ERIC Educational Resources Information Center
Ke, Fengfeng; Kwak, Dean
2013-01-01
The present study investigated the relationships between constructs of web-based student-centered learning and the learning satisfaction of a diverse online student body. Hypotheses on the constructs of student-centered learning were tested using structural equation modeling. The results indicated that five key constructs of student-centered…
Situating and Constructing Diversity in Semi-Structured Interviews
McIntosh, Michele J.; Morse, Janice M.
2015-01-01
Although semi-structured interviews (SSIs) are used extensively in research, scant attention is given to their diversity, underlying assumptions, construction, and broad applications to qualitative and mixed-method research. In this three-part article, we discuss the following: (a) how the SSI is situated historically including its evolution and diversification, (b) the principles of constructing SSIs, and (c) how SSIs are utilized as a stand-alone research method, and as strategy within a mixed-method design. PMID:28462313
30 CFR 817.46 - Hydrologic balance: Siltation structures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... activities include diversion ditches, siltation structures, or roads that are designed, constructed and... surveyor, to be constructed as designed and as approved in the reclamation plan. (3) Any siltation structure which impounds water shall be designed, constructed and maintained in accordance with § 817.49 of...
30 CFR 816.46 - Hydrologic balance: Siltation structures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... activities include diversion ditches, siltation structures, or roads that are designed constructed and..., to be constructed as designed and as approved in the reclamation plan. (3) Any siltation structure which impounds water shall be designed, constructed and maintained in accordance with § 816.49 of this...
30 CFR 816.46 - Hydrologic balance: Siltation structures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... activities include diversion ditches, siltation structures, or roads that are designed constructed and..., to be constructed as designed and as approved in the reclamation plan. (3) Any siltation structure which impounds water shall be designed, constructed and maintained in accordance with § 816.49 of this...
30 CFR 816.46 - Hydrologic balance: Siltation structures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... activities include diversion ditches, siltation structures, or roads that are designed constructed and..., to be constructed as designed and as approved in the reclamation plan. (3) Any siltation structure which impounds water shall be designed, constructed and maintained in accordance with § 816.49 of this...
30 CFR 816.46 - Hydrologic balance: Siltation structures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... activities include diversion ditches, siltation structures, or roads that are designed constructed and..., to be constructed as designed and as approved in the reclamation plan. (3) Any siltation structure which impounds water shall be designed, constructed and maintained in accordance with § 816.49 of this...
Photographic copy of photograph, Walter Lubken, photographer, 1908 (original print ...
Photographic copy of photograph, Walter Lubken, photographer, 1908 (original print located at U.S. Bureau of Reclamation Pacific Northwest Regional Office, Boise, Idaho). GOVERNMENT FORCES CONSTRUCTION CAMP AT THE BOISE RIVER DIVERSION DAMSITE BEFORE BEGINNING OF CONSTRUCTION ON DIVERSION STRUCTURE - Boise Project, Boise River Diversion Dam, Across Boise River, Boise, Ada County, ID
Wang, Xinyu; Lu, Qiongqiong; Chen, Chen; Han, Mo; Wang, Qingrong; Li, Haixia; Niu, Zhiqiang; Chen, Jun
2017-08-30
The rapid development of printable electronic devices with flexible and wearable characteristics requires supercapacitor devices to be printable, light, thin, integrated macro- and micro-devices with flexibility. Herein, we developed a consecutive spray printing strategy to controllably construct and integrate diverse supercapacitors on various substrates. In such a strategy, all supercapacitor components are fully printable, and their thicknesses and shapes are well controlled. As a result, supercapacitors obtained by this strategy achieve diverse structures and shapes. In addition, different nanocarbon and pseudocapacitive materials are applicable for the fabrication of these diverse supercapacitors. Furthermore, the diverse supercapacitors can be readily constructed on various objects with planar, curved, or even rough surfaces (e.g., plastic film, glass, cloth, and paper). More importantly, the consecutive spray printing process can integrate several supercapacitors together in the perpendicular and parallel directions of one substrate by designing the structure of electrodes and separators. This enlightens the construction and integration of fully printable supercapacitors with diverse configurations to be compatible with fully printable electronics on various substrates.
30 CFR 816.46 - Hydrologic balance: Siltation structures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... activities include diversion ditches, siltation structures, or roads that are designed constructed and... designed and as approved in the reclamation plan. (4) Any siltation structure which impounds water shall be designed, constructed and maintained in accordance with § 816.49 of this chapter. (5) Siltation structures...
Construction schedule simulation of a diversion tunnel based on the optimized ventilation time.
Wang, Xiaoling; Liu, Xuepeng; Sun, Yuefeng; An, Juan; Zhang, Jing; Chen, Hongchao
2009-06-15
Former studies, the methods for estimating the ventilation time are all empirical in construction schedule simulation. However, in many real cases of construction schedule, the many factors have impact on the ventilation time. Therefore, in this paper the 3D unsteady quasi-single phase models are proposed to optimize the ventilation time with different tunneling lengths. The effect of buoyancy is considered in the momentum equation of the CO transport model, while the effects of inter-phase drag, lift force, and virtual mass force are taken into account in the momentum source of the dust transport model. The prediction by the present model for airflow in a diversion tunnel is confirmed by the experimental values reported by Nakayama [Nakayama, In-situ measurement and simulation by CFD of methane gas distribution at a heading faces, Shigen-to-Sozai 114 (11) (1998) 769-775]. The construction ventilation of the diversion tunnel of XinTangfang power station in China is used as a case. The distributions of airflow, CO and dust in the diversion tunnel are analyzed. A theory method for GIS-based dynamic visual simulation for the construction processes of underground structure groups is presented that combines cyclic operation network simulation, system simulation, network plan optimization, and GIS-based construction processes' 3D visualization. Based on the ventilation time the construction schedule of the diversion tunnel is simulated by the above theory method.
French Modular Impoundment: Final Cost and Performance Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drown, Peter; French, Bill
This report comprises the Final Cost and Performance Report for the Department of Energy Award # EE0007244, the French Modular Impoundment (aka the “French Dam”.) The French Dam is a system of applying precast modular construction to water control structures. The “French Dam” is a term used to cover the construction means/methods used to construct or rehabilitate dams, diversion structures, powerhouses, and other hydraulic structures which impound water and are covered under FDE’s existing IP (Patents # US8414223B2; US9103084B2.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001; Gupta, Shikha
Robust global models capable of discriminating positive and non-positive carcinogens; and predicting carcinogenic potency of chemicals in rodents were developed. The dataset of 834 structurally diverse chemicals extracted from Carcinogenic Potency Database (CPDB) was used which contained 466 positive and 368 non-positive carcinogens. Twelve non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals and nonlinearity in the data were evaluated using Tanimoto similarity index and Brock–Dechert–Scheinkman statistics. Probabilistic neural network (PNN) and generalized regression neural network (GRNN) models were constructed for classification and function optimization problems using the carcinogenicity end point in rat. Validation of the models wasmore » performed using the internal and external procedures employing a wide series of statistical checks. PNN constructed using five descriptors rendered classification accuracy of 92.09% in complete rat data. The PNN model rendered classification accuracies of 91.77%, 80.70% and 92.08% in mouse, hamster and pesticide data, respectively. The GRNN constructed with nine descriptors yielded correlation coefficient of 0.896 between the measured and predicted carcinogenic potency with mean squared error (MSE) of 0.44 in complete rat data. The rat carcinogenicity model (GRNN) applied to the mouse and hamster data yielded correlation coefficient and MSE of 0.758, 0.71 and 0.760, 0.46, respectively. The results suggest for wide applicability of the inter-species models in predicting carcinogenic potency of chemicals. Both the PNN and GRNN (inter-species) models constructed here can be useful tools in predicting the carcinogenicity of new chemicals for regulatory purposes. - Graphical abstract: Figure (a) shows classification accuracies (positive and non-positive carcinogens) in rat, mouse, hamster, and pesticide data yielded by optimal PNN model. Figure (b) shows generalization and predictive abilities of the interspecies GRNN model to predict the carcinogenic potency of diverse chemicals. - Highlights: • Global robust models constructed for carcinogenicity prediction of diverse chemicals. • Tanimoto/BDS test revealed structural diversity of chemicals and nonlinearity in data. • PNN/GRNN successfully predicted carcinogenicity/carcinogenic potency of chemicals. • Developed interspecies PNN/GRNN models for carcinogenicity prediction. • Proposed models can be used as tool to predict carcinogenicity of new chemicals.« less
Xia, Jie; Hsieh, Jui-Hua; Hu, Huabin; Wu, Song; Wang, Xiang Simon
2017-06-26
Structure-based virtual screening (SBVS) has become an indispensable technique for hit identification at the early stage of drug discovery. However, the accuracy of current scoring functions is not high enough to confer success to every target and thus remains to be improved. Previously, we had developed binary pose filters (PFs) using knowledge derived from the protein-ligand interface of a single X-ray structure of a specific target. This novel approach had been validated as an effective way to improve ligand enrichment. Continuing from it, in the present work we attempted to incorporate knowledge collected from diverse protein-ligand interfaces of multiple crystal structures of the same target to build PF ensembles (PFEs). Toward this end, we first constructed a comprehensive data set to meet the requirements of ensemble modeling and validation. This set contains 10 diverse targets, 118 well-prepared X-ray structures of protein-ligand complexes, and large benchmarking actives/decoys sets. Notably, we designed a unique workflow of two-layer classifiers based on the concept of ensemble learning and applied it to the construction of PFEs for all of the targets. Through extensive benchmarking studies, we demonstrated that (1) coupling PFE with Chemgauss4 significantly improves the early enrichment of Chemgauss4 itself and (2) PFEs show greater consistency in boosting early enrichment and larger overall enrichment than our prior PFs. In addition, we analyzed the pairwise topological similarities among cognate ligands used to construct PFEs and found that it is the higher chemical diversity of the cognate ligands that leads to the improved performance of PFEs. Taken together, the results so far prove that the incorporation of knowledge from diverse protein-ligand interfaces by ensemble modeling is able to enhance the screening competence of SBVS scoring functions.
Zhang, Yongqiang; Wang, Shengzheng; Wu, Shanchao; Zhu, Shiping; Dong, Guoqiang; Miao, Zhenyuan; Yao, Jianzhong; Zhang, Wannian; Sheng, Chunquan; Wang, Wei
2013-06-10
In this article, we present a new approach by merging two powerful synthetic tactics, divergent synthesis and cascade organocatalysis, to create a divergent cascade organocatalysis strategy for the facile construction of new "privileged" substructure-based DOS (pDOS) library. As demonstrated, notably 5 distinct molecular architectures are produced facilely from readily available simple synthons thiazolidinedione and its analogues and α,β-unsaturated aldehydes in 1-3 steps with the powerful strategy. The beauty of the chemistry is highlighted by the efficient formation of structurally new and diverse products from structurally close reactants under the similar reaction conditions. Notably, structurally diverse spiro-thiazolidinediones and -rhodanines are produced from organocatalytic enantioselective 3-component Michael-Michael-aldol cascade reactions of respective thiazolidinediones and rhodanines with enals. Nevertheless, under the similar reaction conditions, reactions of isorhodanine via a Michael-cyclization cascade lead to structurally different fused thiopyranoid scaffolds. This strategy significantly minimizes time- and cost-consuming synthetic works. Furthermore, these molecules possess high structural complexity and functional, stereochemical, and skeletal diversity with similarity to natural scaffolds. In the preliminary biological studies of these molecules, compounds 4f, 8a, and 10a exhibit inhibitory activity against the human breast cancer cells, while compounds 8a, 9a, and 9b display good antifungal activities against Candida albicans and Cryptococcus neoformans. Notably, their structures are different from clinically used triazole antifungal drugs. Therefore, they could serve as good lead compounds for the development of new generation of antifungal agents.
Constructing Knowledge from Interactions.
ERIC Educational Resources Information Center
Lawler, Robert W.
1990-01-01
Using case studies that are functionalist in orientation and computational in technique, the role of control knowledge in developing constructive thinking is illustrated. Further, the integration of related knowledge structures, emanating from diverse sensory modes and pertaining to both place value in addition and angle relationships in geometry,…
Simple Runoff Control Structures Stand Test of Time
Dean M. Knighton
1984-01-01
Diversion terraces and detention basins constructed along the field-forest edge in the Driftless Area reduce farmland runoff and subsequent gullying in the forest below for many years. The structures are inexpensive and simple to build.
30 CFR 817.46 - Hydrologic balance: Siltation structures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... activities include diversion ditches, siltation structures, or roads that are designed, constructed and... best technology currently available. (2) Any siltation structure which impounds water shall be designed...) Sedimentation ponds, when used, shall— (i) Be used individually or in series; (ii) Be located as near as...
30 CFR 817.46 - Hydrologic balance: Siltation structures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... activities include diversion ditches, siltation structures, or roads that are designed, constructed and... best technology currently available. (2) Any siltation structure which impounds water shall be designed...) Sedimentation ponds, when used, shall— (i) Be used individually or in series; (ii) Be located as near as...
30 CFR 817.46 - Hydrologic balance: Siltation structures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... activities include diversion ditches, siltation structures, or roads that are designed, constructed and... best technology currently available. (2) Any siltation structure which impounds water shall be designed...) Sedimentation ponds, when used, shall— (i) Be used individually or in series; (ii) Be located as near as...
30 CFR 817.46 - Hydrologic balance: Siltation structures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... activities include diversion ditches, siltation structures, or roads that are designed, constructed and... best technology currently available. (2) Any siltation structure which impounds water shall be designed...) Sedimentation ponds, when used, shall— (i) Be used individually or in series; (ii) Be located as near as...
Effects of Diverse Forms of Family Structure on Female and Male Homicide
ERIC Educational Resources Information Center
Schwartz, Jennifer
2006-01-01
Utilizing 2000 data on 1,618 counties and seemingly unrelated regression, I assess whether family structure effects on homicide vary across family structure measures and gender. There is evidence of robust, multidimensional family structure effects across constructs reflecting the presence of two-parent families: mother/father absence, shortages…
Jin, Lunqiang; Liang, Feng
2018-03-05
Increasing interests have been invested in the development of synthetic strategies toward the construction of spiro[pyrrolidine-2,3'-oxindole], which is the core structural skeleton in some compounds with diverse biological activities. In this work, an efficient diastereoselective 1,3-dipolar cycloaddition reaction of azomethine ylides generated in situ from 3-amino oxindoles and aldehydes with maleimides has been described. The protocol provides a facile and efficient access to structurally diverse succinimide-fused spiro[pyrrolidine-2,3'-oxindole] compounds in good to high yields (up to 93%) with moderate to excellent diastereoselectivities (up to >95:5). The relative stereochemistry of cycloaddition products has been assigned by X-ray diffraction analysis.
Desta, Adey Feleke; Assefa, Fassil; Leta, Seyoum; Stomeo, Francesca; Wamalwa, Mark; Njahira, Moses; Appolinaire, Djikeng
2014-01-01
A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%–96% for COD, 91%–100% for SO42- and S2-, 92%–94% for BOD, 56%–82% for total Nitrogen and 2%–90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU) - based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%), Betaproteobacteria (10%), Bacteroidia (10%), Deltaproteobacteria (9%) and Gammaproteobacteria (6%). Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia. PMID:25541981
Solamente Mexicanos? Patterns and sources of Hispanic diversity in U.S. metropolitan areas.
Lee, Barrett A; Martin, Michael J R; Hall, Matthew
2017-11-01
Rapid Hispanic growth has been a major source of increasing ethnoracial diversity in the United States. However, diversity within the Hispanic population is frequently obscured by the tendency to lump all Latinos together. Our study examines Hispanic diversity at the local level, drawing insights from the Mexican dominance, Caribbean-centric settlement, spatial assimilation, and economic opportunity perspectives. Measures of the magnitude and structure of Hispanic origin-group diversity during the 1990-2010 period are constructed for 363 metropolitan areas based on each area's shares of Mexicans, Puerto Ricans, Cubans, Dominicans, Salvadorans, Guatemalans, Colombians, and 'others'. We find that diversity magnitude varies markedly across metropolitan Hispanic populations. Although the most diverse metro areas lack a majority origin group, Mexicans often constitute a majority or plurality of local Latinos. Diversity levels and structures have remained relatively stable over time. In both 1990 and 2010, metro areas with more diverse, multigroup Hispanic communities are distinguished by their larger size, smaller proportion of Hispanics, location farther from Mexico and closer to the Caribbean, and greater odds of being a military hub. They also exhibit higher rates of housing construction and lower rates of agricultural and manufacturing employment. We use weighted data to show that Dominican metro dwellers experience the highest Hispanic diversity while the average Mexican lives in an area where four-fifths of all Latinos are Mexican. Overall, our results provide primary support for the Mexican dominance perspective but some support for the other three perspectives as well. Copyright © 2017 Elsevier Inc. All rights reserved.
Scale Construction for Graphing: An Investigation of Students' Resources
ERIC Educational Resources Information Center
Delgado, Cesar; Lucero, Margaret M.
2015-01-01
Graphing is a fundamental part of the scientific process. Scales are key but little-studied components of graphs. Adopting a resources-based framework of cognitive structure, we identify the potential intuitive resources that six undergraduates of diverse majors and years at a public US research university activated when constructing scales, and…
[Microbial diversity of salt lakes in Badain Jaran desert].
Li, Lu; Hao, Chunbo; Wang, Lihua; Pei, Lixin
2015-04-04
We characterized procaryotic biodiversity, community structure and the relationship between the community structure and environmental factors of salt lakes in Badain Jaran desert, Inner Mongolia, China. We constructed 16S rRNA gene clone libraries by molecular biology techniques to analyze the procaryotic phylogenetic relationships, and used R language to compare the community structure of haloalkalophiles in the salt lakes. Water in this region has a high salinity ranging from 165 to 397 g/L. The water is strongly alkaline with pH value above 10. The microbial diversity and community structure of the salt lakes are obviously different. The diversity of bacteria is more abundant than that of archaea. The main categories of bacteria in the samples are Gammaproteobacteria, Bacteroidetes, Alphaproteobacteria, Firmicute and Verrucomicrobia, whereas all archaea only belong to Halobacteriaceae of Euryarchaeota. Salinity is the most important environmental factor influencing the bacterial community structure, whereas the archaea community structure was influenced comprehensively by multiple environmental factors.
ERIC Educational Resources Information Center
Hue, Ming-tak; Kennedy, Kerry John
2014-01-01
One of the challenges facing Hong Kong schools is the growing cultural diversity of the student population that is a result of the growing number of ethnic minority students in the schools. This study uses semi-structured interviews with 12 American, Canadian, Indian, Nepalese and Pakistani teachers working in three secondary schools in the public…
Lee, Hea-Young; Ro, Na-Young; Jeong, Hee-Jin; Kwon, Jin-Kyung; Jo, Jinkwan; Ha, Yeaseong; Jung, Ayoung; Han, Ji-Woong; Venkatesh, Jelli; Kang, Byoung-Cheorl
2016-11-14
Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (H E = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (H E = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher genetic diversity (I = 0.95) and genetic evenness (J' = 0.80), and represented a wider range of phenotypic variation (MD = 9.45 %, CR = 98.40 %). A total of 240 accessions were selected from 3,821 Capsicum accessions based on transcriptome-based 48 SNP markers with genome-wide distribution and 32 traits using a systematic approach. This core collection will be a primary resource for pepper breeders and researchers for further genetic association and functional analyses.
Barkan, David T; Cheng, Xiao-Li; Celino, Herodion; Tran, Tran T; Bhandari, Ashok; Craik, Charles S; Sali, Andrej; Smythe, Mark L
2016-11-23
Disulfide-rich peptides (DRPs) are found throughout nature. They are suitable scaffolds for drug development due to their small cores, whose disulfide bonds impart extraordinary chemical and biological stability. A challenge in developing a DRP therapeutic is to engineer binding to a specific target. This challenge can be overcome by (i) sampling the large sequence space of a given scaffold through a phage display library and by (ii) panning multiple libraries encoding structurally distinct scaffolds. Here, we implement a protocol for defining these diverse scaffolds, based on clustering structurally defined DRPs according to their conformational similarity. We developed and applied a hierarchical clustering protocol based on DRP structural similarity, followed by two post-processing steps, to classify 806 unique DRP structures into 81 clusters. The 20 most populated clusters comprised 85% of all DRPs. Representative scaffolds were selected from each of these clusters; the representatives were structurally distinct from one another, but similar to other DRPs in their respective clusters. To demonstrate the utility of the clusters, phage libraries were constructed for three of the representative scaffolds and panned against interleukin-23. One library produced a peptide that bound to this target with an IC 50 of 3.3 μM. Most DRP clusters contained members that were diverse in sequence, host organism, and interacting proteins, indicating that cluster members were functionally diverse despite having similar structure. Only 20 peptide scaffolds accounted for most of the natural DRP structural diversity, providing suitable starting points for seeding phage display experiments. Through selection of the scaffold surface to vary in phage display, libraries can be designed that present sequence diversity in architecturally distinct, biologically relevant combinations of secondary structures. We supported this hypothesis with a proof-of-concept experiment in which three phage libraries were constructed and panned against the IL-23 target, resulting in a single-digit μM hit and suggesting that a collection of libraries based on the full set of 20 scaffolds increases the potential to identify efficiently peptide binders to a protein target in a drug discovery program.
The structure of harassment and abuse in the workplace: a factorial comparison of two measures.
Fendrich, Michael; Woodword, Paul; Richman, Judith A
2002-08-01
The structures of two measures examining negative experiences in the workplace, one focusing primarily on sexual harassment (SEQ) and one focusing on workplace abuse (GWA), were examined in detail. This article investigated whether the five subscales for the relatively unexplored measure (GWA) are reliably measured by a single underlying construct. It also investigated whether the two workplace-based measures are distinct but related constructs and the consistency of their factor structure across genders. Using a large and diverse organizational survey derived from a Midwestern university, analyses supported the distinctiveness of the two measures and showed that the factor structures for the two constructs were remarkably similar across genders. Analyses also suggested that indices of extreme behavior within each of the constructs were not reliably measured. The findings have important implications for data collection strategies in research focused on negative workplace experiences. This study provides considerable support for the continued use of both measures in research investigating the impact of adverse workplace environment on health.
Johnson, Oliver K.; Kurniawan, Christian
2018-02-03
Properties closures delineate the theoretical objective space for materials design problems, allowing designers to make informed trade-offs between competing constraints and target properties. In this paper, we present a new algorithm called hierarchical simplex sampling (HSS) that approximates properties closures more efficiently and faithfully than traditional optimization based approaches. By construction, HSS generates samples of microstructure statistics that span the corresponding microstructure hull. As a result, we also find that HSS can be coupled with synthetic polycrystal generation software to generate diverse sets of microstructures for subsequent mesoscale simulations. Finally, by more broadly sampling the space of possible microstructures, itmore » is anticipated that such diverse microstructure sets will expand our understanding of the influence of microstructure on macroscale effective properties and inform the construction of higher-fidelity mesoscale structure-property models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Oliver K.; Kurniawan, Christian
Properties closures delineate the theoretical objective space for materials design problems, allowing designers to make informed trade-offs between competing constraints and target properties. In this paper, we present a new algorithm called hierarchical simplex sampling (HSS) that approximates properties closures more efficiently and faithfully than traditional optimization based approaches. By construction, HSS generates samples of microstructure statistics that span the corresponding microstructure hull. As a result, we also find that HSS can be coupled with synthetic polycrystal generation software to generate diverse sets of microstructures for subsequent mesoscale simulations. Finally, by more broadly sampling the space of possible microstructures, itmore » is anticipated that such diverse microstructure sets will expand our understanding of the influence of microstructure on macroscale effective properties and inform the construction of higher-fidelity mesoscale structure-property models.« less
Semiotic diversity in utterance production and the concept of ‘language’
Kendon, Adam
2014-01-01
Sign language descriptions that use an analytic model borrowed from spoken language structural linguistics have proved to be not fully appropriate. Pictorial and action-like modes of expression are integral to how signed utterances are constructed and to how they work. However, observation shows that speakers likewise use kinesic and vocal expressions that are not accommodated by spoken language structural linguistic models, including pictorial and action-like modes of expression. These, also, are integral to how speaker utterances in face-to-face interaction are constructed and to how they work. Accordingly, the object of linguistic inquiry should be revised, so that it comprises not only an account of the formal abstract systems that utterances make use of, but also an account of how the semiotically diverse resources that all languaging individuals use are organized in relation to one another. Both language as an abstract system and languaging should be the concern of linguistics. PMID:25092661
Liao, Chenzhong; Liu, Bing; Shi, Leming; Zhou, Jiaju; Lu, Xian-Ping
2005-07-01
Based on the structural characters of PPAR modulators, a virtual combinatorial library containing 1226,625 compounds was constructed using SMILES strings. Selected ADME filters were employed to compel compounds having poor drug-like properties from this library. This library was converted to sdf and mol2 files by CONCORD 4.0, and was then docked to PPARgamma by DOCK 4.0 to identify new chemical entities that may be potential drug leads against type 2 diabetes and other metabolic diseases. The method to construct virtual combinatorial library using SMILES strings was further visualized by Visual Basic.net that can facilitate the needs of generating other type virtual combinatorial libraries.
Diverse binding site structures revealed in homology models of polyreactive immunoglobulins
NASA Astrophysics Data System (ADS)
Ramsland, Paul A.; Guddat, Luke W.; Edmundson, Allen B.; Raison, Robert L.
1997-09-01
We describe here computer-assisted homology models of the combiningsite structure of three polyreactive immunoglobulins. Template-based modelsof Fv (VL-VH) fragments were derived forthe surface IgM expressed by the malignant CD5 positive B cells from threepatients with chronic lymphocytic leukaemia (CLL). The conserved frameworkregions were constructed using crystal coordinates taken from highlyhomologous human variable domain structures (Pot and Hil). Complementaritydetermining regions (CDRs) were predicted by grafting loops, taken fromknown immunoglobulin structures, onto the Fv framework models. The CDRtemplates were chosen, where possible, to be of the same length and of highresidue identity or similarity. LCDR1, 2 and 3 as well as HCDR1 and 2 forthe Fv were constructed using this strategy. For HCDR3 prediction, adatabase containing the Cartesian coordinates of 30 of these loops wascompiled from unliganded antibody X-ray crystallographic structures and anHCDR3 of the same length as that of the B CLL Fv was selected as a template.In one case (Yar), the resulting HCDR3 model gave unfavourable interactionswhen incorporated into the Fv model. This HCDR3 was therefore modelled usingan alternative strategy of construction of the loop stems, using apreviously described HCDR3 conformation (Pot), followed by chain closurewith a β-turn. The template models were subjected to positionalrefinement using energy minimisation and molecular dynamics simulations(X-PLOR). An electrostatic surface description (GRASP) did not reveal acommon structural feature within the binding sites of the three polyreactiveFv. Thus, polyreactive immunoglobulins may recognise similar and multipleantigens through a diverse array of binding site structures.
Shen, Shuo
2017-04-04
I studied the community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan Salt Lake. I isolated and cultured the moderate halophilic bacteria on different selective media. After the 16S rRNA gene sequences was amplified and measured, I constructed the phylogenic tree, analyzed the community structure and calculated the diversity indexes according to the 16S rRNA gene information. A total of 421 moderate halophilic bacteria were isolated from water and mud samples in Qrhan Salt Lake. The 16S rRNA gene information showed that 4 potential novel species belonged to the family Bacillaceae. Eighty-three model strains belonged to 3 phylurms 6 families 16 genus. Among them, Bacillus sp., Oceanobacillus sp. and Halomonas sp. were dominant species. Diversity analysis showed that the diversity of strains isolated from water sample was higher than that from mud sample, but the dominance degree of strains isolated from mud sample was higher than that from water sample. The genetic diversity of moderate halophilic bacteria isolated from Qrhan Salt Lake was abundant. Also, there were dominant and novel species of culturable moderate halophilic bacteria in this lake.
Zhang, Chi; Tian, Jun; Ren, Jun; Wang, Zhongwen
2017-01-26
Aiming to develop efficient and general strategies for construction of complex and diverse polycyclic skeletons, we have successfully developed [4+3]IMPC (intramolecular parallel cycloaddition) of cyclopropane 1,1-diesters with [3]dendralenes. With a combination of the [4+3]IMPC and subsequent [4+n] cycloadditions, trans-[5.3.0]decane skeleton and its corresponding structurally complex and diverse polycyclic variants could be constructed efficiently. This novel [4+3] cycloaddition reaction mode of donor-acceptor cyclopropanes proceeds as a result of the ring-strain relief of a trans-[3.3.0]octane. We strongly believe that the developed methods will demonstrate potential applications in natural products synthesis and drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Psychometric Evaluation of Lexical Diversity Indices: Assessing Length Effects.
Fergadiotis, Gerasimos; Wright, Heather Harris; Green, Samuel B
2015-06-01
Several novel techniques have been developed recently to assess the breadth of a speaker's vocabulary exhibited in a language sample. The specific aim of this study was to increase our understanding of the validity of the scores generated by different lexical diversity (LD) estimation techniques. Four techniques were explored: D, Maas, measure of textual lexical diversity, and moving-average type-token ratio. Four LD indices were estimated for language samples on 4 discourse tasks (procedures, eventcasts, story retell, and recounts) from 442 adults who are neurologically intact. The resulting data were analyzed using structural equation modeling. The scores for measure of textual lexical diversity and moving-average type-token ratio were stronger indicators of the LD of the language samples. The results for the other 2 techniques were consistent with the presence of method factors representing construct-irrelevant sources. These findings offer a deeper understanding of the relative validity of the 4 estimation techniques and should assist clinicians and researchers in the selection of LD measures of language samples that minimize construct-irrelevant sources.
NASA Astrophysics Data System (ADS)
Remo, Jonathan W. F.; Khanal, Anish; Pinter, Nicholas
2013-09-01
Blunt-nosed chevron dikes, a new invention now being widely constructed on the Middle Mississippi River (MMR), have been justified as a tool for enhancing physical-aquatic habitat. Chevron dikes were initially designed to concentrate flow, induce channel scour, and thus facilitate river navigation. More recently, these structures have been justified, in part, for promoting habitat heterogeneity. The ability of chevrons to create and diversify physical-aquatic habitat, however, has not been empirically evaluated. To assess the ability of chevrons to create and diversify physical-aquatic habitat, we compiled hydrologic and geospatial data for three channel reference conditions along a 2.0 km (∼140 ha) reach of the MMR where three chevrons were constructed in late 2007. We used the hydrologic and hydraulic data to construct detailed 2-D hydrodynamic models for three reference condition: historic (circa 1890), pre-chevron, and post-chevron channel conditions. These models documented changes in depths and flow dynamics for a wide range of in-channel discharges. Depth-velocity habitat classes were used to assess change in physical-aquatic habitat patches and spatial statistical tools in order to evaluate the reach-scale habitat patch diversity. Comparisons of pre- and post-chevron conditions revealed increases in deep to very deep (>3.0 m) areas of slow moving (<0.6 m/s) water downstream of these structures under emergent flow conditions (⩽1.5 × mean annual flow [MAF]). Chevron construction added up to 7.6 ha of potential over-wintering habitat (deep [>3.0 m], low velocity [<0.6 m/s]). Chevron construction also created some (0.8-3.8 ha) shallow-water habitat (0-1.5 m depth with a 0-0.6 m/s velocity) for flows ⩽2.0 × MAF and contributed to an 8-35% increase in physical-aquatic-habitat diversity compared to pre-chevron channel conditions. However, modeling of the historic reference condition (less engineered channel, circa 1890) revealed that the historical physical-aquatic-habitat mosaic consisted of a wider and shallower channel with: 45-390% more shallow-water habitat (2.4-11.0 ha) and 22-83% more physical-aquatic-habitat diversity, but little over-wintering habitat (<0.4 ha). Thus, while chevron construction increased over-wintering habitat, shallow-water habitat, and physical-aquatic-habitat diversity relative to the pre-chevron channel condition, these types of physical-aquatic habitat are different from what was historically found along this reach. Constructing chevrons dikes, or other dike-like structures in the river channel, can change the physical-aquatic habitat patch mosaic and likely contribute to small increases in physical-aquatic-habitat heterogeneity. However, differences in the types, quantity, and diversity of physical-aquatic-habitat patches created by chevron dikes in comparison to the physical-aquatic-habitat patch mosaic of historic channel underscore the need for additional research to determine which physical-aquatic-habitat patches are critical for the recovery of endangered or threatened aquatic organisms.
Shu, Yi; Haque, Farzin; Shu, Dan; Li, Wei; Zhu, Zhenqi; Kotb, Malak; Lyubchenko, Yuri; Guo, Peixuan
2013-01-01
Due to structural flexibility, RNase sensitivity, and serum instability, RNA nanoparticles with concrete shapes for in vivo application remain challenging to construct. Here we report the construction of 14 RNA nanoparticles with solid shapes for targeting cancers specifically. These RNA nanoparticles were resistant to RNase degradation, stable in serum for >36 h, and stable in vivo after systemic injection. By applying RNA nanotechnology and exemplifying with these 14 RNA nanoparticles, we have established the technology and developed “toolkits” utilizing a variety of principles to construct RNA architectures with diverse shapes and angles. The structure elements of phi29 motor pRNA were utilized for fabrication of dimers, twins, trimers, triplets, tetramers, quadruplets, pentamers, hexamers, heptamers, and other higher-order oligomers, as well as branched diverse architectures via hand-in-hand, foot-to-foot, and arm-on-arm interactions. These novel RNA nanostructures harbor resourceful functionalities for numerous applications in nanotechnology and medicine. It was found that all incorporated functional modules, such as siRNA, ribozymes, aptamers, and other functionalities, folded correctly and functioned independently within the nanoparticles. The incorporation of all functionalities was achieved prior, but not subsequent, to the assembly of the RNA nanoparticles, thus ensuring the production of homogeneous therapeutic nanoparticles. More importantly, upon systemic injection, these RNA nanoparticles targeted cancer exclusively in vivo without accumulation in normal organs and tissues. These findings open a new territory for cancer targeting and treatment. The versatility and diversity in structure and function derived from one biological RNA molecule implies immense potential concealed within the RNA nanotechnology field. PMID:23604636
Performance and bacterial community structure of a 10-years old constructed mangrove wetland.
Tian, Tingting; Tam, Nora F Y; Zan, Qijie; Cheung, S G; Shin, Paul K S; Wong, Y S; Zhang, Li; Chen, Zhanghe
2017-11-30
Constructed mangrove wetland has been used for wastewater treatment but its long-term performance has not been reported. One-year monitoring of a 10-years old horizontal subsurface-flow constructed mangrove wetland consisting of three belts, two with mangrove plants and one without, revealed that the system maintained high and stable removal percentages of organic matter and nutrients, and planted belts performed better than unplanted control. Substrates in belts planted with Aegiceras corniculatum or Kandelia obovata had higher abundance of ammonifiers, nitrifiers and denitrifiers but lower total heterotrophic bacteria than unplanted substrate. Denaturing gradient gel electrophoresis showed that microbial diversity in planted substrate was significantly lower than that in unplanted one. The bacteria in substrates, irrespective to belts, were phylogenetically related to Proteobacteria (most dominant), Acidobacteria, Firmicutes, Nitrospirae, Gemmatimonadetes, Chloroflexi and Cyanobacteria. The steady performance of this 10-year old constructed mangrove wetland was affected by the abundance and diversity of bacterial community in substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... reclamation operations. Diversion means a channel, embankment, or other manmade structure constructed for the... direct response to precipitation in the immediate watershed and whose channel bottom is always above the... means precipitation that flows overland before entering a defined stream channel and becoming streamflow...
Stratigraphy and structure of coalbed methane reservoirs in the United States: an overview
Pashin, J.C.
1998-01-01
Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United states is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compression and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United States is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and Cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compressional and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.
Wanted: Good Leaders for Urban Schools
ERIC Educational Resources Information Center
Durden, Phyllis C.
2008-01-01
Differences in values and socio-economics, issues of diversity and equity, and changing educational expectations and structures challenge leadership preparation programs, particularly those in urban environments. This article focuses on discerning major urban education issues, defining constructs of leadership for urban schools, and identifying a…
Assenberg, R; Delmas, O; Morin, B; Graham, S C; De Lamballerie, X; Laubert, C; Coutard, B; Grimes, J M; Neyts, J; Owens, R J; Brandt, B W; Gorbalenya, A; Tucker, P; Stuart, D I; Canard, B; Bourhy, H
2010-08-01
Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication. Copyright 2010 Elsevier B.V. All rights reserved.
Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.
An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao
2017-07-25
Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.
Semiotic diversity in utterance production and the concept of 'language'.
Kendon, Adam
2014-09-19
Sign language descriptions that use an analytic model borrowed from spoken language structural linguistics have proved to be not fully appropriate. Pictorial and action-like modes of expression are integral to how signed utterances are constructed and to how they work. However, observation shows that speakers likewise use kinesic and vocal expressions that are not accommodated by spoken language structural linguistic models, including pictorial and action-like modes of expression. These, also, are integral to how speaker utterances in face-to-face interaction are constructed and to how they work. Accordingly, the object of linguistic inquiry should be revised, so that it comprises not only an account of the formal abstract systems that utterances make use of, but also an account of how the semiotically diverse resources that all languaging individuals use are organized in relation to one another. Both language as an abstract system and languaging should be the concern of linguistics. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xingfu; Shi, Qing; Wang, Huaping; Sun, Tao; Huang, Qiang; Fukuda, Toshio
2017-12-01
In this paper, a magnetically-guided assembly method is proposed to methodically construct diverse modules with a microfiber-based network for promoting nutrient circulation and waste excretion of cell culture. The microfiber is smoothly spun from the microfluidic device via precise control of the volumetric flow rate, and superparamagnetic nanoparticles within the alginate solution of the microfluidic fiber enable its magnetic response. The magnetized device is used to effectively capture the microfiber using its powerful magnetic flux density and high magnetic field gradient. Subsequently, the dot-matrix magnetic flux density is used to distribute the microfibers in an orderly fashion that depends on the array structure of the magnetized device. Furthermore, the magnetic microfluidic fibers are spatially organized into desired locations and are cross-aligned to form highly interconnected netlike modules in a liquid environment. Therefore, the experimental results herein demonstrate the structural controllability and stability of various modules and establish the effectiveness of the proposed method.
Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma
2015-02-15
Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.
An ancient rule for constructing dodecagonal quasiperiodic patterns
NASA Astrophysics Data System (ADS)
Ajlouni, Rima
2017-02-01
The discovery of complex dodecagonal patterns in historical Islamic architecture is generating a renewed interest into understanding the mathematical principles of traditional Islamic geometry. By employing a compass and a straightedge, ancient craftsmen utilized consistent design principles that allowed for diverse geometric expressions to be realized throughout the ancient world. Derived from these principles, a global multi-level structural model is proposed that provides a general guiding principle for constructing a wide variety of infinite dodecagon-based quasiperiodic patterns.
Isidro-Llobet, Albert; Hadje Georgiou, Kathy; Galloway, Warren R J D; Giacomini, Elisa; Hansen, Mette R; Méndez-Abt, Gabriela; Tan, Yaw Sing; Carro, Laura; Sore, Hannah F; Spring, David R
2015-04-21
Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity.
Leveling the Playing Field: Graphical Aids on Mathematics Tests
ERIC Educational Resources Information Center
Jiménez, Albert M.; Nixon, Casey B.; Zepeda, Sally J.
2017-01-01
This research suggests that structural accommodation can be implemented during the construction phase of standardized mathematics examinations. Data from a racially diverse district in the United States are used to compare student performance on questions with and without graphical aids. Findings suggest that mathematics questions possessing…
Components of Conceptual Ecologies
ERIC Educational Resources Information Center
Park, Hyun Ju
2007-01-01
The theory of conceptual change is criticized because it focuses only on supposed underlying logical structures and rational process processes, and lacks attention to affective aspects as well as motivational constructs in students' learning science. This is a vast underestimation of the complexity and diversity of one's change of conceptions. The…
The Regional Structure of Technical Innovation
NASA Astrophysics Data System (ADS)
O'Neale, Dion
2014-03-01
There is strong evidence that the productivity per capita of cities and regions increases with population. One likely explanation for this phenomenon is that densely populated regions bring together otherwise unlikely combinations of individuals and organisations with diverse, specialised capabilities, leading to increased innovation and productivity. We have used the REGPAT patent database to construct a bipartite network of geographic regions and the patent classes for which those regions display a revealed comparative advantage. By analysing this network, we can infer relationships between different types of patent classes - and hence the structure of (patentable) technology. The network also provides a novel perspective for studying the combinations of technical capabilities in different geographic regions. We investigate measures such as the diversity and ubiquity of innovations within regions and find that diversity (resp. ubiquity) is positively (resp. negatively) correlated with population. We also find evidence of a nested structure for technical innovation. That is, specialised innovations tend to occur only when other more general innovations are already present.
NASA Astrophysics Data System (ADS)
Huigens, Robert W., III; Morrison, Karen C.; Hicklin, Robert W.; Flood, Timothy A., Jr.; Richter, Michelle F.; Hergenrother, Paul J.
2013-03-01
High-throughput screening is the dominant method used to identify lead compounds in drug discovery. As such, the makeup of screening libraries largely dictates the biological targets that can be modulated and the therapeutics that can be developed. Unfortunately, most compound-screening collections consist principally of planar molecules with little structural or stereochemical complexity, compounds that do not offer the arrangement of chemical functionality necessary for the modulation of many drug targets. Here we describe a novel, general and facile strategy for the creation of diverse compounds with high structural and stereochemical complexity using readily available natural products as synthetic starting points. We show through the evaluation of chemical properties (which include fraction of sp3 carbons, ClogP and the number of stereogenic centres) that these compounds are significantly more complex and diverse than those in standard screening collections, and we give guidelines for the application of this strategy to any suitable natural product.
Using the gini coefficient to measure the chemical diversity of small-molecule libraries.
Weidlich, Iwona E; Filippov, Igor V
2016-08-15
Modern databases of small organic molecules contain tens of millions of structures. The size of theoretically available chemistry is even larger. However, despite the large amount of chemical information, the "big data" moment for chemistry has not yet provided the corresponding payoff of cheaper computer-predicted medicine or robust machine-learning models for the determination of efficacy and toxicity. Here, we present a study of the diversity of chemical datasets using a measure that is commonly used in socioeconomic studies. We demonstrate the use of this diversity measure on several datasets that were constructed to contain various congeneric subsets of molecules as well as randomly selected molecules. We also apply our method to a number of well-known databases that are frequently used for structure-activity relationship modeling. Our results show the poor diversity of the common sources of potential lead compounds compared to actual known drugs. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications.
An, Qi; Huang, Tao; Shi, Feng
2018-05-16
Covalent layer-by-layer (LbL) assembly is a powerful method used to construct functional ultrathin films that enables nanoscopic structural precision, componential diversity, and flexible design. Compared with conventional LbL films built using multiple noncovalent interactions, LbL films prepared using covalent crosslinking offer the following distinctive characteristics: (i) enhanced film endurance or rigidity; (ii) improved componential diversity when uncharged species or small molecules are stably built into the films by forming covalent bonds; and (iii) increased structural diversity when covalent crosslinking is employed in componential, spacial, or temporal (labile bonds) selective manners. In this review, we document the chemical methods used to build covalent LbL films as well as the film properties and applications achievable using various film design strategies. We expect to translate the achievement in the discipline of chemistry (film-building methods) into readily available techniques for materials engineers and thus provide diverse functional material design protocols to address the energy, biomedical, and environmental challenges faced by the entire scientific community.
Catalytic diversity in self-propagating peptide assemblies
NASA Astrophysics Data System (ADS)
Omosun, Tolulope O.; Hsieh, Ming-Chien; Childers, W. Seth; Das, Dibyendu; Mehta, Anil K.; Anthony, Neil R.; Pan, Ting; Grover, Martha A.; Berland, Keith M.; Lynn, David G.
2017-08-01
The protein-only infectious agents known as prions exist within cellular matrices as populations of assembled polypeptide phases ranging from particles to amyloid fibres. These phases appear to undergo Darwinian-like selection and propagation, yet remarkably little is known about their accessible chemical and biological functions. Here we construct simple peptides that assemble into well-defined amyloid phases and define paracrystalline surfaces able to catalyse specific enantioselective chemical reactions. Structural adjustments of individual amino acid residues predictably control both the assembled crystalline order and their accessible catalytic repertoire. Notably, the density and proximity of the extended arrays of enantioselective catalytic sites achieve template-directed polymerization of new polymers. These diverse amyloid templates can now be extended as dynamic self-propagating templates for the construction of even more complex functional materials.
Personal Construct Psychology Model of School Counselling Delivery
ERIC Educational Resources Information Center
Truneckova, Deborah; Viney, Linda L.
2012-01-01
With increasing focus on the mental health of young people by schools, greater attention is directed to the responsiveness and effectiveness of models of psychological practice in schools. A model will be presented with a coherent theoretical structure within which the school counsellor can understand the diverse psychological symptoms and…
Design and construction of phosphorus removal structures for improving water quality
USDA-ARS?s Scientific Manuscript database
Phosphorus (P) input to surface waters is considered the most limiting nutrient with regard to eutrophication. The result has been a negative impact on recreation, ecosystem diversity, drinking water treatment, and the associated economics of each. Depending on region, over 50% of P inputs to surfa...
Seeing Diversity in Difference: Experiences in an Ultra-Orthodox Jewish College.
ERIC Educational Resources Information Center
Starr-Glass, David; Schwartzbaum, Avraham
2002-01-01
Reviews organizational and administrative history of Ultra-Orthodox Jewish College in Jerusalem, Israel, that leads to an institutional structure that supports distinctiveness. Examines influence of ultra-Orthodox communities in Jerusalem on the academic quality and distinctiveness of the college. Uses perspective of social construct theory to…
Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali
2013-09-01
The research aims to develop global modeling tools capable of categorizing structurally diverse chemicals in various toxicity classes according to the EEC and European Community directives, and to predict their acute toxicity in fathead minnow using set of selected molecular descriptors. Accordingly, artificial intelligence approach based classification and regression models, such as probabilistic neural networks (PNN), generalized regression neural networks (GRNN), multilayer perceptron neural network (MLPN), radial basis function neural network (RBFN), support vector machines (SVM), gene expression programming (GEP), and decision tree (DT) were constructed using the experimental toxicity data. Diversity and non-linearity in the chemicals' data were tested using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. Predictive and generalization abilities of various models constructed here were compared using several statistical parameters. PNN and GRNN models performed relatively better than MLPN, RBFN, SVM, GEP, and DT. Both in two and four category classifications, PNN yielded a considerably high accuracy of classification in training (95.85 percent and 90.07 percent) and validation data (91.30 percent and 86.96 percent), respectively. GRNN rendered a high correlation between the measured and model predicted -log LC50 values both for the training (0.929) and validation (0.910) data and low prediction errors (RMSE) of 0.52 and 0.49 for two sets. Efficiency of the selected PNN and GRNN models in predicting acute toxicity of new chemicals was adequately validated using external datasets of different fish species (fathead minnow, bluegill, trout, and guppy). The PNN and GRNN models showed good predictive and generalization abilities and can be used as tools for predicting toxicities of structurally diverse chemical compounds. Copyright © 2013 Elsevier Inc. All rights reserved.
Roads, interrupted dispersal, and genetic diversity in timber rattlesnakes.
Clark, Rulon W; Brown, William S; Stechert, Randy; Zamudio, Kelly R
2010-08-01
Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine-scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic-assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.
Single-stranded DNA and RNA origami.
Han, Dongran; Qi, Xiaodong; Myhrvold, Cameron; Wang, Bei; Dai, Mingjie; Jiang, Shuoxing; Bates, Maxwell; Liu, Yan; An, Byoungkwon; Zhang, Fei; Yan, Hao; Yin, Peng
2017-12-15
Self-folding of an information-carrying polymer into a defined structure is foundational to biology and offers attractive potential as a synthetic strategy. Although multicomponent self-assembly has produced complex synthetic nanostructures, unimolecular folding has seen limited progress. We describe a framework to design and synthesize a single DNA or RNA strand to self-fold into a complex yet unknotted structure that approximates an arbitrary user-prescribed shape. We experimentally construct diverse multikilobase single-stranded structures, including a ~10,000-nucleotide (nt) DNA structure and a ~6000-nt RNA structure. We demonstrate facile replication of the strand in vitro and in living cells. The work here thus establishes unimolecular folding as a general strategy for constructing complex and replicable nucleic acid nanostructures, and expands the design space and material scalability for bottom-up nanotechnology. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Guan, Wei; Yin, Min; He, Tao; Xie, Shuguang
2015-10-01
Microorganisms attached on the surfaces of substrate materials in constructed wetland play crucial roles in the removal of organic and inorganic pollutants. However, the impact of substrate material on wetland microbial community structure remains unclear. Moreover, little is known about microbial community in constructed wetland purifying polluted surface water. In this study, Illumina high-throughput sequencing was applied to profile the spatial variation of microbial communities in three pilot-scale surface water constructed wetlands with different substrate materials (sand, zeolite, and gravel). Bacterial community diversity and structure showed remarkable spatial variation in both sand and zeolite wetland systems, but changed slightly in gravel wetland system. Bacterial community was found to be significantly influenced by wetland substrate type. A number of bacterial groups were detected in wetland systems, including Proteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, Cyanobacteria, Nitrospirae, Planctomycetes, Actinobacteria, Firmicutes, Chlorobi, Spirochaetae, Gemmatimonadetes, Deferribacteres, OP8, WS3, TA06, and OP3, while Proteobacteria (accounting for 29.1-62.3 %), mainly composed of Alpha-, Beta-, Gamma-, and Deltaproteobacteria, showed the dominance and might contribute to the effective reduction of organic pollutants. In addition, Nitrospira-like microorganisms were abundant in surface water constructed wetlands.
Taylor, Duncan; Biedermann, Alex; Hicks, Tacha; Champod, Christophe
2018-03-01
The hierarchy of propositions has been accepted amongst the forensic science community for some time. It is also accepted that the higher up the hierarchy the propositions are, against which the scientist are competent to evaluate their results, the more directly useful the testimony will be to the court. Because each case represents a unique set of circumstances and findings, it is difficult to come up with a standard structure for evaluation. One common tool that assists in this task is Bayesian networks (BNs). There is much diversity in the way that BN can be constructed. In this work, we develop a template for BN construction that allows sufficient flexibility to address most cases, but enough commonality and structure that the flow of information in the BN is readily recognised at a glance. We provide seven steps that can be used to construct BNs within this structure and demonstrate how they can be applied, using a case example. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Remo, J. W.; Pinter, N.
2012-12-01
Along the Middle Mississippi River (MMR), rehabilitation of aquatic habitat is being undertaken using river-training structures such as the blunt-nose chevron dike. Chevron dikes were initially designed to concentrate flow and thus facilitate river navigation, but this new river-training structure is now justified, in part, as a tool for creating aquatic habitat and promoting habitat heterogeneity. The ability of chevrons to create and diversify physical-aquatic habitat has not been verified. In this study, we used 2-D hydrodynamic modeling and reach-scale habitat metrics to assess changes in physical habitat and habitat heterogeneity for pre-chevron and post-chevron along a 2- km reach of the Mississippi River at St. Louis, MO. A historic reference condition (circa 1890) was also modeled to compare physical habitat in a less engineered river channel versus the new physical-habitat patches created by chevron-dike enhancement. This modeling approach quantified changes in habitat availability and diversity among selected reference conditions for a wide range of in-channel flows. Depth-velocity habitat classes were used for assessment of change in physical-habitat patches, and spatial statistical tools were employed to evaluate the reach-scale habitat patch diversity. Modeling of post-chevron channel conditions revealed increases in deep to very deep (>3.0 m) areas of slow moving (<0.6 m/s) water downstream of these structures under emergent flow conditions (≤ 1.5 x mean annual flow[MAF]) relative to pre-construction conditions. Chevron construction increased potential over-wintering habitat (deep [>3.0 m], low velocity [<0.6 m/s]) by up to 7.6 ha. The addition of the chevrons to the river channel also created some (0.8-3.8 ha) shallow-water habitat (0-1.5 m depth with a 0-0.6 m/s velocity) for flows ≤2.0 x MAF and contributed to an 8-35% increase in physical-habitat diversity compared to pre-chevron channel conditions. Comparison of the historic reference condition (less engineered channel, circa 1890) with the post-chevron channel condition, however, revealed historical conditions consisted of a physical-habitat mosaic comprised of a wider and shallower historic river channel with: very little over-wintering habitat (<0.4 ha), 45-390% more shallow-water habitat (2.4 - 11.0 ha), and 22-83% more physical-habitat diversity. Thus, while chevrons construction within the study reaches increased over-wintering habitat, shallow-water habitat, and physical-habitat diversity relative to the pre-chevron channel condition, the type of physical habitat(s) are different from what was historically found along this reach. Constructing chevrons dikes, or other dike-like structures in the river channel, can change the physical-habitat patch mosaic and likely contribute to small increases in physical-habitat heterogeneity. However, differences in the types, quantity, and diversity of physical-habitat patches created by chevron dikes in comparison to the physical-habitat patch mosaic of historic channel underscore the need for additional research to determine which physical-habitat patches are critical for the recovery of endangered or threatened aquatic organisms.
Jana, Soumen; Lerman, Amir
2015-12-01
Heart valve tissue engineering could be a possible solution for the limitations of mechanical and biological prostheses, which are commonly used for heart valve replacement. In tissue engineering, cells are seeded into a 3-dimensional platform, termed the scaffold, to make the engineered tissue construct. However, mimicking the mechanical and spatial heterogeneity of a heart valve structure in a fabricated scaffold with uniform cell distribution is daunting when approached conventionally. Bioprinting is an emerging technique that can produce biological products containing matrix and cells, together or separately with morphological, structural and mechanical diversity. This advance increases the possibility of fabricating the structure of a heart valve in vitro and using it as a functional tissue construct for implantation. This review describes the use of bioprinting technology in heart valve tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Maron, Pierre-Alain; Lejon, David P. H.; Carvalho, Esmeralda; Bizet, Karine; Lemanceau, Philippe; Ranjard, Lionel; Mougel, Christophe
The density, genetic structure and diversity of airborne bacterial communities were assessed in the outdoor atmosphere. Two air samples were collected on the same location (north of France) at two dates (March 2003 (sample1) and May 2003 (sample 2)). Molecular culture -independent methods were used to characterise airborne bacterial communities regardless of the cell culturability. The automated-ribosomal intergenic spacer analysis (A-RISA) was performed to characterise the community structure in each sample. For both sampling dates, complex A-RISA patterns were observed suggesting a highly diverse community structure, comparable to those found in soil, water or sediment environments. Furthermore, differences in the genetic structure of airborne bacterial communities were observed between samples 1 and 2 suggesting an important variability in time. A clone library of 16S rDNA directly amplified from air DNA of sample 1 was constructed and sequenced to analyse the community composition and diversity. The Proteobacteria group had the greatest representation (60%), with bacteria belonging to the different subdivisions α- (19%), β-(21%), γ-(12%) and δ-(8%). Firmicute and Actinobacteria were also well represented with 14% and 12%, respectively. Most of the identified bacteria are known to be commonly associated with soil or plant environments suggesting that the atmosphere is mainly colonised transiently by microorganisms from local sources, depending on air fluxes.
Natural product-like virtual libraries: recursive atom-based enumeration.
Yu, Melvin J
2011-03-28
A new molecular enumerator is described that allows chemically and architecturally diverse sets of natural product-like and drug-like structures to be generated from a core structure as simple as a single carbon atom or as complex as a polycyclic ring system. Integrated with a rudimentary machine-learning algorithm, the enumerator has the ability to assemble biased virtual libraries enriched in compounds predicted to meet target criteria. The ability to dynamically generate relatively small focused libraries in a recursive manner could reduce the computational time and infrastructure necessary to construct and manage extremely large static libraries. Depending on enumeration conditions, natural product-like structures can be produced with a wide range of heterocyclic and alicyclic ring assemblies. Because natural products represent a proven source of validated structures for identifying and designing new drug candidates, mimicking the structural and topological diversity found in nature with a dynamic set of virtual natural product-like compounds may facilitate the creation of new ideas for novel, biologically relevant lead structures in areas of uncharted chemical space.
Levant, Ronald F; Hall, Rosalie J; Weigold, Ingrid K; McCurdy, Eric R
2016-10-01
The construct validity of the Male Role Norms Inventory-Short Form (MRNI-SF) was assessed using a latent variable approach implemented with structural equation modeling (SEM). The MRNI-SF was specified as having a bifactor structure, and validation scales were also specified as latent variables. The latent variable approach had the advantages of separating effects of general and specific factors and controlling for some sources of measurement error. Data (N = 484) were from a diverse sample (38.8% men of color, 22.3% men of diverse sexualities) of community-dwelling and college men who responded to an online survey. The construct validity of the MRNI-SF General Traditional Masculinity Ideology factor was supported for all 4 of the proposed latent correlations with: (a) Male Role Attitudes Scale; (b) general factor of Conformity to Masculine Norms Inventory-46; (c) higher-order factor of Gender Role Conflict Scale; and (d) Personal Attributes Questionnaire-Masculinity Scale. Significant correlations with relevant other latent factors provided concurrent validity evidence for the MRNI-SF specific factors of Negativity toward Sexual Minorities, Importance of Sex, Restrictive Emotionality, and Toughness, with all 8 of the hypothesized relationships supported. However, 3 relationships concerning Dominance were not supported. (The construct validity of the remaining 2 MRNI-SF specific factors-Avoidance of Femininity and Self-Reliance through Mechanical Skills was not assessed.) Comparisons were made, and meaningful differences noted, between the latent correlations emphasized in this study and their raw variable counterparts. Results are discussed in terms of the advantages of an SEM approach and the unique characteristics of the bifactor model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Chen, Ruikun; Hara, Takashi; Ohsawa, Ryo; Yoshioka, Yosuke
2017-01-01
Diversity analysis of rapeseed accessions preserved in the Japanese Genebank can provide valuable information for breeding programs. In this study, 582 accessions were genotyped with 30 SSR markers covering all 19 rapeseed chromosomes. These markers amplified 311 alleles (10.37 alleles per marker; range, 3–39). The genetic diversity of Japanese accessions was lower than that of overseas accessions. Analysis of molecular variance indicated significant genetic differentiation between Japanese and overseas accessions. Small but significant differences were found among geographical groups in Japan, and genetic differentiation tended to increase with geographical distance. STRUCTURE analysis indicated the presence of two main genetic clusters in the NARO rapeseed collection. With the membership probabilities threshold, 227 accessions mostly originating from overseas were assigned to one subgroup, and 276 accessions mostly originating from Japan were assigned to the other subgroup. The remaining 79 accessions are assigned to admixed group. The core collection constructed comprises 96 accessions of diverse origin. It represents the whole collection well and thus it may be useful for rapeseed genetic research and breeding programs. The core collection improves the efficiency of management, evaluation, and utilization of genetic resources. PMID:28744177
Mesoscale Graphene-like Honeycomb Mono- and Multilayers Constructed via Self-Assembly of Coclusters.
Hou, Xue-Sen; Zhu, Guo-Long; Ren, Li-Jun; Huang, Zi-Han; Zhang, Rui-Bin; Ungar, Goran; Yan, Li-Tang; Wang, Wei
2018-02-07
Honeycomb structure endows graphene with extraordinary properties. But could a honeycomb monolayer superlattice also be generated via self-assembly of colloids or nanoparticles? Here we report the construction of mono- and multilayer molecular films with honeycomb structure that can be regarded as self-assembled artificial graphene (SAAG). We construct fan-shaped molecular building blocks by covalently connecting two kinds of clusters, one polyoxometalate and four polyhedral oligomeric silsesquioxanes. The precise shape control enables these complex molecules to self-assemble into a monolayer 2D honeycomb superlattice that mirrors that of graphene but on the mesoscale. The self-assembly of the SAAG was also reproduced via coarse-grained molecular simulations of a fan-shaped building block. It revealed a hierarchical process and the key role of intermediate states in determining the honeycomb structure. Experimental images also show a diversity of bi- and trilayer stacking modes. The successful creation of SAAG and its stacks opens up prospects for the preparation of novel self-assembled nanomaterials with unique properties.
Structural adaptations to diverse fighting styles in sexually selected weapons
McCullough, Erin L.; Tobalske, Bret W.; Emlen, Douglas J.
2014-01-01
The shapes of sexually selected weapons differ widely among species, but the drivers of this diversity remain poorly understood. Existing explanations suggest weapon shapes reflect structural adaptations to different fighting styles, yet explicit tests of this hypothesis are lacking. We constructed finite element models of the horns of different rhinoceros beetle species to test whether functional specializations for increased performance under species-specific fighting styles could have contributed to the diversification of weapon form. We find that horns are both stronger and stiffer in response to species-typical fighting loads and that they perform more poorly under atypical fighting loads, which suggests weapons are structurally adapted to meet the functional demands of fighting. Our research establishes a critical link between weapon form and function, revealing one way male–male competition can drive the diversification of animal weapons. PMID:25201949
Structural adaptations to diverse fighting styles in sexually selected weapons.
McCullough, Erin L; Tobalske, Bret W; Emlen, Douglas J
2014-10-07
The shapes of sexually selected weapons differ widely among species, but the drivers of this diversity remain poorly understood. Existing explanations suggest weapon shapes reflect structural adaptations to different fighting styles, yet explicit tests of this hypothesis are lacking. We constructed finite element models of the horns of different rhinoceros beetle species to test whether functional specializations for increased performance under species-specific fighting styles could have contributed to the diversification of weapon form. We find that horns are both stronger and stiffer in response to species-typical fighting loads and that they perform more poorly under atypical fighting loads, which suggests weapons are structurally adapted to meet the functional demands of fighting. Our research establishes a critical link between weapon form and function, revealing one way male-male competition can drive the diversification of animal weapons.
Applying a Cognitive-Behavioral Model of HIV Risk to Youths in Psychiatric Care
ERIC Educational Resources Information Center
Donenberg, Geri R.; Schwartz, Rebecca Moss; Emerson, Erin; Wilson, Helen W.; Bryant, Fred B.; Coleman, Gloria
2005-01-01
This study examined the utility of cognitive and behavioral constructs (AIDS information, motivation, and behavioral skills) in explaining sexual risk taking among 172 12-20-year-old ethnically diverse urban youths in outpatient psychiatric care. Structural equation modeling revealed only moderate support for the model, explaining low to moderate…
Indigenous Chinese Personality Constructs: Is the Five-Factor Model Complete?
ERIC Educational Resources Information Center
Cheung, Fanny M.; Leung, Kwok; Zhang, Jian-Xin; Sun, Hai-Fa; Gan, Yi-Qun; Song, Wei-Zhen; Xie, Dong
2001-01-01
Three studies involving Chinese respondents from China and Hong Kong and diverse respondents from Hawaii compared the Chinese Personality Assessment Inventory factor structure with the Revised NEO Personality Inventory (NEO-PI-R) and NEO-Five Factor Inventory. Results supported the universality of the five-factor model, the validity of NEO-PI-R,…
ERIC Educational Resources Information Center
Mampaey, Jelle; Zanoni, Patrizia
2016-01-01
This paper investigates the role of ethnic majority staff in the perpetuation of monocultural education that excludes non-western, ethnic minority cultures and reproduces institutional racism in schools. Based on qualitative data collected through semi-structured interviews in four ethnically diverse schools in the Flemish educational system, we…
Biomaterials Made from Coiled-Coil Peptides.
Conticello, Vincent; Hughes, Spencer; Modlin, Charles
The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.
NASA Astrophysics Data System (ADS)
Huang, Mingjun
"Bottom-up" techniques-based self-assembly are always attracting people's interests since this technology provides relatively low economic cost and fast route to construct organized structures at different scales. Considering unprecedented benefits from polymer materials, self-assemblies utilizing polymer building blocks have been extensively studied to achieve diverse hierarchical structures and various attractive properties. However, precise controls of chemical primary structures and compositions and exact constructions of hierarchal ordered structures in synthetic polymers are far from being fully appreciated. In this dissertation, a novel approach has been utilized to construct diverse well-defined nano-building blocks, giant molecules, via conjugating different, and functionalized molecular nanoparticles (MNPs) which are shape- and volume-persistent nano-objects with precise molecular structure and specific symmetry. The representative examples of the three basic categories of giant molecules, "giant polyhedra", "giant surfactants", and "giant shape amphiphiles" were discussed in details. First, a class of precisely defined, nanosized giant tetrahedra was constructed by placing different polyhedral oligomeric silsesquioxane (POSS) molecular nanoparticles at the vertices of a rigid tetrahedral framework. Designed symmetry breaking of these giant tetrahedra introduces accurate positional interactions and results in diverse selectively assembled, highly ordered supramolecular lattices including a Frank-Kasper (FK) A15 phase. The FK and quasicrystal phases are originally identified in metal alloys and only sporadically observed in soft matters. It remains unclear how to correlate their stability with the chemical composition and molecular topology in the self-assembling systems. We then for this purpose designed and studied the self-assembly phase transition sequences of four series of hybrid giant surfactants based on hydrophilic POSS cages tethered with one to four polystyrene (PS) tails. With increasing the number of tails, molecular topological variations not only affect phase boundaries in terms of the PS volume fraction, but also open a window to stabilize supramolecular FK and quasicrystal phases in the spherical phase region, demonstrating the critical role of molecular topology in dictating the formation of unconventional supramolecular lattices of "soft" spherical motifs. The FK A15 phase was even surprisingly observed in the giant shape amphiphile molecule, triphenylene-6BPOSS, which has a disk-like flat triphenylene core connected with six hydrophobic POSS cages by sides. Without conical molecular shape, triphenylene-6BPOSS self-assembled and stabilized into supramolecular sphere via pi-pi interactions through a completely different mechanism with precious two cases. These studies indicate that "bottom-up" self-assemble based on well-defined giant molecules approach can be rather powerful to fabricate usually complicated hierarchical structures and open up a wide field of supramolecular self-assembly with unexpected structure and properties.
Development of functionalised polyelectrolyte capsules using filamentous Escherichia coli cells.
Lederer, Franziska L; Günther, Tobias J; Weinert, Ulrike; Raff, Johannes; Pollmann, Katrin
2012-12-23
Escherichia coli is one of the best studied microorganisms and finds multiple applications especially as tool in the heterologous production of interesting proteins of other organisms. The heterologous expression of special surface (S-) layer proteins caused the formation of extremely long E. coli cells which leave transparent tubes when they divide into single E. coli cells. Such natural structures are of high value as bio-templates for the development of bio-inorganic composites for many applications. In this study we used genetically modified filamentous Escherichia coli cells as template for the design of polyelectrolyte tubes that can be used as carrier for functional molecules or particles. Diversity of structures of biogenic materials has the potential to be used to construct inorganic or polymeric superior hybrid materials that reflect the form of the bio-template. Such bio-inspired materials are of great interest in diverse scientific fields like Biology, Chemistry and Material Science and can find application for the construction of functional materials or the bio-inspired synthesis of inorganic nanoparticles. Genetically modified filamentous E. coli cells were fixed in 2% glutaraldehyde and coated with alternating six layers of the polyanion polyelectrolyte poly(sodium-4styrenesulfonate) (PSS) and polycation polyelectrolyte poly(allylamine-hydrochloride) (PAH). Afterwards we dissolved the E. coli cells with 1.2% sodium hypochlorite, thus obtaining hollow polyelectrolyte tubes of 0.7 μm in diameter and 5-50 μm in length. For functionalisation the polyelectrolyte tubes were coated with S-layer protein polymers followed by metallisation with Pd(0) particles. These assemblies were analysed with light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. The thus constructed new material offers possibilities for diverse applications like novel catalysts or metal nanowires for electrical devices. The novelty of this work is the use of filamentous E. coli templates and the use of S-layer proteins in a new material construct.
Ong, Hui San; Rahim, Mohd Syafiq; Firdaus-Raih, Mohd; Ramlan, Effirul Ikhwan
2015-01-01
The unique programmability of nucleic acids offers alternative in constructing excitable and functional nanostructures. This work introduces an autonomous protocol to construct DNA Tetris shapes (L-Shape, B-Shape, T-Shape and I-Shape) using modular DNA blocks. The protocol exploits the rich number of sequence combinations available from the nucleic acid alphabets, thus allowing for diversity to be applied in designing various DNA nanostructures. Instead of a deterministic set of sequences corresponding to a particular design, the protocol promotes a large pool of DNA shapes that can assemble to conform to any desired structures. By utilising evolutionary programming in the design stage, DNA blocks are subjected to processes such as sequence insertion, deletion and base shifting in order to enrich the diversity of the resulting shapes based on a set of cascading filters. The optimisation algorithm allows mutation to be exerted indefinitely on the candidate sequences until these sequences complied with all the four fitness criteria. Generated candidates from the protocol are in agreement with the filter cascades and thermodynamic simulation. Further validation using gel electrophoresis indicated the formation of the designed shapes. Thus, supporting the plausibility of constructing DNA nanostructures in a more hierarchical, modular, and interchangeable manner.
Chang, Yuanyuan; Shi, Linlin; Huang, Jun; Shi, Lili; Zhang, Zichun; Hao, Hong-Dong; Gong, Jianxian; Yang, Zhen
2018-05-09
A convenient approach to the construction of the 5-6-7 tricarbocyclic fused core structure of cyanthiwigins via a Co-mediated Pauson-Khand reaction as a key step has been developed. The cyathane core intermediate obtained by this strategy was used in the concise synthesis of (±)-5- epi-cyanthiwigin I. The developed chemistry paves the way for the total synthesis of structurally diverse cyanthiwigins.
Isidro-Llobet, Albert; Hadje Georgiou, Kathy; Galloway, Warren R. J. D.; Giacomini, Elisa; Hansen, Mette R.; Méndez-Abt, Gabriela; Tan, Yaw Sing; Carro, Laura; Sore, Hannah F.
2015-01-01
Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity. PMID:25778821
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Miss., from its mouth at Kleinston Landing to Fisher Street; navigation. 162.85 Section 162.85... mouth at Kleinston Landing to Fisher Street; navigation. (a) Speed. Excessive speeding is prohibited. A... motion or tied up, a wharf or other structure, works under construction, plant engaged in river and...
Genetic Diversity and Population Structure of Siberian apricot (Prunus sibirica L.) in China
Li, Ming; Zhao, Zhong; Miao, Xingjun; Zhou, Jingjing
2014-01-01
The genetic diversity and population genetic structure of 252 accessions from 21 Prunus sibirica L. populations were investigated using 10 ISSR, SSR, and SRAP markers. The results suggest that the entire population has a relatively high level of genetic diversity, with populations HR and MY showing very high diversity. A low level of inter-population genetic differentiation and a high level of intra-population genetic differentiation was found, which is supported by a moderate level of gene flow, and largely attributable to the cross-pollination and self-incompatibility reproductive system. A STRUCTURE (model-based program) analysis revealed that the 21 populations can be divided into two main groups, mainly based on geographic differences and genetic exchanges. The entire wild Siberia apricot population in China could be divided into two subgroups, including 107 accessions in subgroup (SG) 1 and 147 accessions in SG 2. A Mantel test revealed a significant positive correlation between genetic and geographic distance matrices, and there was a very significant positive correlation among three marker datasets. Overall, we recommend a combination of conservation measures, with ex situ and in situ conservation that includes the construction of a core germplasm repository and the implement of in situ conservation for populations HR, MY, and ZY. PMID:24384840
Human nature, cultural diversity and evolutionary theory
Plotkin, Henry
2011-01-01
Incorporating culture into an expanded theory of evolution will provide the foundation for a universal account of human diversity. Two requirements must be met. The first is to see learning as an extension of the processes of evolution. The second is to understand that there are specific components of human culture, viz. higher order knowledge structures and social constructions, which give rise to culture as invented knowledge. These components, which are products of psychological processes and mechanisms, make human culture different from the forms of shared knowledge observed in other species. One serious difficulty for such an expanded theory is that social constructions may not add to the fitness of all humans exposed to them. This may be because human culture has existed for only a relatively short time in evolutionary terms. Or it may be that, as some maintain, adaptation is a limited, even a flawed, aspect of evolutionary theory. PMID:21199849
Construction of a filamentous phage display peptide library.
Fagerlund, Annette; Myrset, Astrid Hilde; Kulseth, Mari Ann
2014-01-01
The concept of phage display is based on insertion of random oligonucleotides at an appropriate location within a structural gene of a bacteriophage. The resulting phage will constitute a library of random peptides displayed on the surface of the bacteriophages, with the encoding genotype packaged within each phage particle. Using a phagemid/helper phage system, the random peptides are interspersed between wild-type coat proteins. Libraries of phage-expressed peptides may be used to search for novel peptide ligands to target proteins. The success of finding a peptide with a desired property in a given library is highly dependent on the diversity and quality of the library. The protocols in this chapter describe the construction of a high-diversity library of phagemid vector encoding fusions of the phage coat protein pVIII with random peptides, from which a phage library displaying random peptides can be prepared.
[Effect of flooding time on community structure and abundance of Geobacteraceae in paddy soil].
You, Jiaohua; Xia, Shuhong; Wang, Baoli; Qu, Dong
2011-06-01
The dynamic characteristics of community structure and relative abundance of Geobacteraceae were investigated to understand their response to microbial iron (III) reducing in flooded paddy soil. The paddy soil was incubated anaerobically and the amount of Fe(II) was determined during the flooding incubation. We retrieved Geobacteraceae sequences from clone libraries constructed for different time points (1 h and day 1, 5, 10, 20 and 30) after flooding of the paddy soil. The diversity and community structure were analyzed by using RFLP method, and the relative abundance of Geobacteraceae was detected by real-time PCR. Microbial reduction of iron (III) changed greatly in early time and was stable after incubated for 20 d in paddy soil. The largest iron reduction potential was 10.16 mg/g with a Vmax of 1.064 mg/(g x d) at the time of 4.84 d whereas this process achieved plateau after 20 days flooding. Diversity of Geobacteraceae, given by alpha indices, fluctuated during the flooding incubation. Two peaks of diversity were observed in treatments of 5 d and 20 d respectively, while significant low diversity appeared in samples of 10 d and 30 d. Beta indices described the differences between community structures of Geobacteraceae and hence reflected the variation of the flooding situation over time. In all samples, 10 RFLP-based preponderant types were found, which fell into clade 1 and clade 2 of Geobacteraceae. The relative abundance of Geobacteraceae was the lowest in 1 d (1.20% ) and the highest in 20 d (4.54%). The dynamic variation of Geobacteraceae diversity, community structure and abundance are closely related to microbial iron (III) reducing in flooding paddy soil.
Campoy, José Antonio; Lerigoleur-Balsemin, Emilie; Christmann, Hélène; Beauvieux, Rémi; Girollet, Nabil; Quero-García, José; Dirlewanger, Elisabeth; Barreneche, Teresa
2016-02-24
Depiction of the genetic diversity, linkage disequilibrium (LD) and population structure is essential for the efficient organization and exploitation of genetic resources. The objectives of this study were to (i) to evaluate the genetic diversity and to detect the patterns of LD, (ii) to estimate the levels of population structure and (iii) to identify a 'core collection' suitable for association genetic studies in sweet cherry. A total of 210 genotypes including modern cultivars and landraces from 16 countries were genotyped using the RosBREED cherry 6 K SNP array v1. Two groups, mainly bred cultivars and landraces, respectively, were first detected using STRUCTURE software and confirmed by Principal Coordinate Analysis (PCoA). Further analyses identified nine subgroups using STRUCTURE and Discriminant Analysis of Principal Components (DAPC). Several sub-groups correspond to different eco-geographic regions of landraces distribution. Linkage disequilibrium was evaluated showing lower values than in peach, the reference Prunus species. A 'core collection' containing 156 accessions was selected using the maximum length sub tree method. The present study constitutes the first population genetics analysis in cultivated sweet cherry using a medium-density SNP (single nucleotide polymorphism) marker array. We provided estimations of linkage disequilibrium, genetic structure and the definition of a first INRA's Sweet Cherry core collection useful for breeding programs, germplasm management and association genetics studies.
Aerobic and anaerobic methanotrophic communities in urban landscape wetland.
Chen, Sili; Chen, Jianfei; Chang, Sha; Yi, Hao; Huang, Dawei; Xie, Shuguang; Guo, Qingwei
2018-01-01
Both aerobic methane-oxidizing bacteria (MOB) and nitrite-dependent anaerobic methane oxidation (n-damo) organisms can be important methane sinks in a wetland. However, the influences of the vegetation type on aerobic MOB and n-damo communities in wetland, especially in constructed wetland, remain poorly understood. The present study investigated the influences of the vegetation type on both aerobic MOB and n-damo organisms in a constructed urban landscape wetland. Sediments were collected from eight sites vegetated with different plant species. The abundance (1.19-3.27 × 10 7 pmoA gene copies per gram dry sediment), richness (Chao1 estimator = 16.3-81.5), diversity (Shannon index = 2.10-3.15), and structure of the sediment aerobic MOB community were found to vary considerably with sampling site. In contrast, n-damo community abundance (8.74 × 10 5 -4.80 × 10 6 NC10 16S rRNA gene copies per gram dry sediment) changed slightly with the sampling site. The richness (Chao1 estimator = 1-11), diversity (Shannon index = 0-0.78), and structure of the NC10 16S rRNA gene-based n-damo community illustrated slight site-related changes, while the spatial changes of the pmoA gene-based n-damo community richness (Chao1 estimator = 1-8), diversity (Shannon index = 0-0.99), and structure were considerable. The vegetation type could have a profound impact on the wetland aerobic MOB community and had a stronger influence on the pmoA-based n-damo community than on the NC10 16S-based one in urban wetland. Moreover, the aerobic MOB community had greater abundance and higher richness and diversity than the n-damo community. Methylocystis (type II MOB) predominated in urban wetland, while no known type I MOB species was detected. In addition, the ratio of total organic carbon to total nitrogen (C/N) might be a determinant of sediment n-damo community diversity and aerobic MOB richness.
Korhonen, L E; Turpeinen, M; Rahnasto, M; Wittekindt, C; Poso, A; Pelkonen, O; Raunio, H; Juvonen, R O
2007-01-01
Background and purpose: The cytochrome P450 2B6 (CYP2B6) enzyme metabolises a number of clinically important drugs. Drug-drug interactions resulting from inhibition or induction of CYP2B6 activity may cause serious adverse effects. The aims of this study were to construct a three-dimensional structure-activity relationship (3D-QSAR) model of the CYP2B6 protein and to identify novel potent and selective inhibitors of CYP2B6 for in vitro research purposes. Experimental approach: The inhibition potencies (IC50 values) of structurally diverse chemicals were determined with recombinant human CYP2B6 enzyme. Two successive models were constructed using Comparative Molecular Field Analysis (CoMFA). Key results: Three compounds proved to be very potent and selective competitive inhibitors of CYP2B6 in vitro (IC50<1 μM): 4-(4-chlorobenzyl)pyridine (CBP), 4-(4-nitrobenzyl)pyridine (NBP), and 4-benzylpyridine (BP). A complete inhibition of CYP2B6 activity was achieved with 0.1 μM CBP, whereas other CYP-related activities were not affected. Forty-one compounds were selected for further testing and construction of the final CoMFA model. The created CoMFA model was of high quality and predicted accurately the inhibition potency of a test set (n=7) of structurally diverse compounds. Conclusions and implications: Two CoMFA models were created which revealed the key molecular characteristics of inhibitors of the CYP2B6 enzyme. The final model accurately predicted the inhibitory potencies of several structurally unrelated compounds. CBP, BP and NBP were identified as novel potent and selective inhibitors of CYP2B6 and CBP especially is a suitable inhibitor for in vitro screening studies. PMID:17325652
Human and ecological determinants of the spatial structure of local breed diversity.
Colino-Rabanal, Victor J; Rodríguez-Díaz, Roberto; Blanco-Villegas, María José; Peris, Salvador J; Lizana, Miguel
2018-04-24
Since domestication, a large number of livestock breeds adapted to local conditions have been created by natural and artificial selection, representing one of the most powerful ways in which human groups have constructed niches to meet their need. Although many authors have described local breeds as the result of culturally and environmentally mediated processes, this study, located in mainland Spain, is the first aimed at identifying and quantifying the environmental and human contributions to the spatial structure of local breed diversity, which we refer to as livestock niche. We found that the more similar two provinces were in terms of human population, ecological characteristics, historical ties, and geographic distance, the more similar the composition of local breeds in their territories. Isolation by human population distance showed the strongest effect, followed by isolation by the environment, thus supporting the view of livestock niche as a socio-cultural product adapted to the local environment, in whose construction humans make good use of their ecological and cultural inheritances. These findings provide a useful framework to understand and to envisage the effects of climate change and globalization on local breeds and their livestock niches.
Kim, Jonghoon; Kim, Heejun; Park, Seung Bum
2014-10-22
In the search for new therapeutic agents for currently incurable diseases, attention has turned to traditionally "undruggable" targets, and collections of drug-like small molecules with high diversity and quality have become a prerequisite for new breakthroughs. To generate such collections, the diversity-oriented synthesis (DOS) strategy was developed, which aims to populate new chemical space with drug-like compounds containing a high degree of molecular diversity. The resulting DOS-derived libraries have been of great value for the discovery of various bioactive small molecules and therapeutic agents, and thus DOS has emerged as an essential tool in chemical biology and drug discovery. However, the key challenge has become how to design and synthesize drug-like small-molecule libraries with improved biological relevancy as well as maximum molecular diversity. This Perspective presents the development of privileged substructure-based DOS (pDOS), an efficient strategy for the construction of polyheterocyclic compound libraries with high biological relevancy. We envisioned the specific interaction of drug-like small molecules with certain biopolymers via the incorporation of privileged substructures into polyheterocyclic core skeletons. The importance of privileged substructures such as benzopyran, pyrimidine, and oxopiperazine in rigid skeletons was clearly demonstrated through the discovery of bioactive small molecules and the subsequent identification of appropriate target biomolecule using a method called "fluorescence difference in two-dimensional gel electrophoresis". Focusing on examples of pDOS-derived bioactive compounds with exceptional specificity, we discuss the capability of privileged structures to serve as chemical "navigators" toward biologically relevant chemical spaces. We also provide an outlook on chemical biology research and drug discovery using biologically relevant compound libraries constructed by pDOS, biology-oriented synthesis, or natural product-inspired DOS.
Qualitative evaluation of rock weir field performance and failure mechanisms
Mooney, David M.; Holmquist-Johnson, Christopher L.; Holburn, Elaina
2007-01-01
River spanning loose-rock structures provide sufficient head for irrigation diversion, permit fish passage over barriers, protect banks, stabilize degrading channels, activate side channels, reconnect floodplains, and create in-channel habitat. These structures are called by a variety of names including rock weirs, alphabet (U-, A-, V-, W-) weirs, Jhooks, and rock ramps. These structures share the common characteristics of:Loose rock construction materials (individually placed or dumped rocks with little or no concrete);Extents spanning the width of the river channel; andAn abrupt change in the water surface elevation at low flows.
Reinert, Zachary E; Horne, W Seth
2014-11-28
A variety of non-biological structural motifs have been incorporated into the backbone of natural protein sequences. In parallel work, diverse unnatural oligomers of de novo design (termed "foldamers") have been developed that fold in defined ways. In this Perspective article, we survey foundational studies on protein backbone engineering, with a focus on alterations made in the context of complex tertiary folds. We go on to summarize recent work illustrating the potential promise of these methods to provide a general framework for the construction of foldamer mimics of protein tertiary structures.
NASA Astrophysics Data System (ADS)
Arıcı, Mürsel
2018-06-01
Five coordination polymers, namely, [Cd(μ3-5-nip)(μ-obix)]n (1), [Co(μ3-5-nip)(μ-obix)]n (2), [Zn(μ-5-nip)(μ-obix)]n (3 and 4) and [Cd(μ-5-nip)(μ-bisobix)]n (5) (5-nip: 5-nitroisophthalate, obix: 1,2-bis(imidazol-1ylmethyl)benzene, bisobix: 1,2-bis(2-isopropylimidazol-1ylmethyl)benzene) were hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). X-ray results showed that the complexes displayed structural diversity depending on metal ions and conformations of bis(imidazole) linkers. Complexes 1 and 2 were 1D structures and obix ligand displayed cis-conformation. Complexes 3 and 4 exhibited 2D and 3D structures with same components depending on obix conformation. In complex 5, 3D+3D→3D interpenetrated structure was obtained with dia topology when bisobix having sterically hindered groups on imidazole rings was used. Moreover, thermal, photoluminescence and optical properties of the complexes were also investigated.
Hierarchical spatial structure of stream fish colonization and extinction
Hitt, N.P.; Roberts, J.H.
2012-01-01
Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.
Coleman, R A; Gauffre, B; Pavlova, A; Beheregaray, L B; Kearns, J; Lyon, J; Sasaki, M; Leblois, R; Sgro, C; Sunnucks, P
2018-06-01
Habitat loss and fragmentation often result in small, isolated populations vulnerable to environmental disturbance and loss of genetic diversity. Low genetic diversity can increase extinction risk of small populations by elevating inbreeding and inbreeding depression, and reducing adaptive potential. Due to their linear nature and extensive use by humans, freshwater ecosystems are especially vulnerable to habitat loss and fragmentation. Although the effects of fragmentation on genetic structure have been extensively studied in migratory fishes, they are less understood in low-mobility species. We estimated impacts of instream barriers on genetic structure and diversity of the low-mobility river blackfish (Gadopsis marmoratus) within five streams separated by weirs or dams constructed 45-120 years ago. We found evidence of small-scale (<13 km) genetic structure within reaches unimpeded by barriers, as expected for a fish with low mobility. Genetic diversity was lower above barriers in small streams only, regardless of barrier age. In particular, one isolated population showed evidence of a recent bottleneck and inbreeding. Differentiation above and below the barrier (F ST = 0.13) was greatest in this stream, but in other streams did not differ from background levels. Spatially explicit simulations suggest that short-term barrier effects would not be detected with our data set unless effective population sizes were very small (<100). Our study highlights that, in structured populations, the ability to detect short-term genetic effects from barriers is reduced and requires more genetic markers compared to panmictic populations. We also demonstrate the importance of accounting for natural population genetic structure in fragmentation studies.
[Microbial diversity of sediments from the coasts of Dalian Changshan Islands].
Li, Jialin; Wang, Zhonghua; Qin, Song; Wang, Guangyi
2011-05-01
To understand the impacts of anthropogenic activities on structure and composition of bacterial communities and to evaluate how bacterial communities respond to environmental gradients at coastal sediments. The diversity of bacterial communities in sediments from tourist and mariculture zones at coastal area of Dalian Changshan Islands was assessed using terminal restriction fragment length polymorphism (t-RFLP) and denaturing gradient gel electrophoresis (DGGE) approaches. Meanwhile, 16S rRNA clone library was constructed to reveal the composition and structure of bacterial communities in the most seriously polluted site (D4). There were much higher values of richness, Shannon-wiener and evenness index at D4 site by the analysis of terminal restriction fragments (t-RFs). The clustering result on the t-RFs areas and DGGE patterns showed that the bacterial diversity of tourist zone were more similar, while the distinction was increased with pollution levels among the tourist and mariculture zones. The 16S rRNA clone of D4 revealed that the Proteobacteria were the dominant phylum, and gamma-proteobacteria was the main class within Proteobacteria. The study documented changes in bacterial community structure by human impacts of mariculture than geographical location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xun; Liu, Jing; College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022
2015-10-15
Reactions between later metal salts and conjugational N-hetrocyclic sulfonate/ carboxylic acid under the presence of bipyridyl auxiliary ligands afforded a series of manganese, nickel, zinc, silver, cadmium coordination polymers bearing with phenyl pendant arm attached to quinoline skeletons, and they have been characterized by elements analysis, thermogravimetry, infrared spectroscopy and single-crystal X-ray diffraction studying. The series of polymers show interesting structural diversity in coordination environment, dimensions and topologies. They are all built from 2-D networks constructed from metal cluster through sulfonate or carboxylate groups, as the secondary building unit (SBU). The thermalgravimetric analyses show that they display framework stabilities inmore » solid state. Variable-temperature magnetic susceptibility studies reveal the existence of antiferromagnetic interactions between adjacent Mn (II) ions in 1, and ferromagnetic interactions between Ni(II) ions for 2, respectively. The photo-luminescence properties of 3-5 have also been investigated systemically. - Highlights: • A series of coordination polymers based on later transition metal ions have been obtained. • They contain conjugational N-hetrocyclic sulfonate-carboxylic acid and bipyridyl auxiliary ligands. • They have been characterized systemically. • They exhibit structure diversity and interesting properties.« less
The intrapsychics of gender: a model of self-socialization.
Tobin, Desiree D; Menon, Meenakshi; Menon, Madhavi; Spatta, Brooke C; Hodges, Ernest V E; Perry, David G
2010-04-01
This article outlines a model of the structure and the dynamics of gender cognition in childhood. The model incorporates 3 hypotheses featured in different contemporary theories of childhood gender cognition and unites them under a single theoretical framework. Adapted from Greenwald et al. (2002), the model distinguishes three constructs: gender identity, gender stereotypes, and attribute self-perceptions. The model specifies 3 causal processes among the constructs: Gender identity and stereotypes interactively influence attribute self-perceptions (stereotype emulation hypothesis); gender identity and attribute self-perceptions interactively influence gender stereotypes (stereotype construction hypothesis); and gender stereotypes and attribute self-perceptions interactively influence identity (identity construction hypothesis). The model resolves nagging ambiguities in terminology, organizes diverse hypotheses and empirical findings under a unifying conceptual umbrella, and stimulates many new research directions. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Collins, K.L.; Thornton, C.I.; Mefford, B.; Holmquist-Johnson, C. L.
2009-01-01
Rock weir and ramp structures uniquely serve a necessary role in river management: to meet water deliveries in an ecologically sound manner. Uses include functioning as low head diversion dams, permitting fish passage, creating habitat diversity, and stabilizing stream banks and profiles. Existing information on design and performance of in-stream rock structures does not provide the guidance necessary to implement repeatable and sustainable construction and retrofit techniques. As widespread use of rock structures increases, the need for reliable design methods with a broad range of applicability at individual sites grows as well. Rigorous laboratory testing programs were implemented at the U.S. Bureau of Reclamation (Reclamation) and at Colorado State University (CSU) as part of a multifaceted research project focused on expanding the current knowledge base and developing design methods to improve the success rate of river spanning rock structures in meeting project goals. Physical modeling at Reclamation is being used to measure, predict, and reduce interstitial flow through rock ramps. CSU is using physical testing to quantify and predict scour development downstream of rock weirs and its impact on the stability of rock structures. ?? 2009 ASCE.
Zhou, Xichun; Turchi, Craig; Wang, Denong
2009-01-01
We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a 3-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties. PMID:19791771
Buczkowski, Grzegorz; Richmond, Douglas S.
2012-01-01
Numerous studies have examined the effect of urbanization on species richness and most studies implicate urbanization as the major cause of biodiversity loss. However, no study has identified an explicit connection between urbanization and biodiversity loss as the impact of urbanization is typically inferred indirectly by comparing species diversity along urban-rural gradients at a single time point. A different approach is to focus on the temporal rather than the spatial aspect and perform “before and after” studies where species diversity is cataloged over time in the same sites. The current study examined changes in ant abundance and diversity associated with the conversion of natural habitats into urban habitats. Ant abundance and diversity were tracked in forested sites that became urbanized through construction and were examined at 3 time points - before, during, and after construction. On average, 4.3±1.2 unique species were detected in undisturbed plots prior to construction. Ant diversity decreased to 0.7±0.8 species in plots undergoing construction and 1.5±1.1 species in plots 1 year after construction was completed. With regard to species richness, urbanization resulted in the permanent loss of 17 of the 20 species initially present in the study plots. Recovery was slow and only 3 species were present right after construction was completed and 4 species were present 1 year after construction was completed. The second objective examined ant fauna recovery in developed residential lots based on time since construction, neighboring habitat quality, pesticide inputs, and the presence of invasive ants. Ant diversity was positively correlated with factors that promoted ecological recovery and negatively correlated with factors that promoted ecological degradation. Taken together, these results address a critical gap in our knowledge by characterizing the short- and long-term the effects of urbanization on the loss of ant biodiversity. PMID:22876291
Buczkowski, Grzegorz; Richmond, Douglas S
2012-01-01
Numerous studies have examined the effect of urbanization on species richness and most studies implicate urbanization as the major cause of biodiversity loss. However, no study has identified an explicit connection between urbanization and biodiversity loss as the impact of urbanization is typically inferred indirectly by comparing species diversity along urban-rural gradients at a single time point. A different approach is to focus on the temporal rather than the spatial aspect and perform "before and after" studies where species diversity is cataloged over time in the same sites. The current study examined changes in ant abundance and diversity associated with the conversion of natural habitats into urban habitats. Ant abundance and diversity were tracked in forested sites that became urbanized through construction and were examined at 3 time points - before, during, and after construction. On average, 4.3 ± 1.2 unique species were detected in undisturbed plots prior to construction. Ant diversity decreased to 0.7 ± 0.8 species in plots undergoing construction and 1.5 ± 1.1 species in plots 1 year after construction was completed. With regard to species richness, urbanization resulted in the permanent loss of 17 of the 20 species initially present in the study plots. Recovery was slow and only 3 species were present right after construction was completed and 4 species were present 1 year after construction was completed. The second objective examined ant fauna recovery in developed residential lots based on time since construction, neighboring habitat quality, pesticide inputs, and the presence of invasive ants. Ant diversity was positively correlated with factors that promoted ecological recovery and negatively correlated with factors that promoted ecological degradation. Taken together, these results address a critical gap in our knowledge by characterizing the short- and long-term the effects of urbanization on the loss of ant biodiversity.
Ohtana, Yuki; Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Huang, Ming; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Horai, Hisayuki; Nakamura, Yukiko; Morita Hirai, Aki; Lange, Klaus W; Kibinge, Nelson K; Katsuragi, Tetsuo; Shirai, Tsuyoshi; Kanaya, Shigehiko
2014-12-01
Developing database systems connecting diverse species based on omics is the most important theme in big data biology. To attain this purpose, we have developed KNApSAcK Family Databases, which are utilized in a number of researches in metabolomics. In the present study, we have developed a network-based approach to analyze relationships between 3D structure and biological activity of metabolites consisting of four steps as follows: construction of a network of metabolites based on structural similarity (Step 1), classification of metabolites into structure groups (Step 2), assessment of statistically significant relations between structure groups and biological activities (Step 3), and 2-dimensional clustering of the constructed data matrix based on statistically significant relations between structure groups and biological activities (Step 4). Applying this method to a data set consisting of 2072 secondary metabolites and 140 biological activities reported in KNApSAcK Metabolite Activity DB, we obtained 983 statistically significant structure group-biological activity pairs. As a whole, we systematically analyzed the relationship between 3D-chemical structures of metabolites and biological activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Complex small-molecule architectures regulate phenotypic plasticity in a nematode.
Bose, Neelanjan; Ogawa, Akira; von Reuss, Stephan H; Yim, Joshua J; Ragsdale, Erik J; Sommer, Ralf J; Schroeder, Frank C
2012-12-07
Chemistry the worm's way: The nematode Pristionchus pacificus constructs elaborate small molecules from modified building blocks of primary metabolism, including an unusual xylopyranose-based nucleoside (see scheme). These compounds act as signaling molecules to control adult phenotypic plasticity and dauer development and provide examples of modular generation of structural diversity in metazoans. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Are diverse societies less cohesive? Testing contact and mediated contact theories.
McKenna, Sarah; Lee, Eunro; Klik, Kathleen A; Markus, Andrew; Hewstone, Miles; Reynolds, Katherine J
2018-01-01
Previous research has demonstrated that there is a negative relationship between ethnic diversity in a local community and social cohesion. Often the way social cohesion is assessed, though, varies across studies and only some aspects of the construct are included (e.g., trust). The current research explores the relationship between diversity and social cohesion across a number of indicators of social cohesion including neighbourhood social capital, safety, belonging, generalized trust, and volunteering. Furthermore, social psychological theories concerning the role of positive contact and its impact on feelings of threat are investigated. Using a sample of 1070 third generation 'majority' Australians and structural equation modelling (SEM), findings suggest ethnic diversity is related to positive intergroup contact, and that contact showed beneficial impacts for some indicators of social cohesion both directly and indirectly through reducing perceived threat. When interethnic contact and perceived threat are included in the model there is no direct negative effect between diversity and social cohesion. The theoretical implications of these findings are outlined including the importance of facilitating opportunities for positive contact in diverse communities.
Are diverse societies less cohesive? Testing contact and mediated contact theories
Lee, Eunro; Klik, Kathleen A.; Markus, Andrew; Hewstone, Miles; Reynolds, Katherine J.
2018-01-01
Previous research has demonstrated that there is a negative relationship between ethnic diversity in a local community and social cohesion. Often the way social cohesion is assessed, though, varies across studies and only some aspects of the construct are included (e.g., trust). The current research explores the relationship between diversity and social cohesion across a number of indicators of social cohesion including neighbourhood social capital, safety, belonging, generalized trust, and volunteering. Furthermore, social psychological theories concerning the role of positive contact and its impact on feelings of threat are investigated. Using a sample of 1070 third generation ‘majority’ Australians and structural equation modelling (SEM), findings suggest ethnic diversity is related to positive intergroup contact, and that contact showed beneficial impacts for some indicators of social cohesion both directly and indirectly through reducing perceived threat. When interethnic contact and perceived threat are included in the model there is no direct negative effect between diversity and social cohesion. The theoretical implications of these findings are outlined including the importance of facilitating opportunities for positive contact in diverse communities. PMID:29596501
Mapping uncharted territory in ice from zeolite networks to ice structures.
Engel, Edgar A; Anelli, Andrea; Ceriotti, Michele; Pickard, Chris J; Needs, Richard J
2018-06-05
Ice is one of the most extensively studied condensed matter systems. Yet, both experimentally and theoretically several new phases have been discovered over the last years. Here we report a large-scale density-functional-theory study of the configuration space of water ice. We geometry optimise 74,963 ice structures, which are selected and constructed from over five million tetrahedral networks listed in the databases of Treacy, Deem, and the International Zeolite Association. All prior knowledge of ice is set aside and we introduce "generalised convex hulls" to identify configurations stabilised by appropriate thermodynamic constraints. We thereby rediscover all known phases (I-XVII, i, 0 and the quartz phase) except the metastable ice IV. Crucially, we also find promising candidates for ices XVIII through LI. Using the "sketch-map" dimensionality-reduction algorithm we construct an a priori, navigable map of configuration space, which reproduces similarity relations between structures and highlights the novel candidates. By relating the known phases to the tractably small, yet structurally diverse set of synthesisable candidate structures, we provide an excellent starting point for identifying formation pathways.
Li, Ping; Zeng, Jun; Zulipiya, Yunus; Gao, Xiaoqi; Dong, Xiuhuang; Xue, Juan; Lou, Kai
2013-03-04
We explored the composition and diversity of archaea in a cold sulfur spring water in Xinjiang earthquake fault zone. Environmental total DNA was extracted directly with enzymatic lysis method from a cold sulfur spring water. We constructed clone library of 16S rRNA gene amplified with archaeal-specific primers. A total of 115 positive clones were selected randomly from the library and identified by restriction length polymorphism (RFLP) with enzyme Alu I and Afa I. The unique RFLP patterns corresponded clones were selected for sequencing, BLAS alignment and constructing 16S rRNA gene phylogenetic tree. In total, 44 operational taxonomic units (OTUs) were determined from the library. BLAST and phylogenetic analysis indicated that these OTUs were affiliated with Euryarchaeota (94.78%) and Thaumarchaeota (4.35%). Only one Thaumarchaeotal clone was detected and most related to the genus Nitrosopumilus with 93% similarity. Euryarchaeotal clones were abundant and diverse. Of them, 42.61% of clones belonged to RC-V cluster; 13.91% of clones, 20.87% of clones were classified into LDS cluster and Methanomicrobiales respectively; 4.35% of clones had high similarity with ANME-1a-FW, which were involved in Anaerobic oxidation of methane (AOM). In addition, we also detected some (13.05%) unknown Euryarchaotal clones. Euryarchaeota in the environment were diverse, and possibly with a large fraction of potential novel species.
Humphries, Austin T.; LaPeyre, Megan K.; Kimball, Matthew E.; Rozas, Lawrence P.
2011-01-01
Structurally complex habitats are often associated with more diverse and abundant species assemblages in both aquatic and terrestrial ecosystems. Biogenic reefs formed by the eastern oyster (Crassostrea virginica) are complex in nature and are recognized for their potential habitat value in estuarine systems along the US Atlantic and Gulf of Mexico coasts. Few studies, however, have examined the response of nekton to structural complexity within oyster reefs. We used a quantitative sampling technique to examine how the presence and complexity of experimental oyster reefs influence the abundance, biomass, and distribution of nekton by sampling reefs 4 months and 16 months post-construction. Experimental oyster reefs were colonized immediately by resident fishes and decapod crustaceans, and reefs supported a distinct nekton assemblage compared to mud-bottom habitat. Neither increased reef complexity, nor age of the experimental reef resulted in further changes in nekton assemblages or increases in nekton abundance or diversity. The presence of oyster reefs per se was the most important factor determining nekton usage.
Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers
NASA Astrophysics Data System (ADS)
Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan
2018-04-01
Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.
Pu, Fang; Ren, Jinsong; Qu, Xiaogang
2018-02-21
The incorporation of biomolecules into nanomaterials generates functional nanosystems with novel and advanced properties, presenting great potential for applications in various fields. Nucleobases, nucleosides and nucleotides, as building blocks of nucleic acids and biological coenzymes, constitute necessary components of the foundation of life. In recent years, as versatile biomolecules for the construction or regulation of functional nanomaterials, they have stimulated interest in researchers, due to their unique properties such as structural diversity, multiplex binding sites, self-assembly ability, stability, biocompatibility, and chirality. In this review, strategies for the synthesis of nanomaterials and the regulation of their morphologies and functions using nucleobases, nucleosides, and nucleotides as building blocks, templates or modulators are summarized alongside selected applications. The diverse applications range from sensing, bioimaging, and drug delivery to mimicking light-harvesting antenna, the construction of logic gates, and beyond. Furthermore, some perspectives and challenges in this emerging field are proposed. This review is directed toward the broader scientific community interested in biomolecule-based functional nanomaterials.
Brenner, Alison Tytell; Ko, Linda K; Janz, Nancy; Gupta, Shivani; Inadomi, John
2015-08-01
Colorectal cancer (CRC) is an important cause of cancer death in adults in the U.S.; screening is effective but underutilized, particularly among minorities. The purpose of this paper was to explore whether health belief model (HBM) constructs pertaining to CRC screening differ by race/ethnicity and primary language. Data were from the baseline surveys of 933 participants (93.5%) in a randomized trial promoting CRC screening in San Francisco. Composite scores for each construct were created from multiple items, dichotomized for analysis, and analyzed using multivariate logistic regression. Most participants were Asian (29.7%) or Hispanic (34.3%), and many were non-English speakers. Non-English speaking Hispanics (p<.001) and English-speaking Asians (p=.002) reported lower perceived susceptibility than non-Hispanic Whites (NHW). Non-English speaking Hispanics reported more and non-English speaking Asians fewer perceived barriers (psychological and structural) than NHW. Understanding how different populations think about CRC screening may be critical in promoting screening in diverse populations.
NASA Astrophysics Data System (ADS)
Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.
2016-09-01
A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.
NASA Astrophysics Data System (ADS)
Li, Xiayue; Curtis, Farren S.; Rose, Timothy; Schober, Christoph; Vazquez-Mayagoitia, Alvaro; Reuter, Karsten; Oberhofer, Harald; Marom, Noa
2018-06-01
We present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle. Genarris uses machine learning for clustering, based on a relative coordinate descriptor developed specifically for molecular crystals, which is shown to be robust in identifying packing motif similarity. In addition to random structure generation, Genarris offers three workflows based on different sequences of successive clustering and selection steps: the "Rigorous" workflow is an exhaustive exploration of the potential energy landscape, the "Energy" workflow produces a set of low energy structures, and the "Diverse" workflow produces a maximally diverse set of structures. The latter is recommended for generating initial populations for genetic algorithms. Here, the implementation of Genarris is reported and its application is demonstrated for three test cases.
Zeng, Xian-lei; Liu, Xing-guo; Wu, Zong-fan; Shi, Xu; Lu, Shi-min
2016-02-15
Anaerobic ammonium oxidation (ANAMMOX) is one of the important functions in waste water treatment by subsurface flow constructed wetland (SSFCW), however, there are few studies on ANAMMOX in SSFCW environment at present. The community characteristics of ANAMMOX in the SSFCW of processing aquaculture waste water were explored in this study. In order to analyze the structure, diversity and abundance of ANAMMOX bacteria, several 16S rRNA clone libraries were constructed and real-time PCR targeting specific 16S rRNA genes together with diversity analysis was adopted. The obtained results showed that the SSFCW identified a total of three unknown clusters and two known clusters including Candidatus brocadia and Candidatus kuenenia. The dominant cluster was Candidatus brocadia. The highest diversity levels of ANAMMOX bacteria occurred in autumn (H', 1.21), while the lowest in spring (H', 0.64). The abundance of ANAMMOX bacteria in SSFCW environment ranged from 8.0 x 10(4) to 9.4 x 10(6) copies x g(-1) of fresh weight and the copy number of total bacterial 16S rRNA genes ranged from 7.3 x 10(9) to 9.1 x 10(10) copies x g(-1) of fresh weight during culture cycle. There were significant differences in the ANAMMOX bacteria abundances of different stratum and seasons in SSFCW environment, but the differences in total bacterial abundances were not obvious. In addition, the differences in ANAMMOX bacteria abundances in different stratum and seasons in SSFCW environment were irregular in different culture cycle. According to the distribution characteristics of ANAMMOX bacteria in the wetland, the denitrification effect of SSFCW could be improved by changing the supplying manners of aquaculture wastewater and adjusting the structure of wetland. The research results will provide reference for further optimizing the SSFCW and improving the efficiency of purification.
NASA Astrophysics Data System (ADS)
Verkhivker, Gennady M.; Rejto, Paul A.; Bouzida, Djamal; Arthurs, Sandra; Colson, Anthony B.; Freer, Stephan T.; Gehlhaar, Daniel K.; Larson, Veda; Luty, Brock A.; Marrone, Tami; Rose, Peter W.
2001-03-01
Thermodynamic and kinetic aspects of ligand-protein binding are studied for the methotrexate-dihydrofolate reductase system from the binding free energy profile constructed as a function of the order parameter. Thermodynamic stability of the native complex and a cooperative transition to the unique native structure suggest the nucleation kinetic mechanism at the equilibrium transition temperature. Structural properties of the transition state ensemble and the ensemble of nucleation conformations are determined by kinetic simulations of the transmission coefficient and ligand-protein association pathways. Structural analysis of the transition states and the nucleation conformations reconciles different views on the nucleation mechanism in protein folding.
Effects of the interaction range on structural phases of flexible polymers.
Gross, J; Neuhaus, T; Vogel, T; Bachmann, M
2013-02-21
We systematically investigate how the range of interaction between non-bonded monomers influences the formation of structural phases of elastic, flexible polymers. Massively parallel replica-exchange simulations of a generic, coarse-grained model, performed partly on graphics processing units and in multiple-gaussian modified ensembles, pave the way for the construction of the structural phase diagram, parametrized by interaction range and temperature. Conformational transitions between gas-like, liquid, and diverse solid (pseudo) phases are identified by microcanonical statistical inflection-point analysis. We find evidence for finite-size effects that cause the crossover of "collapse" and "freezing" transitions for very short interaction ranges.
Tejedor, David; Delgado-Hernández, Samuel; Peyrac, Jesús; González-Platas, Javier; García-Tellado, Fernando
2017-07-26
An all-pericyclic manifold is developed for the construction of topologically diverse, structurally complex and natural product-like polycyclic chemotypes. The manifold uses readily accessible tertiary propargyl vinyl ethers as substrates and imidazole as a catalyst to form up to two new rings, three new C-C bonds, six stereogenic centers and one transannular oxo-bridge. The manifold is efficient, scalable and instrumentally simple to perform and entails a propargyl Claisen rearrangement-[1,3]H shift, an oxa-6π-electrocyclization, and an intramolecular Diels-Alder reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Belone, Lorenda; Lucero, Julie E; Duran, Bonnie; Tafoya, Greg; Baker, Elizabeth A; Chan, Domin; Chang, Charlotte; Greene-Moton, Ella; Kelley, Michele A; Wallerstein, Nina
2016-01-01
A national community-based participatory research (CBPR) team developed a conceptual model of CBPR partnerships to understand the contribution of partnership processes to improved community capacity and health outcomes. With the model primarily developed through academic literature and expert consensus building, we sought community input to assess face validity and acceptability. Our research team conducted semi-structured focus groups with six partnerships nationwide. Participants validated and expanded on existing model constructs and identified new constructs based on "real-world" praxis, resulting in a revised model. Four cross-cutting constructs were identified: trust development, capacity, mutual learning, and power dynamics. By empirically testing the model, we found community face validity and capacity to adapt the model to diverse contexts. We recommend partnerships use and adapt the CBPR model and its constructs, for collective reflection and evaluation, to enhance their partnering practices and achieve their health and research goals. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Gadeken, K.; Dorgan, K. M.; Moore, J.; Berke, S. K.
2016-02-01
Evolutionary relationships may shed light on observed patterns of diversity and functional traits when viewed through the lens of phylogeny. The potential for phylogenetic information to be used to explain patterns in community structure, such as niche partitioning and responses to stress, is extensive. Differential distribution of related species with similar functional traits suggests niche partitioning, and local redundancy in functional traits may indicate the potential for interspecific competition. In this study, we investigated phylogenetic and functional diversity as a function of habitat for sites with varying levels of oil contamination in the Northern Gulf of Mexico. Our study was conducted in a shallow benthic community at the Chandeleur Islands, a group of uninhabited barrier islands. Infauna were sampled from seagrass (Halodule wrightii) and bare sediment at three sites along the island chain that experienced variable levels of oil impact from the Deepwater Horizon oil spill. Individuals were preserved and 18S and COI genes sequenced, and a phylogenetic tree was constructed of the local community using maximum likelihood. Phylogenetic diversity and evenness were quantified. Ecologically important functional traits were then compiled into respective distance matrices, evaluated through different functional diversity indices, and assessed for correlation with the phylogeny. This integration of functional and phylogenetic diversity has the potential to provide greater insight into factors driving community structure than either metric alone. Determining relevant metrics of diversity is critical to understanding the ecological effects of major disturbances such as oil spills.
Starks, Trevor A.; Long, James M.; Dzialowski, Andrew R.
2016-01-01
Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts.
NASA Astrophysics Data System (ADS)
McQuaid, K. A.; Griffiths, C. L.
2014-02-01
Two of the greatest threats to native biodiversity are the construction of artificial structures in natural environments and the introduction of invasive species. As the development and urbanisation of estuaries continues at an increasing rate worldwide, these environments are being simultaneously affected by these threats. This study quantifies the spread of an invasive reef-building polychaete, Ficopomatus enigmaticus, in a small, highly manipulated urban estuary in South Africa and investigates its role as an ecosystem engineer. Anthropogenic changes to the Zandvlei Estuary, including construction of a rubble weir and canalisation near the estuary mouth, construction of an extensive marina development and hardening of the banks with concrete, have facilitated the expansion of F. enigmaticus. The standing stock of F. enigmaticus increased from 13.69 t, as measured in 1986, to 50.03 t in 2012, due both to increase in the total area colonised and standing stock per m2. Since F. enigmaticus reefs support a greater biomass of infauna than adjacent sandy areas, total invertebrate biomass in the estuary is estimated to have increased from less than 0.30 t in 1942, to over 56.80 t in 2012, due mainly to hardening of banks in parts of the main estuary with concrete and construction of a marina system. A positive correlation between reef mass and infaunal biomass, density and diversity was also found.
T7 lytic phage-displayed peptide libraries: construction and diversity characterization.
Krumpe, Lauren R H; Mori, Toshiyuki
2014-01-01
In this chapter, we describe the construction of T7 bacteriophage (phage)-displayed peptide libraries and the diversity analyses of random amino acid sequences obtained from the libraries. We used commercially available reagents, Novagen's T7Select system, to construct the libraries. Using a combination of biotinylated extension primer and streptavidin-coupled magnetic beads, we were able to prepare library DNA without applying gel purification, resulting in extremely high ligation efficiencies. Further, we describe the use of bioinformatics tools to characterize library diversity. Amino acid frequency and positional amino acid diversity and hydropathy are estimated using the REceptor LIgand Contacts website http://relic.bio.anl.gov. Peptide net charge analysis and peptide hydropathy analysis are conducted using the Genetics Computer Group Wisconsin Package computational tools. A comprehensive collection of the estimated number of recombinants and titers of T7 phage-displayed peptide libraries constructed in our lab is included.
Constructal Law of Vascular Trees for Facilitation of Flow
Razavi, Mohammad S.; Shirani, Ebrahim; Salimpour, Mohammad Reza; Kassab, Ghassan S.
2014-01-01
Diverse tree structures such as blood vessels, branches of a tree and river basins exist in nature. The constructal law states that the evolution of flow structures in nature has a tendency to facilitate flow. This study suggests a theoretical basis for evaluation of flow facilitation within vascular structure from the perspective of evolution. A novel evolution parameter (Ev) is proposed to quantify the flow capacity of vascular structures. Ev is defined as the ratio of the flow conductance of an evolving structure (configuration with imperfection) to the flow conductance of structure with least imperfection. Attaining higher Ev enables the structure to expedite flow circulation with less energy dissipation. For both Newtonian and non-Newtonian fluids, the evolution parameter was developed as a function of geometrical shape factors in laminar and turbulent fully developed flows. It was found that the non-Newtonian or Newtonian behavior of fluid as well as flow behavior such as laminar or turbulent behavior affects the evolution parameter. Using measured vascular morphometric data of various organs and species, the evolution parameter was calculated. The evolution parameter of the tree structures in biological systems was found to be in the range of 0.95 to 1. The conclusion is that various organs in various species have high capacity to facilitate flow within their respective vascular structures. PMID:25551617
Ellis, David; Chavez, Oswaldo; Coombs, Joseph J; Soto, Julian V; Gomez, Rene; Douches, David S; Panta, Ana; Silvestre, Rocio; Anglin, Noelle Lynette
2018-05-24
Breeders rely on genetic integrity of material from genebanks, however, mislabeling and errors in original data can occur. Paired samples of original material and their in vitro counterparts from 250 diverse potato landrace accessions from the International Potato Center (CIP), were fingerprinted using the Infinium 12K V2 Potato Array to confirm genetic identity and evaluate genetic diversity. Diploid, triploid, and tetraploid accessions were included representing seven cultivated potato taxa (Hawkes, 1990). Fingerprints between mother field plants and in vitro clones, were used to evaluate identity, relatedness, and ancestry. Clones of the same accession grouped together, however eleven (4.4%) accessions were mismatches genetically. SNP genotypes were used to construct a phylogeny to evaluate inter- and intraspecific relationships and population structure. Data suggests that the triploids evaluated are genetically similar. STRUCTURE analysis identified several putative hybrids and suggests six populations with significant gene flow between. This study provides a model for genetic identity of plant genetic resources collections as mistakes in conservation of these collections and in genebanks is a reality and confirmed identity is critical for breeders and other users of these collections, as well as for quality management programs and to provide insights into the diversity of the accessions evaluated.
Theoretical microbial ecology without species
NASA Astrophysics Data System (ADS)
Tikhonov, Mikhail
2017-09-01
Ecosystems are commonly conceptualized as networks of interacting species. However, partitioning natural diversity of organisms into discrete units is notoriously problematic and mounting experimental evidence raises the intriguing question whether this perspective is appropriate for the microbial world. Here an alternative formalism is proposed that does not require postulating the existence of species as fundamental ecological variables and provides a naturally hierarchical description of community dynamics. This formalism allows approaching the species problem from the opposite direction. While the classical models treat a world of imperfectly clustered organism types as a perturbation around well-clustered species, the presented approach allows gradually adding structure to a fully disordered background. The relevance of this theoretical construct for describing highly diverse natural ecosystems is discussed.
Liang, Jianfang; Yang, Jiangke; Yang, Yang; Chao, Qunfang; Yin, Yalan; Zhao, Yaguan
2016-08-04
This study aimed to study the phylogenetic diversity and community structure of bacteria in petroleum contaminated soils from Karamay oil field, and to analyze the relationship between the community variation and the environment parameters, to provide a reference for bioremediation of petroleum contaminated soils. We collected samples from petroleum contaminated soils in 5 cm, 20 cm and 50 cm depth layers, and measured the environment parameters subsequently. We constructed three 16S rRNA gene clone libraries of these soil samples, and then determined the operation taxonomy units (OTUs) restriction fragment length polymorphism method, and finally sequenced the representative clones of every OUT. The diversity, richness and evenness index of the bacteria communities were calculated by using Biodap software. Neighbor-Joining phylogenetic tree was constructed based on 16S rRNA gene sequences of bacteria from Karamay oil field and the references from related environments. Canonial correspondence analysis (CCA) was used to analyze the relationship between environment parameters and species by using CANOCO 4.5 software. Environment parameters showed that 50 cm deep soil contained the highest amount of total nitrogen (TN) and total phosphorus (TP), whereas the 20 cm depth soil contained the lowest amount. The 5 cm depth soil contained the highest amount of total organic carbon (TOC), whereas the 50 cm depth soil contained the lowest amount. Among the 3 layers, 20 cm depth had the highest diversity and richness of bacteria, whereas the bacteria in 50 cm depth was the lowest. Phylogenic analyses suggested that the bacteria in Karamay oil field could be distributed into five groups at the level of phylum, Cluster I to V, respectively belong to Proteobacteria, Actinobacteria, Firmicute, Bacteroidetes, Planctomycetes. Cluster I accounts for 78.57% of all tested communities. CCA results showed that TN, TP, TOC significantly affected the bacteria community structure. Especially, TOC content is significantly related to the distribution of Pseudomonas. The petroleum-contaminated soil inhabited abundant of bacteria. The diversity index and spatial distribution of these communities were affected by the environment parameters in the soil.
Genetic diversity analysis of Capparis spinosa L. populations by using ISSR markers.
Liu, C; Xue, G P; Cheng, B; Wang, X; He, J; Liu, G H; Yang, W J
2015-12-09
Capparis spinosa L. is an important medicinal species in the Xinjiang Province of China. Ten natural populations of C. spinosa from 3 locations in North, Central, and South Xinjiang were studied using morphological trait inter simple sequence repeat (ISSR) molecular markers to assess the genetic diversity and population structure. In this study, the 10 ISSR primers produced 313 amplified DNA fragments, with 52% of fragments being polymorphic. Unweighted pair-group method with arithmetic average (UPGMA) cluster analysis indicated that 10 C. spinosa populations were clustered into 3 geographically distinct groups. The Nei gene of C. spinosa populations in different regions had Diversity and Shannon's information index ranges of 0.1312-0.2001 and 0.1004-0.1875, respectively. The 362 markers were used to construct the dendrogram based on the UPGMA cluster analysis. The dendrogram indicated that 10 populations of C. spinosa were clustered into 3 geographically distinct groups. The results showed these genotypes have high genetic diversity, and can be used for an alternative breeding program.
Weger-Lucarelli, James; Garcia, Selene M; Rückert, Claudia; Byas, Alex; O'Connor, Shelby L; Aliota, Matthew T; Friedrich, Thomas C; O'Connor, David H; Ebel, Gregory D
2018-06-20
Arboviruses such as Zika virus (ZIKV, Flaviviridae; Flavivirus) must replicate in both mammalian and insect hosts possessing strong immune defenses. Accordingly, transmission between and replication within hosts involves genetic bottlenecks, during which viral population size and genetic diversity may be significantly reduced. To help quantify these bottlenecks and their effects, we constructed 4 "barcoded" ZIKV populations that theoretically contain thousands of barcodes each. After identifying the most diverse barcoded virus, we passaged this virus 3 times in 2 mammalian and mosquito cell lines and characterized the population using deep sequencing of the barcoded region of the genome. C6/36 maintain higher barcode diversity, even after 3 passages, than Vero. Additionally, field-caught mosquitoes exposed to the virus to assess bottlenecks in a natural host. A progressive reduction in barcode diversity occurred throughout systemic infection of these mosquitoes. Differences in bottlenecks during systemic spread were observed between different populations of Aedes aegypti. Copyright © 2018. Published by Elsevier Inc.
Chakraborty, Arpita; Bera, Amit; Mukherjee, Arghya; Basak, Pijush; Khan, Imroze; Mondal, Arindam; Roy, Arunava; Bhattacharyya, Anish; SenGupta, Sohan; Roy, Debojyoti; Nag, Sudip; Ghosh, Abhrajyoti; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree
2015-04-01
Mangrove microbial communities and their associated activities have profound impact on biogeochemical cycles. Although microbial composition and structure are known to be influenced by biotic and abiotic factors in the mangrove sediments, finding direct correlations between them remains a challenge. In this study we have explored sediment bacterial diversity of the Sundarbans, a world heritage site using a culture-independent molecular approach. Bacterial diversity was analyzed from three different locations with a history of exposure to differential anthropogenic activities. 16S rRNA gene libraries were constructed and partial sequencing of the clones was performed to identify the microbial strains. We identified bacterial strains known to be involved in a variety of biodegradation/biotransformation processes including hydrocarbon degradation, and heavy metal resistance. Canonical Correspondence Analysis of the environmental and exploratory datasets revealed correlations between the ecological indices associated with pollutant levels and bacterial diversity across the sites. Our results indicate that sites with similar exposure of anthropogenic intervention reflect similar patterns of microbial diversity besides spatial commonalities.
Human land use promotes the abundance and diversity of exotic species on caribbean islands.
Jesse, Wendy A M; Behm, Jocelyn E; Helmus, Matthew R; Ellers, Jacintha
2018-05-31
Human land use causes major changes in species abundance and composition, yet native and exotic species can exhibit different responses to land use change. Native populations generally decline in human-impacted habitats while exotic species often benefit. In this study, we assessed the effects of human land use on exotic and native reptile diversity, including functional diversity, which relates to the range of habitat use strategies in biotic communities. We surveyed 114 reptile communities from localities that varied in habitat structure and human impact level on two Caribbean islands, and calculated species richness, overall abundance and evenness for every plot. Functional diversity indices were calculated using published trait data, which enabled us to detect signs of trait filtering associated with impacted habitats. Our results show that environmental variation among sampling plots was explained by two PCA ordination axes related to habitat structure (i.e. forest or non-forest) and human impact level (i.e. addition of man-made constructions such as roads and buildings). Several diversity indices were significantly correlated with the two PCA axes, but exotic and native species showed opposing responses. Native species reached the highest abundance in forests, while exotic species were absent in this habitat. Human impact was associated with an increase in exotic abundance and species richness, while native species showed no significant associations. Functional diversity was highest in non-forested environments on both islands, and further increased on St. Martin with the establishment of functionally unique exotic species in non-forested habitat. Habitat structure, rather than human impact, proved to be an important agent for environmental filtering of traits, causing divergent functional trait values across forested and non-forested environments. Our results illustrate the importance of considering various elements of land use when studying its impact on species diversity and the establishment and spread of exotic species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Polymorphic design of DNA origami structures through mechanical control of modular components.
Lee, Chanseok; Lee, Jae Young; Kim, Do-Nyun
2017-12-12
Scaffolded DNA origami enables the bottom-up fabrication of diverse DNA nanostructures by designing hundreds of staple strands, comprised of complementary sequences to the specific binding locations of a scaffold strand. Despite its exceptionally high design flexibility, poor reusability of staples has been one of the major hurdles to fabricate assorted DNA constructs in an effective way. Here we provide a rational module-based design approach to create distinct bent shapes with controllable geometries and flexibilities from a single, reference set of staples. By revising the staple connectivity within the desired module, we can control the location, stiffness, and included angle of hinges precisely, enabling the construction of dozens of single- or multiple-hinge structures with the replacement of staple strands up to 12.8% only. Our design approach, combined with computational shape prediction and analysis, can provide a versatile and cost-effective procedure in the design of DNA origami shapes with stiffness-tunable units.
Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications
NASA Technical Reports Server (NTRS)
Williams, Martha K.; Fesmire, James E.
2016-01-01
This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.
Huerta, Snjezana; Zerr, Argero A.; Eisenberg, Nancy; Spinrad, Tracy L.; Valiente, Carlos; Di Giunta, Laura; Pina, Armando A.; Eggum, Natalie D.; Sallquist, Julie; Edwards, Alison; Kupfer, Anne; Lonigan, Christopher J.; Phillips, Beth M.; Wilson, Shauna B.; Clancy-Menchetti, Jeanine; Landry, Susan H.; Swank, Paul R.; Assel, Michael A.; Taylor, Heather B.
2010-01-01
Measurement invariance of a one-factor model of effortful control (EC) was tested for 853 low-income preschoolers (M age = 4.48 years). Using a teacher-report questionnaire and seven behavioral measures, configural invariance (same factor structure across groups), metric invariance (same pattern of factor loadings across groups), and partial scalar invariance (mostly the same intercepts across groups) were established across ethnicity (European Americans, African Americans and Hispanics) and across sex. These results suggest that the latent construct of EC behaved in a similar way across ethnic groups and sex, and that comparisons of mean levels of EC are valid across sex and probably valid across ethnicity, especially when larger numbers of tasks are used. The findings also support the use of diverse behavioral measures as indicators of a single latent EC construct. PMID:20593008
The physical volcanology of Mars
NASA Technical Reports Server (NTRS)
Mouginis-Mark, Peter J.; Wilson, Lionel; Zuber, Maria T.
1992-01-01
The physical volcanology of Mars is reviewed, with particular attention given to the diversity of volcanic landforms, the implied styles of eruption associated with the construction of these landforms, the inferred internal structure of the volcanoes, and the influence that the eruptions have had on the Martian environment (both local and global in scale). Volcanism in the central highlands appears to have been explosive in character, while most of the constructional activity in the northern plains was effusive. Highlands volcanism appears to be relatively old compared to that in the northern hemisphere. There is evidence for the existence of large magma chambers and very high effusion rate eruptions on Mars. Tectonic deformation associated with volcanic constructs is primarily a consequence of loading and magma transport, while deformation in the volcanic plains reflects stresses associated with Tharsis and major impact basins.
Early Design Choices: Capture, Model, Integrate, Analyze, Simulate
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2004-01-01
I. Designs are constructed incrementally to meet requirements and solve problems: a) Requirements types: objectives, scenarios, constraints, ilities. etc. b) Problem/issue types: risk/safety, cost/difficulty, interaction, conflict, etc. II. Capture requirements, problems and solutions: a) Collect design and analysis products and make them accessible for integration and analysis; b) Link changes in design requirements, problems and solutions; and c) Harvest design data for design models and choice structures. III. System designs are constructed by multiple groups designing interacting subsystems a) Diverse problems, choice criteria, analysis methods and point solutions. IV. Support integration and global analysis of repercussions: a) System implications of point solutions; b) Broad analysis of interactions beyond totals of mass, cost, etc.
Robust estimation of microbial diversity in theory and in practice
Haegeman, Bart; Hamelin, Jérôme; Moriarty, John; Neal, Peter; Dushoff, Jonathan; Weitz, Joshua S
2013-01-01
Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao's estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics (‘Hill diversities'), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao's estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity. PMID:23407313
Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C.; Kuhn, David N.; Glaz, Barry; Gilbert, Robert A.; Comstock, Jack C.; Wang, Jianping
2014-01-01
Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358
Is the impact of eutrophication on phytoplankton diversity dependent on lake volume/ecosystem size?
Baho, Didier L.; Drakare, Stina; Johnson, Richard K.; Allen, Craig R.; Angeler, David G.
2017-01-01
Research focusing on biodiversity responses to the interactions of ecosystem size and anthropogenic stressors are based mainly on correlative gradient studies, and may therefore confound size-stress relationships due to spatial context and differences in local habitat features across ecosystems. We investigated how local factors related to anthropogenic stressors (e.g.,eutrophication) interact with ecosystem size to influence species diversity. In this study, constructed lake mesocosms (with two contrasting volumes: 1020 (shallow mesocosms) and 2150 (deep mesocosms) litres) were used to simulate ecosystems of different size and manipulated nutrient levels to simulate mesotrophic and hypertrophic conditions. Using a factorial design, we assessed how the interaction between ecosystem size and nutrients influences phytoplankton diversity. We assessed community metrics (richness, diversity, evenness and total biovolumes) and multivariate community structure over a growing season (May to early November 2011). Different community structures were found between deep and shallow mescosoms with nutrient enrichment: Cyanobacteria dominated in the deep and Charophyta in the shallow mesocosms. In contrast, phytoplankton communities were more similar to each other in the low nutrient treatments; only Chlorophyta had generally a higher biovolume in the shallow compared to the deep mesocosms. These results suggest that ecosystem size is not only a determinant of species diversity, but that it can mediate the influence of anthropogenic effects on biodiversity. Such interactions increase the uncertainty of global change outcomes, and should therefore not be ignored in risk/impact assessment and management.
Chen, Yu; Chen, Hang-Rong; Shi, Jian-Lin
2014-01-21
Colloidal hollow mesoporous silica nanoparticles (HMSNs) are aspecial type of silica-based nanomaterials with penetrating mesopore channels on their shells. HMSNs exhibit unique structural characteristics useful for diverse applications: Firstly, the hollow interiors can function as reservoirs for enhanced loading of guest molecules, or as nanoreactors for the growth of nanocrystals or for catalysis in confined spaces. Secondly, the mesoporous silica shell enables the free diffusion of guest molecules through the intact shell. Thirdly, the outer silica surface is ready for chemical modifications, typically via its abundant Si-OH bonds. As early as 2003, researchers developed a soft-templating methodto prepare hollow aluminosilicate spheres with penetrating mesopores in a cubic symmetry pattern on the shells. However, adapting this method for applications on the nanoscale, especially for biomedicine, has proved difficult because the soft templating micelles are very sensitive to liquid environments, making it difficult to tune key parameters such as dispersity, morphology and structure. In this Account, we present the most recent developments in the tailored construction of highly dispersive and monosized HMSNs using simple silica-etching chemistry, and we discuss these particles' excellent performance in diverse applications. We first introduce general principles of silica-etching chemistry for controlling the chemical composition and the structural parameters (particle size, pore size, etching modalities, yolk-shell nanostructures, etc.) of HMSNs. Secondly, we include recent progress in constructing heterogeneous, multifunctional, hollow mesoporous silica nanorattles via several methods for diverse applications. These elaborately designed HMSNs could be topologically transformed to prepare hollow mesoporous carbon nanoparticles or functionalized to produce HMSN-based composite nanomaterials. Especially in biomedicine, HMSNs are excellent as carriers to deliver either hydrophilic or hydrophobic anti-cancer drugs, to tumor cells, offering enhanced chemotherapeutic efficacy and diminished toxic side effects. Most recently, research has shown that loading one or more anticancer drugs into HMSNs can inhibit metastasis or reverse multidrug resistance of cancer cells. HMSNs could also deliver hydrophobic perfluorohexane (PFH) molecules to improve high intensity focused ultrasound (HIFU) cancer surgery by changing the tissue acoustic environment; and HMSNs could act as nanoreactors for enhanced catalytic activity and/or durability. The versatility of silica-etching chemistry, a simple but scalable synthetic methodology, offers great potential for the creation of new types of HMSN-based nanostructures in a range of applications.
Ram, Muthuvarmadam S.; Marne, Minal; Gaur, Ajay; Kumara, Honnavalli N.; Singh, Mewa; Kumar, Ajith; Umapathy, Govindhaswamy
2015-01-01
Genetic isolation of populations is a potent force that helps shape the course of evolution. However, small populations in isolation, especially in fragmented landscapes, are known to lose genetic variability, suffer from inbreeding depression and become genetically differentiated among themselves. In this study, we assessed the genetic diversity of lion-tailed macaques (Macaca silenus) inhabiting the fragmented landscape of Anamalai hills and examined the genetic structure of the species across its distributional range in the Western Ghats. We sequenced around 900 bases of DNA covering two mitochondrial regions–hypervariable region-I and partial mitochondrial cytochrome b–from individuals sampled both from wild and captivity, constructed and dated phylogenetic trees. We found that the lion-tailed macaque troops in the isolated forest patches in Anamalai hills have depleted mitochondrial DNA diversity compared to troops in larger and continuous forests. Our results also revealed an ancient divergence in the lion-tailed macaque into two distinct populations across the Palghat gap, dating to 2.11 million years ago. In light of our findings, we make a few suggestions on the management of wild and captive populations. PMID:26561307
Constructed Pools-and-Riffles: Application and Assessment in Illinois.
NASA Astrophysics Data System (ADS)
Day, D. M.; Dodd, H. R.; Carney, D. A.; Holtrop, A. M.; Whiles, M. R.; White, B.; Roseboom, D.; Kinney, W.; Keefer, L. L.; Beardsley, J.
2005-05-01
The diversity of Illinois' streams provides a broad range of conditions, and thus a variety of restoration techniques may be required to adequately compensate for watershed alterations. Resource management agencies and research institutions in the state have collaborated on a variety of applied research initiatives to assess the efficacy of various stream protection and restoration techniques. Constructed pool-and-riffle structures have received significant attention because they tend to address watershed processes (i.e., channel evolution model) and may benefit biotic communities and processes along with physical habitat. Constructed pools-and-riffles have been applied primarily to address geomorphic instability, yet understanding biological responses can provide further rationale for their use and design specifications. In three stream systems around the state, fish were collected pre- and post- installation of structures, using primarily electrofishing techniques (e.g., electric seine & backpack). In general, within the first five years after installation, changes in fish communities have included a shift from high-abundance, small cyprinid-dominated assemblages to low-density Centrarchidae and Catostomidae assemblages. Changes in macro invertebrates at selected sites included increases in filter feeders and sensitive taxa such as the Ephemeroptera, Plecoptera, and Trichoptera (EPT). Ongoing assessments will be critical for understanding long-term influences on stream ecosystem structure and function.
Carbon nanotubes as templates for polymerized lipid assemblies
NASA Astrophysics Data System (ADS)
Thauvin, Cédric; Rickling, Stéphane; Schultz, Patrick; Célia, Hervé; Meunier, Stéphane; Mioskowski, Charles
2008-12-01
Amphiphilic molecules-molecules that have both hydrophobic and hydrophilic properties-can self-assemble in water to form diverse structures such as micelles, vesicles and tubes, and these nanostructures can be used for delivering drugs, stabilizing membrane proteins or as nanoreactors. We have previously shown that lipids can self-organize on the surface of single-walled carbon nanotubes into regular ring-shaped assemblies. Here we show that these lipid assemblies can be polymerized and isolated from the nanotube template by application of an electric field. We also demonstrate that these assemblies are monodispersed, water-soluble, and can dissolve various hydrophobic rylene dyes, fullerenes and membrane proteins. The stability of these constructs and their diverse applications will be useful in the fields of cosmetics, medicine and material sciences.
Robles, Estuardo
2017-09-01
In no vertebrate species do we possess an accurate, comprehensive tally of neuron types in the brain. This is in no small part due to the vast diversity of neuronal types that comprise complex vertebrate nervous systems. A fundamental goal of neuroscience is to construct comprehensive catalogs of cell types defined by structure, connectivity, and physiological response properties. This type of information will be invaluable for generating models of how assemblies of neurons encode and distribute sensory information and correspondingly alter behavior. This review summarizes recent efforts in the larval zebrafish to construct sensory projectomes, comprehensive analyses of axonal morphologies in sensory axon tracts. Focusing on the olfactory and optic tract, these studies revealed principles of sensory information processing in the olfactory and visual systems that could not have been directly quantified by other methods. In essence, these studies reconstructed the optic and olfactory tract in a virtual manner, providing insights into patterns of neuronal growth that underlie the formation of sensory axon tracts. Quantitative analysis of neuronal diversity revealed organizing principles that determine information flow through sensory systems in the zebrafish that are likely to be conserved across vertebrate species. The generation of comprehensive cell type classifications based on structural, physiological, and molecular features will lead to testable hypotheses on the functional role of individual sensory neuron subtypes in controlling specific sensory-evoked behaviors.
Hassmiller Lich, Kristen; Urban, Jennifer Brown; Frerichs, Leah; Dave, Gaurav
2017-02-01
Group concept mapping (GCM) has been successfully employed in program planning and evaluation for over 25 years. The broader set of systems thinking methodologies (of which GCM is one), have only recently found their way into the field. We present an overview of systems thinking emerging from a system dynamics (SD) perspective, and illustrate the potential synergy between GCM and SD. As with GCM, participatory processes are frequently employed when building SD models; however, it can be challenging to engage a large and diverse group of stakeholders in the iterative cycles of divergent thinking and consensus building required, while maintaining a broad perspective on the issue being studied. GCM provides a compelling resource for overcoming this challenge, by richly engaging a diverse set of stakeholders in broad exploration, structuring, and prioritization. SD provides an opportunity to extend GCM findings by embedding constructs in a testable hypothesis (SD model) describing how system structure and changes in constructs affect outcomes over time. SD can be used to simulate the hypothesized dynamics inherent in GCM concept maps. We illustrate the potential of the marriage of these methodologies in a case study of BECOMING, a federally-funded program aimed at strengthening the cross-sector system of care for youth with severe emotional disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lassila, JK; Bernstein, SL; Kinney, JN
Bacterial microconnpartnnents (BMCs) sequester enzymes from the cytoplasmic environment by encapsulation inside a selectively permeable protein shell. Bioinformatic analyses indicate that many bacteria encode BMC clusters of unknown function and with diverse combinations of shell proteins. The genome of the halophilic myxobacterium Haliangium ochraceum encodes one of the most atypical sets of shell proteins in terms of composition and primary structure. We found that microconnpartnnent shells could be purified in high yield when all seven H. ochraceum BMC shell genes were expressed from a synthetic operon in Escherichia coll. These shells differ substantially from previously isolated shell systems in thatmore » they are considerably smaller and more homogeneous, with measured diameters of 39 2 nm. The size and nearly uniform geometry allowed the development of a structural model for the shells composed of 260 hexagonal units and 13 hexagons per icosahedral face. We found that new proteins could be recruited to the shells by fusion to a predicted targeting peptide sequence, setting the stage for the use of these remarkably homogeneous shells for applications such as three-dimensional scaffolding and the construction of synthetic BMCs. Our results demonstrate the value of selecting from the diversity of BMC shell building blocks found in genomic sequence data for the construction of novel compartments. (C) 2014 Elsevier Ltd. All rights reserved.« less
Tay, Alvin Kuowei; Rees, Susan; Chen, Jack; Kareth, Moses; Silove, Derrick
2015-05-07
The validity of applying the construct of post-traumatic stress disorder (PTSD) across cultures has been the subject of contention. Although PTSD symptoms have been identified across multiple cultures, questions remain whether the constellation represents a coherent construct with an interpretable factor structure across diverse populations, especially those naïve to western notions of mental disorder. An important additional question is whether a constellation of Complex-PTSD (C-PTSD) can be identified and if so, whether there are distinctions between that disorder and core PTSD in patterns of antecedent traumatic events. Our study amongst West Papuan refugees in Papua New Guinea (PNG) aimed to examine the factorial structure of PTSD based on the DSM-IV, DSM-5, ICD-10 and ICD-11 definitions, and C-PTSD according to proposed ICD-11 criteria. We also investigated domains of traumatic events (TEs) and broader psychosocial effects of conflict (sense of safety and injustice) associated with the factorial structures identified. Culturally adapted measures were applied to assess exposure to conflict-related traumatic events (TEs), refugees' sense of safety and justice, and symptoms of PTSD and C-PTSD amongst 230 West Papuan refugees residing in Port Morseby, PNG. Confirmatory factor analysis (CFA) supported a unitary construct of both ICD-10 and ICD-11 PTSD, comprising the conventional symptom subdomains of intrusion, avoidance, and hyperarousal. In contrast, CFA did not identify a unitary construct underlying C-PTSD. The interaction of witnessing murders and sense of injustice was associated with both the intrusion and avoidance domains of PTSD, but not with the unique symptom clusters characterizing C-PTSD. Our findings support the ICD PTSD construct and its three-factor structure in this transcultural refugee population. Traumatic experiences of witnessing murder associated with a sense of injustice were specifically related to the intrusion and avoidance domains of PTSD. The unitary nature of C-PTSD across cultures remains in question.
USDA-ARS?s Scientific Manuscript database
In order to provide theoretical basis for variety identification and parental selection during sugarcane breeding process, the present study was conducted to analyze genetic diversity of nine chewing cane varieties (lines) and construct their DNA fingerprints. Combining twenty-one SSR molecular mark...
Multidimensional Architecture of Love: From Romantic Narratives to Psychometrics.
Karandashev, Victor; Clapp, Stuart
2015-12-01
Romantic love has been explored by writers for centuries revealing multiple emotions and feelings related to this phenomenon. Scientific efforts to understand love began in the mid-twentieth century and greatly advanced the topic in the past few decades. Several instruments measuring love were developed. They are still, however, limited in their scope. The purpose of our study was to explore love's emotional complexity through discourse analysis of romantic narratives and apply the constructs identified in those narratives to the reality of love relationships. In the first study, the discourse analysis of quotes selected from a representative sample of romantic narratives lead to a comprehensive set of items measuring the variety of love constructs. Second and third studies, utilizing 498 participants of various ages, empirically explored the diversity of love constructs and their architecture. The study brought many constructs to the arena of love research. A hierarchical cluster analysis allowed depicting these dimensions in varying models. Mental representations of love structures varied depending on the participants' mental complexity and other factors.
Effects of field-grown genetically modified Zoysia grass on bacterial community structure.
Lee, Yong-Eok; Yang, Sang-Hwan; Bae, Tae-Woong; Kang, Hong-Gyu; Lim, Pyung-Ok; Lee, Hyo-Yeon
2011-04-01
Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P〈0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.
Gupta, Shikha; Basant, Nikita; Mohan, Dinesh; Singh, Kunwar P
2016-07-01
The persistence and the removal of organic chemicals from the atmosphere are largely determined by their reactions with the OH radical and O3. Experimental determinations of the kinetic rate constants of OH and O3 with a large number of chemicals are tedious and resource intensive and development of computational approaches has widely been advocated. Recently, ensemble machine learning (EML) methods have emerged as unbiased tools to establish relationship between independent and dependent variables having a nonlinear dependence. In this study, EML-based, temperature-dependent quantitative structure-reactivity relationship (QSRR) models have been developed for predicting the kinetic rate constants for OH (kOH) and O3 (kO3) reactions with diverse chemicals. Structural diversity of chemicals was evaluated using a Tanimoto similarity index. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation performed employing statistical checks. In test data, the EML QSRR models yielded correlation (R (2)) of ≥0.91 between the measured and the predicted reactivities. The applicability domains of the constructed models were determined using methods based on descriptors range, Euclidean distance, leverage, and standardization approaches. The prediction accuracies for the higher reactivity compounds were relatively better than those of the low reactivity compounds. Proposed EML QSRR models performed well and outperformed the previous reports. The proposed QSRR models can make predictions of rate constants at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards OH radical and O3 in the atmosphere.
Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez-Gualdrón, Diego A.; Colón, Yamil J.; Zhang, Xu
Metal–organic frameworks (MOFs) are porous materials synthesized by combining inorganic and organic molecular building blocks into crystalline networks of distinct topologies. Due to the combinatorial possibilities, there are millions of possible MOF structures. Aiming to exploit their exceptional tunability, surface areas and pore volumes, researchers have investigated MOFs for storage of gaseous fuels such as hydrogen for over a decade, but a suitable MOF to store hydrogen at ambient conditions has not yet been found. Here, we sought to rapidly determine the viability of using MOFs for hydrogen storage at recently proposed, cryogenic operating conditions. We constructed a large andmore » structurally diverse set of 13 512 potential MOF structures based on 41 different topologies and used molecular simulation to determine MOF hydrogen deliverable capacities between 100 bar/77 K and 5 bar/160 K. The highest volumetric deliverable capacity was 57 g L-1 of MOF, which surpasses the 37 g L-1 of tank of the incumbent technology (compressing hydrogen to 700 bar at ambient temperature). To validate our in silico MOF construction method, we synthesized a new isoreticular family of MOFs (she-MOF-x series) based on the she topology, which is extremely rare among MOFs. To validate our hydrogen storage predictions, we activated and measured hydrogen adsorption on she-MOF-1 and NU-1103. The latter MOF showed outstanding stability and a good combination of volumetric and gravimetric performance, presenting 43.2 g L-1 of MOF and 12.6 wt% volumetric and gravimetric deliverable capacities, respectively.« less
Ecology of sleeping: the microbial and arthropod associates of chimpanzee beds.
Thoemmes, Megan S; Stewart, Fiona A; Hernandez-Aguilar, R Adriana; Bertone, Matthew A; Baltzegar, David A; Borski, Russell J; Cohen, Naomi; Coyle, Kaitlin P; Piel, Alexander K; Dunn, Robert R
2018-05-01
The indoor environment created by the construction of homes and other buildings is often considered to be uniquely different from other environments. It is composed of organisms that are less diverse than those of the outdoors and strongly sourced by, or dependent upon, human bodies. Yet, no one has ever compared the composition of species found in contemporary human homes to that of other structures built by mammals, including those of non-human primates. Here we consider the microbes and arthropods found in chimpanzee beds, relative to the surrounding environment ( n = 41 and 15 beds, respectively). Based on the study of human homes, we hypothesized that the microbes found in chimpanzee beds would be less diverse than those on nearby branches and leaves and that their beds would be primarily composed of body-associated organisms. However, we found that differences between wet and dry seasons and elevation above sea level explained nearly all of the observed variation in microbial diversity and community structure. While we can identify the presence of a chimpanzee based on the assemblage of bacteria, the dominant signal is that of environmental microbes. We found just four ectoparasitic arthropod specimens, none of which appears to be specialized on chimpanzees or their structures. These results suggest that the life to which chimpanzees are exposed while in their beds is predominately the same as that of the surrounding environment.
Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xue-Qin, E-mail: songxq@mail.lzjtu.cn; Lei, Yao-Kun; Wang, Xiao-Run
2014-10-15
The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversitiesmore » indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.« less
Kruglanski, Arie W; Köpetz, Catalina; Bélanger, Jocelyn J; Chun, Woo Young; Orehek, Edward; Fishbach, Ayelet
2013-02-01
Diverse facets of the multifinality configuration in goal-directed behavior are identified and empirically explored. The multifinality construct denotes a motivational structure wherein a single means is linked to several ends. A multifinality configuration maximizes value that a given means promises to deliver while sacrificing expectancy of attainment due to a dilution effect. Several phenomena implied by multifinality theory are investigated, including an unconscious quest for multifinal means, the constraints that such quest imposes on means to a focal goal, and structural conditions under which an activity may be experienced as intrinsically motivated. Multifinality phenomena appear in numerous domains of social cognition, and the present theory offers a novel perspective on classic motivational effects.
Tsai, Kuo-Ting; Hu, Chin-Kun; Li, Kuan-Wei; Hwang, Wen-Liang; Chou, Ya-Hui
2018-05-23
Local interneurons (LNs) in the Drosophila olfactory system exhibit neuronal diversity and variability, yet it is still unknown how these features impact information encoding capacity and reliability in a complex LN network. We employed two strategies to construct a diverse excitatory-inhibitory neural network beginning with a ring network structure and then introduced distinct types of inhibitory interneurons and circuit variability to the simulated network. The continuity of activity within the node ensemble (oscillation pattern) was used as a readout to describe the temporal dynamics of network activity. We found that inhibitory interneurons enhance the encoding capacity by protecting the network from extremely short activation periods when the network wiring complexity is very high. In addition, distinct types of interneurons have differential effects on encoding capacity and reliability. Circuit variability may enhance the encoding reliability, with or without compromising encoding capacity. Therefore, we have described how circuit variability of interneurons may interact with excitatory-inhibitory diversity to enhance the encoding capacity and distinguishability of neural networks. In this work, we evaluate the effects of different types and degrees of connection diversity on a ring model, which may simulate interneuron networks in the Drosophila olfactory system or other biological systems.
Zainal Abidin, Muchlisin; Pulungan, Chaidir Parlindungan
2016-01-01
DNA barcoding of the cytochrome oxidase subunit I (COI) gene was utilized to assess the species diversity of the freshwater halfbeak genus Hemirhamphodon. A total of 201 individuals from 46 locations in Peninsular Malaysia, north Borneo (Sarawak) and Sumatra were successfully amplified for 616 base pairs of the COI gene revealing 231 variable and 213 parsimony informative sites. COI gene trees showed that most recognized species form monophyletic clades with high bootstrap support. Pairwise within species comparisons exhibited a wide range of intraspecific diversity from 0.0% to 14.8%, suggesting presence of cryptic diversity. This finding was further supported by barcode gap analysis, ABGD and the constructed COI gene trees. In particular, H. pogonognathus from Kelantan (northeast Peninsular Malaysia) diverged from the other H. pogonognathus groups with distances ranging from 7.8 to 11.8%, exceeding the nearest neighbor taxon. High intraspecific diversity was also observed in H. byssus and H. kuekanthali, but of a lower magnitude. This study also provides insights into endemism and phylogeographic structuring, and limited support for the Paleo-drainage divergence hypothesis as a driver of speciation in the genus Hemirhamphodon. PMID:27657915
de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony
2016-10-03
Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials.
de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony
2016-01-01
Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials. PMID:27694824
de Jong, Maarten; Chen, Wei; Notestine, Randy; ...
2016-10-03
Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. Themore » approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials.« less
Redick, Thomas S; Shipstead, Zach; Meier, Matthew E; Montroy, Janelle J; Hicks, Kenny L; Unsworth, Nash; Kane, Michael J; Hambrick, D Zachary; Engle, Randall W
2016-11-01
Previous research has identified several cognitive abilities that are important for multitasking, but few studies have attempted to measure a general multitasking ability using a diverse set of multitasks. In the final dataset, 534 young adult subjects completed measures of working memory (WM), attention control, fluid intelligence, and multitasking. Correlations, hierarchical regression analyses, confirmatory factor analyses, structural equation models, and relative weight analyses revealed several key findings. First, although the complex tasks used to assess multitasking differed greatly in their task characteristics and demands, a coherent construct specific to multitasking ability was identified. Second, the cognitive ability predictors accounted for substantial variance in the general multitasking construct, with WM and fluid intelligence accounting for the most multitasking variance compared to attention control. Third, the magnitude of the relationships among the cognitive abilities and multitasking varied as a function of the complexity and structure of the various multitasks assessed. Finally, structural equation models based on a multifaceted model of WM indicated that attention control and capacity fully mediated the WM and multitasking relationship. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
8. Historic photo taken during construction of the Lost River ...
8. Historic photo taken during construction of the Lost River Diversion Dam and House. Labeled as follows, 'View showing walk construction North side. Group in foreground, left to right: - J.M. McLean, I.S. Voorhees, Asst Eng'r, A.B. Clevland, engineer... W.W. Patch, Project Engineer.' Negative # 95. Facing east. - Klamath Basin Project, Lost River Diversion Dam House, Lost River near intersection of State Highway 140 & Hill Road, Klamath Falls, Klamath County, OR
Genetic Diversity of Bacterial Communities and Gene Transfer Agents in Northern South China Sea
Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Jiang, Zhao-Yu; Sun, Cui-Ci; Cheng, Hao
2014-01-01
Pyrosequencing of the 16S ribosomal RNA gene (rDNA) amplicons was performed to investigate the unique distribution of bacterial communities in northern South China Sea (nSCS) and evaluate community structure and spatial differences of bacterial diversity. Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes constitute the majority of bacteria. The taxonomic description of bacterial communities revealed that more Chroococcales, SAR11 clade, Acidimicrobiales, Rhodobacterales, and Flavobacteriales are present in the nSCS waters than other bacterial groups. Rhodobacterales were less abundant in tropical water (nSCS) than in temperate and cold waters. Furthermore, the diversity of Rhodobacterales based on the gene transfer agent (GTA) major capsid gene (g5) was investigated. Four g5 gene clone libraries were constructed from samples representing different regions and yielded diverse sequences. Fourteen g5 clusters could be identified among 197 nSCS clones. These clusters were also related to known g5 sequences derived from genome-sequenced Rhodobacterales. The composition of g5 sequences in surface water varied with the g5 sequences in the sampling sites; this result indicated that the Rhodobacterales population could be highly diverse in nSCS. Phylogenetic tree analysis result indicated distinguishable diversity patterns among tropical (nSCS), temperate, and cold waters, thereby supporting the niche adaptation of specific Rhodobacterales members in unique environments. PMID:25364820
ERIC Educational Resources Information Center
López López, M. Carmen; Hinojosa Pareja, Eva F.
2016-01-01
The article presents the construction and validation process of a questionnaire designed to study student teachers' beliefs about cultural diversity. The study, beyond highlighting the complexity involved in the study of beliefs, emphasises their relevance in implementing inclusive educational processes that guarantee the right to a good education…
Laverock, Bonnie; Smith, Cindy J; Tait, Karen; Osborn, A Mark; Widdicombe, Steve; Gilbert, Jack A
2010-12-01
Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimp's burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing bacterial diversity in surface sediments and resulting in distinct bacterial communities even at depth within the burrow. In an area of high macrofaunal abundance, this could lead to alterations in the microbial transformations of important nutrients at the sediment-water interface.
Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P
2015-11-01
Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The proposed AI models can be useful tools in screening the chemicals for their binding affinities toward carbon for their safe management.
Neurovision processor for designing intelligent sensors
NASA Astrophysics Data System (ADS)
Gupta, Madan M.; Knopf, George K.
1992-03-01
A programmable multi-task neuro-vision processor, called the Positive-Negative (PN) neural processor, is proposed as a plausible hardware mechanism for constructing robust multi-task vision sensors. The computational operations performed by the PN neural processor are loosely based on the neural activity fields exhibited by certain nervous tissue layers situated in the brain. The neuro-vision processor can be programmed to generate diverse dynamic behavior that may be used for spatio-temporal stabilization (STS), short-term visual memory (STVM), spatio-temporal filtering (STF) and pulse frequency modulation (PFM). A multi- functional vision sensor that performs a variety of information processing operations on time- varying two-dimensional sensory images can be constructed from a parallel and hierarchical structure of numerous individually programmed PN neural processors.
Silyl Ketene Imines: Highly Versatile Nucleophiles for Catalytic, Asymmetric Synthesis
Denmark, Scott E.; Wilson, Tyler W.
2012-01-01
This Minireview provides an overview on the development of silyl ketene imines and their recent applications in catalytic, enantioselective reactions. The unique structure of the ketene imine allows a diverse range of reactivity patterns and provides solutions to existing challenges in the enantioselective construction of quaternary stereogenic carbon centers and cross-benzoin adducts. A variety of reactions for which silyl ketene imines have been applied are presented with an overall goal of inspiring new uses for these underutilized nucleophiles. PMID:22968901
Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko
2010-01-01
The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and microbial ecosystems in marine environments. PMID:20228114
Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany.
Dănescu, Adrian; Albrecht, Axel T; Bauhus, Jürgen
2016-10-01
Forest diversity-productivity relationships have been intensively investigated in recent decades. However, few studies have considered the interplay between species and structural diversity in driving productivity. We analyzed these factors using data from 52 permanent plots in southwestern Germany with more than 53,000 repeated tree measurements. We used basal area increment as a proxy for productivity and hypothesized that: (1) structural diversity would increase tree and stand productivity, (2) diversity-productivity relationships would be weaker for species diversity than for structural diversity, and (3) species diversity would also indirectly impact stand productivity via changes in size structure. We measured diversity using distance-independent indices. We fitted separate linear mixed-effects models for fir, spruce and beech at the tree level, whereas at the stand level we pooled all available data. We tested our third hypothesis using structural equation modeling. Structural and species diversity acted as direct and independent drivers of stand productivity, with structural diversity being a slightly better predictor. Structural diversity, but not species diversity, had a significant, albeit asymmetric, effect on tree productivity. The functioning of structurally diverse, mixed forests is influenced by both structural and species diversity. These sources of trait diversity contribute to increased vertical stratification and crown plasticity, which in turn diminish competitive interferences and lead to more densely packed canopies per unit area. Our research highlights the positive effects of species diversity and structural diversity on forest productivity and ecosystem dynamics.
Microbial diversity and interactions in subgingival biofilm communities.
Diaz, Patricia I
2012-01-01
The human subgingival environment is a complex environmental niche where microorganisms from the three domains of life meet to form diverse biofilm communities that exist in close proximity to the host. Bacteria constitute the most abundant, diverse and ultimately well-studied component of these communities with about 500 bacterial taxa reported to occur in this niche. Cultivation and molecular approaches are revealing the breadth and depth of subgingival biofilm diversity as part of an effort to understand the subgingival microbiome, the collection of microorganisms that inhabit the gingival crevices. Although these investigations are constructing a pretty detailed taxonomical census of subgingival microbial communities, including inter-subject and temporal variability in community structure, as well as differences according to periodontal health status, we are still at the front steps in terms of understanding community function. Clinical studies that evaluate community structure need to be coupled with biologically relevant models that allow evaluation of the ecological determinants of subgingival biofilm maturation. Functional characteristics of subgingival biofilm communities that still need to be clarified include main metabolic processes that support microbial communities, identification of keystone species, microbial interactions and signaling events that lead to community maturation and the relationship of different communities with the host. This manuscript presents a summary of our current understanding of subgingival microbial diversity and an overview of experimental models used to dissect the functional characteristics of subgingival communities. Future coupling of 'omics'-based approaches with such models will facilitate a better understanding of subgingival ecology opening opportunities for community manipulation. Copyright © 2012 S. Karger AG, Basel.
Constructing Outsiders: The Discursive Framing of Access in University Diversity Policies
ERIC Educational Resources Information Center
Iverson, Susan V.
2012-01-01
This article investigates how discourses circulating in diversity policies reflect and produce perceptions about diversity in higher education. This study, utilizing the method of policy discourse analysis, examines 21 diversity action plans issued at 20 U.S. land-grant universities to understand how these policy documents frame diversity.…
Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy
Micsonai, András; Wien, Frank; Kernya, Linda; Lee, Young-Ho; Goto, Yuji; Réfrégiers, Matthieu; Kardos, József
2015-01-01
Circular dichroism (CD) spectroscopy is a widely used technique for the study of protein structure. Numerous algorithms have been developed for the estimation of the secondary structure composition from the CD spectra. These methods often fail to provide acceptable results on α/β-mixed or β-structure–rich proteins. The problem arises from the spectral diversity of β-structures, which has hitherto been considered as an intrinsic limitation of the technique. The predictions are less reliable for proteins of unusual β-structures such as membrane proteins, protein aggregates, and amyloid fibrils. Here, we show that the parallel/antiparallel orientation and the twisting of the β-sheets account for the observed spectral diversity. We have developed a method called β-structure selection (BeStSel) for the secondary structure estimation that takes into account the twist of β-structures. This method can reliably distinguish parallel and antiparallel β-sheets and accurately estimates the secondary structure for a broad range of proteins. Moreover, the secondary structure components applied by the method are characteristic to the protein fold, and thus the fold can be predicted to the level of topology in the CATH classification from a single CD spectrum. By constructing a web server, we offer a general tool for a quick and reliable structure analysis using conventional CD or synchrotron radiation CD (SRCD) spectroscopy for the protein science research community. The method is especially useful when X-ray or NMR techniques fail. Using BeStSel on data collected by SRCD spectroscopy, we investigated the structure of amyloid fibrils of various disease-related proteins and peptides. PMID:26038575
Predicting Acceptance of Diversity in Pre-Kindergarten Classrooms
ERIC Educational Resources Information Center
Sanders, Kay; Downer, Jason
2012-01-01
This study examined classroom-level contributors to an acceptance of diversity in publicly supported pre-kindergarten classrooms across 11 states. Classroom composition, process quality, and teacher characteristics were examined as predictors of diversity-promoting practices as measured by the ECERS-R, acceptance of diversity construct. Findings…
Modular Chemical Descriptor Language (MCDL): Stereochemical modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gakh, Andrei A; Burnett, Michael N; Trepalin, Sergei V.
2011-01-01
In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDLmore » processing module software packages. Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format.« less
2015-01-01
Building behaviours occur in various organisms from bacteria to humans. Social insects build various structures such as large nests and underground galleries, achieved by self-organization. Structures built by social insects have recently been demonstrated to vary widely in size and shape within a species, even under the same environmental conditions. However, little is known about how intraspecific variation in structures emerges from collective behaviours. Here we show that the colony variation of structures can be generated by simply changing two behavioural parameters of group members, even with the same building algorithm. Our laboratory experiment of termite shelter tube construction demonstrated clear intercolonial variation, and a two-dimensional lattice model showed that it can be attributed to the extent of positive feedback and the number of individuals engaged in building. This study contributes to explaining the great diversity of structures emerging from collective building in social insects. PMID:26715997
NASA Astrophysics Data System (ADS)
Ansari, Kapuli Gani Mohamed Thameemul; Lyla, Somasundharanair; Khan, Syed Ajmal; Bhadury, Punyasloke
2017-09-01
Depth and latitudinal patterns of nematode functional attributes were investigated from 35 stations of Bay of Bengal (BoB) continental shelf. We aim to address whether depth and latitudinal variations can modify nematode community structure and their functional attributes (trophic diversity, size and biomass spectra). Global trend of depth and latitudinal related variations have also been noticed from BoB shelf in terms of nematode abundance and species richness, albeit heterogeneity patterns were encountered in functional attributes. Index of trophic diversity values revealed higher trophic diversity across the BoB shelf and suggested variety of food resource availability. However, downstream analysis of trophic status showed depth and latitude specific patterns but not reflected in terms of size and biomass spectrum. The peaks at different positions clearly visualized heterogeneity in distribution patterns for both size and biomass spectrum and also there was evidence of availability of diversified food resources. Nematode biomass spectra (NBS) constructed for nematode communities showed shift in peak biomass values towards lower to moderate size classes particularly in shallower depth but did not get reflected in latitudes. However, Chennai and Parangipettai transects demonstrated shift in peak biomass values towards higher biomass classes explaining the representation of higher nematode abundance. Our findings concluded that depth and latitudes are physical variables; they may not directly affect nematode community structure and functional attributes but they might influence the other factors such as food availability, sediment deposition and settlement rate. Our observations suggest that the local factors (seasonal character) of phytodetrital food flux can be very important for shaping the nematode community structure and success of nematode functional heterogeneity patterns across the Bay of Bengal shelf.
The meaning of functional trait composition of food webs for ecosystem functioning.
Gravel, Dominique; Albouy, Camille; Thuiller, Wilfried
2016-05-19
There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists. © 2016 The Author(s).
The meaning of functional trait composition of food webs for ecosystem functioning
Albouy, Camille
2016-01-01
There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists. PMID:27114571
Spatial diversity of bacterioplankton communities in surface water of northern South China Sea.
Li, Jialin; Li, Nan; Li, Fuchao; Zou, Tao; Yu, Shuxian; Wang, Yinchu; Qin, Song; Wang, Guangyi
2014-01-01
The South China Sea is one of the largest marginal seas, with relatively frequent passage of eddies and featuring distinct spatial variation in the western tropical Pacific Ocean. Here, we report a phylogenetic study of bacterial community structures in surface seawater of the northern South China Sea (nSCS). Samples collected from 31 sites across large environmental gradients were used to construct clone libraries and yielded 2,443 sequences grouped into 170 OTUs. Phylogenetic analysis revealed 23 bacterial classes with major components α-, β- and γ-Proteobacteria, as well as Cyanobacteria. At class and genus taxon levels, community structure of coastal waters was distinctively different from that of deep-sea waters and displayed a higher diversity index. Redundancy analyses revealed that bacterial community structures displayed a significant correlation with the water depth of individual sampling sites. Members of α-Proteobacteria were the principal component contributing to the differences of the clone libraries. Furthermore, the bacterial communities exhibited heterogeneity within zones of upwelling and anticyclonic eddies. Our results suggested that surface bacterial communities in nSCS had two-level patterns of spatial distribution structured by ecological types (coastal VS. oceanic zones) and mesoscale physical processes, and also provided evidence for bacterial phylogenetic phyla shaped by ecological preferences.
Dimitrakopoulos, Panayiotis G; Siamantziouras, Akis-Stavros D; Galanidis, Alexandros; Mprezetou, Irene; Troumbis, Andreas Y
2006-06-01
We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.
Timber - Material of the Future - Examples of Small Wooden Architectural Structures
NASA Astrophysics Data System (ADS)
Żmijewki, Tomasz; Wojtowicz-Jankowska, Dorota
2017-10-01
The aim of this article is to present various types of wood-based products, classified as engineered timber, while specifying the implications of their structural properties for their forms. Timber is used as a construction material due to its fire resistance, good structural characteristics and insulating properties. The advent of new technologies of wood processing and wood-based materials production has converted timber into a high-tech material, thus encouraging the architects to consider it ever more often in their projects. As wooden technologies overcome constraints, timber begins to compete with steel and concrete. The design characteristics of new wood-based products allow wooden structures to be higher, have larger spans, and more diverse forms than ever. Wood-based materials include materials made of solid wood, veneers, strand, and wood which, due to its inferior quality, would otherwise be unfit for constructions. Elements and layers of these products are glued using different kinds of strong and water-resistant adhesives. The article presents the history of development of new wood technologies, discussing increasingly popular wood-based materials such as glued laminated timber, cross-laminated timber, or structural composite lumber. The paper analyses their technical and fire-resistance properties, and points to ecological aspect, as factors contributing to the growing popularity of these materials. Finally, the timber’s characteristics are contrasted with those of steel and concrete. The article lists examples of wooden objects representing the so-called small architecture structures from across Europe. They illustrate the potential, the uniqueness and the versatility that wood-based materials offer for constructors and architects. All these features form sufficient grounds for stating that timber truly is a construction material of the 21st century.
Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong
2015-01-01
The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions. PMID:26067561
Gao, Weimin; Shi, Xu; Wu, Jieying; Jin, Yuguang; Zhang, Weiwen; Meldrum, Deirdre R
2011-11-01
In this study, to explore the microbial community structure and its functionality in the deep-sea environments, we initially performed a 16S ribosomal RNA (rRNA)-based community structure analyses for microbial communities in the sea water collected from sites of 765-790 m in depth in the Pacific Ocean. Interestingly, in the clone library we detected the presence of both photoautotrophic bacteria such as cyanobacteria and photoheterotrophic bacteria, such as Chloroflexus sp. To further explore the existence and diversity of possible light-utilizing microorganisms, we then constructed and analyzed a 23S rRNA plastid gene cloning library. The results showed that the majority of this cloning library was occupied by oxygenic photoautotrophic organisms, such as diatoms Thalassiosira spp. and cyanobacterium Synechococcus sp. In addition, the diversity of these oxygenic photoautotrophic organisms was very limited. Moreover, both reverse-transcription PCR and quantitative reverse-transcription PCR approaches had been employed to detect expression of the genes involved in protein synthesis and photosynthesis of photoautotrophic organisms, and the positive results were obtained. The possible mechanisms underlying the existence of very limited diversity of photosynthetic organisms at this depth of ocean, as well as the positive detection of rRNA and mRNA of diatom and cyanobacteria, were discussed.
NASA Astrophysics Data System (ADS)
Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong
2015-06-01
The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.
Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong
2015-06-12
The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.
CVD growth of large-area and high-quality HfS2 nanoforest on diverse substrates
NASA Astrophysics Data System (ADS)
Zheng, Binjie; Wang, Zegao; Qi, Fei; Wang, Xinqiang; Yu, Bo; Zhang, Wanli; Chen, Yuanfu
2018-03-01
Two-dimensional layered transition metal dichalcogenides (TMDs) have attracted burgeoning attention due to their various properties and wide potential applications. As a new TMD, hafnium disulfide (HfS2) is theoretically predicted to have better electrical performance than widely studied MoS2. The experimental researches also confirmed the extraordinary feature in electronics and optoelectronics. However, the maximal device performance may not be achieved due to its own limitation of planar structure and challenge of transfer without contamination. Here, through the chemical vapor deposition (CVD) technique, inch-size HfS2 nanoforest has been directly grown on diverse objective substrates covering insulating, semiconducting and conducting substrates. This direct CVD growth without conventional transfer process avoids contamination and degradation in quality, suggesting its promising and wide applications in high-quality and multifarious devices. It is noted that all the HfS2 nanoforests grown on diverse substrates are constructed with vertically aligned few-layered HfS2 nanosheets with high crystalline quality and edge orientation. Moreover, due to its unique structure, the HfS2 nanoforest owns abundant exposed edge sites and large active surface area, which is essential to apply in high-performance catalyst, sensor, and energy storage or field emitter.
NASA Astrophysics Data System (ADS)
Zhang, Xian-Rui; He, Sai-Fei; Zhang, Shuo; Li, Jing; Li, Shan; Liu, Jin-Song; Zhang, Lei
2017-02-01
Two polymorphs (AM-A and AM-B) of azilsartan medoxomil (AM) and four AM solvatomorphs with toluene (AM-TOL), 1,4-dioxane (AM-DIO), chloroform (AM-TCM) and N,N-dimethylacetamide (AM-DMA) have been prepared by the hydrolysis of azilsartan medoxomil potassium in aqueous-organic solutions. In the crystal structures of two polymorphs and three solvatomorphs (AM-TOL, AM-DIO and AM-TCM), two asymmetric AM molecules form the dimeric cycle-like structures via intermolecular Nsbnd H⋯N hydrogen bonds in R22 (26) ring, while AM-DMA shows intramolecular Nsbnd H⋯O hydrogen bond between AM and DMA molecules. The hydrogen bonds (Csbnd H⋯O or Csbnd H⋯N) and π···π (or Csbnd H···π) interactions are helpful to stabilize the conformational diversity of AM. The solvent-induced experiment shows that solvent molecules have great influence on the solvatomorph formation and DIO can form the most steady solvatomorph than other solvents. The thermal study demonstrates that toluene molecules in three solvatomorphs (AM-TOL, AM-DIO and AM-TCM) are the most difficult to remove from the cage. Our results illustrate that the solvent plays significant role in tuning the size of the cage and producing the conformational diversity of AM molecules.
NASA Astrophysics Data System (ADS)
Shepard, R.
2008-12-01
Microbial communities are architects of incredibly complex and diverse morphological structures. Each morphology is a snapshot that reflects the complex interactions within the microbial community and between the community and its environment. Characterizing morphology as an emergent property of microbial communities is thus relevant to understanding the evolution of multicellularity and complexity in developmental systems, to the identification of biosignatures, and to furthering our understanding of modern and ancient microbial ecology. Recently discovered cyanobacterial mats in Pavilion Lake, British Columbia construct unusual complex architecture on the scale of decimeters that incorporates significant void space. Fundamental mesoscale morphological elements include terraces, arches, bridges, depressions, domes, and pillars. The mats themselves also exhibit several microscale morphologies, with reticulate structures being the dominant example. The reticulate structures exhibit a diverse spectrum of morphologies with endmembers characterized by either angular or curvilinear ridges. In laboratory studies, aggregation into reticulate structures occurs as a result of the random gliding and colliding among motile cyanobacterial filaments. Likewise, when Pavilion reticulate mats were sampled and brought to the surface, cyanobacteria invariably migrated out of the mat onto surrounding surfaces. Filaments were observed to move rapidly in clumps, preferentially following paths of previous filaments. The migrating filaments organized into new angular and ropey reticulate biofilms within hours of sampling, demonstrating that cell motility is responsible for the reticulate patterns. Because the morphogenesis of reticulate structures can be linked to motility behaviors of filamentous cyanobacteria, the Willow Point mats provide a unique natural laboratory in which to elucidate the connections between a specific microbial behavior and the construction of complex microbial community morphology. To this end, we identified and characterized fundamental building blocks of the mesoscale morphologies, including bridges, anchors, and curved edges. These morphological building blocks were compared with the suite of motility behaviors and patterns observed in reticulate morphogenesis. Results of this comparison suggest that cyanobacterial motility plays a significant and often dominant role in the morphogenesis of the entire suite of morphologies observed in the microbial mats of Pavilion Lake.
DNA materials: bridging nanotechnology and biotechnology.
Yang, Dayong; Hartman, Mark R; Derrien, Thomas L; Hamada, Shogo; An, Duo; Yancey, Kenneth G; Cheng, Ru; Ma, Minglin; Luo, Dan
2014-06-17
CONSPECTUS: In recent decades, DNA has taken on an assortment of diverse roles, not only as the central genetic molecule in biological systems but also as a generic material for nanoscale engineering. DNA possesses many exceptional properties, including its biological function, biocompatibility, molecular recognition ability, and nanoscale controllability. Taking advantage of these unique attributes, a variety of DNA materials have been created with properties derived both from the biological functions and from the structural characteristics of DNA molecules. These novel DNA materials provide a natural bridge between nanotechnology and biotechnology, leading to far-ranging real-world applications. In this Account, we describe our work on the design and construction of DNA materials. Based on the role of DNA in the construction, we categorize DNA materials into two classes: substrate and linker. As a substrate, DNA interfaces with enzymes in biochemical reactions, making use of molecular biology's "enzymatic toolkit". For example, employing DNA as a substrate, we utilized enzymatic ligation to prepare the first bulk hydrogel made entirely of DNA. Using this DNA hydrogel as a structural scaffold, we created a protein-producing DNA hydrogel via linking plasmid DNA onto the hydrogel matrix through enzymatic ligation. Furthermore, to fully make use of the advantages of both DNA materials and polymerase chain reaction (PCR), we prepared thermostable branched DNA that could remain intact even under denaturing conditions, allowing for their use as modular primers for PCR. Moreover, via enzymatic polymerization, we have recently constructed a physical DNA hydrogel with unique internal structure and mechanical properties. As a linker, we have used DNA to interface with other functional moieties, including gold nanoparticles, clay minerals, proteins, and lipids, allowing for hybrid materials with unique properties for desired applications. For example, we recently designed a DNA-protein conjugate as a universal adapter for protein detection. We further demonstrate a diverse assortment of applications for these DNA materials including diagnostics, protein production, controlled drug release systems, the exploration of life evolution, and plasmonics. Although DNA has shown great potential as both substrate and linker in the construction of DNA materials, it is still in the initial stages of becoming a well-established and widely used material. Important challenges include the ease of design and fabrication, scaling-up, and minimizing cost. We envision that DNA materials will continue to bridge the gap between nanotechnology and biotechnology and will ultimately be employed for many real-world applications.
Multi-frequency complex network from time series for uncovering oil-water flow structure.
Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan
2015-02-04
Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.
Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.
Zhang, Yanmin; Jiao, Yu; Xiong, Xiao; Liu, Haichun; Ran, Ting; Xu, Jinxing; Lu, Shuai; Xu, Anyang; Pan, Jing; Qiao, Xin; Shi, Zhihao; Lu, Tao; Chen, Yadong
2015-11-01
The discovery of novel scaffolds against a specific target has long been one of the most significant but challengeable goals in discovering lead compounds. A scaffold that binds in important regions of the active pocket is more favorable as a starting point because scaffolds generally possess greater optimization possibilities. However, due to the lack of sufficient chemical space diversity of the databases and the ineffectiveness of the screening methods, it still remains a great challenge to discover novel active scaffolds. Since the strengths and weaknesses of both fragment-based drug design and traditional virtual screening (VS), we proposed a fragment VS concept based on Bayesian categorization for the discovery of novel scaffolds. This work investigated the proposal through an application on VEGFR-2 target. Firstly, scaffold and structural diversity of chemical space for 10 compound databases were explicitly evaluated. Simultaneously, a robust Bayesian classification model was constructed for screening not only compound databases but also their corresponding fragment databases. Although analysis of the scaffold diversity demonstrated a very unevenly distribution of scaffolds over molecules, results showed that our Bayesian model behaved better in screening fragments than molecules. Through a literature retrospective research, several generated fragments with relatively high Bayesian scores indeed exhibit VEGFR-2 biological activity, which strongly proved the effectiveness of fragment VS based on Bayesian categorization models. This investigation of Bayesian-based fragment VS can further emphasize the necessity for enrichment of compound databases employed in lead discovery by amplifying the diversity of databases with novel structures.
Shimoyama, Hiromitsu
2018-05-07
Calmodulin (CaM) is a multifunctional calcium-binding protein, which regulates various biochemical processes. CaM acts via structural changes and complex forming with its target enzymes. CaM has two globular domains (N-lobe and C-lobe) connected by a long linker region. Upon calcium binding, the N-lobe and C-lobe undergo local conformational changes, after that, entire CaM wraps the target enzyme through a large conformational change. However, the regulation mechanism, such as allosteric interactions regulating the conformational changes, is still unclear. In order to clarify the allosteric interactions, in this study, experimentally obtained 'real' structures are compared to 'model' structures lacking the allosteric interactions. As the allosteric interactions would be absent in calcium-free CaM (apo-CaM), allostery-eliminated calcium-bound CaM (holo-CaM) models were constructed by combining the apo-CaM's linker and the holo-CaM's N- and C-lobe. Before the comparison, the 'real' and 'model' structures were clustered and cluster-cluster relationship was determined by a principal component analysis. The structures were compared based on the relationship, then, a distance map and a contact probability analysis clarified that the inter-domain motion is regulated by several groups of inter-domain contacting residue pairs. The analyses suggested that these residues cause inter-domain translation and rotation, and as a consequence, the motion encourage structural diversity. The resultant diversity would contribute to the functional versatility of CaM.
Matsuda, Fumio; Nakabayashi, Ryo; Sawada, Yuji; Suzuki, Makoto; Hirai, Masami Y.; Kanaya, Shigehiko; Saito, Kazuki
2011-01-01
A novel framework for automated elucidation of metabolite structures in liquid chromatography–mass spectrometer metabolome data was constructed by integrating databases. High-resolution tandem mass spectra data automatically acquired from each metabolite signal were used for database searches. Three distinct databases, KNApSAcK, ReSpect, and the PRIMe standard compound database, were employed for the structural elucidation. The outputs were retrieved using the CAS metabolite identifier for identification and putative annotation. A simple metabolite ontology system was also introduced to attain putative characterization of the metabolite signals. The automated method was applied for the metabolome data sets obtained from the rosette leaves of 20 Arabidopsis accessions. Phenotypic variations in novel Arabidopsis metabolites among these accessions could be investigated using this method. PMID:22645535
Improvement of Predictive Ability by Uniform Coverage of the Target Genetic Space
Bustos-Korts, Daniela; Malosetti, Marcos; Chapman, Scott; Biddulph, Ben; van Eeuwijk, Fred
2016-01-01
Genome-enabled prediction provides breeders with the means to increase the number of genotypes that can be evaluated for selection. One of the major challenges in genome-enabled prediction is how to construct a training set of genotypes from a calibration set that represents the target population of genotypes, where the calibration set is composed of a training and validation set. A random sampling protocol of genotypes from the calibration set will lead to low quality coverage of the total genetic space by the training set when the calibration set contains population structure. As a consequence, predictive ability will be affected negatively, because some parts of the genotypic diversity in the target population will be under-represented in the training set, whereas other parts will be over-represented. Therefore, we propose a training set construction method that uniformly samples the genetic space spanned by the target population of genotypes, thereby increasing predictive ability. To evaluate our method, we constructed training sets alongside with the identification of corresponding genomic prediction models for four genotype panels that differed in the amount of population structure they contained (maize Flint, maize Dent, wheat, and rice). Training sets were constructed using uniform sampling, stratified-uniform sampling, stratified sampling and random sampling. We compared these methods with a method that maximizes the generalized coefficient of determination (CD). Several training set sizes were considered. We investigated four genomic prediction models: multi-locus QTL models, GBLUP models, combinations of QTL and GBLUPs, and Reproducing Kernel Hilbert Space (RKHS) models. For the maize and wheat panels, construction of the training set under uniform sampling led to a larger predictive ability than under stratified and random sampling. The results of our methods were similar to those of the CD method. For the rice panel, all training set construction methods led to similar predictive ability, a reflection of the very strong population structure in this panel. PMID:27672112
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor
The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimalmore » frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism.« less
Decision problems in management of construction projects
NASA Astrophysics Data System (ADS)
Szafranko, E.
2017-10-01
In a construction business, one must oftentimes make decisions during all stages of a building process, from planning a new construction project through its execution to the stage of using a ready structure. As a rule, the decision making process is made more complicated due to certain conditions specific for civil engineering. With such diverse decision situations, it is recommended to apply various decision making support methods. Both, literature and hands-on experience suggest several methods based on analytical and computational procedures, some less and some more complex. This article presents the methods which can be helpful in supporting decision making processes in the management of civil engineering projects. These are multi-criteria methods, such as MCE, AHP or indicator methods. Because the methods have different advantages and disadvantages, whereas decision situations have their own specific nature, a brief summary of the methods alongside some recommendations regarding their practical applications has been given at the end of the paper. The main aim of this article is to review the methods of decision support and their analysis for possible use in the construction industry.
Lévesque, Lucie M; Dubé, Monique G
2007-09-01
Pipeline crossing construction alters river and stream channels, hence may have detrimental effects on aquatic ecosystems. This review examines the effects of crossing construction on fish and fish habitat in rivers and streams, and recommends an approach to monitoring and assessment of impacts associated with these activities. Pipeline crossing construction is shown to not only compromise the integrity of the physical and chemical nature of fish habitat, but also to affect biological habitat (e.g., benthic invertebrates and invertebrate drift), and fish behavior and physiology. Indicators of effect include: water quality (total suspended solids TSS), physical habitat (substrate particle size, channel morphology), benthic invertebrate community structure and drift (abundance, species composition, diversity, standing crop), and fish behavior and physiology (hierarchy, feeding, respiration rate, loss of equilibrium, blood hematocrit and leukocrit levels, heart rate and stroke volume). The Before-After-Control-Impact (BACI) approach, which is often applied in Environmental Effects Monitoring (EEM), is recommended as a basis for impact assessment, as is consideration of site-specific sensitivities, assessment of significance, and cumulative effects.
The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy
Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S.; Quick, William Paul
2016-01-01
Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the ‘sativa leaf type’ that we see today in domesticated species. PMID:27792743
The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy.
Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S; Quick, William Paul
2016-01-01
Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the 'sativa leaf type' that we see today in domesticated species.
Genetic Diversity and Population Structure of Rice Varieties Cultivated in Temperate Regions.
Reig-Valiente, Juan L; Viruel, Juan; Sales, Ester; Marqués, Luis; Terol, Javier; Gut, Marta; Derdak, Sophia; Talón, Manuel; Domingo, Concha
2016-12-01
After its domestication, rice cultivation expanded from tropical regions towards northern latitudes with temperate climate in a progressive process to overcome limiting photoperiod and temperature conditions. This process has originated a wide range of diversity that can be regarded as a valuable resource for crop improvement. In general, current rice breeding programs have to deal with a lack of both germplasm accessions specifically adapted to local agro-environmental conditions and adapted donors carrying desired agronomical traits. Comprehensive maps of genome variability and population structure would facilitate genome-wide association studies of complex traits, functional gene investigations and the selection of appropriate donors for breeding purposes. A collection of 217 rice varieties mainly cultivated in temperate regions was generated. The collection encompasses modern elite and old cultivars, as well as traditional landraces covering a wide genetic diversity available for rice breeders. Whole Genome Sequencing was performed on 14 cultivars representative of the collection and the genomic profiles of all cultivars were constructed using a panel of 2697 SNPs with wide coverage throughout the rice genome, obtained from the sequencing data. The population structure and genetic relationship analyses showed a strong substructure in the temperate rice population, predominantly based on grain type and the origin of the cultivars. Dendrogram also agrees population structure results. Based on SNP markers, we have elucidated the genetic relationship and the degree of genetic diversity among a collection of 217 temperate rice varieties possessing an enormous variety of agromorphological and physiological characters. Taken together, the data indicated the occurrence of relatively high gene flow and elevated rates of admixture between cultivars grown in remote regions, probably favoured by local breeding activities. The results of this study significantly expand the current genetic resources available for temperate varieties of rice, providing a valuable tool for future association mapping studies.
Applications of molecular modeling in coal research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, G.A.; Faulon, J.L.
Over the past several years, molecular modeling has been applied to study various characteristics of coal molecular structures. Powerful workstations coupled with molecular force-field-based software packages have been used to study coal and coal-related molecules. Early work involved determination of the minimum-energy three-dimensional conformations of various published coal structures (Given, Wiser, Solomon and Shinn), and the dominant role of van der Waals and hydrogen bonding forces in defining the energy-minimized structures. These studies have been extended to explore various physical properties of coal structures, including density, microporosity, surface area, and fractal dimension. Other studies have related structural characteristics to cross-linkmore » density and have explored small molecule interactions with coal. Finally, recent studies using a structural elucidation (molecular builder) technique have constructed statistically diverse coal structures based on quantitative and qualitative data on coal and its decomposition products. This technique is also being applied to study coalification processes based on postulated coalification chemistry.« less
Clinical use of the Kessler psychological distress scales with culturally diverse groups.
Stolk, Yvonne; Kaplan, Ida; Szwarc, Josef
2014-06-01
The Kessler 10 (K10) and embedded Kessler 6 (K6) was developed to screen for non-specific psychological distress and serious mental illness in mental health surveys of English-speaking populations, but has been adopted in Western and non-Western countries as a screening and outcome measure in primary care and mental health settings. This review examines whether the original K6/K10's validity for culturally diverse populations was established, and whether the cultural equivalence, and sensitivity to change of translated or culturally adapted K6/K10s, has been demonstrated with culturally diverse client groups. Evidence for the original K6/K10's validity for culturally diverse populations is limited. Questions about the conceptual and linguistic equivalence of translated/adapted K6/K10s arise from reports of changes in item connotation and differential item functioning. Evidence for structural equivalence is inconsistent, as is support for criterion equivalence, with the majority of studies compromising on accuracy in case prediction. Research demonstrating sensitivity to change with culturally diverse groups is lacking. Inconsistent evidence for the K6/K10's cultural appropriateness in clinical settings, and a lack of clinical norms for either majority or culturally diverse groups, indicate the importance of further research into the psychological distress construct with culturally diverse clients, and the need for caution in interpreting K6/K10 scores. Copyright © 2014 John Wiley & Sons, Ltd.
Strategies for the construction and use of peptide and antibody libraries displayed on phages.
Pini, Alessandro; Giuliani, Andrea; Ricci, Claudia; Runci, Ylenia; Bracci, Luisa
2004-12-01
Combinatorial chemistry and biology have become popular methods for the identification of bio-active molecules in drug discovery. A widely used technique in combinatorial biology is "phage display", by which peptides, antibody fragments and enzymes are displayed on the surface of bacteriophages, and can be selected by simple procedures of biopanning. The construction of phage libraries of peptides or antibody fragments provides a huge source of ligands and bio-active molecules that can be isolated from the library without laborious studies on antigen characteristics and prediction of ligand structure. This "irrational" approach for the construction of new drugs is extremely rapid and is now used by thousands of laboratories world-wide. The bottleneck in this procedure is the availability of large reliable libraries that can be used repeatedly over the years without loss of ligand expression and diversity. Construction of personalized libraries is therefore important for public and private laboratories engaged in the isolation of specific molecules for therapeutic or diagnostic use. Here we report the general strategies for constructing large phage peptide and antibody libraries, based on the experience of researchers who built the world's most widely used libraries. Particular attention is paid to advanced strategies for the construction, preservation and panning.
NASA Astrophysics Data System (ADS)
Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan
2016-08-01
Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and height diversity through silvicultural operations might constitute an effective approach for enhancing aboveground C storage in these forests.
Endless forms: human behavioural diversity and evolved universals.
Smith, Eric Alden
2011-02-12
Human populations have extraordinary capabilities for generating behavioural diversity without corresponding genetic diversity or change. These capabilities and their consequences can be grouped into three categories: strategic (or cognitive), ecological and cultural-evolutionary. Strategic aspects include: (i) a propensity to employ complex conditional strategies, some certainly genetically evolved but others owing to directed invention or to cultural evolution; (ii) situations in which fitness payoffs (or utilities) are frequency-dependent, so that there is no one best strategy; and (iii) the prevalence of multiple equilibria, with history or minor variations in starting conditions (path dependence) playing a crucial role. Ecological aspects refer to the fact that social behaviour and cultural institutions evolve in diverse niches, producing various adaptive radiations and local adaptations. Although environmental change can drive behavioural change, in humans, it is common for behavioural change (especially technological innovation) to drive environmental change (i.e. niche construction). Evolutionary aspects refer to the fact that human capacities for innovation and cultural transmission lead to diversification and cumulative cultural evolution; critical here is institutional design, in which relatively small shifts in incentive structure can produce very different aggregate outcomes. In effect, institutional design can reshape strategic games, bringing us full circle.
Millar, J Alasdair; Millar, Robyn C
2014-01-01
The Australian federal government has proposed an AUD $7 patient co-payment for a general practitioner (GP) consultation. One effect of the co-payment may be that patients will seek assistance at public hospital emergency departments (EDs), where currently there is no user charge. We studied the possible financial impact of patient diversion on the Western Australia (WA) health budget. We constructed a spreadsheet model of changes in annual cash flows including the co-payment, GP fees for service, and rates of diversion to emergency departments with additional marginal costs for ED attendance. Changes in WA cash flows are the aggregate of marginal ED costs of treating diverted patients and added expenditure in fees paid to rural doctors who also man local emergency centres. The estimated costs to WA are AUD $6.3 million, $35.9 million and $87.4 million at 1, 5, and 10 per cent diversion, respectively. Commonwealth receipts increase and expenditure on Medicare benefits declines. A diversion of patients from GP surgeries to ED in WA caused by the co-payment will result in increased costs to the state, which may be substantial, and will reduce net costs to the Commonwealth.
Chen, Da-Xia; Zhao, Ji-Feng; Liu, Xiang; Wang, Chang-Hua; Zhang, Zhi-Wei; Qin, Song-Yun; Zhong, Guo-Yue
2013-01-01
Revealed the genetic diversity level and genetic structure characteristics in Sinopodophyllum emodi, a rare and endangered species in China. We detected the genetic polymorphism within and among six wild populations (45 individuals) by the approach of Start Codon Targeted (SCoT) Polymorphism. The associated genetic parameters were calculated by POP-GENE1.31 and the relationship was constructed based on UPGMA method. A total of 350 bands were scored by 27 primers and 284 bands of them were polymorphic. The average polymorphic bands of each primer were 10.52. At species level, there was a high level of genetic diversity among six populations (PPB = 79.27%, N(e) = 1.332 7, H = 0.210 9 and H(sp) = 0.328 6). At population level, the genetic diversity level was low (PPB = 10.48% (4.00% -23.71%), N(e) = 1.048 7 (1.020 7-1.103 7), H = 0.029 7 (0.012 9-0.063 1), H(pop) = 0.046 2 (0.019 9-0.098 6). The Nei's coefficient of genetic differentiation was 0.841 1, which was consistent with the Shannon's coefficient of genetic differentiation (0.849 4). Two calculated methods all showed that most of the genetic variation existed among populations. The gene flow (N(m) = 0.094 4) was less among populations, indicating that the degree of genetic differentiation was higher. Genetic similarity coefficient were changed from 0.570 8 to 0.978 7. By clustering analysis, the tested populations were divided into two classes and had a tendency that the same geographical origin or material of similar habitats clustered into one group. The genetic diversity of samples of S. emodi is high,which laid a certain foundation for effective protection and improvement of germplasm resources.
Students using visual thinking to learn science in a Web-based environment
NASA Astrophysics Data System (ADS)
Plough, Jean Margaret
United States students' science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment. The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students' performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of other students, and used these linked structures as models for solving problems. Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts. The results of this study showed clearly that (1) making visual representations helped students understand science knowledge, (2) making links between web pages helped students construct Science Knowledge Structures, and (3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the science concepts were usually represented accurately. Further, looking for information on the internet may cause new problems in learning. Likewise, being absent, starting late, and/or dropping out all may negatively influence students' proficiency on the standards. Finally, the way Science Structures are constructed and linked may provide insights into the way individual students think and process information.
Construction and screening of marine metagenomic libraries.
Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth
2010-01-01
Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.
Gardenia jasminoides Encodes an Inhibitor-2 Protein for Protein Phosphatase Type 1
NASA Astrophysics Data System (ADS)
Gao, Lan; Li, Hao-Ming
2017-08-01
Protein phosphatase-1 (PP1) regulates diverse, essential cellular processes such as cell cycle progression, protein synthesis, muscle contraction, carbohydrate metabolism, transcription and neuronal signaling. Inhibitor-2 (I-2) can inhibit the activity of PP1 and has been found in diverse organisms. In this work, a Gardenia jasminoides fruit cDNA library was constructed, and the GjI-2 cDNA was isolated from the cDNA library by sequencing method. The GjI-2 cDNA contains a predicted 543 bp open reading frame that encodes 180 amino acids. The bioinformatics analysis suggested that the GjI-2 has conserved PP1c binding motif, and contains a conserved phosphorylation site, which is important in regulation of its activity. The three-dimensional model structure of GjI-2 was buite, its similar with the structure of I-2 from mouse. The results suggest that GjI-2 has relatively conserved RVxF, FxxR/KxR/K and HYNE motif, and these motifs are involved in interaction with PP1.
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Xu, Zhanqiang; Si, Weili; Oniwa, Kazuaki; Bao, Ming; Yamamoto, Yoshinori; Jin, Tienan
2017-04-01
The extended polycyclic aromatic hydrocarbons (PAHs) have received significant interdisciplinary attention due to their semiconducting applications in diverse organic electronics as well as intriguing structural interests of well-defined graphene segments. Herein, a highly efficient oxidative spirocyclization and 1,2-aryl migration tandem synthetic method for the construction of extended polyaromatic hydrocarbons (PAHs) has been developed. The CuCl-catalyst/PhCO3 tBu or DDQ oxidation system in the presence of trifluoroacetic acid enables the selective single-electron oxidation to take place preferentially at the more electron-rich alkene moiety of o-biphenylyl-substituted methylenefluorenes, giving rise to the subsequent tandem process. A variety of structurally diverse extended PAHs including functionalized dibenzo[g,p]chrysenes, benzo[f]naphtho[1,2-s]picene, hexabenzo[a,c,fg,j,l,op]tetracene, tetrabenzo[a,c,f,m]phenanthro[9,10-k]tetraphene, tetrabenzo[a,c,f,k]phenanthro[9,10-m]tetraphene, tetrabenzo[a,c,f,o]phenanthro[9,10-m]picene and S-type helicene have been readily synthesized.
Phonon transport in single-layer boron nanoribbons
NASA Astrophysics Data System (ADS)
Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping
2016-11-01
Inspired by the successful synthesis of three two-dimensional (2D) allotropes, the boron sheet has recently been one of the hottest 2D materials around. However, to date, phonon transport properties of these new materials are still unknown. By using the non-equilibrium Green’s function (NEGF) combined with the first principles method, we study ballistic phonon transport in three types of boron sheets; two of them correspond to the structures reported in the experiments, while the third one is a stable structure that has not been synthesized yet. At room temperature, the highest thermal conductance of the boron nanoribbons is comparable with that of graphene, while the lowest thermal conductance is less than half of graphene’s. Compared with graphene, the three boron sheets exhibit diverse anisotropic transport characteristics. With an analysis of phonon dispersion, bonding charge density, and simplified models of atomic chains, the mechanisms of the diverse phonon properties are discussed. Moreover, we find that many hybrid patterns based on the boron allotropes can be constructed naturally without doping, adsorption, and defects. This provides abundant nanostructures for thermal management and thermoelectric applications.
Beckett, Stephen J.; Williams, Hywel T. P.
2013-01-01
Phage and their bacterial hosts are the most diverse and abundant biological entities in the oceans, where their interactions have a major impact on marine ecology and ecosystem function. The structure of interaction networks for natural phage–bacteria communities offers insight into their coevolutionary origin. At small phylogenetic scales, observed communities typically show a nested structure, in which both hosts and phages can be ranked by their range of resistance and infectivity, respectively. A qualitatively different multi-scale structure is seen at larger phylogenetic scales; a natural assemblage sampled from the Atlantic Ocean displays large-scale modularity and local nestedness within each module. Here, we show that such ‘nested-modular’ interaction networks can be produced by a simple model of host–phage coevolution in which infection depends on genetic matching. Negative frequency-dependent selection causes diversification of hosts (to escape phages) and phages (to track their evolving hosts). This creates a diverse community of bacteria and phage, maintained by kill-the-winner ecological dynamics. When the resulting communities are visualized as bipartite networks of who infects whom, they show the nested-modular structure characteristic of the Atlantic sample. The statistical significance and strength of this observation varies depending on whether the interaction networks take into account the density of the interacting strains, with implications for interpretation of interaction networks constructed by different methods. Our results suggest that the apparently complex community structures associated with marine bacteria and phage may arise from relatively simple coevolutionary origins. PMID:24516719
Erwin, Deborah O; Johnson, Virginia A; Feliciano-Libid, Luisa; Zamora, Dulce; Jandorf, Lina
2005-01-01
Latino immigrants are at higher risk of death from breast and cervical cancer, necessitating effective cancer education interventions. Qualitative and quantitative information was obtained from Latinos from Arkansas and New York City through focus groups and questionnaires. Findings were analyzed using the PEN-3 model. The results demonstrate a mechanism for creating a culturally competent program, Esperanza y Vida, through progressively analyzing the findings to define the key perceptions, enablers, and nurturers, then applying this information to construct program components to address appropriate health behavior and cultural components that address the specific needs of a diverse Latino population. Finding a systematic approach to incorporating and embracing sociocultural perspectives and constructs may effectively appeal to diverse Latino immigrants in the development of a cancer education intervention.
Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M.
2011-01-01
We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, Transition Path Theory (TPT) for constructing folding pathways and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270K and 566K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the Weighted-Histogram-Analysis Method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (Pfold) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding “tubes”, a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways. PMID:21254767
Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M
2011-02-17
We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, transition path theory (TPT) for constructing folding pathways, and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270 and 566 K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the weighted-histogram-analysis method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (P(fold)) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding "tubes", a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network, and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways.
Experiences of Cultural Diversity in the Context of an Emergent Transnationalism
ERIC Educational Resources Information Center
Rizvi, Fazal
2011-01-01
In this article, the author argues that despite wide-ranging appeal of the discourses of globalization, our modes of thinking and ways of addressing issues of cultural diversity remain trapped within a national framework. The dominant constructions of cultural diversity often overlook the ways in which experiences of diversity now take place in…
Modeling Mediterranean forest structure using airborne laser scanning data
NASA Astrophysics Data System (ADS)
Bottalico, Francesca; Chirici, Gherardo; Giannini, Raffaello; Mele, Salvatore; Mura, Matteo; Puxeddu, Michele; McRoberts, Ronald E.; Valbuena, Ruben; Travaglini, Davide
2017-05-01
The conservation of biological diversity is recognized as a fundamental component of sustainable development, and forests contribute greatly to its preservation. Structural complexity increases the potential biological diversity of a forest by creating multiple niches that can host a wide variety of species. To facilitate greater understanding of the contributions of forest structure to forest biological diversity, we modeled relationships between 14 forest structure variables and airborne laser scanning (ALS) data for two Italian study areas representing two common Mediterranean forests, conifer plantations and coppice oaks subjected to irregular intervals of unplanned and non-standard silvicultural interventions. The objectives were twofold: (i) to compare model prediction accuracies when using two types of ALS metrics, echo-based metrics and canopy height model (CHM)-based metrics, and (ii) to construct inferences in the form of confidence intervals for large area structural complexity parameters. Our results showed that the effects of the two study areas on accuracies were greater than the effects of the two types of ALS metrics. In particular, accuracies were less for the more complex study area in terms of species composition and forest structure. However, accuracies achieved using the echo-based metrics were only slightly greater than when using the CHM-based metrics, thus demonstrating that both options yield reliable and comparable results. Accuracies were greatest for dominant height (Hd) (R2 = 0.91; RMSE% = 8.2%) and mean height weighted by basal area (R2 = 0.83; RMSE% = 10.5%) when using the echo-based metrics, 99th percentile of the echo height distribution and interquantile distance. For the forested area, the generalized regression (GREG) estimate of mean Hd was similar to the simple random sampling (SRS) estimate, 15.5 m for GREG and 16.2 m SRS. Further, the GREG estimator with standard error of 0.10 m was considerable more precise than the SRS estimator with standard error of 0.69 m.
Classroom Management in Diverse Classrooms
ERIC Educational Resources Information Center
Milner, H. Richard, IV; Tenore, F. Blake
2010-01-01
Classroom management continues to be a serious concern for teachers and especially in urban and diverse learning environments. The authors present the culturally responsive classroom management practices of two teachers from an urban and diverse middle school to extend the construct, culturally responsive classroom management. The principles that…
[Study on diversity of protein between Houttuynia cordata plant].
Zhang, Xi-li; He, Fu-yuan; Wang, Hai-qin; Yang, Yan-tao; Shi, Ji-lian; Liu, Wen-long; Li, Shun-xiang
2013-12-01
To reveal protein diversity between the same batch of fresh Houttuynia cordata in the same GAP base,and to lay the foundation construction for "node metabolic network". Three methods including the Ramagli improved Bradford law, SDS-PAGE gel electrophoresis method and double wavelength thin-layer scanning method were used to study the total protein content diversity, protein species diversity and various kinds of content variability. The molecular weight of 53 plant protein mostly concentrated in the range of 6.5-97.2 kDa, the species diversity was not obvious with main performance for banding color shades; The RSD of zero moment (AUCT), first moment (MCRTT) and second moment (VCRTT) in protein electrophoresis banding was 40.92%, 6.01% and 18.57%, respectively. There is rich diversity in different Houttuynia cordata plant in the same GAP base, which provides basis for the foundation of subsequent key protease search, "node metabolic network" construction, and study on the Chinese medicine quality stability.
NASA Astrophysics Data System (ADS)
Malek, Anna J.; Collie, Jeremy S.; Gartland, James
2014-06-01
The abundance, biomass, diversity, and species composition of the demersal fish and invertebrate community in Rhode Island Sound and Block Island Sound, an area identified for offshore renewable energy development, were evaluated for spatial and seasonal structure. We conducted 58 otter trawls and 51 beam trawls in the spring, summer and fall of 2009-2012, and incorporated additional data from 88 otter trawls conducted by the Northeast Area Monitoring and Assessment Program. We used regionally-grouped abundance, biomass, diversity, and size spectra to assess spatial patterns in the aggregate fish community, and hierarchical cluster analysis to evaluate trends in species assemblages. Our analyses revealed coherent gradients in fish community biomass, diversity and species composition extending from inshore to offshore waters, as well as patterns related to the differing bathymetry of Rhode Island and Block Island Sounds. The fish communities around Block Island and Cox's Ledge are particularly diverse, suggesting that the proximity of hard bottom habitat may be important in structuring fish communities in this area. Species assemblages in Rhode Island and Block Island Sounds are characterized by a combination of piscivores (silver hake, summer flounder, spiny dogfish), benthivores (American lobster, black sea bass, Leucoraja spp. skates, scup) and planktivores (sea scallop), and exhibit geographic patterns that are persistent from year to year, yet variable by season. Such distributions reflect the cross-shelf migration of fish and invertebrate species in the spring and fall, highlighting the importance of considering seasonal fish behavior when planning construction schedules for offshore development projects. The fine spatial scale (10 s of kms) of this research makes it especially valuable for local marine spatial planning efforts by identifying local-scale patterns in fish community structure that will enable future assessment of the ecological impacts of offshore development. As such, this knowledge of the spatial and temporal structure of the demersal fish community in Rhode Island and Block Island Sounds will help to guide the placement of offshore structures so as to preserve the ecological and economic value of the area.
NASA Astrophysics Data System (ADS)
Schleigh, Sharon
This study focuses on the impact of assessment format on the identification of students' ideas surrounding the concept of force and the consistency with which students apply those ideas across contexts. It is in response to the debate in conceptual change literature regarding students' knowledge structure coherence. Empirical studies in this field typically rely on an interview assessment format. The current study examined the potential of a constructed response assessment format as another possible instrument for data collection involving larger sample populations. The current study specifically compared how the two assessment formats (constructed response and interview assessment) assessed 45 students in the ninth grade in a single school in Arizona. The analysis explored possible biases and interactions by sex, order of assessment, and preference for assessment format because the literature suggests that these factors may potentially affect the performance and coding of assessments. Although small differences between the two assessments were found, the differences were not statistically significant overall or for any subgroup. More specifically, there were no apparent significant biases in the two formats with regard to one another and student sex. However it was found that girls are more likely to express multiple-best match meanings than boys in both assessments. This may be an influence in the diversity found in previous studies concerning students' knowledge structures. These findings suggest that the constructed response format could be administered on a larger scale to assist in the identification of factors contributing to the differences in findings across prior studies in this field. Additionally, these results suggest the potential of this constructed response format for helping teachers conduct formative assessments to guide instructional decisions.
Su, Miaoda; Liu, Mei; Liu, Limei; Sun, Yunyu; Li, Mingtong; Wang, Dalei; Zhang, Hui; Dong, Bin
2015-11-03
We report the utilization of the polydimethylsiloxane template to construct polymer-based autonomous micromotors with various structures. Solid or hollow micromotors, which consist of polycaprolactone and platinum nanoparticles, can be obtained with controllable sizes and shapes. The resulting micromotor can not only be self-propelled in solution based on the bubble propulsion mechanism in the presence of the hydrogen peroxide fuel, but also exhibit structure-dependent motion behavior. In addition, the micromotors can exhibit various functions, ranging from fluorescence, magnetic control to cargo transportation. Since the current method can be extended to a variety of organic and inorganic materials, we thus believe it may have great potential in the fabrication of different functional micromotors for diverse applications.
Babatunde, A O; Miranda-CasoLuengo, Raul; Imtiaz, Mehreen; Zhao, Y Q; Meijer, Wim G
2016-08-01
This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems (CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100gBOD5/(m(2)·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus (P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10gP/(m(2)·day) based on the performance results obtained within the first 16months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance. Copyright © 2016. Published by Elsevier B.V.
Different Measures of Structural Similarity Tap Different Aspects of Visual Object Processing
Gerlach, Christian
2017-01-01
The structural similarity of objects has been an important variable in explaining why some objects are easier to categorize at a superordinate level than to individuate, and also why some patients with brain injury have more difficulties in recognizing natural (structurally similar) objects than artifacts (structurally distinct objects). In spite of its merits as an explanatory variable, structural similarity is not a unitary construct, and it has been operationalized in different ways. Furthermore, even though measures of structural similarity have been successful in explaining task and category-effects, this has been based more on implication than on direct empirical demonstrations. Here, the direct influence of two different measures of structural similarity, contour overlap and within-item structural diversity, on object individuation (object decision) and superordinate categorization performance is examined. Both measures can account for performance differences across objects, but in different conditions. It is argued that this reflects differences between the measures in whether they tap: (i) global or local shape characteristics, and (ii) between- or within-category structural similarity. PMID:28861027
Final Report on the Multicultural/Diversity Assessment Project.
ERIC Educational Resources Information Center
Ambrosio, Anthony L.
The Emporia State University Multicultural/Diversity Project developed a set of assessment instruments and a model evaluation plan to assess multicultural/diversity (MCD) outcomes in teacher education and general education programs. Assessment instruments and techniques were constructed to evaluate the impact of coursework on student attitudes,…
Daher, Moustafa; Chaar, Betty; Saini, Bandana
2015-01-01
Socio-cultural perspectives including religious and spiritual beliefs affect medicine use and adherence. Increasingly communities that pharmacists serve are diverse and pharmacists need to counsel medicine use issues with ethical and cultural sensitivity as well as pharmaceutical competence. There is very little research in this social aspect of pharmacy practice, and certainly none conducted in Australia, an increasingly multicultural, diverse population. The purpose of this study was to explore, from a pharmacy practitioner's viewpoint, the frequency and nature of cases where patients' articulated religious/spiritual belief affect medicine use; and pharmacist perspectives on handling these issues. Qualitative method employing semi-structured interviews with pharmacy practitioners, constructed around an interview guide. Pharmacist participants were recruited purposively from areas of linguistic diversity in Sydney, New South Wales, Australia. Verbatim transcription and thematic analyses were performed on the data. Thematic analyses of 21 semi-structured interviews depicted that scenarios where religious and spiritual belief and medication use intersect were frequently encountered by pharmacists. Patient concerns with excipients of animal origin and medication use while observing religious fasts were the main issues reported. Participants displayed scientific competence; however, aspects of ethical sensitivity in handling such issues could be improved. This novel study highlights the urgent need for more research, training and resource development for practitioners serving patients in multi-faith areas. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Jianyu; Mao, Zhihua; He, Xianqiang
2009-01-01
Coral reefs are complex marine ecosystems that are constructed and maintained by biological communities that thrive in tropical oceans. The Dong-Sha Atoll is located at the northern continental margin of the South China Sea. It has being abused by destructive activity of human being and natural event during recent decades. Remote sensing offers a powerful tool for studying coral reef geomorphology and is the most cost-effective approach for large-scale reef survey. In this paper, the high-resolution Quickbird2 imageries which covered the full atoll are used to categorize the current distribution of coral reefs geomorphological structure therein with the auxiliary SPOT5 and ASTER imageries. Spectral and texture analysis are used to distinguish the geomorphological diversity during data processing. The Gray Level Co-occurrence Matrices is adopted for texture feature extraction and atoll geomorphology mapping in the high-resolution pan-color image of Quickbird2. Quickbird2 is considered as the most appropriate image source for coral reefs studies. In the Dong-Sha Atoll, various dynamical geomorphologic units are developed according to wave energy zones. There the reef frame types are classified to 3 different types according as its diversity at the image. The radial structure system is the most characteristic and from high resolution imagery we can distinguish the discrepancy between them.
Tian, Di; Ma, Xin; Li, Yu-E; Zha, Liang-Song; Wu, Yang; Zou, Xiao-Xia; Liu, Shuang
2013-10-01
Carbon dioxide Capture and Storage has provided a new option for mitigating global anthropogenic CO2 emission with its unique advantages. However, there is a risk of the sealed CO2 leakage, bringing a serious threat to the ecology system. It is widely known that soil microorganisms are closely related to soil health, while the study on the impact of sequestered CO2 leakage on soil microorganisms is quite deficient. In this study, the leakage scenarios of sealed CO2 were constructed and the 16S rRNA genes of soil bacteria were sequenced by Illumina high-throughput sequencing technology on Miseq platform, and related biological analysis was conducted to explore the changes of soil bacterial abundance, diversity and structure. There were 486,645 reads for 43,017 OTUs of 15 soil samples and the results of biological analysis showed that there were differences in the abundance, diversity and community structure of soil bacterial community under different CO, leakage scenarios while the abundance and diversity of the bacterial community declined with the amplification of CO2 leakage quantity and leakage time, and some bacteria species became the dominant bacteria species in the bacteria community, therefore the increase of Acidobacteria species would be a biological indicator for the impact of sealed CO2 leakage on soil ecology system.
The morphology and chronology of a landslide near Dillon Dam, Dillon, Colorado
Wahlstrom, E.E.; Nichols, T.C.
1969-01-01
Investigations were made of a landslide at the Dillon Dam site, Dillon, Colo., that included detailed laboratory and field analyses of the mineralogy, chemistry, and physical properties of landslide materials and the bedrock formations from which they were derived. These investigations provide an understanding of the relative importance of various factors contributing to the origin and reactivation of a landslide in overburden resting on the Morrison Formation. The landslide material consists dominantly of an aggregate of large to small angular fragments of quartzite and sandstone from the Dakota Formation, embedded in a matrix of very fine grained to colloidal clayey substances derived mainly from the upper, noncalcareous portion of the Morrison Formation. During construction of Dillon Dam and associated structures, excavation of the toe of an old, relatively stable landslide adjacent to the left abutment caused renewed movement that threatened engulfment of the intake structure at the portal of the diversion tunnel for the reservoir. Remedial measures included excavation of a large volume of the landslide material and construction of a gravel-fill coffer- dam on bedrock at the toe of the landslide. ?? 1969.
Sheik, Cody S.; Stevenson, Emily I.; Den Uyl, Paul A.; Arendt, Carli A.; Aciego, Sarah M.; Dick, Gregory J.
2015-01-01
Glaciers are geologically important yet transient ecosystems that support diverse, biogeochemically significant microbial communities. During the melt season glaciers undergo dramatic physical, geochemical, and biological changes that exert great influence on downstream biogeochemical cycles. Thus, we sought to understand the temporal melt-season dynamics of microbial communities and associated geochemistry at the terminus of Lemon Creek Glacier (LCG) in coastal southern Alaska. Due to late season snowfall, sampling of LCG occurred in three interconnected areas: proglacial Lake Thomas, the lower glacial outflow stream, and the glacier’s terminus. LCG associated microbial communities were phylogenetically diverse and varied by sampling location. However, Betaproteobacteria, Alphaproteobacteria, and Bacteroidetes dominated communities at all sampling locations. Strict anaerobic groups such as methanogens, SR1, and OP11 were also recovered from glacier outflows, indicating anoxic conditions in at least some portions of the LCG subglacial environment. Microbial community structure was significantly correlated with sampling location and sodium concentrations. Microbial communities sampled from terminus outflow waters exhibited day-to-day fluctuation in taxonomy and phylogenetic similarity. However, these communities were not significantly different from randomly constructed communities from all three sites. These results indicate that glacial outflows share a large proportion of phylogenetic overlap with downstream environments and that the observed significant shifts in community structure are driven by changes in relative abundance of different taxa, and not complete restructuring of communities. We conclude that LCG glacial discharge hosts a diverse and relatively stable microbiome that shifts at fine taxonomic scales in response to geochemistry and likely water residence time. PMID:26042114
Development of a Terpenoid Alkaloid-like Compound Library Based on the Humulene Skeleton.
Kikuchi, Haruhisa; Nishimura, Takehiro; Kwon, Eunsang; Kawai, Junya; Oshima, Yoshiteru
2016-10-24
Many natural terpenoid alkaloid conjugates show biological activity because their structures contain both sp 3 -rich terpenoid scaffolds and nitrogen-containing alkaloid scaffolds. However, their biosynthesis utilizes a limited set of compounds as sources of the terpenoid moiety. The production of terpenoid alkaloids containing various types of terpenoid moiety may provide useful, chemically diverse compound libraries for drug discovery. Herein, we report the construction of a library of terpenoid alkaloid-like compounds based on Lewis-acid-catalyzed transannulation of humulene diepoxide and subsequent sequential olefin metathesis. Cheminformatic analysis quantitatively showed that the synthesized terpenoid alkaloid-like compound library has a high level of three-dimensional-shape diversity. Extensive pharmacological screening of the library has led to the identification of promising compounds for the development of antihypolipidemic drugs. Therefore, the synthesis of terpenoid alkaloid-like compound libraries based on humulene is well suited to drug discovery. Synthesis of terpenoid alkaloid-like compounds based on several natural terpenoids is an effective strategy for producing chemically diverse libraries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Image Re-Ranking Based on Topic Diversity.
Qian, Xueming; Lu, Dan; Wang, Yaxiong; Zhu, Li; Tang, Yuan Yan; Wang, Meng
2017-08-01
Social media sharing Websites allow users to annotate images with free tags, which significantly contribute to the development of the web image retrieval. Tag-based image search is an important method to find images shared by users in social networks. However, how to make the top ranked result relevant and with diversity is challenging. In this paper, we propose a topic diverse ranking approach for tag-based image retrieval with the consideration of promoting the topic coverage performance. First, we construct a tag graph based on the similarity between each tag. Then, the community detection method is conducted to mine the topic community of each tag. After that, inter-community and intra-community ranking are introduced to obtain the final retrieved results. In the inter-community ranking process, an adaptive random walk model is employed to rank the community based on the multi-information of each topic community. Besides, we build an inverted index structure for images to accelerate the searching process. Experimental results on Flickr data set and NUS-Wide data sets show the effectiveness of the proposed approach.
Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica
Vásquez-Mayorga, Marcela; Fuchs, Eric J.; Hernández, Eduardo J.; Herrera, Franklin; Hernández, Jesús; Moreira, Ileana; Arnáez, Elizabeth
2017-01-01
We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and a Maximum Likelihood (ML) tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346), but considerable compared to worldwide values for J. curcas. The PIC (PIC = 0.274) and inbreeding coefficient (f = − 0.102) were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24) from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the Jatropha curcas germplasm bank in Costa Rica. PMID:28289556
Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes.
Xu, Lin; Jiang, Zhe; Qing, Quan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M
2013-02-13
Functional kinked nanowires (KNWs) represent a new class of nanowire building blocks, in which functional devices, for example, nanoscale field-effect transistors (nanoFETs), are encoded in geometrically controlled nanowire superstructures during synthesis. The bottom-up control of both structure and function of KNWs enables construction of spatially isolated point-like nanoelectronic probes that are especially useful for monitoring biological systems where finely tuned feature size and structure are highly desired. Here we present three new types of functional KNWs including (1) the zero-degree KNW structures with two parallel heavily doped arms of U-shaped structures with a nanoFET at the tip of the "U", (2) series multiplexed functional KNW integrating multi-nanoFETs along the arm and at the tips of V-shaped structures, and (3) parallel multiplexed KNWs integrating nanoFETs at the two tips of W-shaped structures. First, U-shaped KNWs were synthesized with separations as small as 650 nm between the parallel arms and used to fabricate three-dimensional nanoFET probes at least 3 times smaller than previous V-shaped designs. In addition, multiple nanoFETs were encoded during synthesis in one of the arms/tip of V-shaped and distinct arms/tips of W-shaped KNWs. These new multiplexed KNW structures were structurally verified by optical and electron microscopy of dopant-selective etched samples and electrically characterized using scanning gate microscopy and transport measurements. The facile design and bottom-up synthesis of these diverse functional KNWs provides a growing toolbox of building blocks for fabricating highly compact and multiplexed three-dimensional nanoprobes for applications in life sciences, including intracellular and deep tissue/cell recordings.
Motomura, Kenta; Nakamura, Morikazu; Otaki, Joji M.
2013-01-01
Protein structure and function information is coded in amino acid sequences. However, the relationship between primary sequences and three-dimensional structures and functions remains enigmatic. Our approach to this fundamental biochemistry problem is based on the frequencies of short constituent sequences (SCSs) or words. A protein amino acid sequence is considered analogous to an English sentence, where SCSs are equivalent to words. Availability scores, which are defined as real SCS frequencies in the non-redundant amino acid database relative to their probabilistically expected frequencies, demonstrate the biological usage bias of SCSs. As a result, this frequency-based linguistic approach is expected to have diverse applications, such as secondary structure specifications by structure-specific SCSs and immunological adjuvants with rare or non-existent SCSs. Linguistic similarities (e.g., wide ranges of scale-free distributions) and dissimilarities (e.g., behaviors of low-rank samples) between proteins and the natural English language have been revealed in the rank-frequency relationships of SCSs or words. We have developed a web server, the SCS Package, which contains five applications for analyzing protein sequences based on the linguistic concept. These tools have the potential to assist researchers in deciphering structurally and functionally important protein sites, species-specific sequences, and functional relationships between SCSs. The SCS Package also provides researchers with a tool to construct amino acid sequences de novo based on the idiomatic usage of SCSs. PMID:24688703
Motomura, Kenta; Nakamura, Morikazu; Otaki, Joji M
2013-01-01
Protein structure and function information is coded in amino acid sequences. However, the relationship between primary sequences and three-dimensional structures and functions remains enigmatic. Our approach to this fundamental biochemistry problem is based on the frequencies of short constituent sequences (SCSs) or words. A protein amino acid sequence is considered analogous to an English sentence, where SCSs are equivalent to words. Availability scores, which are defined as real SCS frequencies in the non-redundant amino acid database relative to their probabilistically expected frequencies, demonstrate the biological usage bias of SCSs. As a result, this frequency-based linguistic approach is expected to have diverse applications, such as secondary structure specifications by structure-specific SCSs and immunological adjuvants with rare or non-existent SCSs. Linguistic similarities (e.g., wide ranges of scale-free distributions) and dissimilarities (e.g., behaviors of low-rank samples) between proteins and the natural English language have been revealed in the rank-frequency relationships of SCSs or words. We have developed a web server, the SCS Package, which contains five applications for analyzing protein sequences based on the linguistic concept. These tools have the potential to assist researchers in deciphering structurally and functionally important protein sites, species-specific sequences, and functional relationships between SCSs. The SCS Package also provides researchers with a tool to construct amino acid sequences de novo based on the idiomatic usage of SCSs.
NASA Astrophysics Data System (ADS)
Ren, Yixia; Zhou, Shanhong; Wang, Zhixiang; Zhang, Meili; Wang, Jijiang; Cao, Jia
2017-11-01
Four new Cd(II) complexes have been prepared based on 1,2,4-trimellitic acid (H3tma) and monosodium 2-sulfoterephthalate (2-NaH2stp), formulated as [Cd2(Htma)2 (dpp)2(H2O)] (1), [Cd3 (tma)2 (2,4-bipy)4(H2O)2] (2), [Cd (2-Hstp) (2,2'-bipy)2]·2H2O (3) and [Cd (2-Hstp) (2,4-bipy) (H2O)2] (4) (dpp = dipyrido [3,2-a:2‧,3'-c] phenazine, 2,4-bipy = 2,4-bipyridine, 2,2'-bipy = 2,2'- bipyridine) by hydrothermal method. X-ray diffraction structural analyses show all these complexes crystallized in triclinic crystal system of Pī space group, but their structures are diverse. Complex 1 exhibits an infinite one-dimensional chain featuring the left- and right-handed stranded chains interweaved each other. For 2, the two-dimensional network is constructed by one-dimensional ladder-like chain linked by Cd2 ions. In complex 3, the cadmium ion is surrounded with one 2-Hstp2- anion and two 2,2'-bipy molecules. Complex 4 is also a discrete structure based on a metallic dimer unit. In all these complexes, the N-donor co-ligands take the important roles in the assembly of three-dimensional supramolecular structures. The fluorescence properties of complexes 1-4 could be assigned to the π - π* transition of organic ligands.
Presumed fair: ironic effects of organizational diversity structures.
Kaiser, Cheryl R; Major, Brenda; Jurcevic, Ines; Dover, Tessa L; Brady, Laura M; Shapiro, Jenessa R
2013-03-01
This research tests the hypothesis that the presence (vs. absence) of organizational diversity structures causes high-status group members (Whites, men) to perceive organizations with diversity structures as procedurally fairer environments for underrepresented groups (racial minorities, women), even when it is clear that underrepresented groups have been unfairly disadvantaged within these organizations. Furthermore, this illusory sense of fairness derived from the mere presence of diversity structures causes high-status group members to legitimize the status quo by becoming less sensitive to discrimination targeted at underrepresented groups and reacting more harshly toward underrepresented group members who claim discrimination. Six experiments support these hypotheses in designs using 4 types of diversity structures (diversity policies, diversity training, diversity awards, idiosyncratically generated diversity structures from participants' own organizations) among 2 high-status groups in tests involving several types of discrimination (discriminatory promotion practices, adverse impact in hiring, wage discrimination). Implications of these experiments for organizational diversity and employment discrimination law are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved
Dynamic DNA nanotechnology using strand-displacement reactions
NASA Astrophysics Data System (ADS)
Zhang, David Yu; Seelig, Georg
2011-02-01
The specificity and predictability of Watson-Crick base pairing make DNA a powerful and versatile material for engineering at the nanoscale. This has enabled the construction of a diverse and rapidly growing set of DNA nanostructures and nanodevices through the programmed hybridization of complementary strands. Although it had initially focused on the self-assembly of static structures, DNA nanotechnology is now also becoming increasingly attractive for engineering systems with interesting dynamic properties. Various devices, including circuits, catalytic amplifiers, autonomous molecular motors and reconfigurable nanostructures, have recently been rationally designed to use DNA strand-displacement reactions, in which two strands with partial or full complementarity hybridize, displacing in the process one or more pre-hybridized strands. This mechanism allows for the kinetic control of reaction pathways. Here, we review DNA strand-displacement-based devices, and look at how this relatively simple mechanism can lead to a surprising diversity of dynamic behaviour.
Reprogramming cellular functions with engineered membrane proteins.
Arber, Caroline; Young, Melvin; Barth, Patrick
2017-10-01
Taking inspiration from Nature, synthetic biology utilizes and modifies biological components to expand the range of biological functions for engineering new practical devices and therapeutics. While early breakthroughs mainly concerned the design of gene circuits, recent efforts have focused on engineering signaling pathways to reprogram cellular functions. Since signal transduction across cell membranes initiates and controls intracellular signaling, membrane receptors have been targeted by diverse protein engineering approaches despite limited mechanistic understanding of their function. The modular architecture of several receptor families has enabled the empirical construction of chimeric receptors combining domains from distinct native receptors which have found successful immunotherapeutic applications. Meanwhile, progress in membrane protein structure determination, computational modeling and rational design promise to foster the engineering of a broader range of membrane receptor functions. Marrying empirical and rational membrane protein engineering approaches should enable the reprogramming of cells with widely diverse fine-tuned functions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors.
Zhu, Jin-Yi; Cuellar, Rebecca A; Berndt, Norbert; Lee, Hee Eun; Olesen, Sanne H; Martin, Mathew P; Jensen, Jeffrey T; Georg, Gunda I; Schönbrunn, Ernst
2017-09-28
Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.
Nigg, Claudio R; Motl, Robert W; Horwath, Caroline; Dishman, Rod K
2012-01-01
Objectives Physical activity (PA) research applying the Transtheoretical Model (TTM) to examine group differences and/or change over time requires preliminary evidence of factorial validity and invariance. The current study examined the factorial validity and longitudinal invariance of TTM constructs recently revised for PA. Method Participants from an ethnically diverse sample in Hawaii (N=700) completed questionnaires capturing each TTM construct. Results Factorial validity was confirmed for each construct using confirmatory factor analysis with full-information maximum likelihood. Longitudinal invariance was evidenced across a shorter (3-month) and longer (6-month) time period via nested model comparisons. Conclusions The questionnaires for each validated TTM construct are provided, and can now be generalized across similar subgroups and time points. Further validation of the provided measures is suggested in additional populations and across extended time points. PMID:22778669
Gu, Ming-liang; Chu, Jia-you
2007-12-01
Human genome has structures of haplotype and haplotype block which provide valuable information on human evolutionary history and may lead to the development of more efficient strategies to identify genetic variants that increase susceptibility to complex diseases. Haplotype block can be divided into discrete blocks of limited haplotype diversity. In each block, a small fraction of ptag SNPsq can be used to distinguish a large fraction of the haplotypes. These tag SNPs can be potentially useful for construction of haplotype and haplotype block, and association studies in complex diseases. There are two general classes of methods to construct haplotype and haplotype blocks based on genotypes on large pedigrees and statistical algorithms respectively. The author evaluate several construction methods to assess the power of different association tests with a variety of disease models and block-partitioning criteria. The advantages, limitations and applications of each method and the application in the association studies are discussed equitably. With the completion of the HapMap and development of statistical algorithms for addressing haplotype reconstruction, ideas of construction of haplotype based on combination of mathematics, physics, and computer science etc will have profound impacts on population genetics, location and cloning for susceptible genes in complex diseases, and related domain with life science etc.
Analysis of construction accidents in Turkey and responsible parties.
Gürcanli, G Emre; Müngen, Uğur
2013-01-01
Construction is one of the world's biggest industry that includes jobs as diverse as building, civil engineering, demolition, renovation, repair and maintenance. Construction workers are exposed to a wide variety of hazards. This study analyzes 1,117 expert witness reports which were submitted to criminal and labour courts. These reports are from all regions of the country and cover the period 1972-2008. Accidents were classified by the consequence of the incident, time and main causes of the accident, construction type, occupation of the victim, activity at time of the accident and party responsible for the accident. Falls (54.1%), struck by thrown/falling object (12.9%), structural collapses (9.9%) and electrocutions (7.5%) rank first four places. The accidents were most likely between the hours 15:00 and 17:00 (22.6%), 10:00-12:00 (18.7%) and just after the lunchtime (9.9%). Additionally, the most common accidents were further divided into sub-types. Expert-witness assessments were used to identify the parties at fault and what acts of negligence typically lead to accidents. Nearly two thirds of the faulty and negligent acts are carried out by the employers and employees are responsible for almost one third of all cases.
Vitalis, Tania; Ansorge, Mark S.; Dayer, Alexandre G.
2013-01-01
Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders. PMID:23801939
Vance, Joshua A; Angus, Norse B; Anderson, James T
2013-09-01
Construction of man-made objects such as roads and bridges may have impacts on wildlife depending on species or location. We investigated songbirds and small mammals along the Ohio River, WV, USA at a new bridge both before and after construction and at a bridge crossing that was present throughout the study. Comparisons were made at each site over three time periods (1985-1987 [Phase I] and 1998-2000 [Phase II] [pre-construction], 2007-2009 [Phase III] [post-construction]) and at three distances (0, 100, 300 m) from the bridge or proposed bridge location. Overall, 70 songbirds and 10 small mammals were detected during the study. Cliff swallows (Petrochelidon pyrrhonota) and rock pigeons (Columba livia) showed high affinity for bridges (P < 0.05). Combined small mammal abundances increased between Phases I and II (P < 0.05), but did not differ between Phases II and III (P > 0.05). Species richness and diversity for songbirds and small mammals did not differ before and after bridge construction (P > 0.05). We found that most species sampled did not respond to the bridge crossing, and believe that the bridge is not causing any measurable negative density impacts to the species we investigated. The new bridge does provide habitat for exotic rock pigeons that are adjusted to man-made structures for nesting.
Introduction to the Special Section: Toward a Dimensionally Based Taxonomy of Psychopathology
Krueger, Robert F.; Watson, David; Barlow, David H.
2008-01-01
Much current psychopathology research is framed by categorical constructs. Limitations of categorical constructs have been articulated, and dimensional constructs are often proposed as viable alternatives to categories of psychopathology. The purpose of this Special Section is to articulate and discuss diverse issues that arise in contemplating dimensional constructs as targets for psychopathology research. PMID:16351372
Measuring Diversity and Inclusion in Academic Medicine: The Diversity Engagement Survey (DES)
Person, Sharina D.; Jordan, C. Greer; Allison, Jeroan J.; Fink Ogawa, Lisa M.; Castillo-Page, Laura; Conrad, Sarah; Nivet, Marc A.; Plummer, Deborah L.
2018-01-01
Purpose To produce a physician and scientific workforce capable of delivering high quality, culturally competent health care and research, academic medical centers must assess their capacity for diversity and inclusion and respond to identified opportunities. Thus, the Diversity Engagement Survey (DES) is presented as a diagnostic and benchmarking tool. Method The 22-item DES connects workforce engagement theory with inclusion and diversity constructs. Face and content validity were established based on decades of previous work to promote institutional diversity. The survey was pilot tested at a single academic medical center and subsequently administered at 13 additional academic medical centers. Cronbach alphas assessed internal consistency and Confirmatory Factor Analysis (CFA) established construct validity. Criterion validity was assessed by observed separation in scores for groups traditionally recognized to have less workforce engagement. Results The sample consisted of 13,694 individuals at 14 medical schools from across the U.S. who responded to the survey administered between 2011– 2012. The Cronbach alphas for inclusion and engagement factors (range: 0.68 to 0.85), CFA fit indices, and item correlations with latent constructs, indicated an acceptable model fit and that questions measured the intended concepts. DES scores clearly distinguished higher and lower performing institutions. The DES detected important disparities for black, women, and those who did not have heterosexual orientation. Conclusions This study demonstrated that the DES is a reliable and valid instrument for internal assessment and evaluation or external benchmarking of institutional progress in building inclusion and engagement. PMID:26466376
Population structure and genetic diversity of the parasite Trichomonas vaginalis in Bristol, UK.
Hawksworth, Joseph; Levy, Max; Smale, Chloe; Cheung, Dean; Whittle, Alice; Longhurst, Denise; Muir, Peter; Gibson, Wendy
2015-08-01
The protozoan parasite Trichomonas vaginalis is the causative agent of trichomoniasis, an extremely common, but non-life-threatening, sexually-transmitted disease throughout the world. Recent population genetics studies of T. vaginalis have detected high genetic diversity and revealed a two-type population structure, associated with phenotypic differences in sensitivity to metronidazole, the drug commonly used for treatment, and presence of T. vaginalis virus. There is currently a lack of data on UK isolates; most isolates examined to date are from the US. Here we used a recently described system for multilocus sequence typing (MLST) of T. vaginalis to study diversity of clinical isolates from Bristol, UK. We used MLST to characterise 23 clinical isolates of T. vaginalis collected from female patients during 2013. Seven housekeeping genes were PCR-amplified for each isolate and sequenced. The concatenated sequences were then compared with data from other MLST-characterised isolates available from http://tvaginalis.mlst.net/ to analyse the population structure and construct phylogenetic trees. Among the 23 isolates from the Bristol population of T. vaginalis, we found 23 polymorphic nucleotide sites, 25 different alleles and 19 sequence types (genotypes). Most isolates had a unique genotype, in agreement with the high levels of heterogeneity observed elsewhere in the world. A two-type population structure was evident from population genetic analysis and phylogenetic reconstruction split the isolates into two major clades. Tests for recombination in the Bristol population of T. vaginalis gave conflicting results, suggesting overall a clonal pattern of reproduction. We conclude that the Bristol population of T. vaginalis parasites conforms to the two-type population structure found in most other regions of the world. We found the MLST scheme to be an efficient genotyping method. The online MLST database provides a useful repository and resource that will prove invaluable in future studies linking the genetics of T. vaginalis with the clinical manifestation of trichomoniasis. Copyright © 2015 Elsevier B.V. All rights reserved.
Structure-based design of combinatorial mutagenesis libraries
Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris
2015-01-01
The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called “Structure-based Optimization of Combinatorial Mutagenesis” (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. PMID:25611189
Structure-based design of combinatorial mutagenesis libraries.
Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris
2015-05-01
The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. © 2015 The Protein Society.
Evolutionary profiles from the QR factorization of multiple sequence alignments
Sethi, Anurag; O'Donoghue, Patrick; Luthey-Schulten, Zaida
2005-01-01
We present an algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of the homologous group. The method, based on the multidimensional QR factorization of numerically encoded multiple sequence alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. We observe a general trend that these smaller, more evolutionarily balanced profiles have comparable and, in many cases, better performance in database searches than conventional profiles containing hundreds of sequences, constructed in an iterative and computationally intensive procedure. For more diverse families or superfamilies, with sequence identity <30%, structural alignments, based purely on the geometry of the protein structures, provide better alignments than pure sequence-based methods. Merging the structure and sequence information allows the construction of accurate profiles for distantly related groups. These structure-based profiles outperformed other sequence-based methods for finding distant homologs and were used to identify a putative class II cysteinyl-tRNA synthetase (CysRS) in several archaea that eluded previous annotation studies. Phylogenetic analysis showed the putative class II CysRSs to be a monophyletic group and homology modeling revealed a constellation of active site residues similar to that in the known class I CysRS. PMID:15741270
Minami, Atsushi; Oguri, Hiroki; Watanabe, Kenji; Oikawa, Hideaki
2013-08-01
Diversity of natural polycyclic polyethers originated from very simple yet versatile strategy consisting of epoxidation of linear polyene followed by epoxide opening cascade. To understand two-step enzymatic transformations at molecular basis, a flavin containing monooxygenase (EPX) Lsd18 and an epoxide hydrolase (EH) Lsd19 were selected as model enzymes for extensive investigation on substrate specificity, catalytic mechanism, cofactor requirement and crystal structure. This pioneering study on prototypical lasalocid EPX and EH provides insight into detailed mechanism of ionophore polyether assembly machinery and clarified remaining issues for polyether biosynthesis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Examining Equivalence of Concepts and Measures in Diverse Samples
Choi, Yoonsun; Abbott, Robert D.; Catalano, Richard F.; Bliesner, Siri L.
2012-01-01
While there is growing awareness for the need to examine the etiology of problem behaviors across cultural, racial, socioeconomic, and gender groups, much research tends to assume that constructs are equivalent and that the measures developed within one group equally assess constructs across groups. The meaning of constructs, however, may differ across groups or, if similar in meaning, measures developed for a given construct in one particular group may not be assessing the same construct or may not be assessing the construct in the same manner in other groups. The aims of this paper were to demonstrate a process of testing several forms of equivalence including conceptual, functional, item, and scalar using different methods. Data were from the Cross-Cultural Families Project, a study examining factors that promote the healthy development and adjustment of children among immigrant Cambodian and Vietnamese families. The process described in this paper can be implemented in other prevention studies interested in diverse groups. Demonstrating equivalence of constructs and measures prior to group comparisons is necessary in order to lend support of our interpretation of issues such as ethnic group differences and similarities. PMID:16845592
Construction of Difference and Diversity within Policy and Practice in England
ERIC Educational Resources Information Center
Lawson, Hazel; Boyask, Ruth; Waite, Sue
2013-01-01
Policy and practice responses to diversity and difference in pupil populations continue to challenge education systems around the world. This paper considers how teachers' understandings of diversity and difference and their pedagogical responses at the local level are influenced by, and can be reconciled with, policy at the general level with its…
Ciardiello, J J; Stewart, H L; Sore, H F; Galloway, W R J D; Spring, D R
2017-06-01
Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections. Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability. Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated. Copyright © 2017 Elsevier Ltd. All rights reserved.
De Riccardis, Francesco; Izzo, Irene; Montesarchio, Daniela; Tecilla, Paolo
2013-12-17
The ion-coupled processes that occur in the plasma membrane regulate the cell machineries in all the living organisms. The details of the chemical events that allow ion transport in biological systems remain elusive. However, investigations of the structure and function of natural and artificial transporters has led to increasing insights about the conductance mechanisms. Since the publication of the first successful artificial system by Tabushi and co-workers in 1982, synthetic chemists have designed and constructed a variety of chemically diverse and effective low molecular weight ionophores. Despite their relative structural simplicity, ionophores must satisfy several requirements. They must partition in the membrane, interact specifically with ions, shield them from the hydrocarbon core of the phospholipid bilayer, and transport ions from one side of the membrane to the other. All these attributes require amphipathic molecules in which the polar donor set used for ion recognition (usually oxygens for cations and hydrogen bond donors for anions) is arranged on a lipophilic organic scaffold. Playing with these two structural motifs, donor atoms and scaffolds, researchers have constructed a variety of different ionophores, and we describe a subset of interesting examples in this Account. Despite the ample structural diversity, structure/activity relationships studies reveal common features. Even when they include different hydrophilic moieties (oxyethylene chains, free hydroxyl, etc.) and scaffolds (steroid derivatives, neutral or polar macrocycles, etc.), amphipathic molecules, that cannot span the entire phospholipid bilayer, generate defects in the contact zone between the ionophore and the lipids and increase the permeability in the bulk membrane. Therefore, topologically complex structures that span the entire membrane are needed to elicit channel-like and ion selective behaviors. In particular the alternate-calix[4]arene macrocycle proved to be a versatile platform to obtain 3D-structures that can form unimolecular channels in membranes. In these systems, the selection of proper donor groups allows us to control the ion selectivity of the process. We can switch from cation to anion transport by substituting protonated amines for the oxygen donors. Large and stable tubular structures with nanometric sized transmembrane nanopores that provide ample internal space represent a different approach for the preparation of synthetic ion channels. We used the metal-mediated self-assembly of porphyrin ligands with Re(I) corners as a new method for producing to robust channel-like structures. Such structures can survive in the complex membrane environment and show interesting ionophoric behavior. In addition to the development of new design principles, the selective modification of the biological membrane permeability could lead to important developments in medicine and technology.
Sugitani, K; Mimura, K; Takeuchi, M; Yamaguchi, T; Suzuki, K; Senda, R; Asahara, Y; Wallis, S; Van Kranendonk, M J
2015-11-01
The 3.4-Ga Strelley Pool Formation (SPF) at the informally named 'Waterfall Locality' in the Goldsworthy greenstone belt of the Pilbara Craton, Western Australia, provides deeper insights into ancient, shallow subaqueous to possibly subaerial ecosystems. Outcrops at this locality contain a thin (<3 m) unit of carbonaceous and non-carbonaceous cherts and silicified sandstones that were deposited in a shallow-water coastal environment, with hydrothermal activities, consistent with the previous studies. Carbonaceous, sulfide-rich massive black cherts with coniform structures up to 3 cm high are characterized by diverse rare earth elements (REE) signatures including enrichment of light [light rare earth elements (LREE)] or middle rare earth elements and by enrichment of heavy metals represented by Zn. The massive black cherts were likely deposited by mixing of hydrothermal and non-hydrothermal fluids. Coniform structures in the cherts are characterized by diffuse laminae composed of sulfide particles, suggesting that unlike stromatolites, they were formed dominantly through physico-chemical processes related to hydrothermal activity. The cherts yield microfossils identical to previously described carbonaceous films, small and large spheres, and lenticular microfossils. In addition, new morphological types such as clusters composed of large carbonaceous spheroids (20-40 μm across each) with fluffy or foam-like envelope are identified. Finely laminated carbonaceous cherts are devoid of heavy metals and characterized by the enrichment of LREE. This chert locally contains conical to domal structures characterized by truncation of laminae and trapping of detrital grains and is interpreted as siliceous stromatolite formed by very early or contemporaneous silicification of biomats with the contribution of silica-rich hydrothermal fluids. Biological affinities of described microfossils and microbes constructing siliceous stromatolites are under investigation. However, this study emphasizes how diverse the microbial community in Paleoarchean coastal hydrothermal environment was. We propose the diversity is at least partially due to the availability of various energy sources in this depositional environment including reducing chemicals and sunlight. © 2015 John Wiley & Sons Ltd.
Functional and structural responses to marine urbanisation
NASA Astrophysics Data System (ADS)
Mayer-Pinto, M.; Cole, V. J.; Johnston, E. L.; Bugnot, A.; Hurst, H.; Airoldi, L.; Glasby, T. M.; Dafforn, K. A.
2018-01-01
Urban areas have broad ecological footprints with complex impacts on natural systems. In coastal areas, growing populations are advancing their urban footprint into the ocean through the construction of seawalls and other built infrastructure. While we have some understanding of how urbanisation might drive functional change in terrestrial ecosystems, coastal systems have been largely overlooked. This study is one of the first to directly assess how changes in diversity relate to changes in ecosystem properties and functions (e.g. productivity, filtration rates) of artificial and natural habitats in one of the largest urbanised estuaries in the world, Sydney Harbour. We complemented our surveys with an extensive literature search. We found large and important differences in the community structure and function between artificial and natural coastal habitats. However, differences in diversity and abundance of organisms do not necessarily match observed functional changes. The abundance and composition of important functional groups differed among habitats with rocky shores having 40% and 70% more grazers than seawalls or pilings, respectively. In contrast, scavengers were approximately 8 times more abundant on seawalls than on pilings or rocky shores and algae were more diverse on natural rocky shores and seawalls than on pilings. Our results confirm previous findings in the literature. Oysters were more abundant on pilings than on rocky shores, but were also smaller. Interestingly, these differences in oyster populations did not affect in situ filtration rates between habitats. Seawalls were the most invaded habitats while pilings supported greater secondary productivity than other habitats. This study highlights the complexity of the diversity-function relationship and responses to ocean sprawl in coastal systems. Importantly, we showed that functional properties should be considered independently from structural change if we are to design and manage artificial habitats in ways to maximise the services provided by urban coastal systems and minimise their ecological impacts.
Haque, Farzin; Guo, Peixuan
2015-01-01
RNA nanotechnology encompasses the use of RNA as a construction material to build homogeneous nanostructures by bottom-up self-assembly with defined size, structure, and stoichiometry; this pioneering concept demonstrated in 1998 (Guo et al., Molecular Cell 2:149-155, 1998; featured in Cell) has emerged as a new field that also involves materials engineering and synthetic structural biology (Guo, Nature Nanotechnology 5:833-842, 2010). The field of RNA nanotechnology has skyrocketed over the last few years, as evidenced by the burst of publications in prominent journals on RNA nanostructures and their applications in nanomedicine and nanotechnology. Rapid advances in RNA chemistry, RNA biophysics, and RNA biology have created new opportunities for translating basic science into clinical practice. RNA nanotechnology holds considerable promise in this regard. Increased evidence also suggests that substantial part of the 98.5 % of human genome (Lander et al. Nature 409:860-921, 2001) that used to be called "junk DNA" actually codes for noncoding RNA. As we understand more on how RNA structures are related to function, we can fabricate synthetic RNA nanoparticles for the diagnosis and treatment of diseases. This chapter provides a brief overview of the field regarding the design, construction, purification, and characterization of RNA nanoparticles for diverse applications in nanotechnology and nanomedicince.
Ciric, Lena; Griffiths, Robert I; Philp, James C; Whiteley, Andrew S
2010-07-01
A diesel contaminated groundwater site was surveyed using 16S rRNA gene based analyses to investigate the effect of bioaugmentation on the bacterial communities present. The analyses included the use of denaturing gradient gel electrophoresis (DGGE) to profile microbial community structure and the construction and sequencing of clone libraries in order to identify the organisms present. Community analyses revealed a high degree of similarity in the inoculated compartments during bioaugmentation, not observed once inoculation had ceased. However, it was also shown that there was very little community similarity between the inoculum and the inoculated samples. Instead, the similarity seen during the application of the bioaugmentation treatment was thought to be due to nutrient addition applied along with the inoculum. Furthermore, once the bioaugmentation treatment had ceased the communities around the site became more diverse, suggesting that the hierarchical structure seen during treatment was due to the stimulation of a group of opportunistic indigenous organisms by the nutrients added. The findings not only highlight the importance of monitoring the fate of inocula used in bioaugmentation but also how crucial the process of the selection of species and the culture conditions used in the construction of these consortia. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Computational Biochemistry-Enzyme Mechanisms Explored.
Culka, Martin; Gisdon, Florian J; Ullmann, G Matthias
2017-01-01
Understanding enzyme mechanisms is a major task to achieve in order to comprehend how living cells work. Recent advances in biomolecular research provide huge amount of data on enzyme kinetics and structure. The analysis of diverse experimental results and their combination into an overall picture is, however, often challenging. Microscopic details of the enzymatic processes are often anticipated based on several hints from macroscopic experimental data. Computational biochemistry aims at creation of a computational model of an enzyme in order to explain microscopic details of the catalytic process and reproduce or predict macroscopic experimental findings. Results of such computations are in part complementary to experimental data and provide an explanation of a biochemical process at the microscopic level. In order to evaluate the mechanism of an enzyme, a structural model is constructed which can be analyzed by several theoretical approaches. Several simulation methods can and should be combined to get a reliable picture of the process of interest. Furthermore, abstract models of biological systems can be constructed combining computational and experimental data. In this review, we discuss structural computational models of enzymatic systems. We first discuss various models to simulate enzyme catalysis. Furthermore, we review various approaches how to characterize the enzyme mechanism both qualitatively and quantitatively using different modeling approaches. © 2017 Elsevier Inc. All rights reserved.
Tian, Baoyu; Wang, Chunxiang; Lv, Ruirui; Zhou, Junxiong; Li, Xin; Zheng, Yi; Jin, Xiangyu; Wang, Mengli; Ye, Yongxia; Huang, Xinyi; Liu, Ping
2014-01-01
The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%), unclassified Zygomycetes (33.5%), Ascomycota (32.4%), and Basidiomycota (4.6%). When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%), Ascomycota (36.1%), and Fungi incertae sedis (1.4%). After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%), Ascomycota (11.5%), and Fungi incertae sedis (1.6%). The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex.
Object Construction Under Diverse Conditions of Rearing
ERIC Educational Resources Information Center
Hunt, J. McVicker
1974-01-01
This study examines object construction and the ages at which children developing under various environmental conditions achieve five of the landmarks in the Uzgiris-Hunt (1974) scale of object permanence. (Author)
Structural basis for precursor protein-directed ribosomal peptide macrocyclization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kunhua; Condurso, Heather L.; Li, Gengnan
Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here we describe in detail the structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases MdnC and MdnB interact with a conserved α-helix of the precursor peptide using a novel precursor-peptide recognition mechanism. The results provide insight intomore » the unique protein–protein interactions that are key to the chemistry, suggest an origin for the natural combinatorial synthesis of microviridin peptides, and provide a framework for future engineering efforts to generate designed compounds.« less
Rational design of reconfigurable prismatic architected materials
NASA Astrophysics Data System (ADS)
Bertoldi, Katia; Overvelde, Johannes; Hoberman, Chuck; Weaver, James
Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. While most of these materials are characterized by a fixed geometry,an intriguing avenue is to incorporate internal mechanisms capable of recon_guring their spatial architecture, therefore enabling tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami-technique, here we introduce a robust design strategy based on space-filling polyhedra to create 3D reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively di_erent deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to design the next generation of reconfigurable structures and materials, ranging from transformable meter-scale architectures to nanoscale tunable photonic systems..
‘Umpolung’ Reactivity in Semiaqueous Amide and Peptide Synthesis
Shen, Bo; Makley, Dawn M.; Johnston, Jeffrey N.
2010-01-01
The amide functional group is one of Nature’s key functional and structural elements, most notably within peptides. Amides are also key intermediates in the preparation of a diverse range of therapeutic small molecules. Its construction using available methods focuses principally upon dehydrative approaches, although oxidative and radical-based methods are representative alternatives. During the carbon-nitrogen bond forming step in most every example, the carbon and nitrogen bear electrophilic and nucleophilic character, respectively. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source in wet THF can lead directly to amide products. Preliminary observations support a mechanistic construct in which reactant polarity is reversed (umpolung) during C-N bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents provides a conceptually innovative approach to amide and peptide synthesis, and one that might ultimately provide for efficient peptide synthesis that is fully reliant on enantioselective methods. PMID:20577205
Martin, Andrew J
2008-02-01
The present study assessed the application of a multidimensional model of motivation and engagement (the Motivation and Engagement Wheel) and its accompanying instrumentation (the Motivation and Engagement Scale) to the music and sport domains. Participants were 463 young classical musicians (N=224) and sportspeople (N=239). In both music and sport samples, the data confirmed the good fit of the four hypothesized higher-order dimensions and their 11 first-order dimensions: adaptive cognitions (self-efficacy, valuing, mastery orientation), adaptive behaviors (planning, task management, persistence), impeding/maladaptive cognitions (uncertain control, anxiety, failure avoidance), and maladaptive behaviors (self-handicapping, disengagement). Multigroup tests of factor invariance showed that in terms of underlying motivational constructs and the composition of and relationships among these constructs, key subsamples are not substantially different. Moreover-and of particular relevance to issues around the generalizability of the framework-the factor structure for music and sport samples was predominantly invariant.
All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications.
Li, Lingqi; Nie, Weijie; Li, Ziqi; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng
2017-08-01
The femtosecond laser micromachining of transparent optical materials offers a powerful and feasible solution to fabricate versatile photonic components towards diverse applications. In this work, we report on a new design and fabrication of ridge waveguides in LiNbO 3 crystal operating at the mid-infrared (MIR) band by all-femtosecond-laser microfabrication. The ridges consist of laser-ablated sidewalls and laser-written bottom low-index cladding tracks, which are constructed for horizontal and longitudinal light confinement, respectively. The ridge waveguides are found to support good guidance at wavelength of 4 μm. By applying this configuration, Y-branch waveguiding structures (1 × 2 beam splitters) have been produced, which reach splitting ratios of ∼1:1 at 4 μm. This work paves a simple and feasible way to construct novel ridge waveguide devices in dielectrics through all-femtosecond-laser micro-processing.
Knutson, John F; DeGarmo, David; Koeppl, Gina; Reid, John B
2005-05-01
To understand the effects of neglectful parenting, poor supervision, and punitive parenting in the development of children's aggression, 218 children ages 4 to 8 years who were disadvantaged and their mothers were recruited from two states to develop a sample that was diverse with respect to degree of urbanization and ethnicity. Multimethod and multisource indices of the predictive constructs (Social Disadvantage, Denial of Care Neglect, Supervisory Neglect, and Punitive Discipline) and the criterion construct (Aggression) were used in a test of a theoretical model using structural equation modeling. The results established the role of care neglect, supervisory neglect, and punitive parenting as mediators of the role of social disadvantage in the development of children's aggression, the importance of distinguishing between two subtypes of neglect, and the need to consider the role of discipline in concert with neglect when attempting to understand the parenting in the development of aggression.
Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units
NASA Astrophysics Data System (ADS)
Wu, Yong; Xiong, De-Cai; Chen, Si-Cong; Wang, Yong-Shi; Ye, Xin-Shan
2017-03-01
Carbohydrates are diverse bio-macromolecules with highly complex structures that are involved in numerous biological processes. Well-defined carbohydrates obtained by chemical synthesis are essential to the understanding of their functions. However, synthesis of carbohydrates is greatly hampered by its insufficient efficiency. So far, assembly of long carbohydrate chains remains one of the most challenging tasks for synthetic chemists. Here we describe a highly efficient assembly of a 92-mer polysaccharide by the preactivation-based one-pot glycosylation protocol. Several linear and branched oligosaccharide/polysaccharide fragments ranging from 5-mer to 31-mer in length have been rapidly constructed in one-pot manner, which enables the first total synthesis of a biologically important mycobacterial arabinogalactan through a highly convergent [31+31+30] coupling reaction. Our results show that the preactivation-based one-pot glycosylation protocol may provide access to the construction of long and complicated carbohydrate chains.
Virshup, Aaron M.; Contreras-García, Julia; Wipf, Peter; Yang, Weitao; Beratan, David N.
2013-01-01
The “small molecule universe” (SMU), the set of all synthetically feasible organic molecules of 500 Daltons molecular weight or less, is estimated to contain over 1060 structures, making exhaustive searches for structures of interest impractical. Here, we describe the construction of a “representative universal library” spanning the SMU that samples the full extent of feasible small molecule chemistries. This library was generated using the newly developed Algorithm for Chemical Space Exploration with Stochastic Search (ACSESS). ACSESS makes two important contributions to chemical space exploration: it allows the systematic search of the unexplored regions of the small molecule universe, and it facilitates the mining of chemical libraries that do not yet exist, providing a near-infinite source of diverse novel compounds. PMID:23548177
Ramakrishnan, M; Antony Ceasar, S; Duraipandiyan, V; Al-Dhabi, N A; Ignacimuthu, S
2016-01-01
We evaluated the genetic variation and population structure in Indian and non-Indian genotypes of finger millet using 87 genomic SSR primers. The 128 finger millet genotypes were collected and genomic DNA was isolated. Eighty-seven genomic SSR primers with 60-70 % GC contents were used for PCR analysis of 128 finger millet genotypes. The PCR products were separated and visualized on a 6 % polyacrylamide gel followed by silver staining. The data were used to estimate major allele frequency using Power Marker v3.0. Dendrograms were constructed based on the Jaccard's similarity coefficient. Statistical fitness and population structure analyses were performed to find the genetic diversity. The mean major allele frequency was 0.92; the means of polymorphic alleles were 2.13 per primer and 1.45 per genotype; the average polymorphism was 59.94 % per primer and average PIC value was 0.44 per primer. Indian genotypes produced an additional 0.21 allele than non-Indian genotypes. Gene diversity was in the range from 0.02 to 0.35. The average heterozygosity was 0.11, close to 100 % homozygosity. The highest inbreeding coefficient was observed with SSR marker UGEP67. The Jaccard's similarity coefficient value ranged from 0.011 to 0.836. The highest similarity value was 0.836 between genotypes DPI009-04 and GPU-45. Indian genotypes were placed in Eleusine coracana major cluster (EcMC) 1 along with 6 non-Indian genotypes. AMOVA showed that molecular variance in genotypes from various geographical regions was 4 %; among populations it was 3 % and within populations it was 93 %. PCA scatter plot analysis showed that GPU-28, GPU-45 and DPI009-04 were closely dispersed in first component axis. In structural analysis, the genotypes were divided into three subpopulations (SP1, SP2 and SP3). All the three subpopulations had an admixture of alleles and no pure line was observed. These analyses confirmed that all the genotypes were genetically diverse and had been grouped based on their geographic regions.
Utilization of fly ash and ultrafine GGBS for higher strength foam concrete
NASA Astrophysics Data System (ADS)
Gowri, R.; Anand, K. B.
2018-02-01
Foam concrete is a widely accepted construction material, which is popular for diverse construction applications such as, thermal insulation in buildings, lightweight concrete blocks, ground stabilization, void filling etc. Currently, foam concrete is being used for structural applications with a density above 1800kg/m3. This study focuses on evolving mix proportions for foam concrete with a material density in the range of 1200 kg/m3 to 1600 kg/m3, so as to obtain strength ranges that will be sufficient to adopt it as a structural material. Foam concrete is made lighter by adding pre-formed foam of a particular density to the mortar mix. The foaming agent used in this study is Sodium Lauryl Sulphate and in order to densify the foam generated, Sodium hydroxide solution at a normality of one is also added. In this study efforts are made to make it a sustainable construction material by incorporating industrial waste products such as ultrafine GGBS as partial replacement of cement and fly ash for replacement of fine aggregate. The fresh state and hardened state properties of foam concrete at varying proportions of cement, sand, water and additives are evaluated. The proportion of ultrafine GGBS and fly ash in the foam concrete mix are varied aiming at higher compressive strength. Studies on air void-strength relationship of foam concrete are also included in this paper.
School Construction Management: Expert Administrators Speak.
ERIC Educational Resources Information Center
Fickes, Michael
2001-01-01
Presents expert opinion on school construction management communication concerning educational needs, obtaining consensus among diverse groups, and envisioning what schools must offer in the future. Why furniture issues are also important is highlighted. (GR)
Stein, Michelle B; Slavin-Mulford, Jenelle; Sinclair, S Justin; Siefert, Caleb J; Blais, Mark A
2012-01-01
The Social Cognition and Object Relations Scale-Global rating method (SCORS-G; Stein, Hilsenroth, Slavin-Mulford, & Pinsker, 2011; Westen, 1995) measures the quality of object relations in narrative material. This study employed a multimethod approach to explore the structure and construct validity of the SCORS-G. The Thematic Apperception Test (TAT; Murray, 1943) was administered to 59 patients referred for psychological assessment at a large Northeastern U.S. hospital. The resulting 301 TAT narratives were rated using the SCORS-G method. The 8 SCORS variables were found to have high interrater reliability and good internal consistency. Principal components analysis revealed a 3-component solution with components tapping emotions/affect regulation in relationships, self-image, and aspects of cognition. Next, the construct validity of the SCORS-G components was explored using measures of intellectual and executive functioning, psychopathology, and normal personality. The 3 SCORS-G components showed unique and theoretically meaningful relationships across these broad and diverse psychological measures. This study demonstrates the value of using a standardized scoring method, like the SCORS-G, to reveal the rich and complex nature of narrative material.
Colorful Twisted Top Partners and Partnerium at the LHC
NASA Astrophysics Data System (ADS)
Kats, Yevgeny; McCullough, Matthew; Perez, Gilad; Soreq, Yotam; Thaler, Jesse
2017-06-01
In scenarios that stabilize the electroweak scale, the top quark is typically accompanied by partner particles. In this work, we demonstrate how extended stabilizing symmetries can yield scalar or fermionic top partners that transform as ordinary color triplets but carry exotic electric charges. We refer to these scenarios as "hypertwisted" since they involve modifications to hypercharge in the top sector. As proofs of principle, we construct two hypertwisted scenarios: a supersymmetric construction with spin-0 top partners, and a composite Higgs construction with spin-1/2 top partners. In both cases, the top partners are still phenomenologically compatible with the mass range motivated by weak-scale naturalness. The phenomenology of hypertwisted scenarios is diverse, since the lifetimes and decay modes of the top partners are model dependent. The novel coupling structure opens up search channels that do not typically arise in top-partner scenarios, such as pair production of top-plus-jet resonances. Furthermore, hypertwisted top partners are typically sufficiently long lived to form "top-partnerium" bound states that decay predominantly via annihilation, motivating searches for rare narrow resonances with diboson decay modes.
Guo, Shaojun; Wang, Erkang
2011-07-19
In order to develop new, high technology devices for a variety of applications, researchers would like to better control the structure and function of micro/nanomaterials through an understanding of the role of size, shape, architecture, composition, hybridization, molecular engineering, assembly, and microstructure. However, researchers continue to face great challenges in the construction of well-defined micro/nanomaterials with diverse morphologies. At the same time, the research interface where micro/nanomaterials meet electrochemistry, analytical chemistry, biomedicine, and other fields provides rich opportunities to reveal new chemical, physical, and biological properties of micro/nanomaterials and to uncover many new functions and applications of these materials. In this Account, we describe our recent progress in the construction of novel inorganic and polymer nanostructures formed through different simple strategies. Our synthetic strategies include wet-chemical and electrochemical methods for the controlled production of inorganic and polymer nanomaterials with well-defined morphologies. These methods are both facile and reliable, allowing us to produce high-quality micro/nanostructures, such as nanoplates, micro/nanoflowers, monodisperse micro/nanoparticles, nanowires, nanobelts, and polyhedron and even diverse hybrid structures. We implemented a series of approaches to address the challenges in the preparation of new functional micro/nanomaterials for a variety of important applications This Account also highlights new or enhanced applications of certain micro/nanomaterials in sensing applications. We singled out analytical techniques that take advantage of particular properties of micro/nanomaterials. Then by rationally tailoring experimental parameters, we readily and selectively obtained different types of micro/nanomaterials with novel morphologies with high performance in applications such as electrochemical sensors, electrochemiluminescent sensors, gene delivery agents, and fuel cell catalysts. We expect that micro/nanomaterials with unique structural characteristics, properties, and functions will attract increasing research interest and will lead to new opportunities in various fields of research.
NASA Astrophysics Data System (ADS)
Hu, Yanjing; Hu, Hanbin; Li, Yingying; Chen, Ruixin; Yang, Yu; Wang, Lei
2016-10-01
A series of organic solid states including three salts, two co-crystals, and three hydrates based on tetrafluoroterephthalic acid (H2tfBDC) and N-bearing ligands (2,4-(1H,3H)-pyrimidine dione (PID), 2,4-dihydroxy-6-methyl pyrimidine (DHMPI), 2-amino-4,6-dimethyl pyrimidine (ADMPI), 2-amino-4,6-dimenthoxy pyrimidine (ADMOPI), 5,6-dimenthyl benzimidazole (DMBI), 2-aminobenzimidazole (ABI), 3,5-dimethyl pyrazole (DMP), and 3-cyanopyridine (3-CNpy)), namely, [(PID)2·(H2tfBDC)] (1), [(DHMPI)2·(H2tfBDC)] (2), [(H-ADMPI+)2·(tfBDC2-)·2(H2O)] (3), [(H-ADMOPI+)2·(tfBDC2-)·(H2O)] (4), [(H-DMBI+)2·(tfBDC2-)·2(H2O)] (5), [(H-ABI+)2·(tfBDC2-)] (6), [(H-DMP+)·(HtfBDC-)] (7), and [(H-3-CNpy+)·(HtfBDC-)] (8), were synthesized by solvent evaporation method. Crystal structures analyses show that the F atom of the H2tfBDC participates in multiple Csbnd H⋯F hydrogen bond formations, producing different supramolecular synthons. The weak hydrogen bonding Csbnd H⋯F and Nsbnd H⋯F play an important part in constructing the diversity structures 2-8, except in crystal 1. In complexes 1-3, they present the same synthon R22(8) with different N-heterocyclic compounds, which may show the strategy in constructing the supramolecular. Meanwhile, the complex 3 exhibits a 2D layer, and the independent molecules of water exist in the adjacent layers. In complexes 4 and 5, the water molecules connect the neighboring layers to form 3D network by strong Osbnd H⋯O hydrogen bonding. These crystals 1-8 were fully characterized by single-crystal X-ray crystallography, elemental analysis, infrared spectroscopy (IR), and thermogravimetric analysis (TGA).
Saulino, H H L; Corbi, J J; Trivinho-Strixino, S
2014-02-01
The fragmentation of lotic systems caused by construction of dams has modified many aquatic communities. The objective of this study was to analyse changes in the aquatic insect community structure by discontinuity of habitat created by dams along the Ribeirão das Anhumas, a sub-basin of the Mogi-Guaçu River (state of São Paulo, Brazil). Entomofauna collection was carried out in 10 segments upstream and downstream of five dams along the longitudinal profile of the stream, with a quick sampling method using a D net (mesh 250 mm) with 2 minutes of sampling effort. The insects were sorted and identified to the lowest possible taxonomic level and analysed by the Shannon diversity index, β diversity, richness estimated by rarefaction curves and relative participation of functional feeding groups. The results showed a slight reduction in diversity in the downstream segments, as well as along the longitudinal profile of the stream. However, there were no significant differences in abundance and richness between the upstream and downstream segments, indicating that the dams did not influence these variables. Differences were observed in the functional feeding groups along the longitudinal profile. Predator and gatherer insects were dominant in all segments analysed. The feeding group of shredders was more abundant in the segment DSIII with the participation of Marilia Müller (Odontoceridae - Trichoptera), although we observed a decrease of shredders and scrapers with the decrease of the canopy cover reducing values of β diversity in the continuum of Ribeirão das Anhumas. This result demonstrated the importance of the conservation of the riparian vegetation in order to maintain the integrity of the stream.
ERIC Educational Resources Information Center
Archer, Louise
2007-01-01
This paper discusses how the rhetoric of "diversity" is mobilised within New Labour HE policy discourse around widening participation (WP). The paper argues that these constructions of diversity derive an important element of their symbolic power from an association with notions of "equality"--and yet the radical/egalitarian…
Constructions of Diversity. Research among Staff Leaders in the Learning and Skills Sector
ERIC Educational Resources Information Center
Morrison, Marlene
2006-01-01
This paper explores the rhetoric of engagement with diversity in post-compulsory education and discovers paucity in research-informed practice to develop that engagement among staff and leaders. The paper draws upon new and established concepts to consider how and why leadership development, linked to diversity, might be elevated to first-order…
Jansen, Elena; Mallan, Kimberley M; Nicholson, Jan M; Daniels, Lynne A
2014-06-04
Early feeding practices lay the foundation for children's eating habits and weight gain. Questionnaires are available to assess parental feeding but overlapping and inconsistent items, subscales and terminology limit conceptual clarity and between study comparisons. Our aim was to consolidate a range of existing items into a parsimonious and conceptually robust questionnaire for assessing feeding practices with very young children (<3 years). Data were from 462 mothers and children (age 21-27 months) from the NOURISH trial. Items from five questionnaires and two study-specific items were submitted to a priori item selection, allocation and verification, before theoretically-derived factors were tested using Confirmatory Factor Analysis. Construct validity of the new factors was examined by correlating these with child eating behaviours and weight. Following expert review 10 factors were specified. Of these, 9 factors (40 items) showed acceptable model fit and internal reliability (Cronbach's α: 0.61-0.89). Four factors reflected non-responsive feeding practices: 'Distrust in Appetite', 'Reward for Behaviour', 'Reward for Eating', and 'Persuasive Feeding'. Five factors reflected structure of the meal environment and limits: 'Structured Meal Setting', 'Structured Meal Timing', 'Family Meal Setting', 'Overt Restriction' and 'Covert Restriction'. Feeding practices generally showed the expected pattern of associations with child eating behaviours but none with weight. The Feeding Practices and Structure Questionnaire (FPSQ) provides a new reliable and valid measure of parental feeding practices, specifically maternal responsiveness to children's hunger/satiety signals facilitated by routine and structure in feeding. Further validation in more diverse samples is required.
Weber, Christoph; Hartig, Andreas; Hartmann, Roland K; Rossmanith, Walter
2014-08-01
The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility.
Archaeal β diversity patterns under the seafloor along geochemical gradients
NASA Astrophysics Data System (ADS)
Koyano, Hitoshi; Tsubouchi, Taishi; Kishino, Hirohisa; Akutsu, Tatsuya
2014-09-01
Recently, deep drilling into the seafloor has revealed that there are vast sedimentary ecosystems of diverse microorganisms, particularly archaea, in subsurface areas. We investigated the β diversity patterns of archaeal communities in sediment layers under the seafloor and their determinants. This study was accomplished by analyzing large environmental samples of 16S ribosomal RNA gene sequences and various geochemical data collected from a sediment core of 365.3 m, obtained by drilling into the seafloor off the east coast of the Shimokita Peninsula. To extract the maximum amount of information from these environmental samples, we first developed a method for measuring β diversity using sequence data by applying probability theory on a set of strings developed by two of the authors in a previous publication. We introduced an index of β diversity between sequence populations from which the sequence data were sampled. We then constructed an estimator of the β diversity index based on the sequence data and demonstrated that it converges to the β diversity index between sequence populations with probability of 1 as the number of sampled sequences increases. Next, we applied this new method to quantify β diversities between archaeal sequence populations under the seafloor and constructed a quantitative model of the estimated β diversity patterns. Nearly 90% of the variation in the archaeal β diversity was explained by a model that included as variables the differences in the abundances of chlorine, iodine, and carbon between the sediment layers.
The background state leading to arsenic contamination of Bengal basin groundwater.
Adel, Miah M
2005-12-01
The Bengal basin has the world's densest water diversion constructions on the natural courses of rivers. The most damaging water diversion construction is the Farakka Barrage upon the international River Ganges. The diversion of water through this barrage and other constructions upstream of it has reduced the Ganges flow rate by 2.5 times. The resulting downstream effects are the depletion of surface water resources, more withdrawal than recharge of groundwater, sinking groundwater table, spread in depth and extension of the vadose zone, changes in surface features, climatic changes, etc. An investigation was carried out to find the contributions of water diversion to the arsenic contamination of groundwater in the Bengal basin. The reasonable scenario for arsenic contamination is the oxygen deficiency in groundwater and aeration of arsenopyrites buried in the sediment that would remain under water prior to 1975. The mineral forms water-soluble compounds of arsenic when react with atmospheric oxygen. These soluble arsenic compounds infiltrates to the groundwater. This article summarizes the short-time and incomplete study-based quick conclusions reached by investigators that have totally avoided the vital issue of water diversion. It then shows the depleting condition of the water resources under continuing diversions, the generation of favorable condition for arsenic release, the reasons for low sulfur concentration, the reason for first contamination in the Hugly basin, and the hindrance to water's self-purification. The articles advocates that the restoration of the virgin wetland ecosystems in the Bengal basin following the stoppage of the inordinate amount of unilateral upstream water withdrawals can remove the catastrophe.
Liao, Yuying; Mo, Guodong; Sun, Junli; Wei, Fengying; Liao, Dezhong Joshua
2016-05-01
The domestic chicken (Gallus gallus domesticus) is an excellent model for genetic studies of phenotypic diversity. The Guangxi Region of China possesses several native chicken breeds displaying a broad range of phenotypes well adapted to the extreme hot-and-wet environments in the region. We thus evaluated the genetic diversity and relationships among six native chicken populations of the Guangxi region and also evaluated two commercial breeds (Arbor Acres and Roman chickens). We analyzed the sequences of the D-loop region of the mitochondrial DNA (mtDNA) and 18 microsatellite loci of 280 blood samples from six Guangxi native chicken breeds and from Arbor Acres and Roman chickens, and used the neighbor-joining method to construct the phylogenetic tree of these eight breeds. Our results showed that the genetic diversity of Guangxi native breeds was relatively rich. The phylogenetic tree using the unweighed pair-group method with arithmetic means (UPGAM) on microsatellite marks revealed two main clusters. Arbor Acres chicken and Roman chicken were in one cluster, while the Guangxi breeds were in the other cluster. Moreover, the UPGAM tree of Guangxi native breeds based on microsatellite loci was more consistent with the genesis, breeding history, differentiation and location than the mtDNA D-loop region. STRUCTURE analysis further confirmed the genetic structure of Guangxi native breeds in the Neighbor-Net dendrogram. The nomenclature of mtDNA sequence polymorphisms suggests that the Guangxi native chickens are distributed across four clades, but most of them are clustered in two main clades (B and E), with the other haplotypes within the clades A and C. The Guangxi native breeds revealed abundant genetic diversity not only on microsatellite loci but also on mtDNA D-loop region, and contained multiple maternal lineages, including one from China and another from Europe or the Middle East.
Teachers' Use of Computational Tools to Construct and Explore Dynamic Mathematical Models
ERIC Educational Resources Information Center
Santos-Trigo, Manuel; Reyes-Rodriguez, Aaron
2011-01-01
To what extent does the use of computational tools offer teachers the possibility of constructing dynamic models to identify and explore diverse mathematical relations? What ways of reasoning or thinking about the problems emerge during the model construction process that involves the use of the tools? These research questions guided the…
Recognition of Values-Based Constructs in a Summer Physical Activity Program.
ERIC Educational Resources Information Center
Watson, Doris L.; Newton, Maria; Kim, Mi-Sook
2003-01-01
Examined the extent to which participants in a summer sports camp embraced values-based constructs, noting the relationship between perceptions of values-based constructs and affect and attitude. Data on ethnically diverse 10-13-year-olds indicated that care for others/goal setting, self-responsibility, and self-control/respect positively related…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Gupta, Shikha
Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data,more » optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R{sup 2}) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R{sup 2} and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the constructed (c) DTB and (d) DTF regression models to predict the T. pyriformis toxicity of diverse chemicals. - Highlights: • Ensemble learning (EL) based models constructed for toxicity prediction of chemicals • Predictive models used a few simple non-quantum mechanical molecular descriptors. • EL-based DTB/DTF models successfully discriminated toxic and non-toxic chemicals. • DTB/DTF regression models precisely predicted toxicity of chemicals in multi-species. • Proposed EL based models can be used as tool to predict toxicity of new chemicals.« less
Zheng, Li Ting; Su, Tian; Liu, Xiang Yu; Yin, Fang; Guo, Chao; Tuo, Bin; Yan, En Rong
2018-02-01
Island vegetation plays an important role in biodiversity research across the world. The study of plant diversity in island is helpful for understanding the mechanism of plant diversity maintenance under land-sea interaction. Here, four typical plant communities (Quercus acutissima community, Robinia pseudoacacia community, Pinus thunbergii community and Vitex negundo community) in Miao Archipelago were selected to examine the species, functional and structural diversities and their responses to environmental factors at the community scale by using species diversity indices, functional diversity indices, as well as structural diversity indices. The results showed that the species richness and Rao index of P. thunbergii community was higher than that of Q. acutissima community and R. pseudoacacia community, but the structural diversity was lower. The species diversity and structural diversity of V. Negundo shrub were lower than that of forest community, but the functional diversity was higher than some forest communities. The relationship between the diversity of typical plant communities in island area illustrated a significant positive correlation between species richness with Rao index and tree height diversity, however the correlation with functional evenness was significantly negative. The structural diversity and functional evenness were determined by slope with negative and positive relationships, respectively. Functional heterogeneity, functional divergence and species diversity were affected largely by soil physical and chemical properties, displaying the positive relationship with soil bulk density and soil total carbon content, and a negative relationship with soil water content. In conclusion, diversity pattern of plant community in Miao Archipelago reflected not only the characteristics in mainland vegetation but also the special nature of the sea island.
Rodriguez-Roche, Rosmari; Villegas, Elci; Cook, Shelley; Poh Kim, Pauline A.W.; Hinojosa, Yoandri; Rosario, Delfina; Villalobos, Iris; Bendezu, Herminia; Hibberd, Martin L.; Guzman, Maria G.
2012-01-01
During the past three decades there has been a notable increase in dengue disease severity in Venezuela. Nevertheless, the population structure of the viruses being transmitted in this country is not well understood. Here, we present a molecular epidemiological study on dengue viruses (DENV) circulating in Aragua State, Venezuela during 2006–2007. Twenty-one DENV full-length genomes representing all of the four serotypes were amplified and sequenced directly from the serum samples. Notably, only DENV-2 was associated with severe disease. Phylogenetic trees constructed using Bayesian methods indicated that only one genotype was circulating for each serotype. However, extensive viral genetic diversity was found in DENV isolated from the same area during the same period, indicating significant in situ evolution since the introduction of these genotypes. Collectively, the results suggest that the non-structural (NS) proteins may play an important role in DENV evolution, particularly NS1, NS2A and NS4B proteins. The phylogenetic data provide evidence to suggest that multiple introductions of DENV have occurred from the Latin American region into Venezuela and vice versa. The implications of the significant viral genetic diversity generated during hyperendemic transmission, particularly in NS protein are discussed and considered in the context of future development and use of human monoclonal antibodies as antivirals and tetravalent vaccines. PMID:22197765
P-type ATPases as drug targets: tools for medicine and science.
Yatime, Laure; Buch-Pedersen, Morten J; Musgaard, Maria; Morth, J Preben; Lund Winther, Anne-Marie; Pedersen, Bjørn P; Olesen, Claus; Andersen, Jens Peter; Vilsen, Bente; Schiøtt, Birgit; Palmgren, Michael G; Møller, Jesper V; Nissen, Poul; Fedosova, Natalya
2009-04-01
P-type ATPases catalyze the selective active transport of ions like H+, Na+, K+, Ca2+, Zn2+, and Cu2+ across diverse biological membrane systems. Many members of the P-type ATPase protein family, such as the Na+,K+-, H+,K+-, Ca2+-, and H+-ATPases, are involved in the development of pathophysiological conditions or provide critical function to pathogens. Therefore, they seem to be promising targets for future drugs and novel antifungal agents and herbicides. Here, we review the current knowledge about P-type ATPase inhibitors and their present use as tools in science, medicine, and biotechnology. Recent structural information on a variety of P-type ATPase family members signifies that all P-type ATPases can be expected to share a similar basic structure and a similar basic machinery of ion transport. The ion transport pathway crossing the membrane lipid bilayer is constructed of two access channels leading from either side of the membrane to the ion binding sites at a central cavity. The selective opening and closure of the access channels allows vectorial access/release of ions from the binding sites. Recent structural information along with new homology modeling of diverse P-type ATPases in complex with known ligands demonstrate that the most proficient way for the development of efficient and selective drugs is to target their ion transport pathway.
NASA Astrophysics Data System (ADS)
Gao, Tian; Qiu, Ling; Hammer, Mårten; Gunnarsson, Allan
2012-02-01
Temporal and spatial vegetation structure has impact on biodiversity qualities. Yet, current schemes of biotope mapping do only to a limited extend incorporate these factors in the mapping. The purpose of this study is to evaluate the application of a modified biotope mapping scheme that includes temporal and spatial vegetation structure. A refined scheme was developed based on a biotope classification, and applied to a green structure system in Helsingborg city in southern Sweden. It includes four parameters of vegetation structure: continuity of forest cover, age of dominant trees, horizontal structure, and vertical structure. The major green structure sites were determined by interpretation of panchromatic aerial photographs assisted with a field survey. A set of biotope maps was constructed on the basis of each level of modified classification. An evaluation of the scheme included two aspects in particular: comparison of species richness between long-continuity and short-continuity forests based on identification of woodland continuity using ancient woodland indicators (AWI) species and related historical documents, and spatial distribution of animals in the green space in relation to vegetation structure. The results indicate that (1) the relationship between forest continuity: according to verification of historical documents, the richness of AWI species was higher in long-continuity forests; Simpson's diversity was significantly different between long- and short-continuity forests; the total species richness and Shannon's diversity were much higher in long-continuity forests shown a very significant difference. (2) The spatial vegetation structure and age of stands influence the richness and abundance of the avian fauna and rabbits, and distance to the nearest tree and shrub was a strong determinant of presence for these animal groups. It is concluded that continuity of forest cover, age of dominant trees, horizontal and vertical structures of vegetation should now be included in urban biotope classifications.
Trinucleotide cassettes increase diversity of T7 phage-displayed peptide library.
Krumpe, Lauren R H; Schumacher, Kathryn M; McMahon, James B; Makowski, Lee; Mori, Toshiyuki
2007-10-05
Amino acid sequence diversity is introduced into a phage-displayed peptide library by randomizing library oligonucleotide DNA. We recently evaluated the diversity of peptide libraries displayed on T7 lytic phage and M13 filamentous phage and showed that T7 phage can display a more diverse amino acid sequence repertoire due to differing processes of viral morphogenesis. In this study, we evaluated and compared the diversity of a 12-mer T7 phage-displayed peptide library randomized using codon-corrected trinucleotide cassettes with a T7 and an M13 12-mer phage-displayed peptide library constructed using the degenerate codon randomization method. We herein demonstrate that the combination of trinucleotide cassette amino acid codon randomization and T7 phage display construction methods resulted in a significant enhancement to the functional diversity of a 12-mer peptide library. This novel library exhibited superior amino acid uniformity and order-of-magnitude increases in amino acid sequence diversity as compared to degenerate codon randomized peptide libraries. Comparative analyses of the biophysical characteristics of the 12-mer peptide libraries revealed the trinucleotide cassette-randomized library to be a unique resource. The combination of T7 phage display and trinucleotide cassette randomization resulted in a novel resource for the potential isolation of binding peptides for new and previously studied molecular targets.
ERIC Educational Resources Information Center
Raposa, Michael
2012-01-01
This article raises questions about what it means to be a diverse academic community and about why such diversity is worth struggling to achieve. The controversial arguments of Walter Benn Michaels are critically examined as a stimulus and prelude to considering the more constructive perspectives supplied by Amartya Sen and Josiah Royce. Royce's…
Metal-directed design of supramolecular protein assemblies
Bailey, Jake B.; Subramanian, Rohit H.; Churchfield, Lewis A.
2016-01-01
Owing to their central roles in cellular signaling, construction, and biochemistry, protein-protein interactions (PPIs) and protein self-assembly have become a major focus of molecular design and synthetic biology. In order to circumvent the complexity of constructing extensive non-covalent interfaces, which are typically involved in natural PPIs and protein self-assembly, we have developed two design strategies, Metal-Directed Protein Self-Assembly (MDPSA) and Metal-Templated Interface Redesign (MeTIR). These strategies, inspired by both the proposed evolutionary roles of metals and their prevalence in natural PPIs, take advantage of the favorable properties of metal coordination (bonding strength, directionality, and reversibility) to guide protein self-assembly with minimal design and engineering. Using a small, monomeric protein (cytochrome cb562) as a model building block, we employed MDPSA and MeTIR to create a diverse array of functional supramolecular architectures which range from structurally tunable oligomers to metalloprotein complexes that can properly self-assemble in living cells into novel metalloenzymes. The design principles and strategies outlined herein should be readily applicable to other protein systems with the goal of creating new PPIs and protein assemblies with structures and functions not yet produced by natural evolution. PMID:27586336
Li, Houhua; Mazet, Clément
2015-08-26
The stereoselective construction of C20 in steroidal derivatives by a highly diastereoselective Ir-catalyzed isomerization of primary allylic alcohols is reported. A key aspect of this strategy is a straightforward access to geometrically pure steroidal enol tosylate and enol triflate intermediates for subsequent high yielding stereoretentive Negishi cross-coupling reactions to allow structural diversity to be introduced. A range of allylic alcohols participates in the diastereoselective isomerization under the optimized reaction conditions. Electron-rich and electron-poor aryl or heteroaryl substituents are particularly well-tolerated, and the stereospecific nature of the reaction provides indifferently access to the natural C20-(R) and unnatural C20-(S) configurations. Alkyl containing substrates are more challenging as they affect regioselectivity of iridium-hydride insertion. A rationale for the high diastereoselectivities observed is proposed for aryl containing precursors. The scope of our method is further highlighted through topological diversification in the side chain and within the polycyclic domain of advanced and complex steroidal architectures. These findings have the potential to greatly simplify access to epimeric structural analogues of important steroid scaffolds for applications in biological, pharmaceutical, and medical sciences.
We Are Family: Using Diverse Family Structure Literature with Children
ERIC Educational Resources Information Center
Gilmore, Deanna Peterschick; Bell, Kari
2006-01-01
The structure of the American family has changed over the years. Although the traditional father, mother, child structure still dominates, other family patterns are emerging. In this article the authors present: (1) current statistics relating to diverse family structures; (2) reasons for using diverse family structure literature with children;…
Anderson, Tavis K; Laegreid, William W; Cerutti, Francesco; Osorio, Fernando A; Nelson, Eric A; Christopher-Hennings, Jane; Goldberg, Tony L
2012-06-15
The extraordinary genetic and antigenic variability of RNA viruses is arguably the greatest challenge to the development of broadly effective vaccines. No single viral variant can induce sufficiently broad immunity, and incorporating all known naturally circulating variants into one multivalent vaccine is not feasible. Furthermore, no objective strategies currently exist to select actual viral variants that should be included or excluded in polyvalent vaccines. To address this problem, we demonstrate a method based on graph theory that quantifies the relative importance of viral variants. We demonstrate our method through application to the envelope glycoprotein gene of a particularly diverse RNA virus of pigs: porcine reproductive and respiratory syndrome virus (PRRSV). Using distance matrices derived from sequence nucleotide difference, amino acid difference and evolutionary distance, we constructed viral networks and used common network statistics to assign each sequence an objective ranking of relative 'importance'. To validate our approach, we use an independent published algorithm to score our top-ranked wild-type variants for coverage of putative T-cell epitopes across the 9383 sequences in our dataset. Top-ranked viruses achieve significantly higher coverage than low-ranked viruses, and top-ranked viruses achieve nearly equal coverage as a synthetic mosaic protein constructed in silico from the same set of 9383 sequences. Our approach relies on the network structure of PRRSV but applies to any diverse RNA virus because it identifies subsets of viral variants that are most important to overall viral diversity. We suggest that this method, through the objective quantification of variant importance, provides criteria for choosing viral variants for further characterization, diagnostics, surveillance and ultimately polyvalent vaccine development.
Akoury, Liya M; Rozalski, Vincent; Barchard, Kimberly A; Warren, Cortney S
2018-03-01
Extant research suggests that disordered eating is common in college women and is associated with decreased quality of life. The Eating Disorder Quality of Life Scale (EDQLS) examines impairment to disordered eating-related quality of life, but has not been validated in college women. Accordingly, the purpose of this study was to examine the reliability, validity, and factor structure of the EDQLS in a diverse sample of 971 college women. Students from a large United States university completed questionnaires examining disordered eating and the EDQLS online. The EDQLS demonstrated excellent internal consistency and good convergent validity with the Eating Disorder Examination Questionnaire (EDEQ). Contrary to the original 12-domain design of the EDQLS, principal component analyses suggested five factors that mapped onto the following constructs: (1) Positive Emotionality; (2) Body/Weight Dissatisfaction; (3) Disordered Eating Behaviors; (4) Negative Emotionality; and (5) Social Engagement. However, 15 of the 40 items loaded onto multiple factors. Total scores on the EDQLS are reliable and valid when used with diverse samples of college women, but some revisions are needed to create subscales than can justifiably be used in clinical practice.
Xiao, Lily Dongxia; Willis, Eileen; Harrington, Ann; Gillham, David; De Bellis, Anita; Morey, Wendy; Jeffers, Lesley
2018-01-01
Cultural diversity between residents and staff is significant in aged care homes in many developed nations in the context of international migration. This diversity can be a challenge to achieving effective cross-cultural communication. The aim of this study was to critically examine how staff and residents initiated effective cross-cultural communication and social cohesion that enabled positive changes to occur. A critical hermeneutic analysis underpinned by Giddens' Structuration Theory was applied to the study. Data were collected by interviews with residents or their family and by focus groups with staff in four aged care homes in Australia. Findings reveal that residents and staff are capable of restructuring communication via a partnership approach. They can also work in collaboration to develop communication resources. When staff demonstrate cultural humility, they empower residents from culturally and linguistically diverse backgrounds to engage in effective communication. Findings also suggest that workforce interventions are required to improve residents' experiences in cross-cultural care. This study challenges aged care homes to establish policies, criteria and procedures in cross-cultural communication. There is also the challenge to provide ongoing education and training for staff to improve their cross-cultural communication capabilities. © 2017 John Wiley & Sons Ltd.
Yang, Chun; Zhang, Jianqiu
2017-01-01
In this study, we analyzed the genetic polymorphisms of 23 Y-STR loci from PowerPlex® Y23 system in 916 unrelated healthy male individuals from Chinese Jiangsu Han, and observed 912 different haplotypes including 908 unique haplotypes and 4 duplicate haplotypes. The haplotype diversity reached 0.99999 and the discrimination capacity and match probability were 0.9956 and 0.0011, respectively. The gene diversity values ranged from 0.3942 at DYS438 to 0.9607 at DYS385a/b. Population differentiation within 10 Jiangsu Han subpopulations were evaluated by RST values and visualized in Neighbor-Joining trees and Multi-Dimensional Scaling plots as well as population relationships between the Jiangsu Han population and other 18 Eastern Asian populations. Such results indicated that the 23 Y-STR loci were highly polymorphic in Jiangsu Han population and played crucial roles in forensic application as well as population genetics. For the first time, we reported the genetic diversity of male lineages in Jiangsu Han population at a high-resolution level of 23 Y-STR set and consequently contributed to familial searching, offender tracking, and anthropology analysis of Jiangsu Han population. PMID:28704439
[Intestinal fungal diversity of sub-adult giant panda].
Ai, Shengquan; Zhong, Zhijun; Peng, Guangneng; Wang, Chengdong; Luo, Yongjiu; He, Tingmei; Gu, Wuyang; Li, Caiwu; Li, Gangshi; Wu, Honglin; Liu, Xuehan; Xia, Yu; Liu, Yanhong; Zhou, Xiaoxiao
2014-11-04
The fungi diversity in the guts of five sub-adult giant pandas was analyzed. We analyzed the fungal internal transcribed spacer sequences (ITS) using restriction fragment length polymorphism (RFLP). ITS regions were amplified with fungal universal primers to construct ITS clone libraries. The fingerprints were analyzed by restriction fragment length polymorphism using the Hha I and Hae III enzymes. The cloned PCR products were analyzed by sequencing and diversities were demonstrated by phylogenetic tree. The gut fungi of 5 sub-adult giant pandas were mainly composed of Ascomycota (average of 46.24%), Basidiomycota ( average of 15.79%), unclassified (average of 29.14%), uncultured fungus (average of 8.83% ). Ascomycota was mainly composed of Saccharomycetes (average of 63.74%) and Dothideomycetes ( average of 35.91%); Basidiomycota was mainly composed of Tremellomycetes (average of 65.80%) and Microbotryomycetes (average of 33.15%). Four classes were mainly composed of Candida and Debaryomyces; Pleosporales and Myriangium; Cystofilobasidium and Trichosporon; Leucosporidium, and Leucosporidiella, whereas the proportions were different for each sample. Fungal flora existing in the intestines of sub-adult giant pandas expand our knowledge on the structure of the giant panda gut microbes and also help us to further study whether fungal flora can help giant pandas digest high-fiber foods.
Limiting similarity and functional diversity along environmental gradients
Schwilk, D.W.; Ackerly, D.D.
2005-01-01
Recent developments in community models emphasize the importance of incorporating stochastic processes (e.g. ecological drift) in models of niche-structured community assembly. We constructed a finite, spatially explicit, lottery model to simulate the distribution of species in a one-dimensional landscape with an underlying gradient in environmental conditions. Our framework combines the potential for ecological drift with environmentally-mediated competition for space in a heterogeneous environment. We examined the influence of niche breadth, dispersal distances, community size (total number of individuals) and the breadth of the environmental gradient on levels of species and functional trait diversity (i.e. differences in niche optima). Three novel results emerge from this model: (1) niche differences between adjacent species (e.g. limiting similarity) increase in smaller communities, because of the interaction of competitive effects and finite population sizes; (2) immigration from a regional species pool, stochasticity and niche-assembly generate a bimodal distribution of species residence times ('transient' and 'resident') under a heterogeneous environment; and (3) the magnitude of environmental heterogeneity has a U-shaped effect on diversity, because of shifts in species richness of resident vs. transient species. These predictions illustrate the potential importance of stochastic (although not necessarily neutral) processes in community assembly. ??2005 Blackwell Publishing Ltd/CNRS.
Whitlock, Raj
2014-01-01
Understanding the effects of intraspecific genetic diversity on the structure and functioning of ecological communities is a fundamentally important part of evolutionary ecology and may also have conservation relevance in identifying the situations in which genetic diversity coincides with species-level diversity.Early studies within this field documented positive relationships between genetic diversity and ecological structure, but recent studies have challenged these findings. Conceptual synthesis has been hampered because studies have used different measures of intraspecific variation (phenotypically adaptive vs. neutral) and have considered different measures of ecological structure in different ecological and spatial contexts. The aim of this study is to strengthen conceptual understanding by providing an empirical synthesis quantifying the relationship between genetic diversity and ecological structure.Here, I present a meta-analysis of the relationship between genetic diversity within plant populations and the structure and functioning of associated ecological communities (including 423 effect sizes from 70 studies). I used Bayesian meta-analyses to examine (i) the strength and direction of this relationship, (ii) the extent to which phenotypically adaptive and neutral (molecular) measures of diversity differ in their association with ecological structure and (iii) variation in outcomes among different measures of ecological structure and in different ecological contexts.Effect sizes measuring the relationship between adaptive diversity (genotypic richness) and both community- and ecosystem-level ecological responses were small, but significantly positive. These associations were supported by genetic effects on species richness and productivity, respectively.There was no overall association between neutral genetic diversity and measures of ecological structure, but a positive correlation was observed under a limited set of demographic conditions. These results suggest that adaptive and neutral genetic diversity should not be treated as ecologically equivalent measures of intraspecific variation.Synthesis. This study advances the debate over whether relationships between genetic diversity and ecological structure are either simply positive or negative, by showing how the strength and direction of these relationships changes with different measures of diversity and in different ecological contexts. The results provide a solid foundation for assessing when and where an expanded synthesis between ecology and genetics will be most fruitful. PMID:25210204
15 CFR 2301.17 - Evaluation criteria for construction and planning applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... PUBLIC TELECOMMUNICATIONS FACILITIES PROGRAM Evaluation and Selection Process § 2301.17 Evaluation... significant diversity in the ownership of, operation of, and participation in public telecommunications... attitudes of diverse listeners by promoting the development of more effective programming strategies...
De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.
Schneider, G; Lee, M L; Stahl, M; Schneider, P
2000-07-01
An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.
Nicolaou, K. C.; Hale, Christopher R. H.; Nilewski, Christian; Ioannidou, Heraklidia A.
2012-01-01
The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules—natural and designed—of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products—the organic molecules of nature—is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature’s molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years. PMID:22743704
Nicolaou, K C; Hale, Christopher R H; Nilewski, Christian; Ioannidou, Heraklidia A
2012-08-07
The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules--natural and designed--of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products--the organic molecules of nature--is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature's molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years.
Career and Self-Construction of Emerging Adults: The Value of Life Designing
Maree, Jacobus G.; Twigge, Adeline
2016-01-01
This article describes a potential way of counseling emerging adults from a life design perspective to construct a self that could enable them to be agents of both their own development and the development of others. Theoretical issues relating to a dynamic, developmental and systems framework of the understanding of wellbeing are described and the process involved is delineated. The research design was qualitative and comprised case studies. Six participants who subscribed to the definition of “emerging adults” and were comparatively representative of the ethnic diversity of South Africa, were selected purposively from a group of individuals who applied for career counseling in a private practice context. The intervention involved life design counseling and occurred over a period of 6 weeks. Information related to participants' self-construction was gathered using qualitative techniques, including the Career Interest Profile, the Career Construction Interview, a timeline, video clips, a collage, and semi-structured interviews. Following the intervention, the participants revealed heightened insights with regard to aspects of their sense of a relational-moral self. Results indicated that life design counseling could enhance elaborative personal development (enhancing self-awareness and reaping the benefits of developing an improved relational-moral self) and the promotion of an awareness of the importance to promote social justice in work-related contexts. PMID:26793152
2010-01-01
Background Today, many organizations have adopted some kind of empowerment initiative for at least part of their workforce. Over the last two decades, two complementary perspectives on empowerment at work have emerged: structural and psychological empowerment. Psychological empowerment is a motivational construct manifested in four cognitions: meaning, competence, self-determination and impact. The aim of this article is to examine the construct validity and reliability of the Turkish translation of Spreitzer's psychological empowerment scale in a culturally diverse environment. Methods The scale contains four dimensions over 12 statements. Data were gathered from 260 nurses and 161 physicians. The dimensionality of the scale was evaluated by exploratory factor analyses. To investigate the multidimensional nature of the empowerment construct and the validity of the scale, first- and second-order confirmatory factor analysis was conducted. Furthermore, Cronbach alpha coefficients were assessed to investigate reliability. Results Exploratory factor analyses revealed that four factors in both solutions. The first- and second-order factor analysis indicated an acceptable fit between the data and the theoretical model for nurses and physicians. Cronbach alpha coefficients varied between 0.81-0.94 for both groups, which may be considered satisfactory. Conclusions The analyses indicated that the psychometric properties of the Turkish version of the scale can be considered satisfactory. PMID:20214770
Analysis of Construction Accidents in Turkey and Responsible Parties
GÜRCANLI, G. Emre; MÜNGEN, Uğur
2013-01-01
Construction is one of the world’s biggest industry that includes jobs as diverse as building, civil engineering, demolition, renovation, repair and maintenance. Construction workers are exposed to a wide variety of hazards. This study analyzes 1,117 expert witness reports which were submitted to criminal and labour courts. These reports are from all regions of the country and cover the period 1972–2008. Accidents were classified by the consequence of the incident, time and main causes of the accident, construction type, occupation of the victim, activity at time of the accident and party responsible for the accident. Falls (54.1%), struck by thrown/falling object (12.9%), structural collapses (9.9%) and electrocutions (7.5%) rank first four places. The accidents were most likely between the hours 15:00 and 17:00 (22.6%), 10:00–12:00 (18.7%) and just after the lunchtime (9.9%). Additionally, the most common accidents were further divided into sub-types. Expert-witness assessments were used to identify the parties at fault and what acts of negligence typically lead to accidents. Nearly two thirds of the faulty and negligent acts are carried out by the employers and employees are responsible for almost one third of all cases. PMID:24077446
Biomimicry in metal-organic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, MW; Gu, ZY; Bosch, M
2015-06-15
Nature has evolved a great number of biological molecules which serve as excellent constructional or functional units for metal-organic materials (MOMs). Even though the study of biomimetic MOMs is still at its embryonic stage, considerable progress has been made in the past few years. In this critical review, we will highlight the recent advances in the design, development and application of biomimetic MOMs, and illustrate how the incorporation of biological components into MOMs could further enrich their structural and functional diversity. More importantly, this review will provide a systematic overview of different methods for rational design of MOMs with biomimeticmore » features. Published by Elsevier B.V.« less
Contempt - Where the modularity of the mind meets the modularity of the brain?
Bzdok, Danilo; Schilbach, Leonhard
2017-01-01
"Contempt" is proposed to be a unique aspect of human nature, yet a non-natural kind. Its psychological construct is framed as a sentiment emerging from a stratification of diverse basic emotions and dispositional attitudes. Accordingly, "contempt" might transcend traditional conceptual levels in social psychology, including experience and recognition of emotion, dyadic and group dynamics, context-conditioned attitudes, time-enduring personality structure, and morality. This strikes us as a modern psychological account of a high-level, social-affective cognitive facet that joins forces with recent developments in the social neuroscience by drawing psychological conclusions from brain biology.
Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism
NASA Astrophysics Data System (ADS)
Mary, I. Reeta; Sonia, S.; Viji, S.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N.
2016-01-01
Morphological evolution of materials becomes a prodigious challenge due to their key role in defining their functional properties and desired applications. Herein, we report the synthesis of hydroxyapatite (HAp) microstructures with multiform morphologies, such as spheres, cubes, hexagonal rods and nested bundles constructed from their respective nanoscale building blocks via a simple cost effective hydro/solvothermal method. A possible formation mechanism of diverse morphologies of HAp has been presented. Structural analysis based on X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirms the purity of the HAp microstructures. The multiform morphologies of HAp were corroborated by using Field emission scanning electron microscope (FESEM).
Investigation into adamantane-based M2 inhibitors with FB-QSAR.
Wei, Hang; Wang, Cheng-Hua; Du, Qi-Shi; Meng, Jianzong; Chou, Kuo-Chen
2009-07-01
Because of their high resistance rate to the existing drugs, influenza A viruses have become a threat to human beings. It is known that the replication of influenza A viruses needs a pH-gated proton channel, the so-called M2 channel. Therefore, to develop effective drugs against influenza A, the most logic strategy is to inhibit the M2 channel. Recently, the atomic structure of the M2 channel was determined by NMR spectroscopy (Schnell, J.R. and Chou, J.J., Nature, 2008, 451, 591-595). The high-resolution NMR structure has provided a solid basis for structure-based drug design approaches. In this study, a benchmark dataset has been constructed that contains 34 newly-developed adamantane-based M2 inhibitors and covers considerable structural diversities and wide range of bioactivities. Based on these compounds, an in-depth analysis was performed with the newly developed fragment-based quantitative structure-activity relationship (FB-QSAR) algorithm. The results thus obtained provide useful insights for dealing with the drug-resistant problem and designing effective adamantane-based antiflu drugs.
Mechanical Deformation Mechanisms and Properties of Prion Fibrils Probed by Atomistic Simulations
NASA Astrophysics Data System (ADS)
Choi, Bumjoon; Kim, Taehee; Ahn, Eue Soo; Lee, Sang Woo; Eom, Kilho
2017-03-01
Prion fibrils, which are a hallmark for neurodegenerative diseases, have recently been found to exhibit the structural diversity that governs disease pathology. Despite our recent finding concerning the role of the disease-specific structure of prion fibrils in determining their elastic properties, the mechanical deformation mechanisms and fracture properties of prion fibrils depending on their structures have not been fully characterized. In this work, we have studied the tensile deformation mechanisms of prion and non-prion amyloid fibrils by using steered molecular dynamics simulations. Our simulation results show that the elastic modulus of prion fibril, which is formed based on left-handed β-helical structure, is larger than that of non-prion fibril constructed based on right-handed β-helix. However, the mechanical toughness of prion fibril is found to be less than that of non-prion fibril, which indicates that infectious prion fibril is more fragile than non-infectious (non-prion) fibril. Our study sheds light on the role of the helical structure of amyloid fibrils, which is related to prion infectivity, in determining their mechanical deformation mechanisms and properties.
One-dimensional rigid film acoustic metamaterials
NASA Astrophysics Data System (ADS)
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng
2015-11-01
We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves.
The application of the multi-alternative approach in active neural network models
NASA Astrophysics Data System (ADS)
Podvalny, S.; Vasiljev, E.
2017-02-01
The article refers to the construction of intelligent systems based artificial neuron networks are used. We discuss the basic properties of the non-compliance of artificial neuron networks and their biological prototypes. It is shown here that the main reason for these discrepancies is the structural immutability of the neuron network models in the learning process, that is, their passivity. Based on the modern understanding of the biological nervous system as a structured ensemble of nerve cells, it is proposed to abandon the attempts to simulate its work at the level of the elementary neurons functioning processes and proceed to the reproduction of the information structure of data storage and processing on the basis of the general enough evolutionary principles of multialternativity, i.e. the multi-level structural model, diversity and modularity. The implementation method of these principles is offered, using the faceted memory organization in the neuron network with the rearranging active structure. An example of the implementation of the active facet-type neuron network in the intellectual decision-making system in the conditions of critical events development in the electrical distribution system.
Using the Rasch Measurement Model in Psychometric Analysis of the Family Effectiveness Measure
McCreary, Linda L.; Conrad, Karen M.; Conrad, Kendon J.; Scott, Christy K; Funk, Rodney R.; Dennis, Michael L.
2013-01-01
Background Valid assessment of family functioning can play a vital role in optimizing client outcomes. Because family functioning is influenced by family structure, socioeconomic context, and culture, existing measures of family functioning--primarily developed with nuclear, middle class European American families--may not be valid assessments of families in diverse populations. The Family Effectiveness Measure was developed to address this limitation. Objectives To test the Family Effectiveness Measure with data from a primarily low-income African American convenience sample, using the Rasch measurement model. Method A sample of 607 adult women completed the measure. Rasch analysis was used to assess unidimensionality, response category functioning, item fit, person reliability, differential item functioning by race and parental status, and item hierarchy. Criterion-related validity was tested using correlations with five other variables related to family functioning. Results The Family Effectiveness Measure measures two separate constructs: The effective family functioning construct was a psychometrically sound measure of the target construct that was more efficient due to the deletion of 22 items. The ineffective family functioning construct consisted of 16 of those deleted items but was not as strong psychometrically. Items in both constructs evidenced no differential item functioning by race. Criterion-related validity was supported for both. Discussion In contrast to the prevailing conceptualization that family functioning is a single construct, assessed by positively and negatively worded items, use of the Rasch analysis suggested the existence of two constructs. While the effective family functioning is a strong and efficient measure of family functioning, the ineffective family functioning will require additional item development and psychometric testing. PMID:23636342
USDA-ARS?s Scientific Manuscript database
Contaminant removal in constructed wetlands may largely be a function of many microbial processes. However, information about bacterial, archaea, and fungi communities in constructed wetlands for the removal of swine waste is limited. In this study, we used 454/GS-FLX pyrosequencing to assess bacter...
2005-03-01
of job embeddedness to account for additional variability in turnover, adding a richness and diversity not seen in typical turnover theory. Job...JOB EMBEDDEDNESS : A CONSTRUCT OF ORGANIZATIONAL AND COMMUNITY ATTACHMENT UTILIZED...AFIT/GEM/ENV/05M-03 JOB EMBEDDEDNESS : A CONSTRUCT OF ORGANIZATIONAL AND COMMUNITY ATTACHMENT UTILIZED TO ASSESS VOLUNTARY
54. Downstream face of Agua Fria project's diversion dam showing ...
54. Downstream face of Agua Fria project's diversion dam showing initial masonry construction and poured concrete capping. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
Psychometric properties of the Spanish version of the Collective Efficacy Questionnaire for Sports.
Román Martínez, Julio; Guillén, Félix; Feltz, Deborah
2011-08-01
The present study analyses the psychometric properties of the Spanish version of the Collective Efficacy Questionnaire in Sports (CEQS). The sample comprises 312 athletes (167 males and 145 females), with a mean age of 24.09 (SD= 6.67), with diverse performance levels (professional, semiprofessional and university level), all practitioners of team sports. The factor structure of the questionnaire was analyzed with confirmatory factor analysis (CFA). The results confirm the 5-factor internal structure of the CESQ (Effort, Ability, Unity, Perseverance and Preparation), made up of four items each. We also found acceptable values of the alpha coefficient, which confirms that the CESQ is a reliable instrument. Lastly, we found preliminary support for the validity of the construct of the CESQ, which is sufficient evidence to justify its use to measure the collective efficacy in Spanish athletes.
Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry
Liang, Yingkai; Li, Linqing; Scott, Rebecca A.; Kiick, Kristi L.
2017-01-01
Biomaterials have been extensively used to leverage beneficial outcomes in various therapeutic applications, such as providing spatial and temporal control over the release of therapeutic agents in drug delivery as well as engineering functional tissues and promoting the healing process in tissue engineering and regenerative medicine. This perspective presents important milestones in the development of polymeric biomaterials with defined structures and properties. Contemporary studies of biomaterial design have been reviewed with focus on constructing materials with controlled structure, dynamic functionality, and biological complexity. Examples of these polymeric biomaterials enabled by advanced synthetic methodologies, dynamic chemistry/assembly strategies, and modulated cell-material interactions have been highlighted. As the field of polymeric biomaterials continues to evolve with increased sophistication, current challenges and future directions for the design and translation of these materials are also summarized. PMID:29151616
3D molecular models of whole HIV-1 virions generated with cellPACK
Goodsell, David S.; Autin, Ludovic; Forli, Stefano; Sanner, Michel F.; Olson, Arthur J.
2014-01-01
As knowledge of individual biological processes grows, it becomes increasingly useful to frame new findings within their larger biological contexts in order to generate new systems-scale hypotheses. This report highlights two major iterations of a whole virus model of HIV-1, generated with the cellPACK software. cellPACK integrates structural and systems biology data with packing algorithms to assemble comprehensive 3D models of cell-scale structures in molecular detail. This report describes the biological data, modeling parameters and cellPACK methods used to specify and construct editable models for HIV-1. Anticipating that cellPACK interfaces under development will enable researchers from diverse backgrounds to critique and improve the biological models, we discuss how cellPACK can be used as a framework to unify different types of data across all scales of biology. PMID:25253262
Few, C
1997-03-01
By examining the relationship between the cultural construction of female sexuality and the lack of potential for many young heterosexual women to be truly sexually healthy this paper submits that messages for women within HIV prevention programmes can be confused, confining and at times dangerous to women's health and well-being. It is suggested that these messages also reinforce a traditional, biologically determined medical understanding of female sexuality that does not take note of social or culturally based research or commentary on female experience or female desire, but rather confines many women to sexual restrictions, doing little to empower women to prevent sexual risk-taking. The ideological basis of the discussion within this paper is informed by the awareness that applications and understandings of 'sexuality' are diverse and contested within sex research traditions and will influence the choice of research concerns. The 'deterministic' explanation of sexuality that 'sexuality' (the abstract noun referring to the quality of being 'sexual', Williams 1983) is your fate or destiny and that biology causes the patterns of sexual life, is abandoned in this paper in favour of a search for a definition of sexuality which brings together a host of different biological and mental possibilities which are given meaning only in social relations. This allows for a framework for the study of sexuality that relates it to other social phenomena, particularly economic, political and social structures (Foucault 1979); in other words, a study of the 'social construction' of sexuality. This paper suggests that health care professionals need to develop an awareness of the diversities within female sexuality and gain insight into their own values and assumptions about female sexuality if these are not to inhibit effective approaches and interventions in the areas of HIV and sexual health.
Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study
de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina
2013-01-01
Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings. PMID:23569417
Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study.
de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina
2013-03-01
Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.
The diversity effect in diagnostic reasoning.
Rebitschek, Felix G; Krems, Josef F; Jahn, Georg
2016-07-01
Diagnostic reasoning draws on knowledge about effects and their potential causes. The causal-diversity effect in diagnostic reasoning normatively depends on the distribution of effects in causal structures, and thus, a psychological diversity effect could indicate whether causally structured knowledge is used in evaluating the probability of a diagnosis, if the effect were to covary with manipulations of causal structures. In four experiments, participants dealt with a quasi-medical scenario presenting symptom sets (effects) that consistently suggested a specified diagnosis (cause). The probability that the diagnosis was correct had to be rated for two opposed symptom sets that differed with regard to the symptoms' positions (proximal or diverse) in the causal structure that was initially acquired. The causal structure linking the diagnosis to the symptoms and the base rate of the diagnosis were manipulated to explore whether the diagnosis was rated as more probable for diverse than for proximal symptoms when alternative causations were more plausible (e.g., because of a lower base rate of the diagnosis in question). The results replicated the causal diversity effect in diagnostic reasoning across these conditions, but no consistent effects of structure and base rate variations were observed. Diversity effects computed in causal Bayesian networks are presented, illustrating the consequences of the structure manipulations and corroborating that a diversity effect across the different experimental manipulations is normatively justified. The observed diversity effects presumably resulted from shortcut reasoning about the possibilities of alternative causation.
The Condition of the Diverse Regions of Rural America at the Start of the Decade of the 1990s.
ERIC Educational Resources Information Center
Stephens, E. Robert
This paper constructs a profile of the condition of the diverse areas of rural America at the Beginning of the 1990s. The widely used designation of metropolitan or nonmetropolitan areas based on the metropolitan statistical area (MSA) does not describe the diverse nature of rural America. One alternative typology differentiates nonmetro counties…
Bagwell, Christopher E; Liu, Xuaduan; Wu, Liyou; Zhou, Jizhong
2006-03-01
The impact of legacy nuclear waste on the compositional diversity and distribution of sulfate-reducing bacteria in a heavily contaminated subsurface aquifer was examined. dsrAB clone libraries were constructed and restriction fragment length polymorphism (RFLP) analysis used to evaluate genetic variation between sampling wells. Principal component analysis identified nickel, nitrate, technetium, and organic carbon as the primary variables contributing to well-to-well geochemical variability, although comparative sequence analysis showed the sulfate-reducing bacteria community structure to be consistent throughout contaminated and uncontaminated regions of the aquifer. Only 3% of recovered dsrAB gene sequences showed apparent membership to the Deltaproteobacteria. The remainder of recovered sequences may represent novel, deep-branching lineages that, to our knowledge, do not presently contain any cultivated members; although corresponding phylotypes have recently been reported from several different marine ecosystems. These findings imply resiliency and adaptability of sulfate-reducing bacteria to extremes in environmental conditions, although the possibility for horizontal transfer of dsrAB is also discussed.
Challenges Facing Crop Production And (Some) Potential Solutions
NASA Astrophysics Data System (ADS)
Schnable, P. S.
2017-12-01
To overcome some of the myriad challenges facing sustainable crop production we are seeking to develop statistical models that will predict crop performance in diverse agronomic environments. Crop phenotypes such as yield and drought tolerance are controlled by genotype, environment (considered broadly) and their interaction (GxE). As a consequence of the next generation sequencing revolution genotyping data are now available for a wide diversity of accessions in each of the major crops. The necessary volumes of phenotypic data, however, remain limiting and our understanding of molecular basis of GxE is minimal. To address this limitation, we are collaborating with engineers to construct new sensors and robots to automatically collect large volumes of phenotypic data. Two types of high-throughput, high-resolution, field-based phenotyping systems and new sensors will be described. Some of these technologies will be introduced within the context of the Genomes to Fields Initiative. Progress towards developing predictive models will be briefly summarized. An administrative structure that fosters transdisciplinary collaborations will be briefly described.
Swan, Suzanne C.; Gambone, Laura J.; Van Horn, M. Lee; Snow, David L.; Sullivan, Tami P.
2013-01-01
Theories and measures of women’s aggression in intimate relationships are only beginning to be developed. This study provides a first step in conceptualizing the measurement of women’s aggression by examining how well three widely used measures perform in assessing women’s perpetration of and victimization by aggression in their intimate relationships with men (i.e., the Conflict Tactics Scales 2; Straus, Hamby, & Warren, 2003, the Sexual Experiences Survey; Koss, Gidycz, & Wisniewski, 1987, and the Psychological Maltreatment of Women Inventory; Tolman, 1999). These constructs were examined in a diverse sample of 412 African American, Latina, and White women who had all recently used physical aggression against a male intimate partner. The factor structures and psychometric properties of perpetration and victimization models using these measures were compared. Results indicate that the factor structure of women’s perpetration differs from that of women’s victimization in theoretically meaningful ways. In the victimization model, all factors performed well in contributing to the measurement of the latent victimization construct. In contrast, the perpetration model performed well in assessing women’s physical and psychological aggression, but performed poorly in assessing women’s sexual aggression, coercive control, and jealous monitoring. Findings suggest that the power and control model of intimate partner violence may apply well to women’s victimization, but not as well to their perpetration. PMID:23012348
Luiz, Amom Mendes; Sawaya, Ricardo J.
2018-01-01
Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of diversity patterns at different scales by spatially explicit models in order to improve our understanding of community structure and help to unravel the complex nature of biodiversity. PMID:29672575
14. DRAGLINE BEGINNING CONSTRUCTION OF THE BYPASS CHANNEL CONNECTING THE ...
14. DRAGLINE BEGINNING CONSTRUCTION OF THE BY-PASS CHANNEL CONNECTING THE DIVERSION GATE ALONG THE OUTLET CHANNEL WITH THE ORIGINAL CHANNEL OF THE SOURIS RIVER - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND
Maintaining Cultural Coherence in the Midst of Cultural Diversity.
ERIC Educational Resources Information Center
Raeff, Catherine
1997-01-01
Clarifies a reconceptualization of constructs of individualism, collectivism, independence, and interdependence which represents a departure from traditional conceptualization and a move away from understanding these constructs in dichotomous, stereotypical, and unidimensional terms. Discusses implications of this perspective for stereotyping…
Huynh, Que-Lam; Benet-Martínez, Verònica; Nguyen, Angela-MinhTu D
2018-06-14
Bicultural Identity Integration (BII) is an individual difference construct that captures variations in the experience of biculturalism. Using multiple samples in a series of steps, we refined BII measurement and then tested the construct in a diverse sample of bicultural individuals. Specifically, we wrote new BII items based on qualitative data ( n = 108), examined the quality of the new measure using subject-matter experts ( n = 23) and bicultural individuals ( n = 5), and then collected validation data from bicultural college students ( n = 1049). We used exploratory factor analyses to select items and explore BIIS-2 structure with a random subset of the larger sample ( n = 600), confirmatory factor analyses to show that the factor structure fit the data well ( n = 449), and multigroup confirmatory factor analyses to demonstrate measurement invariance in two ethnic and two generational groups. Results showed that the Bicultural Identity Integration Scale-Version 2 (BIIS-2) yielded reliable and stable scores. The data also revealed interesting and important patterns of associations with theoretically relevant constructs: personality, acculturation, and psychological well-being. Additionally, structural equation models confirmed that in general, personality and acculturation variables influence individuals' experiences with their dual cultural identities, which in turn influence adjustment, but there were interesting and important generational differences in how these variables were related. These findings lend support for the validity of BIIS-2 score interpretations; add to our understanding of the sociocultural, personality, and adjustment correlates of the bicultural experience; and have important implications for understanding the well-being of bicultural individuals. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
4. William Beardsley standing atop diversion dam. East cableway tower ...
4. William Beardsley standing atop diversion dam. East cableway tower and construction camp, Camp Dyer are visible in the foreground. Photographer James Dix Schuyler, 1903 Source: Schuyler report. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
Construction of a scFv Library with Synthetic, Non-combinatorial CDR Diversity.
Bai, Xuelian; Shim, Hyunbo
2017-01-01
Many large synthetic antibody libraries have been designed, constructed, and successfully generated high-quality antibodies suitable for various demanding applications. While synthetic antibody libraries have many advantages such as optimized framework sequences and a broader sequence landscape than natural antibodies, their sequence diversities typically are generated by random combinatorial synthetic processes which cause the incorporation of many undesired CDR sequences. Here, we describe the construction of a synthetic scFv library using oligonucleotide mixtures that contain predefined, non-combinatorially synthesized CDR sequences. Each CDR is first inserted to a master scFv framework sequence and the resulting single-CDR libraries are subjected to a round of proofread panning. The proofread CDR sequences are assembled to produce the final scFv library with six diversified CDRs.
Means, Mary M.; Ahn, Changwoo; Noe, Gregory
2017-01-01
The resilience of constructed wetland ecosystems to severe disturbance, such as a mass herbivory eat-out or soil disturbance, remains poorly understood. In this study, we use a controlled mesocosm experiment to examine how original planting diversity affects the ability of constructed freshwater wetlands to recover structurally and functionally after a disturbance (i.e., aboveground harvesting and soil coring). We assessed if the planting richness of macrophyte species influences recovery of constructed wetlands one year after a disturbance. Mesocosms were planted in richness groups with various combinations of either 1, 2, 3, or 4 species (RG 1–4) to create a gradient of richness. Structural wetland traits measured include morphological regrowth of macrophytes, soil bulk density, soil moisture, soil %C, and soil %N. Functional wetland traits measured include above ground biomass production, soil potential denitrification, and soil potential microbial respiration. Total mesocosm cover increased along the gradient of plant richness (43.5% in RG 1 to 84.5% in RG 4) in the growing season after the disturbance, although not all planted individuals recovered. This was largely attributed to the dominance of the obligate annual species. The morphology of each species was affected negatively by the disturbance, producing shorter, and fewer stems than in the years prior to the disturbance, suggesting that the communities had not fully recovered one year after the disturbance. Soil characteristics were almost uniform across the planting richness gradient, but for a few exceptions (%C, C:N, and non-growing season soil moisture were higher slightly in RG 2). Denitrification potential (DEA) increased with increasing planting richness and was influenced by the abundance and quality of soil C. Increased open space in unplanted mesocosms and mesocosms with lower species richness increased labile C, leading to higher C mineralization rates.
2014-01-01
Background Early feeding practices lay the foundation for children’s eating habits and weight gain. Questionnaires are available to assess parental feeding but overlapping and inconsistent items, subscales and terminology limit conceptual clarity and between study comparisons. Our aim was to consolidate a range of existing items into a parsimonious and conceptually robust questionnaire for assessing feeding practices with very young children (<3 years). Methods Data were from 462 mothers and children (age 21–27 months) from the NOURISH trial. Items from five questionnaires and two study-specific items were submitted to a priori item selection, allocation and verification, before theoretically-derived factors were tested using Confirmatory Factor Analysis. Construct validity of the new factors was examined by correlating these with child eating behaviours and weight. Results Following expert review 10 factors were specified. Of these, 9 factors (40 items) showed acceptable model fit and internal reliability (Cronbach’s α: 0.61-0.89). Four factors reflected non-responsive feeding practices: ‘Distrust in Appetite’, ‘Reward for Behaviour’, ‘Reward for Eating’, and ‘Persuasive Feeding’. Five factors reflected structure of the meal environment and limits: ‘Structured Meal Setting’, ‘Structured Meal Timing’, ‘Family Meal Setting’, ‘Overt Restriction’ and ‘Covert Restriction’. Feeding practices generally showed the expected pattern of associations with child eating behaviours but none with weight. Conclusion The Feeding Practices and Structure Questionnaire (FPSQ) provides a new reliable and valid measure of parental feeding practices, specifically maternal responsiveness to children’s hunger/satiety signals facilitated by routine and structure in feeding. Further validation in more diverse samples is required. PMID:24898364
30 CFR 75.1708-1 - Surface structures; fireproof construction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces. ...
Di Lellis, Maddalena A; Sereda, Sergej; Geißler, Anna; Picot, Adrien; Arnold, Petra; Lang, Stefanie; Troschinski, Sandra; Dieterich, Andreas; Hauffe, Torsten; Capowiez, Yvan; Mazzia, Christophe; Knigge, Thomas; Monsinjon, Tiphaine; Krais, Stefanie; Wilke, Thomas; Triebskorn, Rita; Köhler, Heinz-R
2014-11-01
The shell colour of many pulmonate land snail species is highly diverse. Besides a genetic basis, environmentally triggered epigenetic mechanisms including stress proteins as evolutionary capacitors are thought to influence such phenotypic diversity. In this study, we investigated the relationship of stress protein (Hsp70) levels with temperature stress tolerance, population structure and phenotypic diversity within and among different populations of a xerophilic Mediterranean snail species (Xeropicta derbentina). Hsp70 levels varied considerably among populations, and were significantly associated with shell colour diversity: individuals in populations exhibiting low diversity expressed higher Hsp70 levels both constitutively and under heat stress than those of phenotypically diverse populations. In contrast, population structure (cytochrome c oxidase subunit I gene) did not correlate with phenotypic diversity. However, genetic parameters (both within and among population differences) were able to explain variation in Hsp70 induction at elevated but non-pathologic temperatures. Our observation that (1) population structure had a high explanatory potential for Hsp70 induction and that (2) Hsp70 levels, in turn, correlated with phenotypic diversity while (3) population structure and phenotypic diversity failed to correlate provides empirical evidence for Hsp70 to act as a mediator between genotypic variation and phenotype and thus for chaperone-driven evolutionary capacitance in natural populations.
NASA Astrophysics Data System (ADS)
Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim
2017-12-01
This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.
Transdiagnostic dimensions of anxiety: Neural mechanisms, executive functions, and new directions.
Sharp, Paul B; Miller, Gregory A; Heller, Wendy
2015-11-01
Converging neuroscientific and psychological evidence points to several transdiagnostic factors that cut across DSM-defined disorders, which both affect and are affected by executive dysfunction. Two of these factors, anxious apprehension and anxious arousal, have helped bridge the gap between psychological and neurobiological models of anxiety. The present integration of diverse findings advances an understanding of the relationships between these transdiagnostic anxiety dimensions, their interactions with each other and executive function, and their neural mechanisms. Additionally, a discussion is provided concerning how these constructs fit within the Research Domain Criteria (RDoC) matrix developed by the National Institutes of Mental Health and how they relate to other anxiety constructs studied with different methods and at other units of analysis. Suggestions for future research are offered, including how to (1) improve measurement and delineation of these constructs, (2) use new neuroimaging methods and theoretical approaches of how the brain functions to build neural mechanistic models of these constructs, and (3) advance understanding of the relationships of these constructs to diverse emotional phenomena and executive functions. Copyright © 2015 Elsevier B.V. All rights reserved.
Service-Learning: A Catalyst for Constructing Democratic Progressive Communities.
ERIC Educational Resources Information Center
Varlotta, Lori E.
1996-01-01
Argues that higher education's traditional "closed" communities contrast sharply with democratic progressive ones that are more inclusive, empowering, and diverse. Drawing on feminism and postmodernism, demonstrates why service-learning is well suited to connect relational, experiential, and constructive epistemologies with democratic progressive…
Large Scale Survey Data in Career Development Research
ERIC Educational Resources Information Center
Diemer, Matthew A.
2008-01-01
Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…
Smith, Amos B.; Kim, Won-Suk
2011-01-01
In conjunction with the construction of a diversity-oriented synthesis library of 10-membered ring “natural product-like” macrolides, the design, synthesis, and validation of a unique class of bifunctional linchpins, uniting benzyne reactivity initiated by type II anion relay chemistry (ARC) has been achieved, permitting access to diverse [2+2], [3+2], and [4+2] cycloadducts. PMID:21245309
Automated web service composition supporting conditional branch structures
NASA Astrophysics Data System (ADS)
Wang, Pengwei; Ding, Zhijun; Jiang, Changjun; Zhou, Mengchu
2014-01-01
The creation of value-added services by automatic composition of existing ones is gaining a significant momentum as the potential silver bullet in service-oriented architecture. However, service composition faces two aspects of difficulties. First, users' needs present such characteristics as diversity, uncertainty and personalisation; second, the existing services run in a real-world environment that is highly complex and dynamically changing. These difficulties may cause the emergence of nondeterministic choices in the process of service composition, which has gone beyond what the existing automated service composition techniques can handle. According to most of the existing methods, the process model of composite service includes sequence constructs only. This article presents a method to introduce conditional branch structures into the process model of composite service when needed, in order to satisfy users' diverse and personalised needs and adapt to the dynamic changes of real-world environment. UML activity diagrams are used to represent dependencies in composite service. Two types of user preferences are considered in this article, which have been ignored by the previous work and a simple programming language style expression is adopted to describe them. Two different algorithms are presented to deal with different situations. A real-life case is provided to illustrate the proposed concepts and methods.
Revealing the global map of protein folding space by large-scale simulations
NASA Astrophysics Data System (ADS)
Sinner, Claude; Lutz, Benjamin; Verma, Abhinav; Schug, Alexander
2015-12-01
The full characterization of protein folding is a remarkable long-standing challenge both for experiment and simulation. Working towards a complete understanding of this process, one needs to cover the full diversity of existing folds and identify the general principles driving the process. Here, we want to understand and quantify the diversity in folding routes for a large and representative set of protein topologies covering the full range from all alpha helical topologies towards beta barrels guided by the key question: Does the majority of the observed routes contribute to the folding process or only a particular route? We identified a set of two-state folders among non-homologous proteins with a sequence length of 40-120 residues. For each of these proteins, we ran native-structure based simulations both with homogeneous and heterogeneous contact potentials. For each protein, we simulated dozens of folding transitions in continuous uninterrupted simulations and constructed a large database of kinetic parameters. We investigate folding routes by tracking the formation of tertiary structure interfaces and discuss whether a single specific route exists for a topology or if all routes are equiprobable. These results permit us to characterize the complete folding space for small proteins in terms of folding barrier ΔG‡, number of routes, and the route specificity RT.
Ning, Xin; Wang, Heling; Yu, Xinge; Soares, Julio A N T; Yan, Zheng; Nan, Kewang; Velarde, Gabriel; Xue, Yeguang; Sun, Rujie; Dong, Qiyi; Luan, Haiwen; Lee, Chan Mi; Chempakasseril, Aditya; Han, Mengdi; Wang, Yiqi; Li, Luming; Huang, Yonggang; Zhang, Yihui; Rogers, John
2017-04-11
Microelectromechanical systems remain an area of significant interest in fundamental and applied research due to their wide ranging applications. Most device designs, however, are largely two-dimensional and constrained to only a few simple geometries. Achieving tunable resonant frequencies or broad operational bandwidths requires complex components and/or fabrication processes. The work presented here reports unusual classes of three-dimensional (3D) micromechanical systems in the form of vibratory platforms assembled by controlled compressive buckling. Such 3D structures can be fabricated across a broad range of length scales and from various materials, including soft polymers, monocrystalline silicon, and their composites, resulting in a wide scope of achievable resonant frequencies and mechanical behaviors. Platforms designed with multistable mechanical responses and vibrationally de-coupled constituent elements offer improved bandwidth and frequency tunability. Furthermore, the resonant frequencies can be controlled through deformations of an underlying elastomeric substrate. Systematic experimental and computational studies include structures with diverse geometries, ranging from tables, cages, rings, ring-crosses, ring-disks, two-floor ribbons, flowers, umbrellas, triple-cantilever platforms, and asymmetric circular helices, to multilayer constructions. These ideas form the foundations for engineering designs that complement those supported by conventional, microelectromechanical systems, with capabilities that could be useful in systems for biosensing, energy harvesting and others.
Population structure of elephant foot yams (Amorphophallus paeoniifolius (Dennst.) Nicolson) in Asia
Misra, Raj Shekhar; Boonkorkaew, Patchareeya; Thanomchit, Kanokwan
2017-01-01
The corms and leaves of elephant foot yams (Amorphophallus paeoniifolius (Dennst.) Nicolson) are important foods in the local diet in many Asian regions. The crop has high productivity and wide agroecological adaptation and exhibits suitability for the agroforestry system. Although the plant is assumed to reproduce via panmixia, a comprehensive study on the genetic background across regions to enhance wider consumer palatability is still lacking. Here, ten informative microsatellites were analyzed in 29 populations across regions in India, Indonesia and Thailand to understand the genetic diversity, population structure and distribution to improve breeding and conservation programs. The genetic diversity was high among and within regions. Some populations exhibited excess heterozygosity and bottlenecking. Pairwise FST indicated very high genetic differentiation across regions (FST = 0.274), and the Asian population was unlikely to be panmictic. Phylogenetic tree construction grouped the populations according to country of origin with the exception of the Medan population from Indonesia. The current gene flow was apparent within the regions but was restricted among the regions. The present study revealed that Indonesia and Thailand populations could be alternative centers of the gene pool, together with India. Consequently, regional action should be incorporated in genetic conservation and breeding efforts to develop new varieties with global acceptance. PMID:28658282
Structure Diversity, Synthesis, and Biological Activity of Cyathane Diterpenoids in Higher Fungi.
Tang, Hao-Yu; Yin, Xia; Zhang, Cheng-Chen; Jia, Qian; Gao, Jin-Ming
2015-01-01
Cyathane diterpenoids, occurring exclusively in higher basidiomycete (mushrooms), represent a structurally diverse class of natural products based on a characteristic 5-6-7 tricyclic carbon scaffold, including 105 members reported to date. These compounds show a diverse range of biological activities, such as antimicrobial, anti-MRSA, agonistic toward the kappa-opioid receptor, antiinflammatory, anti-proliferative and nerve growth factor (NGF)-like properties. The present review focuses on the structure diversity, structure elucidation and biological studies of these compounds, including mechanisms of actions and structure-activity relationships (SARs). In addition, new progress in chemical synthesis of cyathane diterpenoids is discussed.
Rational design of reconfigurable prismatic architected materials.
Overvelde, Johannes T B; Weaver, James C; Hoberman, Chuck; Bertoldi, Katia
2017-01-18
Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.
Rational design of reconfigurable prismatic architected materials
NASA Astrophysics Data System (ADS)
Overvelde, Johannes T. B.; Weaver, James C.; Hoberman, Chuck; Bertoldi, Katia
2017-01-01
Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.
Biomimetric sentinel reef structures for optical sensing and communications
NASA Astrophysics Data System (ADS)
Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor
2017-05-01
Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.
Sequence, Structure, and Context Preferences of Human RNA Binding Proteins.
Dominguez, Daniel; Freese, Peter; Alexis, Maria S; Su, Amanda; Hochman, Myles; Palden, Tsultrim; Bazile, Cassandra; Lambert, Nicole J; Van Nostrand, Eric L; Pratt, Gabriel A; Yeo, Gene W; Graveley, Brenton R; Burge, Christopher B
2018-06-07
RNA binding proteins (RBPs) orchestrate the production, processing, and function of mRNAs. Here, we present the affinity landscapes of 78 human RBPs using an unbiased assay that determines the sequence, structure, and context preferences of these proteins in vitro by deep sequencing of bound RNAs. These data enable construction of "RNA maps" of RBP activity without requiring crosslinking-based assays. We found an unexpectedly low diversity of RNA motifs, implying frequent convergence of binding specificity toward a relatively small set of RNA motifs, many with low compositional complexity. Offsetting this trend, however, we observed extensive preferences for contextual features distinct from short linear RNA motifs, including spaced "bipartite" motifs, biased flanking nucleotide composition, and bias away from or toward RNA structure. Our results emphasize the importance of contextual features in RNA recognition, which likely enable targeting of distinct subsets of transcripts by different RBPs that recognize the same linear motif. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Conformal Robotic Stereolithography
Stevens, Adam G.; Oliver, C. Ryan; Kirchmeyer, Matthieu; Wu, Jieyuan; Chin, Lillian; Polsen, Erik S.; Archer, Chad; Boyle, Casey; Garber, Jenna
2016-01-01
Abstract Additive manufacturing by layerwise photopolymerization, commonly called stereolithography (SLA), is attractive due to its high resolution and diversity of materials chemistry. However, traditional SLA methods are restricted to planar substrates and planar layers that are perpendicular to a single-axis build direction. Here, we present a robotic system that is capable of maskless layerwise photopolymerization on curved surfaces, enabling production of large-area conformal patterns and the construction of conformal freeform objects. The system comprises an industrial six-axis robot and a custom-built maskless projector end effector. Use of the system involves creating a mesh representation of the freeform substrate, generation of a triangulated toolpath with curved layers that represents the target object to be printed, precision mounting of the substrate in the robot workspace, and robotic photopatterning of the target object by coordinated motion of the robot and substrate. We demonstrate printing of conformal photopatterns on spheres of various sizes, and construction of miniature three-dimensional objects on spheres without requiring support features. Improvement of the motion accuracy and development of freeform toolpaths would enable construction of polymer objects that surpass the size and support structure constraints imparted by traditional SLA systems. PMID:29577062
Chen, Jun; Ying, Guang-Guo; Liu, You-Sheng; Wei, Xiao-Dong; Liu, Shuang-Shuang; He, Liang-Ying; Yang, Yong-Qiang; Chen, Fan-Rong
2017-07-03
This study aims to investigate nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands (CWs) with different design parameters. Twelve mesocosm-scale CWs with four substrates and three hydraulic loading rates were set up in the outdoor. The result showed the CWs with zeolite as substrate and HLR of 20 cm/d were selected as the best choice for the TN and NH 3 -N removal. It was found that the single-stage mesocosm-scale CWs were incapable to achieve high removals of TN and NH 3 -N due to inefficient nitrification process in the systems. This was demonstrated by the lower abundance of the nitrification genes (AOA and AOB) than the denitrification genes (nirK and nirS), and the less diverse nitrification microorganisms than the denitrification microorganisms in the CWs. The results also show that microorganism community structure including nitrogen-cycle microorganisms in the constructed wetland systems was affected by the design parameters especially the substrate type. These findings show that nitrification is a limiting factor for the nitrogen removal by CWs.
Construction of Nanowire Heterojunctions: Photonic Function-Oriented Nanoarchitectonics.
Li, Yong Jun; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian
2016-02-10
Nanophotonics has received broad research interest because it may provide an alternative opportunity to overcome the fundamental limitations of electronic circuits. So far, diverse photonic functions, such as light generation, modulation, and detection, have been realized based on various nano-materials. The exact structural features of these material systems, including geometric characteristics, surface morphology, and material composition, play a key role in determining the photonic functions. Therefore, rational designs and constructions of materials on both morphological and componential levels, namely nanoarchitectonics, are indispensable for any photonic device with specific functionalities. Recently, a series of nanowire heterojunctions (NWHJs), which are usually made from two or more kinds of material compositions, were constructed for novel photonic applications based on various interactions between different materials at the junctions, for instance, energy transfer, exciton-plasmon coupling, or photon-plasmon coupling. A summary of these works is necessary to get a more comprehensive understanding of the relationship between photonic functions and architectonics of NWHJs, which will be instructive for designing novel photonic devices towards integrated circuits. Here, photonic function oriented nanoarchitectonics based on recent breakthroughs in nanophotonic devices are discussed, with emphasis on the design mechanisms, fabrication strategies, and excellent performances. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing
2017-10-01
Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.
Bazin, Pauline; Jouenne, Fabien; Friedl, Thomas; Deton-Cabanillas, Anne-Flore; Le Roy, Bertrand; Véron, Benoît
2014-01-01
Microscopical and molecular analyses were used to investigate the diversity and spatial community structure of spring phytoplankton all along the estuarine gradient in a macrotidal ecosystem, the Baie des Veys (eastern English Channel). Taxa distribution at high tide in the water column appeared to be mainly driven by the tidal force which superimposed on the natural salinity gradient, resulting in a two-layer flow within the channel. Lowest taxa richness and abundance were found in the bay where Teleaulax-like cryptophytes dominated. A shift in species composition occurred towards the mouth of the river, with the diatom Asterionellopsis glacialis dramatically accumulating in the bottom waters of the upstream brackish reach. Small thalassiosiroid diatoms dominated the upper layer river community, where taxa richness was higher. Through the construction of partial 18S rDNA clone libraries, the microeukaryotic diversity was further explored for three samples selected along the surface salinity gradient (freshwater - brackish - marine). Clone libraries revealed a high diversity among heterotrophic and/or small-sized protists which were undetected by microscopy. Among them, a rich variety of Chrysophyceae and other lineages (e.g. novel marine stramenopiles) are reported here for the first time in this transition area. However, conventional microscopy remains more efficient in revealing the high diversity of phototrophic taxa, low in abundances but morphologically distinct, that is overlooked by the molecular approach. The differences between microscopical and molecular analyses and their limitations are discussed here, pointing out the complementarities of both approaches, for a thorough phytoplankton community description. PMID:24718653
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, S.; Zhang, D.; Paukstelis, P. J.
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less
An intercalation-locked parallel-stranded DNA tetraplex
Tripathi, S.; Zhang, D.; Paukstelis, P. J.
2015-01-27
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less
The development of an annotated library of neutral human milk oligosaccharides
Wu, Shuai; Tao, Nannan; German, J. Bruce; Grimm, Rudolf; Lebrilla, Carlito B.
2010-01-01
Human milk oligosaccharides (HMOs)a perform a number of functions including serving as prebiotics to stimulate the growth of beneficial intestinal bacteria, as receptor analogs to inhibit binding of pathogens, and as substances that promote postnatal brain development. There is further evidence that HMOs participate in modulating the human immune system. Because the absorption, catabolism and biological function of oligosaccharides (OS) have strong correlations with their structures, structure elucidation is key to advancing this research. Oligosaccharides are produced by competing enzymes that provide the large structural diversity and heterogeneity that characterizes this class of compounds. Unlike the proteome, there is no template for oligosaccharides making it difficult to rapidly identify oligosaccharide structures. In this research, the annotation of the neutral free oligosaccharides in milk is performed to develop a database for the rapid identification of oligosaccharide structures. Our strategy incorporates high performance nanoflow liquid chromatography and mass spectrometry for characterizing HMO structures. HPLC-Chip/TOF MS provides a sensitive and quantitative method for sample profiling. The reproducible retention time and accurate mass can be used to rapidly identify the OS structures in HMO samples. A library with 45 neutral OS structures has been constructed. The structures include information regarding the epitopes such as Lewis type as well as information regarding the secretor status. PMID:20578730
Koshy, Anson J.; Watkins, Marley W.; Cassano, Michael C.; Wahlberg, Andrea C.; Mautone, Jennifer A.; Blum, Nathan J.
2013-01-01
Objective To evaluate the construct validity of the Behavioral Health Checklist (BHCL) for children aged from 4 to 12 years from diverse backgrounds. Method The parents of 4–12-year-old children completed the BHCL in urban and suburban primary care practices affiliated with a tertiary-care children’s hospital. Across practices, 1,702 were eligible and 1,406 (82.6%) provided consent. Children of participating parents were primarily non-Hispanic black/African American and white/Caucasian from low- to middle-income groups. Confirmatory factor analyses examined model fit for the total sample and subsamples defined by demographic characteristics. Results The findings supported the hypothesized 3-factor structure: Internalizing Problems, Externalizing Problems, and Inattention/Hyperactivity. The model demonstrated adequate to good fit across age-groups, gender, races, income groups, and suburban versus urban practices. Conclusion The findings provide strong evidence of the construct validity, developmental appropriateness, and cultural sensitivity of the BHCL when used for screening in primary care. PMID:23978505
Zhang, Xue-Jian; Wang, Xiao-Wei; Sun, Jiaxing; Su, Chao; Yang, Shuguang; Zhang, Wen-Bin
2018-05-16
Protein immobilization is critical to utilize their unique functions in diverse applications. Herein, we report that orthogonal peptide-protein chemistry enabled multilayer construction can facilitate the incorporation of various folded structural domains, including calmodulin in different states, affibody and dihydrofolate reductase (DHFR). An extended conformation is found to be the most advantageous for steady film growth. The resulting protein thin films exhibit sensitive and selective responsive behaviors to bio-signals (Ca2+, TFP, NADPH, etc.) and fully maintain the catalytic activity of DHFR. The approach is applicable to different substrates such as hydrophobic gold and hydrophilic silica microparticles. The DHFR enzyme can be immobilized onto silica microparticles with tunable amounts. The multi-layer set-up exhibits a synergistic enhancement of DHFR activity with increasing number of bilayers and also makes the embedded DHFR more resilient to lyophilization. Therefore, this is a convenient and versatile method for protein immobilization with potential benefits of synergistic enhancement in enzyme performance and resilience.
El Renacer de Maestras Bilingues: Actualizing Cultural Efficaciousness
ERIC Educational Resources Information Center
Garcia, Claudia Trevino
2016-01-01
This study focused attention on three constructs as they relate to bilingual education teachers' (BETs) dispositions working with culturally and linguistically diverse students (CLDS). The three constructs are sociocultural consciousness, affirming advocacy, and culturally responsive teaching. The quantitative data was collected via a Likert-based…
In Search of a Cosmopolitan Communicator: Codes of Multicultural Diversity Training.
ERIC Educational Resources Information Center
Sanchez, RosaBelia; Porter, W. Marc
Language is not to be considered neutral for it works to establish privileged interpretations of reality that assume the illusion of a shared and natural reality. This study examined how consultants specializing in multicultural organizational interventions construct a particular meaning of "diversity" in their responses to a…
Adolescent Spiritual Exemplars: Exploring Spirituality in the Lives of Diverse Youth
ERIC Educational Resources Information Center
King, Pamela Ebstyne; Clardy, Casey E.; Ramos, Jenel Sánchez
2014-01-01
This qualitative study aimed to develop theory about psychological constructs relevant to spiritual development in diverse adolescents. Exemplar and Consensual Qualitative Research methods were used to explore 30 interviews of adolescents aged 12 to 21 years ("M" = 17.73 years) representing eight religions and six countries from around…
Diversity and Equity in Educational Administration: Missing in Theory and in Action.
ERIC Educational Resources Information Center
Gosetti, Penny Poplin; Rusch, Edith A.
This paper argues that the texts, conversations, writings, and professional activities that construct our understanding of leadership come from an embedded, privileged perspective that has largely ignored issues of status, gender, and race. This perspective insidiously perpetuates a view of leadership that discourages diversity and equity. Two…
Towards Constructions of Musical Childhoods: Diversity and Digital Technologies
ERIC Educational Resources Information Center
Young, Susan
2009-01-01
The changing economic, social, cultural and technological circumstances in which children live impact significantly on the ways in which early childhood is both viewed and experienced. Understanding the implications, the potentials, the challenges that arise as a consequence of the diversity and technological changes that characterise contemporary…
On Epochal Mission of Multicultural Education in a Perspective of Globalization
ERIC Educational Resources Information Center
Chen, Shi-jian
2006-01-01
The development of modern societies accelerates the process of globalization, which in turn brings about a conspicuous diversity of cultures. Cultural difference and cultural diversity are characteristics of multiculturalism, which commits itself to the construction of favorable educational climates for multiple cultures. Such a progression has…
Mitochondrial DNA-based genetic diversity of genus Lygus (Hemiptera: Miridae) in North America
USDA-ARS?s Scientific Manuscript database
The genus Lygus is widely distributed in North American and Eurasian continents. It is the most-studied genus in the family Miridae. However, very less information on the genetic diversity of this genus is available. Studying genetic variation among Lygus pest species and thereby constructing a ...
The Global Experience of Deployment of Energy-Efficient Technologies in High-Rise Construction
NASA Astrophysics Data System (ADS)
Potienko, Natalia D.; Kuznetsova, Anna A.; Solyakova, Darya N.; Klyueva, Yulia E.
2018-03-01
The objective of this research is to examine issues related to the increasing importance of energy-efficient technologies in high-rise construction. The aim of the paper is to investigate modern approaches to building design that involve implementation of various energy-saving technologies in diverse climates and at different structural levels, including the levels of urban development, functionality, planning, construction and engineering. The research methodology is based on the comprehensive analysis of the advanced global expertise in the design and construction of energy-efficient high-rise buildings, with the examination of their positive and negative features. The research also defines the basic principles of energy-efficient architecture. Besides, it draws parallels between the climate characteristics of countries that lead in the field of energy-efficient high-rise construction, on the one hand, and the climate in Russia, on the other, which makes it possible to use the vast experience of many countries, wholly or partially. The paper also gives an analytical review of the results arrived at by implementing energy efficiency principles into high-rise architecture. The study findings determine the impact of energy-efficient technologies on high-rise architecture and planning solutions. In conclusion, the research states that, apart from aesthetic and compositional interpretation of architectural forms, an architect nowadays has to address the task of finding a synthesis between technological and architectural solutions, which requires knowledge of advanced technologies. The study findings reveal that the implementation of modern energy-efficient technologies into high-rise construction is of immediate interest and is sure to bring long-term benefits.
NASA Astrophysics Data System (ADS)
Mosepele, K.; Mosepele, B.; Bokhutlo, T.; Amutenya, K.
The species assemblage and community structure of four lagoons was assessed through time series data collected between 2001 and 2005 in the Okavango Delta. The main aim of this study was to evaluate the importance of lagoons as fish habitats in the Delta. Therefore, this study assessed the importance of these habitats through determining fish species diversity, composition, relative abundance, and community structure between the lagoons. Forty six species belonging to 11 families and five orders were collected over the study period. Main results showed that Cichlidae was the most important family and had the highest species richness in the lagoons. Significant differences ( p < 0.05) were observed in species richness, faunal composition, and diversity among some of the lagoons. Moreover, there were also variations in species composition, and also significant differences in mean length and weight of some selected fish species in the four lagoons. This study showed that lagoons are important repositories of food fish to local communities. Moreover, a management of the fish stocks based on restricting fishing in some lagoons as protected areas is not feasible because of these significant differences in species assemblages between lagoons. Furthermore, lagoons are subject to multiple where most of the lodges are constructed, which makes subsequently makes them vulnerable to pollution. Therefore, the integrity of lagoon habitats needs to be maintained so that their ecosystem functioning (i.e. fish repositories) is maintained.
NASA Astrophysics Data System (ADS)
Su, Zhongqing; Ye, Lin
2004-08-01
The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.
Cvetic, Mirjam; Klevers, Denis; Piragua, Hernan; ...
2015-11-30
We construct the general form of an F-theory compactification with two U(1) factors based on a general elliptically fibered Calabi-Yau manifold with Mordell-Weil group of rank two. This construction produces broad classes of models with diverse matter spectra, including many that are not realized in earlier F-theory constructions with U(1)×U(1) gauge symmetry. Generic U(1)×U(1) models can be related to a Higgsed non-Abelian model with gauge group SU(2)×SU(2)×SU(3), SU(2) 3×SU(3), or a subgroup thereof. The nonlocal horizontal divisors of the Mordell-Weil group are replaced with local vertical divisors associated with the Cartan generators of non-Abelian gauge groups from Kodaira singularities. Wemore » give a global resolution of codimension two singularities of the Abelian model; we identify the full anomaly free matter content, and match it to the unHiggsed non-Abelian model. The non-Abelian Weierstrass model exhibits a new algebraic description of the singularities in the fibration that results in the first explicit construction of matter in the symmetric representation of SU(3). This matter is realized on double point singularities of the discriminant locus. In conclusion, the construction suggests a generalization to U(1) k factors with k > 2, which can be studied by Higgsing theories with larger non-Abelian gauge groups.« less
Griotti, Mariana; Muñoz-Escobar, Christian; Ferretti, Nelson E
2017-08-01
The link between vegetation structure and spider diversity has been well explored in the literature. However, few studies have compared spider diversity and its response to vegetation at two conceptual levels: assemblage (species diversity) and ensemble (guild diversity). Because of this, we studied spider diversity in riparian and adjacent habitats of a river system from the Chacoan subregion in central Argentina and evaluated their linkage with vegetation structure at these two levels. To assess vegetation structure, we measured plant species richness and vegetation cover in the herb and shrub - tree layers. We collected spiders for over 6 months by using vacuum netting, sweep netting and pitfall traps. We collected 3,808 spiders belonging to 119 morphospecies, 24 families and 9 guilds. At spider assemblage level, SIMPROF analysis showed significant differences among studied habitats. At spider ensemble level, nevertheless, we found no significant differences among habitats. Concerning the linkage with vegetation structure, BIOENV test showed that spider diversity at either assemblage or ensemble level was not significantly correlated with the vegetation variables assessed. Our results indicated that spider diversity was not affected by vegetation structure. Hence, even though we found a pattern in spider assemblages among habitats, this could not be attributed to vegetation structure. In this study, we show that analyzing a community at two conceptual levels will be useful for recognizing different responses of spider communities to vegetation structure in diverse habitat types. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Qiang, Haiping; Chen, Zhihong; Zhang, Zhengli; Wang, Xuemin; Gao, Hongwen; Wang, Zan
2015-01-01
Information on genetic diversity and population structure of a tetraploid alfalfa collection might be valuable in effective use of the genetic resources. A set of 336 worldwide genotypes of tetraploid alfalfa (Medicago sativa subsp. sativa L.) was genotyped using 85 genome-wide distributed SSR markers to reveal the genetic diversity and population structure in the alfalfa. Genetic diversity analysis identified a total of 1056 alleles across 85 marker loci. The average expected heterozygosity and polymorphism information content values were 0.677 and 0.638, respectively, showing high levels of genetic diversity in the cultivated tetraploid alfalfa germplasm. Comparison of genetic characteristics across chromosomes indicated regions of chromosomes 2 and 3 had the highest genetic diversity. A higher genetic diversity was detected in alfalfa landraces than that of wild materials and cultivars. Two populations were identified by the model-based population structure, principal coordinate and neighbor-joining analyses, corresponding to China and other parts of the world. However, lack of strictly correlation between clustering and geographic origins suggested extensive germplasm exchanges of alfalfa germplasm across diverse geographic regions. The quantitative analysis of the genetic diversity and population structure in this study could be useful for genetic and genomic analysis and utilization of the genetic variation in alfalfa breeding.
Drury, Crawford; Schopmeyer, Stephanie; Goergen, Elizabeth; Bartels, Erich; Nedimyer, Ken; Johnson, Meaghan; Maxwell, Kerry; Galvan, Victor; Manfrino, Carrie; Lirman, Diego
2017-08-01
Threatened Caribbean coral communities can benefit from high-resolution genetic data used to inform management and conservation action. We use Genotyping by Sequencing (GBS) to investigate genetic patterns in the threatened coral, Acropora cervicornis , across the Florida Reef Tract (FRT) and the western Caribbean. Results show extensive population structure at regional scales and resolve previously unknown structure within the FRT. Different regions also exhibit up to threefold differences in genetic diversity (He), suggesting targeted management based on the goals and resources of each population is needed. Patterns of genetic diversity have a strong spatial component, and our results show Broward and the Lower Keys are among the most diverse populations in Florida. The genetic diversity of Caribbean staghorn coral is concentrated within populations and within individual reefs (AMOVA), highlighting the complex mosaic of population structure. This variance structure is similar over regional and local scales, which suggests that in situ nurseries are adequately capturing natural patterns of diversity, representing a resource that can replicate the average diversity of wild assemblages, serving to increase intraspecific diversity and potentially leading to improved biodiversity and ecosystem function. Results presented here can be translated into specific goals for the recovery of A. cervicornis , including active focus on low diversity areas, protection of high diversity and connectivity, and practical thresholds for responsible restoration.
Lee, Poh Soo; Eckert, Hagen; Hess, Ricarda; Gelinsky, Michael; Rancourt, Derrick; Krawetz, Roman; Cuniberti, Gianaurelio; Scharnweber, Dieter
2017-05-01
Skeletal development is a multistep process that involves the complex interplay of multiple cell types at different stages of development. Besides biochemical and physical cues, oxygen tension also plays a pivotal role in influencing cell fate during skeletal development. At physiological conditions, bone cells generally reside in a relatively oxygenated environment whereas chondrocytes reside in a hypoxic environment. However, it is technically challenging to achieve such defined, yet diverse oxygen distribution on traditional in vitro cultivation platforms. Instead, engineered osteochondral constructs are commonly cultivated in a homogeneous, stable environment. In this study, we describe a customized perfusion bioreactor having stable positional variability in oxygen tension at defined regions. Further, engineered collagen constructs were coaxed into adopting the shape and dimensions of defined cultivation platforms that were precasted in 1.5% agarose bedding. After cultivating murine embryonic stem cells that were embedded in collagen constructs for 50 days, mineralized constructs of specific dimensions and a stable structural integrity were achieved. The end-products, specifically constructs cultivated without chondroitin sulfate A (CSA), showed a significant increase in mechanical stiffness compared with their initial gel-like constructs. More importantly, the localization of osteochondral cell types was specific and corresponded to the oxygen tension gradient generated in the bioreactor. In addition, CSA in complementary with low oxygen tension was also found to be a potent inducer of chondrogenesis in this system. In summary, we have demonstrated a customized perfusion bioreactor prototype that is capable of generating a more dynamic, yet specific cultivation environment that could support propagation of multiple osteochondral lineages within a single engineered construct in vitro. Our system opens up new possibilities for in vitro research on human skeletal development.
Iterative Refinement of a Binding Pocket Model: Active Computational Steering of Lead Optimization
2012-01-01
Computational approaches for binding affinity prediction are most frequently demonstrated through cross-validation within a series of molecules or through performance shown on a blinded test set. Here, we show how such a system performs in an iterative, temporal lead optimization exercise. A series of gyrase inhibitors with known synthetic order formed the set of molecules that could be selected for “synthesis.” Beginning with a small number of molecules, based only on structures and activities, a model was constructed. Compound selection was done computationally, each time making five selections based on confident predictions of high activity and five selections based on a quantitative measure of three-dimensional structural novelty. Compound selection was followed by model refinement using the new data. Iterative computational candidate selection produced rapid improvements in selected compound activity, and incorporation of explicitly novel compounds uncovered much more diverse active inhibitors than strategies lacking active novelty selection. PMID:23046104
Jamison, Christopher R; Badillo, Joseph J; Lipshultz, Jeffrey M; Comito, Robert J; MacMillan, David W C
2017-12-01
In nature, many organisms generate large families of natural product metabolites that have related molecular structures as a means to increase functional diversity and gain an evolutionary advantage against competing systems within the same environment. One pathway commonly employed by living systems to generate these large classes of structurally related families is oligomerization, wherein a series of enzymatically catalysed reactions is employed to generate secondary metabolites by iteratively appending monomers to a growing serial oligomer chain. The polypyrroloindolines are an interesting class of oligomeric natural products that consist of multiple cyclotryptamine subunits. Herein we describe an iterative application of asymmetric copper catalysis towards the synthesis of six distinct oligomeric polypyrroloindoline natural products: hodgkinsine, hodgkinsine B, idiospermuline, quadrigemine H and isopsychotridine B and C. Given the customizable nature of the small-molecule catalysts employed, we demonstrate that this strategy is further amenable to the construction of quadrigemine H-type alkaloids not isolated previously from natural sources.
Tunable plasmon lensing in graphene-based structure exhibiting negative refraction.
Zhong, Shifeng; Lu, Yanxin; Li, Chao; Xu, Haixia; Shi, Fenghua; Chen, Yihang
2017-02-02
We propose a novel method to achieve tunable plasmon focusing in graphene/photonic-crystal hybrid structure exhibiting all-angle negative refraction at terahertz frequencies. A two-dimensional photonic crystal composed of a square lattice of dielectric rods is constructed on the substrate of a graphene sheet to provide the hyperbolic dispersion relations of the graphene plasmon, giving rise to the all-angle plasmonic negative refraction. Plasmon lensing induced from the negative refraction is observed. We show that the ultracompact graphene-based system can produce sub-diffraction-limited images with the resolution significant smaller than the wavelength of the incident terahertz wave. Moreover, by adjusting the Fermi energy of the graphene, the imaging performance of the proposed system can remain almost invariant for different frequencies. Our results may find applications in diverse fields such as subwavelength spatial light manipulation, biological imaging, and so forth.
Tunable plasmon lensing in graphene-based structure exhibiting negative refraction
Zhong, Shifeng; Lu, Yanxin; Li, Chao; Xu, Haixia; Shi, Fenghua; Chen, Yihang
2017-01-01
We propose a novel method to achieve tunable plasmon focusing in graphene/photonic-crystal hybrid structure exhibiting all-angle negative refraction at terahertz frequencies. A two-dimensional photonic crystal composed of a square lattice of dielectric rods is constructed on the substrate of a graphene sheet to provide the hyperbolic dispersion relations of the graphene plasmon, giving rise to the all-angle plasmonic negative refraction. Plasmon lensing induced from the negative refraction is observed. We show that the ultracompact graphene-based system can produce sub-diffraction-limited images with the resolution significant smaller than the wavelength of the incident terahertz wave. Moreover, by adjusting the Fermi energy of the graphene, the imaging performance of the proposed system can remain almost invariant for different frequencies. Our results may find applications in diverse fields such as subwavelength spatial light manipulation, biological imaging, and so forth. PMID:28150750
NASA Astrophysics Data System (ADS)
Jamison, Christopher R.; Badillo, Joseph J.; Lipshultz, Jeffrey M.; Comito, Robert J.; MacMillan, David W. C.
2017-12-01
In nature, many organisms generate large families of natural product metabolites that have related molecular structures as a means to increase functional diversity and gain an evolutionary advantage against competing systems within the same environment. One pathway commonly employed by living systems to generate these large classes of structurally related families is oligomerization, wherein a series of enzymatically catalysed reactions is employed to generate secondary metabolites by iteratively appending monomers to a growing serial oligomer chain. The polypyrroloindolines are an interesting class of oligomeric natural products that consist of multiple cyclotryptamine subunits. Herein we describe an iterative application of asymmetric copper catalysis towards the synthesis of six distinct oligomeric polypyrroloindoline natural products: hodgkinsine, hodgkinsine B, idiospermuline, quadrigemine H and isopsychotridine B and C. Given the customizable nature of the small-molecule catalysts employed, we demonstrate that this strategy is further amenable to the construction of quadrigemine H-type alkaloids not isolated previously from natural sources.
Movement Advocacy, Personal Relationships, and Ending Health Care Disparities
Chin, Marshall H.
2017-01-01
Deep-rooted structural problems drive health care disparities. Compounding the difficulty of attaining health equity, solutions in clinics and hospitals require the cooperation of clinicians, administrators, patients, and the community. Recent protests over police brutality and racism on campuses across America have opened fresh wounds over how best to end racism, with lessons for achieving health equity. Movement advocacy, the mobilizing of the people to raise awareness of an injustice and to advocate for reform, can break down ingrained structural barriers and policies that impede health equity. However, simultaneously advocates, clinicians, and health care organizations must build trusting relationships and resolve conflict with mutual respect and honesty. Tension is inherent in discussions about racial and ethnic disparities. Yet, tension can be constructive if it forces self-examination and spurs systems change and personal growth. We must simultaneously advocate for policy reform, build personal relationships across diverse groups, and honestly examine our biases. PMID:28259213
Theoretical model to explain the problem-solving process in physics
NASA Astrophysics Data System (ADS)
Lopez, Carlos
2011-03-01
This work reports a theoretical model developed with the aim to explain the mental mechanisms of knowledge building during the problem-solving process in physics using a hybrid approach of assimilation- formation of concepts. The model has been termed conceptual chains and represents graphic diagrams of conceptual dependency, which have yielded information about the background knowledge required during the learning process, as well as about the formation of diverse structures that correspond to distinct forms of networking concepts Additionally, the conceptual constructs of the model have been classified according to five types of knowledge. Evidence was found about the influence of these structures, as well as of the distinct types of knowledge about the degree of difficulty of the problems. I want to be grateful to Laureate International Universities, Baltimore M.D., USA, for the financing granted for the accomplishment of this work.
South African Adolescents' Constructions of Intimacy in Romantic Relationships
ERIC Educational Resources Information Center
Lesch, Elmien; Furphy, Claire
2013-01-01
Localized understandings of adolescent romantic relationships are needed to expand our knowledge of the diversity of adolescent romantic experiences and to challenge negative discourses of adolescent heterosexual relationships. This study explored the constructions of intimacy of 20 adolescent men and women in romantic relationships from one…
Theorising Inner-City Masculinities: "Race," Class, Gender and Education.
ERIC Educational Resources Information Center
Archer, Louise; Yamashita, Hiromi
2003-01-01
Discusses how to theorize diverse, working-class male students' masculinities within an inner-city, multicultural context. Data from discussions with boys at one inner-city London school are used to illustrate the boys' complex constructions of culturally entangled masculinities. Examines boys' constructions of "bad boy" masculinities…
Focal Event, Contextualization, and Effective Communication in the Mathematics Classroom
ERIC Educational Resources Information Center
Nilsson, Per; Ryve, Andreas
2010-01-01
The aim of this article is to develop analytical tools for studying mathematical communication in collaborative activities. The theoretical construct of contextualization is elaborated methodologically in order to study diversity in individual thinking in relation to effective communication. The construct of contextualization highlights issues of…
Virtual Control Policy for Binary Ordered Resources Petri Net Class.
Rovetto, Carlos A; Concepción, Tomás J; Cano, Elia Esther
2016-08-18
Prevention and avoidance of deadlocks in sensor networks that use the wormhole routing algorithm is an active research domain. There are diverse control policies that will address this problem being our approach a new method. In this paper we present a virtual control policy for the new specialized Petri net subclass called Binary Ordered Resources Petri Net (BORPN). Essentially, it is an ordinary class constructed from various state machines that share unitary resources in a complex form, which allows branching and joining of processes. The reduced structure of this new class gives advantages that allow analysis of the entire system's behavior, which is a prohibitive task for large systems because of the complexity and routing algorithms.
Local structure preserving sparse coding for infrared target recognition
Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa
2017-01-01
Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824
Vandevijvere, Stefanie; Williams, Rachel; Tawfiq, Essa; Swinburn, Boyd
2017-11-14
This study developed a systems-based approach (called FoodBack) to empower citizens and change agents to create healthier community food places. Formative evaluations were held with citizens and change agents in six diverse New Zealand communities, supplemented by semi-structured interviews with 85 change agents in Auckland and Hamilton in 2015-2016. The emerging system was additionally reviewed by public health experts from diverse organizations. A food environments feedback system was constructed to crowdsource key indicators of the healthiness of diverse community food places (i.e. schools, hospitals, supermarkets, fast food outlets, sport centers) and outdoor spaces (i.e. around schools), comments/pictures about barriers and facilitators to healthy eating and exemplar stories on improving the healthiness of food environments. All the information collected is centrally processed and translated into 'short' (immediate) and 'long' (after analyses) feedback loops to stimulate actions to create healthier food places. FoodBack, as a comprehensive food environment feedback system (with evidence databases and feedback and recognition processes), has the potential to increase food sovereignty, and generate a sustainable, fine-grained database of food environments for real-time food policy research. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lepère, Cécile; Domaizon, Isabelle; Debroas, Didier
2008-01-01
The diversity of small eukaryotes (0.2 to 5 μm) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types. PMID:18359836
Lepère, Cécile; Domaizon, Isabelle; Debroas, Didier
2008-05-01
The diversity of small eukaryotes (0.2 to 5 mum) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types.
How low can you go? Impacts of a low-flow disturbance on aquatic insect communities.
Walters, Annika W; Post, David M
2011-01-01
The natural hydrology of streams and rivers is being extensively modified by human activities. Water diversion, dam construction, and climate change have the potential to increase the frequency and intensity of low-flow events. Flow is a dominant force structuring stream aquatic insect communities, but the impacts of water diversion are poorly understood. Here we report results of an experimental stream flow diversion designed to test how aquatic insect communities respond to a low-flow disturbance. We diverted 40% to 80% of the water in three replicate streams for three summers, leading to summer flow exceedance probabilities of up to 99.9%. Shifts in habitat availability appeared to be a major driver of aquatic insect community responses. Responses also varied by habitat type: total insect density decreased in riffle habitats, but there was no change in pool habitats. Overall, the total biomass of aquatic insects decreased sharply with lowered flow. Collector-filterers, collector-gatherers, and scrapers were especially susceptible, while predatory insects were more resistant. Despite extremely low flow levels, there was no shift in aquatic insect family richness. The experimental water withdrawal did not increase water temperature or decrease water quality, and some wetted habitat was always maintained, which likely prevented more severe impacts on aquatic insect communities.
GIS, modeling, and politics: on the tensions of collaborative decision support.
Ramsey, Kevin
2009-05-01
A tension exists at the heart of efforts to support collaboration with GIS. Many scholars and practitioners seek to support two separate objectives: (1) problem solving and (2) the exploration of diverse problem understandings. GIS applications designed for problem solving often pre-define the problem space by structuring the kind of information that can be considered or the way in which the problem is conceptualized. In doing so, they necessarily privilege particular perspectives and understandings of the problem while marginalizing others. As a result, these initiatives undermine their second objective. This is problematic in the context of contentious environmental decisions which have broad-reaching impacts on people with diverse perspectives and interests. In such contexts, I argue that equitable collaboration is impossible without first emphasizing the exploration of diverse problem understandings. I support this argument theoretically by turning to the literatures on collaborative planning and spatial decision support, and empirically in my analysis of a case study of an effort to construct a GIS for supporting collaborative water resource management in rural Idaho. Reflecting upon the case, I provide a set of recommendations to those seeking to better negotiate the tensions of supporting collaboration with GIS in the context of contentious environmental and natural resource decisions.
Concept mapping-An effective method for identifying diversity and congruity in cognitive style.
Stoyanov, Slavi; Jablokow, Kathryn; Rosas, Scott R; Wopereis, Iwan G J H; Kirschner, Paul A
2017-02-01
This paper investigates the effects of cognitive style for decision making on the behaviour of participants in different phases of the group concept mapping process (GCM). It is argued that cognitive style should be included directly in the coordination of the GCM process and not simply considered as yet another demographic variable. The cognitive styles were identified using the Kirton Adaption-Innovation Inventory, which locates each person's style on a continuum ranging from very adaptive to very innovative. Cognitive style could explain diversity in the participants' behaviour in different phases of the GCM process. At the same time, the concept map as a group's common cognitive construct can consolidate individual differences and serves as a tool for managing diversity in groups of participants. Some of the results were that: (a) the more adaptive participants generated ideas that fit to a particular, well-established and consensually agreed paradigm, frame of reference, theory or practice; (b) the more innovative participants produced ideas that were more general in scope and required changing a settled structure (paradigm, frame of reference, theory or practice); and (c) the empirical comparison of the map configurations through Procrustes analysis indicated a strong dissimilarity between cognitive styles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xiao, Yong; Yang, Zhao-hui; Zeng, Guang-ming; Ma, Yan-he; Liu, You-sheng; Wang, Rong-juan; Xu, Zheng-yong
2007-05-01
For studying the bacterial diversity and the mechanism of denitrification in sequencing bath biofilm reactor (SBBR) treating landfill leachate to provide microbial evidence for technique improvements, total microbial DNA was extracted from samples which were collected from natural landfill leachate and biofilm of a SBBR that could efficiently remove NH4+ -N and COD of high concentration. 16S rDNA fragments were amplified from the total DNA successfully using a pair of universal bacterial 16S rDNA primer, GC341F and 907R, and then were used for denaturing gradient gel electrophoresis (DGGE) analysis. The bands in the gel were analyzed by statistical methods and excided from the gel for sequencing, and the sequences were used for homology analysis and then two phylogenetic trees were constructed using DNAStar software. Results indicated that the bacterial diversity of the biofilm in SBBR and the landfill leachate was abundant, and no obvious change of community structure happened during running in the biofilm, in which most bacteria came from the landfill leachate. There may be three different modes of denitrification in the reactor because several different nitrifying bacteria, denitrifying bacteria and anaerobic ammonia oxidation bacteria coexisted in it. The results provided some valuable references for studying microbiological mechanism of denitrification in SBBR.
The Genus Cladophora Kützing (Ulvophyceae) as a Globally Distributed Ecological Engineer.
Zulkifly, Shahrizim B; Graham, James M; Young, Erica B; Mayer, Robert J; Piotrowski, Michael J; Smith, Izak; Graham, Linda E
2013-02-01
The green algal genus Cladophora forms conspicuous nearshore populations in marine and freshwaters worldwide, commonly dominating peri-phyton communities. As the result of human activities, including the nutrient pollution of nearshore waters, Cladophora-dominated periphyton can form nuisance blooms. On the other hand, Cladophora has ecological functions that are beneficial, but less well appreciated. For example, Cladophora has previously been characterized as an ecological engineer because its complex structure fosters functional and taxonomic diversity of benthic microfauna. Here, we review classic and recent literature concerning taxonomy, cell biology, morphology, reproductive biology, and ecology of the genus Cladophora, to examine how this alga functions to modify habitats and influence littoral biogeochemistry. We review the evidence that Cladophora supports large, diverse populations of microalgal and bacterial epiphytes that influence the cycling of carbon and other key elements, and that the high production of cellulose and hydrocarbons by Cladophora-dominated periphyton has the potential for diverse technological applications, including wastewater remediation coupled to renewable biofuel production. We postulate that well-known aspects of Cladophora morphology, hydrodynamically stable and perennial holdfasts, distinctively branched architecture, unusually large cell and sporangial size and robust cell wall construction, are major factors contributing to the multiple roles of this organism as an ecological engineer. © 2013 Phycological Society of America.
Emerging Ecosystems Change the Spatial Distribution of Top Carnivores Even in Poorly Populated Areas
Barbar, Facundo; Werenkraut, Victoria; Morales, Juan Manuel; Lambertucci, Sergio Agustín
2015-01-01
Humans affect biological diversity and species distribution patterns by modifying resource availability and generating novel environments where generalist species benefit and specialist species are rare. In particular, cities create local homogenization while roads fragment habitat, although both processes can increase food availability for some species that may be able to take advantage of this new source. We studied space use by birds of prey in relation to human construction, hypothesizing that these birds would be affected even in poorly populated areas. We worked in Northwestern Patagonia, Argentina, which is experiencing a high population growth, but still having very large unpopulated areas. We related the presence of raptors with different sources of human disturbance and found that both the abundance and richness of these birds were positively associated with anthropogenic environments. These results are driven mostly by a strong association between the medium-sized generalist species and these novel environments (mainly roads and cities). This may create an imbalance in intra-guild competitive abilities, modifying the normal structures of top carnivore hierarchies. Indeed, the structure of raptor communities seems to be changing, even in poorly populated areas, with anthropogenic constructions seemingly producing changes in wild areas more promptly than thought, a cause for concern in ecosystems conservation issues. PMID:25799547
Dunaj, Sara J; Vallino, Joseph J; Hines, Mark E; Gay, Marcus; Kobyljanec, Christine; Rooney-Varga, Juliette N
2012-02-07
Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful renewable resource: soil organic carbon. We analyzed bacterial community structure, MFC performance, and soil characteristics in different microhabitats within MFCs constructed from agricultural or forest soils in order to determine how soil type and bacterial dynamics influence MFC performance. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs. Bacterial community profile data indicate that the bacterial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These results suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic bacterial communities, while the quality of available organic matter may have played a significant role in supporting high performing bacterial communities.
Alkamid database: Chemistry, occurrence and functionality of plant N-alkylamides.
Boonen, Jente; Bronselaer, Antoon; Nielandt, Joachim; Veryser, Lieselotte; De Tré, Guy; De Spiegeleer, Bart
2012-08-01
N-Alkylamides (NAAs) are a promising group of bioactive compounds, which are anticipated to act as important lead compounds for plant protection and biocidal products, functional food, cosmeceuticals and drugs in the next decennia. These molecules, currently found in more than 25 plant families and with a wide structural diversity, exert a variety of biological-pharmacological effects and are of high ethnopharmacological importance. However, information is scattered in literature, with different, often unstandardized, pharmacological methodologies being used. Therefore, a comprehensive NAA database (acronym: Alkamid) was constructed to collect the available structural and functional NAA data, linked to their occurrence in plants (family, tribe, species, genus). For loading information in the database, literature data was gathered over the period 1950-2010, by using several search engines. In order to represent the collected information about NAAs, the plants in which they occur and the functionalities for which they have been examined, a relational database is constructed and implemented on a MySQL back-end. The database is supported by describing the NAA plant-, functional- and chemical-space. The chemical space includes a NAA classification, according to their fatty acid and amine structures. The Alkamid database (publicly available on the website http://alkamid.ugent.be/) is not only a central information point, but can also function as a useful tool to prioritize the NAA choice in the evaluation of their functionality, to perform data mining leading to quantitative structure-property relationships (QSPRs), functionality comparisons, clustering, plant biochemistry and taxonomic evaluations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats
NASA Astrophysics Data System (ADS)
Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.
2015-12-01
The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate that some coral species are crucial in maintaining the structural diversity of coral reefs.
Self-assembly of hierarchically ordered structures in DNA nanotube systems
NASA Astrophysics Data System (ADS)
Glaser, Martin; Schnauß, Jörg; Tschirner, Teresa; Schmidt, B. U. Sebastian; Moebius-Winkler, Maximilian; Käs, Josef A.; Smith, David M.
2016-05-01
The self-assembly of molecular and macromolecular building blocks into organized patterns is a complex process found in diverse systems over a wide range of size and time scales. The formation of star- or aster-like configurations, for example, is a common characteristic in solutions of polymers or other molecules containing multi-scaled, hierarchical assembly processes. This is a recurring phenomenon in numerous pattern-forming systems ranging from cellular constructs to solutions of ferromagnetic colloids or synthetic plastics. To date, however, it has not been possible to systematically parameterize structural properties of the constituent components in order to study their influence on assembled states. Here, we circumvent this limitation by using DNA nanotubes with programmable mechanical properties as our basic building blocks. A small set of DNA oligonucleotides can be chosen to hybridize into micron-length DNA nanotubes with a well-defined circumference and stiffness. The self-assembly of these nanotubes to hierarchically ordered structures is driven by depletion forces caused by the presence of polyethylene glycol. This trait allowed us to investigate self-assembly effects while maintaining a complete decoupling of density, self-association or bundling strength, and stiffness of the nanotubes. Our findings show diverse ranges of emerging structures including heterogeneous networks, aster-like structures, and densely bundled needle-like structures, which compare to configurations found in many other systems. These show a strong dependence not only on concentration and bundling strength, but also on the underlying mechanical properties of the nanotubes. Similar network architectures to those caused by depletion forces in the low-density regime are obtained when an alternative hybridization-based bundling mechanism is employed to induce self-assembly in an isotropic network of pre-formed DNA nanotubes. This emphasizes the universal effect inevitable attractive forces in crowded environments have on systems of self-assembling soft matter, which should be considered for macromolecular structures applied in crowded systems such as cells.
Royston, Léna; Essaidi-Laziosi, Manel; Piuz, Isabelle; Geiser, Johan; Huang, Song; Kaiser, Laurent; Garcin, Dominique
2018-01-01
Despite their genetic similarities, enteric and respiratory enteroviruses (EVs) have highly heterogeneous biophysical properties and cause a vast diversity of human pathologies. In vitro differences include acid sensitivity, optimal growth temperature and tissue tropism, which reflect a preferential in vivo replication in the respiratory or gastrointestinal tract and are thus key determinants of EV virulence. To investigate the underlying cause of these differences, we generated chimeras at the capsid-level between EV-D68 (a respiratory EV) and EV-D94 (an enteric EV). Although some chimeras were nonfunctional, EV-D94 with both the capsid and 2A protease or the capsid only of EV-D68 were both viable. Using this latter construct, we performed several functional assays, which indicated that capsid proteins determine acid sensitivity and tropism in cell lines and in respiratory, intestinal and neural tissues. Additionally, capsid genes were shown to also participate in determining the optimal growth temperature, since EV-D94 temperature adaptation relied on single mutations in VP1, while constructs with EV-D68 capsid could not adapt to higher temperatures. Finally, we demonstrate that EV-D68 maintains residual binding-capacity after acid-treatment despite a loss of infectivity. In contrast, non-structural rather than capsid proteins modulate the innate immune response in tissues. These unique biophysical insights expose another layer in the phenotypic diversity of one of world’s most prevalent pathogens and could aid target selection for vaccine or antiviral development. PMID:29630666
Raine, Rosalind; Cartwright, Martin; Richens, Yana; Mahamed, Zuhura; Smith, Debbie
2010-07-01
To identify key features of communication across antenatal (prenatal) care that are evaluated positively or negatively by service users. Focus groups and semi-structured interviews were used to explore communication experiences of thirty pregnant women from diverse social and ethnic backgrounds affiliated to a large London hospital. Data were analysed using thematic analysis. Women reported a wide diversity of experiences. From the users' perspective, constructive communication on the part of health care providers was characterised by an empathic conversational style, openness to questions, allowing sufficient time to talk through any concerns, and pro-active contact by providers (e.g. text message appointment reminders). These features created reassurance, facilitated information exchange, improved appointment attendance and fostered tolerance in stressful situations. Salient features of poor communication were a lack of information provision, especially about the overall arrangement and the purpose of antenatal care, insufficient discussion about possible problems with the pregnancy and discourteous styles of interaction. Poor communication led some women to become assertive to address their needs; others became reluctant to actively engage with providers. General Practitioners need to be better integrated into antenatal care, more information should be provided about the pattern and purpose of the care women receive during pregnancy, and new technologies should be used to facilitate interactions between women and their healthcare providers. Providers require communications training to encourage empathic interactions that promote constructive provider-user relationships and encourage women to engage effectively and access the care they need.
Clustering behavior in microbial communities from acute endodontic infections.
Montagner, Francisco; Jacinto, Rogério C; Signoretti, Fernanda G C; Sanches, Paula F; Gomes, Brenda P F A
2012-02-01
Acute endodontic infections harbor heterogeneous microbial communities in both the root canal (RC) system and apical tissues. Data comparing the microbial structure and diversity in endodontic infections in related ecosystems, such as RC with necrotic pulp and acute apical abscess (AAA), are scarce in the literature. The aim of this study was to examine the presence of selected endodontic pathogens in paired samples from necrotic RC and AAA using polymerase chain reaction (PCR) followed by the construction of cluster profiles. Paired samples of RC and AAA exudates were collected from 20 subjects and analyzed by PCR for the presence of selected strict and facultative anaerobic strains. The frequency of species was compared between the RC and the AAA samples. A stringent neighboring clustering algorithm was applied to investigate the existence of similar high-order groups of samples. A dendrogram was constructed to show the arrangement of the sample groups produced by the hierarchical clustering. All samples harbored bacterial DNA. Porphyromonas endodontalis, Prevotella nigrescens, Filifactor alocis, and Tannerela forsythia were frequently detected in both RC and AAA samples. The selected anaerobic species were distributed in diverse small bacteria consortia. The samples of RC and AAA that presented at least one of the targeted microorganisms were grouped in small clusters. Anaerobic species were frequently detected in acute endodontic infections and heterogeneous microbial communities with low clustering behavior were observed in paired samples of RC and AAA. Copyright © 2012. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Xing, Peiqi; Li, Qingyun; Li, Yingying; Wang, Kunpeng; Zhang, Qi; Wang, Lei
2017-05-01
By using solvent evaporation method, 2,4,6-triaminopyrimidine (TAPI) is employed to crystallize with a variety of acids, including 3,5-dihydroxybenzoic acid (HDHBA), 3-nitrophthalic acid (H2NPA), 5-amino-2,4,6-triiodoisophthalic acid (H2ATIPIA), 2,5-dibromoterephthalic acid (H2DBTPA), 1,5-naphthalenedisulfonic acid (H2NDSA), sebacic acid (H2SA), 1,2,4-benzenetricarboxylic acid (H3BTA), and biphenyl-2,2‧,5,5'-tetracarboxylic acid (H4BPTA). In all eight complexes, protons are completely exchanged from O atom of acid to nitrogen of TAPI in 1, 3, 4, and, 5, partly transferred in 2, 6, 7, and 8. The crystal structure of all eight complexes exhibit that classical robust hydrogen bonds X-H⋯X (X = O/N) direct the molecular crystals to bind together in a stacking modes. Classical hydrogen bond Nsbnd H⋯O is participated in forming all eight organic salts, while hydrogen bonding Osbnd H⋯O are found in constructing the diversity structures in salts 1, 2, 3, 4, 6, and 7. The analysis shows that some classical supramolecular synthons, such as I R22(8), V R24(12), and VI S(6), are observed again in the construction of hydrogen-bonding networks. In the formation of layered and reticular structure, strong hydrogen bonds between water molecules and ligands having well-refined hydrogen atoms have been considered. Water molecules play an important role in building supramolecular structures of 1, 2, 3, 4, 7, and 8. Moreover, salts 1-8 are further characterized and analyzed by element analysis, infrared radiation, thermogravimetric analysis, proton nuclear magnetic resonance spectra, and mass spectra.
Pisapia, Céline; Gérard, Emmanuelle; Gérard, Martine; Lecourt, Léna; Lang, Susan Q.; Pelletier, Bernard; Payri, Claude E.; Monnin, Christophe; Guentas, Linda; Postec, Anne; Quéméneur, Marianne; Erauso, Gaël; Ménez, Bénédicte
2017-01-01
Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H2 and CH4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica, are identified as the first chimneys inhabitants before archaeal Methanosarcinales. They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that the Firmicutes identified at PHF may have a versatile metabolism with the capability to use diverse organic compounds from biological or abiotic origin. From that perspective, this study sheds new light on the structure of deep microbial communities living at the energetic edge in serpentinites and may provide an alternative model of the earliest metabolisms. PMID:28197130
Pisapia, Céline; Gérard, Emmanuelle; Gérard, Martine; Lecourt, Léna; Lang, Susan Q; Pelletier, Bernard; Payri, Claude E; Monnin, Christophe; Guentas, Linda; Postec, Anne; Quéméneur, Marianne; Erauso, Gaël; Ménez, Bénédicte
2017-01-01
Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H 2 and CH 4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica , are identified as the first chimneys inhabitants before archaeal Methanosarcinales . They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that the Firmicutes identified at PHF may have a versatile metabolism with the capability to use diverse organic compounds from biological or abiotic origin. From that perspective, this study sheds new light on the structure of deep microbial communities living at the energetic edge in serpentinites and may provide an alternative model of the earliest metabolisms.
Measuring Community Connectedness among Diverse Sexual Minority Populations
Frost, David M.; Meyer, Ilan H.
2011-01-01
Theory and research agree that connectedness to the lesbian, gay, bisexual, and transgender (LGBT) community is an important construct to account for in understanding issues related to health and well-being among gay and bisexual men. However, the measurement of this construct among lesbian and bisexual women or racial/ethnic minority individuals has not yet been adequately investigated. This study examined the reliability and validity of an existing measure of Connectedness to the LGBT Community among a diverse group of sexual minority individuals in New York City and whether differences in connectedness existed across gender and race/ethnicity. Scores on the measure demonstrated both internal consistency and construct stability across subgroups defined by gender and race/ethnicity. The subgroups did not differ in their mean levels of connectedness and scores on the measure demonstrated factorial, convergent, and discriminate validity both generally and within each of the subgroups. Inconsistencies were observed with regard to which scores on the measure demonstrated predictive validity in their associations with indicators of mental health and well-being. The scale is a useful tool for researchers and practitioners interested in understanding the role of community connectedness in the lives of diverse populations of sexual minority individuals. PMID:21512945
Neria-González, Isabel; Wang, En Tao; Ramírez, Florina; Romero, Juan M; Hernández-Rodríguez, César
2006-06-01
Microbial communities associated to biofilms promote corrosion of oil pipelines. The community structure of bacteria in the biofilm formed in oil pipelines is the basic knowledge to understand the complexity and mechanisms of metal corrosion. To assess bacterial diversity, biofilm samples were obtained from X52 steel coupons corroded after 40 days of exposure to normal operation and flow conditions. The biofilm samples were directly used to extract metagenomic DNA, which was used as template to amplify 16S ribosomal gene by PCR. The PCR products of 16S ribosomal gene were also employed as template for sulfate-reducing bacteria (SRB) specific nested-PCR and both PCR products were utilized for the construction of gene libraries. The V3 region of the 16S rRNA gene was also amplified to analyse the bacterial diversity by analysis of denaturing gradient gel electrophoresis (DGGE). Ribosomal library and DGGE profiles exhibited limited bacterial diversity, basically including Citrobacter spp., Enterobacter spp. and Halanaerobium spp. while Desulfovibrio alaskensis and a novel clade within the genus Desulfonatronovibrio were detected from the nested PCR library. The biofilm samples were also taken for the isolation of SRB. Desulfovibrio alaskensis and Desulfovibrio capillatus, as well as some strains related to Citrobacter were isolated. SRB consists in a very small proportion of the community and Desulfovibrio spp. were the relatively abundant groups among the SRB. This is the first study directly exploring bacterial diversity in corrosive biofilms associated to steel pipelines subjected to normal operation conditions.
NASA Astrophysics Data System (ADS)
Ockelford, A.; Crabbe, E.; Crowe Curran, J.; Parsons, D. R.; Shugar, D. H.; Burr, A.; Kennedy, K.; Coe, T.
2017-12-01
Wood jams are an important and ubiquitous feature of many river channels with their number, placement and spatial configuration determining their influence on channel morphology and flow characteristics. Further, engineered log jams are increasingly being constructed to develop, restore or maintain habitat diversity for key indicator specie such as salmon. However, questions remain as to the inter relationships between the logjams, the channel morphology, the flow characteristics and the habitat diversity under low flow conditions. Four engineered and one natural logjam were analyzed over a 3km reach of the South Fork Nooksack River, North Cascades National Park, USA during the summer low flow period. Non-intrusive three-dimensional topographic surveys of the river bed morphology surrounding the logjams was collected using a shallow water multibeam system. This was combined with terrestrial laser scans of the structure of the log jams above the waterline. Co-located high resolution flow velocity data was collected using an Acoustic Doppler Current Profiler. Discussion concentrates on providing a quantitative understanding of the effect of logjams on reach scale morphodynamics under low flow conditions. Multivariate statistical analysis of flow and topographic data in combination with log jam morphology allow the influences of the logjam on habitat suitability for key indicator species to be quantified. Results will be framed in terms of the effectiveness of the different logjam configurations on generating and promoting habitat diversity such as to aid future design and implementation.
Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing
NASA Astrophysics Data System (ADS)
Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki
2016-06-01
Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.
Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing.
Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A; Ferreira, Placid M; Kim, Seok; Min, Bumki
2016-06-10
Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.
Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing
Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki
2016-01-01
Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities. PMID:27283594
Balaguer, Luís; Arroyo-García, Rosa; Jiménez, Percy; Jiménez, María Dolores; Villegas, Luís; Cordero, Irene; Rubio de Casas, Rafael; Fernández-Delgado, Raúl; Ron, María Eugenia; Manrique, Esteban; Vargas, Pablo; Cano, Emilio; Pueyo, José J.; Aronson, James
2011-01-01
Background In the Peruvian Coastal Desert, an archipelago of fog oases, locally called lomas, are centers of biodiversity and of past human activity. Fog interception by a tree canopy, dominated by the legume tree tara (Caesalpinia spinosa), enables the occurrence in the Atiquipa lomas (southern Peru) of an environmental island with a diverse flora and high productivity. Although this forest provides essential services to the local population, it has suffered 90% anthropogenic reduction in area. Restoration efforts are now getting under way, including discussion as to the most appropriate reference ecosystem to use. Methodology/Principal Findings Genetic diversity of tara was studied in the Atiquipa population and over a wide geographical and ecological range. Neither exclusive plastid haplotypes to loma formations nor clear geographical structuring of the genetic diversity was found. Photosynthetic performance and growth of seedlings naturally recruited in remnant patches of loma forest were compared with those of seedlings recruited or planted in the adjacent deforested area. Despite the greater water and nitrogen availability under tree canopy, growth of forest seedlings did not differ from that of those recruited into the deforested area, and was lower than that of planted seedlings. Tara seedlings exhibited tight stomatal control of photosynthesis, and a structural photoprotection by leaflet closure. These drought-avoiding mechanisms did not optimize seedling performance under the conditions produced by forest interception of fog moisture. Conclusions/Significance Both weak geographic partitioning of genetic variation and lack of physiological specialization of seedlings to the forest water regime strongly suggest that tara was introduced to lomas by humans. Therefore, the most diverse fragment of lomas is the result of landscape management and resource use by pre-Columbian cultures. We argue that an appropriate reference ecosystem for ecological restoration of lomas should include sustainable agroforestry practices that emulate the outcomes of ancient uses. PMID:21829680
El Bakkali, Ahmed; Haouane, Hicham; Moukhli, Abdelmajid; Costes, Evelyne; Van Damme, Patrick; Khadari, Bouchaib
2013-01-01
Phenotypic characterisation of germplasm collections is a decisive step towards association mapping analyses, but it is particularly expensive and tedious for woody perennial plant species. Characterisation could be more efficient if focused on a reasonably sized subset of accessions, or so-called core collection (CC), reflecting the geographic origin and variability of the germplasm. The questions that arise concern the sample size to use and genetic parameters that should be optimized in a core collection to make it suitable for association mapping. Here we investigated these questions in olive (Olea europaea L.), a perennial fruit species. By testing different sampling methods and sizes in a worldwide olive germplasm bank (OWGB Marrakech, Morocco) containing 502 unique genotypes characterized by nuclear and plastid loci, a two-step sampling method was proposed. The Shannon-Weaver diversity index was found to be the best criterion to be maximized in the first step using the Core Hunter program. A primary core collection of 50 entries (CC50) was defined that captured more than 80% of the diversity. This latter was subsequently used as a kernel with the Mstrat program to capture the remaining diversity. 200 core collections of 94 entries (CC94) were thus built for flexibility in the choice of varieties to be studied. Most entries of both core collections (CC50 and CC94) were revealed to be unrelated due to the low kinship coefficient, whereas a genetic structure spanning the eastern and western/central Mediterranean regions was noted. Linkage disequilibrium was observed in CC94 which was mainly explained by a genetic structure effect as noted for OWGB Marrakech. Since they reflect the geographic origin and diversity of olive germplasm and are of reasonable size, both core collections will be of major interest to develop long-term association studies and thus enhance genomic selection in olive species. PMID:23667437
Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions
Riquelme, Cristina; Marshall Hathaway, Jennifer J.; Enes Dapkevicius, Maria de L. N.; Miller, Ana Z.; Kooser, Ara; Northup, Diana E.; Jurado, Valme; Fernandez, Octavio; Saiz-Jimenez, Cesareo; Cheeptham, Naowarat
2015-01-01
Volcanic caves are filled with colorful microbial mats on the walls and ceilings. These volcanic caves are found worldwide, and studies are finding vast bacteria diversity within these caves. One group of bacteria that can be abundant in volcanic caves, as well as other caves, is Actinobacteria. As Actinobacteria are valued for their ability to produce a variety of secondary metabolites, rare and novel Actinobacteria are being sought in underexplored environments. The abundance of novel Actinobacteria in volcanic caves makes this environment an excellent location to study these bacteria. Scanning electron microscopy (SEM) from several volcanic caves worldwide revealed diversity in the morphologies present. Spores, coccoid, and filamentous cells, many with hair-like or knobby extensions, were some of the microbial structures observed within the microbial mat samples. In addition, the SEM study pointed out that these features figure prominently in both constructive and destructive mineral processes. To further investigate this diversity, we conducted both Sanger sequencing and 454 pyrosequencing of the Actinobacteria in volcanic caves from four locations, two islands in the Azores, Portugal, and Hawai'i and New Mexico, USA. This comparison represents one of the largest sequencing efforts of Actinobacteria in volcanic caves to date. The diversity was shown to be dominated by Actinomycetales, but also included several newly described orders, such as Euzebyales, and Gaiellales. Sixty-two percent of the clones from the four locations shared less than 97% similarity to known sequences, and nearly 71% of the clones were singletons, supporting the commonly held belief that volcanic caves are an untapped resource for novel and rare Actinobacteria. The amplicon libraries depicted a wider view of the microbial diversity in Azorean volcanic caves revealing three additional orders, Rubrobacterales, Solirubrobacterales, and Coriobacteriales. Studies of microbial ecology in volcanic caves are still very limited. To rectify this deficiency, the results from our study help fill in the gaps in our knowledge of actinobacterial diversity and their potential roles in the volcanic cave ecosystems. PMID:26696966
López-Vallejo, Fabian; Nefzi, Adel; Bender, Andreas; Owen, John R.; Nabney, Ian T.; Houghten, Richard A.; Medina-Franco, Jose L.
2011-01-01
Combinatorial libraries continue to play a key role in drug discovery. To increase structural diversity, several experimental methods have been developed. However, limited efforts have been performed so far to quantify the diversity of the broadly used diversity-oriented synthetic (DOS) libraries. Herein we report a comprehensive characterization of 15 bis-diazacyclic combinatorial libraries obtained through libraries from libraries, which is a DOS approach. Using MACCS keys, radial and different pharmacophoric fingerprints as well as six molecular properties, it was demonstrated the increased structural and property diversity of the libraries from libraries over the individual libraries. Comparison of the libraries to existing drugs, NCI Diversity and the Molecular Libraries Small Molecule Repository revealed the structural uniqueness of the combinatorial libraries (mean similarity < 0.5 for any fingerprint representation). In particular, bis-cyclic thiourea libraries were the most structurally dissimilar to drugs retaining drug-like character in property space. This study represents the first comprehensive quantification of the diversity of libraries from libraries providing a solid quantitative approach to compare and contrast the diversity of DOS libraries with existing drugs or any other compound collection. PMID:21294850
Storybridging: Four Steps for Constructing Effective Health Narratives
ERIC Educational Resources Information Center
Boeijinga, Anniek; Hoeken, Hans; Sanders, José
2017-01-01
Objective: To develop a practical step-by-step approach to constructing narrative health interventions in response to the mixed results and wide diversity of narratives used in health-related narrative persuasion research. Method: Development work was guided by essential narrative characteristics as well as principles enshrined in the Health…
ERIC Educational Resources Information Center
Wodak, Ruth
2012-01-01
How are identities constructed in discourse? How are national and European identities tied to language and communication? And what role does power have--power in discourse, over discourse and of discourse? This paper seeks to identify and analyse processes of identity construction within Europe and at its boundaries, particularly the diversity of…
Narrative Construction of Professional Teacher Identity of Teachers with Dyslexia
ERIC Educational Resources Information Center
Burns, Eila; Bell, Sheena
2011-01-01
This paper considers the development of teachers' professional identity in the context of educators that have diverse backgrounds. We elucidate how teachers with dyslexia working in tertiary education use narrative resources to construct and negotiate their professional teacher identities. The analysis of narrative interviews, interpreted within…
Social Harmony and Diversity: The Affordances and Constraints of Harmony as an Educational Goal
ERIC Educational Resources Information Center
Ho, Li-Ching
2017-01-01
Background/Context: There is a pressing need to consider how citizens should live together, especially in societies that are increasingly ethnically and politically diverse. Even though multicultural education is constructed very differently and serves very different purposes in different national contexts, relatively little attention has been…
ERIC Educational Resources Information Center
Hutchison, Charles B.
2006-01-01
Knowledge is created in the crucible of culture, and is mediated by the nature of nature. In the teaching of diverse students, teachers need to understand the process by which cultural paradigms, juxtaposed to the process of knowledge construction, may potentially create multiple realities for different students. When teaching diverse students,…
ERIC Educational Resources Information Center
Fittz, Mia Web
2015-01-01
This study utilized the Survey of Community College Faculty (SCCF), a combined survey of the Multicultural Teaching Scale (MTS) and Pluralism and Diversity Attitude Assessment (PADAA) that framed the research. The MTS assessed self-reported cultural competencies categorized into five dimensions: (a) Content Integration, (b) Knowledge Construction,…
The Experiential Learning Cycle in Undergraduate Diversity and Social Justice Education
ERIC Educational Resources Information Center
Pugh, Greg L.
2014-01-01
Teaching for diversity and social justice is the teaching of complex abstract ideas about privilege and oppression, such as the social construction of social groups and identity. An effective way to teach this material is with experiential learning, but this approach requires much more than exercises and activities. Courses must be consciously…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
... incidental take permits for United's construction, operations, and maintenance of water management facilities... maintenance of the Freeman Diversion; diversion of water from the Santa Clara River; vegetation management... current and future water management activities. United intends to request a 50-year permit covering five...
Linguistic Moments: Language, Teaching, and Teacher Education in the U.S.
ERIC Educational Resources Information Center
Brandon, LaVada; Baszile, Denise Marie Taliaferro; Berry, Theodora Regina
2009-01-01
Many diversity courses that prepare pre-service teachers do not address the significance or the impact of language barriers on linguistically diverse learners. Often time, new and veteran teachers construct their bilingual and/or bidialectical students as others and are unaware of how to use their students' social, cultural, and political…
ERIC Educational Resources Information Center
Rubin, Beth C.
2007-01-01
Qualitative research describing and theorizing about the emerging civic identities of diverse youth is scarce. This study provides a textured view of how civic identity is constructed and negotiated by racially and socioeconomically diverse adolescents, based on interviews and in-class discussions conducted with students in four public secondary…
ERIC Educational Resources Information Center
Larson, Lincoln R.; Green, Gary T.; Castleberry, Steven B.
2011-01-01
An understanding of children's environmental orientations is of critical importance as opportunities for authentic contact with nature diminish. Current instruments for measuring children's environmental attitudes are complex, and few have been tested across diverse audiences. This study employed a mixed-methods approach that included pilot tests,…
Teaching Asian America: Diversity and the Problem of Community.
ERIC Educational Resources Information Center
Hirabayashi, Lane Ryo, Ed.
This collection of essays examines the wide range of approaches and emphases within the teaching of Asian American Studies (AAS), offering constructive insights into the tensions between diversity and community and into the different dimensions of AAS. After an introduction by L. R. Hirabayashi, the anthology is divided into two parts. Part 1,…
The Call To Pay Attention to Family Diversity: Constructing a Response.
ERIC Educational Resources Information Center
Wallat, Cynthia; Steele, Carolyn I.
The objective of this paper is two-fold. First, to address continued criticism of a general lack of attention to diverse aspects of family development due to continued reliance on traditional ways of assessing and conceptualizing family interaction. Second, to address recent recommendations to educate professionals who are capable of promoting…
Briones-Salas, Miguel; Lavariega, Mario C; Moreno, Claudia E
2017-01-01
Wind energy has rapidly become an important alternative among renewable energies, and it is generally considered clean. However, little is known about its impact at the level of ecological communities, especially in biodiversity hotspots. The Isthmus of Tehuantepec is a highly biodiverse region in Mesoamerica, and has the highest potential for generating wind energy in Mexico. To assess the effects of installing a wind farm on the understory bat community in a landscape of fragmented habitat, we assessed its diversity and composition over four stages of installation (site preparation, construction, and two stages of operation). We captured 919 bats belonging to 22 species. Species richness, functional diversity and phylogenetic diversity decreased during construction and the first stage of operation. However, these components of biodiversity increased during the second stage of operation, and species composition began to resemble that of the site preparation stage. No species considered as sensitive to disturbance was recorded at any stage. This is the first study to reveal the diversity of a Neotropical bat community after wind turbines begin to operate.
Lavariega, Mario C.; Moreno, Claudia E.
2017-01-01
Wind energy has rapidly become an important alternative among renewable energies, and it is generally considered clean. However, little is known about its impact at the level of ecological communities, especially in biodiversity hotspots. The Isthmus of Tehuantepec is a highly biodiverse region in Mesoamerica, and has the highest potential for generating wind energy in Mexico. To assess the effects of installing a wind farm on the understory bat community in a landscape of fragmented habitat, we assessed its diversity and composition over four stages of installation (site preparation, construction, and two stages of operation). We captured 919 bats belonging to 22 species. Species richness, functional diversity and phylogenetic diversity decreased during construction and the first stage of operation. However, these components of biodiversity increased during the second stage of operation, and species composition began to resemble that of the site preparation stage. No species considered as sensitive to disturbance was recorded at any stage. This is the first study to reveal the diversity of a Neotropical bat community after wind turbines begin to operate. PMID:28630802
Ha, Ji-Eun; Yang, Seung-Ju; Gong, Young-Dae
2018-02-12
An efficient solid-phase synthetic route for the construction of 1,3,4-oxadiazole and 1,3,4-thiadiazole libraries based on branching diversity-oriented synthesis (DOS) has been developed in this study. The core skeleton resins, 1,3,4-oxadiazole and 1,3,4-thiadiazole, were obtained through desulfurative and dehydrative cyclizations of thiosemicarbazide resin, respectively. Various functional groups have been introduced to the core skeleton resins, such as aryl, amine, amide, urea, thiourea, and an amino acid. Most of the libraries were purified by simple trituration without extraction or column chromatography after cleavage of the products from the solid-supported resin. As a result, we obtained high yields of pure 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives (total numbers = 128). Finally, we confirmed the drug-like properties of our library by calculation of physicochemical properties, displays of the skeletal diversities of the library in 3D-space, and occupation of a broad range of areas by their functional groups.
Diverse power iteration embeddings: Theory and practice
Huang, Hao; Yoo, Shinjae; Yu, Dantong; ...
2015-11-09
Manifold learning, especially spectral embedding, is known as one of the most effective learning approaches on high dimensional data, but for real-world applications it raises a serious computational burden in constructing spectral embeddings for large datasets. To overcome this computational complexity, we propose a novel efficient embedding construction, Diverse Power Iteration Embedding (DPIE). DPIE shows almost the same effectiveness of spectral embeddings and yet is three order of magnitude faster than spectral embeddings computed from eigen-decomposition. Our DPIE is unique in that (1) it finds linearly independent embeddings and thus shows diverse aspects of dataset; (2) the proposed regularized DPIEmore » is effective if we need many embeddings; (3) we show how to efficiently orthogonalize DPIE if one needs; and (4) Diverse Power Iteration Value (DPIV) provides the importance of each DPIE like an eigen value. As a result, such various aspects of DPIE and DPIV ensure that our algorithm is easy to apply to various applications, and we also show the effectiveness and efficiency of DPIE on clustering, anomaly detection, and feature selection as our case studies.« less
Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity
Bryant, Jessica A.; Lamanna, Christine; Morlon, Hélène; Kerkhoff, Andrew J.; Enquist, Brian J.; Green, Jessica L.
2008-01-01
The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely related taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly related taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic comparisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ. PMID:18695215
Qiang, Haiping; Chen, Zhihong; Zhang, Zhengli; Wang, Xuemin; Gao, Hongwen; Wang, Zan
2015-01-01
Information on genetic diversity and population structure of a tetraploid alfalfa collection might be valuable in effective use of the genetic resources. A set of 336 worldwide genotypes of tetraploid alfalfa (Medicago sativa subsp. sativa L.) was genotyped using 85 genome-wide distributed SSR markers to reveal the genetic diversity and population structure in the alfalfa. Genetic diversity analysis identified a total of 1056 alleles across 85 marker loci. The average expected heterozygosity and polymorphism information content values were 0.677 and 0.638, respectively, showing high levels of genetic diversity in the cultivated tetraploid alfalfa germplasm. Comparison of genetic characteristics across chromosomes indicated regions of chromosomes 2 and 3 had the highest genetic diversity. A higher genetic diversity was detected in alfalfa landraces than that of wild materials and cultivars. Two populations were identified by the model-based population structure, principal coordinate and neighbor-joining analyses, corresponding to China and other parts of the world. However, lack of strictly correlation between clustering and geographic origins suggested extensive germplasm exchanges of alfalfa germplasm across diverse geographic regions. The quantitative analysis of the genetic diversity and population structure in this study could be useful for genetic and genomic analysis and utilization of the genetic variation in alfalfa breeding. PMID:25901573
Cui, Baoshan; Zhao, Shuqing; Zhang, Kejiang; Li, Shaocai; Dong, Shikui; Bai, Junhong
2009-11-01
The disturbance of highway construction upon surrounding vulnerable ecosystems is a common threat in the Longitudinal Range Gorge Region of southwestern China. We evaluated the disturbance of highway on plant species richness and diversity and soil nutrients from adjacent to the highway to 300 m upslope and 100 m downslope in forests and grasslands by setting 12 belt transects in forests and grasslands (six belt transects and six control belt transects, respectively). The results showed that there were some significant variances in belt transects with respective control belt transects for species richness and diversity in both forests and grasslands. Species richness and diversity of trees were lower within a 50-m distance from the highway and more noticeable on the downslope portion. Species richness and diversity of shrubs and herbs appeared higher near highway edge. Both species richness and diversity of herbs were similar in forests. In addition, exotic species, such as Eupatorium adenophorum, were further from the road and more widely dispersed in grasslands. Soil nutrients except total potassium (TK) were lower in the downslope area adjacent to highway edge and showed a significant increase with increasing distance from the highway in both forests and grasslands. This indicates that grasslands acted as microhabitats for exotic species and are more easily to be invaded than forests, especially if disturbed. Once destroyed, plant species and soil nutrients will require a significant amount of time to be restored to control levels. This work illustrates that the effects extend considerably to distances upslope and downslope from the construction site. Given that these changes occurred relatively quickly, the study suggests that the environmental "footprint" grows far beyond the road and adjacent zone of disruption.
Ecological structure and function in a restored versus natural salt marsh
Rezek, Ryan J.; Lebreton, Benoit; Sterba-Boatwright, Blair
2017-01-01
Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions. PMID:29261795
Ecological structure and function in a restored versus natural salt marsh.
Rezek, Ryan J; Lebreton, Benoit; Sterba-Boatwright, Blair; Beseres Pollack, Jennifer
2017-01-01
Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions.
Koelling, V A; Hamrick, J L; Mauricio, R
2011-01-01
Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (He=0.229 and 0.183, respectively) and high genetic structure among their populations (FST=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, He for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations. PMID:20485327
Shift in the microbial community composition of surface water and sediment along an urban river.
Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu
2018-06-15
Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P < 0.05). The bacterial diversity in sediments was significantly higher than their corresponding water samples. Additionally, archaeal communities showed obvious spatial variability in the surface water. The construction of the hydropower station resulted in increased Cyanobacteria abundance in the upstream (32.2%) compared to its downstream (10.3%). Several taxonomic groups of potential fecal indicator bacteria, like Flavobacteria and Bacteroidia, showed an increasing trend in the urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P < 0.01) and NO 3 - (P < 0.05), and metals (Zn, Fe) (P < 0.05) were the most significant drivers determining the microbial community composition in the urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.
Castro, Yessenia; Correa-Fernández, Virmarie; Cano, Miguel Á; Mazas, Carlos; Gonzalez, Karla; Vidrine, Damon J; Vidrine, Jennifer I; Wetter, David W
2014-09-01
Research in smoking is hindered by a lack of validated measures available in languages other than English. Availability of measures in languages other than English is vital to the inclusion of diverse groups in smoking research. To help address this gap, this study attempted to validate a Spanish-language version of the brief Wisconsin Inventory of Smoking Dependence Motives (Brief WISDM). Data from 3 independent, diverse samples of Spanish-speaking Latino smokers seeking cessation counseling were utilized. Confirmatory factor analyses of 3 known structures of the Brief WISDM were examined for fit within each sample. A separate analysis was also conducted with the 3 samples combined. A post-hoc exploratory factor analyses with the combined sample was also conducted. Across 12 confirmatory factor analyses, none of the 3 structures demonstrated good fit in any of the samples independently or in the combined sample. Across the 3 samples, high intercorrelations (>.90) were found among the Loss of Control, Craving, Tolerance, and Cue Exposure scales, suggesting great redundancy among these scales. An exploratory factor analyses (EFAs) further supported these high intercorrelations. Some subscales remained intact in the EFA but accounted for little variance. Overall, this study was unable to replicate the structure of a Spanish-language Brief WISDM in 3 independent samples of smokers. Possible explanations include inadequate translation of the measure and/or true and meaningful differences in the construct of dependence among Spanish-speaking Latino smokers. Both possibilities merit further research. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lu, Pinyi; Hontecillas, Raquel; Horne, William T; Carbo, Adria; Viladomiu, Monica; Pedragosa, Mireia; Bevan, David R; Lewis, Stephanie N; Bassaganya-Riera, Josep
2012-01-01
Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates.
Simulating Food Web Dynamics along a Gradient: Quantifying Human Influence
Jordán, Ferenc; Gjata, Nerta; Mei, Shu; Yule, Catherine M.
2012-01-01
Realistically parameterized and dynamically simulated food-webs are useful tool to explore the importance of the functional diversity of ecosystems, and in particular relations between the dynamics of species and the whole community. We present a stochastic dynamical food web simulation for the Kelian River (Borneo). The food web was constructed for six different locations, arrayed along a gradient of increasing human perturbation (mostly resulting from gold mining activities) along the river. Along the river, the relative importance of grazers, filterers and shredders decreases with increasing disturbance downstream, while predators become more dominant in governing eco-dynamics. Human activity led to increased turbidity and sedimentation which adversely impacts primary productivity. Since the main difference between the study sites was not the composition of the food webs (structure is quite similar) but the strengths of interactions and the abundance of the trophic groups, a dynamical simulation approach seemed to be useful to better explain human influence. In the pristine river (study site 1), when comparing a structural version of our model with the dynamical model we found that structurally central groups such as omnivores and carnivores were not the most important ones dynamically. Instead, primary consumers such as invertebrate grazers and shredders generated a greater dynamical response. Based on the dynamically most important groups, bottom-up control is replaced by the predominant top-down control regime as distance downstream and human disturbance increased. An important finding, potentially explaining the poor structure to dynamics relationship, is that indirect effects are at least as important as direct ones during the simulations. We suggest that our approach and this simulation framework could serve systems-based conservation efforts. Quantitative indicators on the relative importance of trophic groups and the mechanistic modeling of eco-dynamics could greatly contribute to understanding various aspects of functional diversity. PMID:22768346
Lu, Pinyi; Hontecillas, Raquel; Horne, William T.; Carbo, Adria; Viladomiu, Monica; Pedragosa, Mireia; Bevan, David R.; Lewis, Stephanie N.; Bassaganya-Riera, Josep
2012-01-01
Background Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. Methodology/Principal Findings The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. Conclusions/Significance LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates. PMID:22509338
Bell, Andrew S; Bradley, Joseph; Everett, Jeremy R; Loesel, Jens; McLoughlin, David; Mills, James; Peakman, Marie-Claire; Sharp, Robert E; Williams, Christine; Zhu, Hongyao
2016-11-01
High-throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time consuming and costly and the use of subsets as an efficient alternative to screening entire compound collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity or biological target focus. Previously, we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second-generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer.
Shelley A. Evans; Charles B. Halpern; Donald McKenzie
2012-01-01
Many aspects of forest structure are thought to contribute to the presence, abundance, and diversity of forest-floor bryophytes. To what extent easily measured characteristics of local environment (overstory structure or substrate availability) explain patterns of abundance and diversity remains unclear in most forest ecosystems. We explore these relationships in four...
Diversity, abundance, and size structure of bivalve assemblages in the Sipsey River, Alabama
Wendell R. Haag; Melvin L. Jr. Warren
2010-01-01
1. Patterns of mussel diversity and assemblage structure in the Sipsey River, Alabama, are described. Qualitative data were used to describe river-wide patterns of diversity. Quantitative data were used to describe the structure of mussel assemblages at several sites based on whole-substrate sampling that ensured all size classes were detected. 2. Major human impacts...
O'Reilly, Sharleen L; Milner, Julia
2015-10-15
Increasing proportions of Culturally and Linguistically Diverse (CALD) students within health professional courses at universities creates challenges in delivering inclusive training and education. Clinical placements are a core component of most health care degrees as they allow for applied learning opportunities. A research gap has been identified in regard to understanding challenges and strategies for CALD students in health professional placements. A key stakeholder approach was used to examine barriers and enablers experienced by CALD students in clinical placement. Semi-structured focus groups with healthcare students (n = 13) and clinical placement supervisors (n = 12) were employed. The focus groups were analysed using open coding and thematic analysis. Three main barrier areas were identified: placement planning and preparation; teaching, assessment and feedback; and cultural and language issues. Potential solutions included addressing placement planning and preparation barriers, appropriate student placement preparation, pre-placement identification of higher risk CALD students, and diversity training for supervisors. For the barrier of teaching, assessment & feedback, addressing strategies were to: adapt student caseloads, encourage regular casual supervisor-student conversations, develop supportive placement delivery modes and structures, set expectations early, model the constructive feedback process, use visual aids, and tailor the learning environment to individual student needs. The enablers for cultural & language issues were to: build language and practical approaches for communication, raise awareness of the healthcare system (how it interacts with healthcare professions and how patients access it), and initiate mentoring programs. The findings suggest that teaching and learning strategies should be student-centred, aiming to promote awareness of difference and its impacts then develop appropriate responses by both student and teacher. Universities and partnering agencies, such as clinical training providers, need to provide an inclusive learning environment for students from multiple cultural backgrounds.
Maj, Anna; Dziewit, Lukasz; Czarnecki, Jakub; Wlodarczyk, Miroslawa; Baj, Jadwiga; Skrzypczyk, Grazyna; Giersz, Dorota; Bartosik, Dariusz
2013-01-01
Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria. PMID:24260361
The floral morphospace – a modern comparative approach to study angiosperm evolution
Chartier, Marion; Jabbour, Florian; Gerber, Sylvain; Mitteroecker, Philipp; Sauquet, Hervé; von Balthazar, Maria; Staedler, Yannick; Crane, Peter R.; Schönenberger, Jürg
2017-01-01
Summary Morphospaces are mathematical representations used for studying the evolution of morphological diversity and for the evaluation of evolved shapes among theoretically possible ones. Although widely used in zoology, they – with few exceptions – have been disregarded in plant science and in particular in the study of broad-scale patterns of floral structure and evolution. Here we provide basic information on the morphospace approach; we review earlier morphospace applications in plant science; and as a practical example, we construct and analyze a floral morphospace. Morphospaces are usually visualized with the help of ordination methods such as principal component analysis (PCA) or nonmetric multidimensional scaling (NMDS). The results of these analyses are then coupled with disparity indices that describe the spread of taxa in the space. We discuss these methods and apply modern statistical tools to the first and only angiosperm-wide floral morphospace published by Stebbins in 1951. Despite the incompleteness of Stebbins’ original dataset, our analyses highlight major, angiosperm-wide trends in the diversity of flower morphology and thereby demonstrate the power of this previously neglected approach in plant science. PMID:25539005
Jordan, Peter; O'Neill, Sean
2010-01-01
Many recent studies of cultural inheritance have focused on small-scale craft traditions practised by single individuals, which do not require coordinated participation by larger social collectives. In this paper, we address this gap in the cultural transmission literature by investigating diversity in the vernacular architecture of the Pacific northwest coast, where communities of hunter–fisher–gatherers constructed immense wooden long-houses at their main winter villages. Quantitative analyses of long-house styles along the coastline draw on a range of models and methods from the biological sciences and are employed to test hypotheses relating to basic patterns of macro-scale cultural diversification, and the degree to which the transmission of housing traits has been constrained by the region's numerous linguistic boundaries. The results indicate relatively strong branching patterns of cultural inheritance and also close associations between regional language history and housing styles, pointing to the potentially crucial role played by language boundaries in structuring large-scale patterns of cultural diversification, especially in relation to ‘collective’ cultural traditions like housing that require substantial inputs of coordinated labour. PMID:21041212
Cultural Determinants of Help Seeking: A model for research and practice
2007-01-01
Increasing access to, and use of, health promotion strategies and health care services for diverse cultural groups is a National priority. While theories about the structural determinants of help seeking have received empirical testing, studies about cultural determinants have been primarily descriptive, making theoretical and empirical analysis difficult. This article synthesizes concepts and research by the author and others from diverse disciplines to develop the mid-range theoretical model called the Cultural Determinants of Help Seeking (CDHS). The multidimensional construct of culture, which defines the iterative dimensions of ideology, political-economy, practice and the body, is outlined. The notion of cultural models of wellness and illness as cognitive guides for perception, emotion and behavior; as well as the synthesized concept of idioms of wellness and distress, are introduced. Next, the CDHS theory proposes that sign and symptom perception, the interpretation of their meaning and the dynamics of the social distribution of resources, are all shaped by cultural models. Then, the CDHS model is applied to practice using research with Asians. Lastly, implications for research and practice are discussed. PMID:19999745
Zhang, Dapeng; Arevalo-Gardini, Enrique; Mischke, Sue; Zúñiga-Cernades, Luis; Barreto-Chavez, Alejandro; Del Aguila, Jorge Adriazola
2006-09-01
Cocoa (Theobroma cacao) is indigenous to the Amazon region of South America, and it is well known that the Peruvian Amazon harbours a large number of diverse cocoa populations. A small fraction of the diversity has been collected and maintained as an ex-situ germplasm repository in Peru. However, incorrect labelling of accessions and lack of information on genetic diversity have hindered efficient conservation and use of this germplasm. This study targeted assessment of genetic diversity and population structure in a managed and a semi-natural population. Using a capillary electrophoresis genotyping system, 105 cocoa accessions collected from the Huallaga and Ucayali valleys of Peru were fingerprinted. Based on 15 loci SSR profiles, genetic identity was examined for each accession and duplicates identified, population structure assessed and genetic diversity analysed in these two populations. Ten synonymous mislabelled groups were identified among the 105 accessions. The germplasm group in the Huallaga valley was clearly separated from the group in Ucayali valley by the Bayesian assignment test. The Huallaga group has lower genetic diversity, both in terms of allelic richness and of gene diversity, than the Ucayali group. Analysis of molecular variance suggested genetic substructure in the Ucayali group. Significant spatial correlation between genetic distance and geographical distances was detected in the Ucayali group by Mantel tests. These results substantiate the hypothesis that the Peruvian Amazon hosts a high level of cocoa genetic diversity, and the diversity has a spatial structure. The introduction of exotic seed populations into the Peruvian Amazon is changing the cocoa germplasm spectrum in this region. The spatial structure of cocoa diversity recorded here highlights the need for additional collecting and conservation measures for natural and semi-natural cocoa populations.
Systematic Parameterization of Lignin for the CHARMM Force Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vermaas, Joshua; Petridis, Loukas; Beckham, Gregg
Plant cell walls have three primary components, cellulose, hemicellulose, and lignin, the latter of which is a recalcitrant, aromatic heteropolymer that provides structure to plants, water and nutrient transport through plant tissues, and a highly effective defense against pathogens. Overcoming the recalcitrance of lignin is key to effective biomass deconstruction, which would in turn enable the use of biomass as a feedstock for industrial processes. Our understanding of lignin structure in the plant cell wall is hampered by the limitations of the available lignin forcefields, which currently only account for a single linkage between lignins and lack explicit parameterization formore » emerging lignin structures both from natural variants and engineered lignin structures. Since polymerization of lignin occurs via radical intermediates, multiple C-O and C-C linkages have been isolated , and the current force field only represents a small subset of lignin the diverse lignin structures found in plants. In order to take into account the wide range of lignin polymerization chemistries, monomers and dimer combinations of C-, H-, G-, and S-lignins as well as with hydroxycinnamic acid linkages were subjected to extensive quantum mechanical calculations to establish target data from which to build a complete molecular mechanics force field tuned specifically for diverse lignins. This was carried out in a GPU-accelerated global optimization process, whereby all molecules were parameterized simultaneously using the same internal parameter set. By parameterizing lignin specifically, we are able to more accurately represent the interactions and conformations of lignin monomers and dimers relative to a general force field. This new force field will enables computational researchers to study the effects of different linkages on the structure of lignin, as well as construct more accurate plant cell wall models based on observed statistical distributions of lignin that differ between disparate feedstocks, and guide further lignin engineering efforts.« less
ERIC Educational Resources Information Center
Maude, Susan P.; Catlett, Camille; Moore, Susan; Sanchez, Sylvia Y.; Thorp, Eva K.; Corso, Rob
2010-01-01
This article provides an overview and the results of the Crosswalks Intervention, which was developed, implemented, and evaluated to support inclusive early childhood preservice programs to be more reflective of, and responsive to, cultural and linguistic diversity. The Crosswalks Intervention, funded by the US Department of Education, was a…
ERIC Educational Resources Information Center
Scalzo, Jennifer Noel
2010-01-01
Increasing numbers of English language learners enrolled in public schools has brought national attention to issues surrounding the education of linguistically diverse students. Teacher education programs have come under scrutiny for not doing an "adequate job of preparing teachers to teach diverse populations" (Hollins & Guzman,…
Students Engaging in Diversity: Blogging to Learn the History of Jazz
ERIC Educational Resources Information Center
Stewart, Anissa Ryan; Reid, Jacqueline Marie; Stewart, Jeffrey C.
2014-01-01
This study examined discursive choices made by the instructor of a Black Studies course in constructing what counted as blogging and the history of jazz; how students showed evidence of meeting the course requirements, and how particular students engaged with issues of race and diversity in their blogs. The instructor required blogging to enable…
ERIC Educational Resources Information Center
Ma, Tingting; Brown, Irving A.; Kulm, Gerald; Davis, Trina J.; Lewis, Chance W.; Allen, G. Donald
2016-01-01
From the perspectives of Graduate Research Assistants (GRAs), this study examines the design and implementation of a simulated teaching environment in "Second Life" (SL) for prospective teachers to teach algebra for diverse learners. Drawing upon the Learning-for-Use framework, the analyses provide evidence on the development of student…
"It's Not Comfortable Being Who I Am"--Multilingual Identity in Superdiverse Dubai
ERIC Educational Resources Information Center
ONeill, Gary Thomas
2017-01-01
This ethnographic case study examines the factors that contribute to multilingual choices and the construction of identities in a linguistically diverse family within a linguistically diverse city, Dubai in the United Arab Emirates (UAE). Based on interviews with a female Emirati in her early thirties, the article examines this young woman's…
USDA-ARS?s Scientific Manuscript database
Globally, pea (Pisum sativum L.) is an important temperate legume crop for food, feed, and fodder, and many breeding programs exist to develop cultivars adapted to these end uses. In order to conserve genetic diversity useful to researchers, large pea collections have been constructed by numerous na...
Re-Placing Outdoor Education: Diversity, Inclusion, and the Microadventures of the Everyday
ERIC Educational Resources Information Center
Roberts, Jay W.
2018-01-01
With the increased emphasis on sustainability and place-based education, along with a heightened sense of awareness of diversity and inclusion issues in outdoor education, the time has come to critically examine the long-held trip and expedition construct within the outdoor education field. This paper will explore the theoretical influences of…
ERIC Educational Resources Information Center
Molto, M. Cristina Cardona; Florian, Lani; Rouse, Martyn; Stough, Laura M.
2010-01-01
This study explores the beliefs and attitudes that university students enrolled in teacher education programmes in Spain, England and the US (Texas) hold about individuals who differ. A beliefs and attitudes toward difference scale (BATD) was constructed using nine dimensions of diversity; culture, language, socioeconomic status/social class,…
An Inquiry Approach to Construct Instructional Trajectories Based on the Use of Digital Technologies
ERIC Educational Resources Information Center
Santos-Trigo, Manuel
2008-01-01
There are diverse ways to construct instructional activities that teachers can use to foster their students' development of mathematical thinking. It is argued that the use of computational tools offers teachers the possibility of designing and exploring mathematical tasks from distinct perspectives that might lead their students to the…
A Social-Cognitive Theoretical Framework for Examining Music Teacher Identity
ERIC Educational Resources Information Center
McClellan, Edward
2017-01-01
The purpose of the study was to examine a diverse range of research literature to provide a social-cognitive theoretical framework as a foundation for definition of identity construction in the music teacher education program. The review of literature may reveal a theoretical framework based around tenets of commonly studied constructs in the…
ERIC Educational Resources Information Center
Ali, Lutfiye; Sonn, Christopher C.
2017-01-01
Contemporary anti-Islamic discourses in Australia construct Islam as an uncivilised belief system and its Muslim followers as homogenous unassimilable Others. Within these discourses, the diversity among Muslim women has been overshadowed, and they are constructed as a monolithic "veiled" woman. Drawing on 20 conversational interviews…
Nakano, Shun; Tamura, Tomoki; Das, Raj Kumar; Nakata, Eiji; Chang, Young-Tae; Morii, Takashi
2017-11-16
The practical application of biosensors can be determined by evaluating the sensing ability of fluorophore-modified derivatives of a receptor with appropriate recognition characteristics for target molecules. One of the key determinants for successfully obtaining a useful biosensor is wide variation in the fluorophores attached to a given receptor. Thus, using a larger fluorophore-modified receptor library provides a higher probability of obtaining a practically useful biosensor. However, no effective method has yet been developed for constructing such a diverse library of fluorophore-modified receptors. Herein, we report a method for constructing fluorophore-modified receptors by using a chemical library of synthetic fluorophores with a thiol-reactive group. This library was converted into a library of fluorophore-modified adenosine-binding ribonucleopeptide (RNP) receptors by introducing the fluorophores to the Rev peptide of the RNP complex by alkylation of the thiol group. This method enabled the construction of 263 fluorophore-modified ATP-binding RNP receptors and allowed the selection of suitable receptor-based fluorescent sensors that target ATP. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gap formation following climatic events in spatially structured plant communities
Liao, Jinbao; De Boeck, Hans J.; Li, Zhenqing; Nijs, Ivan
2015-01-01
Gaps play a crucial role in maintaining species diversity, yet how community structure and composition influence gap formation is still poorly understood. We apply a spatially structured community model to predict how species diversity and intraspecific aggregation shape gap patterns emerging after climatic events, based on species-specific mortality responses. In multispecies communities, average gap size and gap-size diversity increased rapidly with increasing mean mortality once a mortality threshold was exceeded, greatly promoting gap recolonization opportunity. This result was observed at all levels of species richness. Increasing interspecific difference likewise enhanced these metrics, which may promote not only diversity maintenance but also community invasibility, since more diverse niches for both local and exotic species are provided. The richness effects on gap size and gap-size diversity were positive, but only expressed when species were sufficiently different. Surprisingly, while intraspecific clumping strongly promoted gap-size diversity, it hardly influenced average gap size. Species evenness generally reduced gap metrics induced by climatic events, so the typical assumption of maximum evenness in many experiments and models may underestimate community diversity and invasibility. Overall, understanding the factors driving gap formation in spatially structured assemblages can help predict community secondary succession after climatic events. PMID:26114803
Karlsson, Elin A; Liedberg, Gunilla M; Sandqvist, Jan L
2017-06-22
The Swedish Social Insurance Administration has developed a new assessment tool for sickness insurance. This study is a part of the initial evaluation of the application, called the Assessment of Work Performance, Structured Activities, and focuses on evaluation of the psychometric properties of social validity, content validity, and utility. This was a qualitative study using semi-structured telephone interviews with occupational therapists. A convenience sample was used and participants who fulfilled inclusion criteria (n = 15) were interviewed. Data were analyzed using content analysis with a directed approach. The results indicate that the application provides valuable information and that it is socially valid. Assessors found work tasks suitable for a diverse group of clients and reported that clients accepted the assessments. Improvements were suggested, for example, expanding the application with more work tasks. The instrument has benefits; however, further development is desired. The use of a constructed environment in assessments may be a necessary option to supplement a real environment. But depending on organizational factors such as time and other resources, the participants had different opportunities to do so. Further evaluations regarding ecological validity are essential to ensure that assessments are fair and realistic when using constructed environments. Implications for rehabilitation This study indicates that assessment in a constructed environment can provide a secure and protected context for clients being assessed. Psychometric evaluations are a never-ending process and this assessment instrument needs further development. However, this initial evaluation provides guidance in development of the instrument but also what studies to give priority to. It is important to evaluate social validity in order to ensure that clients and assessors perceive assessment methods fair and meaningful. In this study, participants found the work tasks appropriate and usable when assessing their clients but client's perspective must also be included in following studies. This assessment instrument is the only activity-based assessment instrument within the Swedish Social Security Insurance. Psychometric evaluations are important since it affects so many individuals in Sweden.
Inorganic pyrophosphatases: structural diversity serving the function
NASA Astrophysics Data System (ADS)
Samygina, V. R.
2016-05-01
The review is devoted to ubiquitous enzymes, inorganic pyrophosphatases, which are essential in all living organisms. Despite the long history of investigations, these enzymes continue to attract interest. The review focuses on the three-dimensional structures of various representatives of this class of proteins. The structural diversity, the relationship between the structure and some properties of pyrophosphatases and various mechanisms of enzyme action related to the structural diversity of these enzymes are discussed. Interactions of pyrophosphatase with other proteins and possible practical applications are considered. The bibliography includes 56 references.
Restoration of marine ecosystems following the end-Permian mass extinction: pattern and dynamics
NASA Astrophysics Data System (ADS)
Chen, Z.
2013-12-01
Life came closest to complete annihilation during the end-Permian mass extinction (EPME). Pattern and cause of this great dying have long been disputed. Similarly, there is also some debate on the recovery rate and pattern of marine organisms in the aftermath of the EPME. Some clades recovered rapidly, within the first 1-3 Myr of the Triassic. For instance, foraminiferal recovery began 1 Myr into the Triassic and was not much affected by Early Triassic crises. Further, some earliest Triassic body and trace fossil assemblages are also more diverse than predicted. Others, ie. Brachiopods, corals etc., however, did not rebound until the Middle Triassic. In addition, although ammonoids recovered fast, reaching a higher diversity by the Smithian than in the Late Permian, much of this Early Triassic radiation was within a single group, the Ceratitina, and their morphological disparity did not expand until the end-Spathian. Here, I like to broaden the modern ecologic network model to explore the complete trophic structure of fossilized ecosystems during the Permian-Triassic transition as a means of assessing the recovery. During the Late Permian and Early Triassic, primary producers, forming the lowest trophic level, were microbes. The middle part of the food web comprises primary and meso-consumer trophic levels, the former dominated by microorganisms such as foraminifers, the latter by opportunistic communities (i.e. disaster taxa), benthic shelly communities, and reef-builders. They were often consumed by invertebrate and vertebrate predators, the top trophic level. Fossil record from South China shows that the post-extinction ecosystems were degraded to a low level and typified by primary producers or opportunistic consumers, which are represented by widespread microbialites or high-abundance, low-diversity communities. Except for some opportunists, primary consumers, namely foraminifers, rebounded in Smithian. Trace-makers recovered in Spathian, which also saw biodiversity increases of some clades. However, benthic communities were still of low diversity and high abundance and did not recover until middle-late Anisian when reef ecosystems have also constructed. The mid-Anisian ecosystems were characterized by the diverse reptile and fish faunas such as the Luoping biota from Yunnan, Southwest China, in which marine reptiles diversified as top predators. Thus, ecosystems were constructed step by step from low level to top trophic level through the Griesbachian to late Anisian, some 8-9 Myr after the crisis. Moreover, although some top predators also rebounded spoarically in Early Triassic, they constructed incomplete and unstable ecosystems, which could not develop sustainably and thus did not occur repetitedly in younger strata. The contrast between the extrinsic and intrinsic models exemplifies a wider debate about macroevolution -- whether the key driver is the physical environment or biotic interactions. Case studies on microbe-metazoan interactions in matground ecosystems reveal that microbial bloom seems to have set an agenda for metazoan diversification in Early Triassic, implying that intrinsic dynamics may have played a crucial role driving ecosystem's restoration following the EPME.
Chen, Yun; Niu, Shuai; Li, Peikun; Jia, Hongru; Wang, Hailiang; Ye, Yongzhong; Yuan, Zhiliang
2017-01-01
Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation. PMID:28603535
Chen, Yun; Niu, Shuai; Li, Peikun; Jia, Hongru; Wang, Hailiang; Ye, Yongzhong; Yuan, Zhiliang
2017-01-01
Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m 2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation.
[Diversity of parasitic protozoan mitochondria and adaptive evolution].
Tian, Hai-Feng; Wen, Jian-Fan
2010-02-01
Eukaryotic mitochondrion generally possess a definite and canonical structure and function. However, in the unicellular parasitic protozoa, various atypical mitochondria with respect to the number, structure, and function, have been discovered consecutively, revealing the variability, plasticity and rich diversity of mitochondrion. Here, we review the mitochondrial diversity in diverse parasitic protozoa, and the underlying reason for such diversity--the adaptive evolution of mitochondrion to the micro-oxygen or anaero parasitic environment of these parasites is also analyzed and discussed.
Zullig, Keith J; Collins, Rani; Ghani, Nadia; Patton, Jon M; Scott Huebner, E; Ajamie, Jean
2014-02-01
The School Climate Measure (SCM) was developed and validated in 2010 in response to a dearth of psychometrically sound school climate instruments. This study sought to further validate the SCM on a large, diverse sample of Arizona public school adolescents (N = 20,953). Four SCM domains (positive student-teacher relationships, academic support, order and discipline, and physical environment) were available for the analysis. Confirmatory factor analysis and structural equation modeling were established to construct validity, and criterion-related validity was assessed via selected Youth Risk Behavior Survey (YRBS) school safety items and self-reported grade (GPA) point average. Analyses confirmed the 4 SCM school climate domains explained approximately 63% of the variance (factor loading range .45-.92). Structural equation models fit the data well χ(2) = 14,325 (df = 293, p < .001), comparative fit index (CFI) = .951, Tuker-Lewis index (TLI) = .952, root mean square error of approximation (RMSEA) = .05). The goodness-of-fit index was .940. Coefficient alphas ranged from .82 to .93. Analyses of variance with post hoc comparisons suggested the SCM domains related in hypothesized directions with the school safety items and GPA. Additional evidence supports the validity and reliability of the SCM. Measures, such as the SCM, can facilitate data-driven decisions and may be incorporated into evidenced-based processes designed to improve student outcomes. © 2014, American School Health Association.
Khrisanfova, G G; Kharchevnikov, D A; Popov, I O; Zinov'eva, S V; Semenova, S K
2008-05-01
Genetic variability of yellow potato cyst nematode G. rostochiensis from three Russian populations (Karelia, Vladimir oblast, and Moscow oblast) was investigated using two types of nuclear markers. Using RAPD markers identified with the help of six random primers (P-29, OPA-10, OPT-14, OPA-11, OPB-11, and OPH-20), it was possible to distinguish Karelian population from the group consisting of the populations from two adjacent regions (Moscow oblast and Vladimir oblast). Based on the combined matrix, containing 294 RAPD fragments, dendrogram of genetic differences was constructed, and the indices of genetic divergence and partition (P, H, and G(st)), as well as the gene flow indices N(m) between the nematode samples examined, were calculated. The dendrogram structure, genetic diversity indices, and variations of genetic distances between single individuals in each population from Karelia and Central Russia pointed to genetic isolation and higher genetic diversity of the nematodes from Karelia. Based on polymorphism of rDNA first intergenic spacer ITS1, attribution of all populations examined to the species G. rostochiensis was proved. Small variations of the ITS1 sequence in different geographic populations of nematodes from different regions of the species world range did not allow isolation of separate groups within the species. Possible factors (including interregional transportations of seed potato) affecting nematode population structure in Russia are discussed.
Minimum spanning tree filtering of correlations for varying time scales and size of fluctuations
NASA Astrophysics Data System (ADS)
Kwapień, Jarosław; Oświecimka, Paweł; Forczek, Marcin; DroŻdŻ, Stanisław
2017-05-01
Based on a recently proposed q -dependent detrended cross-correlation coefficient, ρq [J. Kwapień, P. Oświęcimka, and S. Drożdż, Phys. Rev. E 92, 052815 (2015), 10.1103/PhysRevE.92.052815], we generalize the concept of the minimum spanning tree (MST) by introducing a family of q -dependent minimum spanning trees (q MST s ) that are selective to cross-correlations between different fluctuation amplitudes and different time scales of multivariate data. They inherit this ability directly from the coefficients ρq, which are processed here to construct a distance matrix being the input to the MST-constructing Kruskal's algorithm. The conventional MST with detrending corresponds in this context to q =2 . In order to illustrate their performance, we apply the q MSTs to sample empirical data from the American stock market and discuss the results. We show that the q MST graphs can complement ρq in disentangling "hidden" correlations that cannot be observed in the MST graphs based on ρDCCA, and therefore, they can be useful in many areas where the multivariate cross-correlations are of interest. As an example, we apply this method to empirical data from the stock market and show that by constructing the q MSTs for a spectrum of q values we obtain more information about the correlation structure of the data than by using q =2 only. More specifically, we show that two sets of signals that differ from each other statistically can give comparable trees for q =2 , while only by using the trees for q ≠2 do we become able to distinguish between these sets. We also show that a family of q MSTs for a range of q expresses the diversity of correlations in a manner resembling the multifractal analysis, where one computes a spectrum of the generalized fractal dimensions, the generalized Hurst exponents, or the multifractal singularity spectra: the more diverse the correlations are, the more variable the tree topology is for different q 's. As regards the correlation structure of the stock market, our analysis exhibits that the stocks belonging to the same or similar industrial sectors are correlated via the fluctuations of moderate amplitudes, while the largest fluctuations often happen to synchronize in those stocks that do not necessarily belong to the same industry.
Current Trends in Nanomaterial-Based Amperometric Biosensors
Hayat, Akhtar; Catanante, Gaëlle; Marty, Jean Louis
2014-01-01
The last decade has witnessed an intensive research effort in the field of electrochemical sensors, with a particular focus on the design of amperometric biosensors for diverse analytical applications. In this context, nanomaterial integration in the construction of amperometric biosensors may constitute one of the most exciting approaches. The attractive properties of nanomaterials have paved the way for the design of a wide variety of biosensors based on various electrochemical detection methods to enhance the analytical characteristics. However, most of these nanostructured materials are not explored in the design of amperometric biosensors. This review aims to provide insight into the diverse properties of nanomaterials that can be possibly explored in the construction of amperometric biosensors. PMID:25494347
Development and validation of the Delaying Gratification Inventory.
Hoerger, Michael; Quirk, Stuart W; Weed, Nathan C
2011-09-01
Deficits in gratification delay are associated with a broad range of public health problems, such as obesity, risky sexual behavior, and substance abuse. However, 6 decades of research on the construct has progressed less quickly than might be hoped, largely because of measurement issues. Although past research has implicated 5 domains of delay behavior, involving food, physical pleasures, social interactions, money, and achievement, no published measure to date has tapped all 5 components of the content domain. Existing measures have been criticized for limitations related to efficiency, reliability, and construct validity. Using an innovative Internet-mediated approach to survey construction, we developed the 35-item 5-factor Delaying Gratification Inventory (DGI). Evidence from 4 studies and a large, diverse sample of respondents (N = 10,741) provided support for the psychometric properties of the measure. Specifically, scores on the DGI demonstrated strong internal consistency and test-retest reliability for the 35-item composite, each of the 5 domains, and a 10-item short form. The 5-factor structure fit the data well and had good measurement invariance across subgroups. Construct validity was supported by correlations with scores on closely related self-control measures, behavioral ratings, Big Five personality trait measures, and measures of adjustment and psychopathology, including those on the Minnesota Multiphasic Personality Inventory-2-Restructured Form. DGI scores also showed incremental validity in accounting for well-being and health-related variables. The present investigation holds implications for improving public health, accelerating future research on gratification delay, and facilitating survey construction research more generally by demonstrating the suitability of an Internet-mediated strategy.
Development and validation of the Delaying Gratification Inventory
Hoerger, Michael; Quirk, Stuart W.; Weed, Nathan C.
2011-01-01
Deficits in gratification delay are associated with a broad range of public health problems, such as obesity, risky sexual behavior, and substance abuse. However, six decades of research on the construct has progressed less quickly than might be hoped, largely due to measurement issues. Although past research implicates five domains of delay behavior, involving food, physical pleasures, social interactions, money, and achievement, no published measure to date has tapped all five components of the content domain. Existing measures have been criticized for limitations related to efficiency, reliability, and construct validity. Using an innovative Internet-mediated approach to survey construction, we developed the 35-item five-factor Delaying Gratification Inventory (DGI). Evidence from four studies and a large, diverse sample of respondents (N = 10,741) provided support for the psychometric properties of the measure. Specifically, scores on the DGI demonstrated strong internal consistency and test-retest reliability for the 35-item composite, each of the five domains, and a 10-item short-form. The five-factor structure fit the data well and had good measurement invariance across subgroups. Construct validity was supported by correlations with scores on closely-related self-control measures, behavioral ratings, Big Five personality trait measures, and measures of adjustment and psychopathology, including those on the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF). DGI scores also showed incremental validity in accounting for well-being and health-related variables. The present investigation holds implications for improving public health, accelerating future research on gratification delay, and facilitating survey construction research more generally by demonstrating the suitability of an Internet-mediated strategy. PMID:21480721
Rouse, Matthew N.; Saleh, Amgad A.; Seck, Amadou; Keeler, Kathleen H.; Travers, Steven E.; Hulbert, Scot H.; Garrett, Karen A.
2011-01-01
Background Environmental variables such as moisture availability are often important in determining species prevalence and intraspecific diversity. The population genetic structure of dominant plant species in response to a cline of these variables has rarely been addressed. We evaluated the spatial genetic structure and diversity of Andropogon gerardii populations across the U.S. Great Plains precipitation gradient, ranging from approximately 48 cm/year to 105 cm/year. Methodology/Principal Findings Genomic diversity was evaluated with AFLP markers and diversity of a disease resistance gene homolog was evaluated by PCR-amplification and digestion with restriction enzymes. We determined the degree of spatial genetic structure using Mantel tests. Genomic and resistance gene homolog diversity were evaluated across prairies using Shannon's index and by averaging haplotype dissimilarity. Trends in diversity across prairies were determined using linear regression of diversity on average precipitation for each prairie. We identified significant spatial genetic structure, with genomic similarity decreasing as a function of distance between samples. However, our data indicated that genome-wide diversity did not vary consistently across the precipitation gradient. In contrast, we found that disease resistance gene homolog diversity was positively correlated with precipitation. Significance Prairie remnants differ in the genetic resources they maintain. Selection and evolution in this disease resistance homolog is environmentally dependent. Overall, we found that, though this environmental gradient may not predict genomic diversity, individual traits such as disease resistance genes may vary significantly. PMID:21532756
Susanne Winter; Andreas Böck; Ronald E. McRoberts
2012-01-01
Tree diameter and height are commonly measured forest structural variables, and indicators based on them are candidates for assessing forest diversity. We conducted our study on the uncertainty of estimates for mostly large geographic scales for four indicators of forest structural gamma diversity: mean tree diameter, mean tree height, and standard deviations of tree...
Rey-Mermet, Alodie; Gade, Miriam; Oberauer, Klaus
2018-04-01
Inhibition is often conceptualized as a unitary construct reflecting the ability to ignore and suppress irrelevant information. At the same time, it has been subdivided into inhibition of prepotent responses (i.e., the ability to stop dominant responses) and resistance to distracter interference (i.e., the ability to ignore distracting information). The present study investigated the unity and diversity of inhibition as a psychometric construct, and tested the hypothesis of an inhibition deficit in older age. We measured inhibition in young and old adults with 11 established laboratory tasks: antisaccade, stop-signal, color Stroop, number Stroop, arrow flanker, letter flanker, Simon, global-local, positive and negative compatibility tasks, and n-2 repetition costs in task switching. In both age groups, the inhibition measures from individual tasks had good reliabilities, but correlated only weakly among each other. Structural equation modeling identified a 2-factor model with factors for inhibition of prepotent responses and resistance to distracter interference. Older adults scored worse in the inhibition of prepotent response, but better in the resistance to distracter interference. However, the model had low explanatory power. Together, these findings call into question inhibition as a psychometric construct and the hypothesis of an inhibition deficit in older age. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Harder, Valerie S.; Mutiso, Victoria N.; Khasakhala, Lincoln I.; Burke, Heather M.; Rettew, David C.; Ivanova, Masha Y.; Ndetei, David M.
2014-01-01
Data on youth emotional and behavioral problems from societies in Sub-Saharan Africa are lacking. This may be due to the fact that few youth mental health assessments have been tested for construct validity of syndrome structure across multicultural societies that include developing countries, and almost none have been tested in Sub-Saharan Africa. The Youth Self-Report (YSR), for example, has shown great consistency of its syndrome structure across many cultures, yet data from only one developing country in Sub-Saharan Africa have been included. In this study, we test the factor structure of YSR syndromes among Kenyan youth ages 11–18 years from an informal settlement in Nairobi, Kenya and examine sex-differences in levels of emotional and behavioral problems. We find the eight syndrome structure of the YSR to fit these data well (Root Mean Square Error of Approximation=.049). While Kenyan girls have significantly higher internalizing (Anxious/Depressed, Withdrawn/Depressed, Somatic) problem scores than boys, these differences are of similar magnitude to published multicultural findings. The results support the generalizability of the YSR syndrome structure to Kenyan youth and are in line with multicultural findings supporting the YSR as an assessment of emotional and behavioral problems in diverse societies. PMID:25419046
Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients.
Pellissier, Loïc; Ndiribe, Charlotte; Dubuis, Anne; Pradervand, Jean-Nicolas; Salamin, Nicolas; Guisan, Antoine; Rasmann, Sergio
2013-05-01
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait-space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables. © 2013 Blackwell Publishing Ltd/CNRS.