukaryotic microsomal cytochrome P450 systems consist of a cytochrome P450 enzyme (P450) and a cytochrome P450 redox partner, which generally is a cytochrome P450 reductase (CPR) that supplies electrons from NADPH. However, alternative electron donors may exist such as cytochrome b5 reductase and cytochrome b5 (CBR and CYB5, respectively) via, which is NADH-dependent and are also anchored to the endoplasmic reticulum. In the carotenogenic yeast Xanthophyllomyces dendrorhous, three P450-encoding genes have been described: crtS is involved in carotenogenesis and the CYP51 and CYP61 genes are both implicated in ergosterol biosynthesis. This yeast has a single CPR (encoded by the crtR gene), and a crtR- mutant does not produce astaxanthin. Considering that this mutant is viable, the existence of alternative cytochrome P450 electron donors like CBR and CYB5 could operate in this yeast. The aim of this work was to characterize the X. dendrorhous CBR encoding gene and to study its involvement in P450 reactions in ergosterol and carotenoid biosynthesis. Two CBRs genes were identified (CBR.1 and CBR.2), and deletion mutants were constructed. The two mutants and the wild-type strain showed similar sterol production, with ergosterol being the main sterol produced. The crtR- mutant strain produced a lower proportion of ergosterol than did the parental strain. These results indicate that even though one of the two CBR genes could be involved in ergosterol biosynthesis, crtR complements their absence in the cbr- mutant strains, at least for ergosterol production. The higher NADH-dependent cytochrome c reductase activity together with the higher transcript levels of CBR.1 and CYB5 in the crtR- mutant as well as the lower NADH-dependent activity in CBS-cbr.1- strongly suggest that CBR.1-CYB5 via participates as an alternative electron donor pathway for P450 enzymes involved in ergosterol biosynthesis in X. dendrorhous. PMID:26466337

  5. The yeast BDF1 gene encodes a transcription factor involved in the expression of a broad class of genes including snRNAs.

    PubMed Central

    Lygerou, Z; Conesa, C; Lesage, P; Swanson, R N; Ruet, A; Carlson, M; Sentenac, A; Séraphin, B

    1994-01-01

    While screening for genes that affect the synthesis of yeast snRNPs, we identified a thermosensitive mutant that abolishes the production of a reporter snRNA at the non-permissive temperature. This mutant defines a new gene, named BDF1. In a bdf1-1 strain, the reporter snRNA synthesized before the temperature shift remains stable at the non-permissive temperature. This demonstrates that the BDF1 gene affects the synthesis rather than the stability of the reporter snRNA and suggests that the BDF1 gene encodes a transcription factor. BDF1 is present in single copy on yeast chromosome XII, and is important for normal vegetative growth but not essential for cell viability. bdf1 null mutants share common phenotypes with several mutants affecting general transcription and are defective in snRNA production. BDF1 encodes a protein of 687 amino-acids containing two copies of the bromodomain, a motif also present in other transcription factors as well as a new conserved domain, the ET domain, also present in Drosophila and human proteins. Images PMID:7816623

  6. Aym1, a mouse meiotic gene identified by virtue of its ability to activate early meiotic genes in the yeast Saccharomyces cerevisiae.

    PubMed

    Malcov, Mira; Cesarkas, Karen; Stelzer, Gil; Shalom, Sarah; Dicken, Yosef; Naor, Yaniv; Goldstein, Ronald S; Sagee, Shira; Kassir, Yona; Don, Jeremy

    2004-12-01

    Our understanding of the molecular mechanisms that operate during differentiation of mitotically dividing spermatogonia cells into spermatocytes lags way behind what is known about other differentiating systems. Given the evolutionary conservation of the meiotic process, we screened for mouse proteins that could specifically activate early meiotic promoters in Saccharomyces cerevisiae yeast cells, when fused to the Gal4 activation domain (Gal4AD). Our screen yielded the Aym1 gene that encodes a short peptide of 45 amino acids. We show that a Gal4AD-AYM1 fusion protein activates expression of reporter genes through the promoters of the early meiosis-specific genes IME2 and HOP1, and that this activation is dependent on the DNA-binding protein Ume6. Aym1 is transcribed predominantly in mouse primary spermatocytes and in gonads of female embryos undergoing the corresponding meiotic divisions. Aym1 immunolocalized to nuclei of primary spermatocytes and oocytes and to specific type A spermatogonia cells, suggesting it might play a role in the processes leading to meiotic competence. The potential functional relationship between AYM1 and yeast proteins that regulate expression of early meiotic genes is discussed.

  7. Triggering Respirofermentative Metabolism in the Crabtree-Negative Yeast Pichia guilliermondii by Disrupting the CAT8 Gene

    PubMed Central

    Qi, Kai

    2014-01-01

    Pichia guilliermondii is a Crabtree-negative yeast that does not normally exhibit respirofermentative metabolism under aerobic conditions, and methods to trigger this metabolism may have applications for physiological study and industrial applications. In the present study, CAT8, which encodes a putative global transcriptional activator, was disrupted in P. guilliermondii. This yeast's ethanol titer increased by >20-fold compared to the wild type (WT) during aerobic fermentation using glucose. A comparative transcriptional analysis indicated that the expression of genes in the tricarboxylic acid cycle and respiratory chain was repressed in the CAT8-disrupted (ΔCAT8) strain, while the fermentative pathway genes were significantly upregulated. The respiratory activities in the ΔCAT8 strain, indicated by the specific oxygen uptake rate and respiratory state value, decreased to one-half and one-third of the WT values, respectively. In addition, the expression of HAP4, a transcriptional respiratory activator, was significantly repressed in the ΔCAT8 strain. Through disruption of HAP4, the ethanol production of P. guilliermondii was also increased, but the yield and titer were lower than that in the ΔCAT8 strain. A further transcriptional comparison between ΔCAT8 and ΔHAP4 strains suggested a more comprehensive reprogramming function of Cat8 in the central metabolic pathways. These results indicated the important role of CAT8 in regulating the glucose metabolism of P. guilliermondii and that the regulation was partially mediated by repressing HAP4. The strategy proposed here might be applicable to improve the aerobic fermentation capacity of other Crabtree-negative yeasts. PMID:24747899

  8. In vivo topological analysis of Ste2, a yeast plasma membrane protein, by using beta-lactamase gene fusions.

    PubMed Central

    Cartwright, C P; Tipper, D J

    1991-01-01

    Gene fusions were constructed between Ste2, the receptor for the Saccharomyces cerevisiae alpha-factor, and beta la, the secreted form of beta-lactamase encoded by the bla gene of pBR322. The Ste2 and beta la components were linked by a processing fragment (P) from the yeast killer preprotoxin containing a C-terminal lysine-arginine site for cleavage by the Golgi-associated Kex2 protease. Ste2 is predicted to have a rhodopsinlike topology, with an external N terminus and seven transmembrane segments. Fusions to three of the four Ste2 domains predicted to be external resulted in beta la secretion from yeast cells. A fusion at a site just preceding the first transmembrane segment was an exception; the product was cell associated, indicating that the first 44 residues of Ste2 are insufficient to direct secretion of beta la; translocation of this domain presumably requires the downstream transmembrane segment. Expression of fusions located in two domains predicted to be cytoplasmic failed to result in beta la secretion. Following insertion of the preprotoxin signal peptide (S) between the Ste2 and P components of these cytoplasmic fusions, secretion of beta la activity occurred, which is consistent with inversion of the orientation of the beta la reporter. Conversely, insertion of S between Ste2 and P in an external fusion sharply reduced beta la secretion. Complementary information about both cytoplasmic and external domains of Ste2 was therefore provided, and most aspects of the predicted topology were confirmed. The steady-state levels of beta la detected were low, presumably because of efficient degradation of the fusions in the secretory pathway; levels, however, were easily detectable. This method should be valuable in the analysis of in vivo topologies of both homologous and foreign plasma membrane proteins expressed in yeast cells. Images PMID:2017168

  9. Regulation of the AEFG1 gene, a mitochondrial elongation factor G from the dimorphic yeast Arxula adeninivorans LS3.

    PubMed

    Wartmann, T; Gellissen, G; Kunze, G

    2001-10-01

    Oxygen influences the synthesis of mitochondrial proteins by alteration of the expression of mitochondrial genes and several nuclear genes. One of the genes localised in the nucleus is the EFG1 gene that encodes the mitochondrial elongation factor G (MEF-G). This unique gene (AEFG1) has been isolated from the non-conventional dimorphic yeast, Arxula adeninivorans LS3. The AEFG1 gene comprises a ORF of 2,274 bp, which corresponds to 757 amino acids. In the present study, the regulation of AEFG1 has been analysed for different morphological stages of A. adeninivorans and various culture conditions. It was demonstrated that the transfer of aerobically growing cultures to anaerobic conditions resulted in an accumulation of AEFG1 transcript, correlating with an increase in AMEF-G protein concentration. Since this regulation occurred in budding-cell culture growing at 30 degrees C and in both of the mycelial cultures grown at 45 degrees C and 30 degrees C, respectively, it was the oxygen level (but not the cultivation temperature or the morphological stage) which influenced the AEFG1 regulation.

  10. Yeast Asc1p and Mammalian RACK1 Are Functionally Orthologous Core 40S Ribosomal Proteins That Repress Gene Expression

    PubMed Central

    Gerbasi, Vincent R.; Weaver, Connie M.; Hill, Salisha; Friedman, David B.; Link, Andrew J.

    2004-01-01

    Translation of mRNA into protein is a fundamental step in eukaryotic gene expression requiring the large (60S) and small (40S) ribosome subunits and associated proteins. By modern proteomic approaches, we previously identified a novel 40S-associated protein named Asc1p in budding yeast and RACK1 in mammals. The goals of this study were to establish Asc1p or RACK1 as a core conserved eukaryotic ribosomal protein and to determine the role of Asc1p or RACK1 in translational control. We provide biochemical, evolutionary, genetic, and functional evidence showing that Asc1p or RACK1 is indeed a conserved core component of the eukaryotic ribosome. We also show that purified Asc1p-deficient ribosomes have increased translational activity compared to that of wild-type yeast ribosomes. Further, we demonstrate that asc1Δ null strains have increased levels of specific proteins in vivo and that this molecular phenotype is complemented by either Asc1p or RACK1. Our data suggest that one of Asc1p's or RACK1's functions is to repress gene expression. PMID:15340087

  11. Yeast Asc1p and mammalian RACK1 are functionally orthologous core 40S ribosomal proteins that repress gene expression.

    PubMed

    Gerbasi, Vincent R; Weaver, Connie M; Hill, Salisha; Friedman, David B; Link, Andrew J

    2004-09-01

    Translation of mRNA into protein is a fundamental step in eukaryotic gene expression requiring the large (60S) and small (40S) ribosome subunits and associated proteins. By modern proteomic approaches, we previously identified a novel 40S-associated protein named Asc1p in budding yeast and RACK1 in mammals. The goals of this study were to establish Asc1p or RACK1 as a core conserved eukaryotic ribosomal protein and to determine the role of Asc1p or RACK1 in translational control. We provide biochemical, evolutionary, genetic, and functional evidence showing that Asc1p or RACK1 is indeed a conserved core component of the eukaryotic ribosome. We also show that purified Asc1p-deficient ribosomes have increased translational activity compared to that of wild-type yeast ribosomes. Further, we demonstrate that asc1Delta null strains have increased levels of specific proteins in vivo and that this molecular phenotype is complemented by either Asc1p or RACK1. Our data suggest that one of Asc1p's or RACK1's functions is to repress gene expression.

  12. Effect of deletion and overexpression of tryptophan metabolism genes on growth and fermentation capacity at low temperature in wine yeast.

    PubMed

    López-Malo, María; García-Rios, Estefani; Chiva, Rosana; Guillamon, José Manuel; Martí-Raga, María

    2014-01-01

    Low-temperature fermentations produce wines with greater aromatic complexity, but the success of these fermentations greatly depends on the adaptation of yeast cells to cold. Tryptophan has been previously reported to be a limiting amino acid during Saccharomyces cerevisiae growth at low temperature. The objective of this study was to determine the influence of the tryptophan metabolism on growth and fermentation performance during low-temperature wine fermentation. To this end, we constructed the deletion mutants of the TRP1 and TAT2 genes in a derivative haploid of a commercial wine strain, and the TAT2 gene was overexpressed in the prototroph and auxotroph (Δtrp1) backgrounds. Then we characterized growth and fermentation activity during wine fermentation at low and optimum temperatures. Our results partially support the role of this amino acid in cold yeast growth. Although deletion of TRP1 impaired amino acid uptake and the growth rate at low temperature in synthetic must, this growth impairment did not affect the fermentation rate. Deletion of TAT2 endorsed this strain with the highest nitrogen consumption capacity and the greatest fermentation activity at low temperature. Our results also evidenced reduced ammonium consumption in all the strains at low temperature.

  13. Characterization of two genes encoding metal tolerance proteins from Beta vulgaris subspecies maritima that confers manganese tolerance in yeast.

    PubMed

    Erbasol, Isil; Bozdag, Gonensin Ozan; Koc, Ahmet; Pedas, Pai; Karakaya, Huseyin Caglar

    2013-10-01

    Manganese (Mn(2+)) is an essential micronutrient in plants. However increased Mn(2+) levels are toxic to plant cells. Metal tolerance proteins (MTPs), member of cation diffusion facilitator protein (CDF) family, have important roles in metal homeostatis in different plant species and catalyse efflux of excess metal ions. In this study, we identified and characterized two MTP genes from Beta vulgaris spp. maritima (B. v. ssp. maritima). Overexpression of these two genes provided Mn tolerance in yeast cells. Sequence analyses displayed BmMTP10 and BmMTP11 as members of the Mn-CDF family. Functional analyses of these proteins indicated that they are specific to Mn(2+) with a role in reducing excess cellular Mn(2+) levels when expressed in yeast. GFP-fusion constructs of both proteins localized to the Golgi apparatus as a punctuated pattern. Finally, Q-RT-PCR results showed that BmMTP10 expression was induced threefold in response to the excess Mn(2+) treatment. On the other hand BmMTP11 expression was not affected in response to excess Mn(2+) levels. Thus, our results suggest that the BmMTP10 and BmMTP11 proteins from B. v. ssp. maritima have non-redundant functions in terms of Mn(2+) detoxification with a similar in planta localization and function as the Arabidopsis Mn-CDF homolog AtMTP11 and this conservation shows the evolutionary importance of these vesicular proteins in heavy metal homeostatis among plant species.

  14. The rice gene OsZFP6 functions in multiple stress tolerance responses in yeast and Arabidopsis.

    PubMed

    Guan, Qing-jie; Wang, Li-feng; Bu, Qing-yun; Wang, Zhen-yu

    2014-09-01

    The role of zinc finger proteins in organismal stress conditions has been widely reported. However, little is known concerning the function of CCHC-type zinc finger proteins in rice. In this study, OsZFP6, a rice CCHC-type zinc finger protein 6 gene, was cloned from rice using RT-PCR. The OsZFP6 protein contains 305 amino acids and a conserved zinc finger domain and is localised to the nucleus. Southern blot analysis revealed that a single copy was encoded in the rice genome. OsZFP6 expression was increased by abiotic stress, including salt (NaCl), alkali (NaHCO3) and H2O2 treatment. When OsZFP6 was transformed into yeast, the transgenic yeast showed significantly increased resistance to NaHCO3 compared to the control. Moreover, Arabidopsis transgenic plants overexpressing OsZFP6 were more tolerant to both NaHCO3 and H2O2 treatments. Overall, we uncovered a role for OsZFP6 in abiotic stress responses and identified OsZFP6 as a putatively useful gene for developing crops with increased alkali and H2O2 tolerance.

  15. Integrated expression of the α-amylase, dextranase and glutathione gene in an industrial brewer's yeast strain.

    PubMed

    Wang, Jin-Jing; Wang, Zhao-Yue; He, Xiu-Ping; Zhang, Bo-Run

    2012-01-01

    Genetic engineering is widely used to meliorate biological characteristics of industrial brewing yeast. But how to solve multiple problems at one time has become the bottle neck in the genetic modifications of industrial yeast strains. In a newly constructed strain TYRL21, dextranase gene was expressed in addition of α-amylase to make up α-amylase's shortcoming which can only hydrolyze α-1,4-glycosidic bond. Meanwhile, 18s rDNA repeated sequence was used as the homologous sequence for an effective and stable expression of LSD1 gene. As a result, TYRL21 consumed about twice much starch than the host strain. Moreover TYRL21 speeded up the fermentation which achieved the maximum cell number only within 3 days during EBC tube fermentation. Besides, flavor evaluation comparing TYRL21 and wild type brewing strain Y31 also confirmed TYRL21's better performances regarding its better saccharides utilization (83% less in residual saccharides), less off-flavor compounds (57% less in diacetyl, 39% less in acetaldehyde, 67% less in pentanedione), and improved stability index (increased by 49%) which correlated with sensory evaluation of final beer product.

  16. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production.

    PubMed

    Özaydın, Bilge; Burd, Helcio; Lee, Taek Soon; Keasling, Jay D

    2013-01-01

    Beside their essential cellular functions, isoprenoids have value as pharmaceuticals, nutriceuticals, pesticides, and fuel alternatives. Engineering microorganisms for production of isoprenoids is relatively easy, sustainable, and cost effective in comparison to chemical synthesis or extraction from natural producers. We introduced genes encoding carotenoid biosynthetic enzymes into the haploid yeast deletion collection to identify gene deletions that improved isoprenoid production. Deletions that showed significant improvement in carotenoid production were further screened for production of bisabolene, an isoprenoid alternative to petroleum-derived diesel. Combining those deletions with other mevalonate pathway modifications increased production of bisabolene from 40mg/L to 800mg/L in shake-flask cultures. In a fermentation process, this engineered strain produced 5.2g/L of bisabolene.

  17. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain.

    PubMed

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500-2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.

  18. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain

    PubMed Central

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500–2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change. PMID:27524983

  19. [An intron-free methyl jasmonate inducible geranylgeranyl diphosphate synthase gene from Taxus media and its functional identification in yeast].

    PubMed

    Liao, Zhihua; Gong, Yifu; Kai, Guoyin; Zuo, Kaijing; Chen, Min; Tan, Qiumin; Wei, Yamin; Guo, Liang; Tan, Feng; Sun, Xiaofen; Tang, Kexuan

    2005-01-01

    Geranylgeranyl diphosphate synthase (GGPPS, EC: 2.5.1.29) catalyzes the biosynthesis of geranylgeranyl diphosphate (GGPP), which is a key precursor for diterpenes including Taxol, one of the most potent antitumor drugs. In order to investigate the role of GGPP synthase in taxol biosynthesis, we cloned, characterized and functionally expressed the GGPP synthase gene from Taxus media. A 3743-bp genomic sequence of T. media was isolated by genome walking strategy which contained an 1182-bp open reading frame (ORF) encoding a 393-amino acid polypeptide that showed high similarity to other plant GGPPSs. Subsequently the full-length cDNA of the GGPPS gene of T. media (designated TmGGPPS) was amplified by RACE. Bioinformatic analysis showed that TmGGPPS was an intron-free gene and its deduced polypeptide contained all the five conserved domains and functional aspartate-rich motifs of the prenyltransferases. By constructing the phylogenetic tree of plant GGPPSs, it was found that plant-derived GGPPSs could be divided into two classes, angiosperm and gymnosperm classes, which might have evolved in parallel from the same ancestor. To our knowledge this was the first report that the geranylgeranyl diphosphate synthase genes were free of intron and evolved in parallel between angiosperms and gymnosperms. The coding sequence of TmGGPPS was expressed in yeast mutant (SFNY368) lacking of GGPP synthase activity through functional complementation, and the transgenic yeast showed to have activity of GGPP synthase. This was also the first time to use SFNY368 to identify the function of plant-derived GGPPSs. Furthermore, investigation of the impact of methyl jasmonate (MeJA) on the expression of TmGGPPS revealed that MeJA-treated T. media cultured cells had much higher expression of TmGGPPS than untreated cells.

  20. Sphingoid Base Metabolism in Yeast: Mapping Gene Expression Patterns Into Qualitative Metabolite Time Course Predictions

    PubMed Central

    2001-01-01

    Can qualitative metabolite time course predictions be inferred from measured mRNA expression patterns? Speaking against this possibility is the large number of ‘decoupling’ control points that lie between these variables, i.e. translation, protein degradation, enzyme inhibition and enzyme activation. Speaking for it is the notion that these control points might be coordinately regulated such that action exerted on the mRNA level is informative of action exerted on the protein and metabolite levels. A simple kinetic model of sphingoid base metabolism in yeast is postulated. When the enzyme activities in this model are modulated proportional to mRNA expression levels measured in heat shocked yeast, the model yields a transient rise and fall in sphingoid bases followed by a permanent rise in ceramide. This finding is in qualitative agreement with experiments and is thus consistent with the aforementioned coordinated control system hypothesis. PMID:18629242

  1. Cloning of two genes (LAT1,2) encoding specific L: -arabinose transporters of the L: -arabinose fermenting yeast Ambrosiozyma monospora.

    PubMed

    Verho, Ritva; Penttilä, Merja; Richard, Peter

    2011-07-01

    We identified and characterized two genes, LAT1 and LAT2, which encode specific L: -arabinose transporters. The genes were identified in the L: -arabinose fermenting yeast Ambrosiozyma monospora. The yeast Saccharomyces cerevisiae had only very low L: -arabinose transport activity; however, when LAT1 or LAT2 was expressed, L: -arabinose transport was facilitated. When the LAT1 or LAT2 were expressed in an S. cerevisiae mutant where the main hexose transporters were deleted, the L: -arabinose transporters could not restore growth on D: -glucose, D: -fructose, D: -mannose or D: -galactose. This indicates that these sugars are not transported and suggests that the transporters are specific for L: -arabinose.

  2. A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast

    DTIC Science & Technology

    2004-05-01

    tumor suppressor Brcal. Expression of Brcal in diploid WT yeast leads to prolonged Gl arrest and lethality. We identified from a collection of...pleiotropic tumor suppressors that impact on recombinational repair of DSB damage, cell cycle checkpoint arrest following DNA damage, transcriptional... tumor suppressor dhhl G1/S checkpoint DDX64 (-162) Putative breakpoint oncogene +++ rad6 DNA repair UBE2B (-61) DNA repair +++ ubcl3 DNA repair UBE2N

  3. Defining diversity, specialization, and gene specificity in transcriptomes through information theory

    PubMed Central

    Martínez, Octavio; Reyes-Valdés, M. Humberto

    2008-01-01

    The transcriptome is a set of genes transcribed in a given tissue under specific conditions and can be characterized by a list of genes with their corresponding frequencies of transcription. Transcriptome changes can be measured by counting gene tags from mRNA libraries or by measuring light signals in DNA microarrays. In any case, it is difficult to completely comprehend the global changes that occur in the transcriptome, given that thousands of gene expression measurements are involved. We propose an approach to define and estimate the diversity and specialization of transcriptomes and gene specificity. We define transcriptome diversity as the Shannon entropy of its frequency distribution. Gene specificity is defined as the mutual information between the tissues and the corresponding transcript, allowing detection of either housekeeping or highly specific genes and clarifying the meaning of these concepts in the literature. Tissue specialization is measured by average gene specificity. We introduce the formulae using a simple example and show their application in two datasets of gene expression in human tissues. Visualization of the positions of transcriptomes in a system of diversity and specialization coordinates makes it possible to understand at a glance their interrelations, summarizing in a powerful way which transcriptomes are richer in diversity of expressed genes, or which are relatively more specialized. The framework presented enlightens the relation among transcriptomes, allowing a better understanding of their changes through the development of the organism or in response to environmental stimuli. PMID:18606989

  4. p53 Gene Repair with Zinc Finger Nucleases Optimised by Yeast 1-Hybrid and Validated by Solexa Sequencing

    PubMed Central

    Herrmann, Frank; Garriga-Canut, Mireia; Baumstark, Rebecca; Fajardo-Sanchez, Emmanuel; Cotterell, James; Minoche, André; Himmelbauer, Heinz; Isalan, Mark

    2011-01-01

    The tumor suppressor gene p53 is mutated or deleted in over 50% of human tumors. As functional p53 plays a pivotal role in protecting against cancer development, several strategies for restoring wild-type (wt) p53 function have been investigated. In this study, we applied an approach using gene repair with zinc finger nucleases (ZFNs). We adapted a commercially-available yeast one-hybrid (Y1H) selection kit to allow rapid building and optimization of 4-finger constructs from randomized PCR libraries. We thus generated novel functional zinc finger nucleases against two DNA sites in the human p53 gene, near cancer mutation ‘hotspots’. The ZFNs were first validated using in vitro cleavage assays and in vivo episomal gene repair assays in HEK293T cells. Subsequently, the ZFNs were used to restore wt-p53 status in the SF268 human cancer cell line, via ZFN-induced homologous recombination. The frequency of gene repair and mutation by non-homologous end-joining was then ascertained in several cancer cell lines, using a deep sequencing strategy. Our Y1H system facilitates the generation and optimisation of novel, sequence-specific four- to six-finger peptides, and the p53-specific ZFN described here can be used to mutate or repair p53 in genomic loci. PMID:21695267

  5. The diversity and extracellular enzymatic activities of yeasts isolated from water tanks of Vriesea minarum, an endangered bromeliad species in Brazil, and the description of Occultifur brasiliensis f.a., sp. nov.

    PubMed

    Gomes, Fátima C O; Safar, Silvana V B; Marques, Andrea R; Medeiros, Adriana O; Santos, Ana Raquel O; Carvalho, Cláudia; Lachance, Marc-André; Sampaio, José Paulo; Rosa, Carlos A

    2015-02-01

    The diversity of yeast species collected from the bromeliad tanks of Vriesea minarum, an endangered bromeliad species, and their ability to produce extracellular enzymes were studied. Water samples were collected from 30 tanks of bromeliads living in a rupestrian field site located at Serrada Piedade, Minas Gerais state, Brazil, during both the dry and rainy seasons. Thirty-six species were isolated, representing 22 basidiomycetous and 14 ascomycetous species. Occultifur sp., Cryptococcus podzolicus and Cryptococcus sp. 1 were the prevalent basidiomycetous species. The yeast-like fungus from the order Myriangiales, Candida silvae and Aureobasidium pullulans were the most frequent ascomycetous species. The diversity of the yeast communities obtained between seasons was not significantly different, but the yeast composition per bromeliad was different between seasons. These results suggest that there is significant spatial heterogeneity in the composition of populations of the yeast communities within bromeliad tanks, independent of the season. Among the 352 yeast isolates tested, 282 showed at least one enzymatic activity. Protease activity was the most widely expressed extracellular enzymatic activity, followed by xylanase, amylase, pectinase and cellulase activities. These enzymes may increase the carbon and nitrogen availability for the microbial food web in the bromeliad tank of V. minarum. Sequence analyses revealed the existence of 10 new species, indicating that bromeliad tanks are important sources of new yeasts. The novel species Occultifur brasiliensis, f.a., sp. nov., is proposed to accommodate the most frequently isolated yeast associated with V. minarum. The type strain of O. brasiliensis, f.a., sp. nov. is UFMG-CM-Y375(T) (= CBS 12687(T)). The Mycobank number is MB 809816.

  6. Sequence diversity in 36 candidate genes for cardiovascular disorders.

    PubMed Central

    Cambien, F; Poirier, O; Nicaud, V; Herrmann, S M; Mallet, C; Ricard, S; Behague, I; Hallet, V; Blanc, H; Loukaci, V; Thillet, J; Evans, A; Ruidavets, J B; Arveiler, D; Luc, G; Tiret, L

    1999-01-01

    Two strategies involving whole-genome association studies have been proposed for the identification of genes involved in complex diseases. The first one seeks to characterize all common variants of human genes and to test their association with disease. The second one seeks to develop dense maps of single-nucleotide polymorphisms (SNPs) and to detect susceptibility genes through linkage disequilibrium. We performed a molecular screening of the coding and/or flanking regions of 36 candidate genes for cardiovascular diseases. All polymorphisms identified by this screening were further genotyped in 750 subjects of European descent. In the whole set of genes, the lengths explored spanned 53.8 kb in the 5' regions, 68.4 kb in exonic regions, and 13 kb in the 3' regions. The strength of linkage disequilibrium within candidate regions suggests that genomewide maps of SNPs might be efficient ways to identify new disease-susceptibility genes, provided that the maps are sufficiently dense. However, the relatively large number of polymorphisms within coding and regulatory regions of candidate genes raises the possibility that several of them might be functional and that the pattern of genotype-phenotype association might be more complex than initially envisaged, as actually has been observed in some well-characterized genes. These results argue in favor of both genomewide association studies and detailed studies of the overall sequence variation of candidate genes, as complementary approaches. PMID:10364531

  7. Influence of Artisan Bakery- or Laboratory-Propagated Sourdoughs on the Diversity of Lactic Acid Bacterium and Yeast Microbiotas

    PubMed Central

    Minervini, Fabio; Lattanzi, Anna; De Angelis, Maria; Gobbetti, Marco

    2012-01-01

    Seven mature type I sourdoughs were comparatively back-slopped (80 days) at artisan bakery and laboratory levels under constant technology parameters. The cell density of presumptive lactic acid bacteria and related biochemical features were not affected by the environment of propagation. On the contrary, the number of yeasts markedly decreased from artisan bakery to laboratory propagation. During late laboratory propagation, denaturing gradient gel electrophoresis (DGGE) showed that the DNA band corresponding to Saccharomyces cerevisiae was no longer detectable in several sourdoughs. Twelve species of lactic acid bacteria were variously identified through a culture-dependent approach. All sourdoughs harbored a certain number of species and strains, which were dominant throughout time and, in several cases, varied depending on the environment of propagation. As shown by statistical permutation analysis, the lactic acid bacterium populations differed among sourdoughs propagated at artisan bakery and laboratory levels. Lactobacillus plantarum, Lactobacillus sakei, and Weissella cibaria dominated in only some sourdoughs back-slopped at artisan bakeries, and Leuconostoc citreum seemed to be more persistent under laboratory conditions. Strains of Lactobacillus sanfranciscensis were indifferently found in some sourdoughs. Together with the other stable species and strains, other lactic acid bacteria temporarily contaminated the sourdoughs and largely differed between artisan bakery and laboratory levels. The environment of propagation has an undoubted influence on the composition of sourdough yeast and lactic acid bacterium microbiotas. PMID:22635989

  8. Identification of the genes affecting the regulation of riboflavin synthesis in the flavinogenic yeast Pichia guilliermondii using insertion mutagenesis

    PubMed Central

    Boretsky, Yuriy R.; Pynyaha, Yuriy V.; Boretsky, Volodymyr Y.; Fedorovych, Dariya V.; Fayura, Lyubov R.; Protchenko, Olha; Philpott, Caroline C.; Sibirny, Andriy A.

    2012-01-01

    Pichia guilliermondii is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B2) in response to iron limitation. Using insertion mutagenesis, we isolated P. guilliermondii mutants overproducing riboflavin. Analysis of nucleotide sequence of recombination sites revealed that insertion cassettes integrated into the genome disrupting P. guilliermondii genes similar to the VMA1 gene of Ashbya gossypii and Saccharomyces cerevisiae and FES1 and FRA1 genes of S. cerevisiae. The constructed P. guilliermondii Δvma1–17 mutant possessed five- to sevenfold elevated riboflavin production and twofold decreased iron cell content as compared with the parental strain. Pichia guilliermondii Δfra1–45 mutant accumulated 1.8–2.2-fold more iron in the cells and produced five- to sevenfold more riboflavin as compared with the parental strain. Both Δvma1–17 and Δfes1–77 knockout strains could not grow at 37 °C in contrast to the wild-type strain and the Δfra1–45 mutant. Increased riboflavin production by the wild-type strain was observed at 37 °C. Although the Δfes1–77 mutant did not overproduce riboflavin, it showed partial complementation when crossed with previously isolated P. guilliermondii riboflavin-overproducing mutant rib80–22. Complementation analysis revealed that Δvma1–17 and Δfra1–45 mutants are distinct from previously reported riboflavin-producing mutants hit1-1, rib80-22 and rib81-31 of this yeast. PMID:21261808

  9. [Molecular cloning of some components of the translation apparatus of fission yeast Schizosaccharomyces pombe and a list of its cytoplasm ic proteins genes].

    PubMed

    Shpakovskiĭ, G V; Baranova, G M; Wood, V; Gwilliam, R G; Shematorova, E K; Korol'chuk, O L; Lebedenko, E N

    1999-06-01

    Full-length cDNAs of four new genes encoding cytoplasmic ribosomal proteins L14 and L20 (large ribosomal subunit) and S1 and S27 (small ribosomal subunit) were isolated and sequenced during the analysis of the fission yeast Schizosaccharomyces pombe genome. One of the Sz. pombe genes encoding translation elongation factor EF-2 was also cloned and its precise position on chromosome I established. A unified nomenclature was proposed, and the list of all known genetic determinants encoding cytoplasmic ribosomal proteins of Sz. pombe was compiled. By now, 76 genes/cDNAs encoding different ribosomal proteins have been identified in the fission yeast genome. Among them, 35 genes are duplicated and three homologous genes are identified for each of the ribosomal proteins L2, L16, P1, and P2.

  10. Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions.

    PubMed

    Jiménez-Martí, E; Zuzuarregui, A; Ridaura, I; Lozano, N; del Olmo, M

    2009-03-31

    Throughout wine production yeast cells are affected by a plethora of stress conditions that compromise their ability to carry out the whole process. In recent years important knowledge about the mechanisms involved in stress response in both laboratory and wine yeast strains has been obtained. Several studies have indicated that a correlation exists between stress resistance, expression of stress response genes and fermentative behaviour. In this work we introduce several genetic manipulations in two genes induced by several stress conditions: HSP26 (which encodes a heat shock protein) and YHR087W (encoding a protein of unknown function) in two different wine yeasts, ICV16 and ICV27. These manipulations include expression in multicopy and centromeric plasmids, and substitution of the promoter in one of the genomic copies of these genes for that of the SPI1 gene, encoding for a cell wall protein of unknown function, or the PGK1 gene, which encodes the phosphoglycerate kinase glycolytic enzyme. Our results indicate that some of these modifications result in strains with higher expression of these genes, better resistance to certain stress conditions, and even improved fermentative behaviour. The modifications of the YHR087W gene are particularly interesting, and suggest an important role of this gene in the vinification process.

  11. Alleles of the yeast Pms1 mismatch-repair gene that differentially affect recombination- and replication-related processes.

    PubMed Central

    Welz-Voegele, Caroline; Stone, Jana E; Tran, Phuoc T; Kearney, Hutton M; Liskay, R Michael; Petes, Thomas D; Jinks-Robertson, Sue

    2002-01-01

    Mismatch-repair (MMR) systems promote eukaryotic genome stability by removing errors introduced during DNA replication and by inhibiting recombination between nonidentical sequences (spellchecker and antirecombination activities, respectively). Following a common mismatch-recognition step effected by MutS-homologous Msh proteins, homologs of the bacterial MutL ATPase (predominantly the Mlh1p-Pms1p heterodimer in yeast) couple mismatch recognition to the appropriate downstream processing steps. To examine whether the processing steps in the spellchecker and antirecombination pathways might differ, we mutagenized the yeast PMS1 gene and screened for mitotic separation-of-function alleles. Two alleles affecting only the antirecombination function of Pms1p were identified, one of which changed an amino acid within the highly conserved ATPase domain. To more specifically address the role of ATP binding/hydrolysis in MMR-related processes, we examined mutations known to compromise the ATPase activity of Pms1p or Mlh1p with respect to the mitotic spellchecker and antirecombination activities and with respect to the repair of mismatches present in meiotic recombination intermediates. The results of these analyses confirm a differential requirement for the Pms1p ATPase activity in replication vs. recombination processes, while demonstrating that the Mlh1p ATPase activity is important for all examined MMR-related functions. PMID:12454061

  12. Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast.

    PubMed

    Ard, Ryan; Tong, Pin; Allshire, Robin C

    2014-11-27

    Most long non-coding RNAs (lncRNAs) encoded by eukaryotic genomes remain uncharacterized. Here we focus on a set of intergenic lncRNAs in fission yeast. Deleting one of these lncRNAs exhibited a clear phenotype: drug sensitivity. Detailed analyses of the affected locus revealed that transcription of the nc-tgp1 lncRNA regulates drug tolerance by repressing the adjacent phosphate-responsive permease gene transporter for glycerophosphodiester 1 (tgp1(+)). We demonstrate that the act of transcribing nc-tgp1 over the tgp1(+) promoter increases nucleosome density, prevents transcription factor access and thus represses tgp1(+) without the need for RNA interference or heterochromatin components. We therefore conclude that tgp1(+) is regulated by transcriptional interference. Accordingly, decreased nc-tgp1 transcription permits tgp1(+) expression upon phosphate starvation. Furthermore, nc-tgp1 loss induces tgp1(+) even in repressive conditions. Notably, drug sensitivity results directly from tgp1(+) expression in the absence of the nc-tgp1 RNA. Thus, transcription of an lncRNA governs drug tolerance in fission yeast.

  13. The yeast prion [SWI+] abolishes multicellular growth by triggering conformational changes of multiple regulators required for flocculin gene expression

    PubMed Central

    Du, Zhiqiang; Zhang, Ying; Li, Liming

    2016-01-01

    Summary While transcription factors are prevalent among yeast prion proteins, the role of prion-mediated transcriptional regulation remains elusive. We show here that the yeast prion [SWI+] abolishes flocculin (FLO) gene expression and results in a complete loss of multicellularity. Further investigation demonstrates that besides Swi1, multiple other proteins essential for FLO expression, including Mss11, Sap30, and Msn1 also undergo conformational changes, and become inactivated in [SWI+] cells. Moreover, the asparagine-rich region of Mss11 can exist as prion-like aggregates specifically in [SWI+] cells, which are SDS-resistant, heritable, and curable, but become metastable after separation from [SWI+]. Our findings thus reveal a prion-mediated mechanism through which multiple regulators in a biological pathway can be inactivated. In combination with the partial loss-of-function phenotypes of [SWI+] cells on non-glucose sugar utilization, our data therefore demonstrate that a prion can influence differently on distinct traits through multi-level regulations, providing insights into the biological roles of prions. PMID:26711350

  14. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation.

    PubMed

    Tanino, Takanori; Hotta, Atsushi; Ito, Tomonori; Ishii, Jun; Yamada, Ryosuke; Hasunuma, Tomohisa; Ogino, Chiaki; Ohmura, Naoto; Ohshima, Takayuki; Kondo, Akihiko

    2010-11-01

    A yeast with the xylose isomerase (XI) pathway was constructed by the multicopy integration of XI overexpression cassettes into the genome of the Saccharomyces cerevisiae MT8-1 strain. The resulting yeast strain successfully produced ethanol from both xylose as the sole carbon source and a mixed sugar, consisting of xylose and glucose, without any adaptation procedure. Ethanol yields in the fermentation from xylose and mixed sugar were 61.9% and 62.2% of the theoretical carbon recovery, respectively. Knockout of GRE3, a gene encoding nonspecific aldose reductase, of the host yeast strain improved the fermentation profile. Not only specific ethanol production rates but also xylose consumption rates was improved more than twice that of xylose-metabolizing yeast with the XI pathway using GRE3 active yeast as the host strain. In addition, it was demonstrated that xylitol in the medium exhibits a concentration-dependent inhibition effect on the ethanol production from xylose with the yeast harboring the XI-based xylose metabolic pathway. From our findings, the combination of XI-pathway integration and GRE3 knockout could be result in a consolidated xylose assimilation pathway and increased ethanol productivity.

  15. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast.

    PubMed Central

    Nickoloff, J A; Sweetser, D B; Clikeman, J A; Khalsa, G J; Wheeler, S L

    1999-01-01

    Spontaneous and double-strand break (DSB)-induced allelic recombination in yeast was investigated in crosses between ura3 heteroalleles inactivated by an HO site and a +1 frameshift mutation, with flanking markers defining a 3.4-kbp interval. In some crosses, nine additional phenotypically silent RFLP mutations were present at approximately 100-bp intervals. Increasing heterology from 0.2 to 1% in this interval reduced spontaneous, but not DSB-induced, recombination. For DSB-induced events, 75% were continuous tract gene conversions without a crossover in this interval; discontinuous tracts and conversions associated with a crossover each comprised approximately 7% of events, and 10% also converted markers in unbroken alleles. Loss of heterozygosity was seen for all markers centromere distal to the HO site in 50% of products; such loss could reflect gene conversion, break-induced replication, chromosome loss, or G2 crossovers. Using telomere-marked strains we determined that nearly all allelic DSB repair occurs by gene conversion. We further show that most allelic conversion results from mismatch repair of heteroduplex DNA. Interestingly, markers shared between the sparsely and densely marked interval converted at higher rates in the densely marked interval. Thus, the extra markers increased gene conversion tract lengths, which may reflect mismatch repair-induced recombination, or a shift from restoration- to conversion-type repair. PMID:10511547

  16. The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin

    PubMed Central

    Korber, Philipp; Barbaric, Slobodan

    2014-01-01

    Chromatin dynamics crucially contributes to gene regulation. Studies of the yeast PHO5 promoter were key to establish this nowadays accepted view and continuously provide mechanistic insight in chromatin remodeling and promoter regulation, both on single locus as well as on systems level. The PHO5 promoter is a context independent chromatin switch module where in the repressed state positioned nucleosomes occlude transcription factor sites such that nucleosome remodeling is a prerequisite for and not consequence of induced gene transcription. This massive chromatin transition from positioned nucleosomes to an extensive hypersensitive site, together with respective transitions at the co-regulated PHO8 and PHO84 promoters, became a prime model for dissecting how remodelers, histone modifiers and chaperones co-operate in nucleosome remodeling upon gene induction. This revealed a surprisingly complex cofactor network at the PHO5 promoter, including five remodeler ATPases (SWI/SNF, RSC, INO80, Isw1, Chd1), and demonstrated for the first time histone eviction in trans as remodeling mode in vivo. Recently, the PHO5 promoter and the whole PHO regulon were harnessed for quantitative analyses and computational modeling of remodeling, transcription factor binding and promoter input-output relations such that this rewarding single-locus model becomes a paradigm also for theoretical and systems approaches to gene regulatory networks. PMID:25190457

  17. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration.

    PubMed

    Gutiérrez-Lomelí, Melesio; Torres-Guzmán, Juan Carlos; González-Hernández, Gloria Angélica; Cira-Chávez, Luis Alberto; Pelayo-Ortiz, Carlos; Ramírez-Córdova, Jose de Jesús

    2008-05-01

    This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.

  18. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH.

    PubMed

    Alesso, C A; Discola, K F; Monteiro, G

    2015-09-01

    In the yeast Saccharomyces cerevisiae, many genes are involved in the uptake, transport, storage and detoxification of copper. Large scale studies have noted that deletion of the gene ICS3 increases sensitivity to copper, Sortin 2 and acid exposure. Here, we report a study on the Δics3 strain, in which ICS3 is related to copper homeostasis, affecting the intracellular accumulation of this metal. This strain is sensitive to hydrogen peroxide and copper exposure, but not to other tested transition metals. At pH 6.0, the Δics3 strain accumulates a larger amount of intracellular copper than the wild-type strain, explaining the sensitivity to oxidants in this condition. Unexpectedly, sensitivity to copper exposure only occurs in acidic conditions. This can be explained by the fact that the exposure of Δics3 cells to high copper concentrations at pH 4.0 results in over-accumulation of copper and iron. Moreover, the expression of ICS3 increases in acidic pH, and this is correlated with CCC2 gene expression, since both genes are regulated by Rim101 from the pH regulon. CCC2 is also upregulated in Δics3 in acidic pH. Together, these data indicate that ICS3 is involved in copper homeostasis and is dependent on extracellular pH.

  19. Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne

    PubMed Central

    Xing, Yongzhong; Frei, Uschi; Schejbel, Britt; Asp, Torben; Lübberstedt, Thomas

    2007-01-01

    Background Association analysis is an alternative way for QTL mapping in ryegrass. So far, knowledge on nucleotide diversity and linkage disequilibrium in ryegrass is lacking, which is essential for the efficiency of association analyses. Results 11 expressed disease resistance candidate (R) genes including 6 nucleotide binding site and leucine rich repeat (NBS-LRR) like genes and 5 non-NBS-LRR genes were analyzed for nucleotide diversity. For each of the genes about 1 kb genomic fragments were isolated from 20 heterozygous genotypes in ryegrass. The number of haplotypes per gene ranged from 9 to 27. On average, one single nucleotide polymorphism (SNP) was present per 33 bp between two randomly sampled sequences for the 11 genes. NBS-LRR like gene fragments showed a high degree of nucleotide diversity, with one SNP every 22 bp between two randomly sampled sequences. NBS-LRR like gene fragments showed very high non-synonymous mutation rates, leading to altered amino acid sequences. Particularly LRR regions showed very high diversity with on average one SNP every 10 bp between two sequences. In contrast, non-NBS LRR resistance candidate genes showed a lower degree of nucleotide diversity, with one SNP every 112 bp. 78% of haplotypes occurred at low frequency (<5%) within the collection of 20 genotypes. Low intragenic LD was detected for most R genes, and rapid LD decay within 500 bp was detected. Conclusion Substantial LD decay was found within a distance of 500 bp for most resistance candidate genes in this study. Hence, LD based association analysis is feasible and promising for QTL fine mapping of resistance traits in ryegrass. PMID:17683574

  20. Diversity and evolution of non-Saccharomyces yeast populations during wine fermentation: effect of grape ripeness and cold maceration.

    PubMed

    Hierro, Núria; González, Angel; Mas, Albert; Guillamón, Jose M

    2006-01-01

    We have evaluated the effect of grape maturity and cold maceration prior to fermentation on the yeast ecology during wine fermentation. Non-Saccharomyces strains were selectively isolated and identified using two rapid PCR techniques, namely enterobacterial repetitve intergenic consensus-PCR and PCR-intron splice sites, in various wine fermentation conditions. These identifications were further complemented and confirmed by restriction fragment length poymorphism and sequencing analysis of the 5.8S-ITS and D1/D2 ribosomal regions, respectively. Eleven species belonging to five genera were identified. Candida stellata, Hanseniaspora uvarum and Hanseniaspora osmophila were the dominant species, representing almost 90% of the isolates. Minor strains presented different species of the genera Candida, Issatchenkia, Zygoascus and Zygosaccharomyces. Selective isolation made it possible to isolate some species that were hardly related to the wine-making process, such as Issatchenkia hanoiensis, a new species that has only been described recently.

  1. Genomic evolution of the ascomycetous yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphr...

  2. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  3. Production of Candida antaractica Lipase B Gene Open Reading Frame using Automated PCR Gene Assembly Protocol on Robotic Workcell & Expression in Ethanologenic Yeast for use as Resin-Bound Biocatalyst in Biodiesel Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was produced using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. The lycotoxin-1 (Lyt-1) C3 variant gene ORF was added in-frame with the CALB ORF to pote...

  4. Construction of a Genetically Modified Wine Yeast Strain Expressing the Aspergillus aculeatus rhaA Gene, Encoding an α-l-Rhamnosidase of Enological Interest

    PubMed Central

    Manzanares, Paloma; Orejas, Margarita; Gil, José Vicente; de Graaff, Leo H.; Visser, Jaap; Ramón, Daniel

    2003-01-01

    The Aspergillus aculeatus rhaA gene encoding an α-l-rhamnosidase has been expressed in both laboratory and industrial wine yeast strains. Wines produced in microvinifications, conducted using a combination of the genetically modified industrial strain expressing rhaA and another strain expressing a β-glucosidase, show increased content mainly of the aromatic compound linalool. PMID:14660415

  5. Lessons from Yeast on Emerging Roles of the ATAD2 Protein Family in Gene Regulation and Genome Organization

    PubMed Central

    Cattaneo, Matteo; Morozumi, Yuichi; Perazza, Daniel; Boussouar, Fayçal; Jamshidikia, Mahya; Rousseaux, Sophie; Verdel, André; Khochbin, Saadi

    2014-01-01

    ATAD2, a remarkably conserved, yet poorly characterized factor is found upregulated and associated with poor prognosis in a variety of independent cancers in human. Studies conducted on the yeast Saccharomyces cerevisiae ATAD2 homologue, Yta7, are now indicating that the members of this family may primarily be regulators of chromatin dynamics and that their action on gene expression could only be one facet of their general activity. In this review, we present an overview of the literature on Yta7 and discuss the possibility of translating these findings into other organisms to further define the involvement of ATAD2 and other members of its family in regulating chromatin structure and function both in normal and pathological situations. PMID:25377252

  6. Lessons from yeast on emerging roles of the ATAD2 protein family in gene regulation and genome organization.

    PubMed

    Cattaneo, Matteo; Morozumi, Yuichi; Perazza, Daniel; Boussouar, Fayçal; Jamshidikia, Mahya; Rousseaux, Sophie; Verdel, André; Khochbin, Saadi

    2014-12-31

    ATAD2, a remarkably conserved, yet poorly characterized factor is found upregulated and associated with poor prognosis in a variety of independent cancers in human. Studies conducted on the yeast Saccharomyces cerevisiae ATAD2 homologue, Yta7, are now indicating that the members of this family may primarily be regulators of chromatin dynamics and that their action on gene expression could only be one facet of their general activity. In this review, we present an overview of the literature on Yta7 and discuss the possibility of translating these findings into other organisms to further define the involvement of ATAD2 and other members of its family in regulating chromatin structure and function both in normal and pathological situations.

  7. Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Cui, Jian; Cheng, Yuanyuan; Belov, Katherine

    2015-03-01

    The Tasmanian devil is an endangered marsupial species that has survived several historical bottlenecks and now has low genetic diversity. Here we characterize the Toll-like receptor (TLR) genes and their diversity in the Tasmanian devil. TLRs are a key innate immune gene family found in all animals. Ten TLR genes were identified in the Tasmanian devil genome. Unusually low levels of diversity were found in 25 devils from across Tasmania. We found two alleles at TLR2, TLR3 and TLR6. The other seven genes were monomorphic. The insurance population, which safeguards the species from extinction, has successfully managed to capture all of these TLR alleles, but concerns remain for the long-term survival of this species.

  8. Individual letters of the RNA polymerase II CTD code govern distinct gene expression programs in fission yeast

    PubMed Central

    Schwer, Beate; Bitton, Danny Asher; Sanchez, Ana M.; Bähler, Jürg; Shuman, Stewart

    2014-01-01

    The primary structure and phosphorylation pattern of the tandem Y1S2P3T4S5P6S7 repeats of the RNA polymerase II carboxyl-terminal domain (CTD) comprise an informational code that coordinates transcription, chromatin modification, and RNA processing. To gauge the contributions of individual CTD coding “letters” to gene expression, we analyzed the poly(A)+ transcriptomes of fission yeast mutants that lack each of the four inessential CTD phosphoacceptors: Tyr1, Ser2, Thr4, and Ser7. There was a hierarchy of CTD mutational effects with respect to the number of dysregulated protein-coding RNAs, with S2A (n = 227) >> Y1F (n = 71) > S7A (n = 58) >> T4A (n = 7). The majority of the protein-coding RNAs affected in Y1F cells were coordinately affected by S2A, suggesting that Tyr1-Ser2 constitutes a two-letter code “word.” Y1F and S2A elicited increased expression of genes encoding proteins involved in iron uptake (Frp1, Fip1, Fio1, Str3, Str1, Sib1), without affecting the expression of the genes that repress the iron regulon, implying that Tyr1-Ser2 transduces a repressive signal. Y1F and S2A cells had increased levels of ferric reductase activity and were hypersensitive to phleomycin, indicative of elevated intracellular iron. The T4A and S7A mutations had opposing effects on the phosphate response pathway. T4A reduced the expression of two genes encoding proteins involved in phosphate acquisition (the Pho1 acid phosphatase and the phosphate transporter SPBC8E4.01c), without affecting the expression of known genes that regulate the phosphate response pathway, whereas S7A increased pho1+ expression. These results highlight specific cellular gene expression programs that are responsive to distinct CTD cues. PMID:24591591

  9. Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response

    PubMed Central

    2012-01-01

    Background Spore germination of the yeast Saccharomyces cerevisiae is a multi-step developmental path on which dormant spores re-enter the mitotic cell cycle and resume vegetative growth. Upon addition of a fermentable carbon source and nutrients, the outer layers of the protective spore wall are locally degraded, the tightly packed spore gains volume and an elongated shape, and eventually the germinating spore re-enters the cell cycle. The regulatory pathways driving this process are still largely unknown. Here we characterize the global gene expression profiles of germinating spores and identify potential transcriptional regulators of this process with the aim to increase our understanding of the mechanisms that control the transition from cellular dormancy to proliferation. Results Employing detailed gene expression time course data we have analysed the reprogramming of dormant spores during the transition to proliferation stimulated by a rich growth medium or pure glucose. Exit from dormancy results in rapid and global changes consisting of different sequential gene expression subprograms. The regulated genes reflect the transition towards glucose metabolism, the resumption of growth and the release of stress, similar to cells exiting a stationary growth phase. High resolution time course analysis during the onset of germination allowed us to identify a transient up-regulation of genes involved in protein folding and transport. We also identified a network of transcription factors that may be regulating the global response. While the expression outputs following stimulation by rich glucose medium or by glucose alone are qualitatively similar, the response to rich medium is stronger. Moreover, spores sense and react to amino acid starvation within the first 30 min after germination initiation, and this response can be linked to specific transcription factors. Conclusions Resumption of growth in germinating spores is characterized by a highly synchronized

  10. Roles of cis- and trans-changes in the regulatory evolution of genes in the gluconeogenic pathway in yeast.

    PubMed

    Chang, Ya-Wen; Robert Liu, Fu-Guo; Yu, Ning; Sung, Huang-Mo; Yang, Peggy; Wang, Daryi; Huang, Chih-Jen; Shih, Ming-Che; Li, Wen-Hsiung

    2008-09-01

    The yeast Saccharomyces cerevisiae proliferates rapidly in glucose-containing media. As glucose is getting depleted, yeast cells enter the transition from fermentative to nonfermentative metabolism, known as the diauxic shift, which is associated with major changes in gene expression. To understand the expression evolution of genes involved in the diauxic shift and in nonfermentative metabolism within species, a laboratory strain (BY), a wild strain (RM), and a clinical isolate (YJM) were used in this study. Our data showed that the RM strain enters into the diauxic shift approximately 1 h earlier than the BY strain with an earlier, higher induction of many key transcription factors (TFs) involved in the diauxic shift. Our sequence data revealed sequence variations between BY and RM in both coding and promoter regions of the majority of these TFs. The key TF Cat8p, a zinc-finger cluster protein, is required for the expression of many genes in gluconeogenesis under nonfermentative growth, and its derepression is mediated by deactivation of Mig1p. Our kinetic study of CAT8 expression revealed that CAT8 induction corresponded to the timing of glucose depletion in both BY and RM and CAT8 was induced up to 50- to 90-folds in RM, whereas only 20- to 30-folds in BY. In order to decipher the relative importance of cis- and trans-variations in expression divergence in the gluconeogenic pathway during the diauxic shift, we studied the expression levels of MIG1, CAT8, and their downstream target genes in the cocultures and in the hybrid diploids of BY-RM, BY-YJM, and RM-YJM and in strains with swapped promoters. Our data showed that the differences between BY and RM in the expression of MIG1, the upstream regulator of CAT8, were affected mainly by changes in cis-elements, though also by changes in trans-acting factors, whereas those of CAT8 and its downstream target genes were predominantly affected by changes in trans-acting factors.

  11. SIR2 and other genes are abundantly expressed in long-lived natural segregants for replicative aging of the budding yeast Saccharomyces cerevisiae.

    PubMed

    Guo, Zhenhua; Adomas, Aleksandra B; Jackson, Erin D; Qin, Hong; Townsend, Jeffrey P

    2011-06-01

    We investigated the mechanism underlying the natural variation in longevity within natural populations using the model budding yeast, Saccharomyces cerevisiae. We analyzed whole-genome gene expression in four progeny of a natural S. cerevisiae strain that display differential replicative aging. Genes with different expression levels in short- and long-lived strains were classified disproportionately into metabolism, transport, development, transcription or cell cycle, and organelle organization (mitochondrial, chromosomal, and cytoskeletal). With several independent validating experiments, we detected 15 genes with consistent differential expression levels between the long- and the short-lived progeny. Among those 15, SIR2, HSP30, and TIM17 were upregulated in long-lived strains, which is consistent with the known effects of gene silencing, stress response, and mitochondrial function on aging. The link between SIR2 and yeast natural life span variation offers some intriguing ties to the allelic association of the human homolog SIRT1 to visceral obesity and metabolic response to lifestyle intervention.

  12. Characterization and prediction of haploinsufficiency using systems-level gene properties in yeast.

    PubMed

    Norris, Matthew; Lovell, Simon; Delneri, Daniela

    2013-11-06

    Variation in gene copy number can significantly affect organism fitness. When one allele is missing in a diploid, the phenotype can be compromised because of haploinsufficiency. In this work, we identified associations between Saccharomyces cerevisiae gene properties and genome-scale haploinsufficiency phenotypes from previous work. We compared the haploinsufficiency profiles against 23 gene properties and found that genes with higher level of connectivity (degree) in a protein-protein interaction network, higher genetic interaction degree, greater gene sequence conservation, and higher protein expression were significantly more likely to be haploinsufficient. Additionally, haploinsufficiency showed negative relationships with cell cycle regulation and promoter sequence conservation.

  13. Microbial functional gene diversity with a shift of subsurface redox conditions during In Situ uranium reduction.

    PubMed

    Liang, Yuting; Van Nostrand, Joy D; N'guessan, Lucie A; Peacock, Aaron D; Deng, Ye; Long, Philip E; Resch, C Tom; Wu, Liyou; He, Zhili; Li, Guanghe; Hazen, Terry C; Lovley, Derek R; Zhou, Jizhong

    2012-04-01

    To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (E(h)) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation.

  14. Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during In Situ Uranium Reduction

    PubMed Central

    Liang, Yuting; Van Nostrand, Joy D.; N′Guessan, Lucie A.; Peacock, Aaron D.; Deng, Ye; Long, Philip E.; Resch, C. Tom; Wu, Liyou; He, Zhili; Li, Guanghe; Hazen, Terry C.; Lovley, Derek R.

    2012-01-01

    To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation. PMID:22327592

  15. Patterns of nucleotide diversity at photoperiod related genes in Norway spruce [Picea abies (L.) Karst].

    PubMed

    Källman, Thomas; De Mita, Stéphane; Larsson, Hanna; Gyllenstrand, Niclas; Heuertz, Myriam; Parducci, Laura; Suyama, Yoshihisa; Lagercrantz, Ulf; Lascoux, Martin

    2014-01-01

    The ability of plants to track seasonal changes is largely dependent on genes assigned to the photoperiod pathway, and variation in those genes is thereby important for adaptation to local day length conditions. Extensive physiological data in several temperate conifer species suggest that populations are adapted to local light conditions, but data on the genes underlying this adaptation are more limited. Here we present nucleotide diversity data from 19 genes putatively involved in photoperiodic response in Norway spruce (Picea abies). Based on similarity to model plants the genes were grouped into three categories according to their presumed position in the photoperiod pathway: photoreceptors, circadian clock genes, and downstream targets. An HKA (Hudson, Kreitman and Aquade) test showed a significant excess of diversity at photoreceptor genes, but no departure from neutrality at circadian genes and downstream targets. Departures from neutrality were also tested with Tajima's D and Fay and Wu's H statistics under three demographic scenarios: the standard neutral model, a population expansion model, and a more complex population split model. Only one gene, the circadian clock gene PaPRR3 with a highly positive Tajima's D value, deviates significantly from all tested demographic scenarios. As the PaPRR3 gene harbours multiple non-synonymous variants it appears as an excellent candidate gene for control of photoperiod response in Norway spruce.

  16. Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes.

    PubMed

    Amos, G C A; Zhang, L; Hawkey, P M; Gaze, W H; Wellington, E M

    2014-07-16

    The environment harbours a significant diversity of uncultured bacteria and a potential source of novel and extant resistance genes which may recombine with clinically important bacteria disseminated into environmental reservoirs. There is evidence that pollution can select for resistance due to the aggregation of adaptive genes on mobile elements. The aim of this study was to establish the impact of waste water treatment plant (WWTP) effluent disposal to a river by using culture independent methods to study diversity of resistance genes downstream of the WWTP in comparison to upstream. Metagenomic libraries were constructed in Escherichia coli and screened for phenotypic resistance to amikacin, gentamicin, neomycin, ampicillin and ciprofloxacin. Resistance genes were identified by using transposon mutagenesis. A significant increase downstream of the WWTP was observed in the number of phenotypic resistant clones recovered in metagenomic libraries. Common β-lactamases such as blaTEM were recovered as well as a diverse range of acetyltransferases and unusual transporter genes, with evidence for newly emerging resistance mechanisms. The similarities of the predicted proteins to known sequences suggested origins of genes from a very diverse range of bacteria. The study suggests that waste water disposal increases the reservoir of resistance mechanisms in the environment either by addition of resistance genes or by input of agents selective for resistant phenotypes.

  17. Cofilin is an essential component of the yeast cortical cytoskeleton

    PubMed Central

    1993-01-01

    We have biochemically identified the Saccharomyces cerevisiae homologue of the mammalian actin binding protein cofilin. Cofilin and related proteins isolated from diverse organisms are low molecular weight proteins (15-20 kD) that possess several activities in vitro. All bind to monomeric actin and sever filaments, and some can stably associate with filaments. In this study, we demonstrate using viscosity, sedimentation, and actin assembly rate assays that yeast cofilin (16 kD) possesses all of these properties. Cloning and sequencing of the S. cerevisiae cofilin gene (COF1) revealed that yeast cofilin is 41% identical in amino acid sequence to mammalian cofilin and, surprisingly, has homology to a protein outside the family of cofilin- like proteins. The NH2-terminal 16kD of Abp1p, a 65-kD yeast protein identified by its ability to bind to actin filaments, is 23% identical to yeast cofilin. Immunofluorescence experiments showed that, like Abp1p, cofilin is associated with the membrane actin cytoskeleton. A complete disruption of the COF1 gene was created in diploid cells. Sporulation and tetrad analysis revealed that yeast cofilin has an essential function in vivo. Although Abp1p shares sequence similarity with cofilin and has the same distribution as cofilin in the cell, multiple copies of the ABP1 gene cannot compensate for the loss of cofilin. Thus, cofilin and Abp1p are structurally related but functionally distinct components of the yeast membrane cytoskeleton. PMID:8421056

  18. Influence of 17β-Estradiol on Gene Expression of Paracoccidioides during Mycelia-to-Yeast Transition

    PubMed Central

    Shankar, Jata; Wu, Thomas D.; Clemons, Karl V.; Monteiro, Jomar P.; Mirels, Laurence F.; Stevens, David A.

    2011-01-01

    Background Paracoccidioides is the causative agent of paracoccidioidomycosis, a systemic mycosis endemic to Latin America. Infection is initiated by inhalation of conidia (C) or mycelial (M) fragments, which subsequently differentiate into yeast (Y). Epidemiological studies show a striking predominance of paracoccidioidomycosis in adult men compared to premenopausal women. In vitro and in vivo studies suggest that the female hormone (17β-estradiol, E2) regulates or inhibits M-or-C-to-Y transition. In this study we have profiled transcript expression to understand the molecular mechanism of how E2 inhibits M-to-Y transition. Methodology We assessed temporal gene expression in strain Pb01 in the presence or absence of E2 at various time points through 9 days of the M-to-Y transition using an 11,000 element random-shear genomic DNA microarray and verified the results using quantitative real time-PCR. E2-regulated clones were sequenced to identify genes and biological function. Principal Findings E2-treatment affected gene expression of 550 array elements, with 331 showing up-regulation and 219 showing down-regulation at one or more time points (p≤0.001). Genes with low expression after 4 or 12 h exposure to E2 belonged to pathways involved in heat shock response (hsp90 and hsp70), energy metabolism, and several retrotransposable elements. Y-related genes, α-1,3-glucan synthase, mannosyltransferase and Y20, demonstrated low or delayed expression in E2-treated cultures. Genes potentially involved in signaling, such as palmitoyltransferase (erf2), small GTPase RhoA, phosphatidylinositol-4-kinase, and protein kinase (serine/threonine) showed low expression in the presence of E2, whereas a gene encoding for an arrestin domain-containing protein showed high expression. Genes related to ubiquitin-mediated protein degradation, and oxidative stress response genes were up-regulated by E2. Conclusion This study characterizes the effect of E2 at the molecular level on the

  19. Global gene expression in recombinant and non-recombinant yeast Saccharomyces cerevisiae in three different metabolic states.

    PubMed

    Díaz, H; Andrews, B A; Hayes, A; Castrillo, J; Oliver, S G; Asenjo, J A

    2009-01-01

    Global gene expression of two strains of Saccharomyces cerevisiae, one recombinant (P+), accumulating large amounts of an intracellular protein Superoxide Dismutase (SOD) and one non-recombinant (P-) which does not contain the recombinant plasmid, were compared in batch culture during diauxic growth when cells were growing exponentially on glucose, when they were growing exponentially on ethanol, and in the early stationary phase when glycerol was being utilized. When comparing the gene expression for P- (and P+) during growth on ethanol to that on glucose (Eth/Gluc), overexpression is related to an increase in consumption of glycerol, activation of the TCA cycle, degradation of glycogen and metabolism of ethanol. Furthermore, 97.6% of genes (80 genes) involved in the central metabolic pathway are overexpressed. This is similar to that observed by DeRisi et al. [DeRisi, J.L., Iyer, V.R. & Brown, P.O. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686.] but very different from was observed for Metabolic Flux Analysis (MFA), where the specific growth rate is lowered to ca. 40%, the fluxes in the TCA cycle are reduced to ca. 40% (to 30% in P+), glycolysis is reduced to virtually 0 and protein synthesis to ca. 50% (to 40% in P+). Clearly it is not possible to correlate in a simple or direct way, quantitative mRNA expression levels with cell function which is shown by the Metabolic Flux Analysis (MFA). When comparing the two strains in the 3 growth stages, 4 genes were found to be under or overexpressed in all cases. The products of all of these genes are expressed at the plasma membrane or cell wall of the yeast. While comparing the strains (P+/P-) when growing on glucose, ethanol and in the early stationary phase, many of the genes of the central metabolic pathways are underexpressed in P+, which is similar to the behaviour of the metabolic fluxes of both strains (MFA). Comparing the gene expression for P- (and

  20. Swainsonine Biosynthesis Genes in Diverse Symbiotic and Pathogenic Fungi.

    PubMed

    Cook, Daniel; Donzelli, Bruno G G; Creamer, Rebecca; Baucom, Deana L; Gardner, Dale R; Pan, Juan; Moore, Neil; Jaromczyk, Jerzy W; Schardl, Christopher L

    2017-04-04

    Swainsonine, a cytotoxic fungal alkaloid and a potential cancer therapy drug, is produced by the insect pathogen and plant symbiont, Metarhizium robertsii, the clover pathogen Slafractonia leguminicola, locoweed symbionts belonging to Alternaria sect. Undifilum, and a recently discovered morning glory symbiont belonging to order Chaetothyriales. Genome sequence analyses revealed that these fungi shared orthologous gene clusters, designated "SWN," which included a multifunctional swnK gene comprising predicted adenylylation and acyltransferase domains with their associated thiolation domains, a β-ketoacyl synthase domain, and two reductase domains. The role of swnK was demonstrated by inactivating it in M. robertsii through homologous gene replacement to give a ∆swnK mutant that produced no detectable swainsonine, then complementing the mutant with the wild-type gene to restore swainsonine biosynthesis. Other SWN cluster genes were predicted to encode two putative hydroxylases and two reductases, as expected to complete biosynthesis of swainsonine from the predicted SwnK product. SWN gene clusters were identified in six out of seven sequenced genomes of Metarhzium species, and in all 15 sequenced genomes of Arthrodermataceae, a family of fungi that cause athlete's foot and ringworm diseases in humans and other mammals. Representative isolates of all of these species were cultured, and all Metarhizium spp. with SWN clusters, as well as all but one of the Arthrodermataceae, produced swainsonine. These results suggested a new biosynthetic hypothesis for this alkaloid, extended the known taxonomic breadth of swainsonine producers to five orders of Ascomycota, and suggested that swainsonine has roles in mutualistic symbioses and diseases of plants and animals.

  1. Microbiota diversity and gene expression dynamics in human oral biofilms

    PubMed Central

    2014-01-01

    Background Micro-organisms inhabiting teeth surfaces grow on biofilms where a specific and complex succession of bacteria has been described by co-aggregation tests and DNA-based studies. Although the composition of oral biofilms is well established, the active portion of the bacterial community and the patterns of gene expression in vivo have not been studied. Results Using RNA-sequencing technologies, we present the first metatranscriptomic study of human dental plaque, performed by two different approaches: (1) A short-reads, high-coverage approach by Illumina sequencing to characterize the gene activity repertoire of the microbial community during biofilm development; (2) A long-reads, lower-coverage approach by pyrosequencing to determine the taxonomic identity of the active microbiome before and after a meal ingestion. The high-coverage approach allowed us to analyze over 398 million reads, revealing that microbial communities are individual-specific and no bacterial species was detected as key player at any time during biofilm formation. We could identify some gene expression patterns characteristic for early and mature oral biofilms. The transcriptomic profile of several adhesion genes was confirmed through qPCR by measuring expression of fimbriae-associated genes. In addition to the specific set of gene functions overexpressed in early and mature oral biofilms, as detected through the short-reads dataset, the long-reads approach detected specific changes when comparing the metatranscriptome of the same individual before and after a meal, which can narrow down the list of organisms responsible for acid production and therefore potentially involved in dental caries. Conclusions The bacteria changing activity during biofilm formation and after meal ingestion were person-specific. Interestingly, some individuals showed extreme homeostasis with virtually no changes in the active bacterial population after food ingestion, suggesting the presence of a microbial

  2. Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast.

    PubMed Central

    Jia, Z P; McCullough, N; Martel, R; Hemmingsen, S; Young, P G

    1992-01-01

    We have identified a new locus, sodium 2 (sod2) based on selection for increased LiCl tolerance in fission yeast, Schizosaccharomyces pombe. Tolerant strains have enhanced pH-dependent Na+ export capacity and sodium transport experiments suggest that the gene encodes an Na+/H+ antiport. The predicted sod2 gene product can be placed in the broad class of transporters which possess 12 hydrophobic transmembrane domains. The protein shows some sequence similarity to the human and bacterial Na+/H+ antiporters. Overexpression of sod2 increased Na+ export capacity and conferred sodium tolerance. Osmotolerance was not affected and sod2 cells were unaffected for growth in K+. In a sod2 disruption strain cells were incapable of exporting sodium. They were hypersensitive to Na+ or Li+ and could not grow under conditions that approximate pH7. The sod2 gene amplification could be selected stepwise and the degree of such amplification correlated with the level of Na+ or Li+ tolerance. Images PMID:1314171

  3. Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus)

    PubMed Central

    Dalton, Desiré Lee; Vermaak, Elaine; Roelofse, Marli; Kotze, Antoinette

    2016-01-01

    The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP) diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14) being reduced in comparison to in situ populations (n = 16). Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations. PMID:27760133

  4. Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus).

    PubMed

    Dalton, Desiré Lee; Vermaak, Elaine; Roelofse, Marli; Kotze, Antoinette

    2016-01-01

    The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP) diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14) being reduced in comparison to in situ populations (n = 16). Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations.

  5. mim3 and nam3 omnipotent suppressor genes similarly affect the polypeptide composition of yeast mitoribosomes.

    PubMed

    Mieszczak, M; Zagórski, W

    1987-05-01

    Yeast informational suppressors of mit- mutations coded for by nuclear (nam3-1, nam3-2) or by mitochondrial DNA (mim3-1) affect the mitoribosome. Nuclear mutations result in the appearance of an additional polypeptide called SI in the small mitoribosomal subunit. An identical polypeptide, not detected in the wild type 37S subunit, is present in crude preparations of mitoribosomes isolated from a mim3-1 suppressor carrying strain. Traces of the SI polypeptide may be found in highly purified small subunits from the mim3-1 strain. Therefore, mutations affecting either mitochondrial rRNA (mim3-1) or mitochondrial r-proteins (nam3-1, nam3-2) could be followed by similar changes in overall mitoribosome structure. This may explain the functional similarity of nuclear and mitochondrially coded suppressors.

  6. Diversity in Expression of Phosphorus (P) Responsive Genes in Cucumis melo L

    PubMed Central

    Fita, Ana; Bowen, Helen C.; Hayden, Rory M.; Nuez, Fernando; Picó, Belén; Hammond, John P.

    2012-01-01

    Background Phosphorus (P) is a major limiting nutrient for plant growth in many soils. Studies in model species have identified genes involved in plant adaptations to low soil P availability. However, little information is available on the genetic bases of these adaptations in vegetable crops. In this respect, sequence data for melon now makes it possible to identify melon orthologues of candidate P responsive genes, and the expression of these genes can be used to explain the diversity in the root system adaptation to low P availability, recently observed in this species. Methodology and Findings Transcriptional responses to P starvation were studied in nine diverse melon accessions by comparing the expression of eight candidate genes (Cm-PAP10.1, Cm-PAP10.2, Cm-RNS1, Cm-PPCK1, Cm-transferase, Cm-SQD1, Cm-DGD1 and Cm-SPX2) under P replete and P starved conditions. Differences among melon accessions were observed in response to P starvation, including differences in plant morphology, P uptake, P use efficiency (PUE) and gene expression. All studied genes were up regulated under P starvation conditions. Differences in the expression of genes involved in P mobilization and remobilization (Cm-PAP10.1, Cm-PAP10.2 and Cm-RNS1) under P starvation conditions explained part of the differences in P uptake and PUE among melon accessions. The levels of expression of the other studied genes were diverse among melon accessions, but contributed less to the phenotypical response of the accessions. Conclusions This is the first time that these genes have been described in the context of P starvation responses in melon. There exists significant diversity in gene expression levels and P use efficiency among melon accessions as well as significant correlations between gene expression levels and phenotypical measurements. PMID:22536378

  7. Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts

    PubMed Central

    Ishii, Genichiro; Aoyagi, Kazuhiko; Sasaki, Hiroki; Ochiai, Atsushi

    2015-01-01

    Background Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their transcriptional diversity has not been sufficiently explored. The aim of this study was to elucidate the transcriptional diversity of human fibroblasts within the whole body. Methods Global gene expression analysis was performed on 63 human primary fibroblasts from 13 organs. Of these, 32 fibroblasts from gastrointestinal organs (gastrointestinal fibroblasts: GIFs) were obtained from a pair of 2 anatomical sites: the submucosal layer (submucosal fibroblasts: SMFs) and the subperitoneal layer (subperitoneal fibroblasts: SPFs). Using hierarchical clustering analysis, we elucidated identifiable subgroups of fibroblasts and analyzed the transcriptional character of each subgroup. Results In unsupervised clustering, 2 major clusters that separate GIFs and non-GIFs were observed. Organ- and anatomical site-dependent clusters within GIFs were also observed. The signature genes that discriminated GIFs from non-GIFs, SMFs from SPFs, and the fibroblasts of one organ from another organ consisted of genes associated with transcriptional regulation, signaling ligands, and extracellular matrix remodeling. Conclusions GIFs are characteristic fibroblasts with specific gene expressions from transcriptional regulation, signaling ligands, and extracellular matrix remodeling related genes. In addition, the anatomical site- and organ-dependent diversity of GIFs was also discovered. These features of GIFs contribute to their specific physiological function and homeostatic maintenance, and create a functional diversity of the gastrointestinal tract. PMID:26046848

  8. Enzyme diversity and mosaic gene organization in denitrification.

    PubMed

    Zumft, W G; Körner, H

    1997-02-01

    Denitrification is a main branch of the global nitrogen cycle. In the past ten years unravelling the underlying biochemistry and genetics has proceeded at an increasing pace. Fungal denitrification has become a new field. The biochemical investigation of denitrification has culminated in the description of the crystal structures of the two types of nitrite reductases. The N2O reductase shares with cytochrome c oxidase the CuA center as a structurally novel metal site. The cytochrome b subunit of NO reductase has a striking conservation of heme-binding transmembrane segments versus the subunit I of cytochrome c oxidase. Another putative denitrification gene product shows structural relation to the subunit III of the oxidase. N2O reductase and NO reductase may be ancestors of energy-conserving enzymes of the heme-copper oxidase superfamily. More than 30 genes for denitrification are located in a > 30-kb cluster in Pseudomonas stutzeri, and comparable gene clusters have been identified in Pseudomonas aeruginosa and Paracoccus denitrificans. Genes necessary for nitrite reduction and NO reduction have a mosaic arrangement with very few conserved locations within these clusters and relative to each other.

  9. Global Patterns of Diversity and Selection in Human Tyrosinase Gene

    PubMed Central

    Hudjashov, Georgi; Villems, Richard; Kivisild, Toomas

    2013-01-01

    Global variation in skin pigmentation is one of the most striking examples of environmental adaptation in humans. More than two hundred loci have been identified as candidate genes in model organisms and a few tens of these have been found to be significantly associated with human skin pigmentation in genome-wide association studies. However, the evolutionary history of different pigmentation genes is rather complex: some loci have been subjected to strong positive selection, while others evolved under the relaxation of functional constraints in low UV environment. Here we report the results of a global study of the human tyrosinase gene, which is one of the key enzymes in melanin production, to assess the role of its variation in the evolution of skin pigmentation differences among human populations. We observe a higher rate of non-synonymous polymorphisms in the European sample consistent with the relaxation of selective constraints. A similar pattern was previously observed in the MC1R gene and concurs with UV radiation-driven model of skin color evolution by which mutations leading to lower melanin levels and decreased photoprotection are subject to purifying selection at low latitudes while being tolerated or even favored at higher latitudes because they facilitate UV-dependent vitamin D production. Our coalescent date estimates suggest that the non-synonymous variants, which are frequent in Europe and North Africa, are recent and have emerged after the separation of East and West Eurasian populations. PMID:24040225

  10. VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H(+)-ATPase activity.

    PubMed

    Umemoto, N; Ohya, Y; Anraku, Y

    1991-12-25

    A gene, VMA11, is indispensable for expression of the vacuolar membrane H(+)-ATPase activity in the yeast Saccharomyces cerevisiae (Ohya, Y., Umemoto, N., Tanida, I., Ohta, A., Iida, H., and Anraku, Y. (1991) J. Biol. Chem. 266, 13971-13977). The VMA11 gene was isolated from a yeast genomic DNA library by complementation of the vma11 mutation. The nucleotide sequence of the gene predicts a hydrophobic proteolipid of 164 amino acids with a calculated molecular mass of 17,037 daltons. The deduced amino acid sequence shows 56.7% identity, and significant coincidence in amino acid composition with the 16-kDa subunit c (a VMA3 gene product) of the yeast vacuolar membrane H(+)-ATPase. VMA11 and VMA3 on a multicopy plasmid did not suppress the vma3 and vma11 mutation, respectively, suggesting functional independence of the two gene products. Biochemical detection of the VMA11 gene product was unsuccessful, but vacuoles in the VMA11-disrupted cells were not assembled with either subunit c or subunits a and b of the H(+)-ATPase, resulting in defects of the activity and in vivo vacuolar acidification.

  11. Addition of ammonia or amino acids to a nitrogen-depleted medium affects gene expression patterns in yeast cells during alcoholic fermentation.

    PubMed

    Jiménez-Martí, Elena; del Olmo, Marcel Lí

    2008-03-01

    Yeast cells require nitrogen and are capable of selectively using good nitrogen sources in preference to poor ones by means of the regulatory mechanism known as nitrogen catabolite repression (NCR). Herein, the effect of ammonia or amino acid addition to nitrogen-depleted medium on global yeast expression patterns in yeast cells was studied using alcoholic fermentation as a system. The results indicate that there is a differential reprogramming of the gene expression depending on the nitrogen source added. Ammonia addition resulted in a higher expression of genes involved in amino acids biosynthesis while amino acid addition prepares the cells for protein biosynthesis. Therefore, a high percentage of the genes regulated by the transcription factors involved in the regulation of amino acid biosynthesis are more expressed during the first hours after ammonia addition compared with amino acid addition. The opposite occurs for those genes regulated by the transcription factor Sfp1p, related to ribosome biosynthesis. Although both additions include rich nitrogen sources, most NCR-regulated genes are more expressed after adding ammonia than amino acids. One of the differentially expressed genes, YBR174W, is required for optimal growth in synthetic medium.

  12. Sporadic Gene Loss After Duplication Is Associated with Functional Divergence of Sirtuin Deacetylases Among Candida Yeast Species

    PubMed Central

    Rupert, Christopher B.; Heltzel, Justin M. H.; Taylor, Derek J.; Rusche, Laura N.

    2016-01-01

    Gene duplication promotes the diversification of protein functions in several ways. Ancestral functions can be partitioned between the paralogs, or a new function can arise in one paralog. These processes are generally viewed as unidirectional. However, paralogous proteins often retain related functions and can substitute for one another. Moreover, in the event of gene loss, the remaining paralog might regain ancestral functions that had been shed. To explore this possibility, we focused on the sirtuin deacetylase SIR2 and its homolog HST1 in the CTG clade of yeasts. HST1 has been consistently retained throughout the clade, whereas SIR2 is only present in a subset of species. These NAD+-dependent deacetylases generate condensed chromatin that represses transcription and stabilizes tandemly repeated sequences. By analyzing phylogenetic trees and gene order, we found that a single duplication of the SIR2/HST1 gene occurred, likely prior to the emergence of the CTG clade. This ancient duplication was followed by at least two independent losses of SIR2. Functional characterization of Sir2 and Hst1 in three species revealed that these proteins have not maintained consistent functions since the duplication. In particular, the rDNA locus is deacetylated by Sir2 in Candida albicans, by Hst1 in C. lusitaniae, and by neither paralog in C. parapsilosis. In addition, the subtelomeres in C. albicans are deacetylated by Sir2 rather than by Hst1, which is orthologous to the sirtuin associated with Saccharomyces cerevisiae subtelomeres. These differences in function support the model that sirtuin deacetylases can regain ancestral functions to compensate for gene loss. PMID:27543294

  13. Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea.

    PubMed

    He, Peiqing; Li, Li; Liu, Jihua; Bai, Yazhi; Fang, Xisheng

    2016-05-01

    Catechol 2, 3-dioxygenase (C23O) is the key enzyme for aerobic aromatic degradation. Based on clone libraries and quantitative real-time polymerase chain reaction, we characterized diversity and distribution patterns of C23O genes in surface sediments of the Bohai Sea. The results showed that sediments of the Bohai Sea were dominated by genes related to C23O subfamily I.2.A. The samples from wastewater discharge area (DG) and aquaculture farm (KL) showed distinct composition of C23O genes when compared to the samples from Bohai Bay (BH), and total organic carbon was a crucial determinant accounted for the composition variation. C6BH12-38 and C2BH2-35 displayed the highest gene copies and highest ratios to the 16S rRNA genes in KL, and they might prefer biologically labile aromatic hydrocarbons via aquaculture inputs. Meanwhile, C7BH3-48 showed the highest gene copies and highest ratios to the 16S rRNA genes in DG, and this could be selective effect of organic loadings from wastewater discharge. An evident increase in C6BH12-38 and C7BH3-48 gene copies and reduction in diversity of C23O genes in DG and KL indicated composition perturbations of C23O genes and potential loss in functional redundancy. We suggest that ecological habitat and trophic specificity could shape the distribution of C23O genes in the Bohai Sea sediments.

  14. Functional gene composition, diversity and redundancy in microbial stream biofilm communities.

    PubMed

    Dopheide, Andrew; Lear, Gavin; He, Zhili; Zhou, Jizhong; Lewis, Gillian D

    2015-01-01

    We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphorus cycling and energy metabolism genes. Samples from urban and native forest streams had the most similar functional gene composition, while samples from exotic forest and rural streams exhibited the most variation. There were significant differences between nitrogen and sulphur cycling genes detected in native forest and urban samples compared to exotic forest and rural samples, attributed to contrasting proportions of nitrogen fixation, denitrification, and sulphur reduction genes. Most genes were detected only in one or a few samples, with only a small minority occurring in all samples. Nonetheless, 42 of 65 gene families occurred in every sample and overall proportions of gene families were similar among samples from contrasting streams. This suggests the existence of functional gene redundancy among different stream biofilm communities despite contrasting taxonomic composition.

  15. Functional Gene Composition, Diversity and Redundancy in Microbial Stream Biofilm Communities

    PubMed Central

    Dopheide, Andrew; Lear, Gavin; He, Zhili; Zhou, Jizhong; Lewis, Gillian D.

    2015-01-01

    We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphorus cycling and energy metabolism genes. Samples from urban and native forest streams had the most similar functional gene composition, while samples from exotic forest and rural streams exhibited the most variation. There were significant differences between nitrogen and sulphur cycling genes detected in native forest and urban samples compared to exotic forest and rural samples, attributed to contrasting proportions of nitrogen fixation, denitrification, and sulphur reduction genes. Most genes were detected only in one or a few samples, with only a small minority occurring in all samples. Nonetheless, 42 of 65 gene families occurred in every sample and overall proportions of gene families were similar among samples from contrasting streams. This suggests the existence of functional gene redundancy among different stream biofilm communities despite contrasting taxonomic composition. PMID:25849814

  16. Identification of lethal cluster of genes in the yeast transcription network

    NASA Astrophysics Data System (ADS)

    Rho, K.; Jeong, H.; Kahng, B.

    2006-05-01

    Identification of essential or lethal genes would be one of the ultimate goals in drug designs. Here we introduce an in silico method to select the cluster with a high population of lethal genes, called lethal cluster, through microarray assay. We construct a gene transcription network based on the microarray expression level. Links are added one by one in the descending order of the Pearson correlation coefficients between two genes. As the link density p increases, two meaningful link densities pm and ps are observed. At pm, which is smaller than the percolation threshold, the number of disconnected clusters is maximum, and the lethal genes are highly concentrated in a certain cluster that needs to be identified. Thus the deletion of all genes in that cluster could efficiently lead to a lethal inviable mutant. This lethal cluster can be identified by an in silico method. As p increases further beyond the percolation threshold, the power law behavior in the degree distribution of a giant cluster appears at ps. We measure the degree of each gene at ps. With the information pertaining to the degrees of each gene at ps, we return to the point pm and calculate the mean degree of genes of each cluster. We find that the lethal cluster has the largest mean degree.

  17. Isolation and Characterization of Conditional-Lethal Mutations in the Tub1 α-Tubulin Gene of the Yeast Saccharomyces Cerevisiae

    PubMed Central

    Schatz, P. J.; Solomon, F.; Botstein, D.

    1988-01-01

    Microtubules in yeast are functional components of the mitotic and meiotic spindles and are essential for nuclear movement during cell division and mating. We have isolated 70 conditional-lethal mutations in the TUB1 α-tubulin gene of the yeast Saccharomyces cerevisiae using a plasmid replacement technique. Of the 70 mutations isolated, 67 resulted in cold-sensitivity, one resulted in temperature-sensitivity, and two resulted in both. Fine-structure mapping revealed that the mutations were located throughout the TUB1 gene. We characterized the phenotypes caused by 38 of the mutations after shifts of mutants to the nonpermissive temperature. Populations of temperature-shifted mutant cells contained an excess of large-budded cells with undivided nuclei, consistent with the previously determined role of microtubules in yeast mitosis. Several of the mutants arrested growth with a sufficiently uniform morphology to indicate that TUB1 has at least one specific role in the progression of the yeast cell cycle. A number of the mutants had gross defects in microtubule assembly at the restrictive temperature, some with no microtubules and some with excess microtubules. Other mutants contained disorganized microtubules and nuclei. There were no obvious correlations between these phenotypes and the map positions of the mutations. Greater than 90% of the mutants examined were hypersensitive to the antimicrotubule drug benomyl. Mutations that suppressed the cold-sensitive phenotypes of two of the TUB1 alleles occurred in TUB2, the single structural gene specifying β-tubulin. PMID:3066684

  18. Diverse incidences of individual oligopeptides (dipeptidic to hexapeptidic) in proteins of human, bakers' yeast, and Escherichia coli origin registered in the Swiss-Prot data base.

    PubMed Central

    Doi, H; Kitajima, M; Watanabe, I; Kikuchi, Y; Matsuzawa, F; Aikawa, S; Takiguchi, K; Ohno, S

    1995-01-01

    Oligopeptidic permutations of the 20 amino acid residues give rise to proteins of diverse functions. Our long-term goal is to produce a lexicon of oligopeptides, classifying them into at least five categories: (i) ubiquitous, (ii) function specific, (iii) group specific, (iv) species specific, and (v) nonexistent. To begin with, we report on the varying frequencies of individual oligopeptides (dipeptidic to hexapeptidic in length) found among 2862 human proteins, 1942 Saccharomyces cerevisiae proteins, and 2672 Escherichia coli proteins registered in the Swiss-Prot data base (version 29.0, released in June 1994). At all lengths (dipeptides to hexapeptides), homooligopeptides were very prominent among the most frequently occurring varieties in proteins of human and bakers' yeast origins. However, this was not the case with E. coli. While all of the expected 20(3) varieties of tripeptides were found among human proteins, three tripeptides (Cys-Cys-Trp, Trp-Trp-Cys, and Trp-Trp-His) were missing from the bakers' yeast proteins. Three tripeptides (Cys-Ile-Trp, Cys-Met-Tyr, and Cys-Trp-Trp) were also absent from E. coli proteins. Inasmuch as the Swiss-Prot data base already contained 67% of the expected total of 4000 E. coli proteins, it is virtually certain that 96,000 varieties of hexapeptides containing at least one or another of the three missing tripeptides noted above shall be nonexistent in E. coli. Furthermore, the observation of missing tripeptides in the bakers' yeast proteins suggests that nonexistent hexapeptides shall be highly phylum specific. Because of the sample size, only a small fraction of the 20(6) varieties of hexapeptides were expected to be encountered in the present survey. Indeed, only 1.2-1.5% of the possible hexapeptides were found, and the average copy number of observed hexapeptides varied between 1.06 and 1.25. Nevertheless, 33 varieties of hexapeptides occurred in 102-169 copies among human proteins. Furthermore, 15 of the 33 varieties

  19. Novel and diverse integron integrase genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents.

    PubMed

    Elsaied, Hosam; Stokes, H W; Nakamura, Takamichi; Kitamura, Keiko; Fuse, Hiroyuki; Maruyama, Akihiko

    2007-09-01

    The lack of information about mobile DNA in deep-sea hydrothermal vents limits our understanding of the phylogenetic diversity of the mobile genome of bacteria in these environments. We used culture-independent techniques to explore the diversity of the integron/mobile gene cassette system in a variety of hydrothermal vent communities. Three samples, which included two different hydrothermal vent fluids and a mussel species that contained essentially monophyletic sulfur-oxidizing bacterial endosymbionts, were collected from Suiyo Seamount, Izu-Bonin, Japan, and Pika site, Mariana arc. First, using degenerate polymerase chain reaction (PCR) primers, we amplified integron integrase genes from metagenomic DNA from each sample. From vent fluids, we discovered 74 new integrase genes that were classified into 11 previously undescribed integron classes. One integrase gene was recorded in the mussel symbiont and was phylogenetically distant from those recovered from vent fluids. Second, using PCR primers targeting the gene cassette recombination site (59-be), we amplified and subsequently identified 60 diverse gene cassettes. In multicassette amplicons, a total of 13 59-be sites were identified. Most of these sites displayed features that were atypical of the features previously well conserved in this family. The Suiyo vent fluid was characterized by gene cassette open reading frames (ORFs) that had significant homologies with transferases, DNA-binding proteins and metal transporter proteins, while the majority of Pika vent fluid gene cassettes contained novel ORFs with no identifiable homologues in databases. The symbiont gene cassette ORFs were found to be matched with DNA repair proteins, methionine aminopeptidase, aminopeptidase N, O-sialoglycoprotein endopeptidase and glutamate synthase, which are proteins expected to play a role in animal/symbiont metabolism. The success of this study indicates that the integron/gene cassette system is common in deep-sea hydrothermal

  20. Characterization of an AtCCX5 gene from Arabidopsis thaliana that involves in high-affinity K{sup +} uptake and Na{sup +} transport in yeast

    SciTech Connect

    Zhang, Xinxin; Zhang, Min; Takano, Tetsuo; Liu, Shenkui

    2011-10-14

    Highlights: {yields} The AtCCX5 protein coding a putative cation calcium exchanger was characterized. {yields} AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. {yields} AtCCX5 protein did not show the same transport properties as the CAXs. {yields} AtCCX5 protein involves in mediating high-affinity K{sup +} uptake in yeast. {yields} AtCCX5 protein also involves in Na{sup +} transport in yeast. -- Abstract: The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K{sup +}, Na{sup +}, Ca{sup 2+}, Mg{sup 2+}, Fe{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Cd{sup 2+}, Mn{sup 2+}, Ba{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Li{sup +}) were analyzed. AtCCX5 expression was found to affect the response to K{sup +} and Na{sup +} in yeast. The AtCCX5 transformant also showed a little better growth to Zn{sup 2+}. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K{sup +} (0.5 mM), and also suppressed its Na{sup +} sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K{sup +} uptake and was also involved in Na{sup +} transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K{sup +} uptake and Na{sup +} transport in yeast.

  1. Arab gene geography: From population diversities to personalized medical genomics

    PubMed Central

    Tadmouri, Ghazi O.; Sastry, Konduru S.; Chouchane, Lotfi

    2014-01-01

    Genetic disorders are not equally distributed over the geography of the Arab region. While a number of disorders have a wide geographical presence encompassing 10 or more Arab countries, almost half of these disorders occur in a single Arab country or population. Nearly, one-third of the genetic disorders in Arabs result from congenital malformations and chromosomal abnormalities, which are also responsible for a significant proportion of neonatal and perinatal deaths in Arab populations. Strikingly, about two-thirds of these diseases in Arab patients follow an autosomal recessive mode of inheritance. High fertility rates together with increased consanguineous marriages, generally noticed in Arab populations, tend to increase the rates of genetic and congenital abnormalities. Many of the nearly 500 genes studied in Arab people revealed striking spectra of heterogeneity with many novel and rare mutations causing large arrays of clinical outcomes. In this review we provided an overview of Arab gene geography, and various genetic abnormalities in Arab populations, including disorders of blood, metabolic, circulatory and neoplasm, and also discussed their associated molecules or genes responsible for the cause of these disorders. Although studying Arab-specific genetic disorders resulted in a high value knowledge base, approximately 35% of genetic diseases in Arabs do not have a defined molecular etiology. This is a clear indication that comprehensive research is required in this area to understand the molecular pathologies causing diseases in Arab populations. PMID:25780794

  2. Using the Cre-lox system to randomize target gene expression states and generate diverse phenotypes

    PubMed Central

    Niesner, Bradley; Maheshri, Narendra

    2013-01-01

    Modifying the expression of multiple genes enables both deeper understanding of their function and the engineering of complex multigenic cellular phenotypes. However, deletion or overexpression of multiple genes can be laborious and involves multiple sequential genetic modifications. Here we describe a strategy to randomize the expression state of multiple genes in S. cerevisiae using Cre-loxP recombination. By inserting promoters flanked by inverted loxP sites in front of a gene of interest we can randomly turn it OFF or ON, or between 4 distinct expression states. We show at least 6 genes can be randomized independently and argue that using orthogonal loxP sites should increase this number to at least 15. Finally, we show how combining this strategy with mating allows easy introduction of native regulation as an additional expression state and use this to probe the role of 4 different enzymes involved in base excision repair in tolerate exposure to methyl methane sulfonate (MMS), a genotoxic DNA alkylating agent. The set of vectors developed here can be used to randomize the expression of both heterologous genes and endogenous genes, and could immediately prove useful for metabolic engineering in yeast. Because Cre-loxP recombination works in many organisms, this strategy should be readily extendable. PMID:23733452

  3. Human Thyroid Cancer-1 (TC-1) is a vertebrate specific oncogenic protein that protects against copper and pro-apoptotic genes in yeast

    PubMed Central

    Jones, Natalie K.; Arab, Nagla T.; Eid, Rawan; Gharib, Nada; Sheibani, Sara; Vali, Hojatollah; Khoury, Chamel; Murray, Alistair; Boucher, Eric; Mandato, Craig A.; Young, Paul G.; Greenwood, Michael T.

    2015-01-01

    The human Thyroid Cancer-1 (hTC-1) protein, also known as C8orf4 was initially identified as a gene that was up-regulated in human thyroid cancer. Here we show that hTC-1 is a peptide that prevents the effects of over-expressing Bax in yeast. Analysis of the 106 residues of hTC-1 in available protein databases revealed direct orthologues in jawed-vertebrates, including mammals, frogs, fish and sharks. No TC-1 orthologue was detected in lower organisms, including yeast. Here we show that TC-1 is a general pro-survival peptide since it prevents the growth- and cell death-inducing effects of copper in yeast. Human TC-1 also prevented the deleterious effects that occur due to the over-expression of a number of key pro-apoptotic peptides, including YCA1, YBH3, NUC1, and AIF1. Even though the protective effects were more pronounced with the over-expression of YBH3 and YCA1, hTC-1 could still protect yeast mutants lacking YBH3 and YCA1 from the effects of copper sulfate. This suggests that the protective effects of TC-1 are not limited to specific pathways or processes. Taken together, our results indicate that hTC-1 is a pro-survival protein that retains its function when heterologously expressed in yeast. Thus yeast is a useful model to characterize the potential roles in cell death and survival of cancer related genes. PMID:28357300

  4. Functional Metagenomics