Bruce, M C; Galinski, M R; Barnwell, J W; Snounou, G; Day, K P
1999-10-01
Allelic diversity at the Plasmodium vivax merozoite surface protein-3alpha (PvMsp-3alpha) locus was investigated using a combined polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) protocol. Symptomatic patient isolates from global geographic origins showed a high level of polymorphism at the nucleotide level. These samples were used to validate the sensitivity, specificity, and reproducibility of the PCR/RFLP method. It was then used to investigate PvMsp3alpha diversity in field samples from children living in a single village in a malaria-endemic region of Papua New Guinea, with the aim of assessing the usefulness of this locus as an epidemiologic marker of P. vivax infections. Eleven PvMsp-3alpha alleles were distinguishable in 16 samples with single infections, revealing extensive parasite polymorphism within this restricted area. Multiple infections were easily detected and accounted for 5 (23%) of 22 positive samples. Pairs of samples from individual children provided preliminary evidence for high turnover of P. vivax populations.
2010-01-01
Due to their high degree of polymorphism, microsatellites are considered useful tools for studying population genetics. Nevertheless, studies of genetic diversity in stingless bees by means of these primers have revealed a low level of polymorphism, possibly the consequence of the heterologous primers used, since in most cases these were not specifically designed for the species under consideration. Herein we compared the number of polymorphic loci and alleles per locus, as well as observed heterozygosity in Melipona rufiventris and M. mondury populations, using specific and heterologous primers. The use of specific primers placed in evidence the greater frequency of polymorphic loci and alleles per locus, besides an expressive increase in observed heterozygosity in M. rufiventris and M. mondury, thereby reinforcing the idea that populational studies should be undertaken by preferably using species-specific microsatellite primers. PMID:21637499
Lopes, Denilce Meneses; de Oliveira Campos, Lúcio Antônio; Salomão, Tânia Maria Fernandes; Tavares, Mara Garcia
2010-04-01
Due to their high degree of polymorphism, microsatellites are considered useful tools for studying population genetics. Nevertheless, studies of genetic diversity in stingless bees by means of these primers have revealed a low level of polymorphism, possibly the consequence of the heterologous primers used, since in most cases these were not specifically designed for the species under consideration. Herein we compared the number of polymorphic loci and alleles per locus, as well as observed heterozygosity in Melipona rufiventris and M. mondury populations, using specific and heterologous primers. The use of specific primers placed in evidence the greater frequency of polymorphic loci and alleles per locus, besides an expressive increase in observed heterozygosity in M. rufiventris and M. mondury, thereby reinforcing the idea that populational studies should be undertaken by preferably using species-specific microsatellite primers.
Guan, Bi-Cai; Gong, Xi; Zhou, Shi-Liang
2011-08-01
The development of compound microsatellite markers was conducted in Dysosma pleiantha to investigate genetic diversity and population genetic structure of this threatened medicinal plant. Using the compound microsatellite marker technique, 14 microsatellite markers that were successfully amplified showed polymorphism when tested on 38 individuals from three populations in eastern China. Overall, the number of alleles per locus ranged from 2 to 14, with an average of 7.71 alleles per locus. These results indicate that these microsatellite markers are adequate for detecting and characterizing population genetic structure and genetic diversity in Dysosma pleiantha.
Saraswathy, Kallur Nava; Mukhopadhyay, Rupak; Shukla, Deepti; Kaur, Harpreet; Sachdeva, Mohinder Pal; Rao, A P; Saksena, Deepti; Kalla, Aloke Kumar
2009-02-01
Dopamine receptor D2 (DRD2) is expressed in the central nervous system and has a high affinity for many antipsychotic drugs. Besides several epidemiological investigations on association of DRD2 locus polymorphism(s) with neuropsychiatric problems and addictive behavior, a few polymorphisms in this locus have also been used to understand genomic diversity and population migratory histories globally. The present study attempts to understand the genomic diversity/affinity among four endogamous groups of Andhra Pradesh (India) against the backdrop of diversity studies from other parts of India and the rest of the world, with special reference to DRD2 locus. The four population groups from Adilabad District of Andhra Pradesh, namely, Brahmin (n=50), Nayakpod (n=49), Thoti (n=52), and Kolam (n=53), were included in the study. The DRD2 markers typed for the present study are three biallelic restriction fragments, that is, TaqI A (rs1800497), TaqI B (rs1079597), and TaqI D (rs1800498). Scoring of DRD2 haplotypes with respect to the three TaqI sites shows that five out of eight possible haplotypes are shared by the four populations. Ancestral haplotype B2D2A1 is most frequent among Thotis (0.359). The results of the present study indicate a differential gene flow into South India followed by certain important demographic events resulting in diversified peopling of India.
Ronald C. Schmidtling; V. Hipkins
1998-01-01
Genetic diversity of allozymes at 24 loci was studied in 23 populations of longleaf pine (Pinus palustris Mill.), including three seed orchard populations and an old-growth stand. Overall, the mean number of alleles per polymorphic locus was 2.9, the percentage of polymorphic loci was 92 percent, and the mean expected heterozygosity was 0.105. These...
2011-01-01
Background Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN
Fabre, Michel; Koeck, Jean-Louis; Le Flèche, Philippe; Simon, Fabrice; Hervé, Vincent; Vergnaud, Gilles; Pourcel, Christine
2004-01-01
We have analyzed, using complementary molecular methods, the diversity of 43 strains of “Mycobacterium canettii” originating from the Republic of Djibouti, on the Horn of Africa, from 1998 to 2003. Genotyping by multiple-locus variable-number tandem repeat analysis shows that all the strains belong to a single but very distant group when compared to strains of the Mycobacterium tuberculosis complex (MTBC). Thirty-one strains cluster into one large group with little variability and five strains form another group, whereas the other seven are more diverged. In total, 14 genotypes are observed. The DR locus analysis reveals additional variability, some strains being devoid of a direct repeat locus and others having unique spacers. The hsp65 gene polymorphism was investigated by restriction enzyme analysis and sequencing of PCR amplicons. Four new single nucleotide polymorphisms were discovered. One strain was characterized by three nucleotide changes in 441 bp, creating new restriction enzyme polymorphisms. As no sequence variability was found for hsp65 in the whole MTBC, and as a single point mutation separates M. tuberculosis from the closest “M. canettii” strains, this diversity within “M. canettii” subspecies strongly suggests that it is the most probable source species of the MTBC rather than just another branch of the MTBC. PMID:15243089
HLA polymorphisms in Sindhi community in Mumbai, India.
Chhaya, S; Desai, S; Saranath, D
2010-10-01
Indian population is an amalgamation of various ethnicities, cultural and linguistic diversities, primarily due to marriages within a community. HLA-A, B and DRB1 alleles and haplotype frequencies were investigated in the Sindhi and compared with Marathi, Gujarati and North Indian population from Mumbai. This work is a part of a larger effort aimed at analysis of the HLA profile of diverse Indian ethnics to establish an umbilical cord stem cell panel in India. HLA polymorphisms at the HLA-A, B and DRB1 loci were determined in 413 cord blood samples by the molecular method of polymerase chain reaction using sequence-specific primer amplification. The most frequent alleles included A*01, A*02, A*11 and A*24 at A locus, B*35 and B*40 at B locus and DRB1*07 and DRB1*15 in all the four groups, although the frequency fluctuated in individual communities. HLA-DRB1*03 was significantly high (P < 0.05) in the Sindhi. Phylogenetic association using neighbour-joining tree, based on DA genetic distances for HLA-A and HLA-B alleles, indicated that the Sindhis cluster with North Indian and Pakistan Sindhi. The three locus haplotype analysis revealed that A*02-B*40-DRB1*15 and A*33-B*44-DRB1*07 were common haplotypes in all the groups. The three locus haplotypes found suggest an influence from Caucasian and Oriental populations. The data will be useful in developing an umbilical cord stem cell panel in India. The results will have clinical implications in unrelated umbilical cord stem cell for transplantation in India. © 2010 Blackwell Publishing Ltd.
Kumar, Vinay; Shukla, Sanjeev K; Mathew, Jose; Sharma, Deepak
2015-01-01
The present study was conducted to assess the genetic diversity, population structure, and relatedness in Indian red jungle fowl (RJF, Gallus gallus murgi) from northern India and three domestic chicken populations (gallus gallus domesticus), maintained at the institute farms, namely White Leghorn (WL), Aseel (AS) and Red Cornish (RC) using 25 microsatellite markers. All the markers were polymorphic, the number of alleles at each locus ranged from five (MCW0111) to forty-three (LEI0212) with an average number of 19 alleles per locus. Across all loci, the mean expected heterozygosity and polymorphic information content were 0.883 and 0.872, respectively. Population-specific alleles were found in each population. A UPGMA dendrogram based on shared allele distances clearly revealed two major clusters among the four populations; cluster I had genotypes from RJF and WL whereas cluster II had AS and RC genotypes. Furthermore, the estimation of population structure was performed to understand how genetic variation is partitioned within and among populations. The maximum ▵K value was observed for K = 4 with four identified clusters. Furthermore, factorial analysis clearly showed four clustering; each cluster represented the four types of population used in the study. These results clearly, demonstrate the potential of microsatellite markers in elucidating the genetic diversity, relationships, and population structure analysis in RJF and domestic chicken populations.
Bozzi, Jorge A.; Liepelt, Sascha; Ohneiser, Sebastian; Gallo, Leonardo A.; Marchelli, Paula; Leyer, Ilona; Ziegenhagen, Birgit; Mengel, Christina
2015-01-01
Premise of the study: We present a set of 23 polymorphic nuclear microsatellite loci, 18 of which are identified for the first time within the riparian species Salix humboldtiana (Salicaceae) using next-generation sequencing. Methods and Results To characterize the 23 loci, up to 60 individuals were sampled and genotyped at each locus. The number of alleles ranged from two to eight, with an average of 4.43 alleles per locus. The effective number of alleles ranged from 1.15 to 3.09 per locus, and allelic richness ranged from 2.00 to 7.73 alleles per locus. Conclusions The new marker set will be used for future studies of genetic diversity and differentiation as well as for unraveling spatial genetic structures in S. humboldtiana populations in northern Patagonia, Argentina. PMID:25909042
Carter, Tamar E.; Boulter, Alexis; Existe, Alexandre; Romain, Jean R.; St. Victor, Jean Yves; Mulligan, Connie J.; Okech, Bernard A.
2015-01-01
Antimalarial drugs are a key tool in malaria elimination programs. With the emergence of artemisinin resistance in southeast Asia, an effort to identify molecular markers for surveillance of resistant malaria parasites is underway. Non-synonymous mutations in the kelch propeller domain (K13-propeller) in Plasmodium falciparum have been associated with artemisinin resistance in samples from southeast Asia, but additional studies are needed to characterize this locus in other P. falciparum populations with different levels of artemisinin use. Here, we sequenced the K13-propeller locus in 82 samples from Haiti, where limited government oversight of non-governmental organizations may have resulted in low-level use of artemisinin-based combination therapies. We detected a single-nucleotide polymorphism (SNP) at nucleotide 1,359 in a single isolate. Our results contribute to our understanding of the global genomic diversity of the K13-propeller locus in P. falciparum populations. PMID:25646258
PATTERNS OF ALLOZYME DIVERSITY IN THE THREATENED PLANT ERIGERON PARISHII (ASTERACEAE). (R826102)
Thirty-one occurrences of Erigeron parishii, a narrowly endemic plant threatened by mining, were sampled for allozyme diversity. This taxon held considerable genetic variation at the [4 allozyme loci surveyed. Species (e.g., alleles per locus [A] = 4.3 and proportion of polymorph...
Fields, Peter D.; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter
2017-01-01
Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis. PMID:28222092
Bento, Gilberto; Routtu, Jarkko; Fields, Peter D; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter
2017-02-01
Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis.
Torres-Díaz, Cristian; Ruiz, Eduardo; González, Fidelina; Fuentes, Glenda; Cavieres, Lohengrin A.
2007-01-01
Background and Aims The endemic tree Nothofagus alessandrii (Fagaceae) has been historically restricted to the coastal range of Region VII of central Chile, and its forests have been increasingly destroyed and fragmented since the end of the 19th century. In this study, the patterns of within- and among-population genetic diversity in seven fragments of this endangered narrowly endemic tree were examined. Methods Allozyme electrophoresis of seven loci of N. alessandrii was used to estimate genetic diversity, genetic structure and gene flow. Key Results High levels of genetic diversity were found as shown by mean expected heterozygosity (He = 0·182 ± 0·034), percentage of polymorphic loci (Pp = 61·2 %), mean number of alleles per locus (A = 1·8) and mean number of alleles per polymorphic locus (Ap = 2·3). Genetic differentiation was also high (GST = 0·257 and Nm = 0·7). These values are high compared with more widespread congeneric species. Conclusions Despite its endemic status and restricted geographical range N. alessandrii showed high levels of genetic diversity. The observed patterns of diversity are explained in part by historical processes and more recent human fragmentation. PMID:17513870
Development of novel polymorphic microsatellite markers for the silver fox (Vulpes vulpes).
Yan, S Q; Bai, C Y; Qi, S M; Li, Y M; Li, W J; Sun, J H
2015-06-01
The silver fox (Vulpes vulpes), a coat color variant of the red fox, is one of the most important fur-bearing animals. To date, development of microsatellite loci for the silver fox has been limited and mainly based on cross-amplification by using canine SSR primers. In this study, 28 polymorphic microsatellite markers were isolated and identified for silver fox through the construction and screening of an (AC)n-enriched library. The number of alleles per locus ranged from 2 to 8 based on 48 individuals tested. The expected and observed hetero- zygosity and polymorphism information content per locus ranged from 0.2544 to 0.859, 0.2083 to 0.7917, and 0.2181 to 0.821, respectively. The polymorphic markers presented in this study may be useful for future analysis of the genetic diversity and population structure of farmed silver fox and wild red fox.
Development and characterization of EST-SSR markers for Artocarpus hypargyreus (Moraceae)1
Liu, Haijun; Tan, Weizheng; Sun, Hongbin; Liu, Yu; Meng, Kaikai; Liao, Wenbo
2016-01-01
Premise of the study: Polymorphic microsatellite markers were developed for Artocarpus hypargyreus (Moraceae), a threatened species endemic to China, to investigate the genetic diversity and structure of the species. Methods and Results: Based on the transcriptome data of A. hypargyreus, 63 primer pairs were preliminarily designed and tested, of which 34 were successfully amplified and 10 displayed clear polymorphisms across the 67 individuals from four populations of A. hypargyreus. The results showed the number of alleles per locus ranged from three to 10, and the observed heterozygosity and expected heterozygosity per locus varied from 0.000 to 0.706 and from 0.328 to 0.807, respectively. Conclusions: These microsatellite markers will be useful in exploring genetic diversity and structure of A. hypargyreus. Furthermore, most loci were successfully cross-amplified in A. nitidus and A. heterophyllus, indicating that they will be of great value for genetic study across this genus. PMID:28101438
Development and characterization of EST-SSR markers for Artocarpus hypargyreus (Moraceae).
Liu, Haijun; Tan, Weizheng; Sun, Hongbin; Liu, Yu; Meng, Kaikai; Liao, Wenbo
2016-12-01
Polymorphic microsatellite markers were developed for Artocarpus hypargyreus (Moraceae), a threatened species endemic to China, to investigate the genetic diversity and structure of the species. Based on the transcriptome data of A. hypargyreus , 63 primer pairs were preliminarily designed and tested, of which 34 were successfully amplified and 10 displayed clear polymorphisms across the 67 individuals from four populations of A. hypargyreus . The results showed the number of alleles per locus ranged from three to 10, and the observed heterozygosity and expected heterozygosity per locus varied from 0.000 to 0.706 and from 0.328 to 0.807, respectively. These microsatellite markers will be useful in exploring genetic diversity and structure of A. hypargyreus . Furthermore, most loci were successfully cross-amplified in A. nitidus and A. heterophyllus , indicating that they will be of great value for genetic study across this genus.
Ancient roots for polymorphism at the HLA-DQ. alpha. locus in primates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyllensten, U.B.; Erlich, H.A.
1989-12-01
The genes encoding the human histocompatibility antigens (HLA) exhibit a remarkable degree of polymorphism as revealed by immunologic and molecular analyses. This extensive sequence polymorphism either may have been generated during the lifetime of the human species or could have arisen before speciation and been maintained in the contemporary human population by selection or, possibly, by genetic drift. These two hypotheses were examined using the polymerase chain reaction method to amplify polymorphic sequences from the DQ{alpha} locus, as well as the DX{alpha} locus, an homologous but nonexpressed locus, in a series of primates that diverged at known times. In general,more » the amino acid sequence of a specific human DQ{alpha} allelic type is more closely related to its chimpanzee or gorilla counterpart than to other human DQ{alpha} alleles. Phylogenetic analysis of the silent nucleotide position changes shows that the similarity of allelic types between species is due to common ancestry rather than convergent evolution. Thus, most of the polymorphism at the DQ{alpha} locus in the human species was already present at least 5 million years ago in the ancestral species that gave rise to the chimpanzee, gorilla, and human lineages. However, one of the DQ{alpha} alleles may have arisen after speciation by recombination between two ancestral alleles.« less
Zhang, Suhua; Sun, Kuan; Bian, Yingnan; Zhao, Qi; Wang, Zheng; Ji, Chaoneng; Li, Chengtao
2015-12-14
InDels are short-length polymorphisms characterized by low mutation rates, high inter-population diversity, short amplicon strategy and simplicity of laboratory analysis. This work describes the developmental validation of an X-InDels panel amplifying 18 bi-allelic markers and Amelogenin in one single PCR system. Developmental validation indicated that this novel panel was reproducible, accurate, sensitive and robust for forensic application. Sensitivity testing of the panel was such that a full profile was obtainable even with 125 pg of human DNA with intra-locus balance above 70%. Specificity testing was demonstrated by the lack of cross-reactivity with a variety of commonly encountered animal species and microorganisms. For the stability testing in cases of PCR inhibition, full profiles have been obtained with hematin (≤1000 μM) and humic acid (≤150 ng/μL). For the forensic investigation of the 18 X-InDels in the HAN population of China, no locus deviated from the Hardy-Weinberg equilibrium and linkage disequilibrium. Since they are independent from each other, the CDPfemale was 0.999999726 and CDPmale was 0.999934223. The forensic parameters suggested that this X-Indel panel is polymorphic and informative, which provides valuable X-linked information for deficient relationship cases where autosomal markers are uninformative.
Zhang, Suhua; Sun, Kuan; Bian, Yingnan; Zhao, Qi; Wang, Zheng; Ji, Chaoneng; Li, Chengtao
2015-01-01
InDels are short-length polymorphisms characterized by low mutation rates, high inter-population diversity, short amplicon strategy and simplicity of laboratory analysis. This work describes the developmental validation of an X-InDels panel amplifying 18 bi-allelic markers and Amelogenin in one single PCR system. Developmental validation indicated that this novel panel was reproducible, accurate, sensitive and robust for forensic application. Sensitivity testing of the panel was such that a full profile was obtainable even with 125 pg of human DNA with intra-locus balance above 70%. Specificity testing was demonstrated by the lack of cross-reactivity with a variety of commonly encountered animal species and microorganisms. For the stability testing in cases of PCR inhibition, full profiles have been obtained with hematin (≤1000 μM) and humic acid (≤150 ng/μL). For the forensic investigation of the 18 X-InDels in the HAN population of China, no locus deviated from the Hardy–Weinberg equilibrium and linkage disequilibrium. Since they are independent from each other, the CDPfemale was 0.999999726 and CDPmale was 0.999934223. The forensic parameters suggested that this X-Indel panel is polymorphic and informative, which provides valuable X-linked information for deficient relationship cases where autosomal markers are uninformative. PMID:26655948
Shrivastava, Divya; Verma, Priyanka; Bhatia, Sabhyata
2014-09-01
Limited availability of validated, polymorphic microsatellite markers in mung bean (Vigna radiata), an important food legume of India, has been a major hurdle towards its improvement and higher yield. The present study was undertaken in order to develop a new set of microsatellite markers and utilize them for the analysis of genetic diversity within mung bean accessions from India. A GA/CT enriched library was constructed from V. radiata which resulted in 1,250 putative recombinant clones of which 850 were sequenced. SSR motifs were identified and their flanking sequences were utilized to design 328 SSR primer pairs. Of these, 48 SSR markers were employed for assessing genetic diversity among 76 mung bean accessions from various geographical locations in India. Two hundred and thirty four alleles with an average of 4.85 alleles per locus were detected at 48 loci. The polymorphic information content (PIC) per locus varied from 0.1 to 0.88 (average: 0.49 per locus). The observed and expected heterozygosities ranged from 0.40 to 0.95 and 0.40 to 0.81 respectively. Based on Jaccard's similarity matrix, a dendrogram was constructed using the unweighted pair-group method with arithmetic averages (UPGMA) analysis which revealed that one accession from Bundi, Rajasthan was clustered out separately while remaining accessions were grouped into two major clusters. The markers generated in this study will help in expanding the repertoire of the available SSR markers thereby facilitating analysis of genetic diversity, molecular mapping and ultimately broadening the scope for genetic improvement of this legume.
Carter, Tamar E; Boulter, Alexis; Existe, Alexandre; Romain, Jean R; St Victor, Jean Yves; Mulligan, Connie J; Okech, Bernard A
2015-03-01
Antimalarial drugs are a key tool in malaria elimination programs. With the emergence of artemisinin resistance in southeast Asia, an effort to identify molecular markers for surveillance of resistant malaria parasites is underway. Non-synonymous mutations in the kelch propeller domain (K13-propeller) in Plasmodium falciparum have been associated with artemisinin resistance in samples from southeast Asia, but additional studies are needed to characterize this locus in other P. falciparum populations with different levels of artemisinin use. Here, we sequenced the K13-propeller locus in 82 samples from Haiti, where limited government oversight of non-governmental organizations may have resulted in low-level use of artemisinin-based combination therapies. We detected a single-nucleotide polymorphism (SNP) at nucleotide 1,359 in a single isolate. Our results contribute to our understanding of the global genomic diversity of the K13-propeller locus in P. falciparum populations. © The American Society of Tropical Medicine and Hygiene.
Souza, Helena A V; Collevatti, Rosane G; Lemos-Filho, José P; Santos, Fabrício R; Lovato, Maria Bernadete
2012-03-01
Microsatellite markers were developed for Dimorphandra mollis (Leguminosae), a widespread tree in the Brazilian cerrado (a savanna-like vegetation). Microsatellite markers were developed from an enriched library. The analyses of polymorphism were based on 56 individuals from three populations. Nine microsatellite loci were polymorphic, with the number of alleles per locus ranging from three to 10 across populations. The observed and expected heterozygosities per locus and population ranged from 0.062 to 0.850 and from 0.062 to 0.832, respectively. These microsatellites provide an efficient tool for population genetics studies and will be used to assess the genetic diversity and spatial genetic structure of D. mollis.
Picq, Sandrine; Santoni, Sylvain; Lacombe, Thierry; Latreille, Muriel; Weber, Audrey; Ardisson, Morgane; Ivorra, Sarah; Maghradze, David; Arroyo-Garcia, Rosa; Chatelet, Philippe; This, Patrice; Terral, Jean-Frédéric; Bacilieri, Roberto
2014-09-03
In Vitis vinifera L., domestication induced a dramatic change in flower morphology: the wild sylvestris subspecies is dioecious while hermaphroditism is largely predominant in the domesticated subsp. V. v. vinifera. The characterisation of polymorphisms in genes underlying the sex-determining chromosomal region may help clarify the history of domestication in grapevine and the evolution of sex chromosomes in plants. In the genus Vitis, sex determination is putatively controlled by one major locus with three alleles, male M, hermaphrodite H and female F, with an allelic dominance M > H > F. Previous genetic studies located the sex locus on chromosome 2. We used DNA polymorphisms of geographically diverse V. vinifera genotypes to confirm the position of this locus, to characterise the genetic diversity and traces of selection in candidate genes, and to explore the origin of hermaphroditism. In V. v. sylvestris, a sex-determining region of 154.8 kb, also present in other Vitis species, spans less than 1% of chromosome 2. It displays haplotype diversity, linkage disequilibrium and differentiation that typically correspond to a small XY sex-determining region with XY males and XX females. In male alleles, traces of purifying selection were found for a trehalose phosphatase, an exostosin and a WRKY transcription factor, with strikingly low polymorphism levels between distant geographic regions. Both diversity and network analysis revealed that H alleles are more closely related to M than to F alleles. Hermaphrodite alleles appear to derive from male alleles of wild grapevines, with successive recombination events allowing import of diversity from the X into the Y chromosomal region and slowing down the expansion of the region into a full heteromorphic chromosome. Our data are consistent with multiple domestication events and show traces of introgression from other Asian Vitis species into the cultivated grapevine gene pool.
Nakano, Michiharu; Shimada, Takehiko; Endo, Tomoko; Fujii, Hiroshi; Nesumi, Hirohisa; Kita, Masayuki; Ebina, Masumi; Shimizu, Tokurou; Omura, Mitsuo
2012-02-01
Polyembryony, in which multiple somatic nucellar cell-derived embryos develop in addition to the zygotic embryo in a seed, is common in the genus Citrus. Previous genetic studies indicated polyembryony is mainly determined by a single locus, but the underlying molecular mechanism is still unclear. As a step towards identification and characterization of the gene or genes responsible for nucellar embryogenesis in Citrus, haplotype-specific physical maps around the polyembryony locus were constructed. By sequencing three BAC clones aligned on the polyembryony haplotype, a single contiguous draft sequence consisting of 380 kb containing 70 predicted open reading frames (ORFs) was reconstructed. Single nucleotide polymorphism genotypes detected in the sequenced genomic region showed strong association with embryo type in Citrus, indicating a common polyembryony locus is shared among widely diverse Citrus cultivars and species. The arrangement of the predicted ORFs in the characterized genomic region showed high collinearity to the genomic sequence of chromosome 4 of Vitis vinifera and linkage group VI of Populus trichocarpa, suggesting that the syntenic relationship among these species is conserved even though V. vinifera and P. trichocarpa are non-apomictic species. This is the first study to characterize in detail the genomic structure of an apomixis locus determining adventitious embryony. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Iskow, Rebecca C.; Austermann, Christian; Scharer, Christopher D.; Raj, Towfique; Boss, Jeremy M.; Sunyaev, Shamil; Price, Alkes; Stranger, Barbara; Simon, Viviana; Lee, Charles
2013-01-01
Ancient population structure shaping contemporary genetic variation has been recently appreciated and has important implications regarding our understanding of the structure of modern human genomes. We identified a ∼36-kb DNA segment in the human genome that displays an ancient substructure. The variation at this locus exists primarily as two highly divergent haplogroups. One of these haplogroups (the NE1 haplogroup) aligns with the Neandertal haplotype and contains a 4.6-kb deletion polymorphism in perfect linkage disequilibrium with 12 single nucleotide polymorphisms (SNPs) across diverse populations. The other haplogroup, which does not contain the 4.6-kb deletion, aligns with the chimpanzee haplotype and is likely ancestral. Africans have higher overall pairwise differences with the Neandertal haplotype than Eurasians do for this NE1 locus (p<10−15). Moreover, the nucleotide diversity at this locus is higher in Eurasians than in Africans. These results mimic signatures of recent Neandertal admixture contributing to this locus. However, an in-depth assessment of the variation in this region across multiple populations reveals that African NE1 haplotypes, albeit rare, harbor more sequence variation than NE1 haplotypes found in Europeans, indicating an ancient African origin of this haplogroup and refuting recent Neandertal admixture. Population genetic analyses of the SNPs within each of these haplogroups, along with genome-wide comparisons revealed significant FST (p = 0.00003) and positive Tajima's D (p = 0.00285) statistics, pointing to non-neutral evolution of this locus. The NE1 locus harbors no protein-coding genes, but contains transcribed sequences as well as sequences with putative regulatory function based on bioinformatic predictions and in vitro experiments. We postulate that the variation observed at this locus predates Human–Neandertal divergence and is evolving under balancing selection, especially among European populations. PMID:23593015
DNA variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato).
Kado, Tomoyuki; Yoshimaru, Hiroshi; Tsumura, Yoshihiko; Tachida, Hidenori
2003-01-01
We investigated the nucleotide variation of a conifer, Cryptomeria japonica, and the divergence between this species and its closest relative, Taxodium distichum, at seven nuclear loci (Acl5, Chi1, Ferr, GapC, HemA, Lcyb, and Pat). Samples of C. japonica were collected from three areas, Kantou-Toukai, Hokuriku, and Iwate. No apparent geographic differentiation was found among these samples. However, the frequency spectrum of the nucleotide polymorphism revealed excesses of intermediate-frequency variants, which suggests that the population was not panmictic and a constant size in the past. The average nucleotide diversity, pi, for silent sites was 0.00383. However, values of pi for silent sites vary among loci. Comparisons of polymorphism to divergence among loci (the HKA test) showed that the polymorphism at the Acl5 locus was significantly lower. We also observed a nearly significant excess of replacement polymorphisms at the Lcyb locus. These results suggested possibilities of natural selection acting at some of the loci. Intragenic recombination was detected only once at the Chi1 locus and was not detected at the other loci. The low level of population recombination rate, 4Nr, seemed to be due to both low level of recombination, r, and small population size, N. PMID:12930759
Villanea, Fernando A.; Safi, Kristin N.; Busch, Jeremiah W.
2015-01-01
The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (Ne ≤ 50) and much smaller (N e ≤ 25) for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas. PMID:25946124
Guenni, K; Aouadi, M; Chatti, K; Salhi-Hannachi, A
2016-10-17
Sequence-related amplified polymorphism (SRAP) markers preferentially amplify open reading frames and were used to study the genetic diversity of Tunisian pistachio. In the present study, 43 Pistacia vera accessions were screened using seven SRAP primer pairs. A total of 78 markers was revealed (95.12%) with an average polymorphic information content of 0.850. The results suggest that there is strong genetic differentiation, which characterizes the local resources (G ST = 0.307). High gene flow (N m = 1.127) among groups was explained by the exchange of plant material among regions. Analysis of molecular variance revealed significant differences within groups and showed that 73.88% of the total genetic diversity occurred within groups, whereas the remaining 26.12% occurred among groups. Bayesian clustering and principal component analysis identified three pools, El Guettar, Pollenizers, and the rest of the pistachios belonging to the Gabès, Kasserine, and Sfax localities. Bayesian analysis revealed that El Guettar and male genotypes were assigned with more than 80% probability. The BayeScan method proposed that locus 59 (F13-R9) could be used in the development of sex-linked SCAR markers from SRAP since it is a commonly detected locus in comparisons involving the Pollenizers group. This is the first application of SRAP markers for the assessment of genetic diversity in Tunisian germplasm of P. vera. Such information will be useful to define conservation strategies and improvement programs for this species.
Analysis of mutational changes at the HLA locus in single human sperm.
Huang, M M; Erlich, H A; Goodman, M F; Arnheim, N
1995-01-01
Using a simple and efficient single sperm PCR and direct sequencing method, we screened for HLA-DPB1 gene mutations that may give rise to new alleles at this highly polymorphic locus. More than 800 single sperm were studied from a heterozygous individual whose two alleles carried 16 nucleotide sequence differences clustered in six polymorphic regions. A potential microgene conversion event was detected. Unrepaired heteroduplex DNA similar to that which gives rise to postmeiotic segregation events in yeast was observed in three cases. Control experiments also revealed unusual sperm from DPB1 homozygous individuals. The data may help explain allelic diversity in the MHC and suggest that a possible source of human mosaicism may be incomplete DNA mismatch repair during gametogenesis.
Molecular mechanisms of dominance evolution in Müllerian mimicry.
Llaurens, V; Joron, M; Billiard, S
2015-12-01
Natural selection acting on dominance between adaptive alleles at polymorphic loci can be sufficiently strong for dominance to evolve. However, the molecular mechanisms underlying such evolution are generally unknown. Here, using Müllerian mimicry as a case-study for adaptive morphological variation, we present a theoretical analysis of the invasion of dominance modifiers altering gene expression through different molecular mechanisms. Toxic species involved in Müllerian mimicry exhibit warning coloration, and converge morphologically with other toxic species of the local community, due to positive frequency-dependent selection acting on these colorations. Polymorphism in warning coloration may be maintained by migration-selection balance with fine scale spatial heterogeneity. We modeled a dominance modifier locus altering the expression of the warning coloration locus, targeting one or several alleles, acting in cis or trans, and either enhancing or repressing expression. We confirmed that dominance could evolve when balanced polymorphism was maintained at the color locus. Dominance evolution could result from modifiers enhancing one allele specifically, irrespective of their linkage with the targeted locus. Nonspecific enhancers could also persist in populations, at frequencies tightly depending on their linkage with the targeted locus. Altogether, our results identify which mechanisms of expression alteration could lead to dominance evolution in polymorphic mimicry. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
We characterized 108 polymorphic microsatellite loci for the mummichog (Fundulus heteroclitus), an Atlantic coastal killifish. Allelic diversity among 26 individuals ranged between 2 and 15 alleles per locus, while expected heterozygosity ranged from 0.075 to 0.904. Significant ...
Selinger, D A; Chandler, V L
1999-12-21
The b locus encodes a transcription factor that regulates the expression of genes that produce purple anthocyanin pigment. Different b alleles are expressed in distinct tissues, causing tissue-specific anthocyanin production. Understanding how phenotypic diversity is produced and maintained at the b locus should provide models for how other regulatory genes, including those that influence morphological traits and development, evolve. We have investigated how different levels and patterns of pigmentation have evolved by determining the phenotypic and evolutionary relationships between 18 alleles that represent the diversity of b alleles in Zea mays. Although most of these alleles have few phenotypic differences, five alleles have very distinct tissue-specific patterns of pigmentation. Superimposing the phenotypes on the molecular phylogeny reveals that the alleles with strong and distinctive patterns of expression are closely related to alleles with weak expression, implying that the distinctive patterns have arisen recently. We have identified apparent insertions in three of the five phenotypically distinct alleles, and the fourth has unique upstream restriction fragment length polymorphisms relative to closely related alleles. The insertion in B-Peru has been shown to be responsible for its unique expression and, in the other two alleles, the presence of the insertion correlates with the phenotype. These results suggest that major changes in gene expression are probably the result of large-scale changes in DNA sequence and/or structure most likely mediated by transposable elements.
Leav, Brett A.; Mackay, Malanie R.; Anyanwu, Akudo; O' Connor, Roberta M.; Cevallos, Ana Maria; Kindra, Gurpreet; Rollins, Nigel C.; Bennish, Michael L.; Nelson, Richard G.; Ward, Honorine D.
2002-01-01
Cryptosporidium sp. is a significant cause of diarrheal disease, particularly in human immunodeficiency virus (HIV)-infected patients in developing countries. We recently cloned and sequenced several alleles of the highly polymorphic single-copy Cryptosporidium parvum gene Cpgp40/15. This gene encodes a precursor protein that is proteolytically cleaved to yield mature cell surface glycoproteins gp40 and gp15, which are implicated in zoite attachment to and invasion of enterocytes. The most-striking feature of the Cpgp40/15 alleles and proteins is their unprecedented degree of sequence polymorphism, which is far greater than that observed for any other gene or protein studied in C. parvum to date. In this study we analyzed nucleic acid and amino acid sequence polymorphism at the Cpgp40/15 locus of 20 C. parvum isolates from HIV-infected South African children. Fifteen isolates exhibited one of four previously identified genotype I alleles at the Cpgp40/15 locus (Ia, Ib, Ic, and Id), while five displayed a novel set of polymorphisms that defined a new Cpgp40/15 genotype I allele, designated genotype Ie. Surprisingly, only 15 of these isolates exhibited concordant type I alleles at the thrombospondin-related adhesive protein of Cryptosporidium and Cryptosporidium oocyst wall protein loci, while five isolates (all of which displayed Cpgp40/15 genotype Ic alleles) displayed genotype II alleles at these loci. Furthermore, the last five isolates also manifested chimeric genotype Ic/Ib or Ic/II alleles at the Cpgp40/15 locus, raising the possibility of sexual recombination within and between prototypal parasite genotypes. Lastly, children infected with isolates having genotype Ic alleles were significantly older than those infected with isolates displaying other genotype I alleles. PMID:12065532
Multivariate analysis of molecular and morphological diversity in fig (Ficus carica L.)
USDA-ARS?s Scientific Manuscript database
Genetic polymorphism across 15 microsatellite loci among 194 fig accessions including Common, Smyrna, San Pedro, and Caprifig were analyzed using a cluster analysis (CA) and the principal components analysis (PCA). The collection was moderately variable with observed number of alleles per locus rang...
Biradar, Jyoti; Madhuri, T.; N. Nataraja, Karaba; Sreeman, Sheshshayee M.
2016-01-01
Improving mulberry leaf production with enhanced leaf quality holds the key to sustain the ever increasing demand for silk. Adoption of modern genomic approaches for crop improvement is severely constrained by the lack of sufficient molecular markers in mulberry. Here, we report development and validation of 206 EST derived SSR markers using transcriptome data generated from leaf tissue of a drought tolerant mulberry genotype, Dudia white. Analysis of transcriptome data containing 10169 EST sequences, revealed 1469 sequences with microsatellite repeat motifs. We designed a total of 264 primers to the most appropriate repeat regions, of which 206 were locus specific. These markers were validated with 25 diverse mulberry accessions and their transferability to closely related species belonging to family Moraceae was examined. Of these markers, 189 revealed polymorphism with up to 8 allelic forms across mulberry species, genotypes and varieties with a mean of 3.5 alleles per locus. The markers also revealed higher polymorphic information content of 0.824 among the accessions. These markers effectively segregated the species and genotypes and hence, can be used for both diversity analysis and in breeding applications. Around 40% of these markers were transferable to other closely related species. Along with the other genic and genomic markers, we report a set of over 750 co-dominant markers. Using these markers we constructed the first genetic linkage map of mulberry exclusively with co-dominant markers. PMID:27669004
Meiotic drive influences the outcome of sexually antagonistic selection at a linked locus.
Patten, M M
2014-11-01
Most meiotic drivers, such as the t-haplotype in Mus and the segregation distorter (SD) in Drosophila, act in a sex-specific manner, gaining a transmission advantage through one sex although suffering only the fitness costs associated with the driver in the other. Their inheritance is thus more likely through one of the two sexes, a property they share with sexually antagonistic alleles. Previous theory has shown that pairs of linked loci segregating for sexually antagonistic alleles are more likely to remain polymorphic and that linkage disequilibrium accrues between them. I probe this similarity between drive and sexual antagonism and examine the evolution of chromosomes experiencing these selection pressures simultaneously. Reminiscent of previous theory, I find that: the opportunity for polymorphism increases for a sexually antagonistic locus that is physically linked to a driving locus; the opportunity for polymorphism at a driving locus also increases when linked to a sexually antagonistic locus; and stable linkage disequilibrium accompanies any polymorphic equilibrium. Additionally, I find that drive at a linked locus favours the fixation of sexually antagonistic alleles that benefit the sex in which drive occurs. Further, I show that under certain conditions reduced recombination between these two loci is selectively favoured. These theoretical results provide clear, testable predictions about the nature of sexually antagonistic variation on driving chromosomes and have implications for the evolution of genomic architecture. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Bean, Christopher J.; Boulet, Sheree L.; Yang, Genyan; Payne, Amanda B.; Ghaji, Nafisa; Pyle, Meredith E.; Hooper, W. Craig; Bhatnagar, Pallav; Keefer, Jeffrey; Barron-Casella, Emily A.; Casella, James F.; DeBaun, Michael R.
2013-01-01
Summary Genetic diversity at the human β-globin locus has been implicated as a modifier of sickle cell anaemia (SCA) severity. However, haplotypes defined by restriction fragment length polymorphism sites across the β-globin locus have not been consistently associated with clinical phenotypes. To define the genetic structure at the β-globin locus more thoroughly, we performed high-density single nucleotide polymorphism (SNP) mapping in 820 children who were homozygous for the sickle cell mutation (HbSS). Genotyping results revealed very high linkage disequilibrium across a large region spanning the locus control region and the HBB (β-globin gene) cluster. We identified three predominant haplotypes accounting for 96% of the βS-carrying chromosomes in this population that could be distinguished using a minimal set of common SNPs. Consistent with previous studies, fetal haemoglobin level was significantly associated with βS-haplotypes. After controlling for covariates, an association was detected between haplotype and rate of hospitalization for acute chest syndrome (ACS) (incidence rate ratio 0.51, 95% confidence interval 0.29–0.89) but not incidence rate of vaso-occlusive pain or presence of silent cerebral infarct (SCI). Our results suggest that these SNP-defined βS-haplotypes may be associated with ACS, but not pain or SCI in a study population of children with SCA. PMID:23952145
Genetic diversity analysis in the section Caulorrhizae (genus Arachis) using microsatellite markers.
Palmieri, Darío A; Bechara, Marcelo D; Curi, Rogério A; Monteiro, Jomar P; Valente, Sérgio E S; Gimenes, Marcos A; Lopes, Catalina R
2010-01-01
Diversity in 26 microsatellite loci from section Caulorrhizae germplasm was evaluated by using 33 accessions of A. pintoi Krapov. & W.C. Gregory and ten accessions of Arachis repens Handro. Twenty loci proved to be polymorphic and a total of 196 alleles were detected with an average of 9.8 alleles per locus. The variability found in those loci was greater than the variability found using morphological characters, seed storage proteins and RAPD markers previously used in this germplasm. The high potential of these markers to detect species-specific alleles and discriminate among accessions was demonstrated. The set of microsatellite primer pairs developed by our group for A. pintoi are useful molecular tools for evaluating Section Caulorrhizae germplasm, as well as that of species belonging to other Arachis sections.
Genetic diversity analysis in the section Caulorrhizae (genus Arachis) using microsatellite markers
2010-01-01
Diversity in 26 microsatellite loci from section Caulorrhizae germplasm was evaluated by using 33 accessions of A. pintoi Krapov. & W.C. Gregory and ten accessions of Arachis repens Handro. Twenty loci proved to be polymorphic and a total of 196 alleles were detected with an average of 9.8 alleles per locus. The variability found in those loci was greater than the variability found using morphological characters, seed storage proteins and RAPD markers previously used in this germplasm. The high potential of these markers to detect species-specific alleles and discriminate among accessions was demonstrated. The set of microsatellite primer pairs developed by our group for A. pintoi are useful molecular tools for evaluating Section Caulorrhizae germplasm, as well as that of species belonging to other Arachis sections. PMID:21637613
Francisco, Jessica N. C.; Nazareno, Alison G.; Lohmann, Lúcia G.
2016-01-01
Premise of the study: In this study, we developed chloroplast microsatellite markers (cpSSRs) for Pachyptera kerere (Bignoniaceae) to investigate the population structure and genetic diversity of this species. Methods and Results: We used Illumina HiSeq data to reconstruct the chloroplast genome of P. kerere by a combination of de novo and reference-guided assembly. We then used the chloroplast genome to develop a set of cpSSRs from intergenic regions. Overall, 24 primer pairs were designed, 21 of which amplified successfully and were polymorphic, presenting three to nine alleles per locus. The unbiased haploid diversity per locus varied from 0.207 (Pac28) to 0.817 (Pac04). All but one locus amplified for all other taxa of Pachyptera. Conclusions: The markers reported here will serve as a basis for studies to assess the genetic structure and phylogeographic history of Pachyptera. PMID:27672522
Geffroy, V; Sicard, D; de Oliveira, J C; Sévignac, M; Cohen, S; Gepts, P; Neema, C; Langin, T; Dron, M
1999-09-01
The recent cloning of plant resistance (R) genes and the sequencing of resistance gene clusters have shed light on the molecular evolution of R genes. However, up to now, no attempt has been made to correlate this molecular evolution with the host-pathogen coevolution process at the population level. Cross-inoculations were carried out between 26 strains of the fungal pathogen Colletotrichum lindemuthianum and 48 Phaseolus vulgaris plants collected in the three centers of diversity of the host species. A high level of diversity for resistance against the pathogen was revealed. Most of the resistance specificities were overcome in sympatric situations, indicating an adaptation of the pathogen to the local host. In contrast, plants were generally resistant to allopatric strains, suggesting that R genes that were efficient against exotic strains but had been overcome locally were maintained in the plant genome. These results indicated that coevolution processes between the two protagonists led to a differentiation for resistance in the three centers of diversity of the host. To improve our understanding of the molecular evolution of these different specificities, a recombinant inbred (RI) population derived from two representative genotypes of the Andean (JaloEEP558) and Mesoamerican (BAT93) gene pools was used to map anthracnose specificities. A gene cluster comprising both Andean (Co-y; Co-z) and Mesoamerican (Co-9) host resistance specificities was identified, suggesting that this locus existed prior to the separation of the two major gene pools of P. vulgaris. Molecular analysis revealed a high level of complexity at this locus. It harbors 11 restriction fragment length polymorphisms when R gene analog (RGA) clones are used. The relationship between the coevolution process and diversification of resistance specificities at resistance gene clusters is discussed.
Khitrinskaia, I Iu; Khar'kov, V N; Voevoda, M I; Stepanova, V A
2014-01-01
We for the first time have examined the autosomal gene pool of the Siberia, Central Asian and the Far East populations (27 populations of 12 ethnic groups) using a set of polymorphic Alu insertions in the human genome. The results of the analysis testify (i) to a significant level of genetic diversity in the Northern Eurasian populations and (ii) to a considerable differentiation of gene pool in the population of this region. It has been shown that at the CD4 locus, the frequency of Alu (-) is inversely related to the Mongoloid component of the population, the lowest and highest frequencies of the Alu deletion at locus CD4 were recorded respectively in Eskimo (0.012) and Russian and Ukrainian (0.35). The analysis of gene flow proved Caucasoid populations (Russian, Tajik and Uzbek), as well as those of Turkic ethnic groups from the Southern Siberia (Altaians and Tuvinians) and Khanty and Mansy populations to be the recipients of a considerable gene flow from the outside of the concerned population system, as compared with the East Siberian and the Far East ethnic groups. The results of the correlation analysis received with use polymorphic Alu insertion testify to the greatest correlation of genetic distances with anthropological characteristics of populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deka, R.; DeCroo, S.; Ferrell, R.E.
1992-12-01
The authors have analyzed the allele frequency distribution at the hypervariable locus 3[prime] to the apolipoprotein B gene (ApoB 3[prime] VNTR) in five well-defined human populations (Kacharis of northeast India, New Guinea Highlanders of Papua New Guinea, Dogrib Indians of Canada, Pehuenche Indians of Chile, and a relatively homogeneous Caucasian population of northern German extraction) by using the PCR technique. A total of 12 segregating alleles were detected in the pooled sample of 319 individuals. A fairly consistent bimodal pattern of allele frequency distribution, apparent in most of these geographically and genetically diverse populations, suggests that the ApoB 3[prime] VNTRmore » polymorphism predates the geographic dispersal of ancestral human populations. In spite of the observed high degree of polymorphism at this locus (expected heterozygosity levels 55%-78%), the genotype distributions in all populations (irrespective of their tribal or cosmopolitan nature) conform to their respective Hardy-Weinberg predictions. Furthermore, analysis of the congruence between expected heterozygosity and the observed number of alleles reveals that, in general, the allele frequency distributions at this locus are in agreement with the predictions of the classical mutation-drift models. The data also show that alleles that are shared by all populations have the highest average frequency within populations. These findings demonstrate the potential utility of highly informative hypervariable loci such as the ApoB 3[prime] VNTR locus in population genetic research, as well as in forensic medicine and determination of biological relatedness of individuals. 38 refs., 2 figs., 3 tabs.« less
Perez, Manolo F; Téo, Mariana F; Zappi, Daniela C; Taylor, Nigel P; Moraes, Evandro M
2011-08-01
Microsatellite primers were developed in Pilosocereus machrisii, a columnar cactus with a patchy distribution in eastern tropical South America, to assess its genetic diversity and population structure. Eleven microsatellite markers were developed, of which one was monomorphic among 51 individuals from two populations. The number of alleles per polymorphic locus ranged from two to eight, and the total number of alleles was 57. From the 11 isolated loci, nine were successfully amplified in the other four Pilosocereus species. The results showed that these markers will be useful for studies of genetic diversity, patterns of gene flow, and population genetic structure in P. machrisii, as well as across other congeneric species.
Genetic variation at microsatellite loci in the tropical herb Aphelandra aurantiaca (Acanthaceae).
Suárez-Montes, Pilar; Tapia-López, Rosalinda; Núñez-Farfán, Juan
2015-11-01
To assess the effect of forest fragmentation on genetic variation and population structure of Aphelandra aurantiaca (Acanthaceae), a tropical and ornamental herbaceous perennial plant, we developed the first microsatellite primers for the species. Fourteen microsatellite markers were isolated and characterized from A. aurantiaca genomic libraries enriched for di-, tri-, and tetranucleotide repeat motifs. Polymorphism was evaluated in 107 individuals from four natural populations. Twelve out of 14 genetic markers were polymorphic. The number of alleles per locus ranged from two to 12, and the observed and expected heterozygosities ranged from 0.22 to 0.96 and from 0.20 to 0.87, respectively. Fixation indices ranged from -0.41 to 0.44. These newly developed microsatellite markers for A. aurantiaca will be useful for future population genetic studies, specifically to detect the possible loss of genetic diversity due to habitat fragmentation.
Li, Muwang; Shen, Li; Xu, Anying; Miao, Xuexia; Hou, Chengxiang; Sun, Pingjiang; Zhang, Yuehua; Huang, Yongping
2005-10-01
To determine genetic relationships among strains of silkworm, Bombyx mori L., 31 strains with different origins, number of generations per year, number of molts per generation, and morphological characters were studied using simple sequence repeat (SSR) markers. Twenty-six primer pairs flanking microsatellite sequences in the silkworm genome were assayed. All were polymorphic and unambiguously separated silkworm strains from each other. A total of 188 alleles were detected with a mean value of 7.2 alleles/locus (range 2-17). The average heterozygosity value for each SSR locus ranged from 0 to 0.60, and the highest one was 0.96 (Fl0516 in 4013). The mean polymorphism index content (PIC) was 0.66 (range 0.12-0.89). Unweighted pair group method with arithmetic means (UPGMA) cluster analysis of Nei's genetic distance grouped silkworm strains based on their origin. Seven major ecotypic silkworm groups were analyzed. Principal components analysis (PCA) for SSR data support their UPGMA clustering. The results indicated that SSR markers are an efficient tool for fingerprinting cultivars and conducting genetic-diversity studies in the silkworm.
Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines.
Leal, A A; Mangolin, C A; do Amaral, A T; Gonçalves, L S A; Scapim, C A; Mott, A S; Eloi, I B O; Cordovés, V; da Silva, M F P
2010-01-05
Using only one type of marker to quantify genetic diversity generates results that have been questioned in terms of reliability, when compared to the combined use of different markers. To compare the efficiency of the use of single versus multiple markers, we quantified genetic diversity among 10 S(7) inbred popcorn lines using both RAPD and SSR markers, and we evaluated how well these two types of markers discriminated the popcorn genotypes. These popcorn genotypes: "Yellow Pearl Popcorn" (P1-1 and P1-5), "Zélia" (P1-2 and P1-4), "Curagua" (P1-3), "IAC 112" (P9-1 and P9-2), "Avati Pichinga" (P9-3 and P9-5), and "Pisankalla" (P9-4) have different soil and climate adaptations. Using RAPD marker analysis, each primer yielded bands of variable intensities that were easily detected, as well as non-specific bands, which were discarded from the analysis. The nine primers used yielded 126 bands, of which 104 were classified as polymorphic, giving an average of 11.6 polymorphisms per primer. Using SSR procedures, the number of alleles per locus ranged from two to five, giving a total of 47 alleles for the 14 SSR loci. When comparing the groups formed using SSR and RAPD markers, there were similarities in the combinations of genotypes from the same genealogy. Correlation between genetic distances obtained through RAPD and SSR markers was relatively high (0.5453), indicating that both techniques are efficient for evaluating genetic diversity in the genotypes of popcorn that we evaluated, though RAPDs yielded more polymorphisms.
Perry, G.M.L.; King, T.L.; St. -Cyr, J.; Valcourt, M.; Bernatchez, L.
2005-01-01
The brook charr (Salvelinus fontinalis; Osteichthyes: Salmonidae) is a phenotypically diverse fish species inhabiting much of North America. But relatively few genetic diagnostic resources are available for this fish species. We isolated 41 microsatellites from S. fontinalis polymorphic in one or more species of salmonid fish. Thirty-seven were polymorphic in brook charr, 15 in the congener Arctic charr (Salvelinus alpinus) and 14 in the lake charr (Salvelinus namaycush). Polymorphism was also relatively high in Oncorhynchus, where 21 loci were polymorphic in rainbow trout (Oncorhynchus mykiss) and 16 in cutthroat trout (Oncorhynchus clarkii) but only seven and four microsatellite loci were polymorphic in the more distantly related lake whitefish (Coregonus clupeaformis) and Atlantic salmon (Salmo salar), respectively. One duplicated locus (Sfo228Lav) was polymorphic at both duplicates in S. fontinalis. ?? 2005 Blackwell Publishing Ltd.
Staykova, Teodora
2008-01-01
Isoenzymes are very suitable markers for the study of the inter-breed diversity of the silkworm Bombyx mon L. (Lepidoptera: Bombycidae). More than 250 breeds are raised in Bulgaria, which are not very well studied with regard to their isoenzymic polymorphism. Polymorphism of nonspecific esterases from pupal haemolymph was analyzed, as well as of phosphoglucomutase from different organs of larvae, pupae and imago, from eight introduced breeds. Electrophoresis in polyacrylamide gels was used. A polylocus control of nonspecific esterases, and possible monolocus control of phosphoglucomutase was ascertained. Biallele and triallele polymorphism of phosphoglucomutase locus and in three of the esterase loci was determined. The allelic frequencies of the polymorphic loci in each breed were analyzed. Inter-breed differences were found in different allelic frequencies, different heterozygosity and polymorphism.
Mitchell, R J; Earl, L; Williams, J W
1993-06-01
The part of the Y chromosome not involved in recombination has been found to exhibit an extremely low frequency of DNA restriction fragment length polymorphisms (RFLPs) compared with either the X chromosome or autosomes. Also, the few Y-chromosome-specific RFLPs that have been identified have rarely been examined in more than one population. In this study two Y-chromosome-specific RFLPs at loci DYS11 and DYZ8 are examined in Italian and Greek migrants to Australia. The frequency of the rarer (8.5-kb) TaqI allele at DYS11 was 21% in Italians and even greater (34%) in Greeks. There is an inverse relationship between the frequency of the 8.5-kb allele and latitude on the Italian mainland; the regional variation (based on subject's birthplace in Italy) was significant (p < 0.01). The incidence of the 8.5-kb allele in southern Italy may reflect Greek colonization during pre-Roman times when this region was part of Magna Graecia. The frequency of the variant TaqI allele (7, 4 kb) at the DYZ8 locus is much higher in both Greeks and Italians (31% in each) than in Germans (5%), the only previously examined population. DYZ8 shows considerably less variation than DYS11 across the regional divisions of both Greece and Italy. The present findings, when added to the few other data available, indicate that these two Y-chromosome-specific loci are useful markers for investigating population affinities through the paternal line. Also, heterogeneity at these two loci (and added to that at the DYS1 locus) suggests that Mediterranean populations, compared with other groups, exhibit a high level of diversity of Y-chromosome-specific RFLPs.
Mehta, Nikita; Hagen, Ferry; Aamir, Sadaf; Singh, Sanjay K; Baghela, Abhishek
2017-12-01
Colletotrichum gloeosporioides is an economically important fungal pathogen causing substantial yield losses indifferent host plants. To understand the genetic diversity and molecular epidemiology of this fungus, we have developed a novel, high-resolution multi-locus microsatellite typing (MLMT) method. Bioinformatic analysis of C. gloeosporioides unannotated genome sequence yielded eight potential microsatellite loci, of which five, CG1 (GT) n , CG2 (GT1) n , CG3 (TC) n , CG4 (CT) n , and CG5 (CT1) n were selected for further study based on their universal amplification potential, reproducibility, and repeat number polymorphism. The selected microsatellites were used to analyze 31 strains of C. gloeosporioides isolated from 20 different host plants from India. All microsatellite loci were found to be polymorphic, and the approximate fragment sizes of microsatellite loci CG1, CG2, CG3, CG4, and CG5 were in ranges of 213-241, 197-227, 231-265, 209-275, and 132-188, respectively. Among the 31 isolates, 55 different genotypes were identified. The Simpson's index of diversity (D) values for the individual locus ranged from 0.79 to 0.92, with the D value of all combined five microsatellite loci being 0.99. Microsatellite data analysis revealed that isolates from Ocimum sanctum , Capsicum annuum (chili pepper), and Mangifera indica (mango) formed distinct clusters, therefore exhibited some level of correlation between certain genotypes and host. The developed MLMT method would be a powerful tool for studying the genetic diversity and any possible genotype-host correlation in C. gloeosporioides .
2013-01-01
Background Adoption of genomics based breeding has emerged as a promising approach for achieving comprehensive crop improvement. Such an approach is more relevant in the case of perennial species like mulberry. However, unavailability of genomic resources of co-dominant marker systems has been the major constraint for adopting molecular breeding to achieve genetic enhancement of Mulberry. The goal of this study was to develop and characterize a large number of locus specific genic and genomic SSR markers which can be effectively used for molecular characterization of mulberry species/genotypes. Result We analyzed a total of 3485 DNA sequences including genomic and expressed sequences (ESTs) of mulberry (Morus alba L.) genome. We identified 358 sequences to develop appropriate microsatellite primer pairs representing 222 genomic and 136 EST regions. Primers amplifying locus specific regions of Dudia white (a genotype of Morus alba L), were identified and 137 genomic and 51 genic SSR markers were standardized. A two pronged strategy was adopted to assess the applicability of these SSR markers using mulberry species and genotypes along with a few closely related species belonging to the family Moraceae viz., Ficus, Fig and Jackfruit. While 100% of these markers amplified specific loci on the mulberry genome, 79% were transferable to other related species indicating the robustness of these markers and the potential they hold in analyzing the molecular and genetic diversity among mulberry germplasm as well as other related species. The inherent ability of these markers in detecting heterozygosity combined with a high average polymorphic information content (PIC) of 0.559 ranging between 0.076 and 0.943 clearly demonstrates their potential as genomic resources in diversity analysis. The dissimilarity coefficient determined based on Neighbor joining method, revealed that the markers were successful in segregating the mulberry species, genotypes and other related species into distinct clusters. Conclusion We report a total of 188 genomic and genic SSR markers in Morus alba L. A large proportion of these markers (164) were polymorphic both among mulberry species and genotypes. A substantial number of these markers (149) were also transferable to other related species like Ficus, Fig and Jackfruit. The extent of polymorphism revealed and the ability to detect heterozygosity among the cross pollinated mulberry species and genotypes render these markers an invaluable genomic resource that can be utilized in assessing molecular diversity as well as in QTL mapping and subsequently mulberry crop improvement through MAS. PMID:24289047
Chloroplast microsatellite primers for cacao (Theobroma cacao) and other Malvaceae.
Yang, Ji Y; Motilal, Lambert A; Dempewolf, Hannes; Maharaj, Kamaldeo; Cronk, Q C B
2011-12-01
Chloroplast microsatellites were developed in Theobroma cacao to examine the genetic diversity of cacao cultivars in Trinidad and Tobago. Nine polymorphic microsatellites were designed from the chloroplast genomes of two T. cacao accessions. These microsatellites were tested in 95 hybrid accessions from Trinidad and Tobago. An average of 2.9 alleles per locus was found. These chloroplast microsatellites, particularly the highly polymorphic pentameric repeat, were useful in assessing genetic variation in T. cacao. In addition, these markers should also prove to be useful for population genetic studies in other species of Malvaceae.
Brennan, A C; Harris, S A; Hiscock, S J
2003-11-01
We recently estimated that as few as six S alleles represent the extent of S locus diversity in a British population of the self-incompatible (SI) coloniser Senecio squalidus (Oxford Ragwort). Despite the predicted constraints to mating imposed by such a low number of S alleles, S. squalidus maintains a strong sporophytic self-incompatibility (SSI) system and there is no evidence for a breakdown of SSI or any obvious negative reproductive consequences for this highly successful coloniser. The present paper assesses mating behaviour in an Oxford S. squalidus population through observations of its effect on spatial patterns of genetic diversity and thus the extent to which it is responsible for ameliorating the potentially detrimental reproductive consequences of low S allele diversity in British S. squalidus. A spatial autocorrelation (SA) treatment of S locus and allozyme polymorphism data for four loci indicates that mating events regularly occur at all the distance classes examined from 60 to 480 m throughout the entire sample population. Less SA is observed for S locus data than for allozyme data in accordance with the hypothesis that SSI and low diversity at the S locus are driving these large-scale mating events. The limited population structure at small distances of 60 m and less observed for SA analysis of the Me-2 locus and by F-statistics for all the allozyme data, is evidence of some local relatedness due to limited seed and pollen dispersal in S. squalidus. However, the overall impression of mating dynamics in this S. squalidus population is that of ample potential mating opportunities with many individuals at large population scales, indicating that reproductive success is not seriously affected by few S alleles available for mating interactions.
NASA Astrophysics Data System (ADS)
Karslı, Taki; Balcıoǧlu, Murat Soner
2017-04-01
The objective of this study was to assess genetic diversity of Güney Karaman Turkish local sheep breed. A total of 29 samples were genotyped by using 14 STR markers. All markers were polymorphic. The number of alleles in Güney Karaman sheep breed ranged from 3 to 11 per locus, with a mean of 7.42. The average observed and expected heterozygosity was 0.659 and 0.794, respectively. Mean inbreeding coefficient (Fis) value was found 0.175. The PIC values ranged from 0.569 to 0.860 with a mean of 0.743. The findings of this research demonstrate at moderate level gene diversity and heterozygosity with lower inbreeding in Güney Karaman sheep breed.
Letelier, Luis; Harvey, Nick; Valderrama, Aly; Stoll, Alexandra; González-Rodríguez, Antonio
2015-01-01
Premise of the study: Microsatellite primers were developed for the endemic Chilean tree Quillaja saponaria (Quillajaceae), a common member of the sclerophyllous Mediterranean forest, to investigate intraspecific patterns of genetic diversity and structure. Methods and Results: Using an enriched library, 12 polymorphic microsatellite loci were developed in Q. saponaria. All loci consisted of dinucleotide repeats. The average number of alleles per locus was 5.3 (2–13), with a total of 64 alleles recorded in 39 individuals from three populations. Conclusions: The microsatellite markers described here are the first characterized for Q. saponaria. The polymorphic loci will be useful in studies of genetic diversity and genetic population differentiation in natural populations of this species. PMID:25995980
Bautz, David J; Broman, Karl W; Threadgill, David W
2013-10-03
Loci controlling plasma lipid concentrations were identified by performing a quantitative trait locus analysis on genotypes from 233 mice from a F2 cross between KK/HlJ and I/LnJ, two strains known to differ in their high-density lipoprotein (HDL) cholesterol levels. When fed a standard diet, HDL cholesterol concentration was affected by two significant loci, the Apoa2 locus on Chromosome (Chr) 1 and a novel locus on Chr X, along with one suggestive locus on Chr 6. Non-HDL concentration also was affected by loci on Chr 1 and X along with a suggestive locus on Chr 3. Additional loci that may be sex-specific were identified for HDL cholesterol on Chr 2, 3, and 4 and for non-HDL cholesterol on Chr 5, 7, and 14. Further investigation into the potential causative gene on Chr X for reduced HDL cholesterol levels revealed a novel, I/LnJ-specific nonsynonymous polymorphism in Nsdhl, which codes for sterol-4-alpha-carboxylate 3-dehydrogenase in the cholesterol synthesis pathway. Although many lipid quantitative trait locus have been reported previously, these data suggest there are additional genes left to be identified that control lipid levels and that can provide new pharmaceutical targets.
Mocellin, Simone; Verdi, Daunia; Pooley, Karen A; Landi, Maria T; Egan, Kathleen M; Baird, Duncan M; Prescott, Jennifer; De Vivo, Immaculata; Nitti, Donato
2012-06-06
Several recent studies have provided evidence that polymorphisms in the telomerase reverse transcriptase (TERT) gene sequence are associated with cancer development, but a comprehensive synopsis is not available. We conducted a systematic review and meta-analysis of the available molecular epidemiology data regarding the association between TERT locus polymorphisms and predisposition to cancer. A systematic review of the English literature was conducted by searching PubMed, Embase, Cancerlit, Google Scholar, and ISI Web of Knowledge databases for studies on associations between TERT locus polymorphisms and cancer risk. Random-effects meta-analysis was performed to pool per-allele odds ratios for TERT locus polymorphisms and risk of cancer, and between-study heterogeneity and potential bias sources (eg, publication and chasing bias) were assessed. Because the TERT locus includes the cleft lip and palate transmembrane 1-like (CLPTM1L) gene, which is in linkage disequilibrium with TERT, CLPTM1L polymorphisms were also analyzed. Cumulative evidence for polymorphisms with statistically significant associations was graded as "strong," "moderate," and "weak" according to the Venice criteria. The joint population attributable risk was calculated for polymorphisms with strong evidence of association. Eighty-five studies enrolling 490 901 subjects and reporting on 494 allelic contrasts were retrieved. Data were available on 67 TERT locus polymorphisms and 24 tumor types, for a total of 221 unique combinations of polymorphisms and cancer types. Upon meta-analysis, a statistically significant association with the risk of any cancer type was found for 22 polymorphisms. Strong, moderate, and weak cumulative evidence for association with at least one tumor type was demonstrated for 11, 9, and 14 polymorphisms, respectively. For lung cancer, which was the most studied tumor type, the estimated joint population attributable risk for three polymorphisms (TERT rs2736100, intergenic rs4635969, and CLPTM1L rs402710) was 41%. Strong evidence for lack of association was identified for five polymorphisms in three tumor types. To our knowledge, this is the largest collection of data for associations between TERT locus polymorphisms and cancer risk. Our findings support the hypothesis that genetic variability in this genomic region can modulate cancer susceptibility in humans.
Cho, Seongbeom; Boxrud, David J; Bartkus, Joanne M; Whittam, Thomas S; Saeed, Mahdi
2007-01-01
Simplified multiple-locus variable-number tandem repeat analysis (MLVA) was developed using one-shot multiplex PCR for seven variable-number tandem repeats (VNTR) markers with high diversity capacity. MLVA, phage typing, and PFGE methods were applied on 34 diverse Salmonella Enteritidis isolates from human and non-human sources. MLVA detected allelic variations that helped to classify the S. Enteritidis isolates into more evenly distributed subtypes than other methods. MLVA-based S. Enteritidis clonal groups were largely associated with sources of the isolates. Nei's diversity indices for polymorphism ranged from 0.25 to 0.70 for seven VNTR loci markers. Based on Simpson's and Shannon's diversity indices, MLVA had a higher discriminatory power than pulsed field gel electrophoresis (PFGE), phage typing, or multilocus enzyme electrophoresis. Therefore, MLVA may be used along with PFGE to enhance the effectiveness of the molecular epidemiologic investigation of S. Enteritidis infections. PMID:17692097
CRISPR Diversity and Microevolution in Clostridium difficile
Andersen, Joakim M.; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E.P.; Barrangou, Rodolphe
2016-01-01
Abstract Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes. PMID:27576538
S locus-linked F-box genes expressed in anthers of Hordeum bulbosum.
Kakeda, Katsuyuki
2009-09-01
Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S (3) haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S (3)) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system.
Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.
Sen, Dilara; Keung, Albert J
2018-01-01
The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus specificity by considering concentration, affinity, avidity, and sequestration effects.
Isolation and characterization of microsatellite loci in the whale shark (Rhincodon typus)
Ramirez-Macias, D.; Shaw, K.; Ward, R.; Galvan-Magana, F.; Vazquez-Juarez, R.
2009-01-01
In preparation for a study on population structure of the whale shark (Rhincodon typus), nine species-specific polymorphic microsatellite DNA markers were developed. An initial screening of 50 individuals from Holbox Island, Mexico found all nine loci to be polymorphic, with two to 17 alleles observed per locus. Observed and expected heterozygosity per locus ranged from 0.200 to 0.826 and from 0.213 to 0.857, respectively. Neither statistically significant deviations from Hardy–Weinberg expectations nor statistically significant linkage disequilibrium between loci were observed. These microsatellite loci appear suitable for examining population structure, kinship assessment and other applications.
Agung, Paskah Partogi; Saputra, Ferdy; Septian, Wike Andre; Lusiana; Zein, Moch. Syamsul Arifin; Sulandari, Sri; Anwar, Saiful; Wulandari, Ari Sulistyo; Said, Syahruddin; Tappa, Baharuddin
2016-01-01
A study was conducted to assess the genetic diversity among Simmental Cross cattle in West Sumatra using microsatellite DNA markers. A total of 176 individual cattle blood samples was used for obtaining DNA samples. Twelve primers of microsatellite loci as recommended by FAO were used to identify the genetic diversity of the Simmental Cross cattle population. Multiplex DNA fragment analysis method was used for allele identification. All the microsatellite loci in this study were highly polymorphic and all of the identified alleles were able to classify the cattle population into several groups based on their genetic distance. The heterozygosity values of microsatellite loci in this study ranged from 0.556 to 0.782. The polymorphism information content (PIC) value of the 12 observed loci is high (PIC>0.5). The highest PIC value in the Simmental cattle population was 0.893 (locus TGLA53), while the lowest value was 0.529 (locus BM1818). Based on the genetic distance value, the subpopulation of the Simmental Cross-Agam and the Simmental Cross-Limapuluh Kota was exceptionally close to the Simmental Purebred thus indicating that a grading-up process has taken place with the Simmental Purebred. In view of the advantages possessed by the Simmental Cross cattle and the evaluation of the genetic diversity results, a number of subpopulations in this study can be considered as the initial (base) population for the Simmental Cross cattle breeding programs in West Sumatra, Indonesia. PMID:26732442
Verdi, Daunia; Pooley, Karen A.; Landi, Maria T.; Egan, Kathleen M.; Baird, Duncan M.; Prescott, Jennifer; De Vivo, Immaculata; Nitti, Donato
2012-01-01
Background Several recent studies have provided evidence that polymorphisms in the telomerase reverse transcriptase (TERT) gene sequence are associated with cancer development, but a comprehensive synopsis is not available. We conducted a systematic review and meta-analysis of the available molecular epidemiology data regarding the association between TERT locus polymorphisms and predisposition to cancer. Methods A systematic review of the English literature was conducted by searching PubMed, Embase, Cancerlit, Google Scholar, and ISI Web of Knowledge databases for studies on associations between TERT locus polymorphisms and cancer risk. Random-effects meta-analysis was performed to pool per-allele odds ratios for TERT locus polymorphisms and risk of cancer, and between-study heterogeneity and potential bias sources (eg, publication and chasing bias) were assessed. Because the TERT locus includes the cleft lip and palate transmembrane 1-like (CLPTM1L) gene, which is in linkage disequilibrium with TERT, CLPTM1L polymorphisms were also analyzed. Cumulative evidence for polymorphisms with statistically significant associations was graded as “strong,” “moderate,” and “weak” according to the Venice criteria. The joint population attributable risk was calculated for polymorphisms with strong evidence of association. Results Eighty-five studies enrolling 490 901 subjects and reporting on 494 allelic contrasts were retrieved. Data were available on 67 TERT locus polymorphisms and 24 tumor types, for a total of 221 unique combinations of polymorphisms and cancer types. Upon meta-analysis, a statistically significant association with the risk of any cancer type was found for 22 polymorphisms. Strong, moderate, and weak cumulative evidence for association with at least one tumor type was demonstrated for 11, 9, and 14 polymorphisms, respectively. For lung cancer, which was the most studied tumor type, the estimated joint population attributable risk for three polymorphisms (TERT rs2736100, intergenic rs4635969, and CLPTM1L rs402710) was 41%. Strong evidence for lack of association was identified for five polymorphisms in three tumor types. Conclusions To our knowledge, this is the largest collection of data for associations between TERT locus polymorphisms and cancer risk. Our findings support the hypothesis that genetic variability in this genomic region can modulate cancer susceptibility in humans. PMID:22523397
Trapnell, Dorset W.; Beasley, Rochelle R.; Lance, Stacey L.; Field, Ashley R.; Jones, Kenneth L.
2015-01-01
Premise of the study: Microsatellite loci were developed for the epiphytic pencil orchid Dendrobium calamiforme for population genetic and phylogeographic investigation of this Australian taxon. Methods and Results: Nineteen microsatellite loci were identified from an Illumina paired-end shotgun library of D. calamiforme. Polymorphism and genetic diversity were assessed in 24 individuals from five populations separated by a maximum distance of ∼80 km. All loci were polymorphic with two to 14 alleles per locus, expected heterozygosity ranging from 0.486 to 0.902, and probability of identity values ranging from 0.018 to 0.380. Conclusions: These novel markers will serve as valuable tools for investigation of levels of genetic diversity as well as patterns of gene flow, genetic structure, and phylogeographic history. PMID:26082878
Trapnell, Dorset W.; Beasley, Rochelle R.; Lance, Stacey L.; ...
2015-06-05
Our premise describes how microsatellite loci were developed for the epiphytic pencil orchid Dendrobium calamiforme for population genetic and phylogeographic investigation of this Australian taxon. Nineteen microsatellite loci were identified from an Illumina paired-end shotgun library of D. calamiforme. Polymorphism and genetic diversity were assessed in 24 individuals from five populations separated by a maximum distance of ~80 km. All loci were polymorphic with two to 14 alleles per locus, expected heterozygosity ranging from 0.486 to 0.902, and probability of identity values ranging from 0.018 to 0.380. In conclusion, these novel markers will serve as valuable tools for investigation ofmore » levels of genetic diversity as well as patterns of gene flow, genetic structure, and phylogeographic history.« less
A decade of research on the 17q12-21 asthma locus: Piecing together the puzzle.
Stein, Michelle M; Thompson, Emma E; Schoettler, Nathan; Helling, Britney A; Magnaye, Kevin M; Stanhope, Catherine; Igartua, Catherine; Morin, Andréanne; Washington, Charles; Nicolae, Dan; Bønnelykke, Klaus; Ober, Carole
2018-01-04
Chromosome 17q12-21 remains the most highly replicated and significant asthma locus. Genotypes in the core region defined by the first genome-wide association study correlate with expression of 2 genes, ORM1-like 3 (ORMDL3) and gasdermin B (GSDMB), making these prime candidate asthma genes, although recent studies have implicated gasdermin A (GSDMA) distal to and post-GPI attachment to proteins 3 (PGAP3) proximal to the core region as independent loci. We review 10 years of studies on the 17q12-21 locus and suggest that genotype-specific risks for asthma at the proximal and distal loci are not specific to early-onset asthma and mediated by PGAP3, ORMDL3, and/or GSDMA expression. We propose that the weak and inconsistent associations of 17q single nucleotide polymorphisms with asthma in African Americans is due to the high frequency of some 17q alleles, the breakdown of linkage disequilibrium on African-derived chromosomes, and possibly different early-life asthma endotypes in these children. Finally, the inconsistent association between asthma and gene expression levels in blood or lung cells from older children and adults suggests that genotype effects may mediate asthma risk or protection during critical developmental windows and/or in response to relevant exposures in early life. Thus studies of young children and ethnically diverse populations are required to fully understand the relationship between genotype and asthma phenotype and the gene regulatory architecture at this locus. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Dvornyk, Volodymyr; Jahan, Akhee Sabiha
2012-01-01
Cyanobacteria are among the most ancient organisms known to have circadian rhythms. The cpmA gene is involved in controlling the circadian output signal. We studied polymorphism and divergence of this gene in six populations of a stress-tolerant cyanobacterium, Chroococcidiopsis sp., sampled in extreme habitats across the globe. Despite high haplotype diversity (0.774), nucleotide diversity of cpmA is very low (π = 0.0034): the gene appears to be even more conserved than housekeeping genes. Even though the populations were sampled thousands kilometers apart, they manifested virtually no genetic differentiation at this locus (FST = 0.0228). Using various tests for neutrality, we determined that evolution of cpmA significantly departures from the neutral model and is governed by episodic positive selection. PMID:22844070
Barra, Gustavo Barcelos; Dutra, Ludmila Alves Sanches; Watanabe, Sílvia Conde; Costa, Patrícia Godoy Garcia; Cruz, Patrícia Sales Marques da; Azevedo, Monalisa Ferreira; Amato, Angélica Amorim
2012-11-01
To investigate the association of the T allele of the single nucleotide polymorphism (SNP) rs7903146 of TCF7L2 with the occurrence of T2D in a sample of subjects followed up at the Brasilia University Hospital. The SNP rs7903146 of TCF7L2 was genotyped by allele-specific PCR in 113 patients with known T2D and in 139 non-diabetic controls in Brasilia, Brazil. We found that the T allele of the SNP rs7903146 of TCF7L2 was significantly associated with T2D risk (odds ratio of 3.92 for genotype TT in the recessive genetic model, p = 0.004 and 1.5 for T allele, p = 0.032). These results reinforce previous findings on the consistent association of this genetic factor and the risk of T2D in populations of diverse ethnic backgrounds.
The origin of multiple clones in the parthenogenetic lizard species Darevskia rostombekowi.
Ryskov, Alexey P; Osipov, Fedor A; Omelchenko, Andrey V; Semyenova, Seraphima K; Girnyk, Anastasiya E; Korchagin, Vitaly I; Vergun, Andrey A; Murphy, Robert W
2017-01-01
The all-female Caucasian rock lizard Darevskia rostombekowi and other unisexual species of this genus reproduce normally via true parthenogenesis. Typically, diploid parthenogenetic reptiles exhibit some amount of clonal diversity. However, allozyme data from D. rostombekowi have suggested that this species consists of a single clone. Herein, we test this hypothesis by evaluating variation at three variable microsatellite loci for 42 specimens of D. rostombekowi from four populations in Armenia. Analyses based on single nucleotide polymorphisms of each locus reveal five genotypes or presumptive clones in this species. All individuals are heterozygous at the loci. The major clone occurs in 24 individuals and involves three populations. Four rare clones involve one or several individuals from one or two populations. Most variation owes to parent-specific single nucleotide polymorphisms, which occur as heterozygotes. This result fails to reject the hypothesis of a single hybridization founder event that resulted in the initial formation of one major clone. The other clones appear to have originated via post-formation microsatellite mutations of the major clone.
Das, D N; Sri Hari, V G; Hatkar, D N; Rengarajan, K; Saravanan, R; Suryanarayana, V V S; Murthy, L K
2012-12-01
The present study was performed to evaluate the genetic polymorphism of BoLA-DRB3.2 locus in Malnad Gidda, Hallikar and Ongole South Indian Bos indicus cattle breeds, employing the PCR-RFLP technique. In Malnad Gidda population, 37 BoLA-DRB3.2 alleles were detected, including one novel allele DRB3*2503 (GenBank: HM031389) that was observed in the frequency of 1.87%. In Hallikar and Ongole populations, 29 and 21 BoLA-DRB3.2 alleles were identified, respectively. The frequencies of the most common BoLA-DRB3.2 alleles (with allele frequency > 5%), in Malnad Gidda population, were DRB3.2*15 (10.30%), DRB3*5702 (9.35%), DRB3.2*16 (8.41%), DRB3.2*23 (7.01%) and DRB3.2*09 (5.61%). In Hallikar population, the most common alleles were DRB3.2*11 (13.00%), DRB3.2*44 (11.60%), DRB3.2*31 (10.30%), DRB3.2*28 (5.48%) and DRB3.2*51 (5.48%). The most common alleles in Ongole population were DRB3.2*15 (22.50%), DRB3.2*06 (20.00%), DRB3.2*13 (13.30%), DRB3.2*12 (9.17%) and DRB3.2*23 (7.50%). A high degree of heterozygosity observed in Malnad Gidda (H(O) = 0.934, H(E) = 0.955), Hallikar (H(O) = 0.931, H(E) = 0.943) and Ongole (H(O) = 0.800, H(E) = 0.878) populations, along with F(IS) values close to F(IS) zero (Malnad Gidda: F(IS) = 0.0221, Hallikar: F(IS) = 0.0127 and Ongole: F(IS) = 0.0903), yielded nonsignificant P-values with respect to Hardy-Weinberg equilibrium probabilities revealing, no perceptible inbreeding, greater genetic diversity and characteristic population structure being preserved in the three studied cattle populations. The phylogenetic tree constructed based on the frequencies of BoLA-DRB3.2 alleles observed in 10 Bos indicus and Bos taurus cattle breeds revealed distinct clustering of specific Bos indicus cattle breeds, along with unique genetic differentiation observed among them. The results of this study demonstrated that the BoLA-DRB3.2 is a highly polymorphic locus, with significant breed-specific genetic diversities being present amongst the three studied cattle breeds. The population genetics and phylogenetic analysis have revealed pivotal information about the population structure and importance of the presently studied three Bos indicus cattle breeds as unique animal genetic resources, which have to be conserved for maintaining native cattle genetic diversity. © 2012 Blackwell Publishing Ltd.
U'Ren, Jana M; Schupp, James M; Pearson, Talima; Hornstra, Heidie; Friedman, Christine L Clark; Smith, Kimothy L; Daugherty, Rebecca R Leadem; Rhoton, Shane D; Leadem, Ben; Georgia, Shalamar; Cardon, Michelle; Huynh, Lynn Y; DeShazer, David; Harvey, Steven P; Robison, Richard; Gal, Daniel; Mayo, Mark J; Wagner, David; Currie, Bart J; Keim, Paul
2007-03-30
The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations. B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation) to that of the most diverse tandemly repeated regions found in other less diverse bacteria. The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were identical using previous typing methods. Given the health threat to humans and livestock and the potential for B. pseudomallei to be released intentionally, MLVA could prove to be an important tool for fine-scale epidemiological or forensic tracking of this increasingly important environmental pathogen.
CRISPR Diversity and Microevolution in Clostridium difficile.
Andersen, Joakim M; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E P; Barrangou, Rodolphe
2016-09-19
Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Ley, Alexandra C; Hardy, Olivier J
2016-03-01
Microsatellite markers were developed for the species Haumania danckelmaniana (Marantaceae) from central tropical Africa. Microsatellite isolation was performed simultaneously on three different species of Marantaceae through a procedure that combines multiplex microsatellite enrichment and next-generation sequencing. From 80 primers selected for initial screening, 20 markers positively amplified in H. danckelmaniana, of which 10 presented unambiguous amplification products within the expected size range and eight were polymorphic with four to nine alleles per locus. Positive transferability with the related species H. liebrechtsiana was observed for the same 10 markers. The polymorphic microsatellite markers are suitable for studies in genetic diversity and structure, mating system, and gene flow in H. danckelmaniana and the closely related species H. liebrechtsiana.
Glutamate Oxaloacetate Transaminase (Got) Genetics in the Mouse: Polymorphism of Got-1
Chapman, Verne M.; Ruddle, Frank H.
1972-01-01
We have examined a polymorphism for the soluble glutamate oxaloacetate (GOT-1) isozyme system which was found in the Asian mouse Mus castaneus. Variants of GOT-1 segregate as though they are controlled by codominant alleles for a single autosomal locus which we have designated Got-1. No close linkage of genes for soluble and mitochondrial forms of the enzyme, GOT-1 and GOT-2 respectively, was observed. Furthermore, no close linkage of Got-1 and the loci c, Gpi-1, Mod-2, Mod-1, Ld-1, Gpd-1, Pgm-1 or Gpo-1 was observed. Our results demonstrate the utility of sampling Mus from diverse populations to extend the repertoire of polymorphic loci and the genetic linkage map. PMID:17248564
Fifty-three polymorphic microsatellite loci in the chestnut blight fungus, Cryphonectria parasitica
T.L. Kubisiak; C. Dutech; M.G. Milgroom
2006-01-01
We report on 53 microsatellite loci for use in population genetic or linkage mapping studies in Cryphonectria parasitica . In 40 isolates collected from throughout the Northern Hemisphere, the number of alleles per locus ranged from two to 14 (mean 5.17) with gene diversity values ranging from 0.049 to 0.859 (mean 0.437). Samples from Asia were more...
Feres, Juliana Massimino; Monteiro, Mariza; Zucchi, Maria I; Pinheiro, José B; Mestriner, Moacyr A; Alzate-Marin, Ana Lilia
2012-04-01
We developed and characterized nuclear microsatellite markers for Anadenanthera colubrina, a tropical tree species widely distributed in South America. Leaf samples of mature A. colubrina trees, popularly called "angico," were collected from an area that is greatly impacted by agricultural practices in the region of Ribeirão Preto in São Paulo State in southeastern Brazil. Twenty simple sequence repeat (SSR) markers were developed, 14 of which had polymorphic loci. A total of 96 alleles were detected with an average of 6.86 alleles per polymorphic locus. The expected heterozygosity, calculated at polymorphic loci, ranged from 0.18 to 0.83. Finally, we demonstrated that 18 loci were cross-amplified in A. peregrina. A total of 14 polymorphic markers suggest a high potential for genetic diversity, gene flow, and mating system analyses in A. colubrina.
Milheiriço, Catarina; Portelinha, Ana; Krippahl, Ludwig; de Lencastre, Hermínia; Oliveira, Duarte C
2011-04-15
The β-lactamase (bla) locus, which confers resistance to penicillins only, may control the transcription of mecA, the central element of methicillin resistance, which is embedded in a polymorphic heterelogous chromosomal cassette (the SCCmec element). In order to assess the eventual correlation between bla allotypes and genetic lineages, SCCmec types and/or β-lactam resistance phenotypes, the allelic variation on the bla locus was evaluated in a representative collection of 54 international epidemic methicillin-resistant Staphylococcus aureus (MRSA) clinical strains and, for comparative purposes, also in 24 diverse methicillin-susceptible S. aureus (MSSA) strains. Internal fragments of blaZ (the β-lactamase structural gene) were sequenced for all strains. A subset of strains, representative of blaZ allotypes, was further characterized by sequencing of internal fragments of the blaZ transcriptional regulators, blaI and blaR1. Thirteen allotypes for blaZ, nine for blaI and 12 for blaR1 were found. In a total of 121 unique single-nucleotide polymorphisms (SNP) detected, no frameshift mutations were identified and only one nonsense mutation within blaZ was found in a MRSA strain. On average, blaZ alleles were more polymorphic among MSSA than in MRSA (14.7 vs 11.4 SNP/allele). Overall, blaR1 was the most polymorphic gene with an average of 24.8 SNP/allele. No correlation could be established between bla allotypes and genetic lineages, SCCmec types and/or β-lactam resistance phenotypes. In order to estimate the selection pressure acting on the bla locus, the average dN/dS values were computed. In the three genes and in both collections dN/dS ratios were significantly below 1. The data strongly suggests the existence of a purifying selection to maintain the bla locus fully functional even on MRSA strains. Although, this is in agreement with the notion that in most clinical MRSA strains mecA gene is under the control of the bla regulatory genes, these findings also suggest that the apparently redundant function of blaZ gene for the MRSA resistant phenotype is still important for these strains. In addition, the data shows that the sensor-inducer blaR1 is the primary target for the accumulation of mutations in the bla locus, presumably to modulate the response to the presence of β-lactam antibiotic.
Valenta, M; Slechta, V; Slechtová, V; Kálal, L
1977-01-01
Isoenzyme patterns and the polymorphism of lactate dehydrogenase (LDH) were investigated in 3 fish species of family Cyprinidae, i.e. tench (Tinca tinca), crucian carp (Carassius carassius) and carp (Cyprinus carpio). The isoenzyme patterns were tissue and species specific. In crucian carp subunits with different electrophoretic mobility are present, which are genetically controlled from the B1, B2, A1, A2 and C loci, while the set of loci in carp is B1, B2, A, C1 and C2 and in tench B, A, C. The locus B of LDH in tench, the locus B2 in crucian carp, and the loci B1, C1 and C2 in carp are polymorphic and have two different alleles in each case. The polymorphism did not affect the total LDH activity in the tissues. All the populations investigated were in Hardy-Weinberg equilibrium. The genetic control of the polymorphism in B1 and C1 loci in carp was proved by test matings. The polymorphism in B loci tested in erythrocytes may be utilized as genetic markers in the fish breeding.
Osborne, Megan J; Pilger, Tyler J; Lusk, Joel D; Turner, Thomas F
2017-01-01
Climate change will strongly impact aquatic ecosystems particularly in arid and semi-arid regions. Fish-parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species' adaptive capacity. Here, we combine genetic (MHC class IIβ and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio-temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIβ with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio-temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies. © 2016 John Wiley & Sons Ltd.
Anisimova, I N; Alpatieva, N V; Rozhkova, V T; Kuznetsova, E B; Pinaev, A G; Gavrilova, V A
2014-07-01
A complex comparative genetic approach was used for the investigation of the structural and functional diversity of genes for the restoration of sunflower pollen fertility. It includes (i) hybridological analysis; (ii) analysis of polymorphism among EST fragments.homologous to the known Rf genes that contain repeated motives of 35 amino acids (RFL-PPR); (iii) the development of molecular markers. Monogenic segregation in three interline cross combinations and the results of molecular marker analysis confirmed the allelic differences of parental lines in the Mendelian locus for CMS PET1 pollen fertility restoration. Introns were found in two RFL-PPR fragments. Two allelic variants of the QHL12D20 fragment were detected among the sixty lines of the sunflower genetic collection. An intron of QHL12D20 fragment was homologous to an intron of the AHBP-1B gene; the product of this gene-has a similarity with the transcription factor of the bZIP-family of Arabidopsis. A relationship between the QHL12D20 polymorphism and the functional state of the Rfl locus was revealed.
Depaulis, F; Brazier, L; Veuille, M
1999-01-01
The hitchhiking model of population genetics predicts that an allele favored by Darwinian selection can replace haplotypes from the same locus previously established at a neutral mutation-drift equilibrium. This process, known as "selective sweep," was studied by comparing molecular variation between the polymorphic In(2L)t inversion and the standard chromosome. Sequence variation was recorded at the Suppressor of Hairless (Su[H]) gene in an African population of Drosophila melanogaster. We found 47 nucleotide polymorphisms among 20 sequences of 1.2 kb. Neutrality tests were nonsignificant at the nucleotide level. However, these sites were strongly associated, because 290 out of 741 observed pairwise combinations between them were in significant linkage disequilibrium. We found only seven haplotypes, two occurring in the 9 In(2L)t chromosomes, and five in the 11 standard chromosomes, with no shared haplotype. Two haplotypes, one in each chromosome arrangement, made up two-thirds of the sample. This low haplotype diversity departed from neutrality in a haplotype test. This pattern supports a selective sweep hypothesis for the Su(H) chromosome region. PMID:10388820
Multilocus patterns of polymorphism and selection across the X chromosome of Caenorhabditis remanei.
Cutter, Asher D
2008-03-01
Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.
Triplett, Lindsay R; Cohen, Stephen P; Heffelfinger, Christopher; Schmidt, Clarice L; Huerta, Alejandra I; Tekete, Cheick; Verdier, Valerie; Bogdanove, Adam J; Leach, Jan E
2016-09-01
The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable di-residues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector-triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Triplett, Lindsay R.; Cohen, Stephen P.; Heffelfinger, Christopher; Schmidt, Clarice L.; Huerta, Alejandra; Tekete, Cheick; Verdier, Valerie; Bogdanove, Adam J.; Leach, Jan E.
2016-01-01
Summary The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable diresidues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes. PMID:27197779
Goda, N; Mano, T; Kosintsev, P; Vorobiev, A; Masuda, R
2010-11-01
The allelic diversity of the DRB locus in major histocompatibility complex (MHC) genes was analyzed in the brown bear (Ursus arctos) from the Hokkaido Island of Japan, Siberia, and Kodiak of Alaska. Nineteen alleles of the DRB exon 2 were identified from a total of 38 individuals of U. arctos and were highly polymorphic. Comparisons of non-synonymous and synonymous substitutions in the antigen-binding sites of deduced amino acid sequences indicated evidence for balancing selection on the bear DRB locus. The phylogenetic analysis of the DRB alleles among three genera (Ursus, Tremarctos, and Ailuropoda) in the family Ursidae revealed that DRB allelic lineages were not separated according to species. This strongly shows trans-species persistence of DRB alleles within the Ursidae. © 2010 John Wiley & Sons A/S.
Vite-Garín, Tania; Estrada-Bárcenas, Daniel Alfonso; Cifuentes, Joaquín; Taylor, Maria Lucia
2014-01-01
Advances in the classification of the human pathogen Histoplasma capsulatum (H. capsulatum) (ascomycete) are sustained by the results of several genetic analyses that support the high diversity of this dimorphic fungus. The present mini-review highlights the great genetic plasticity of H. capsulatum. Important records with different molecular tools, mainly single- or multi-locus sequence analyses developed with this fungus, are discussed. Recent phylogenetic data with a multi-locus sequence analysis using 5 polymorphic loci support a new clade and/or phylogenetic species of H. capsulatum for the Americas, which was associated with fungal isolates obtained from the migratory bat Tadarida brasiliensis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Cobble, Kacy R; Califf, Katy J; Stone, Nathan E; Shuey, Megan M; Birdsell, Dawn N; Colman, Rebecca E; Schupp, James M; Aziz, Maliha; Van Andel, Roger; Rocke, Tonie E; Wagner, David M; Busch, Joseph D
2016-04-01
Yersinia pestis was introduced to North America around 1900 and leads to nearly 100% mortality in prairie dog (Cynomys spp.) colonies during epizootic events, which suggests this pathogen may exert a strong selective force. We characterized genetic diversity at an MHC class II locus (DRB1) in Gunnison's prairie dog (C. gunnisoni) and quantified population genetic structure at the DRB1 versus 12 microsatellite loci in three large Arizona colonies. Two colonies, Seligman (SE) and Espee Ranch (ES), have experienced multiple plague-related die-offs in recent years, whereas plague has never been documented at Aubrey Valley (AV). We found fairly low allelic diversity at the DRB1 locus, with one allele (DRB1*01) at high frequency (0.67-0.87) in all colonies. Two other DRB1 alleles appear to be trans-species polymorphisms shared with the black-tailed prairie dog (C. ludovicianus), indicating that these alleles have been maintained across evolutionary time frames. Estimates of genetic differentiation were generally lower at the MHC locus (F ST = 0.033) than at microsatellite markers (F ST = 0.098). The reduced differentiation at DRB1 may indicate that selection has been important for shaping variation at MHC loci, regardless of the presence or absence of plague in recent decades. However, genetic drift has probably also influenced the DRB1 locus because its level of differentiation was not different from that of microsatellites in an F ST outlier analysis. We then compared specific MHC alleles to plague survivorship in 60 C. gunnisoni that had been experimentally infected with Y. pestis. We found that survival was greater in individuals that carried at least one copy of the most common allele (DRB1*01) compared to those that did not (60% vs. 20%). Although the sample sizes of these two groups were unbalanced, this result suggests the possibility that this MHC class II locus, or a nearby linked gene, could play a role in plague survival.
Cobble, Kacy R.; Califf, Katy J.; Stone, Nathan E.; Shuey, Megan M.; Birdsell, Dawn; Colman, Rebecca E.; Schupp, James M.; Aziz, Maliha; Van Andel, Roger; Rocke, Tonie E.; Wagner, David M.; Busch, Joseph D.
2016-01-01
Yersinia pestis was introduced to North America around 1900 and leads to nearly 100% mortality in prairie dog (Cynomys spp.) colonies during epizootic events, which suggests this pathogen may exert a strong selective force. We characterized genetic diversity at an MHC class II locus (DRB1) in Gunnison's prairie dog (C. gunnisoni) and quantified population genetic structure at the DRB1versus 12 microsatellite loci in three large Arizona colonies. Two colonies, Seligman (SE) and Espee Ranch (ES), have experienced multiple plague-related die-offs in recent years, whereas plague has never been documented at Aubrey Valley (AV). We found fairly low allelic diversity at the DRB1 locus, with one allele (DRB1*01) at high frequency (0.67–0.87) in all colonies. Two otherDRB1 alleles appear to be trans-species polymorphisms shared with the black-tailed prairie dog (C. ludovicianus), indicating that these alleles have been maintained across evolutionary time frames. Estimates of genetic differentiation were generally lower at the MHC locus (FST = 0.033) than at microsatellite markers (FST = 0.098). The reduced differentiation at DRB1 may indicate that selection has been important for shaping variation at MHC loci, regardless of the presence or absence of plague in recent decades. However, genetic drift has probably also influenced theDRB1 locus because its level of differentiation was not different from that of microsatellites in anFST outlier analysis. We then compared specific MHC alleles to plague survivorship in 60C. gunnisoni that had been experimentally infected with Y. pestis. We found that survival was greater in individuals that carried at least one copy of the most common allele (DRB1*01) compared to those that did not (60% vs. 20%). Although the sample sizes of these two groups were unbalanced, this result suggests the possibility that this MHC class II locus, or a nearby linked gene, could play a role in plague survival.
Oguri, Emiko; Yamaguchi, Tomio; Kajita, Tadashi; Murakami, Noriaki
2013-05-01
Microsatellite primers were developed for Leucobryum boninense, endemic to the Bonin Islands, Japan, to investigate its level of genetic diversity and population genetic structure. • Using next-generation sequencing, 21 primer sets were developed, among which nine loci were polymorphic in the populations of the Bonin Islands. Among these polymorphic loci, the number of alleles per locus ranged from two to 10 (mean = 3.444) and the expected heterozygosity ranged from 0.066 to 0.801 (mean = 0.338). • These results indicate the utility of the nine microsatellite markers that we developed for population genetic studies of L. boninense.
Papura, D; Giresse, X; Chauvin, B; Caron, H; Delmotte, F; VAN Helden, M
2009-05-01
Eight dinucleotide microsatellite loci were isolated and characterized within the green leafhopper Empoasca vitis (Goethe) using an enrichment cloning procedure. Primers were tested on 171 individuals collected in the southwest of France from the vine plants. The identified loci were polymorphic, with allelic diversity ranging from two to 18 alleles per locus. Observed heterozygosities were from 0.021 to 0.760. These microsatellite markers should prove to be a useful tool for estimating the population genetic structure, host-plant specialization and migration capacity of this insect. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.
Cho, S-Y; Nagai, S; Nishitani, G; Han, M-S
2009-05-01
We isolated 13 polymorphic microsatellites from the red-tide causing dinoflagellate Akashiwo sanguinea. These loci were highly variable, with between 2 and 10 alleles per locus, and estimated gene diversity ranging from 0.08 to 0.82. These loci have the potential to reveal genetic structure and estimate gene flow among A. sanguinea populations. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.
Ley, Alexandra C.; Hardy, Olivier J.
2016-01-01
Premise of the study: Microsatellite markers were developed for the species Haumania danckelmaniana (Marantaceae) from central tropical Africa. Methods and Results: Microsatellite isolation was performed simultaneously on three different species of Marantaceae through a procedure that combines multiplex microsatellite enrichment and next-generation sequencing. From 80 primers selected for initial screening, 20 markers positively amplified in H. danckelmaniana, of which 10 presented unambiguous amplification products within the expected size range and eight were polymorphic with four to nine alleles per locus. Positive transferability with the related species H. liebrechtsiana was observed for the same 10 markers. Conclusions: The polymorphic microsatellite markers are suitable for studies in genetic diversity and structure, mating system, and gene flow in H. danckelmaniana and the closely related species H. liebrechtsiana. PMID:27011899
Sonsthagen, Sarah A.; Sage, G. Kevin; Fowler, Megan C.; Hope, Andrew G.; Cook, J.A.; Talbot, Sandra L.
2013-01-01
We used next generation shotgun sequencing to develop 21 novel microsatellite markers for the barren-ground shrew (Sorex ugyunak), which were polymorphic among individuals from northern Alaska. The loci displayed moderate allelic diversity (averaging 6.81 alleles per locus) and heterozygosity (averaging 70 %). Two loci deviated from Hardy–Weinberg equilibrium (HWE) due to heterozygote deficiency. While the population did not deviate from HWE overall, it showed significant linkage disequilibrium suggesting this population is not in mutation-drift equilibrium. Nineteen of 21 loci were polymorphic in masked shrews (S. cinereus) from interior Alaska and exhibited linkage equilibrium and HWE overall. All loci yielded sufficient variability for use in population studies.
Kong, Tingting; Chen, Yahao; Guo, Yuxin; Wei, Yuanyuan; Jin, Xiaoye; Xie, Tong; Mu, Yuling; Dong, Qian; Wen, Shaoqing; Zhou, Boyan; Zhang, Li; Shen, Chunmei; Zhu, Bofeng
2017-01-01
In the present study, we assessed the genetic diversities of the Chinese Kazak ethnic group on the basis of 30 well-chosen autosomal insertion and deletion loci and explored the genetic relationships between Kazak and 23 reference groups. We detected the level of the expected heterozygosity ranging from 0.3605 at HLD39 locus to 0.5000 at HLD136 locus and the observed heterozygosity ranging from 0.3548 at HLD39 locus to 0.5283 at HLD136 locus. The combined power of discrimination and the combined power of exclusion for all 30 loci in the studied Kazak group were 0.999999999999128 and 0.9945, respectively. The dataset generated in this study indicated the panel of 30 InDels was highly efficient in forensic individual identifcation but may not have enough power in paternity cases. The results of the interpopulation differentiations, PCA plots, phylogenetic trees and STRUCTURE analyses showed a close genetic affiliation between the Kazak and Uigur group. PMID:28915619
Kang, Jung-Ha; Park, Jung-Youn; Jo, Hyun-Su
2012-01-01
The mottled skate, Raja pulchra, is an economically valuable fish. However, due to a severe population decline, it is listed as a vulnerable species by the International Union for Conservation of Nature. To analyze its genetic structure and diversity, microsatellite markers were developed using 454 pyrosequencing. A total of 17,033 reads containing dinucleotide microsatellite repeat units (mean, 487 base pairs) were identified from 453,549 reads. Among 32 loci containing more than nine repeat units, 20 primer sets (62%) produced strong PCR products, of which 14 were polymorphic. In an analysis of 60 individuals from two R. pulchra populations, the number of alleles per locus ranged from 1-10, and the mean allelic richness was 4.7. No linkage disequilibrium was found between any pair of loci, indicating that the markers were independent. The Hardy-Weinberg equilibrium test showed significant deviation in two of the 28 single-loci after sequential Bonferroni's correction. Using 11 primer sets, cross-species amplification was demonstrated in nine related species from four families within two classes. Among the 11 loci amplified from three other Rajidae family species; three loci were polymorphic. A monomorphic locus was amplified in all three Rajidae family species and the Dasyatidae family. Two Rajidae polymorphic loci amplified monomorphic target DNAs in four species belonging to the Carcharhiniformes class, and another was polymorphic in two Carcharhiniformes species.
Kang, Jung-Ha; Park, Jung-Youn; Jo, Hyun-Su
2012-01-01
The mottled skate, Raja pulchra, is an economically valuable fish. However, due to a severe population decline, it is listed as a vulnerable species by the International Union for Conservation of Nature. To analyze its genetic structure and diversity, microsatellite markers were developed using 454 pyrosequencing. A total of 17,033 reads containing dinucleotide microsatellite repeat units (mean, 487 base pairs) were identified from 453,549 reads. Among 32 loci containing more than nine repeat units, 20 primer sets (62%) produced strong PCR products, of which 14 were polymorphic. In an analysis of 60 individuals from two R. pulchra populations, the number of alleles per locus ranged from 1–10, and the mean allelic richness was 4.7. No linkage disequilibrium was found between any pair of loci, indicating that the markers were independent. The Hardy–Weinberg equilibrium test showed significant deviation in two of the 28 single-loci after sequential Bonferroni’s correction. Using 11 primer sets, cross-species amplification was demonstrated in nine related species from four families within two classes. Among the 11 loci amplified from three other Rajidae family species; three loci were polymorphic. A monomorphic locus was amplified in all three Rajidae family species and the Dasyatidae family. Two Rajidae polymorphic loci amplified monomorphic target DNAs in four species belonging to the Carcharhiniformes class, and another was polymorphic in two Carcharhiniformes species. PMID:22837688
Delahaie, Boris; Gautier, Mathieu; Malé, Pierre-Jean G.; Bertrand, Joris A. M.; Cornuault, Josselin; Wakamatsu, Kazumasa; Bouchez, Olivier; Mould, Claire; Bruxaux, Jade; Holota, Hélène; Milá, Borja; Thébaud, Christophe
2017-01-01
Understanding the mechanisms responsible for phenotypic diversification within and among species ultimately rests with linking naturally occurring mutations to functionally and ecologically significant traits. Colour polymorphisms are of great interest in this context because discrete colour patterns within a population are often controlled by just a few genes in a common environment. We investigated how and why phenotypic diversity arose and persists in the Zosterops borbonicus white-eye of Reunion (Mascarene archipelago), a colour polymorphic songbird in which all highland populations contain individuals belonging to either a brown or a grey plumage morph. Using extensive phenotypic and genomic data, we demonstrate that this melanin-based colour polymorphism is controlled by a single locus on chromosome 1 with two large-effect alleles, which was not previously described as affecting hair or feather colour. Differences between colour morphs appear to rely upon complex cis-regulatory variation that either prevents the synthesis of pheomelanin in grey feathers, or increases its production in brown ones. We used coalescent analyses to show that, from a ‘brown’ ancestral population, the dominant ‘grey’ allele spread quickly once it arose from a new mutation. Since colour morphs are always found in mixture, this implies that the selected allele does not go to fixation, but instead reaches an intermediate frequency, as would be expected under balancing selection. PMID:28386436
Huang, Hui-Run; Shu, Wen-Sheng; Mao, Zhi-Bin; Ge, Xue-Jun
2008-09-01
Sedum alfredii is a Zn/Cd hyperaccumulator distributed in East Asia. A total of eight polymorphic microsatellite markers were developed. These loci were screened in 25 individuals from one heavy metal-tolerant population and one nontolerant population, respectively. The average allele number of these markers was 5.25 per locus, ranging from two to nine. Population-specific alleles were found at each locus. The observed and expected heterozygosities ranged from 0.000 to 0.640 and from 0.451 to 0.819. Significant deviation from Hardy-Weinberg equilibrium was detected at both the species and the population level. No significant linkage disequilibrium was detected at population level. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
Polymorphisms and Tissue Expression of the Feline Leukocyte Antigen Class I Loci FLAI-E, -H and -K
Holmes, Jennifer C.; Holmer, Savannah G.; Ross, Peter; Buntzman, Adam S.; Frelinger, Jeffrey A.; Hess, Paul R.
2013-01-01
Cytotoxic CD8+ T-cell immunosurveillance for intracellular pathogens, such as viruses, is controlled by classical major histocompatibility complex (MHC) class Ia molecules, and ideally, these antiviral T-cell populations are defined by the specific peptide and restricting MHC allele. Surprisingly, despite the utility of the cat in modeling human viral immunity, little is known about the Feline Leukocyte Antigen class I complex (FLAI). Only a few coding sequences with uncertain locus origin and expression patterns have been reported. Of 19 class I genes, 3 loci - FLAI-E, -H and -K – are predicted to encode classical molecules, and our objective was to evaluate their status by analyzing polymorphisms and tissue expression. Using locus-specific, PCR-based genotyping, we amplified 33 FLAI-E, -H, and -K alleles from 12 cats of various breeds, identifying, for the first time, alleles across 3 distinct loci in a feline species. Alleles shared the expected polymorphic and invariant sites in the α1/α2 domains, and full-length cDNA clones possessed all characteristic class Ia exons. Alleles could be assigned to a specific locus with reasonable confidence, although there was evidence of potentially confounding interlocus recombination between FLAI-E and -K. Only FLAI-E, -H and -K-origin alleles were amplified from cDNAs of multiple tissue types. We also defined hypervariable regions across these genes, which permitted the assignment of names to both novel and established alleles. As predicted, FLAI-E, -H, and -K fulfill the major criteria of class Ia genes. These data represent a necessary prerequisite for studying epitope-specific antiviral CD8+ T-cell responses in cats. PMID:23812210
2012-01-01
Background Rapeseed (Brassica napus L.) has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. Results We fine-mapped the spring environment specific quantitative trait locus (QTL) for flowering time, qFT10-4,in a doubled haploid (DH) mapping population of rapeseed derived from a cross between Tapidor (winter-type) and Ningyou7 (semi-winter) and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC) in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50). This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE) insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral ‘A’ genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. Conclusions Our findings strongly suggest that (i) BnFLC.A10 is the gene underlying qFT10-4, the QTL for phenotypic diversity of flowering time in the TN-DH population, (ii) the allelic diversity caused by MITE insertion/deletion upstream of BnFLC.A10 is one of the major causes of differentiation of winter and spring genotypes in rapeseed and (iii) winter rapeseed has evolved from spring genotypes through selection pressure at the BnFLC.A10 locus, enabling expanded cultivation of rapeseed along the route of Brassica domestication. PMID:23241244
Hou, Jinna; Long, Yan; Raman, Harsh; Zou, Xiaoxiao; Wang, Jing; Dai, Shutao; Xiao, Qinqin; Li, Cong; Fan, Longjiang; Liu, Bin; Meng, Jinling
2012-12-15
Rapeseed (Brassica napus L.) has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. We fine-mapped the spring environment specific quantitative trait locus (QTL) for flowering time, qFT10-4,in a doubled haploid (DH) mapping population of rapeseed derived from a cross between Tapidor (winter-type) and Ningyou7 (semi-winter) and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC) in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50). This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE) insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral 'A' genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. Our findings strongly suggest that (i) BnFLC.A10 is the gene underlying qFT10-4, the QTL for phenotypic diversity of flowering time in the TN-DH population, (ii) the allelic diversity caused by MITE insertion/deletion upstream of BnFLC.A10 is one of the major causes of differentiation of winter and spring genotypes in rapeseed and (iii) winter rapeseed has evolved from spring genotypes through selection pressure at the BnFLC.A10 locus, enabling expanded cultivation of rapeseed along the route of Brassica domestication.
[Forensic hematology genetics--paternity testing].
Kratzer, A; Bär, W
1997-05-01
In Switzerland paternity investigations are carried out using DNA analysis only since 1991. DNA patterns are inherited and only with the exception of genetically identical twins they are different in everyone and therefore unique to an individual. Hence DNA-systems are an excellent tool to resolve paternity disputes. DNA polymorphisms used for paternity diagnosis are length polymorphisms of the highly polymorphic VNTR loci [variable number of tandem repeats]. The most frequently applied systems are the DNA single locus systems. In addition to the DNA single locus systems the application of PCR (PCR = polymerase chain reaction) based DNA systems has increased particularly in difficult deficiency cases or in cases where only small evidential samples or partially degraded DNA are available. Normally four independent DNA single probes are used to produce a DNA profile from the mother, the child and the alleged father. A child inherits half the DNA patterns from its mother and the other half from its true biological father. If an alleged father doesn't possess the paternal specific DNA pattern in his DNA profile he is excluded from the paternity. In case of non-exclusion the probability for paternity is calculated according to Essen-Möller. When applying four highly polymorphic DNA single locus systems the biostatistical evaluation leads always to W-values exceeding 99.8% [= required value for positive proof of paternity]. DNA analysis is currently the best available method to achieve such effective conclusions in paternity investigations.
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures.
Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu
2017-08-01
Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures
Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu
2017-01-01
Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata. Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata. The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism. PMID:28673971
Liu, Minxuan; Xu, Yue; He, Jihong; Zhang, Shuang; Wang, Yinyue; Lu, Ping
2016-01-01
Broomcorn millet (Panicum miliaceum L.), one of the first domesticated crops, has been grown in Northern China for at least 10,000 years. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, we analyzed the genetic diversity of 88 accessions of broomcorn millet collected from various provinces of China. Amplification with 67 simple sequence repeat (SSR) primers revealed moderate levels of diversity in the investigated accessions. A total of 179 alleles were detected, with an average of 2.7 alleles per locus. Polymorphism information content and expected heterozygosity ranged from 0.043 to 0.729 (mean = 0.376) and 0.045 to 0.771 (mean = 0.445), respectively. Cluster analysis based on the unweighted pair group method of mathematical averages separated the 88 accessions into four groups at a genetic similarity level of 0.633. A genetic structure assay indicated a close correlation between geographical regions and genetic diversity. The uncovered information will be valuable for defining gene pools and developing breeding programs for broomcorn millet. Furthermore, the millet-specific SSR markers developed in this study should serve as useful tools for assessment of genetic diversity and elucidation of population structure in broomcorn millet. PMID:26985894
Swine Leukocyte Antigen Diversity in Canadian Specific Pathogen-Free Yorkshire and Landrace Pigs
Gao, Caixia; Quan, Jinqiang; Jiang, Xinjie; Li, Changwen; Lu, Xiaoye; Chen, Hongyan
2017-01-01
The highly polymorphic swine major histocompatibility complex (MHC), termed swine leukocyte antigen (SLA), is associated with different levels of immunologic responses to infectious diseases, vaccines, and transplantation. Pig breeds with known SLA haplotypes are important genetic resources for biomedical research. Canadian Yorkshire and Landrace pigs represent the current specific pathogen-free (SPF) breeding stock maintained in the isolation environment at the Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences. In this study, we identified 61 alleles at five polymorphic SLA loci (SLA-1, SLA-2, SLA-3, DRB1, and DQB1) representing 17 class I haplotypes and 11 class II haplotypes using reverse transcription-polymerase chain reaction (RT-PCR) sequence-based typing and PCR-sequence specific primers methods in 367 Canadian SPF Yorkshire and Landrace pigs. The official designation of the alleles has been assigned by the SLA Nomenclature Committee of the International Society for Animal Genetics and released in updated Immuno Polymorphism Database-MHC SLA sequence database [Release 2.0.0.3 (2016-11-03)]. The submissions confirmed some unassigned alleles and standardized nomenclatures of many previously unconfirmed alleles in the GenBank database. Three class I haplotypes, Hp-37.0, 63.0, and 73.0, appeared to be novel and have not previously been reported in other pig populations. One crossover within the class I region and two between class I and class II regions were observed, resulting in three new recombinant haplotypes. The presence of the duplicated SLA-1 locus was confirmed in three class I haplotypes Hp-28.0, Hp-35.0, and Hp-63.0. Furthermore, we also analyzed the functional diversities of 19 identified frequent SLA class I molecules in this study and confirmed the existence of four supertypes using the MHCcluster method. These results will be useful for studying the adaptive immune response and immunological phenotypic differences in pigs, screening potential T-cell epitopes, and further developing the more effective vaccines. PMID:28360911
González, Clementina; Harvey, Nick; Ornelas, Juan Francisco
2015-01-01
• Premise of the study: Microsatellite primers were developed for the parasitic Psittacanthus schiedeanus, a common mistletoe species on cloud forest–adapted tree hosts in Mesoamerica, to investigate intraspecific genetic patterns of diversity and genetic structure. • Methods and Results: Using an enriched library, 10 polymorphic microsatellite loci were developed in P. schiedeanus. All loci consisted of dinucleotide repeats. Average alleles per locus were 12 (4–17), and a total of 120 alleles were recorded across 39 individuals from four populations in Mexico. Primers were tested in 11 additional species, but only amplified successfully in P. calyculatus and P. angustifolius. • Conclusions: The polymorphic loci described will be useful in studies of genetic diversity and genetic population differentiation in natural populations of these parasitic plants, and will provide valuable information to understand the importance of host distribution. PMID:25606357
Kondrysová, Eva; Krak, Karol; Mandák, Bohumil
2017-01-01
Premise of the study: Microsatellite primers were developed to characterize the genetic diversity and structure of the annual herb Atriplex tatarica (Amaranthaceae) and to facilitate ecological and evolutionary studies of A. tatarica and its relatives. Methods and Results: Sixteen novel microsatellite primers were developed for A. tatarica based on high-throughput sequencing of enriched libraries. All markers were polymorphic, with the number of alleles per locus ranging from three to 25 and observed and expected heterozygosity ranging from 0.08 to 0.74 and 0.10 to 0.87, respectively. In addition, some of these loci were successfully amplified and showed polymorphisms in four Atriplex and seven Chenopodium species. Conclusions: The microsatellite markers published here will be useful in assessing genetic diversity, structure, and gene flow within and across populations of A. tatarica, as well as in other species of Atriplex and the related genus Chenopodium. PMID:29188148
Genetic diversity in Egyptian and Italian goat breeds measured with microsatellite polymorphism.
Agha, S H; Pilla, F; Galal, S; Shaat, I; D'Andrea, M; Reale, S; Abdelsalam, A Z A; Li, M H
2008-06-01
Seven microsatellite markers were used to study genetic diversity of three Egyptian (Egyptian Baladi, Barki and Zaraibi) and two Italian (Maltese and Montefalcone) goat breeds. The microsatellites showed a high polymorphic information content (PIC) of more than 0.5 in most of the locus-breed combinations and indicated that the loci were useful in assessing within- and between-breed variability of domestic goat (Capra hircus). The expected heterozygosity of the breeds varied from 0.670 to 0.792. In the geographically wider distributed Egyptian Baladi breed there were indications for deviations from random breeding. Analysis of genetic distances and population structure grouped the three Egyptian goat breeds together, and separated them from the two Italian breeds. The studied Mediterranean breeds sampled from African and European populations seem to have differentiated from each other with only little genetic exchange between the geographically isolated populations.
Polymorphism in the two-locus Levene model with nonepistatic directional selection.
Bürger, Reinhard
2009-11-01
For the Levene model with soft selection in two demes, the maintenance of polymorphism at two diallelic loci is studied. Selection is nonepistatic and dominance is intermediate. Thus, there is directional selection in every deme and at every locus. We assume that selection is in opposite directions in the two demes because otherwise no polymorphism is possible. If at one locus there is no dominance, then a complete analysis of the dynamical and equilibrium properties is performed. In particular, a simple necessary and sufficient condition for the existence of an internal equilibrium and sufficient conditions for global asymptotic stability are obtained. These results are extended to deme-independent degree of dominance at one locus. A perturbation analysis establishes structural stability within the full parameter space. In the absence of genotype-environment interaction, which requires deme-independent dominance at both loci, nongeneric equilibrium behavior occurs, and the introduction of arbitrarily small genotype-environment interaction changes the equilibrium structure and may destroy stable polymorphism. The volume of the parameter space for which a (stable) two-locus polymorphism is maintained is computed numerically. It is investigated how this volume depends on the strength of selection and on the dominance relations. If the favorable allele is (partially) dominant in its deme, more than 20% of all parameter combinations lead to a globally asymptotically stable, fully polymorphic equilibrium.
Balancing selection maintains polymorphisms at neurogenetic loci in field experiments
Lonn, Eija; Mappes, Tapio; Mokkonen, Mikael; Sims, Angela M.; Watts, Phillip C.
2017-01-01
Most variation in behavior has a genetic basis, but the processes determining the level of diversity at behavioral loci are largely unknown for natural populations. Expression of arginine vasopressin receptor 1a (Avpr1a) and oxytocin receptor (Oxtr) in specific regions of the brain regulates diverse social and reproductive behaviors in mammals, including humans. That these genes have important fitness consequences and that natural populations contain extensive diversity at these loci implies the action of balancing selection. In Myodes glareolus, Avpr1a and Oxtr each contain a polymorphic microsatellite locus located in their 5′ regulatory region (the regulatory region-associated microsatellite, RRAM) that likely regulates gene expression. To test the hypothesis that balancing selection maintains diversity at behavioral loci, we released artificially bred females and males with different RRAM allele lengths into field enclosures that differed in population density. The length of Avpr1a and Oxtr RRAMs was associated with reproductive success, but population density and the sex interacted to determine the optimal genotype. In general, longer Avpr1a RRAMs were more beneficial for males, and shorter RRAMs were more beneficial for females; the opposite was true for Oxtr RRAMs. Moreover, Avpr1a RRAM allele length is correlated with the reproductive success of the sexes during different phases of reproduction; for males, RRAM length correlated with the numbers of newborn offspring, but for females selection was evident on the number of weaned offspring. This report of density-dependence and sexual antagonism acting on loci within the arginine vasopressin–oxytocin pathway explains how genetic diversity at Avpr1a and Oxtr could be maintained in natural populations. PMID:28325880
Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki
2015-01-01
To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a ‘piping-leaf-type’ cultivar, ‘Yugafu’, and a ‘spiny-tip-leaf-type’ variety, ‘Yonekura’. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the ‘spiny-leaf type’ as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding. PMID:26175625
Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki
2015-06-01
To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a 'piping-leaf-type' cultivar, 'Yugafu', and a 'spiny-tip-leaf-type' variety, 'Yonekura'. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the 'spiny-leaf type' as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding.
Gibson, Fernando; Froguel, Philippe
2004-11-01
We have carried out a detailed reexamination of the genetics of the APM1 locus and its contribution to the genetic basis of type 2 diabetes susceptibility in the French Caucasian population. The G allele of single nucleotide polymorphism -11426 in the APM1 promoter showed modest association with type 2 diabetes (odds ratio 1.44 [95% CI 1.04-1.98]; P = 0.03), providing corroborative evidence that single nucleotide polymorphisms in the APM1 promoter region contribute to the genetic risk of type 2 diabetes. A "sliding window" analysis identified haplotypes 1-1-1, 1-1-1-1, and 1-1-1-1-1 as being strongly protective against type 2 diabetes (P = 0.0001). Evidence is presented that the APM1 gene is a locus of low linkage disequilibrium, high haplotype diversity, and high recombination. We were unable to obtain data to support the hypothesis that genetic variation in the APM1 gene is a major contributor to the type 2 diabetes linkage result at chromosome 3q27. Finally, in families with early-onset type 2 diabetes, we obtained suggestive evidence of a linkage peak for serum adiponectin levels (logarithm of odds = 2.1) that closely matched the position of the type 2 diabetes linkage peak. This result indicated that the type 2 diabetes susceptibility locus at 3q27 influences both genetic predisposition to type 2 diabetes and serum adiponectin levels in patients with type 2 diabetes.
Rajender, Singh; Tamang, Rakesh; Rajkumar, Raja; Saini, Karan Singh; Megu, Kaling; Goel, Madhu Mati; Surekha, Daminani; Rao, Digumarthi Raghunatha; Rao, Lakshmi; Ramachandra, Lingadakai; Kumar, Sandeep; Kumar, Surender; Vishnupriya, Satti; Satyamoorthy, Kapaettu; Negi, Mahendra Pal Singh; Thangaraj, Kumarasamy; Konwar, Rituraj
2013-01-01
Introduction TGF-β1 is a multi-functional cytokine that plays an important role in breast carcinogenesis. Critical role of TGF-β1 signaling in breast cancer progression is well documented. Some TGF-β1 polymorphisms influence its expression; however, their impact on breast cancer risk is not clear. Methods We analyzed 1222 samples in a candidate gene-based genetic association study on two distantly located and ethnically divergent case-control groups of Indian women, followed by a population-based genetic epidemiology study analyzing these polymorphisms in other Indian populations. The c.29C>T (Pro10Leu, rs1982073 or rs1800470) and c.74G>C (Arg25Pro, rs1800471) polymorphisms in the TGF-β1 gene were analyzed using direct DNA sequencing, and peripheral level of TGF-β1 were measured by ELISA. Results c.29C>T substitution increased breast cancer risk, irrespective of ethnicity and menopausal status. On the other hand, c.74G>C substitution reduced breast cancer risk significantly in the north Indian group (p = 0.0005) and only in the pre-menopausal women. The protective effect of c.74G>C polymorphism may be ethnicity-specific, as no association was seen in south Indian group. The polymorphic status of c.29C>T was comparable among Indo-Europeans, Dravidians, and Tibeto-Burmans. Interestingly, we found that Tibeto-Burmans lack polymorphism at c.74G>C locus as true for the Chinese populations. However, the Brahmins of Nepal (Indo-Europeans) showed polymorphism in 2.08% of alleles. Mean TGF-β1 was significantly elevated in patients in comparison to controls (p<0.001). Conclusion c.29C>T and c.74G>C polymorphisms in the TGF-β1 gene significantly affect breast cancer risk, which correlates with elevated TGF-β1 level in the patients. The c.29C>T locus is polymorphic across ethnically different populations, but c.74G>C locus is monomorphic in Tibeto-Burmans and polymorphic in other Indian populations. PMID:24146803
Marshall, H Dawn; Langille, Barbara L; Hann, Crystal A; Whitney, Hugh G
2016-05-01
As the only native insular Newfoundland canid between the extinction of the wolf in the 1930s and the recent arrival of coyotes, the red fox (Vulpes vulpes deletrix Bangs 1898) poses interesting questions about genetic distinctiveness and the post-glacial colonization history of the island's depauperate mammalian fauna. Here, we characterized genetic variability at the major histocompatibility complex (MHC) class II DR β1 domain (DRB1) locus in 28 red foxes from six sampling localities island-wide and compared it with mitochondrial control region (CR) diversity and DRB1 diversity in other canids. Our goals were to describe novel DRB1 alleles in a new canid population and to make inferences about the role of selection in maintaining their diversity. As in numerous studies of vertebrates, we found an order-of-magnitude higher nucleotide diversity at the DRB1 locus compared with the CR and significantly positive nonsynonymous-to-synonymous substitution ratios, indicative of selection in the distant past. Although the evidence is weaker, the Ewens-Watterson test of neutrality and the geographical distribution of variation compared with the CR suggest a role for selection over the evolutionary timescale of populations. We report the first genetic data from the DRB1 locus in the red fox and establish baseline information regarding immunogenetic variation in this island canid population which should inform continued investigations of population demography, adaptive genetic diversity, and wildlife disease in red foxes and related species.
Oguri, Emiko; Yamaguchi, Tomio; Kajita, Tadashi; Murakami, Noriaki
2013-01-01
• Premise of the study: Microsatellite primers were developed for Leucobryum boninense, endemic to the Bonin Islands, Japan, to investigate its level of genetic diversity and population genetic structure. • Methods and Results: Using next-generation sequencing, 21 primer sets were developed, among which nine loci were polymorphic in the populations of the Bonin Islands. Among these polymorphic loci, the number of alleles per locus ranged from two to 10 (mean = 3.444) and the expected heterozygosity ranged from 0.066 to 0.801 (mean = 0.338). • Conclusions: These results indicate the utility of the nine microsatellite markers that we developed for population genetic studies of L. boninense. PMID:25202543
Lau, Jennie; Alberts, Allison C; Chemnick, Leona G; Gerber, Glenn P; Jones, Kenneth C; Mitchell, Adele A; Ryder, Oliver A
2009-09-01
Twenty-three polymorphic microsatellite markers were identified and characterized for Cyclura pinguis, a critically endangered species of lizard (Sauria: Iguanidae) native to Anegada Island in the British Virgin Islands. We examined variation at these loci for 39 C. pinguis, finding up to five alleles per locus and an average expected heterozygosity of 0.55. Allele frequency estimates for these microsatellite loci will be used to characterize genetic diversity of captive and wild C. pinguis populations and to estimate relatedness among adult iguanas at the San Diego Zoo that form the nucleus of a captive breeding programme for this critically endangered species. © 2009 Blackwell Publishing Ltd.
Liu, H L; Zhang, R Q; Geng, M L; Zhu, J Y; Ma, J L
2014-12-03
Zelkova schneideriana is a highly valued hardwood species. An improved technique for isolating codominant compound microsatellite markers was used to develop simple sequence repeat markers for Z. schneideriana. A total of 12 microsatellite loci were identified. Overall, the number of alleles per locus ranged from 8-19, with an average of 11.75. Observed heterozygosity and expected heterozygosity values ranged from 0.109-0.709 and 0.832-0.929, respectively. Polymorphic information content is from 0.803-0.915, with an average of 0.854. These markers will be very important for future research related to the genetic diversity, population structure, patterns of gene flow, and mating system of this species.
A conserved supergene locus controls colour pattern diversity in Heliconius butterflies.
Joron, Mathieu; Papa, Riccardo; Beltrán, Margarita; Chamberlain, Nicola; Mavárez, Jesús; Baxter, Simon; Abanto, Moisés; Bermingham, Eldredge; Humphray, Sean J; Rogers, Jane; Beasley, Helen; Barlow, Karen; ffrench-Constant, Richard H; Mallet, James; McMillan, W Owen; Jiggins, Chris D
2006-10-01
We studied whether similar developmental genetic mechanisms are involved in both convergent and divergent evolution. Mimetic insects are known for their diversity of patterns as well as their remarkable evolutionary convergence, and they have played an important role in controversies over the respective roles of selection and constraints in adaptive evolution. Here we contrast three butterfly species, all classic examples of Müllerian mimicry. We used a genetic linkage map to show that a locus, Yb, which controls the presence of a yellow band in geographic races of Heliconius melpomene, maps precisely to the same location as the locus Cr, which has very similar phenotypic effects in its co-mimic H. erato. Furthermore, the same genomic location acts as a "supergene", determining multiple sympatric morphs in a third species, H. numata. H. numata is a species with a very different phenotypic appearance, whose many forms mimic different unrelated ithomiine butterflies in the genus Melinaea. Other unlinked colour pattern loci map to a homologous linkage group in the co-mimics H. melpomene and H. erato, but they are not involved in mimetic polymorphism in H. numata. Hence, a single region from the multilocus colour pattern architecture of H. melpomene and H. erato appears to have gained control of the entire wing-pattern variability in H. numata, presumably as a result of selection for mimetic "supergene" polymorphism without intermediates. Although we cannot at this stage confirm the homology of the loci segregating in the three species, our results imply that a conserved yet relatively unconstrained mechanism underlying pattern switching can affect mimicry in radically different ways. We also show that adaptive evolution, both convergent and diversifying, can occur by the repeated involvement of the same genomic regions.
[Analysis of ethnogeographic groups of Kazakhs based on nuclear genome DNA polymorphism].
Salimova, A Z; Kutuev, I A; Khusainova, R I; Akhmetova, V L; Sviatova, G S; Berezina, G M; Khusnutdinova, E K
2005-07-01
Eight nuclear DNA loci, including six Alu insertions (ACE, APOA1, PV92, TPA25, Ya5NBC27, and Ya5NBC148), 32-bp deletion in the CCR5 gene, and VNTR locus at the eNOS gene, were examined in three ethnogeographic groups of Kazakhs (342 individuals). The individuals examined lived in southeastern, central, and southwestern regions of Kazakhstan, and according to their tribal attribution, belonged to the Senior, Middle, and Junior Zhuzes. The Alu insertions appeared to be polymorphic in all populations examined: the insertion frequency varied from 0.264 in the populations of the Senior and Middle Zhuzes at the Ya5NBC27 and Ya5NBC148 loci, to 0.827 in Kazakhs of the Middle Zhuz at the APOA1 locus. In Kazakh groups examined only two alleles of the eNOS VNTR locus were detected with the number of repeats constituting four (A) and five (B) copies. The highest frequency of A allele was found in Kazakhs from the Junior Zhuz (0.113), while the highest frequency of B allele was detected in population of the Senior Zhuz (0.893). The frequency of the 32-bp deletion in the chemokine receptor CCR5 gene varied from 0.027 in the Junior Zhuz to 0.045 in the Senior Zhuz. Kazakhs showed high genetic diversity (Hex = 0.376). In general, in three ethnogeographic groups of Kazakhs, the coefficient of gene differentiation (G(ST)) over eight diallelic markers of nuclear genome constituted 1.1%. The differences in the Alu insertions made the highest contribution to the among-population diversity (G(ST) = 1.2%).
Gaspar, Paulo; Seixas, Susana; Rocha, Jorge
2004-04-01
The genetic variation at a compound nonrecombining haplotype system, consisting of the previously reported SB19.3 Alu insertion polymorphism and a newly identified adjacent short tandem repeat (STR), was studied in population samples from Portugal and São Tomé (Gulf of Guinea, West Africa). Age estimates based on the linked microsatellite variation suggest that the Alu insertion occurred about 190,000 years ago. In accordance with the global patterns of distribution of human genetic variation, the highest haplotype diversity was found in the African sample. This excess in African diversity was due to both a substantial reduction in heterozygosity at the Alu polymorphism and a lower STR variability associated with the predominant Alu insertion allele in the Portuguese sample. The high level of interpopulation differentiation observed at the Alu locus (F(ST) = 0.43) was interpreted under alternative selective and demographic scenarios. The need for compatibility between patterns of variation at the STR and Alu loci could be used to restrict the range of selection coefficients in selection-driven genetic hitchhiking frameworks and to favor demographic scenarios dominated by larger pre-expansion African population sizes. Taken together, the data show that the SB19.3 Alu-STR system is an informative marker that can be included in more extended batteries of compound haplotypes used in human evolutionary studies.
Martins, E M; Martinelli, G; Arbetman, M P; Lamont, R W; Simões-Araújo, J L; Powell, D; Ciampi-Guillardi, M; Baldauf, C; Quinet, A; Galisa, P; Shapcott, A
2014-07-07
The Atlantic rainforest species Ocotea catharinensis, Ocotea odorifera, and Ocotea porosa have been extensively harvested in the past for timber and oil extraction and are currently listed as threatened due to overexploitation. To investigate the genetic diversity and population structure of these species, we developed 8 polymorphic microsatellite markers for O. odorifera from an enriched microsatellite library by using 2 dinucleotide repeats. The microsatellite markers were tested for cross-amplification in O. catharinensis and O. porosa. The average number of alleles per locus was 10.2, considering all loci over 2 populations of O. odorifera. Observed and expected heterozygosities for O. odorifera ranged from 0.39 to 0.93 and 0.41 to 0.92 across populations, respectively. Cross-amplification of all loci was successfully observed in O. catharinensis and O. porosa except 1 locus that was found to lack polymorphism in O. porosa. Combined probabilities of identity in the studied Ocotea species were very low ranging from 1.0 x 10-24 to 7.7 x 10-24. The probability of exclusion over all loci estimated for O. odorifera indicated a 99.9% chance of correctly excluding a random nonparent individual. The microsatellite markers described in this study have high information content and will be useful for further investigations on genetic diversity within these species and for subsequent conservation purposes.
Evidence of Natural Selection Acting on a Polymorphic Hybrid Incompatibility Locus in Mimulus
Sweigart, Andrea L.; Flagel, Lex E.
2015-01-01
As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci—hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)—to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species. PMID:25428983
Zhang, Xiyang; Lin, Wenzhi; Zhou, Ruilian; Gui, Duan; Yu, Xinjian; Wu, Yuping
2016-03-01
It has been widely reported that the major histocompatibility complex (MHC) is under balancing selection due to its immune function across terrestrial and aquatic mammals. The comprehensive studies at MHC and other neutral loci could give us a synthetic evaluation about the major force determining genetic diversity of species. Previously, a low level of genetic diversity has been reported among the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary (PRE) using both mitochondrial marker and microsatellite loci. Here, the expression and sequence polymorphism of 2 MHC class II genes (DQB and DRB) in 32 S. chinensis from PRE collected between 2003 and 2011 were investigated. High ratios of non-synonymous to synonymous substitution rates, codon-based selection analysis, and trans-species polymorphism (TSP) support the hypothesis that balancing selection acted on S. chinensis MHC sequences. However, only 2 haplotypes were detected at either DQB or DRB loci. Moreover, the lack of deviation from the Hardy-Weinberg expectation at DRB locus combined with the relatively low heterozygosity at both DQB locus and microsatellite loci suggested that balancing selection might not be sufficient, which further suggested that genetic drift associated with historical bottlenecks was not mitigated by balancing selection in terms of the loss of MHC and neutral variation in S. chinensis. The combined results highlighted the importance of maintaining the genetic diversity of the endangered S. chinensis. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Henderson, Anne P.; King, Tim L.
2012-01-01
Shortnose sturgeon Acipenser brevirostrum is an endangered polyploid fish species for which no nuclear DNA markers previously existed. To address this need, 86 polysomic loci were developed and characterized in 20 A. brevirostrum from five river systems and eight members (parents and six progeny) of a captive-bred family. All markers proved to be polymorphic, polysomic, and demonstrated direct inheritance when tested in a captive family. Eleven loci were included in a range-wide survey of 561 fish sampled from 17 geographic collections. Allelic diversity at these markers ranged from 7 to 24 alleles/locus and averaged 16.5 alleles/locus; sufficient diversity to produce unique multilocus genotypes. In the range-wide survey, a Mantel comparison of an ecological (1-Jaccard’s) and genetic (ΦPT; an analog to FST) distance metrics, identified a strong positive correlation (r = 0.98, P PT represents a viable metric for assessing genetic relatedness using this class of marker.
Genetic diversity analysis of common beans based on molecular markers
Gill-Langarica, Homar R.; Muruaga-Martínez, José S.; Vargas-Vázquez, M.L. Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl
2011-01-01
A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation. PMID:22215964
Genetic diversity analysis of common beans based on molecular markers.
Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl
2011-10-01
A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.
Development of Pineapple Microsatellite Markers and Germplasm Genetic Diversity Analysis
Tong, Helin; Chen, You; Wang, Jingyi; Chen, Yeyuan; Sun, Guangming; He, Junhu; Wu, Yaoting
2013-01-01
Two methods were used to develop pineapple microsatellite markers. Genomic library-based SSR development: using selectively amplified microsatellite assay, 86 sequences were generated from pineapple genomic library. 91 (96.8%) of the 94 Simple Sequence Repeat (SSR) loci were dinucleotide repeats (39 AC/GT repeats and 52 GA/TC repeats, accounting for 42.9% and 57.1%, resp.), and the other three were mononucleotide repeats. Thirty-six pairs of SSR primers were designed; 24 of them generated clear bands of expected sizes, and 13 of them showed polymorphism. EST-based SSR development: 5659 pineapple EST sequences obtained from NCBI were analyzed; among 1397 nonredundant EST sequences, 843 were found containing 1110 SSR loci (217 of them contained more than one SSR locus). Frequency of SSRs in pineapple EST sequences is 1SSR/3.73 kb, and 44 types were found. Mononucleotide, dinucleotide, and trinucleotide repeats dominate, accounting for 95.6% in total. AG/CT and AGC/GCT were the dominant type of dinucleotide and trinucleotide repeats, accounting for 83.5% and 24.1%, respectively. Thirty pairs of primers were designed for each of randomly selected 30 sequences; 26 of them generated clear and reproducible bands, and 22 of them showed polymorphism. Eighteen pairs of primers obtained by the one or the other of the two methods above that showed polymorphism were selected to carry out germplasm genetic diversity analysis for 48 breeds of pineapple; similarity coefficients of these breeds were between 0.59 and 1.00, and they can be divided into four groups accordingly. Amplification products of five SSR markers were extracted and sequenced, corresponding repeat loci were found and locus mutations are mainly in copy number of repeats and base mutations in the flanking region. PMID:24024187
Putaporntip, Chaturong; Hughes, Austin L; Jongwutiwes, Somchai
2013-01-01
The merozoite surface protein-1 (MSP-1) is a candidate target for the development of blood stage vaccines against malaria. Polymorphism in MSP-1 can be useful as a genetic marker for strain differentiation in malarial parasites. Although sequence diversity in the MSP-1 locus has been extensively analyzed in field isolates of Plasmodium falciparum and P. vivax, the extent of variation in its homologues in P. ovale curtisi and P. ovale wallikeri, remains unknown. Analysis of the mitochondrial cytochrome b sequences of 10 P. ovale isolates from symptomatic malaria patients from diverse endemic areas of Thailand revealed co-existence of P. ovale curtisi (n = 5) and P. ovale wallikeri (n = 5). Direct sequencing of the PCR-amplified products encompassing the entire coding region of MSP-1 of P. ovale curtisi (PocMSP-1) and P. ovale wallikeri (PowMSP-1) has identified 3 imperfect repeated segments in the former and one in the latter. Most amino acid differences between these proteins were located in the interspecies variable domains of malarial MSP-1. Synonymous nucleotide diversity (πS) exceeded nonsynonymous nucleotide diversity (πN) for both PocMSP-1 and PowMSP-1, albeit at a non-significant level. However, when MSP-1 of both these species was considered together, πS was significantly greater than πN (p<0.0001), suggesting that purifying selection has shaped diversity at this locus prior to speciation. Phylogenetic analysis based on conserved domains has placed PocMSP-1 and PowMSP-1 in a distinct bifurcating branch that probably diverged from each other around 4.5 million years ago. The MSP-1 sequences support that P. ovale curtisi and P. ovale wallikeri are distinct species. Both species are sympatric in Thailand. The low level of sequence diversity in PocMSP-1 and PowMSP-1 among Thai isolates could stem from persistent low prevalence of these species, limiting the chance of outcrossing at this locus.
Putaporntip, Chaturong; Hughes, Austin L.; Jongwutiwes, Somchai
2013-01-01
Background The merozoite surface protein-1 (MSP-1) is a candidate target for the development of blood stage vaccines against malaria. Polymorphism in MSP-1 can be useful as a genetic marker for strain differentiation in malarial parasites. Although sequence diversity in the MSP-1 locus has been extensively analyzed in field isolates of Plasmodium falciparum and P. vivax, the extent of variation in its homologues in P. ovale curtisi and P. ovale wallikeri, remains unknown. Methodology/Principal Findings Analysis of the mitochondrial cytochrome b sequences of 10 P. ovale isolates from symptomatic malaria patients from diverse endemic areas of Thailand revealed co-existence of P. ovale curtisi (n = 5) and P. ovale wallikeri (n = 5). Direct sequencing of the PCR-amplified products encompassing the entire coding region of MSP-1 of P. ovale curtisi (PocMSP-1) and P. ovale wallikeri (PowMSP-1) has identified 3 imperfect repeated segments in the former and one in the latter. Most amino acid differences between these proteins were located in the interspecies variable domains of malarial MSP-1. Synonymous nucleotide diversity (πS) exceeded nonsynonymous nucleotide diversity (πN) for both PocMSP-1 and PowMSP-1, albeit at a non-significant level. However, when MSP-1 of both these species was considered together, πS was significantly greater than πN (p<0.0001), suggesting that purifying selection has shaped diversity at this locus prior to speciation. Phylogenetic analysis based on conserved domains has placed PocMSP-1 and PowMSP-1 in a distinct bifurcating branch that probably diverged from each other around 4.5 million years ago. Conclusion/Significance The MSP-1 sequences support that P. ovale curtisi and P. ovale wallikeri are distinct species. Both species are sympatric in Thailand. The low level of sequence diversity in PocMSP-1 and PowMSP-1 among Thai isolates could stem from persistent low prevalence of these species, limiting the chance of outcrossing at this locus. PMID:23536840
Zhang, J M; Zhang, F
2015-06-01
Elaeagnus mollis Diels is a group of shrubs and dwarf trees endemic to China and are endangered plants. However, the reason why these plants are endangered remains controversial. The current study aimed to explore the endangered status of E. mollis from a genetic perspective and to propose conservation strategies for this species. Using 16 polymorphic allozyme loci, the population genetic structure was investigated for three populations representing the taxa and variants. The variants exhibited relatively high levels of genetic variation compared to other woody shrubs with similar geographic distributions. The overall genetic diversity (HE = 0.352) was elevated compared to long-lived woody angiosperms. The average number of alleles per locus (A), percentage polymorphic loci (P), and observed heterozygosity (HO) were 2.0, 85.2, and 0.371, respectively. Furthermore, gene flow estimates within the population groups were also elevated. The life history and habitats of E. mollis play major roles in the levels of genetic diversity. The results of this study may help to device strategies for preserving the genetic diversity of E. mollis and for promoting planting.
Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.
2010-01-01
Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.
Locus-specific oligonucleotide probes increase the usefulness of inter-Alu polymorphisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarnik, M.; Tang, J.Q.; Korab-Laskowska, M.
1994-09-01
Most of the mapping approaches are based on single-locus codominant markers of known location. Their multiplex ratio, defined as the number of loci that can be simultaneously tested, is typically one. An increased multiplex ratio was obtained by typing anonymous polymorphisms using PCR primers anchored in ubiquitous Alu-repeats. These so called alumorphs are revealed by inter-Alu-PCR and seen as the presence or absence of an amplified band of a given length. We decided to map alumorphs and to develop locus-specific oligonucleotide (LSO) probes to facilitate their use and transfer among different laboratories. We studied the segregation of alumorphs in eightmore » CEPH families, using two distinct Alu-primers, both directing PCR between the repeats in a tail-to-tail orientation. The segregating bands were assigned to chromosomal locations by two-point linkage analysis with CEPH markers (V6.0). They were excised from dried gels, reamplified, cloned and sequenced. The resulting LSOs were used as hybridization probes (i) to confirm chromosomal assignments in a human/hamster somatic cell hybrid panel, and (ii) to group certain allelic length variants, originally coded as separate dominant markres, into more informative codominant loci. These codominants were then placed by multipoint analysis on a microsatellite Genethon map. Finally, the LSO probes were used as polymorphic STSs, to identify by hybridization the corresponding markers among products of inter-Alu-PCR. The use of LSOs converts alumorphs into a system of non-anonymous, often multiallelic codominant markes which can be simultaneously typed, thus achieving the goal of high multiplex ratio.« less
Yang, Xian-Ming; Sun, Jing-Tao; Xue, Xiao-Feng; Zhu, Wen-Chao; Hong, Xiao-Yue
2012-01-01
The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. For a better understanding of the genetic makeup and migration patterns of F. occidentalis throughout the world, we characterized 18 novel polymorphic EST-derived microsatellites. The mutational mechanism of these EST-SSRs was also investigated to facilitate the selection of appropriate combinations of markers for population genetic studies. Genetic diversity of these novel markers was assessed in 96 individuals from three populations in China (Harbin, Dali, and Guiyang). The results showed that all these 18 loci were highly polymorphic; the number of alleles ranged from 2 to 15, with an average of 5.50 alleles per locus. The observed (HO) and expected (HE) heterozygosities ranged from 0.072 to 0.707 and 0.089 to 0.851, respectively. Furthermore, only two locus/population combinations (WFT144 in Dali and WFT50 in Guiyang) significantly deviated from Hardy–Weinberg equilibrium (HWE). Pairwise FST analysis showed a low but significant differentiation (0.026 < FST < 0.032) among all three pairwise population comparisons. Sequence analysis of alleles per locus revealed a complex mutational pattern of these EST-SSRs. Thus, these EST-SSRs are useful markers but greater attention should be paid to the mutational characteristics of these microsatellites when they are used in population genetic studies. PMID:22489130
Yang, Xian-Ming; Sun, Jing-Tao; Xue, Xiao-Feng; Zhu, Wen-Chao; Hong, Xiao-Yue
2012-01-01
The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. For a better understanding of the genetic makeup and migration patterns of F. occidentalis throughout the world, we characterized 18 novel polymorphic EST-derived microsatellites. The mutational mechanism of these EST-SSRs was also investigated to facilitate the selection of appropriate combinations of markers for population genetic studies. Genetic diversity of these novel markers was assessed in 96 individuals from three populations in China (Harbin, Dali, and Guiyang). The results showed that all these 18 loci were highly polymorphic; the number of alleles ranged from 2 to 15, with an average of 5.50 alleles per locus. The observed (H(O)) and expected (H(E)) heterozygosities ranged from 0.072 to 0.707 and 0.089 to 0.851, respectively. Furthermore, only two locus/population combinations (WFT144 in Dali and WFT50 in Guiyang) significantly deviated from Hardy-Weinberg equilibrium (HWE). Pairwise F(ST) analysis showed a low but significant differentiation (0.026 < F(ST) < 0.032) among all three pairwise population comparisons. Sequence analysis of alleles per locus revealed a complex mutational pattern of these EST-SSRs. Thus, these EST-SSRs are useful markers but greater attention should be paid to the mutational characteristics of these microsatellites when they are used in population genetic studies.
Restriction fragment length polymorphism among Israeli Holstein-Friesian dairy bulls.
Beckmann, J S; Kashi, Y; Hallerman, E M; Nave, A; Soller, M
1986-01-01
Israeli Holstein-Friesian dairy bulls were screened for restriction fragment length polymorphisms by hybridizing cloned DNA probes for bovine growth hormone, for chymosin, and for rat muscle beta-actin to restriction endonuclease-digested DNA immobilized on nitrocellulose filters. The population proved to be polymorphic at the growth hormone locus, with evidence consistent with the phenotypes being inherited in allelic fashion. A low level of polymorphism was also observed at one of the beta-actin gene family loci. The chymosin locus was monomorphic with the restriction enzymes utilized. The results illustrate the power of restriction fragment length polymorphism methodology in visualizing genetic variability in dairy cattle populations.
Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication
vonHoldt, Bridgett M.; Pollinger, John P.; Lohmueller, Kirk E.; Han, Eunjung; Parker, Heidi G.; Quignon, Pascale; Degenhardt, Jeremiah D.; Boyko, Adam R.; Earl, Dent A.; Auton, Adam; Reynolds, Andy; Bryc, Kasia; Brisbin, Abra; Knowles, James C.; Mosher, Dana S.; Spady, Tyrone C.; Elkahloun, Abdel; Geffen, Eli; Pilot, Malgorzata; Jedrzejewski, Wlodzimierz; Greco, Claudia; Randi, Ettore; Bannasch, Danika; Wilton, Alan; Shearman, Jeremy; Musiani, Marco; Cargill, Michelle; Jones, Paul G.; Qian, Zuwei; Huang, Wei; Ding, Zhao-Li; Zhang, Ya-ping; Bustamante, Carlos D.; Ostrander, Elaine A.; Novembre, John; Wayne, Robert K.
2010-01-01
Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication1,2. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data3. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity. PMID:20237475
Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication.
Vonholdt, Bridgett M; Pollinger, John P; Lohmueller, Kirk E; Han, Eunjung; Parker, Heidi G; Quignon, Pascale; Degenhardt, Jeremiah D; Boyko, Adam R; Earl, Dent A; Auton, Adam; Reynolds, Andy; Bryc, Kasia; Brisbin, Abra; Knowles, James C; Mosher, Dana S; Spady, Tyrone C; Elkahloun, Abdel; Geffen, Eli; Pilot, Malgorzata; Jedrzejewski, Wlodzimierz; Greco, Claudia; Randi, Ettore; Bannasch, Danika; Wilton, Alan; Shearman, Jeremy; Musiani, Marco; Cargill, Michelle; Jones, Paul G; Qian, Zuwei; Huang, Wei; Ding, Zhao-Li; Zhang, Ya-Ping; Bustamante, Carlos D; Ostrander, Elaine A; Novembre, John; Wayne, Robert K
2010-04-08
Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.
Li, Junhui; Zhang, Yue; Song, Yanzhai; Zhang, Hui; Fan, Jiangbo; Li, Qun; Zhang, Dongfen; Xue, Yongbiao
2017-01-01
Self-incompatibility (SI) is a self/non-self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S-locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S-locus encodes a single S-RNase and a cluster of S-locus F-box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of 'like charges repel and unlike charges attract' between SLFs and S-RNases in Petunia hybrida. Strikingly, the alteration of a single C-terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S-RNases, providing a mechanistic insight into the self/non-self discrimination between cytosolic proteins in angiosperms. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Carvalho, S I C; Ragassi, C F; Oliveira, I B; Amaral, Z P S; Reifschneider, F J B; Faleiro, F G; Buso, G S C
2015-07-17
In order to support further genetic, diversity, and phylogeny studies of Capsicum species, the transferability of a Capsicum annuum L. simple sequence repeat (SSR) microsatellite set was analyzed for C. frutescens L. ("malagueta" and "tabasco" peppers) and C. chinense Jacq. (smell peppers, among other types). A total of 185 SSR primers were evaluated in 12 accessions from 115 C. frutescens L. and 480 C. chinense Jacq, representing different types within each species. Transferability to C. frutescens L. and C. chinense Jacq. occurred for 116 primers (62.7%). Nineteen (16.37%) were polymorphic in C. frutescens L. and 36 (31.03%) in C. chinense Jacq., 17 of which were coincident and could be used to analyze samples obtained for the 2 species. Among these primers, CA49 showed a different amplitude range of alleles between the 2 species (130-132 base pairs for C. frutescens L. and 120-128 base pairs for C. chinense Jacq.), and could differentiate the species. A total of 55 alleles were identified among the 19 polymorphic SSR loci among accessions of C. frutescens L., with the number of alleles per locus ranging from 2 to 5, a mean of 2.89, and the polymorphic information content ranging from 0.30 to 0.65. The number of alleles identified in C. chinense Jacq. was 119, ranging from 2 to 5 alleles per locus, an average of 3.30, and polymorphic information content from 0.19 to 0.68. The C. annuum L. SSR primers were most often transfer-able and polymorphic for C. frutescens L. and C. chinense Jacq., and we present a set of SSR for each species.
Boakes, E.; Kearns, A. M.; Ganner, M.; Perry, C.; Hill, R. L.; Ellington, M. J.
2011-01-01
Genetically diverse community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) can harbor a bacteriophage encoding Panton-Valentine leukocidin (PVL) lysogenized into its chromosome (prophage). Six PVL phages (ΦPVL, Φ108PVL, ΦSLT, ΦSa2MW, ΦSa2USA, and ΦSa2958) are known, and single-nucleotide polymorphisms (SNPs) in the PVL genes have been reported. We sought to determine the distribution of lysogenized PVL phages among MRSA strains with PVL (PVL-MRSA strains), the PVL gene sequences, and the chromosomal phage insertion sites in 114 isolates comprising nine clones of PVL-MRSA that were selected for maximal underlying genetic diversity. The six PVL phages were identified by PCR; ΦSa2USA was present in the highest number of different lineages (multilocus sequence type clonal complex 1 [CC1], CC5, CC8, and sequence type 93 [ST93]) (n = 37 isolates). Analysis of 92 isolates confirmed that PVL phages inserted into the same chromosomal insertion locus in CC22, -30, and -80 but in a different locus in isolates of CC1, -5, -8, -59, and -88 and ST93 (and CC22 in two isolates). Within the two different loci, specific attachment motifs were found in all cases, although some limited inter- and intralineage sequence variation occurred. Overall, lineage-specific relationships between the PVL phage, the genes that encode the toxin, and the position at which the phage inserts into the host chromosome were identified. These analyses provide important insights into the microepidemiology of PVL-MRSA, will prove a valuable adjunct in outbreak investigation, and may help predict the emergence of new strains. PMID:21106787
Genetic Diversity and Molecular Evolution of a Violaxanthin De-epoxidase Gene in Maize.
Xu, Jing; Li, Zhigang; Yang, Haorui; Yang, Xiaohong; Chen, Cuixia; Li, Hui
2016-01-01
Violaxanthin de-epoxidase (VDE) has a critical role in the carotenoid biosynthesis pathway, which is involved in protecting the photosynthesis apparatus from damage caused by excessive light. Here, a VDE gene in maize, ZmVDE1, was cloned and shown to have functional domains in common with the gramineous VDE protein. Candidate gene association analysis indicated that no polymorphic sites in ZmVDE1 were significant association with any of the examined carotenoid-related traits at P = 0.05 in an association panel containing 155 maize inbred lines. Nucleotide diversity analysis of VDE1 in maize and teosinte indicated that its exon had less genetic variation, consistent with the conserved function of VDE1 in plants. In addition, dramatically reduced nucleotide diversity, fewer haplotypes and a significantly negative parameter deviation for Tajima's D test of ZmVDE1 in maize and teosinte suggested that a potential selective force had acted across the ZmVDE1 locus. We further identified a 4.2 Mb selective sweep with low recombination surrounding the ZmVDE1 locus that resulted in severely reduced nucleotide diversity on chromosome 2. Collectively, natural selection and the conserved domains of ZmVDE1 might show an important role in the xanthophyll cycle of the carotenoid biosynthesis pathway.
Genetic Diversity and Molecular Evolution of a Violaxanthin De-epoxidase Gene in Maize
Xu, Jing; Li, Zhigang; Yang, Haorui; Yang, Xiaohong; Chen, Cuixia; Li, Hui
2016-01-01
Violaxanthin de-epoxidase (VDE) has a critical role in the carotenoid biosynthesis pathway, which is involved in protecting the photosynthesis apparatus from damage caused by excessive light. Here, a VDE gene in maize, ZmVDE1, was cloned and shown to have functional domains in common with the gramineous VDE protein. Candidate gene association analysis indicated that no polymorphic sites in ZmVDE1 were significant association with any of the examined carotenoid-related traits at P = 0.05 in an association panel containing 155 maize inbred lines. Nucleotide diversity analysis of VDE1 in maize and teosinte indicated that its exon had less genetic variation, consistent with the conserved function of VDE1 in plants. In addition, dramatically reduced nucleotide diversity, fewer haplotypes and a significantly negative parameter deviation for Tajima’s D test of ZmVDE1 in maize and teosinte suggested that a potential selective force had acted across the ZmVDE1 locus. We further identified a 4.2 Mb selective sweep with low recombination surrounding the ZmVDE1 locus that resulted in severely reduced nucleotide diversity on chromosome 2. Collectively, natural selection and the conserved domains of ZmVDE1 might show an important role in the xanthophyll cycle of the carotenoid biosynthesis pathway. PMID:27507987
Genetic distribution of 15 autosomal STR markers in the Punjabi population of Pakistan.
Shan, Muhammad Adnan; Hussain, Manzoor; Shafique, Muhammad; Shahzad, Muhammad; Perveen, Rukhsana; Idrees, Muhammad
2016-11-01
Genetic diversity of 15 autosomal short tandem repeat (STR) loci was evaluated in 713 unrelated individual samples of a Punjabi population of Pakistan. These loci were scrutinized to establish allelic frequencies and statistical parameters of forensic and paternity interests. A total of 165 alleles were observed with the corresponding allele frequencies ranging from 0.001 to 0.446. D2S1338 was found as the most informative locus while TPOX (0.611) was the least discriminating locus. The combined power of discrimination (CPD), the combined probability of exclusion (CPE), and cumulative probability of matching (CPM) were found equaled to 0.999999999999999998606227424808, 0.999995777557989, and 1.37543 × 10-18, respectively. All the loci followed the Hardy-Weinberg equilibrium after the Bonferroni correction (p < 0.0033) except one locus D3S1358. The study revealed that these STR loci are highly polymorphic, suitable for forensic and parentage analyses. In comparison to different populations (Asians and non-Asians), significant differences were recorded for these loci.
Population genetic analysis of oral treponemes by multilocus enzyme electrophoresis.
Dahle, U R; Olsen, I; Tronstad, L; Caugant, D A
1995-10-01
Seventeen treponemes recently isolated from necrotic pulps, periodontal and periapical infections and 17 previously well characterized oral treponemal strains were analyzed by multilocus enzyme electrophoresis. Ten genetic loci were characterized on the basis of the electrophoretic mobilities of their enzymatic products. All loci were polymorphic. The average number of alleles per locus was 7.8. The genetic diversity among the electrophoretic types at each locus ranged from 0.624 to 0.836 with a mean genetic diversity per locus of 0.751. The 34 strains represented 34 electrophoretic types, constituting 6 main divisions (I-VI) separated at genetic distances greater than 0.75. Several of the previously characterized treponemes revealed multiple bands of enzyme activity at several loci, indicating that they were not pure. The characterized strains usually clustered within established species, whereas fresh clinical isolates overlapped species borders. There was a large genetic difference between some reference and clinical strains, indicating that the latter may contain undescribed species. Treponema socranskii and Treponema denticola strains clustered in distinct divisions (IV and V, respectively), with the exception of T. denticola strain FDC 51B2 and T. socranskii subsp. paredis strain VPI D46CPE1, both previously well described. This indicated that the taxonomic assignment of these 2 strains should be reconsidered.
Nguyen, Trung Thanh; Genini, Sem; Bui, Linh Chi; Voegeli, Peter; Stranzinger, Gerald; Renard, Jean-Paul; Maillard, Jean-Charles; Nguyen, Bui Xuan
2007-11-06
The wild gaur (Bos gaurus) is an endangered wild cattle species. In Vietnam, the total number of wild gaurs is estimated at a maximum of 500 individuals. Inbreeding and genetic drift are current relevant threats to this small population size. Therefore, information about the genetic status of the Vietnamese wild gaur population is essential to develop strategies for conservation and effective long-term management for this species. In the present study, we performed cross-species amplification of 130 bovine microsatellite markers, in order to evaluate the applicability and conservation of cattle microsatellite loci in the wild gaur genome. The genetic diversity of Vietnamese wild gaur was also investigated, based on data collected from the 117 successfully amplified loci. One hundred-thirty cattle microsatellite markers were tested on a panel of 11 animals. Efficient amplifications were observed for 117 markers (90%) with a total of 264 alleles, and of these, 68 (58.1%) gave polymorphic band patterns. The number of alleles per locus among the polymorphic markers ranged from two to six. Thirteen loci (BM1314, BM2304, BM6017, BMC2228, BMS332, BMS911, CSSM023, ETH123, HAUT14, HEL11, HEL5, ILSTS005 and INRA189) distributed on nine different cattle chromosomes failed to amplify wild gaur genomic DNA. Three cattle Y-chromosome specific microsatellite markers (INRA124, INRA126 and BM861) were also highly specific in wild gaur, only displaying an amplification product in the males. Genotype data collected from the 117 successfully amplified microsatellites were used to assess the genetic diversity of this species in Vietnam. Polymorphic Information Content (PIC) values varied between 0.083 and 0.767 with a mean of 0.252 while observed heterozygosities (Ho) ranged from 0.091 to 0.909 (mean of 0.269). Nei's unbiased mean heterozygosity and the mean allele number across loci were 0.298 and 2.2, respectively. Extensive conservation of cattle microsatellite loci in the wild gaur genome, as shown by our results, indicated a high applicability of bovine microsatellites for genetic characterization and population genetic studies of this species. Moreover, the low genetic diversity observed in Vietnamese wild gaur further underlines the necessity of specific strategies and appropriate management plans to preserve this endangered species from extinction.
Nguyen, Trung Thanh; Genini, Sem; Bui, Linh Chi; Voegeli, Peter; Stranzinger, Gerald; Renard, Jean-Paul; Maillard, Jean-Charles; Nguyen, Bui Xuan
2007-01-01
Background The wild gaur (Bos gaurus) is an endangered wild cattle species. In Vietnam, the total number of wild gaurs is estimated at a maximum of 500 individuals. Inbreeding and genetic drift are current relevant threats to this small population size. Therefore, information about the genetic status of the Vietnamese wild gaur population is essential to develop strategies for conservation and effective long-term management for this species. In the present study, we performed cross-species amplification of 130 bovine microsatellite markers, in order to evaluate the applicability and conservation of cattle microsatellite loci in the wild gaur genome. The genetic diversity of Vietnamese wild gaur was also investigated, based on data collected from the 117 successfully amplified loci. Results One hundred-thirty cattle microsatellite markers were tested on a panel of 11 animals. Efficient amplifications were observed for 117 markers (90%) with a total of 264 alleles, and of these, 68 (58.1%) gave polymorphic band patterns. The number of alleles per locus among the polymorphic markers ranged from two to six. Thirteen loci (BM1314, BM2304, BM6017, BMC2228, BMS332, BMS911, CSSM023, ETH123, HAUT14, HEL11, HEL5, ILSTS005 and INRA189) distributed on nine different cattle chromosomes failed to amplify wild gaur genomic DNA. Three cattle Y-chromosome specific microsatellite markers (INRA124, INRA126 and BM861) were also highly specific in wild gaur, only displaying an amplification product in the males. Genotype data collected from the 117 successfully amplified microsatellites were used to assess the genetic diversity of this species in Vietnam. Polymorphic Information Content (PIC) values varied between 0.083 and 0.767 with a mean of 0.252 while observed heterozygosities (Ho) ranged from 0.091 to 0.909 (mean of 0.269). Nei's unbiased mean heterozygosity and the mean allele number across loci were 0.298 and 2.2, respectively. Conclusion Extensive conservation of cattle microsatellite loci in the wild gaur genome, as shown by our results, indicated a high applicability of bovine microsatellites for genetic characterization and population genetic studies of this species. Moreover, the low genetic diversity observed in Vietnamese wild gaur further underlines the necessity of specific strategies and appropriate management plans to preserve this endangered species from extinction. PMID:17986322
He, Yanxia; Yuan, Wangjun; Dong, Meifang; Han, Yuanji; Shang, Fude
2017-01-01
Osmanthus fragrans is an ornamental plant of substantial commercial value, and no genetic linkage maps of this species have previously been reported. Specific-locus amplified fragment sequencing (SLAF-seq) is a recently developed technology that allows massive single nucleotide polymorphisms (SNPs) to be identified and high-resolution genotyping. In our current research, we generated the first genetic map of O. fragrans using SLAF-seq, which is composed with 206.92 M paired-end reads and 173,537 SLAF markers. Among total 90,715 polymorphic SLAF markers, 15,317 polymorphic SLAFs could be used for genetic map construction. The integrated map contained 14,189 high quality SLAFs that were grouped in 23 genetic linkage groups, with a total length of 2962.46 cM and an average distance of 0.21 cM between two adjacent markers. In addition, 23,664 SNPs were identified from the mapped markers. As far as we know, this is the first of the genetic map of O. fragrans. Our results are further demonstrate that SLAF-seq is a very effective method for developing markers and constructing high-density linkage maps. The SNP markers and the genetic map reported in this study should be valuable resource in future research. PMID:29018460
Ferrier, V; Gasser, F; Jaylet, A; Cayrol, C
1983-06-01
The existence of four peptidases was demonstrated by starch gel electrophoresis in Pleurodeles waltlii: PEP-1, PEP-2, PEP-3, and PEP-4. Peptidases-3 and -4 are monomorphic, and peptidases-1 and -2 are polymorphic. The heredity of the polymorphisms was studied using individuals arising from crosses or of gynogenetic origin. Peptidase-1 is dimeric; its polymorphism depends on a pair of codominant alleles, Pep-1A and Pep-1B, which are situated on the Z and W sex chromosomes, respectively, in close proximity to, or even within, the sex differential segment. As the differential segment is very close to the centromere, the PEP-1 locus therefore also appears to be closely linked to it. Expression of the PEP-1 locus was shown to be independent of the sex hormone environment. This locus is the first case reported in amphibians of an enzyme marker linked to the genetic sex. It allows the sex of PLeurodeles to be determined before they reach sexual maturity. Peptidase-2 is monomeric. Its polymorphism depends on a pair of codominant alleles on an autosomal PEP-2 locus. The high proportion of heterozygous animals in the gynogenetic offspring of females heterozygous for the PEP-2 locus indicates segregation which is independent of the centromere. Analysis of the offspring of doubly heterozygous females (i.e., for two of the loci--LDH-B, G6PDH, PEP-1, and PEP-2) shows that the four loci are independent.
Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).
Cox, Christian L; Chippindale, Paul T
2014-08-01
We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.
Zhao, Zhenqing; Gu, Honghui; Sheng, Xiaoguang; Yu, Huifang; Wang, Jiansheng; Huang, Long; Wang, Dan
2016-01-01
Molecular markers and genetic maps play an important role in plant genomics and breeding studies. Cauliflower is an important and distinctive vegetable; however, very few molecular resources have been reported for this species. In this study, a novel, specific-locus amplified fragment (SLAF) sequencing strategy was employed for large-scale single nucleotide polymorphism (SNP) discovery and high-density genetic map construction in a double-haploid, segregating population of cauliflower. A total of 12.47 Gb raw data containing 77.92 M pair-end reads were obtained after processing and 6815 polymorphic SLAFs between the two parents were detected. The average sequencing depths reached 52.66-fold for the female parent and 49.35-fold for the male parent. Subsequently, these polymorphic SLAFs were used to genotype the population and further filtered based on several criteria to construct a genetic linkage map of cauliflower. Finally, 1776 high-quality SLAF markers, including 2741 SNPs, constituted the linkage map with average data integrity of 95.68%. The final map spanned a total genetic length of 890.01 cM with an average marker interval of 0.50 cM, and covered 364.9 Mb of the reference genome. The markers and genetic map developed in this study could provide an important foundation not only for comparative genomics studies within Brassica oleracea species but also for quantitative trait loci identification and molecular breeding of cauliflower. PMID:27047515
Prajapati, Surendra K; Joshi, Hema; Carlton, Jane M; Rizvi, M Alam
2013-01-01
The evolutionary history and age of Plasmodium vivax has been inferred as both recent and ancient by several studies, mainly using mitochondrial genome diversity. Here we address the age of P. vivax on the Indian subcontinent using selectively neutral housekeeping genes and tandem repeat loci. Analysis of ten housekeeping genes revealed a substantial number of SNPs (n = 75) from 100 P. vivax isolates collected from five geographical regions of India. Neutrality tests showed a majority of the housekeeping genes were selectively neutral, confirming the suitability of housekeeping genes for inferring the evolutionary history of P. vivax. In addition, a genetic differentiation test using housekeeping gene polymorphism data showed a lack of geographical structuring between the five regions of India. The coalescence analysis of the time to the most recent common ancestor estimate yielded an ancient TMRCA (232,228 to 303,030 years) and long-term population history (79,235 to 104,008) of extant P. vivax on the Indian subcontinent. Analysis of 18 tandem repeat loci polymorphisms showed substantial allelic diversity and heterozygosity per locus, and analysis of potential bottlenecks revealed the signature of a stable P. vivax population, further corroborating our ancient age estimates. For the first time we report a comparable evolutionary history of P. vivax inferred by nuclear genetic markers (putative housekeeping genes) to that inferred from mitochondrial genome diversity.
Dobrotvorskaia, T V; Martynov, S P
2011-07-01
The allelic diversity of high-moleculat-weght glutenin subunits (H WIGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism index (polymorphism information content, PlC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.
Molecular Genetic Diversity of Major Indian Rice Cultivars over Decadal Periods
Deborah, Dondapati Annekitty; Vipparla, Abhilash; Anuradha, Ghanta; Siddiq, Ebrahimali Abubacker; Vemireddy, Lakshminarayana Reddy
2013-01-01
Genetic diversity in representative sets of high yielding varieties of rice released in India between 1970 and 2010 was studied at molecular level employing hypervariable microsatellite markers. Of 64 rice SSR primer pairs studied, 52 showed polymorphism, when screened in 100 rice genotypes. A total of 184 alleles was identified averaging 3.63 alleles per locus. Cluster analysis clearly grouped the 100 genotypes into their respective decadal periods i.e., 1970s, 1980s, 1990s and 2000s. The trend of diversity over the decadal periods estimated based on the number of alleles (Na), allelic richness (Rs), Nei’s genetic diversity index (He), observed heterozygosity (Ho) and polymorphism information content (PIC) revealed increase of diversity over the periods in year of releasewise and longevitywise classification of rice varieties. Analysis of molecular variance (AMOVA) suggested more variation in within the decadal periods than among the decades. Pairwise comparison of population differentiation (Fst) among decadal periods showed significant difference between all the pairs except a few. Analysis of trends of appearing and disappearing alleles over decadal periods showed an increase in the appearance of alleles and decrease in disappearance in both the categories of varieties. It was obvious from the present findings, that genetic diversity was progressively on the rise in the varieties released during the decadal periods, between 1970s and 2000s. PMID:23805204
Özbek, Özlem; Görgülü, Elçin; Yıldırımlı, Şinasi
2013-12-01
Isatidae L. is a complex and systematically difficult genus in Brassicaceae. The genus displays great morphological polymorphism, which makes the classification of species and subspecies difficult as it is observed in Isatis glauca Aucher ex Boiss. The aim of this study is characterization of the genetic diversity in subspecies of Isatis glauca Aucher ex Boiss. distributed widely in Central Anatolia, in Turkey by using Amplified Fragment Length Polymorphism (AFLP) technique. Eight different Eco RI-Mse I primer combinations produced 805 AFLP loci, 793 (98.5%) of which were polymorphic in 67 accessions representing nine different populations. The data obtained by AFLP was computed with using GDA (Genetic Data Analysis) and STRUCTURE (version 2.3.3) software programs for population genetics. The mean proportion of the polymorphic locus (P), the mean number of alleles (A), the number of unique alleles (U) and the mean value of gene diversity (He) were 0.59, 1.59, 20, and 0.23 respectively. The coancestry coefficient (ϴ) was 0.24. The optimal number of K was identified as seven. The principal component analysis (PCA) explained 85.61% of the total genetic variation. Isatis glauca ssp. populations showed a high level of genetic diversity, and the AFLP analysis revealed that high polymorphism and differentiated subspecies could be used conveniently for population genetic studies. The principal coordinate analysis (PCoA) based on the dissimilarity matrix, the dendrogram drawn with UPGMA method and STRUCTURE cluster analysis distinguished the accessions successfully. The accessions formed distinctive population structures for populations AA, AB, E, K, and S. Populations AG1 and AG2 seemed to have similar genetic content, in addition, in both populations several hybrid individuals were observed. The accessions did not formed distinctive population structures for both populations AI and ANP. Consequently, Ankara province might be the area, where species Isatis glauca Aucher ex Boiss. originated.
Methylation of avpr1a in the cortex of wild prairie voles: effects of CpG position and polymorphism
Maguire, S. M.; Phelps, S. M.
2017-01-01
DNA methylation can cause stable changes in neuronal gene expression, but we know little about its role in individual differences in the wild. In this study, we focus on the vasopressin 1a receptor (avpr1a), a gene extensively implicated in vertebrate social behaviour, and explore natural variation in DNA methylation, genetic polymorphism and neuronal gene expression among 30 wild prairie voles (Microtus ochrogaster). Examination of CpG density across 8 kb of the locus revealed two distinct CpG islands overlapping promoter and first exon, characterized by few CpG polymorphisms. We used a targeted bisulfite sequencing approach to measure DNA methylation across approximately 3 kb of avpr1a in the retrosplenial cortex, a brain region implicated in male space use and sexual fidelity. We find dramatic variation in methylation across the avrp1a locus, with pronounced diversity near the exon–intron boundary and in a genetically variable putative enhancer within the intron. Among our wild voles, differences in cortical avpr1a expression correlate with DNA methylation in this putative enhancer, but not with the methylation status of the promoter. We also find an unusually high number of polymorphic CpG sites (polyCpGs) in this focal enhancer. One polyCpG within this enhancer (polyCpG 2170) may drive variation in expression either by disrupting transcription factor binding motifs or by changing local DNA methylation and chromatin silencing. Our results contradict some assumptions made within behavioural epigenetics, but are remarkably concordant with genome-wide studies of gene regulation. PMID:28280564
Huo, Xiang; Hu, Zhibin; Zhai, Xiangjun; Wang, Yan; Wang, Shui; Wang, Xuechen; Qin, Jianwei; Chen, Wenseng; Jin, Guangfu; Liu, Jiyong; Gao, Jun; Wei, Qingyi; Wang, Xinru; Shen, Hongbing
2007-05-01
The BRCA1 Associated RING Domain (BARD1) gene has been identified as a high penetrance gene for breast cancer, whose germline and somatic mutations were reported in both non-BRCA1/2 hereditary site-specific and sporadic breast cancer cases. BARD1 plays a crucial role in tumor repression, along with its heterodimeric partner BRCA1. In the current study, we tested the hypothesis that common non-synonymous polymorphisms in BARD1 are associated with breast cancer susceptibility in a case-control study of 507 patients with incident breast cancer and 539 frequency-matched cancer-free controls in Chinese women. We genotyped all three common (minor allele frequency (MAF)>0.10) non-synonymous polymorphisms (Pro24Ser, Arg378Ser, and Val507Met) in BARD1. We found that the BARD1 Pro24Ser variant genotypes (24Pro/Ser and 24Ser/Ser) and Arg378Ser variant homozygote 378Ser/Ser were associated with a significantly decreased breast cancer risk, compared with their wild-type homozygotes, respectively. Furthermore, a significant locus-locus interaction was evident between Pro24Ser and Arg378Ser (P(int )= 0.032). Among the 378Ser variant allele carriers, the 24Pro/Pro wild-type homozygote was associated with a significantly increased breast cancer risk (adjusted OR=1.81, 95% CI=1.11-2.95), but the subjects having 24Pro/Ser or Ser/Ser variant genotypes had a significantly decreased risk (adjusted OR=0.74, 95% CI=0.56-0.99). In stratified analysis, this locus-locus interaction was more evident among subjects without family cancer history, those with positive estrogen receptor (ER) and individuals with negative progesterone receptor (PR). These findings indicate that the potentially functional polymorphisms Pro24Ser and Arg378Ser in BARD1 may jointly contribute to the susceptibility of breast cancer.
Beauruelle, Clemence; Pastuszka, Adeline; Mereghetti, Laurent; Lanotte, Philippe
2018-06-01
We evaluated the diversity of group B Streptococcus (GBS) vaginal carriage populations in pregnant women. For this purpose, we studied each isolate present in a primary culture of a vaginal swab using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) locus analysis. To evaluate the CRISPR array composition rapidly, a restriction fragment length polymorphism (RFLP) analysis was performed. For each different pattern observed, the CRISPR array was sequenced and capsular typing and multilocus sequence typing (MLST) were performed. A total of 970 isolates from 10 women were analyzed by CRISPR-RFLP. Each woman carrying GBS isolates presented one to five specific "personal" patterns. Five women showed similar isolates with specific and unique restriction patterns, suggesting the carriage of a single GBS clone. Different patterns were observed among isolates from the other five women. For three of these, CRISPR locus sequencing highlighted low levels of internal modifications in the locus backbone, whereas there were high levels of modifications for the last two women, suggesting the carriage of two different clones. These two clones were closely related, having the same ancestral spacer(s), the same capsular type and, in one case, the same ST, but showed different antibiotic resistance patterns in pairs. Eight of 10 women were colonized by a single GBS clone, while two of them were colonized by two strains, leading to a risk of selection of more-virulent and/or more-resistant clones during antibiotic prophylaxis. This CRISPR analysis made it possible to separate isolates belonging to a single capsular type and sequence type, highlighting the greater discriminating power of this approach. Copyright © 2018 American Society for Microbiology.
Kern, Joanna; Drutel, Robert; Leanhart, Silvia; Bogacz, Marek; Pacholczyk, Rafal
2014-01-01
Non-obese diabetic (NOD) mice are well-established models of independently developing spontaneous autoimmune diseases, Sjögren's syndrome (SS) and type 1 diabetes (T1D). The key determining factor for T1D is the strong association with particular MHCII molecule and recognition by diabetogenic T cell receptor (TCR) of an insulin peptide presented in the context of I-Ag7 molecule. For SS the association with MHCII polymorphism is weaker and TCR diversity involved in the onset of the autoimmune phase of SS remains poorly understood. To compare the impact of TCR diversity reduction on the development of both diseases we generated two lines of TCR transgenic NOD mice. One line expresses transgenic TCRβ chain originated from a pathogenically irrelevant TCR, and the second line additionally expresses transgenic TCRαmini locus. Analysis of TCR sequences on NOD background reveals lower TCR diversity on Treg cells not only in the thymus, but also in the periphery. This reduction in diversity does not affect conventional CD4+ T cells, as compared to the TCRmini repertoire on B6 background. Interestingly, neither transgenic TCRβ nor TCRmini mice develop diabetes, which we show is due to lack of insulin B:9-23 specific T cells in the periphery. Conversely SS develops in both lines, with full glandular infiltration, production of autoantibodies and hyposalivation. It shows that SS development is not as sensitive to limited availability of TCR specificities as T1D, which suggests wider range of possible TCR/peptide/MHC interactions driving autoimmunity in SS.
Evidence of natural selection acting on a polymorphic hybrid incompatibility locus in Mimulus.
Sweigart, Andrea L; Flagel, Lex E
2015-02-01
As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci-hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)-to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species. Copyright © 2015 by the Genetics Society of America.
Molecular mapping of chromosomes 17 and X. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, D.F.
1989-12-31
The basic aims of this project are the construction of high density genetic maps of chromosomes 17 and X and the utilization of these maps for the subsequent isolation of a set of physically overlapping DNA segment clones. The strategy depends on the utilization of chromosome specific libraries of small (1--15 kb) segments from each of the two chromosomes. Since the time of submission of our previous progress report, we have refined the genetic map of markers which we had previously isolated for chromosome 17. We have completed our genetic mapping in CEPH reference and NF1 families of 15 markersmore » in the pericentric region of chromosome 17. Physical mapping results with three probes, were shown be in very close genetic proximity to the NF1 gene, with respect to two translocation breakpoints which disrupt the activity of the gene. All three of the probes were found to lie between the centromere and the most proximal translocation breakpoint, providing important genetic markers proximal to the NF1 gene. Our primary focus has shifted to the X chromosome. We have isolated an additional 30 polymorphic markers, bringing the total number we have isolated to over 80. We have invested substantial effort in characterizing the polymorphisms at each of these loci and constructed plasmid subclones which reveal the polymorphisms for nearly all of the loci. These subclones are of practical value in that they produce simpler and stronger patterns on human genomic Southern blots, thus improving the efficiency of the genetic mapping experiments. These subclones may also be of value for deriving DNA sequence information at each locus, necessary for establishing polymerase chain reaction primers specific for each locus. Such information would allow the use of each locus as a sequence tagged site.« less
Molecular mapping of chromosomes 17 and X
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, D.F.
1989-01-01
The basic aims of this project are the construction of high density genetic maps of chromosomes 17 and X and the utilization of these maps for the subsequent isolation of a set of physically overlapping DNA segment clones. The strategy depends on the utilization of chromosome specific libraries of small (1--15 kb) segments from each of the two chromosomes. Since the time of submission of our previous progress report, we have refined the genetic map of markers which we had previously isolated for chromosome 17. We have completed our genetic mapping in CEPH reference and NF1 families of 15 markersmore » in the pericentric region of chromosome 17. Physical mapping results with three probes, were shown be in very close genetic proximity to the NF1 gene, with respect to two translocation breakpoints which disrupt the activity of the gene. All three of the probes were found to lie between the centromere and the most proximal translocation breakpoint, providing important genetic markers proximal to the NF1 gene. Our primary focus has shifted to the X chromosome. We have isolated an additional 30 polymorphic markers, bringing the total number we have isolated to over 80. We have invested substantial effort in characterizing the polymorphisms at each of these loci and constructed plasmid subclones which reveal the polymorphisms for nearly all of the loci. These subclones are of practical value in that they produce simpler and stronger patterns on human genomic Southern blots, thus improving the efficiency of the genetic mapping experiments. These subclones may also be of value for deriving DNA sequence information at each locus, necessary for establishing polymerase chain reaction primers specific for each locus. Such information would allow the use of each locus as a sequence tagged site.« less
Ndiaye, Ndèye Penda; Sow, Adama; Dayo, Guiguigbaza-Kossigan; Ndiaye, Saliou; Sawadogo, Germain Jerôme; Sembène, Mbacké
2015-01-01
Aim: In Senegal, uncontrolled cross-breeding of cattle breeds and changes in production systems are assumed to lead to an increase of gene flow between populations. This might constitute a relevant threat to livestock improvement. Therewith, this study was carried out to assess the current genetic diversity and the phylogenetic relationships of the four native Senegalese cattle breeds (Gobra zebu, Maure zebu, Djakoré, and N’Dama). Methods: Genomic DNA was isolated from blood samples of 120 unrelated animals collected from three agro-ecological areas of Senegal according to their phenotypic traits. Genotyping was done using 11 specific highly polymorphic microsatellite makers recommended by Food and Agriculture Organization. The basic measures of genetic variation and phylogenetic trees were computed using bioinformatics’ software. Results: A total of 115 alleles were identified with a number of alleles (Na) at one locus ranging from 6 to 16. All loci were polymorphic with a mean polymorphic information content of 0.76. The mean allelic richness (Rs) lay within the narrow range of 5.14 in N’Dama taurine to 6.10 in Gobra zebu. While, the expected heterozygosity (HE) per breed was high in general with an overall mean of 0.76±0.04. Generally, the heterozygote deficiency (FIS) of 0.073±0.026 was relatively due to inbreeding among these cattle breeds or the occurrence of population substructure. The high values of allelic and gene diversity showed that Senegalese native cattle breeds represented an important reservoir of genetic variation. The genetic distances and clustering trees concluded that the N’Dama cattle were most distinct among the investigated cattle populations. So, the principal component analyses showed qualitatively that there was an intensive genetic admixture between the Gobra zebu and Maure zebu breeds. Conclusions: The broad genetic diversity in Senegalese cattle breeds will allow for greater opportunities for improvement of productivity and adaptation relative to global changes. For the development of sustainable breeding and crossbreeding programs of Senegalese local breeds, effective management is needed towards genetic selection and transhumance to ensure their long-term survival. PMID:27047188
[Genetic diversity of microsatellite loci in captive Amur tigers].
Zhang, Yu-Gaung; Li, Di-Qiang; Xiao, Qi-Ming; Rao, Li-Qun; Zhang, Xue-Wen
2004-09-01
The tiger is one of the most threatened wildlife species since the abundance and distribution of tiger have decreased dramatically in the last century. The wild Amur tiger (Panthera tigris altaica) only distributed in northeast China, the far east area of Russia and the north Korea and its size of wild population is about 450 in the world and 20 in China. Several hundred captive populations of Amur tigers are the main source to protect gene library of tiger and the source of recovering the wild populations. The Breeding Center for Felidae at Hengdaohezi and Haoerbin Tiger Park in Heilongjiang Province is the biggest captive breeding base in China. How to make clear the genetic pedigree and establish reasonable breeding system is the urgent issues. So we use the microsatellite DNA markers and non-invasive technology to research on the genetic diversity of captive Amur tiger in this study. Ten microsatellite loci (Fca005, Fca075, Fca094, Fca152, Fca161, Fca294, Pti002, Pti003, Pti007 and Pti010), highly variable nuclear markers, were studied their genetic diversity in 113 captive Amur tigers. The PCR amplified products of microsatellite loci were detected by non-denatured polyacrylamide gel electrophoresis. Allele numbers, allelic frequency, gene heterozygosity(H(e)), polymorphism information content(PIC) and effective number of allele(N(e)) were calculated. 41 alleles were found and their size were ranged from 110bp to 250bp in ten microsatellite loci, Fca152 had 6 alleles, Fca075, Fca094 and Fca294 had 5 alleles, Fca005 and Pti002 had 4 alleles and the others had 3 alleles in all tiger samples, respectively. The allelic frequencies were from 0.009 to 0.767; The He ranged from 0.385 to 0.707, and Fca294 and Pti010 locus had the highest and lowest value; the PIC were from 0.353 to 0.658, Fca294 and Pti010 locus had the highest and lowest value; and N(e) were from 1.626 to 3.409, Fca294 and Pti010 locus had the highest and lowest value, which showed the ten microsatellie loci had high or medium polymorphism in these Amur tigers and had high genetic diversity. At the same time, we only found even bases variability which showed the even bases repeat sequence (CA/GT) maybe the basic unit for length variability of microsatellite in all loci. In this study, the samples were made up of 75 hair specimens, 23 blood specimens and 15 tissue specimens, we obtained the genome DNA from hairs using the non-invasive DNA technology and demonstrated that DNA derived from hair samples is as good as that obtained from blood samples for the analysis of microsatellite polymorphism. These results imply that microsatellite DNA markers and non-invasive DNA technology can help study the genetic diversity of Amur tiger. This method could be used in the captive management of other endangered species.
Hawley, Dana M; Fleischer, Robert C
2012-01-01
The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.
Sarah E. Hopkins; D. Lee Taylor
2011-01-01
Microsatellite primers were developed for the first time in the species Corallorhiza maculata, a nonphotosynthetic orchid that is becoming a model for studying mycorrhizal specificity. Eight polymorphic microsatellite markers were developed using an enrichment and cloning protocol. The number of alleles for each locus ranged from two to seven. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricono, Angela; Bupp, Glen; Peterson, Cheryl
Microsatellite primers were developed in scrub lupine ( Lupinus aridorum, Fabaceae), an endemic species to Florida that is listed as endangered in the United States, to assess connectivity among populations, identify hybrids, and examine genetic diversity. We isolated and characterized 12 microsatellite loci polymorphic in scrub lupine or in closely related species (i.e., sky-blue lupine [ L. diffusus] and Gulf Coast lupine [ L. westianus]). Loci showed low to moderate polymorphism, ranging from two to 14 alleles per locus and 0.01 to 0.86 observed heterozygosity. In conclusion, these loci are the first developed for Florida species of lupine and willmore » be used to determine differentiation among species and to aid in conservation of the endangered scrub lupine.« less
Ricono, Angela; Bupp, Glen; Peterson, Cheryl; ...
2015-04-01
Microsatellite primers were developed in scrub lupine ( Lupinus aridorum, Fabaceae), an endemic species to Florida that is listed as endangered in the United States, to assess connectivity among populations, identify hybrids, and examine genetic diversity. We isolated and characterized 12 microsatellite loci polymorphic in scrub lupine or in closely related species (i.e., sky-blue lupine [ L. diffusus] and Gulf Coast lupine [ L. westianus]). Loci showed low to moderate polymorphism, ranging from two to 14 alleles per locus and 0.01 to 0.86 observed heterozygosity. In conclusion, these loci are the first developed for Florida species of lupine and willmore » be used to determine differentiation among species and to aid in conservation of the endangered scrub lupine.« less
Development and characterization of 32 microsatellite loci in Genipa americana (Rubiaceae)1
Manoel, Ricardo O.; Freitas, Miguel L. M.; Barreto, Mariana A.; Moraes, Mário L. T.; Souza, Anete P.; Sebbenn, Alexandre M.
2014-01-01
• Premise of the study: Microsatellite primers were developed for the tree species Genipa americana (Rubiaceae) for further population genetic studies. • Methods and Results: We identified 144 clones containing 65 repeat motifs from a genomic library enriched for (CT)8 and (GT)8 motifs. Primer pairs were developed for 32 microsatellite loci and validated in 40 individuals of two natural G. americana populations. Seventeen loci were polymorphic, revealing from three to seven alleles per locus. The observed and expected heterozygosities ranged from 0.24 to 1.00 and from 0.22 to 0.78, respectively. • Conclusions: The 17 primers identified as polymorphic loci are suitable to study the genetic diversity and structure, mating system, and gene flow in G. americana. PMID:25202610
Staginnus, Christina; Zörntlein, Siegfried; de Meijer, Etienne
2014-07-01
Neither absolute THC content nor morphology allows the unequivocal discrimination of fiber cultivars and drug strains of Cannabis sativa L. unequivocally. However, the CBD/THC ratio remains constant throughout the plant's life cycle, is independent of environmental factors, and considered to be controlled by a single locus (B) with two codominant alleles (B(T) and B(D)). The homozygous B(T)/B(T) genotype underlies the THC-predominant phenotype, B(D)/B(D) is CBD predominant, and an intermediate phenotype is induced by the heterozygous state (B(T)/B(D)). Using PCR-based markers in two segregating populations, we proved that the THCA synthase gene represents the postulated B locus and that specific sequence polymorphisms are absolutely linked either to the THC-predominant or the THC-intermediate chemotype. The absolute linkage provides an excellent reliability of the marker signal in forensic casework. For validation, the species-specific marker system was applied to a large number of casework samples and fiber hemp cultivars. © 2014 American Academy of Forensic Sciences.
Environmental Adaptation Contributes to Gene Polymorphism across the Arabidopsis thaliana Genome
Lee, Cheng-Ruei
2012-01-01
The level of within-species polymorphism differs greatly among genes in a genome. Many genomic studies have investigated the relationship between gene polymorphism and factors such as recombination rate or expression pattern. However, the polymorphism of a gene is affected not only by its physical properties or functional constraints but also by natural selection on organisms in their environments. Specifically, if functionally divergent alleles enable adaptation to different environments, locus-specific polymorphism may be maintained by spatially heterogeneous natural selection. To test this hypothesis and estimate the extent to which environmental selection shapes the pattern of genome-wide polymorphism, we define the "environmental relevance" of a gene as the proportion of genetic variation explained by environmental factors, after controlling for population structure. We found substantial effects of environmental relevance on patterns of polymorphism among genes. In addition, the correlation between environmental relevance and gene polymorphism is positive, consistent with the expectation that balancing selection among heterogeneous environments maintains genetic variation at ecologically important genes. Comparison of the gene ontology annotations shows that genes with high environmental relevance are enriched in unknown function categories. These results suggest an important role for environmental factors in shaping genome-wide patterns of polymorphism and indicate another direction of genomic study. PMID:22798389
Bienertova-Vasku, Julie; Bienert, Petr; Slovackova, Lenka; Sablikova, Lenka; Piskackova, Zlata; Forejt, Martin; Splichal, Zbynek; Zlamal, Filip; Vasku, Anna
2012-07-01
The endocannabinoid receptor 1 (CB1) is encoded by the CNR1 gene and has been recently recognized to play an important role in the regulation of satiety and feeding behaviour with a huge potential of modulating metabolic response and feeding control. The aim of the study was to investigate the potential of three selected single nucleotide polymorphisms (SNPs) in the CNR1 locus on native dietary composition in the Central-European Caucasian population. A total of 258 unrelated individuals originating from the Central-European Caucasian population were enrolled into the study and rs1049353, rs12720071, and rs806368 polymorphisms in CNR1 locus were examined in these individuals using PCR-based methodology. Body composition was assessed using a bioimpedance method, various anthropometric parameters were investigated (waist and hip circumference, skin folds), and native dietary composition was analysed using 7-day food records as well as a food frequency questionnaire. Allelic variations and common haplotypes in the CNR1 gene were associated with the daily intake of proteins, fluids, and fibre, regardless of the physical activity of the individuals. The common haplotype in the CNR1 gene was associated with self-reported smoking (number of cigarettes per day, smoking years). Our results indicate that specific genetic variations in the CNR1 gene may act as susceptibility markers for specific dietary composition in the Central-European population.
Watt, W B
1983-04-01
Demographically oriented sampling in the wild and biochemical study of allozymes in the laboratory have been used to probe maintenance of the phosphoglucose isomerase polymorphism of Colias butterflies.-The several alleles at this locus show negative or no covariation among their frequencies in the wild. This rules out Wahlund effects as a cause of observations of heterozygote excess at this locus in broods that fly as single cohorts. Unusually heavy mortality among adults, due to drought stress or other causes, can preclude manifestation of differential survivorship among phosphoglucose isomerase genotypes. In broods composed of overlapping cohorts, heterozygote deficiency, apparently due to Wahlund effects in time as cohorts of different survivorship experience mix, can be found. Heterozygotes at this locus fly under a broader range of weather conditions than other genotypes.-Previously detected kinetic differentiation among the genotypes extends in greater magnitude to the glycolytic reaction direction, as well as to a broader range of test conditions than examined before. The heterozygote 3/4 is strikingly heterotic for several measures of kinetic functional effectiveness. Other heterozygotes are sometimes heterotic, more often intermediate (but not exactly so, nor additive in any sense) in properties between homozygotes.-Predictions are made from the biochemical analysis and from the insects' thermal ecology concerning distributions of the genotypes in the wild. Some agree with facts already established. Others are tested and confirmed from data already on hand. Still others are to be tested as reported in an accompanying paper.-All available evidence points to a combination of heterozygote advantage and fluctuating-environment selection as responsible for maintaining this polymorphism. There is considerable evidence for the operation of protein-structural constraint on the range of adaptations possible at this locus.
Watt, Ward B.
1983-01-01
Demographically oriented sampling in the wild and biochemical study of allozymes in the laboratory have been used to probe maintenance of the phosphoglucose isomerase polymorphism of Colias butterflies.—The several alleles at this locus show negative or no covariation among their frequencies in the wild. This rules out Wahlund effects as a cause of observations of heterozygote excess at this locus in broods that fly as single cohorts. Unusually heavy mortality among adults, due to drought stress or other causes, can preclude manifestation of differential survivorship among phosphoglucose isomerase genotypes. In broods composed of overlapping cohorts, heterozygote deficiency, apparently due to Wahlund effects in time as cohorts of different survivorship experience mix, can be found. Heterozygotes at this locus fly under a broader range of weather conditions than other genotypes.—Previously detected kinetic differentiation among the genotypes extends in greater magnitude to the glycolytic reaction direction, as well as to a broader range of test conditions than examined before. The heterozygote 3/4 is strikingly heterotic for several measures of kinetic functional effectiveness. Other heterozygotes are sometimes heterotic, more often intermediate (but not exactly so, nor additive in any sense) in properties between homozygotes.—Predictions are made from the biochemical analysis and from the insects' thermal ecology concerning distributions of the genotypes in the wild. Some agree with facts already established. Others are tested and confirmed from data already on hand. Still others are to be tested as reported in an accompanying paper.—All available evidence points to a combination of heterozygote advantage and fluctuating-environment selection as responsible for maintaining this polymorphism. There is considerable evidence for the operation of protein-structural constraint on the range of adaptations possible at this locus. PMID:17246121
Wang, Hansong; Burnett, Terrilea; Kono, Suminori; Haiman, Christopher A.; Iwasaki, Motoki; Wilkens, Lynne R.; Loo, Lenora W.M.; Berg, David Van Den; Kolonel, Laurence N.; Henderson, Brian E.; Keku, Temitope O.; Sandler, Robert S.; Signorello, Lisa B.; Blot, William J.; Newcomb, Polly A.; Pande, Mala; Amos, Christopher I.; West, Dee W.; Bézieau, Stéphane; Berndt, Sonja I.; Zanke, Brent W.; Hsu, Li; Lindor, Noralane M.; Haile, Robert W.; Hopper, John L.; Jenkins, Mark A.; Gallinger, Steven; Casey, Graham; Stenzel, Stephanie L.; Schumacher, Fredrick R.; Peters, Ulrike; Gruber, Stephen B.; Tsugane, Shoichiro; Stram, Daniel O.; Marchand, Loïc Le
2014-01-01
The genetic basis of sporadic colorectal cancer (CRC) is not well explained by known risk polymorphisms. Here we perform a meta-analysis of two genome-wide association studies in 2,627 cases and 3,797 controls of Japanese ancestry and 1,894 cases and 4,703 controls of African ancestry, to identify genetic variants that contribute to CRC susceptibility. We replicate genome-wide statistically significant associations (P < 5×10−8) in 16,823 cases and 18,211 controls of European ancestry. This study reveals a new pan-ethnic CRC risk locus at 10q25 (rs12241008, intronic to VTI1A; P=1.4×10−9), providing additional insight into the etiology of CRC and highlighting the value of association mapping in diverse populations. PMID:25105248
Wang, Hansong; Burnett, Terrilea; Kono, Suminori; Haiman, Christopher A; Iwasaki, Motoki; Wilkens, Lynne R; Loo, Lenora W M; Van Den Berg, David; Kolonel, Laurence N; Henderson, Brian E; Keku, Temitope O; Sandler, Robert S; Signorello, Lisa B; Blot, William J; Newcomb, Polly A; Pande, Mala; Amos, Christopher I; West, Dee W; Bézieau, Stéphane; Berndt, Sonja I; Zanke, Brent W; Hsu, Li; Lindor, Noralane M; Haile, Robert W; Hopper, John L; Jenkins, Mark A; Gallinger, Steven; Casey, Graham; Stenzel, Stephanie L; Schumacher, Fredrick R; Peters, Ulrike; Gruber, Stephen B; Tsugane, Shoichiro; Stram, Daniel O; Le Marchand, Loïc
2014-08-08
The genetic basis of sporadic colorectal cancer (CRC) is not well explained by known risk polymorphisms. Here we perform a meta-analysis of two genome-wide association studies in 2,627 cases and 3,797 controls of Japanese ancestry and 1,894 cases and 4,703 controls of African ancestry, to identify genetic variants that contribute to CRC susceptibility. We replicate genome-wide statistically significant associations (P<5 × 10(-8)) in 16,823 cases and 18,211 controls of European ancestry. This study reveals a new pan-ethnic CRC risk locus at 10q25 (rs12241008, intronic to VTI1A; P=1.4 × 10(-9)), providing additional insight into the aetiology of CRC and highlighting the value of association mapping in diverse populations.
A two-locus model of spatially varying stabilizing or directional selection on a quantitative trait
Geroldinger, Ludwig; Bürger, Reinhard
2014-01-01
The consequences of spatially varying, stabilizing or directional selection on a quantitative trait in a subdivided population are studied. A deterministic two-locus two-deme model is employed to explore the effects of migration, the degree of divergent selection, and the genetic architecture, i.e., the recombination rate and ratio of locus effects, on the maintenance of genetic variation. The possible equilibrium configurations are determined as functions of the migration rate. They depend crucially on the strength of divergent selection and the genetic architecture. The maximum migration rates are investigated below which a stable fully polymorphic equilibrium or a stable single-locus polymorphism can exist. Under stabilizing selection, but with different optima in the demes, strong recombination may facilitate the maintenance of polymorphism. However usually, and in particular with directional selection in opposite direction, the critical migration rates are maximized by a concentrated genetic architecture, i.e., by a major locus and a tightly linked minor one. Thus, complementing previous work on the evolution of genetic architectures in subdivided populations subject to diversifying selection, it is shown that concentrated architectures may aid the maintenance of polymorphism. Conditions are obtained when this is the case. Finally, the dependence of the phenotypic variance, linkage disequilibrium, and various measures of local adaptation and differentiation on the parameters is elaborated. PMID:24726489
A two-locus model of spatially varying stabilizing or directional selection on a quantitative trait.
Geroldinger, Ludwig; Bürger, Reinhard
2014-06-01
The consequences of spatially varying, stabilizing or directional selection on a quantitative trait in a subdivided population are studied. A deterministic two-locus two-deme model is employed to explore the effects of migration, the degree of divergent selection, and the genetic architecture, i.e., the recombination rate and ratio of locus effects, on the maintenance of genetic variation. The possible equilibrium configurations are determined as functions of the migration rate. They depend crucially on the strength of divergent selection and the genetic architecture. The maximum migration rates are investigated below which a stable fully polymorphic equilibrium or a stable single-locus polymorphism can exist. Under stabilizing selection, but with different optima in the demes, strong recombination may facilitate the maintenance of polymorphism. However usually, and in particular with directional selection in opposite direction, the critical migration rates are maximized by a concentrated genetic architecture, i.e., by a major locus and a tightly linked minor one. Thus, complementing previous work on the evolution of genetic architectures in subdivided populations subject to diversifying selection, it is shown that concentrated architectures may aid the maintenance of polymorphism. Conditions are obtained when this is the case. Finally, the dependence of the phenotypic variance, linkage disequilibrium, and various measures of local adaptation and differentiation on the parameters is elaborated. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
A novel locus of resistance to severe malaria in a region of ancient balancing selection.
Band, Gavin; Rockett, Kirk A; Spencer, Chris C A; Kwiatkowski, Dominic P
2015-10-08
The high prevalence of sickle haemoglobin in Africa shows that malaria has been a major force for human evolutionary selection, but surprisingly few other polymorphisms have been proven to confer resistance to malaria in large epidemiological studies. To address this problem, we conducted a multi-centre genome-wide association study (GWAS) of life-threatening Plasmodium falciparum infection (severe malaria) in over 11,000 African children, with replication data in a further 14,000 individuals. Here we report a novel malaria resistance locus close to a cluster of genes encoding glycophorins that are receptors for erythrocyte invasion by P. falciparum. We identify a haplotype at this locus that provides 33% protection against severe malaria (odds ratio = 0.67, 95% confidence interval = 0.60-0.76, P value = 9.5 × 10(-11)) and is linked to polymorphisms that have previously been shown to have features of ancient balancing selection, on the basis of haplotype sharing between humans and chimpanzees. Taken together with previous observations on the malaria-protective role of blood group O, these data reveal that two of the strongest GWAS signals for severe malaria lie in or close to genes encoding the glycosylated surface coat of the erythrocyte cell membrane, both within regions of the genome where it appears that evolution has maintained diversity for millions of years. These findings provide new insights into the host-parasite interactions that are critical in determining the outcome of malaria infection.
Microsatellite primers for the endangered aquatic herb, Ottelia acuminata (Hydrocharitaceae).
Xu, Chao; Du, Zhi-Yuan; Chen, Jin-Ming; Wang, Qing-Feng
2012-06-01
Microsatellite primers were developed in the endangered aquatic herb, Ottelia acuminata, to characterize its genetic diversity and understand its population structure. Eight polymorphic microsatellite markers were developed from two populations of O. acuminata in China. The number of alleles per locus ranged from one to 15; the observed and expected heterozygosities ranged from 0 to 0.885 and from 0 to 0.888, respectively, in the two populations. Selected loci also amplified successfully in O. sinensis. These microsatellite markers will facilitate further studies on the conservation genetics and evolutionary history of O. acuminata.
Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu
2016-04-11
Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.
Schlautman, Brandon; Fajardo, Diego; Bougie, Tierney; Wiesman, Eric; Polashock, James; Vorsa, Nicholi; Steffan, Shawn; Zalapa, Juan
2015-01-27
The American cranberry, Vaccinium macrocarpon Ait., is an economically important North American fruit crop that is consumed because of its unique flavor and potential health benefits. However, a lack of abundant, genome-wide molecular markers has limited the adoption of modern molecular assisted selection approaches in cranberry breeding programs. To increase the number of available markers in the species, this study identified, tested, and validated microsatellite markers from existing nuclear and transcriptome sequencing data. In total, new primers were designed, synthesized, and tested for 979 SSR loci; 697 of the markers amplified allele patterns consistent with single locus segregation in a diploid organism and were considered polymorphic. Of the 697 polymorphic loci, 507 were selected for additional genetic diversity and segregation analyses in 29 cranberry genotypes. More than 95% of the 507 loci did not display segregation distortion at the p < 0.05 level, and contained moderate to high levels of polymorphism with a polymorphic information content >0.25. This comprehensive collection of developed and validated microsatellite loci represents a substantial addition to the molecular tools available for geneticists, genomicists, and breeders in cranberry and Vaccinium.
New polymorphic markers in the vicinity of the pearl locus on mouse chromosome 13.
Xu, H P; Yanak, B L; Wigler, M H; Gorin, M B
1996-01-01
We have used a Mus domesticus/-Mus spretus congenic animal that was selected for retention of Mus spretus DNA around the pearl locus to create a highly polymorphic region suitable for screening new markers. Representation difference analysis (RDA) was performed with either DNA from the congenic animal or C57BL/6J as the driver for subtraction. Four clones were identified, characterized, and converted to PCR-based polymorphic markers. Three of the four markers equally subdivide a 10-cM interval containing the pearl locus, with the fourth located centromeric to it. These markers have been placed on the mouse genetic map by use of an interspecific backcross panel between Mus domesticus (C57BL/6J) and Mus spretus generated by The Jackson Laboratory.
Larson, Shawn; Farrer, Debbie; Lowry, Dayv; Ebert, David A.
2015-01-01
The broadnose sevengill shark, Notorynchus cepedianus, a common coastal species in the eastern North Pacific, was sampled during routine capture and tagging operations conducted from 2005–2012. One hundred and thirty three biopsy samples were taken during these research operations in Willapa Bay, Washington and in San Francisco Bay, California. Genotypic data from seven polymorphic microsatellites (derived from the related sixgill shark, Hexanchus griseus) were used to describe N. cepedianus genetic diversity, population structure and relatedness. Diversity within N. cepedianus was found to be low to moderate with an average observed heterozygosity of 0.41, expected heterozygosity of 0.53, and an average of 5.1 alleles per microsatellite locus. There was no evidence of a recent population bottleneck based on genetic data. Analyses of genetic differences between the two sampled estuaries suggest two distinct populations with some genetic mixing of sharks sampled during 2005–2006. Relatedness within sampled populations was high, with percent relatedness among sharks caught in the same area indicating 42.30% first-order relative relationships (full or half siblings). Estuary-specific familial relationships suggest that management of N. cepedianus on the U.S. West Coast should incorporate stock-specific management goals to conserve this ecologically important predator. PMID:26052706
Tao, Aifen; Huang, Long; Wu, Guifen; Afshar, Reza Keshavarz; Qi, Jianmin; Xu, Jiantang; Fang, Pingping; Lin, Lihui; Zhang, Liwu; Lin, Peiqing
2017-05-08
Genetic mapping and quantitative trait locus (QTL) detection are powerful methodologies in plant improvement and breeding. White jute (Corchorus capsularis L.) is an important industrial raw material fiber crop because of its elite characteristics. However, construction of a high-density genetic map and identification of QTLs has been limited in white jute due to a lack of sufficient molecular markers. The specific locus amplified fragment sequencing (SLAF-seq) strategy combines locus-specific amplification and high-throughput sequencing to carry out de novo single nuclear polymorphism (SNP) discovery and large-scale genotyping. In this study, SLAF-seq was employed to obtain sufficient markers to construct a high-density genetic map for white jute. Moreover, with the development of abundant markers, genetic dissection of fiber yield traits such as plant height was also possible. Here, we present QTLs associated with plant height that were identified using our newly constructed genetic linkage groups. An F 8 population consisting of 100 lines was developed. In total, 69,446 high-quality SLAFs were detected of which 5,074 SLAFs were polymorphic; 913 polymorphic markers were used for the construction of a genetic map. The average coverage for each SLAF marker was 43-fold in the parents, and 9.8-fold in each F 8 individual. A linkage map was constructed that contained 913 SLAFs on 11 linkage groups (LGs) covering 1621.4 cM with an average density of 1.61 cM per locus. Among the 11 LGs, LG1 was the largest with 210 markers, a length of 406.34 cM, and an average distance of 1.93 cM between adjacent markers. LG11 was the smallest with only 25 markers, a length of 29.66 cM, and an average distance of 1.19 cM between adjacent markers. 'SNP_only' markers accounted for 85.54% and were the predominant markers on the map. QTL mapping based on the F 8 phenotypes detected 11 plant height QTLs including one major effect QTL across two cultivation locations, with each QTL accounting for 4.14-15.63% of the phenotypic variance. To our knowledge, the linkage map constructed here is the densest one available to date for white jute. This analysis also identified the first QTL in white jute. The results will provide an important platform for gene/QTL mapping, sequence assembly, genome comparisons, and marker-assisted selection breeding for white jute.
Gonthier, Lucy; Blassiau, Christelle; Mörchen, Monika; Cadalen, Thierry; Poiret, Matthieu; Hendriks, Theo; Quillet, Marie-Christine
2013-08-01
High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1' individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1' mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1' individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus.
Mujic, Alija Bajro; Kuo, Alan; Tritt, Andrew; Lipzen, Anna; Chen, Cindy; Johnson, Jenifer; Sharma, Aditi; Barry, Kerrie; Grigoriev, Igor V.; Spatafora, Joseph W.
2017-01-01
Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)—the first genomes available for Basidiomycota truffles—and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus. Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales. PMID:28450370
Bustamante, Ana V; Sanso, A Mariel; Lucchesi, Paula M A; Parma, Alberto E
2010-04-01
Although serotype O157:H7 has been implicated in most cases of haemolytic-uraemic syndrome (HUS), there is growing concern about non-O157 serotypes of verocytotoxigenic Escherichia coli (VTEC). Multiple-locus variable-number tandem repeat analysis (MLVA) has been focused on the specific typing of O157:H7 isolates, but recently, a generic MLVA assay for E. coli and Shigella has been developed. We performed a study of the polymorphism in 7 generic VNTR loci both in VTEC O157:H7 and non-O157 isolates from Argentina, in order to asses the ability of the method to type this group of isolates and to get insight into their genetic diversity. Sixty-four isolates from cattle, patients with diarrhoea, and contaminated food belonging to 8 different serotypes were studied. All of them could be typed by this method and revealed 41 different MLVA genotypes. The MLVA dendrogram showed 2 main clusters which corresponded to O157:H7 and non-O157, respectively. Our results confirm the suitability of this MLVA method for analyzing VTEC isolates belonging to several serotypes, both O157:H7 as well as non-O157, highlight the genetic variability of the O157:H7 serotype and the need of additional research in order to find more VNTR loci that could allow a higher discrimination among non-O157 VTEC. (c) 2009 Elsevier GmbH. All rights reserved.
Briner, Alexandra E; Barrangou, Rodolphe
2014-02-01
Clustered regularly interspaced short palindromic repeats (CRISPR) in combination with associated sequences (cas) constitute the CRISPR-Cas immune system, which uptakes DNA from invasive genetic elements as novel "spacers" that provide a genetic record of immunization events. We investigated the potential of CRISPR-based genotyping of Lactobacillus buchneri, a species relevant for commercial silage, bioethanol, and vegetable fermentations. Upon investigating the occurrence and diversity of CRISPR-Cas systems in Lactobacillus buchneri genomes, we observed a ubiquitous occurrence of CRISPR arrays containing a 36-nucleotide (nt) type II-A CRISPR locus adjacent to four cas genes, including the universal cas1 and cas2 genes and the type II signature gene cas9. Comparative analysis of CRISPR spacer content in 26 L. buchneri pickle fermentation isolates associated with spoilage revealed 10 unique locus genotypes that contained between 9 and 29 variable spacers. We observed a set of conserved spacers at the ancestral end, reflecting a common origin, as well as leader-end polymorphisms, reflecting recent divergence. Some of these spacers showed perfect identity with phage sequences, and many spacers showed homology to Lactobacillus plasmid sequences. Following a comparative analysis of sequences immediately flanking protospacers that matched CRISPR spacers, we identified a novel putative protospacer-adjacent motif (PAM), 5'-AAAA-3'. Overall, these findings suggest that type II-A CRISPR-Cas systems are valuable for genotyping of L. buchneri.
Norman, Paul J.; Hollenbach, Jill A.; Nemat-Gorgani, Neda; Guethlein, Lisbeth A.; Hilton, Hugo G.; Pando, Marcelo J.; Koram, Kwadwo A.; Riley, Eleanor M.; Abi-Rached, Laurent; Parham, Peter
2013-01-01
Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1–14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous associations of cerebral malaria with HLA-B*53:01 and KIR, Plasmodium falciparum is a candidate pathogen. PMID:24204327
Carpenter, Margaret A; Shaw, Martin; Cooper, Rebecca D; Frew, Tonya J; Butler, Ruth C; Murray, Sarah R; Moya, Leire; Coyne, Clarice J; Timmerman-Vaughan, Gail M
2017-08-01
Although starch consists of large macromolecules composed of glucose units linked by α-1,4-glycosidic linkages with α-1,6-glycosidic branchpoints, variation in starch structural and functional properties is found both within and between species. Interest in starch genetics is based on the importance of starch in food and industrial processes, with the potential of genetics to provide novel starches. The starch metabolic pathway is complex but has been characterized in diverse plant species, including pea. To understand how allelic variation in the pea starch metabolic pathway affects starch structure and percent amylose, partial sequences of 25 candidate genes were characterized for polymorphisms using a panel of 92 diverse pea lines. Variation in the percent amylose composition of extracted seed starch and (amylopectin) chain length distribution, one measure of starch structure, were characterized for these lines. Association mapping was undertaken to identify polymorphisms associated with the variation in starch chain length distribution and percent amylose, using a mixed linear model that incorporated population structure and kinship. Associations were found for polymorphisms in seven candidate genes plus Mendel's r locus (which conditions the round versus wrinkled seed phenotype). The genes with associated polymorphisms are involved in the substrate supply, chain elongation and branching stages of the pea carbohydrate and starch metabolic pathways. The association of polymorphisms in carbohydrate and starch metabolic genes with variation in amylopectin chain length distribution and percent amylose may help to guide manipulation of pea seed starch structural and functional properties through plant breeding.
Yakubu, Abdulmojeed; Salako, Adebowale E; De Donato, Marcos; Peters, Sunday O; Takeet, Michael I; Wheto, Mathew; Okpeku, Moses; Imumorin, Ikhide G
2017-02-01
Host defense in vertebrates depend on many secreted regulatory proteins such as major histocompatibility complex (MHC) class II which provide important regulatory and effector functions of T cells. Gene polymorphism in the second exon of Capra-DRB gene in three major Nigerian goat breeds [West African Dwarf (WAD), Red Sokoto (RS), and Sahel (SH)] was analyzed by restriction fragment length polymorphisms (RFLP). Four restriction enzymes, BsaHI, AluI, HaeIII, and SacII, were utilized. The association between the polymorphic sites and some heat tolerance traits were also investigated in a total of 70 WAD, 90 RS, and 50 SH goats. Fourteen different types of alleles identified in the Nigerian goats, four of which were found in the peptide coding region (A57G, Q89R, G104D, and T112I), indicate a high degree of polymorphism at the DRB locus in this species. An obvious excess (P < 0.01) of non-synonymous substitutions than synonymous (dN/dS) in this locus is a reflection of adaptive evolution and positive selection. The phylogenetic trees revealed largely species-wise clustering in DRB gene. BsaHI, AluI, HaeIII, and SacII genotype frequencies were in Hardy-Weinberg equilibrium (P > 0.05), except AluI in RS goats and HaeIII in WAD goats (P < 0.05). The expected heterozygosity (H), which is a measure of gene diversity in the goat populations, ranged from 0.16 to 0.50. Genotypes AA (BsaHI), GG, GC and CC (AluI) and GG, GA, AA (HaeIII) appeared better in terms of heat tolerance. The heat-tolerant ability of SH and RS goats to the hot and humid tropical environment of Nigeria seemed better than that of the WAD goats. Sex effect (P < 0.05) was mainly on pulse rate and heat stress index, while there were varying interaction effects on heat tolerance. Variation at the DRB locus may prove to be important in possible selection and breeding for genetic resistance to heat stress in the tropics.
Population-specific variation in haplotype composition and heterozygosity at the POLB locus.
Yamtich, Jennifer; Speed, William C; Straka, Eva; Kidd, Judith R; Sweasy, Joann B; Kidd, Kenneth K
2009-05-01
DNA polymerase beta plays a central role in base excision repair (BER), which removes large numbers of endogenous DNA lesions from each cell on a daily basis. Little is currently known about germline polymorphisms within the POLB locus, making it difficult to study the association of variants at this locus with human diseases such as cancer. Yet, approximately thirty percent of human tumor types show variants of DNA polymerase beta. We have assessed the global frequency distributions of coding and common non-coding SNPs in and flanking the POLB gene for a total of 14 sites typed in approximately 2400 individuals from anthropologically defined human populations worldwide. We have found a marked difference between haplotype frequencies in African populations and in non-African populations.
Brudey, Karine; Driscoll, Jeffrey R; Rigouts, Leen; Prodinger, Wolfgang M; Gori, Andrea; Al-Hajoj, Sahal A; Allix, Caroline; Aristimuño, Liselotte; Arora, Jyoti; Baumanis, Viesturs; Binder, Lothar; Cafrune, Patricia; Cataldi, Angel; Cheong, Soonfatt; Diel, Roland; Ellermeier, Christopher; Evans, Jason T; Fauville-Dufaux, Maryse; Ferdinand, Séverine; de Viedma, Dario Garcia; Garzelli, Carlo; Gazzola, Lidia; Gomes, Harrison M; Guttierez, M Cristina; Hawkey, Peter M; van Helden, Paul D; Kadival, Gurujaj V; Kreiswirth, Barry N; Kremer, Kristin; Kubin, Milan; Kulkarni, Savita P; Liens, Benjamin; Lillebaek, Troels; Ly, Ho Minh; Martin, Carlos; Martin, Christian; Mokrousov, Igor; Narvskaïa, Olga; Ngeow, Yun Fong; Naumann, Ludmilla; Niemann, Stefan; Parwati, Ida; Rahim, Zeaur; Rasolofo-Razanamparany, Voahangy; Rasolonavalona, Tiana; Rossetti, M Lucia; Rüsch-Gerdes, Sabine; Sajduda, Anna; Samper, Sofia; Shemyakin, Igor G; Singh, Urvashi B; Somoskovi, Akos; Skuce, Robin A; van Soolingen, Dick; Streicher, Elisabeth M; Suffys, Philip N; Tortoli, Enrico; Tracevska, Tatjana; Vincent, Véronique; Victor, Tommie C; Warren, Robin M; Yap, Sook Fan; Zaman, Khadiza; Portaels, Françoise; Rastogi, Nalin; Sola, Christophe
2006-01-01
Background The Direct Repeat locus of the Mycobacterium tuberculosis complex (MTC) is a member of the CRISPR (Clustered regularly interspaced short palindromic repeats) sequences family. Spoligotyping is the widely used PCR-based reverse-hybridization blotting technique that assays the genetic diversity of this locus and is useful both for clinical laboratory, molecular epidemiology, evolutionary and population genetics. It is easy, robust, cheap, and produces highly diverse portable numerical results, as the result of the combination of (1) Unique Events Polymorphism (UEP) (2) Insertion-Sequence-mediated genetic recombination. Genetic convergence, although rare, was also previously demonstrated. Three previous international spoligotype databases had partly revealed the global and local geographical structures of MTC bacilli populations, however, there was a need for the release of a new, more representative and extended, international spoligotyping database. Results The fourth international spoligotyping database, SpolDB4, describes 1939 shared-types (STs) representative of a total of 39,295 strains from 122 countries, which are tentatively classified into 62 clades/lineages using a mixed expert-based and bioinformatical approach. The SpolDB4 update adds 26 new potentially phylogeographically-specific MTC genotype families. It provides a clearer picture of the current MTC genomes diversity as well as on the relationships between the genetic attributes investigated (spoligotypes) and the infra-species classification and evolutionary history of the species. Indeed, an independent Naïve-Bayes mixture-model analysis has validated main of the previous supervised SpolDB3 classification results, confirming the usefulness of both supervised and unsupervised models as an approach to understand MTC population structure. Updated results on the epidemiological status of spoligotypes, as well as genetic prevalence maps on six main lineages are also shown. Our results suggests the existence of fine geographical genetic clines within MTC populations, that could mirror the passed and present Homo sapiens sapiens demographical and mycobacterial co-evolutionary history whose structure could be further reconstructed and modelled, thereby providing a large-scale conceptual framework of the global TB Epidemiologic Network. Conclusion Our results broaden the knowledge of the global phylogeography of the MTC complex. SpolDB4 should be a very useful tool to better define the identity of a given MTC clinical isolate, and to better analyze the links between its current spreading and previous evolutionary history. The building and mining of extended MTC polymorphic genetic databases is in progress. PMID:16519816
Maryam; Jaskani, Muhammad Jafar; Awan, Faisal Saeed; Ahmad, Saeed; Khan, Iqrar A
2016-06-01
Microsatellite markers containing simple sequence repeats (SSRs) are a valuable tool for genetic analysis. Date palm is a dioecious and slow flowering and is very difficult to identify the gender of the trees until it reaches the reproductive age (5-10 years). A total of 12 microsatellite primers were used with 30 date palm samples, 14 parents (8 male + 6 females) and 16 progeny (developed from parents breeding) which showed that microsatellites were highly polymorphic, having a great number of alleles. A total of 124 alleles were characterized in 12 SSR loci. On average, there are 9.08 alleles per locus, with a range from 5 to 16 alleles, for primers mpdCIR15 and mpdCIR57, respectively. These primers produced 15 polymorphic loci specifically in male date palm samples and the seedlings harboring the unique fragments were further characterized as male plants. Increasingly, 38.46 % of these loci were scored as homozygous alleles while 61.53 % heterozygous allelic loci were determined. Primer mpdCIR48 produced a specific locus (250/250) in all male samples whereas the same locus was absent in female samples. Similarly, a locus of 300/310 bp reoccurred in 5 date palm male samples using marker DP-168 which indicated that these are the promising candidate marker to detect the sex in date palm seedlings at early stage. The data resulted from combination of 12 primers enabled the 16 seedling samples progeny (developed from parents breeding) of date palm cultivars to divide into two groups i.e., male and female regarding their sex expression comparative to the parents (male + female) using the principle coordinate analysis.
Wang, Shan; Cai, Xin; Xue, Kai; Chen, Hong
2011-02-01
PCR-RFLP was applied to analyse polymorphisms within the MRF4 and heart fatty acid-binding protein (H-FABP) gene for correlation studies with growth traits in three-month-old Qinchuan (QQ), Qinchuan × Limousin (LQ) and Qinchuan × Red Angus (AQ) cattle. The results showed that 874 bp PCR products of MRF4 digested with XbaI and 2,075 bp PCR products of H-FABP digested with HaeIII were polymorphic in the three populations. Moreover, the frequencies of allele A at MRF4 locus and allele B at H-FABP locus in the QQ, AQ, and LQ populations were 0.8358/0.8888/0.8273 and 0.8358/0.7500/0.8195 respectively. Allele A at MRF4 locus and allele B at H-FABP locus were dominant in the three populations. No statistically significant differences in growth traits were observed among the genotypes of the all three populations at H-FABP locus. However, the association of MRF4 polymorphism with growth traits was then determined in all three populations. The body weight, withers height, heart girth and height at hip cross of individuals with genotype AA were higher than those with genotype AB or BB (P < 0.05). Therefore, we suggest that the MRF4 gene may function in the control or expression of growth traits, particularly body weight, withers height, heart girth and height at hip cross.
Balancing Selection in Species with Separate Sexes: Insights from Fisher’s Geometric Model
Connallon, Tim; Clark, Andrew G.
2014-01-01
How common is balancing selection, and what fraction of phenotypic variance is attributable to balanced polymorphisms? Despite decades of research, answers to these questions remain elusive. Moreover, there is no clear theoretical prediction about the frequency with which balancing selection is expected to arise within a population. Here, we use an extension of Fisher’s geometric model of adaptation to predict the probability of balancing selection in a population with separate sexes, wherein polymorphism is potentially maintained by two forms of balancing selection: (1) heterozygote advantage, where heterozygous individuals at a locus have higher fitness than homozygous individuals, and (2) sexually antagonistic selection (a.k.a. intralocus sexual conflict), where the fitness of each sex is maximized by different genotypes at a locus. We show that balancing selection is common under biologically plausible conditions and that sex differences in selection or sex-by-genotype effects of mutations can each increase opportunities for balancing selection. Although heterozygote advantage and sexual antagonism represent alternative mechanisms for maintaining polymorphism, they mutually exist along a balancing selection continuum that depends on population and sex-specific parameters of selection and mutation. Sexual antagonism is the dominant mode of balancing selection across most of this continuum. PMID:24812306
Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico.
Jiménez-Becerril, María F; Hernández-Delgado, Sanjuana; Solís-Oba, Myrna; González Prieto, Juan M
2018-01-01
The current understanding of the genetic diversity of the phytopathogenic fungus Ustilago maydis is limited. To determine the genetic diversity and structure of U. maydis, 48 fungal isolates were analyzed using mitochondrial simple sequence repeats (SSRs). Tumours (corn smut or 'huitlacoche') were collected from different Mexican states with diverse environmental conditions. Using bioinformatic tools, five microsatellites were identified within intergenic regions of the U. maydis mitochondrial genome. SSRMUM4 was the most polymorphic marker. The most common repeats were hexanucleotides. A total of 12 allelic variants were identified, with a mean of 2.4 alleles per locus. An estimate of the genetic diversity using analysis of molecular variance (AMOVA) revealed that the highest variance component is within states (84%), with moderate genetic differentiation between states (16%) (F ST = 0.158). A dendrogram generated using the unweighted paired-grouping method with arithmetic averages (UPGMA) and the Bayesian analysis of population structure grouped the U. maydis isolates into two subgroups (K = 2) based on their shared SSRs.
Nassar, J M; Hamrick, J L; Fleming, T H
2001-07-01
Genetic diversity was measured in the mixed-mating cactus, Melocactus curvispinus, in Venezuela. Allozyme diversity was surveyed in 19 putative loci over 18 populations. Compared to other plant taxa, this cactus is rich in polymorphic loci (Ps=89.5%), with high numbers of alleles per polymorphic locus (APs=3.82), but moderate levels of heterozygosity (Hes=0.145). Substantial levels of inbreeding were detected across loci and populations at macrogeographic (FIS=0.348) and regional levels (FIS=0.194-0.402). Moderate levels of genetic differentiation among populations were detected at macrogeographical (FST=0.193) and regional (FST=0.084-0.187) scales, suggesting that gene flow is relatively restricted, but increases within regions without topographic barriers. The population genetic structure observed for this cactus was attributed to, at least, three factors: short-distance pollination and seed dispersal, the mixed-mating condition of the species, and genetic drift. High genetic identities between populations (I=0.942) supported the conspecific nature of all populations surveyed. The levels and patterns of genetic structure observed for M. curvispinus were consistent with its mating system and gene dispersal mechanisms.
Campbell, Matthew A.; Sage, George K.; DeWilde, Rachel L.; López, J. Andres; Talbot, Sandra L.
2014-01-01
Blackfishes (Esociformes: Esocidae: Dallia), small fishes with relictual distributions, are unique in being the only primary freshwater fish genus endemic to Beringia. Although the number of species of Dallia is debated, disjunct populations and distinct mitochondrial divisions that predate the end of the last glacial maximum are apparent. We developed sixteen polymorphic microsatellites from the Alaska blackfish (Dallia pectoralis) to study genetic diversity in Dallia. Genotypes from two populations, Denali (n = 31) and Bethel (n = 35), demonstrated the usefulness of the loci for population-level investigation. Observed and expected heterozygosity averaged 18.6 and 19.8 % in Denali and 61.1 and 63.7 % in Bethel. Number of alleles at each locus averaged 3.50 in Denali and 9.63 in Bethel. The observed signature of variability and structuring between populations is consistent with mitochondrial data.
Evidence for balancing selection at the DAB locus in the axolotl, Ambystoma mexicanum.
Richman, A D; Herrera, G; Reynoso, V H; Méndez, G; Zambrano, L
2007-12-01
The axolotl (Ambystoma mexicanum) has been characterized as immunodeficient, and the absence of major histocompatibility complex (MHC) class II polymorphism has been cited as a possible explanation. Here we present evidence for considerable allelic polymorphism at the MHC class II DAB locus for a sample of wild-caught axolotls. Evidence that these sequences are the product of balancing selection for disease resistance is discussed.
De Bellis, Fabien; Malapa, Roger; Kagy, Valérie; Lebegin, Stéphane; Billot, Claire; Labouisse, Jean-Pierre
2016-08-01
Using next-generation sequencing technology, new microsatellite loci were characterized in Artocarpus altilis (Moraceae) and two congeners to increase the number of available markers for genotyping breadfruit cultivars. A total of 47,607 simple sequence repeat loci were obtained by sequencing a library of breadfruit genomic DNA with an Illumina MiSeq system. Among them, 50 single-locus markers were selected and assessed using 41 samples (39 A. altilis, one A. camansi, and one A. heterophyllus). All loci were polymorphic in A. altilis, 44 in A. camansi, and 21 in A. heterophyllus. The number of alleles per locus ranged from two to 19. The new markers will be useful for assessing the identity and genetic diversity of breadfruit cultivars on a small geographical scale, gaining a better understanding of farmer management practices, and will help to optimize breadfruit genebank management.
van Dijk, Kor-Jent; Mellors, Jane; Waycott, Michelle
2014-11-01
New microsatellites were developed for the seagrass Thalassia hemprichii (Hydrocharitaceae), a long-lived seagrass species that is found throughout the shallow waters of tropical and subtropical Indo-West Pacific. Three multiplex PCR panels were designed utilizing new and previously developed markers, resulting in a toolkit for generating a 16-locus genotype. • Through the use of microsatellite enrichment and next-generation sequencing, 16 new, validated, polymorphic microsatellite markers were isolated. Diversity was between two and four alleles per locus totaling 36 alleles. These markers, plus previously developed microsatellite markers for T. hemprichii and T. testudinum, were tested for suitability in multiplex PCR panels. • The generation of an easily replicated suite of multiplex panels of codominant molecular markers will allow for high-resolution and detailed genetic structure analysis and clonality assessment with minimal genotyping costs. We suggest the establishment of a T. hemprichii primer convention for the unification of future data sets.
SSR-based genetic diversity and structure of garlic accessions from Brazil.
da Cunha, Camila Pinto; Resende, Francisco Vilela; Zucchi, Maria Imaculada; Pinheiro, José Baldin
2014-10-01
Garlic is a spice and a medicinal plant; hence, there is an increasing interest in 'developing' new varieties with different culinary properties or with high content of nutraceutical compounds. Phenotypic traits and dominant molecular markers are predominantly used to evaluate the genetic diversity of garlic clones. However, 24 SSR markers (codominant) specific for garlic are available in the literature, fostering germplasm researches. In this study, we genotyped 130 garlic accessions from Brazil and abroad using 17 polymorphic SSR markers to assess the genetic diversity and structure. This is the first attempt to evaluate a large set of accessions maintained by Brazilian institutions. A high level of redundancy was detected in the collection (50 % of the accessions represented eight haplotypes). However, non-redundant accessions presented high genetic diversity. We detected on average five alleles per locus, Shannon index of 1.2, HO of 0.5, and HE of 0.6. A core collection was set with 17 accessions, covering 100 % of the alleles with minimum redundancy. Overall FST and D values indicate a strong genetic structure within accessions. Two major groups identified by both model-based (Bayesian approach) and hierarchical clustering (UPGMA dendrogram) techniques were coherent with the classification of accessions according to maturity time (growth cycle): early-late and midseason accessions. Assessing genetic diversity and structure of garlic collections is the first step towards an efficient management and conservation of accessions in genebanks, as well as to advance future genetic studies and improvement of garlic worldwide.
Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.
Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V
1985-09-01
The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this.
Kato, Charles D; Mugasa, Claire M; Nanteza, Ann; Matovu, Enock; Alibu, Vincent P
2017-10-27
Human African trypanosomiasis (HAT) due to Trypanosoma brucei rhodesiense in East and southern Africa is reported to be clinically diverse. We tested the hypothesis that this clinical diversity is associated with a variation in trypanosome genotypes. Trypanosome DNA isolated from HAT patients was genotyped using 7 microsatellite markers directly from blood spotted FTA cards following a whole genome amplification. All markers were polymorphic and identified 17 multi-locus genotypes with 56% of the isolates having replicate genotypes. We did not observe any significant clustering between isolates and bootstrap values across major tree nodes were insignificant. When genotypes were compared among patients with varying clinical presentation or outcome, replicate genotypes were observed at both extremes showing no significant association between genetic diversity and clinical outcome. Our study shows that T. b. rhodesiense isolates are homogeneous within a focus and that observed clinical diversity may not be associated with parasite genetic diversity. Other factors like host genetics and environmental factors might be involved in determining clinical diversity. Our study may be important in designing appropriate control measures that target the parasite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwitek-Black, A.E.; Rokhlina, T.; Nishimura, D.Y.
Bardet-Biedl syndrome (BBS) is a heterogeneous autosomal recessive disorder characterized by mental retardation, post-axial polydactyly, obesity, retinitis pigmentosa, and hypogonadism. Other features of this disease include renal and cardiovascular abnormalities and an increased incidence of hypertension and diabetes mellitus. The molecular etiology for BBS is not known. We previously linked BBS to chromosome 16q13 in a large inbred Bedouin family, and excluded this locus in a second large inbred Bedouin family. We now report linkage of this second family to markers on chromosome 3q, proving non-allelic, genetic heterogeneity in the Bedouin population. A third large inbred Bedouin family was excludedmore » from the 3q and 16q BBS loci. In addition to the identification of a new BBS locus on chromosome 3, we have identified and utilized additional short tandem repeat polymorphisms (STRPs) in the 16q BBS region to narrow the candidate interval to 3 cM. Additional recombinant individuals will allow further refinement of the interval. Identification of genes causing BBS has the potential to provide insight into diverse genetic traits and disease processes including obesity, hypertension, diabetes, retinal degeneration, and abnormal limb, renal and cardiac development.« less
Gene localization in the Snyder-Robinson syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arena, J.F.; Lubs, H.A.; Schwartz, C.
1994-07-15
A family described as non-specific XLMR by Snyder and Robinson was re-evaluated 23 years later. Clinical and DNA studies were conducted on 17 family members; 6 affected males, 3 carrier females, and 8 normal males. All carrier females were clinically normal and the pattern of inheritance was clearly X-linked. Initial localization studies indicated linkage to the region near the DMD locus in Xp21.22. Further analysis focused on this region using (CA)n repeat polymorphisms for the dystrophin gene and for two markers distal to the gene. The dystrophin markers detected recombination across the entire gene, making it unlikely that the DMDmore » locus was involved in the Snyder-Robinson syndrome. Normal dystrophin staining in a muscle biopsy in one affected male confirmed this observation. Multipoint analysis also indicate that the SRS (Snyder-Robinson Syndrome) locus was distal to DMD, and located near locus DXS41 (lod score = 4.00 at theta = 0.00). The presence of mild to moderate mental retardation, asthenic body build, diminished muscle bulk, nasal speech, high narrow/cleft palate, long thin fingers and great toes and mild to severe scoliosis permitted the delineation of a specific syndrome associated with this previously non-specific disorder. It is important, therefore, to recognize that today`s {open_quotes}non-specific{close_quotes} family may be tomorrow`s syndrome.« less
Parkash, Chander; Kumar, Sandeep; Singh, Rajender; Kumar, Ajay; Kumar, Satish; Dey, Shyam Sundar; Bhatia, Reeta; Kumar, Raj
2018-01-01
A comprehensive study on characterization and genetic diversity analysis was carried out in 16 'Ogura'-based 'CMS' lines of cabbage using 14 agro-morphological traits and 29 SSR markers. Agro-morphological characterization depicted considerable variations for different horticultural traits studied. The genotype, ZHA-2, performed better for most of the economically important quantitative traits. Further, gross head weight (0.76), head length (0.60) and head width (0.83) revealed significant positive correlation with net head weight. Dendrogram based on 10 quantitative traits exhibited considerable diversity among different CMS lines and principle component analysis (PCA) indicated that net and gross head weight, and head length and width are the main components of divergence between 16 CMS lines of cabbage. In molecular study, a total of 58 alleles were amplified by 29 SSR primers, averaging to 2.0 alleles in each locus. High mean values of Shannon's Information index (0.62), expected (0.45) and observed (0.32) heterozygosity and polymorphic information content (0.35) depicted substantial polymorphism. Dendrogram based on Jaccard's similarity coefficient constructed two major groups and eight sub-groups, which revealed substantial diversity among different CMS lines. In overall, based on agro-morphological and molecular studies genotype RRMA, ZHA-2 and RCA were found most divergent. Hence, they have immense potential in future breeding programs for the high-yielding hybrid development in cabbage.
Hackler, J.C.; Van Den Bussche, Ronald A.; Leslie, David M.
2007-01-01
Two trinucleotide and seven tetranucleotide microsatellite loci were isolated from an alligator snapping turtle Macrochelys temminckii. To assess the degree of variability in these nine microsatellite loci, we genotyped 174 individuals collected from eight river drainage basins in the southeastern USA. These markers revealed a moderate degree of allelic diversity (six to 16 alleles per locus) and observed heterozygosity (0.166-0.686). These polymorphic microsatellite loci provide powerful tools for population genetic studies for a species that is afforded some level of conservation protection in every state in which it occurs. ?? 2006 The Authors.
Analysis of genetic diversity of Chinese dairy goats via microsatellite markers.
Wang, G Z; Chen, S S; Chao, T L; Ji, Z B; Hou, L; Qin, Z J; Wang, J M
2017-05-01
In this study, 15 polymorphic microsatellite markers were used to analyze the genetic structure and phylogenetic relationships of 6 dairy goat breeds in China, including 4 native developed breeds and 2 introduced breeds. The results showed that a total of 172 alleles were detected in 347 samples of the dairy goat breeds included in this study. The mean number of effective alleles per locus was 4.92. Except for BMS0812, all of the remaining microsatellite loci were highly polymorphic (polymorphism information content [PIC] > 0.5). The analysis of genetic diversity parameters, including the number of effective alleles, PIC, and heterozygosity, revealed that the native developed dairy goat breeds in China harbored a rich genetic diversity. However, these breeds showed a low breeding degree and a high population intermix degree, with a certain degree of inbreeding and within-subpopulation inbreeding coefficient ( > 0). The analysis of population genetic differentiation and phylogenetic tree topologies showed a moderate state of genetic differentiation among subpopulations of native developed breed dairy goats in China (0.05 < gene fixation coefficient [] < 0.15). The native developed breeds shared a common ancestor, namely, the Saanen dairy goat, originating from Europe. The results showed that there was a close genetic relationship between Wendeng and Laoshan dairy goats while the Guanzhong dairy goat and the Xinong Saanen dairy goat were also found to have a close genetic relationship, which were both in agreement with the formation history and geographical distribution of the breeds. This study revealed that adopting genetic management strategies, such as expanding pedigree source and strengthening multi-trait selection, is useful in maintaining the genetic diversity of native developed breeds and improving the population uniformity of dairy goats.
Dubé, Caroline E; Planes, Serge; Zhou, Yuxiang; Berteaux-Lecellier, Véronique; Boissin, Emilie
2017-01-01
Quantifying the genetic diversity in natural populations is crucial to address ecological and evolutionary questions. Despite recent advances in whole-genome sequencing, microsatellite markers have remained one of the most powerful tools for a myriad of population genetic approaches. Here, we used the 454 sequencing technique to develop microsatellite loci in the fire coral Millepora platyphylla , an important reef-builder of Indo-Pacific reefs . We tested the cross-species amplification of these loci in five other species of the genus Millepora and analysed its success in correlation with the genetic distances between species using mitochondrial 16S sequences. We succeeded in discovering fifteen microsatellite loci in our target species M. platyphylla, among which twelve were polymorphic with 2-13 alleles and a mean observed heterozygosity of 0.411. Cross-species amplification in the five other Millepora species revealed a high probability of amplification success (71%) and polymorphism (59%) of the loci. Our results show no evidence of decreased heterozygosity with increasing genetic distance. However, only one locus enabled measures of genetic diversity in the Caribbean species M. complanata due to high proportions of null alleles for most of the microsatellites. This result indicates that our novel markers may only be useful for the Indo-Pacific species of Millepora. Measures of genetic diversity revealed significant linkage disequilibrium, moderate levels of observed heterozygosity (0.323-0.496) and heterozygote deficiencies for the Indo-Pacific species. The accessibility to new polymorphic microsatellite markers for hydrozoan Millepora species creates new opportunities for future research on processes driving the complexity of their colonisation success on many Indo-Pacific reefs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aplin, H.M.; Hirst, K.L.; Crosby, A.H.
Dentinogenesis imperfecta type II (DGI1) is an autosomal dominant disorder of dentin formation, which has been mapped to human chromosome 4q12-q21. The region most likely to contain the DGI1 locus is a 3.2-cM region surrounding the osteopontin (SPP1) locus. Recently, a novel dentin-specific acidic phosphoprotein (dmp1) has been cloned in the rat and mapped to mouse chromosome 5q21. In the current investigation, we have isolated a cosmid containing the human DMP1 gene. The isolation of a short tandem repeat polymorphism at this locus has allowed us to map the DMP1 locus to human chromosome 4q21 and demonstrate that it ismore » tightly linked to DGI1 in two families (Z{sub max} = 11.01, {theta} = 0.001). The creation of a yeast artificial chromosome contig around SPP1 has further allowed us to demonstrate that DMP1 is located within 150 kb of the bone sialoprotein and 490 kb of the SPP1 loci, respectively. DMP1 is therefore a strong candidate for the DGI1 locus. 12 refs., 2 figs., 1 tab.« less
Nikbin, Behrouz; Nicknam, Mohammad Hossein; Hadinedoushan, Hossein; Ansaripour, Bita; Moradi, Batol; Yekaninejad, Mirsaeed; Aminikhah, Mahdi; Ranjbar, Mohammad Mehdi; Amirzargar, Aliakbar
2017-02-01
The major histocompatibility complex (MHC) genes are the most polymorphic loci in the human genome and have been widely studied in various populations and ethnic groups. Investigations into the HLA genes and proteins have been useful tool for anthropological, transplantation and disease association studies. The polymorphism of the HLA class I (A, B, C) and class II (DRB1, DQA1, DQB1) genes were investigated in 90 unrelated Iranian individuals from Yazd province located in the center of Iran using sequence-specific primers (PCR-SSP). Allele and haplotype frequencies, expected/observed heterozygosity, unbiased expected heterozygosity, number of effective alleles, deviations from Hardy-Weinberg (HW) equilibrium and genetic diversity were computed. A total of 23, 48, 23, 24, 13 and 16 alleles for HLA-A, -B,-C, -DRB1, -DQA and -DQB loci were determined, respectively in the population study. The most frequent allele identified in this study were A*02:01 (18.889%), HLA-B* 51:01 (12.778%), HLA-C* 12:03 (17.033%), HLA-DRB* 11 (24.4%), HLA-DQA* 05:05 (20.55%) and HLA-DQB*03:01 (22.8%).Furthermore, the most frequent 3-locus haplotypes were DRB*11-DQA*05:01-DQB*03:01 (21.1%), HLA-A*02:01- B *50:01- DRB*07:01 (4.9%) and A*26:01 -B* 38:01 -C*12:03(5%). The most 4-locus haplotype were A*11:01 -B* 52:01 -C*12:03 -DRB!*15(2.5%) and A*02:01 -B* 50:01 -DRB1*07:01 -DQB1*02:01(4.5%). The heterozygosity of the study population was confirmed the expected value and not deviated from Hardy-Weinberg equilibrium for all loci (p>0.05). Our study shows a close relatedness between Yazd population and other ethnic group of Iran despite some differences, which may be due to admixture of each one of these groups with each other or foreigner subpopulations during centuries. Moreover, the results of this study suggest that the Iranian population from Yazd province is in close vicinity with the Caucasians populations and far from the Korean and Japanese populations.
Natural sequence variants of yeast environmental sensors confer cell-to-cell expression variability
Fehrmann, Steffen; Bottin-Duplus, Hélène; Leonidou, Andri; Mollereau, Esther; Barthelaix, Audrey; Wei, Wu; Steinmetz, Lars M; Yvert, Gaël
2013-01-01
Living systems may have evolved probabilistic bet hedging strategies that generate cell-to-cell phenotypic diversity in anticipation of environmental catastrophes, as opposed to adaptation via a deterministic response to environmental changes. Evolution of bet hedging assumes that genotypes segregating in natural populations modulate the level of intraclonal diversity, which so far has largely remained hypothetical. Using a fluorescent Pmet17-GFP reporter, we mapped four genetic loci conferring to a wild yeast strain an elevated cell-to-cell variability in the expression of MET17, a gene regulated by the methionine pathway. A frameshift mutation in the Erc1p transmembrane transporter, probably resulting from a release of laboratory strains from negative selection, reduced Pmet17-GFP expression variability. At a second locus, cis-regulatory polymorphisms increased mean expression of the Mup1p methionine permease, causing increased expression variability in trans. These results demonstrate that an expression quantitative trait locus (eQTL) can simultaneously have a deterministic effect in cis and a probabilistic effect in trans. Our observations indicate that the evolution of transmembrane transporter genes can tune intraclonal variation and may therefore be implicated in both reactive and anticipatory strategies of adaptation. PMID:24104478
Significant Admixture Linkage Disequilibrium across 30 cM around the FY Locus in African Americans
Lautenberger, James A.; Stephens, J. Claiborne; O'Brien, Stephen J.; Smith, Michael W.
2000-01-01
Scientists, to understand the importance of allelic polymorphisms on phenotypes that are quantitative and environmentally interacting, are now turning to population-association screens, especially in instances in which pedigree analysis is difficult. Because association screens require linkage disequilibrium between markers and disease loci, maximizing the degree of linkage disequilibrium increases the chances of discovering functional gene-marker associations. One theoretically valid approach—mapping by admixture linkage disequilibrium (MALD), using recently admixed African Americans—is empirically evaluated here by measurement of marker associations with 15 short tandem repeats (STRs) and an insertion/deletion polymorphism of the AT3 locus in a 70-cM segment at 1q22-23, around the FY (Duffy) locus. The FY polymorphism (−46T→C) disrupts the GATA promoter motif, specifically blocking FY erythroid expression and has a nearly fixed allele-frequency difference between European Americans and native Africans that is likely a consequence of a selective advantage of FY−/− in malaria infections. Analysis of linkage disequilibrium around the FY gene has indicated that there is strong and consistent linkage disequilibrium between FY and three flanking loci (D1S303, SPTA1, and D1S484) spanning 8 cM. We observed significant linkage-disequilibrium signals over a 30-cM region from −4.4 to 16.3 cM (from D1S2777 to D1S196) for STRs and at 26.4 cM (AT3), which provided quantitative estimates of centimorgan limits, by MALD assessment in African American population-association analyses, of 5–10 cM. PMID:10712211
Genetic analyses of captive Alala (Corvus hawaiiensis) using AFLP analyses
Jarvi, Susan I.; Bianchi, Kiara R.
2006-01-01
Population level studies of genetic diversity can provide information about population structure, individual genetic distinctiveness and former population size. They are especially important for rare and threatened species like the Alala, where they can be used to assess extinction risks and evolutionary potential. In an ideal situation multiple methods should be used to detect variation, and these methods should be comparable across studies. In this report, we discuss AFLP (Amplified Fragment Length Polymorphism) as a genetic approach for detecting variation in the Alala , describe our findings, and discuss these in relation to mtDNA and microsatellite data reported elsewhere in this same population. AFLP is a technique for DNA fingerprinting that has wide applications. Because little or no prior knowledge of the particular species is required to carry out this method of analysis, AFLP can be used universally across varied taxonomic groups. Within individuals, estimates of diversity or heterozygosity across genomes may be complex because levels of diversity differ between and among genes. One of the more traditional methods of estimating diversity employs the use of codominant markers such as microsatellites. Codominant markers detect each allele at a locus independently. Hence, one can readily distinguish heterozygotes from homozygotes, directly assess allele frequencies and calculate other population level statistics. Dominant markers (for example, AFLP) are scored as either present or absent (null) so heterozygotes cannot be directly distinguished from homozygotes. However, the presence or absence data can be converted to expected heterozygosity estimates which are comparable to those determined by codominant markers. High allelic diversity and heterozygosity inherent in microsatellites make them excellent tools for studies of wild populations and they have been used extensively. One limitation to the use of microsatellites is that heterozygosity estimates are affected by the mutation rate at microsatellite loci, thus introducing a bias. Also, the number of loci that can be studied is frequently limited to fewer than 10. This theoretically represents a maximum of one marker for each of 10 chromosomes. Dominant markers like AFLP allow a larger fraction of the genome to be screened. Large numbers of loci can be screened by AFLP to resolve very small individual differences that can be used for identification of individuals, estimates of pairwise relatedness and, in some cases, for parentage analyses. Since AFLP is a dominant marker (can not distinguish between +/+ homozygote versus +/- heterozygote), it has limitations for parentage analyses. Only when both parents are homozygous for the absence of alleles (-/-) and offspring show a presence (+/+ or +/-) can the parents be excluded. In this case, microsatellites become preferable as they have the potential to exclude individual parents when the other parent is unknown. Another limitation of AFLP is that the loci are generally less polymorphic (only two alleles/locus) than microsatellite loci (often >10 alleles/locus). While generally fewer than 10 highly polymorphic microsatellite loci are enough to exclude and assign parentage, it might require up to 100 or more AFLP loci. While there are pros and cons to different methodologies, the total number of loci evaluated by AFLP generally offsets the limitations imposed due to the dominant nature of this approach and end results between methods are generally comparable. Overall objectives of this study were to evaluate the level of genetic diversity in the captive population of Alala, to compare genetic data with currently available pedigree information, and to determine the extent of relatedness of mating pairs and among founding individuals.
McAulay, Karen A.; Higgins, Craig D.; Macsween, Karen F.; Lake, Annette; Jarrett, Ruth F.; Robertson, Faye L.; Williams, Hilary; Crawford, Dorothy H.
2007-01-01
Infectious mononucleosis (IM) is an immunopathological disease caused by EBV that occurs in young adults and is a risk factor for Hodgkin lymphoma (HL). An association between EBV-positive HL and genetic markers in the HLA class I locus has been identified, indicating that genetic differences in the HLA class I locus may alter disease phenotypes associated with EBV infection. To further determine whether HLA class I alleles may affect development of EBV-associated diseases, we analyzed 2 microsatellite markers and 2 SNPs located near the HLA class I locus in patients with acute IM and in asymptomatic EBV-seropositive and -seronegative individuals. Alleles of both microsatellite markers were significantly associated with development of IM. Specific alleles of the 2 SNPs were also significantly more frequent in patients with IM than in EBV-seronegative individuals. IM patients possessing the associated microsatellite allele had fewer lymphocytes and increased neutrophils relative to IM patients lacking the allele. These patients also displayed higher EBV titers and milder IM symptoms. The results of this study indicate that HLA class I polymorphisms may predispose patients to development of IM upon primary EBV infection, suggesting that genetic variation in T cell responses can influence the nature of primary EBV infection and the level of viral persistence. PMID:17909631
McAulay, Karen A; Higgins, Craig D; Macsween, Karen F; Lake, Annette; Jarrett, Ruth F; Robertson, Faye L; Williams, Hilary; Crawford, Dorothy H
2007-10-01
Infectious mononucleosis (IM) is an immunopathological disease caused by EBV that occurs in young adults and is a risk factor for Hodgkin lymphoma (HL). An association between EBV-positive HL and genetic markers in the HLA class I locus has been identified, indicating that genetic differences in the HLA class I locus may alter disease phenotypes associated with EBV infection. To further determine whether HLA class I alleles may affect development of EBV-associated diseases, we analyzed 2 microsatellite markers and 2 SNPs located near the HLA class I locus in patients with acute IM and in asymptomatic EBV-seropositive and -seronegative individuals. Alleles of both microsatellite markers were significantly associated with development of IM. Specific alleles of the 2 SNPs were also significantly more frequent in patients with IM than in EBV-seronegative individuals. IM patients possessing the associated microsatellite allele had fewer lymphocytes and increased neutrophils relative to IM patients lacking the allele. These patients also displayed higher EBV titers and milder IM symptoms. The results of this study indicate that HLA class I polymorphisms may predispose patients to development of IM upon primary EBV infection, suggesting that genetic variation in T cell responses can influence the nature of primary EBV infection and the level of viral persistence.
Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil
2014-03-01
Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci. Published by Elsevier B.V.
Van Inghelandt, Delphine; Melchinger, Albrecht E; Lebreton, Claude; Stich, Benjamin
2010-05-01
Information about the genetic diversity and population structure in elite breeding material is of fundamental importance for the improvement of crops. The objectives of our study were to (a) examine the population structure and the genetic diversity in elite maize germplasm based on simple sequence repeat (SSR) markers, (b) compare these results with those obtained from single nucleotide polymorphism (SNP) markers, and (c) compare the coancestry coefficient calculated from pedigree records with genetic distance estimates calculated from SSR and SNP markers. Our study was based on 1,537 elite maize inbred lines genotyped with 359 SSR and 8,244 SNP markers. The average number of alleles per locus, of group specific alleles, and the gene diversity (D) were higher for SSRs than for SNPs. Modified Roger's distance (MRD) estimates and membership probabilities of the STRUCTURE matrices were higher for SSR than for SNP markers but the germplasm organization in four heterotic pools was consistent with STRUCTURE results based on SSRs and SNPs. MRD estimates calculated for the two marker systems were highly correlated (0.87). Our results suggested that the same conclusions regarding the structure and the diversity of heterotic pools could be drawn from both markers types. Furthermore, although our results suggested that the ratio of the number of SSRs and SNPs required to obtain MRD or D estimates with similar precision is not constant across the various precision levels, we propose that between 7 and 11 times more SNPs than SSRs should be used for analyzing population structure and genetic diversity.
Diversity Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection
Chesler, Elissa J.; Gatti, Daniel M.; Morgan, Andrew P.; Strobel, Marge; Trepanier, Laura; Oberbeck, Denesa; McWeeney, Shannon; Hitzemann, Robert; Ferris, Martin; McMullan, Rachel; Clayshultle, Amelia; Bell, Timothy A.; de Villena, Fernando Pardo-Manuel; Churchill, Gary A.
2016-01-01
Multi-parent populations (MPPs) capture and maintain the genetic diversity from multiple inbred founder strains to provide a resource for high-resolution genetic mapping through the accumulation of recombination events over many generations. Breeding designs that maintain a large effective population size with randomized assignment of breeders at each generation can minimize the impact of selection, inbreeding, and genetic drift on allele frequencies. Small deviations from expected allele frequencies will have little effect on the power and precision of genetic analysis, but a major distortion could result in reduced power and loss of important functional alleles. We detected strong transmission ratio distortion in the Diversity Outbred (DO) mouse population on chromosome 2, caused by meiotic drive favoring transmission of the WSB/EiJ allele at the R2d2 locus. The distorted region harbors thousands of polymorphisms derived from the seven non-WSB founder strains and many of these would be lost if the sweep was allowed to continue. To ensure the utility of the DO population to study genetic variation on chromosome 2, we performed an artificial selection against WSB/EiJ alleles at the R2d2 locus. Here, we report that we have purged the WSB/EiJ allele from the drive locus while preserving WSB/EiJ alleles in the flanking regions. We observed minimal disruption to allele frequencies across the rest of the autosomal genome. However, there was a shift in haplotype frequencies of the mitochondrial genome and an increase in the rate of an unusual sex chromosome aneuploidy. The DO population has been restored to genome-wide utility for genetic analysis, but our experience underscores that vigilant monitoring of similar genetic resource populations is needed to ensure their long-term utility. PMID:27694113
Diversity Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection.
Chesler, Elissa J; Gatti, Daniel M; Morgan, Andrew P; Strobel, Marge; Trepanier, Laura; Oberbeck, Denesa; McWeeney, Shannon; Hitzemann, Robert; Ferris, Martin; McMullan, Rachel; Clayshultle, Amelia; Bell, Timothy A; Manuel de Villena, Fernando Pardo; Churchill, Gary A
2016-12-07
Multi-parent populations (MPPs) capture and maintain the genetic diversity from multiple inbred founder strains to provide a resource for high-resolution genetic mapping through the accumulation of recombination events over many generations. Breeding designs that maintain a large effective population size with randomized assignment of breeders at each generation can minimize the impact of selection, inbreeding, and genetic drift on allele frequencies. Small deviations from expected allele frequencies will have little effect on the power and precision of genetic analysis, but a major distortion could result in reduced power and loss of important functional alleles. We detected strong transmission ratio distortion in the Diversity Outbred (DO) mouse population on chromosome 2, caused by meiotic drive favoring transmission of the WSB/EiJ allele at the R2d2 locus. The distorted region harbors thousands of polymorphisms derived from the seven non-WSB founder strains and many of these would be lost if the sweep was allowed to continue. To ensure the utility of the DO population to study genetic variation on chromosome 2, we performed an artificial selection against WSB/EiJ alleles at the R2d2 locus. Here, we report that we have purged the WSB/EiJ allele from the drive locus while preserving WSB/EiJ alleles in the flanking regions. We observed minimal disruption to allele frequencies across the rest of the autosomal genome. However, there was a shift in haplotype frequencies of the mitochondrial genome and an increase in the rate of an unusual sex chromosome aneuploidy. The DO population has been restored to genome-wide utility for genetic analysis, but our experience underscores that vigilant monitoring of similar genetic resource populations is needed to ensure their long-term utility. Copyright © 2016 by the Genetics Society of America.
Stam, L. F.; Laurie, C. C.
1996-01-01
A molecular mapping experiment shows that a major gene effect on a quantitative trait, the level of alcohol dehydrogenase expression in Drosophila melanogaster, is due to multiple polymorphisms within the Adh gene. These polymorphisms are located in an intron, the coding sequence, and the 3' untranslated region. Because of nonrandom associations among polymorphisms at different sites, the individual effects combine (in some cases epistatically) to produce ``superalleles'' with large effect. These results have implications for the interpretation of major gene effects detected by quantitative trait locus mapping methods. They show that large effects due to a single locus may be due to multiple associated polymorphisms (or sequential fixations in isolated populations) rather than individual mutations of large effect. PMID:8978044
Isolation and characterization of polymorphic microsatellite markers for blue fox (Alopex lagopus).
Li, Y M; Guo, P C; Lu, J Y; Bai, C Y; Zhao, Z H; Yan, S Q
2016-06-03
The blue fox, belonging to the family Canidae, is a coat color variant of the native arctic fox (Alopex lagopus). To date, microsatellite loci in blue fox are typically amplified using canine simple sequence repeat primers. In the present study, we constructed an (AC)n enrichment library, and isolated and identified 17 polymorphic microsatellite markers for blue fox. The number of alleles per locus is from two to seven based on 24 examined individuals. The expected and observed heterozygosities were in the range of 0.3112 to 0.8236 and 0.2917 to 0.8750, respectively. The polymorphic information content per locus ranged from 0.2583 to 0.8022. These polymorphic markers can be useful for future population genetic studies of both farmed blue foxes and wild arctic foxes.
Briner, Alexandra E.
2014-01-01
Clustered regularly interspaced short palindromic repeats (CRISPR) in combination with associated sequences (cas) constitute the CRISPR-Cas immune system, which uptakes DNA from invasive genetic elements as novel “spacers” that provide a genetic record of immunization events. We investigated the potential of CRISPR-based genotyping of Lactobacillus buchneri, a species relevant for commercial silage, bioethanol, and vegetable fermentations. Upon investigating the occurrence and diversity of CRISPR-Cas systems in Lactobacillus buchneri genomes, we observed a ubiquitous occurrence of CRISPR arrays containing a 36-nucleotide (nt) type II-A CRISPR locus adjacent to four cas genes, including the universal cas1 and cas2 genes and the type II signature gene cas9. Comparative analysis of CRISPR spacer content in 26 L. buchneri pickle fermentation isolates associated with spoilage revealed 10 unique locus genotypes that contained between 9 and 29 variable spacers. We observed a set of conserved spacers at the ancestral end, reflecting a common origin, as well as leader-end polymorphisms, reflecting recent divergence. Some of these spacers showed perfect identity with phage sequences, and many spacers showed homology to Lactobacillus plasmid sequences. Following a comparative analysis of sequences immediately flanking protospacers that matched CRISPR spacers, we identified a novel putative protospacer-adjacent motif (PAM), 5′-AAAA-3′. Overall, these findings suggest that type II-A CRISPR-Cas systems are valuable for genotyping of L. buchneri. PMID:24271175
Sargsyan, Ori
2012-05-25
Hitchhiking and severe bottleneck effects have impact on the dynamics of genetic diversity of a population by inducing homogenization at a single locus and at the genome-wide scale, respectively. As a result, identification and differentiation of the signatures of such events from DNA sequence data at a single locus is challenging. This study develops an analytical framework for identifying and differentiating recent homogenization events at multiple neutral loci in low recombination regions. The dynamics of genetic diversity at a locus after a recent homogenization event is modeled according to the infinite-sites mutation model and the Wright-Fisher model of reproduction withmore » constant population size. In this setting, I derive analytical expressions for the distribution, mean, and variance of the number of polymorphic sites in a random sample of DNA sequences from a locus affected by a recent homogenization event. Based on this framework, three likelihood-ratio based tests are presented for identifying and differentiating recent homogenization events at multiple loci. Lastly, I apply the framework to two data sets. First, I consider human DNA sequences from four non-coding loci on different chromosomes for inferring evolutionary history of modern human populations. The results suggest, in particular, that recent homogenization events at the loci are identifiable when the effective human population size is 50000 or greater in contrast to 10000, and the estimates of the recent homogenization events are agree with the “Out of Africa” hypothesis. Second, I use HIV DNA sequences from HIV-1-infected patients to infer the times of HIV seroconversions. The estimates are contrasted with other estimates derived as the mid-time point between the last HIV-negative and first HIV-positive screening tests. Finally, the results show that significant discrepancies can exist between the estimates.« less
Silva, D M; Siqueira, M V B M; Carrasco, N F; Mantello, C C; Nascimento, W F; Veasey, E A
2016-05-23
Dioscorea is the largest genus in the Dioscoreaceae family, and includes a number of economically important species including the air yam, D. bulbifera L. This study aimed to develop new single sequence repeat primers and characterize the genetic diversity of local varieties that originated in several municipalities of Brazil. We developed an enriched genomic library for D. bulbifera resulting in seven primers, six of which were polymorphic, and added four polymorphic loci developed for other Dioscorea species. This resulted in 10 polymorphic primers to evaluate 42 air yam accessions. Thirty-three alleles (bands) were found, with an average of 3.3 alleles per locus. The discrimination power ranged from 0.113 to 0.834, with an average of 0.595. Both principal coordinate and cluster analyses (using the Jaccard Index) failed to clearly separate the accessions according to their origins. However, the 13 accessions from Conceição dos Ouros, Minas Gerais State were clustered above zero on the principal coordinate 2 axis, and were also clustered into one subgroup in the cluster analysis. Accessions from Ubatuba, São Paulo State were clustered below zero on the same principal coordinate 2 axis, except for one accession, although they were scattered in several subgroups in the cluster analysis. Therefore, we found little spatial structure in the accessions, although those from Conceição dos Ouros and Ubatuba exhibited some spatial structure, and that there is a considerable level of genetic diversity in D. bulbifera maintained by traditional farmers in Brazil.
Zhang, Gu-wen; Xu, Sheng-chun; Mao, Wei-hua; Hu, Qi-zan; Gong, Ya-ming
2013-01-01
The development of expressed sequence tag-derived simple sequence repeats (EST-SSRs) provided a useful tool for investigating plant genetic diversity. In the present study, 22 polymorphic EST-SSRs from grain soybean were identified and used to assess the genetic diversity in 48 vegetable soybean accessions. Among the 22 EST-SSR loci, tri-nucleotides were the most abundant repeats, accounting for 50.00% of the total motifs. GAA was the most common motif among tri-nucleotide repeats, with a frequency of 18.18%. Polymorphic analysis identified a total of 71 alleles, with an average of 3.23 per locus. The polymorphism information content (PIC) values ranged from 0.144 to 0.630, with a mean of 0.386. Observed heterozygosity (H o) values varied from 0.0196 to 1.0000, with an average of 0.6092, while the expected heterozygosity (H e) values ranged from 0.1502 to 0.6840, with a mean value of 0.4616. Principal coordinate analysis and phylogenetic tree analysis indicated that the accessions could be assigned to different groups based to a large extent on their geographic distribution, and most accessions from China were clustered into the same groups. These results suggest that Chinese vegetable soybean accessions have a narrow genetic base. The results of this study indicate that EST-SSRs from grain soybean have high transferability to vegetable soybean, and that these new markers would be helpful in taxonomy, molecular breeding, and comparative mapping studies of vegetable soybean in the future. PMID:23549845
IL-10-592 A/C polymorphisms is associated with EBV-HLH in Chinese children.
Wang, Yali; Ai, Junhong; Xie, Zhengde; Qin, Qiang; Wu, Lingyan; Liu, Yali; Liu, Chunyan; Shen, Kunling
2016-03-01
The aim of this study is to investigate the relationship between cytokine gene polymorphisms and Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH) in children, and to further reveal the possible mechanisms of EBV-HLH. Forty-one patients with EBV-HLH, 70 patients with infectious mononucleosis (IM), and 170 EBV-seropositive healthy children were evaluated. Gene polymorphism typing was performed by a polymerase chain reaction with a sequence-specific primer of a commercially available cytokine genotyping kit. Comparison of cytokine gene polymorphisms between EBV-HLH, IM patients, and healthy controls was analyzed statistically using Chi-square test or Fisher's exact test. The frequencies of IL-10-592 C allele or IL-10-592 CC genotype were significantly higher in patients with EBV-HLH than in IM and healthy children (P < 0.001), but no significant difference was observed between IM and healthy children. IL-10-592 locus gene polymorphism is associated with the development of EBV-HLH in Chinese children.
Sun, Linhan; Kao, Teh-Hui
2018-06-01
Function of Petunia PiSSK1. Self-incompatibility (SI), an inbreeding-preventing mechanism, is regulated in Petunia inflata by the polymorphic S-locus, which houses multiple pollen-specific S-locus F-box (SLF) genes and a single pistil-specific S-RNase gene. S 2 -haplotype and S 3 -haplotype possess the same 17 polymorphic SLF genes (named SLF1 to SLF17), and each SLF protein produced in pollen is assembled into an SCF (Skp1-Cullin1-F-box) E3 ubiquitin ligase complex. A complete suite of SLF proteins is thought to collectively interact with all non-self S-RNases to mediate their ubiquitination and degradation by the 26S proteasome, allowing cross-compatible pollination. For each SCF SLF complex, the Cullin1 subunit (named PiCUL1-P) and Skp1 subunit (named PiSSK1), like the F-box protein subunits (SLFs), are pollen-specific, raising the possibility that they also evolved specifically to function in SI. Here we used CRISPR/Cas9-meditated genome editing to generate frame-shift indel mutations in PiSSK1 and examined the SI behavior of a T 0 plant (S 2 S 3 ) with biallelic mutations in the pollen genome and two progeny plants (S 2 S 2 ) each homozygous for one of the indel alleles and not carrying the Cas9-containing T-DNA. Their pollen was completely incompatible with pistils of seven otherwise-compatible S-genotypes, but fully compatible with pistils of an S 3 S 3 transgenic plant in which production of S 3 -RNase was completely suppressed by an antisense S 3 -RNase gene, and with pistils of immature flower buds, which produce little S-RNase. These results suggest that PiSSK1 specifically functions in SI and support the hypothesis that SLF-containing SCF complexes are essential for compatible pollination.
Genetic Divergence and Chemotype Diversity in the Fusarium Head Blight Pathogen Fusarium poae.
Vanheule, Adriaan; De Boevre, Marthe; Moretti, Antonio; Scauflaire, Jonathan; Munaut, Françoise; De Saeger, Sarah; Bekaert, Boris; Haesaert, Geert; Waalwijk, Cees; van der Lee, Theo; Audenaert, Kris
2017-08-23
Fusarium head blight is a disease caused by a complex of Fusarium species. F. poae is omnipresent throughout Europe in spite of its low virulence. In this study, we assessed a geographically diverse collection of F. poae isolates for its genetic diversity using AFLP (Amplified Fragment Length Polymorphism). Furthermore, studying the mating type locus and chromosomal insertions, we identified hallmarks of both sexual recombination and clonal spread of successful genotypes in the population. Despite the large genetic variation found, all F. poae isolates possess the nivalenol chemotype based on Tri7 sequence analysis. Nevertheless, Tri gene clusters showed two layers of genetic variability. Firstly, the Tri1 locus was highly variable with mostly synonymous mutations and mutations in introns pointing to a strong purifying selection pressure. Secondly, in a subset of isolates, the main trichothecene gene cluster was invaded by a transposable element between Tri5 and Tri6 . To investigate the impact of these variations on the phenotypic chemotype, mycotoxin production was assessed on artificial medium. Complex blends of type A and type B trichothecenes were produced but neither genetic variability in the Tri genes nor variability in the genome or geography accounted for the divergence in trichothecene production. In view of its complex chemotype, it will be of utmost interest to uncover the role of trichothecenes in virulence, spread and survival of F. poae .
Chang, Yuet Meng; Perumal, Revathi; Keat, Phoon Yoong; Kuehn, Daniel L C
2007-03-22
We have analyzed 16 Y-STR loci (DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385a/b, DYS393, DYS391, DYS439, DYS635 or Y-GATA C4, DYS392, Y-GATA H4, DYS437, DYS438 and DYS448) from the non-recombining region of the human Y-chromosome in 980 male individuals from three main ethnic populations in Malaysia (Malay, Chinese, Indian) using the AmpFlSTR((R)) Y-filertrade mark (Applied Biosystems, Foster City, CA). The observed 17-loci haplotypes and the individual allele frequencies for each locus were estimated, whilst the locus diversity, haplotype diversity and discrimination capacity were calculated in the three ethnic populations. Analysis of molecular variance indicated that 88.7% of the haplotypic variation is found within population and 11.3% is between populations (fixation index F(ST)=0.113, p=0.000). This study has revealed Y-chromosomes with null alleles at several Y-loci, namely DYS458, DYS392, DYS389I, DYS389II, DYS439, DYS448 and Y-GATA H4; and several occurrences of duplications at the highly polymorphic DYS385 loci. Some of these deleted loci were in regions of the Y(q) arm that have been implicated in the occurrence of male infertility.
Asmussen, M. A.; Basnayake, E.
1990-01-01
A detailed analytic and numerical study is made of the potential for permanent genetic variation in frequency-dependent models based on pairwise interactions among genotypes at a single diallelic locus. The full equilibrium structure and qualitative gene-frequency dynamics are derived analytically for a symmetric model, in which pairwise fitnesses are chiefly determined by the genetic similarity of the individuals involved. This is supplemented by an extensive numerical investigation of the general model, the symmetric model, and nine other special cases. Together the results show that there is a high potential for permanent genetic diversity in the pairwise interaction model, and provide insight into the extent to which various forms of genotypic interactions enhance or reduce this potential. Technically, although two stable polymorphic equilibria are possible, the increased likelihood of maintaining both alleles, and the poor performance of protected polymorphism conditions as a measure of this likelihood, are primarily due to a greater variety and frequency of equilibrium patterns with one stable polymorphic equilibrium, in conjunction with a disproportionately large domain of attraction for stable internal equilibria. PMID:2341034
Balancing selection in species with separate sexes: insights from Fisher's geometric model.
Connallon, Tim; Clark, Andrew G
2014-07-01
How common is balancing selection, and what fraction of phenotypic variance is attributable to balanced polymorphisms? Despite decades of research, answers to these questions remain elusive. Moreover, there is no clear theoretical prediction about the frequency with which balancing selection is expected to arise within a population. Here, we use an extension of Fisher's geometric model of adaptation to predict the probability of balancing selection in a population with separate sexes, wherein polymorphism is potentially maintained by two forms of balancing selection: (1) heterozygote advantage, where heterozygous individuals at a locus have higher fitness than homozygous individuals, and (2) sexually antagonistic selection (a.k.a. intralocus sexual conflict), where the fitness of each sex is maximized by different genotypes at a locus. We show that balancing selection is common under biologically plausible conditions and that sex differences in selection or sex-by-genotype effects of mutations can each increase opportunities for balancing selection. Although heterozygote advantage and sexual antagonism represent alternative mechanisms for maintaining polymorphism, they mutually exist along a balancing selection continuum that depends on population and sex-specific parameters of selection and mutation. Sexual antagonism is the dominant mode of balancing selection across most of this continuum. Copyright © 2014 by the Genetics Society of America.
Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.
Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V
1985-01-01
The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this. Images PMID:3016521
Kapheim, Karen M; Pollinger, John P; Wcislo, William T; Wayne, Robert K
2009-11-01
We developed a library of twelve polymorphic di- and tri-nucleotide microsatellite markers for Megalopta genalis, a facultatively eusocial sweat bee. We tested each locus in a panel of 23 unrelated females and found 7-20 alleles per locus. Observed and expected heterozygosities ranged from 0.65 to 0.96 and from 0.69 to 0.95 respectively. None of the loci deviated from Hardy-Weinberg equilibrium proportions or was found to be in gametic disequilibrium. © 2009 Blackwell Publishing Ltd.
Fleuriet, A
1981-02-01
It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition.
Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers.
Maneesha; Upadhyaya, Kailash C
2017-09-01
Pigeon pea (Cajanus cajan), an important legume crop is predominantly cultivated in tropical and subtropical regions of Asia and Africa. It is normally considered to have a low degree of genetic diversity, an impediment in undertaking crop improvement programmes.We have analysed genetic polymorphism of domesticated pigeon pea germplasm (47 accessions) across the world using earlier characterized panzee retrotransposon-based molecularmarkers. Itwas conjectured that since retrotransposons are interspersed throughout the genome, retroelements-based markers would be able to uncover polymorphism possibly inherent in the diversity of retroelement sequences. Two PCR-based techniques, sequence-specific amplified polymorphism (SSAP) and retrotransposon microsatellite amplified polymorphism (REMAP) were utilized for the analyses.We show that a considerable degree of polymorphism could be detected using these techniques. Three primer combinations in SSAP generated 297 amplified products across 47 accessions with an average of 99 amplicons per assay. Degree of polymorphism varied from 84-95%. In the REMAP assays, the number of amplicons was much less but up to 73% polymorphism could be detected. On the basis of similarity coefficients, dendrograms were constructed. The results demonstrate that the retrotransposon-based markers could serve as a better alternative for the assessment of genetic diversity in crops with apparent low genetic base.
Szymańska-Chabowska, Anna; Łaczmański, Łukasz; Jędrychowska, Iwona; Chabowski, Mariusz; Gać, Paweł; Janus, Agnieszka; Gosławska, Katarzyna; Smyk, Beata; Solska, Urszula; Mazur, Grzegorz; Poręba, Rafał
2015-08-06
The aim of this study was to find a relationship between polymorphisms of ALAD rs1805313, rs222808, rs1139488, VDR FokI and HFE C282Y and H63D and basic toxicological parameters (lead and ZnPP blood concentration) in people occupationally exposed to lead. We collected data of 101 workers (age 25-63 years) directly exposed to lead. The toxicological lab tests included blood lead, cadmium and ZnPP concentration measurement and arsenic urine concentration measurement. Workers were genotyped for ALAD (rs1805313, rs222808, rs1139488), HFE (C282Y, H63D) and VDR (FokI). Individuals with the lead exposure and coexisting F allel in the locus Fok-I of VDR gene are suspected of higher zinc protoporphyrins concentrations. Workers exposed to the lead with the Y allel in the locus C282Y of the HFE gene are predisposed to lower ZnPP levels and individuals with coexisting H allel in the locus H63D HFE gene are predisposed to lower Pb-B levels. The T allel in the locus rs1805313 of the ALAD gene determines lower Pb-B and ZnPP levels in lead-exposed individuals. The heterozigosity of the locus rs2228083 of the ALAD gene has a strong predilection to higher Pb-B levels. The carriage of the C allel in the locus rs1139488 of the ALAD gene might determine higher Pb-B levels and the heterozigosity of the locus rs1139488 of the ALAD gene might result in higher ZnPP levels. The study revealed relationship between VDR, HFE and ALAD genes polymorphism and basic toxicological parameters in occupationally exposed workers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed
2014-01-01
Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents. PMID:24718292
Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed
2014-01-01
Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.
Kaarvatn, M H; Jotanovic, Z; Mihelic, R; Etokebe, G E; Mulac-Jericevic, B; Tijanic, T; Balen, S; Sestan, B; Dembic, Z
2013-02-01
Genetic predisposition to the complex hereditary disease like osteoarthritis (OA) of the large joints (hip and knee) includes the interleukin-1 gene (IL-1) cluster on chromosome 2. Using a case-control study with 500 OA patients (240 knee and 260 hip OA patients, all with joint replacement), we analysed frequencies of IL-1 gene cluster polymorphisms in Croatian Caucasian population. The control samples came from 531 healthy individuals including blood donors. We genotyped two single nucleotide polymorphisms in the IL-1 gene locus at IL-1A (-889, C>T, rs1800587) and IL-1B (+3594, C>T, rs1143634) and compared their frequencies between patients and controls. We predicted haplotypes by combining current data with our previous results on gene polymorphisms (IL-1B, rs16944 and the IL-1 receptor antagonist gene [IL-1RN] variable number tandem repeat [VNTR]) for the same population. Haplotype analyses revealed gender disparities and showed that women carriers of the 1-2-1-1 haplotype [IL-1A(rs1800587) - IL-1B(rs1143634) - IL-1B(rs16944) - IL-1RN(VNTR)] had sixfold lower risk to develop knee OA. However, carriers of the 1-1-1-2 haplotype of both sexes had over twofold higher predisposition to hip OA. Our results differ from some earlier studies in Caucasian subpopulations, which may be due to the fact that this is the first study to separate genders in assessing the IL-1-locus genetic risk of OA. The results suggest that inflammatory mediators like IL-1 might be implicated in the pathogenesis of primary OA in large joints and that as yet unidentified gender-specific factors exist in a Croatian Caucasian population. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd.
FRANCESCHINELLI, EDIVANI VILLARON; JACOBI, CLAUDIA M.; DRUMMOND, MARCELA GONÇALVES; RESENDE, MARCELO F. SILVEIRA
2006-01-01
• Background and Aims The genetic structure and variability of two species of Vellozia (Velloziaceae) with restricted distribution in high-altitude quartzitic fields in south-eastern Brazil were studied. Vellozia epidendroides is short, grows on pebbly or sandy soil, and is pollinated by bees. Vellozia leptopetala is arborescent, grows on rock outcrops, and is pollinated by bees and hummingbirds. Both are self-incompatible and have a short, massive flowering strategy. The study aimed to associate differences in their genetic diversity and structure with their microhabitat distribution and pollination ecology. • Methods Leaves from 106 and 139 plants of V. epidendroides and V. leptopetala, respectively, were collected from five patches of each species and prepared for electrophoretic analyses. • Key Results Five enzyme systems could be reliably scored for both species. Vellozia epidendroides showed 100 % of the loci polymorphic for almost all patches. The average number of alleles per locus ranged between 2·2 and 2·4 among patches. The Wright's fixation index (F) for this species was 0·226. A significant θp value indicates that there is a reasonable genetic divergence among patches. Vellozia leptopetala presented 47·5 % of polymorphic loci. All levels of P, A, Ap and of heterozygosities were lower than those of V. epidendroides. Vellozia leptopetala showed high inbreeding within patches. • Conclusions The relatively high values of genetic diversity indices found for V. epidendroides may be associated with its large and widespread populations. On the other hand, the low values of genetic diversity found for V. leptopetala may be related to physical isolation on outcrops and intensive foraging by territorial hummingbirds, which may hinder gene flow among patches, aggravated by the very restricted seed dispersal characteristic of the genus, that facilitates sibling mating. It is important to stress the need to preserve the specific habitats of these species of Vellozia, in particular those of V. leptopetala that has lower genetic diversity and is restricted to rock outcrop environments. PMID:16446285
Co-evolution of MHC class I and variable NK cell receptors in placental mammals.
Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo G; Parham, Peter
2015-09-01
Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Netsvetaev, V P; Bondarenko, L S; Motorina, I P
2015-01-01
Using polymorphism of alpha-amylase in the winter common wheat studied inheritance isoenzymes and its conjugation enzyme types with germinating grain on the "vine", grain productivity, plant height and time of ear formation. It is shown that the polymorphism isoenzyme of alpha-amylase wheat is limited by the presence of different loci whose products are similar in electrophoretic parameters. In this regard, one component of the enzyme can be controlling at one or two or three genes. Identification of a locus controlling alpha-amylase isoenzyme in the fast moving part of the electrophoretogram, designated as α-Amy-B7. Determine the distance of the locus to factor α-Amy-B6.
Haemophilia A: carrier detection and prenatal diagnosis by linkage analysis using DNA polymorphism.
Tuddenham, E G; Goldman, E; McGraw, A; Kernoff, P B
1987-01-01
Restriction fragment length polymorphisms (RFLPs) within or close to the factor VIII locus are very useful for genetic linkage analysis. Such RFLPs allow a mutant allele to be tracked in a family, segregating haemophilia A even when, as is usually the case, the precise mutation causing failure to synthesise factor VIII is unknown. To date two markers tightly linked to the factor VIII locus have been described, one of which is highly polymorphic and therefore informative in most kindreds. A significant crossover rate, however, does not make diagnosis absolute. Three intragenic RFLPs have been defined, which, taken together, are informative in about 70% of women, providing virtually deterministic genetic diagnosis. PMID:2889753
Aberrant estrogen regulation of PEMT results in choline deficiency-associated liver dysfunction.
Resseguie, Mary E; da Costa, Kerry-Ann; Galanko, Joseph A; Patel, Mukund; Davis, Ian J; Zeisel, Steven H
2011-01-14
When dietary choline is restricted, most men and postmenopausal women develop multiorgan dysfunction marked by hepatic steatosis (choline deficiency syndrome (CDS)). However, a significant subset of premenopausal women is protected from CDS. Because hepatic PEMT (phosphatidylethanolamine N-methyltransferase) catalyzes de novo biosynthesis of choline and this gene is under estrogenic control, we hypothesized that there are SNPs in PEMT that disrupt the hormonal regulation of PEMT and thereby put women at risk for CDS. In this study, we performed transcript-specific gene expression analysis, which revealed that estrogen regulates PEMT in an isoform-specific fashion. Locus-wide SNP analysis identified a risk-associated haplotype that was selectively associated with loss of hormonal activation. Chromatin immunoprecipitation, analyzed by locus-wide microarray studies, comprehensively identified regions of estrogen receptor binding in PEMT. The polymorphism (rs12325817) most highly linked with the development of CDS (p < 0.00006) was located within 1 kb of the critical estrogen response element. The risk allele failed to bind either the estrogen receptor or the pioneer factor FOXA1. These data demonstrate that allele-specific ablation of estrogen receptor-DNA interaction in the PEMT locus prevents hormone-inducible PEMT expression, conferring risk of CDS in women.
Bai, Lin; Lu, Zhenzhen; Chen, Yuhong; Jiang, Lan; Diao, Mengyang; Liu, Xiangdong; Lu, Yonggen
2015-01-01
Common wild rice (Oryza rufipogon Griff.), the progenitor of Asian cultivated rice (O. sativa L.), is endangered due to habitat loss. The objectives of this research were to evaluate the genetic diversity of wild rice species in isolated populations and to develop a core collection of representative genotypes for ex situ conservation. We collected 885 wild rice accessions from eight geographically distinct regions and transplanted these accessions in a protected conservation garden over a period of almost two decades. We evaluated these accessions for 13 morphological or phenological traits and genotyped them for 36 DNA markers evenly distributed on the 12 chromosomes. The coefficient of variation of quantitative traits was 0.56 and ranged from 0.37 to 1.06. SSR markers detected 206 different alleles with an average of 6 alleles per locus. The mean polymorphism information content (PIC) was 0.64 in all populations, indicating that the marker loci have a high level of polymorphism and genetic diversity in all populations. Phylogenetic analyses based on morphological and molecular data revealed remarkable differences in the genetic diversity of common wild rice populations. The results showed that the Zengcheng, Gaozhou, and Suixi populations possess higher levels of genetic diversity, whereas the Huilai and Boluo populations have lower levels of genetic diversity than do the other populations. Based on their genetic distance, 130 accessions were selected as a core collection that retained over 90% of the alleles at the 36 marker loci. This genetically diverse core collection will be a useful resource for genomic studies of rice and for initiatives aimed at developing rice with improved agronomic traits. PMID:26720755
Liu, Wen; Shahid, Muhammad Qasim; Bai, Lin; Lu, Zhenzhen; Chen, Yuhong; Jiang, Lan; Diao, Mengyang; Liu, Xiangdong; Lu, Yonggen
2015-01-01
Common wild rice (Oryza rufipogon Griff.), the progenitor of Asian cultivated rice (O. sativa L.), is endangered due to habitat loss. The objectives of this research were to evaluate the genetic diversity of wild rice species in isolated populations and to develop a core collection of representative genotypes for ex situ conservation. We collected 885 wild rice accessions from eight geographically distinct regions and transplanted these accessions in a protected conservation garden over a period of almost two decades. We evaluated these accessions for 13 morphological or phenological traits and genotyped them for 36 DNA markers evenly distributed on the 12 chromosomes. The coefficient of variation of quantitative traits was 0.56 and ranged from 0.37 to 1.06. SSR markers detected 206 different alleles with an average of 6 alleles per locus. The mean polymorphism information content (PIC) was 0.64 in all populations, indicating that the marker loci have a high level of polymorphism and genetic diversity in all populations. Phylogenetic analyses based on morphological and molecular data revealed remarkable differences in the genetic diversity of common wild rice populations. The results showed that the Zengcheng, Gaozhou, and Suixi populations possess higher levels of genetic diversity, whereas the Huilai and Boluo populations have lower levels of genetic diversity than do the other populations. Based on their genetic distance, 130 accessions were selected as a core collection that retained over 90% of the alleles at the 36 marker loci. This genetically diverse core collection will be a useful resource for genomic studies of rice and for initiatives aimed at developing rice with improved agronomic traits.
Structural polymorphism at LCR and its role in beta-globin gene regulation.
Kukreti, Shrikant; Kaur, Harpreet; Kaushik, Mahima; Bansal, Aparna; Saxena, Sarika; Kaushik, Shikha; Kukreti, Ritushree
2010-09-01
Information on the secondary structures and conformational manifestations of eukaryotic DNA and their biological significance with reference to gene regulation and expression is limited. The human beta-globin gene Locus Control Region (LCR), a dominant regulator of globin gene expression, is a contiguous piece of DNA with five tissue-specific DNase I-hypersensitive sites (HSs). Since these HSs have a high density of transcription factor binding sites, structural interdependencies between HSs and different promoters may directly or indirectly regulate LCR functions. Mutations and SNPs may stabilize or destabilize the local secondary structures, affecting the gene expression by changes in the protein-DNA recognition patterns. Various palindromic or quasi-palindromic segments within LCR, could cause structural polymorphism and geometrical switching of DNA. This emphasizes the importance of understanding of the sequence-dependent variations of the DNA structure. Such structural motifs might act as regulatory elements. The local conformational variability of a DNA segment or action of a DNA specific protein is key to create and maintain active chromatin domains and affect transcription of various tissue specific beta-globin genes. We, summarize here the current status of beta-globin LCR structure and function. Further structural studies at molecular level and functional genomics might solve the regulatory puzzles that control the beta-globin gene locus. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
[Polymorphism of PentaD and PentaE STR locus in five Chinese Han population].
Liu, Qiu-ling; Lu, Hui-ling; Lü, De-jian
2003-01-01
To obtain the genetic polymorphism data of Guangxi, Hunan, Henan, Sichuan, Taiwang Chinese Han population and compare the polymorphism of PentaD and PentaE STR locus. The two loci was analyzed by using the PowerPlex 16 System. 10 alleles of PentaD and 19 alleles of PentaE were found in the five Han population. PentaD and PentaE have the expected heterozygosity values of 0.7746-0.8047 and 0.9005-0.9219, the polymorphism information content values of 0.7710-0.8025 and 0.8969-0.9176, the discrimination power values of 0.9223-0.9341 and 0.9471-0.9782, the power of exclusion values of 0.5435-0.6325 and 0.6785-0.8465, respectively. The result showed that these two loci were highly informative and suitable for forensic application.
Yuan, Bo; Liu, Pengfei; Gupta, Aditya; Beck, Christine R.; Tejomurtula, Anusha; Campbell, Ian M.; Gambin, Tomasz; Simmons, Alexandra D.; Withers, Marjorie A.; Harris, R. Alan; Rogers, Jeffrey; Schwartz, David C.; Lupski, James R.
2015-01-01
Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases—about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR) between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV) haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual’s susceptibility to acquiring disease-associated alleles. PMID:26641089
Zhou, Wei; Yuan, Weiming; Huang, Longguang; Wang, Ping; Rong, Xiao; Tang, Juan
2015-07-01
The aim of the present study was to investigate the association of neonatal necrotizing enterocolitis (NEC) with myeloid differentiation-(MD-2) and GM2 activator protein (GM2A) genetic polymorphisms. Gene resequencing of the MD-2 and GM2A gene exons was performed on 42 neonates, diagnosed with NEC (NEC group), as well as in the rs11465996 locus, located in the MD-2 gene promoter region. The aim was to detect the genetic polymorphisms present in the neonates with NEC and compare the functional polymorphic loci with 83 neonates without NEC (control group), who had been born during the same period. A polymorphic locus with abnormal frequency was detected in the exon region of the MD-2 gene. In the NEC group, the frequency of genotypes carrying the low frequency allele (G) in the rs11465996 locus (MD-2 promoter region) was significantly higher compared with the control group (χ(2)=4.388, P=0.036). Furthermore, the frequencies of genotypes carrying the low frequency A and C alleles in the rs1048719 (GM2A gene exon 1) and rs2075783 loci (GM2A intron), respectively, were significantly higher in the NEC group compared with the control group (χ(2)=4.316, P=0.038; and χ(2)=13.717, P=0.000, respectively). In addition, the rs11465996 polymorphism in the MD-2 gene promoter region was found to be associated with the severity of NEC. Furthermore, the rs2075783 polymorphism in the GM2A gene exon 1 and the rs1048719 polymorphism in the intron region of this gene, were associated with the occurrence of NEC. The present study demonstrated that gene polymorphisms of MD-2 and GM2A were associated with the occurrence or severity of NEC; however, further in-depth exploration is required to clarify the associations between genetic predispositions to polymorphisms, and NEC.
Morrison, C.L.; Eackles, M.S.; Johnson, Robin L.; King, T.L.
2008-01-01
A suite of 13 polymorphic tri- and tetranucleotide microsatellite loci were isolated from the ahermatypic deep-sea coral, Lophelia pertusa. Among 51 individuals collected from three disjunct oceanic regions, allelic diversity ranged from six to 38 alleles and averaged 9.1 alleles per locus. Observed heterozygosity ranged from 9.1 to 96.8% and averaged 62.3% in the Gulf of Mexico population. For some loci, amplification success varied among collections, suggesting regional variation in priming site sequences. Four loci showed departures from Hardy–Weinberg equilibrium in certain collections which may reflect nonrandom mating.
You, Jianling; Liu, Wensheng; Zhao, Yao; Zhu, Yongqing; Zhang, Wenju; Wang, Yuguo; Lu, Fan; Song, Zhiping
2013-03-01
Microsatellite loci are described for Rhodiola, a medicinal herb genus widely used in traditional Chinese medicine. • A total of 17 polymorphic microsatellite primer pairs were developed using the combined biotin capture method. The number of alleles per locus ranged from one to 12 across 192 individuals from R. bupleuroides, R. crenulata, R. fastigiata, and R. sacra, and the mean observed and expected heterozygosities ranged from 0.177 to 0.412 and from 0.363 to 0.578, respectively. • The results demonstrate the potential use of this new set of microsatellite markers for genotyping individuals and estimating genetic diversity in Rhodiola.
Novel microsatellite development and characterization for Phacelia formosula (Hydrophyllaceae).
Riser, James P; Schwabe, Anna L; Neale, Jennifer Ramp
2017-07-01
Microsatellite primers were developed to characterize genetic diversity and structuring in the genus Phacelia (Hydrophyllaceae) and to further conservation efforts for P. formosula . Fifteen novel microsatellite primers were developed for P. formosula . These were characterized for genetic variation in three separate P. formosula populations. Two to nine alleles were found per locus. Overall observed heterozygosity and expected heterozygosity ranged from 0.000 to 0.800 and 0.000 to 0.840, respectively. Additionally, these loci were successfully amplified and showed polymorphism in P. gina-glenneae and a potential new Phacelia species. These microsatellite markers will be useful in assessing genetic diversity, structuring, and gene flow within and among populations of the rare P. formosula , in addition to related Phacelia species. These markers will provide important genetic data needed for appropriate conservation and management of these rare plants.
Dor, Roi; Lovette, Irby J.; Safran, Rebecca J.; Billerman, Shawn M.; Huber, Gernot H.; Vortman, Yoni; Lotem, Arnon; McGowan, Andrew; Evans, Matthew R.; Cooper, Caren B.; Winkler, David W.
2011-01-01
Recent studies of several species have reported a latitudinal cline in the circadian clock gene, Clock, which influences rhythms in both physiology and behavior. Latitudinal variation in this gene may hence reflect local adaptation to seasonal variation. In some bird populations, there is also an among-individual association between Clock poly-Q genotype and clutch initiation date and incubation period. We examined Clock poly-Q allele variation in the Barn Swallow (Hirundo rustica), a species with a cosmopolitan geographic distribution and considerable variation in life-history traits that may be influenced by the circadian clock. We genotyped Barn Swallows from five populations (from three subspecies) and compared variation at the Clock locus to that at microsatellite loci and mitochondrial DNA (mtDNA). We found very low variation in the Clock poly-Q region, as >96% of individuals were homozygous, and the two other alleles at this locus were globally rare. Genetic differentiation based on the Clock poly-Q locus was not correlated with genetic differentiation based on either microsatellite loci or mtDNA sequences. Our results show that high diversity in Clock poly-Q is not general across avian species. The low Clock variation in the background of heterogeneity in microsatellite and mtDNA loci in Barn Swallows may be an outcome of stabilizing selection on the Clock locus. PMID:22216124
The candidate histocompatibility locus of a Basal chordate encodes two highly polymorphic proteins.
Nydam, Marie L; Netuschil, Nikolai; Sanders, Erin; Langenbacher, Adam; Lewis, Daniel D; Taketa, Daryl A; Marimuthu, Arumugapradeep; Gracey, Andrew Y; De Tomaso, Anthony W
2013-01-01
The basal chordate Botryllus schlosseri undergoes a natural transplantation reaction governed by a single, highly polymorphic locus called the fuhc. Our initial characterization of this locus suggested it encoded a single gene alternatively spliced into two transcripts: a 555 amino acid-secreted form containing the first half of the gene, and a full-length, 1008 amino acid transmembrane form, with polymorphisms throughout the ectodomain determining outcome. We have now found that the locus encodes two highly polymorphic genes which are separated by a 227 bp intergenic region: first, the secreted form as previously described, and a second gene encoding a 531 amino acid membrane-bound gene containing three extracellular immunoglobulin domains. While northern blotting revealed only these two mRNAs, both PCR and mRNA-seq detect a single capped and polyadenylated transcript that encodes processed forms of both genes linked by the intergenic region, as well as other transcripts in which exons of the two genes are spliced together. These results might suggest that the two genes are expressed as an operon, during which both genes are co-transcribed and then trans-spliced into two separate messages. This type of transcriptional regulation has been described in tunicates previously; however, the membrane-bound gene does not encode a typical Splice Leader (SL) sequence at the 5' terminus that usually accompanies trans-splicing. Thus, the presence of stable transcripts encoding both genes may suggest a novel mechanism of regulation, or conversely may be rare but stable transcripts in which the two mRNAs are linked due to a small amount of read-through by RNA polymerase. Both genes are highly polymorphic and co-expressed on tissues involved in histocompatibility. In addition, polymorphisms on both genes correlate with outcome, although we have found a case in which it appears that the secreted form may be major allorecognition determinant.
Lager, Malin; Mernelius, Sara; Löfgren, Sture; Söderman, Jan
2016-01-01
Healthcare-associated infections caused by Escherichia coli and antibiotic resistance due to extended-spectrum beta-lactamase (ESBL) production constitute a threat against patient safety. To identify, track, and control outbreaks and to detect emerging virulent clones, typing tools of sufficient discriminatory power that generate reproducible and unambiguous data are needed. A probe based real-time PCR method targeting multiple single nucleotide polymorphisms (SNP) was developed. The method was based on the multi locus sequence typing scheme of Institute Pasteur and by adaptation of previously described typing assays. An 8 SNP-panel that reached a Simpson's diversity index of 0.95 was established, based on analysis of sporadic E. coli cases (ESBL n = 27 and non-ESBL n = 53). This multi-SNP assay was used to identify the sequence type 131 (ST131) complex according to the Achtman's multi locus sequence typing scheme. However, it did not fully discriminate within the complex but provided a diagnostic signature that outperformed a previously described detection assay. Pulsed-field gel electrophoresis typing of isolates from a presumed outbreak (n = 22) identified two outbreaks (ST127 and ST131) and three different non-outbreak-related isolates. Multi-SNP typing generated congruent data except for one non-outbreak-related ST131 isolate. We consider multi-SNP real-time PCR typing an accessible primary generic E. coli typing tool for rapid and uniform type identification.
Khusainova, R I; Akhmetova, V L; Kutuev, I A; Salimova, A Z; Korshunova, T Iu; Lebedev, Iu B; Khusnutdinova, E K
2004-04-01
Nine Alu loci (Ya5NBC5, Ya5NBC27, Ya5NBC148, Ya5NBC182, YA5NBC361, ACE, ApoA1, PV92, TPA25) were analyzed in six ethnic populations (Trans-Ural Bashkirs, Tatars-Mishars, Mordovians-Moksha, Mountain Maris, Udmurts, and Komi-Permyaks) of the Volga-Ural region and in three Central Asian populations (Uzbeks, Kazakhs, and Uigurs). All Alu insertions analyzed appeared to be polymorphic in all populations examined. The frequency of insertion varied from 0.110 in Mountain Maris at the Ya5NBC5 locus to 0.914 in Tatars at the ApoA1 locus. The data on the allele frequency distribution at nine loci point to the existence of substantial genetic diversity in the populations examined. The value of the observed heterozygosity averaged over nine Alu insertions varied from 0.326 in Mountain Maris to 0.445 in Kazakhs and Uigurs. The level of the interpopulation genetic differences for the Volga-Ural population (Fst = 0.061) was higher than for the populations of Central Asia (Fst = 0.024), Europe (Fst = 0.02), and Southeastern Asia (Fst = 0.018). The populations examined were highly differentiated both in respect of linguistic characteristics and the geographical position. The data obtained confirmed the effectiveness of the marker system used for the assessment of genetic differentiation and the relationships between the ethnic groups.
Mahjbi, A; Oueslati, A; Baraket, G; Salhi-Hannachi, A; Zehdi Azouzi, S
2016-05-20
Citrus are one of the most cultivated crops in the world. Economically, they are very important fruit trees in Tunisia. Little is known about the genetic diversity of the Tunisian Citrus germplasm. Exploring this diversity is a prerequisite for the identification and characterization of the local germplasm to circumvent and controlling genetic erosion caused by biotic and abiotic stress to aid its conservation and use. In the present study, we explored the genetic diversity of 20 Tunisian orange cultivars [Citrus sinensis (L.) Osbeck] and established their relationships by using seven simple sequence repeat (SSR) loci. In total, 37 alleles and 44 genotypes were scored. The sizes of alleles ranged from 90 to 280 bp. The number of alleles per locus was from 4 to 7, with an average of 5.28. Polymorphic information content value changed from 0.599 to 0.769 with an average of 0.675. Analysis of the genotypes revealed a heterozygote deficiency across all the genotypes. The observed heterozygosity varied from 0 to 1 (average of 0.671). Cluster analysis showed that three groups could be distinguished and the polymorphism occurred independently of the geographical origin of the studied orange cultivars. The detected SSR genotypes allowed the establishment of an identification key with a discriminating power of 100%. Multivariate analysis and the neighbor-joining phylogenetic tree indicated a narrow genetic base for the orange cultivars. The usefulness of SSR markers for orange fingerprinting and evaluation of the genetic diversity in the Tunisian germplasm are discussed in this paper.
Dehghani, Hossein; Ghobakhloo, Sepideh; Neishabury, Maryam
2016-08-01
In our previous studies on the Iranian β-thalassemia (β-thal) patients, we identified an association between the severity of the β-thal phenotype and the polymorphic palindromic site at the 5' hypersensitive site 4-locus control region (5'HS4-LCR) of the β-globin gene cluster. Furthermore, a linkage disequilibrium was observed between this region and XmnI-HBG2 in the patient population. Based on this data, it was suggested that the well-recognized phenotype-ameliorating role assigned to positive XmnI could be associated with its linked elements in the LCR. To investigate the functional significance of polymorphisms at the 5'HS4-LCR, we studied its influence on binding of transcription factors. Web-based predictions of transcription factor binding revealed a binding site for runt-related transcription factor 1 (RUNX1), when the allele at the center of the palindrome (TGGGG(A/G)CCCCA) was A but not when it was G. Furthermore, electromobility shift assay (EMSA) presented evidence in support of allele-specific binding of RUNX1 to 5'HS4. Considering that RUNX1 is a well-known regulator of hematopoiesis, these preliminary data suggest the importance of further studies to confirm this interaction and consequently investigate its functional and phenotypical relevance. These studies could help us to understand the molecular mechanism behind the phenotype modifying role of the 5'HS4-LCR polymorphic palindromic region (rs16912979), which has been observed in previous studies.
Liu, Fang; Shi, Tengfei; Huang, Sisi; Yu, Linsheng; Bi, Shoudong
2016-01-01
The Mount Huang eastern honey bees ( Apis cerana ) are an endemic population, which is well adapted to the local agricultural and ecological environment. In this study, the genetic structure of seven eastern honey bees ( A. cerana ) populations from Mount Huang in China were analyzed by SSR (simple sequence repeat) markers. The results revealed that 16 pairs of primers used amplified a total of 143 alleles. The number of alleles per locus ranged from 6 to 13, with a mean value of 8.94 alleles per locus. Observed and expected heterozygosities showed mean values of 0.446 and 0.831 respectively. UPGMA cluster analysis grouped seven eastern honey bees in three groups. The results obtained show a high genetic diversity in the honey bee populations studied in Mount Huang, and high differentiation among all the populations, suggesting that scarce exchange of honey bee species happened in Mount Huang. Our study demonstrated that the Mount Huang honey bee populations still have a natural genome worth being protected for conservation.
De Bellis, Fabien; Malapa, Roger; Kagy, Valérie; Lebegin, Stéphane; Billot, Claire; Labouisse, Jean-Pierre
2016-01-01
Premise of the study: Using next-generation sequencing technology, new microsatellite loci were characterized in Artocarpus altilis (Moraceae) and two congeners to increase the number of available markers for genotyping breadfruit cultivars. Methods and Results: A total of 47,607 simple sequence repeat loci were obtained by sequencing a library of breadfruit genomic DNA with an Illumina MiSeq system. Among them, 50 single-locus markers were selected and assessed using 41 samples (39 A. altilis, one A. camansi, and one A. heterophyllus). All loci were polymorphic in A. altilis, 44 in A. camansi, and 21 in A. heterophyllus. The number of alleles per locus ranged from two to 19. Conclusions: The new markers will be useful for assessing the identity and genetic diversity of breadfruit cultivars on a small geographical scale, gaining a better understanding of farmer management practices, and will help to optimize breadfruit genebank management. PMID:27610273
van Dijk, Kor-jent; Mellors, Jane; Waycott, Michelle
2014-01-01
• Premise of the study: New microsatellites were developed for the seagrass Thalassia hemprichii (Hydrocharitaceae), a long-lived seagrass species that is found throughout the shallow waters of tropical and subtropical Indo-West Pacific. Three multiplex PCR panels were designed utilizing new and previously developed markers, resulting in a toolkit for generating a 16-locus genotype. • Methods and Results: Through the use of microsatellite enrichment and next-generation sequencing, 16 new, validated, polymorphic microsatellite markers were isolated. Diversity was between two and four alleles per locus totaling 36 alleles. These markers, plus previously developed microsatellite markers for T. hemprichii and T. testudinum, were tested for suitability in multiplex PCR panels. • Conclusions: The generation of an easily replicated suite of multiplex panels of codominant molecular markers will allow for high-resolution and detailed genetic structure analysis and clonality assessment with minimal genotyping costs. We suggest the establishment of a T. hemprichii primer convention for the unification of future data sets. PMID:25383269
Jaramillo-Correa, J P; Bousquet, J; Beaulieu, J; Isabel, N; Perron, M; Bouillé, M
2003-05-01
Primers previously developed to amplify specific non-coding regions of the mitochondrial genome in Angiosperms, and new primers for additional non-coding mtDNA regions, were tested for their ability to direct DNA amplification in 12 conifer taxa and to detect sequence-tagged-site (STS) polymorphisms within and among eight species in Picea. Out of 12 primer pairs, nine were successful at amplifying mtDNA in most of the taxa surveyed. In conifers, indels and substitutions were observed for several loci, allowing them to distinguish between families, genera and, in some cases, between species within genera. In Picea, interspecific polymorphism was detected for four loci, while intraspecific variation was observed for three of the mtDNA regions studied. One of these (SSU rRNA V1 region) exhibited indel polymorphisms, and the two others ( nad1 intron b/c and nad5 intron1) revealed restriction differences after digestion with Sau3AI (PCR-RFLP). A fourth locus, the nad4L- orf25 intergenic region, showed a multibanding pattern for most of the spruce species, suggesting a possible gene duplication. Maternal inheritance, expected for mtDNA in conifers, was observed for all polymorphic markers except the intergenic region nad4L- orf25. Pooling of the variation observed with the remaining three markers resulted in two to six different mtDNA haplotypes within the different species of Picea. Evidence for intra-genomic recombination was observed in at least two taxa. Thus, these mitotypes are likely to be more informative than single-locus haplotypes. They should be particularly useful for the study of biogeography and the dynamics of hybrid zones.
Graziano, Claudio; Giorgi, Massimo; Malentacchi, Cecilia; Mattiuz, Pier Luigi; Porfirio, Berardino
2005-01-01
Background The minor histocompatibility antigens (mHags) are self-peptides derived from common cellular proteins and presented by MHC class I and II molecules. Disparities in mHags are a potential risk for the development of graft-versus-host disease (GvHD) in the recipients of bone marrow from HLA-identical donors. Two alleles have been identified in the mHag HA-1. The correlation between mismatches of the mHag HA-1 and GvHD has been suggested and methods to facilitate large-scale testing were afterwards developed. Methods We used sequence specific primer (SSP) PCR and direct sequencing to detect HA-1 gene polymorphisms in a sample of 131 unrelated Italian subjects. We then set up a novel melting temperature (Tm) assay that may help identification of HA-1 alleles without oligonucleotide probes. Results We report the frequencies of HA-1 alleles in the Italian population and the presence of an intronic 5 base-pair deletion associated with the immunogeneic allele HA-1H. We also detected novel variable sites with respect to the consensus sequence of HA-1 locus. Even though recombination/gene conversion events are documented, there is considerable linkage disequilibrium in the data. The gametic associations between HA-1R/H alleles and the intronic 5-bp ins/del polymorphism prompted us to try the Tm analysis with SYBR® Green I. We show that the addition of dimethylsulfoxide (DMSO) during the assay yields distinct patterns when amplicons from HA-1H homozygotes, HA-1R homozygotes, and heterozygotes are analysed. Conclusion The possibility to use SYBR® Green I to detect Tm differences between allelic variants is attractive but requires great caution. We succeeded in allele discrimination of the HA-1 locus using a relatively short (101 bp) amplicon, only in the presence of DMSO. We believe that, at least in certain assets, Tm assays may benefit by the addition of DMSO or other agents affecting DNA strand conformation and stability. PMID:16202172
Random and non-random mating populations: Evolutionary dynamics in meiotic drive.
Sarkar, Bijan
2016-01-01
Game theoretic tools are utilized to analyze a one-locus continuous selection model of sex-specific meiotic drive by considering nonequivalence of the viabilities of reciprocal heterozygotes that might be noticed at an imprinted locus. The model draws attention to the role of viability selections of different types to examine the stable nature of polymorphic equilibrium. A bridge between population genetics and evolutionary game theory has been built up by applying the concept of the Fundamental Theorem of Natural Selection. In addition to pointing out the influences of male and female segregation ratios on selection, configuration structure reveals some noted results, e.g., Hardy-Weinberg frequencies hold in replicator dynamics, occurrence of faster evolution at the maximized variance fitness, existence of mixed Evolutionarily Stable Strategy (ESS) in asymmetric games, the tending evolution to follow not only a 1:1 sex ratio but also a 1:1 different alleles ratio at particular gene locus. Through construction of replicator dynamics in the group selection framework, our selection model introduces a redefining bases of game theory to incorporate non-random mating where a mating parameter associated with population structure is dependent on the social structure. Also, the model exposes the fact that the number of polymorphic equilibria will depend on the algebraic expression of population structure. Copyright © 2015 Elsevier Inc. All rights reserved.
Grossen, Christine; Keller, Lukas; Biebach, Iris; Croll, Daniel
2014-01-01
The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection. PMID:24945814
Fleuriet, Annie
1981-01-01
It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition. PMID:6791986
Van Inghelandt, Delphine; Melchinger, Albrecht E.; Lebreton, Claude
2010-01-01
Information about the genetic diversity and population structure in elite breeding material is of fundamental importance for the improvement of crops. The objectives of our study were to (a) examine the population structure and the genetic diversity in elite maize germplasm based on simple sequence repeat (SSR) markers, (b) compare these results with those obtained from single nucleotide polymorphism (SNP) markers, and (c) compare the coancestry coefficient calculated from pedigree records with genetic distance estimates calculated from SSR and SNP markers. Our study was based on 1,537 elite maize inbred lines genotyped with 359 SSR and 8,244 SNP markers. The average number of alleles per locus, of group specific alleles, and the gene diversity (D) were higher for SSRs than for SNPs. Modified Roger’s distance (MRD) estimates and membership probabilities of the STRUCTURE matrices were higher for SSR than for SNP markers but the germplasm organization in four heterotic pools was consistent with STRUCTURE results based on SSRs and SNPs. MRD estimates calculated for the two marker systems were highly correlated (0.87). Our results suggested that the same conclusions regarding the structure and the diversity of heterotic pools could be drawn from both markers types. Furthermore, although our results suggested that the ratio of the number of SSRs and SNPs required to obtain MRD or D estimates with similar precision is not constant across the various precision levels, we propose that between 7 and 11 times more SNPs than SSRs should be used for analyzing population structure and genetic diversity. Electronic supplementary material The online version of this article (doi:10.1007/s00122-009-1256-2) contains supplementary material, which is available to authorized users. PMID:20063144
Geographic distribution of haplotype diversity at the bovine casein locus
Jann, Oliver C; Ibeagha-Awemu, Eveline M; Özbeyaz, Ceyhan; Zaragoza, Pilar; Williams, John L; Ajmone-Marsan, Paolo; Lenstra, Johannes A; Moazami-Goudarzi, Katy; Erhardt, Georg
2004-01-01
The genetic diversity of the casein locus in cattle was studied on the basis of haplotype analysis. Consideration of recently described genetic variants of the casein genes which to date have not been the subject of diversity studies, allowed the identification of new haplotypes. Genotyping of 30 cattle breeds from four continents revealed a geographically associated distribution of haplotypes, mainly defined by frequencies of alleles at CSN1S1 and CSN3. The genetic diversity within taurine breeds in Europe was found to decrease significantly from the south to the north and from the east to the west. Such geographic patterns of cattle genetic variation at the casein locus may be a result of the domestication process of modern cattle as well as geographically differentiated natural or artificial selection. The comparison of African Bos taurus and Bos indicus breeds allowed the identification of several Bos indicus specific haplotypes (CSN1S1*C-CSN2*A2-CSN3*AI/CSN3*H) that are not found in pure taurine breeds. The occurrence of such haplotypes in southern European breeds also suggests that an introgression of indicine genes into taurine breeds could have contributed to the distribution of the genetic variation observed. PMID:15040901
Shan, X H; Li, Y D; Liu, X M; Wu, Y; Zhang, M Z; Guo, W L; Liu, B; Yuan, Y P
2012-08-17
We analyzed genetic diversity and population genetic structure of four artificial populations of wild barley (Hordeum brevisubulatum); 96 plants collected from the Songnen Prairie in northeastern China were analyzed using amplified fragment length polymorphism (AFLP), specific-sequence amplified polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) markers. Indices of (epi-)genetic diversity, (epi-)genetic distance, gene flow, genotype frequency, cluster analysis, PCA analysis and AMOVA analysis generated from MSAP, AFLP and SSAP markers had the same trend. We found a high level of correlation in the artificial populations between MSAP, SSAP and AFLP markers by the Mantel test (r > 0.8). This is incongruent with previous findings showing that there is virtually no correlation between DNA methylation polymorphism and classical genetic variation; the high level of genetic polymorphism could be a result of epigenetic regulation. We compared our results with data from natural populations. The population diversity of the artificial populations was lower. However, different from what was found using AFLP and SSAP, based on MSAP results the methylation polymorphism of the artificial populations was not significantly reduced. This leads us to suggest that the DNA methylation pattern change in H. brevisubulatum populations is not only related to DNA sequence variation, but is also regulated by other controlling systems.
Lather, Manila; Sharma, Divya; Dang, Amita S; Adak, Tridibes; Singh, Om P
2015-05-01
Anopheles fluviatilis James is an important malaria vector in India, Pakistan, Nepal, and Iran. It has now been recognized as a complex of at least four sibling species-S, T, U, and V, among which species T is the most widely distributed species throughout India. The taxonomic status of these species is confusing owing to controversies prevailing in the literature. In addition, chromosomal inversion genotypes, which were considered species-diagnostic for An. fluviatilis species T, are unreliable due to the existence of polymorphism in some populations. To study the genetic diversity at population level, we isolated and characterized 20 microsatellite markers from microsatellite-enriched genomic DNA library of An. fluviatilis T, of which 18 were polymorphic while two were monomorphic. The number of alleles per locus among polymorphic markers ranged from 4 to 19, and values for observed and expected heterozygosities varied from 0.352 to 0.857 and from 0.575 to 0.933, respectively. Thirteen markers had cross-cryptic species transferability to species S and U of the Fluviatilis Complex. This study provides a promising genetic tool for the population genetic analyses of An. fluviatilis. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Corso, Josmael; Bowler, Mark; Heymann, Eckhard W; Roos, Christian; Mundy, Nicholas I
2016-04-13
Colour vision is highly variable in New World monkeys (NWMs). Evidence for the adaptive basis of colour vision in this group has largely centred on environmental features such as foraging benefits for differently coloured foods or predator detection, whereas selection on colour vision for sociosexual communication is an alternative hypothesis that has received little attention. The colour vision of uakaris (Cacajao) is of particular interest because these monkeys have the most dramatic red facial skin of any primate, as well as a unique fission/fusion social system and a specialist diet of seeds. Here, we investigate colour vision in a wild population of the bald uakari,C. calvus, by genotyping the X-linked opsin locus. We document the presence of a polymorphic colour vision system with an unprecedented number of functional alleles (six), including a novel allele with a predicted maximum spectral sensitivity of 555 nm. This supports the presence of strong balancing selection on different alleles at this locus. We consider different hypotheses to explain this selection. One possibility is that trichromacy functions in sexual selection, enabling females to choose high-quality males on the basis of red facial coloration. In support of this, there is some evidence that health affects facial coloration in uakaris, as well as a high prevalence of blood-borne parasitism in wild uakari populations. Alternatively, the low proportion of heterozygous female trichromats in the population may indicate selection on different dichromatic phenotypes, which might be related to cryptic food coloration. We have uncovered unexpected diversity in the last major lineage of NWMs to be assayed for colour vision, which will provide an interesting system to dissect adaptation of polymorphic trichromacy. © 2016 The Author(s).
de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas
2014-01-01
The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. PMID:24792163
Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas
2015-01-01
In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600
Enhancer scanning to locate regulatory regions in genomic loci
Buckley, Melissa; Gjyshi, Anxhela; Mendoza-Fandiño, Gustavo; Baskin, Rebekah; Carvalho, Renato S.; Carvalho, Marcelo A.; Woods, Nicholas T.; Monteiro, Alvaro N.A.
2016-01-01
The present protocol provides a rapid, streamlined and scalable strategy to systematically scan genomic regions for the presence of transcriptional regulatory regions active in a specific cell type. It creates genomic tiles spanning a region of interest that are subsequently cloned by recombination into a luciferase reporter vector containing the Simian Virus 40 promoter. Tiling clones are transfected into specific cell types to test for the presence of transcriptional regulatory regions. The protocol includes testing of different SNP (single nucleotide polymorphism) alleles to determine their effect on regulatory activity. This procedure provides a systematic framework to identify candidate functional SNPs within a locus during functional analysis of genome-wide association studies. This protocol adapts and combines previous well-established molecular biology methods to provide a streamlined strategy, based on automated primer design and recombinational cloning to rapidly go from a genomic locus to a set of candidate functional SNPs in eight weeks. PMID:26658467
Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal
Risso, Davide S.; Mezzavilla, Massimo; Pagani, Luca; Robino, Antonietta; Morini, Gabriella; Tofanelli, Sergio; Carrai, Maura; Campa, Daniele; Barale, Roberto; Caradonna, Fabio; Gasparini, Paolo; Luiselli, Donata; Wooding, Stephen; Drayna, Dennis
2016-01-01
The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes. PMID:27138342
Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal.
Risso, Davide S; Mezzavilla, Massimo; Pagani, Luca; Robino, Antonietta; Morini, Gabriella; Tofanelli, Sergio; Carrai, Maura; Campa, Daniele; Barale, Roberto; Caradonna, Fabio; Gasparini, Paolo; Luiselli, Donata; Wooding, Stephen; Drayna, Dennis
2016-05-03
The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes.
Vina, Marcelo A. Fernandez; Hollenbach, Jill A.; Lyke, Kirsten E.; Sztein, Marcelo B.; Maiers, Martin; Klitz, William; Cano, Pedro; Mack, Steven; Single, Richard; Brautbar, Chaim; Israel, Shosahna; Raimondi, Eduardo; Khoriaty, Evelyne; Inati, Adlette; Andreani, Marco; Testi, Manuela; Moraes, Maria Elisa; Thomson, Glenys; Stastny, Peter; Cao, Kai
2012-01-01
The human leucocyte antigen (HLA) system shows extensive variation in the number and function of loci and the number of alleles present at any one locus. Allele distribution has been analysed in many populations through the course of several decades, and the implementation of molecular typing has significantly increased the level of diversity revealing that many serotypes have multiple functional variants. While the degree of diversity in many populations is equivalent and may result from functional polymorphism(s) in peptide presentation, homogeneous and heterogeneous populations present contrasting numbers of alleles and lineages at the loci with high-density expression products. In spite of these differences, the homozygosity levels are comparable in almost all of them. The balanced distribution of HLA alleles is consistent with overdominant selection. The genetic distances between outbred populations correlate with their geographical locations; the formal genetic distance measurements are larger than expected between inbred populations in the same region. The latter present many unique alleles grouped in a few lineages consistent with limited founder polymorphism in which any novel allele may have been positively selected to enlarge the communal peptide-binding repertoire of a given population. On the other hand, it has been observed that some alleles are found in multiple populations with distinctive haplotypic associations suggesting that convergent evolution events may have taken place as well. It appears that the HLA system has been under strong selection, probably owing to its fundamental role in varying immune responses. Therefore, allelic diversity in HLA should be analysed in conjunction with other genetic markers to accurately track the migrations of modern humans. PMID:22312049
Genotyping and Bioforensics of Ricinus communis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinckley, Aubree Christine
The castor bean plant (Ricinus communis) is a member of the family Euphorbiaceae. In spite of its common name, the castor plant is not a true bean (i.e., leguminous plants belonging to the family, Fabaceae). Ricinus communis is native to tropical Africa, but because the plant was recognized for its production of oil with many desirable properties, it has been introduced and cultivated in warm temperate regions throughout the world (Armstrong 1999 and Brown 2005). Castor bean plants have also been valued by gardeners as an ornamental plant and, historically, as a natural rodenticide. Today, escaped plants grow like weedsmore » throughout much of the southwestern United States, and castor seeds are even widely available to the public for order through the Internet. In this study, multiple loci of chloroplast noncoding sequence data and a few nuclear noncoding regions were examined to identify DNA polymorphisms present among representatives from a geographically diverse panel of Ricinus communis cultivated varieties. The primary objectives for this research were (1) to successfully cultivate castor plants and extract sufficient yields of high quality DNA from an assortment of castor cultivated varieties, (2) to use PCR and sequencing to screen available universal oligos against a small panel of castor cultivars, (3) to identify DNA polymorphisms within the amplified regions, and (4) to evaluate these DNA polymorphisms as appropriate candidates for assay development (see Figure 1). Additional goals were to design, test and optimize assays targeting any DNA polymorphisms that were discovered and to rapidly screen many castor cultivars to determine the amount of diversity present at that particular locus. Ultimately, the goal of this study was to construct a phylogeographic tree representing the genetic relationships present among Ricinus communis cultivars from diverse geographic regions. These research objectives were designed to test the hypothesis that cultivated varieties of Ricinus communis from various geographic regions can be distinguished from one another based on differences present at the genetic level. In addition, the present study sought to determine the amount of diversity present among Ricinus communis cultivars.« less
2009-01-01
In order to identify new markers around the glaucoma locus GLC1B as a tool to refine its critical region at 2p11.2-2q11.2, we searched the critical region sequence obtained from the UCSC database for tetranucleotide (GATA)n and (GTCT)n repeats of at least 10 units in length. Three out of four potential microsatellite loci were found to be polymorphic, heterozygosity ranging from 64.56% to 79.59%. The identified markers are useful not only for GLC1B locus but also for the study of other disease loci at 2p11.2-2q11.2, a region with scarcity of microsatellite markers. PMID:21637444
IL-10 and IL-12B gene polymorphisms in a multiethnic Malaysian population.
Sam, S S; Teoh, B T; AbuBakar, S
2015-04-13
Inheritance of polymorphisms in the interleukin (IL)-10 promoter and IL-12B genes, which influence cytokine production and activities, may define the balance in T helper response in infection and autoimmune diseases. In the present study, we investigated the distribution of the IL-10 promoter and IL-12B gene polymorphisms in a multiethnic Malaysian population. Overall, our findings suggest that the IL-12B and IL-10 -592 genotypes were distributed homogenously across all major ethnic groups, including Malays, Chinese, and Indians, except for polymorphisms at IL-10 -1082. At this gene locus, the ethnic Chinese showed a significantly lower allele frequency of -1082G (2.1%) compared to the Malay (12.2%) and Indian (15.3%) populations. Results for the IL-12B and IL-10 gene polymorphisms were consistent with those reported for the Asian population, but markedly different from those of the African and Caucasian populations. Our findings suggest that there are specific genetic variations between different ethnic groups, which should be examined in all gene population-based association studies.
Shrestha, Sandesh Kumar; Cochran, Alicia; Mengistu, Alemu; Castro-Rocha, Arturo; Young-Kelly, Heather
2017-01-01
Frogeye leaf spot (FLS), caused by Cercospora sojina, causes significant damage to soybean in the U.S. One control strategy is the use of quinone outside inhibitor (QoI) fungicides. QoI resistant isolates were first reported in Tennessee (TN) in 2010. To investigate the disease dynamics of C. sojina, we collected 437 C. sojina isolates in 2015 from Jackson and Milan, TN and used 40 historical isolates collected from 2006–2009 from TN and ten additional states for comparison. A subset of 186 isolates, including historical isolates, were genotyped for 49 single nucleotide polymorphism (SNP) markers and the QoI resistance locus, revealing 35 unique genotypes. The genotypes clustered into three groups with two groups containing only sensitive isolates and the remaining group containing all resistant isolates and a dominant clonal lineage of 130 isolates. All 477 C. sojina isolates were genotyped for the QoI locus revealing 344 resistant and 133 sensitive isolates. All isolates collected prior to 2015 were QoI sensitive. Both mating type alleles (MAT1-1-1 and MAT1-2) were found in Jackson and Milan, TN and recovered from single lesions suggesting sexual recombination may play a role in the epidemiology of field populations. Analysis of C. sojina isolates using SNP markers proved useful to investigate population diversity and to elaborate on diversity as it relates to QoI resistance and mating type. PMID:28486517
Benassi, V.; Aulard, S.; Mazeau, S.; Veuille, M.
1993-01-01
Four-cutter molecular polymorphism of Adh and P6, and chromosome inversion polymorphism of chromosome II were investigated in 95 isogenic lines of an Ivory Coast population of Drosophila melanogaster, a species assumed to have recently spread throughout the world from a West African origin. The P6 gene showed little linkage disequilibrium with the In(2L)t inversion, although it is located within this inversion. This suggests that the inversion and the P6 locus have extensively exchanged genetic information through either double crossover or gene conversion. Allozymic variation in ADH was in linkage disequilibrium with In(2L)t and In(2R)NS inversions. Evidence suggests either that inversion linkage with the Fast allele is selectively maintained, or that this allele only recently appeared. Molecular polymorphism at the Adh locus in the Ivory Coast is not higher than in North American populations. New haplotypes specific to the African population were found, some of them connect the ``Wa(s)-like'' haplotypes found at high frequencies in the United States to the other slow haplotypes. Their relation with In(2L)t supports the hypothesis that Wa(s) recently recombined away from an In(2L)t chromosome which may be the cause of its divergence from the other haplotypes. PMID:8349110
Kim, Dae-Wi; Thawng, Cung Nawl; Choi, Jung-Hye; Lee, Kihyun; Cha, Chang-Jun
2018-01-01
The environmental resistome has been recognized as the origin and reservoir of antibiotic resistance genes and considered to be dynamic and ever expanding. In this study, a targeted gene sequencing approach revealed that the polymorphic diversity of the aminoglycoside-inactivating enzyme AAC(6')-Ib was ecological niche-specific. AAC(6')-Ib-cr, previously known as a clinical variant, was prevalent in various soils and the intestines of chickens and humans, suggesting that this variant might not have arisen from adaptive mutations in the clinic but instead originated from the environment. Furthermore, ecologically dominant polymorphic variants of AAC(6')-Ib were characterized and found to display different substrate specificities for quinolones and aminoglycosides, conferring the altered resistance spectra. Interestingly, a novel variant with the D179Y substitution showed an extended resistance spectrum to the recently developed fluoroquinolone gemifloxacin. Our results suggest that soil and animal microbiomes could be major reservoirs of antibiotic resistance; polymorphic diversity expands the antibiotic resistome in the environment, resulting in the potential emergence of novel resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fennelly, J.; Laval, S.; Wright, E.
1996-04-01
We have identified a genomic locus (DXYH1) that is polymorphic and hypervariable within the CBA/H colony. Using a panel of C57BL/6 x Mus spretus backcross offspring, it was mapped to the distal end of the X chromosome. Pseudoautosomal inheritance was demonstrated through three generations of CBA/H x CBA/H and CBA/H x C57BL/6 crosses and confirmed through linkage to the Sxr locus in X/Y Sxr x 3H1 crosses. Meiotic recombination frequencies place DXYH1 {approximately}28% into the pseudoautosomal region from the boundary. The de novo generation of CBA/H variant DXYH1 restriction fragment length polymorphisms during spermatogenesis is suggestive of the germline instabilitymore » associated with hypermutable human minisatellites. The absence of DXY1-related sequences in Mus spretus provides DNA sequence evidence to support the observed failure of X-Y pairing during meiosis and consequent hybrid infertility in C57BL/6 x Mus spretus male F1 offspring. 19 refs., 4 figs.« less
Zheng, Yan Ying; Xie, Ling; Liu, Li; Zhang, Shu Peng; Wu, Xiao Bin; Zhu, Chang Le; Lai, Ren Sheng
2012-10-08
Colorectal cancer is one of the most common tumors with high mortality in China. Microsatellite instability (MSI) analysis is important for the diagnosis of hereditary non-polyposis colorectal cancer (HNPCC) and for the prediction of 5-FU chemotherapy efficiency of colorectal tumors, especially in terms of therapeutic response and overall survival rates. Among the MSI markers recommended by the NIH/NCI, BAT-25 has been extensively studied for its major role in MSI. BAT-25 presents different polymorphisms in different ethnic populations and studies of its polymorphisms in the Chinese population are still very limited. To analyze the frequency of constitutive polymorphic variation at the BAT-25 locus in Chinese from Jiangsu Province and its implication for locus MSI screening. The frequency of allelic variation at the BAT-25 locus of cervical cells from 500 healthy women and blood from 16 healthy males was assessed by direct sequencing. Twenty samples were also analyzed by fragment analysis. DNA extracted from blood of 94 patients with gastrointestinal cancer or endometrial cancer was analyzed by fragment analysis. After comparison with the sequencing results, the more frequent allele lengths were 126-127 bp, 128-129 bp, 129-130 bp, respectively consistent with the 24 poly(T) (T24), T25 and T26 alleles. At the BAT-25 locus, 516 healthy individuals had respectively 1.36%, 97.28% and 1.36% of the T24, T25 and T26. Whereas for the 94 cancer patients allelic frequencies were 0.53%, 1.06%, 96.8%, 1.6% for T15, T24, T25 and T26 alleles respectively. Sixteen healthy males had only the T25 allele and heterozygous T15 was only found in 1 male patient with colon cancer. We established the relation between fragment length and thymine repeats in BAT-25. The results showed that the BAT-25 locus is quasimonomorphic in Chinese from Jiangsu province. Moreover we showed that variant alleles of BAT-25 were found more likely in blood from cancer patients than in healthy individuals, suggesting the need to perform comparative studies between tumor and blood, or normal tissue, as to obtain a correct MSI identification.
Galindo-González, Leonardo; Mhiri, Corinne; Grandbastien, Marie-Angèle; Deyholos, Michael K
2016-12-07
Initial characterization of the flax genome showed that Ty1-copia retrotransposons are abundant, with several members being recently inserted, and in close association with genes. Recent insertions indicate a potential for ongoing transpositional activity that can create genomic diversity among accessions, cultivars or varieties. The polymorphisms generated constitute a good source of molecular markers that may be associated with phenotype if the insertions alter gene activity. Flax, where accessions are bred mainly for seed nutritional properties or for fibers, constitutes a good model for studying the relationship of transpositional activity with diversification and breeding. In this study, we estimated copy number and used a type of transposon display known as Sequence-Specific Amplification Polymorphisms (SSAPs), to characterize six families of Ty1-copia elements across 14 flax accessions. Polymorphic insertion sites were sequenced to find insertions that could potentially alter gene expression, and a preliminary test was performed with selected genes bearing transposable element (TE) insertions. Quantification of six families of Ty1-copia elements indicated different abundances among TE families and between flax accessions, which suggested diverse transpositional histories. SSAPs showed a high level of polymorphism in most of the evaluated retrotransposon families, with a trend towards higher levels of polymorphism in low-copy number families. Ty1-copia insertion polymorphisms among cultivars allowed a general distinction between oil and fiber types, and between spring and winter types, demonstrating their utility in diversity studies. Characterization of polymorphic insertions revealed an overwhelming association with genes, with insertions disrupting exons, introns or within 1 kb of coding regions. A preliminary test on the potential transcriptional disruption by TEs of four selected genes evaluated in three different tissues, showed one case of significant impact of the insertion on gene expression. We demonstrated that specific Ty1-copia families have been active since breeding commenced in flax. The retrotransposon-derived polymorphism can be used to separate flax types, and the close association of many insertions with genes defines a good source of potential mutations that could be associated with phenotypic changes, resulting in diversification processes.
Systematic, genome-wide, sex-specific linkage of cardiovascular traits in French Canadians.
Seda, Ondrej; Tremblay, Johanne; Gaudet, Daniel; Brunelle, Pierre-Luc; Gurau, Alexandru; Merlo, Ettore; Pilote, Louise; Orlov, Sergei N; Boulva, Francis; Petrovich, Milan; Kotchen, Theodore A; Cowley, Allen W; Hamet, Pavel
2008-04-01
The sexual dimorphism of cardiovascular traits, as well as susceptibility to a variety of related diseases, has long been recognized, yet their sex-specific genomic determinants are largely unknown. We systematically assessed the sex-specific heritability and linkage of 539 hemodynamic, metabolic, anthropometric, and humoral traits in 120 French-Canadian families from the Saguenay-Lac-St-Jean region of Quebec, Canada. We performed multipoint linkage analysis using microsatellite markers followed by peak-wide linkage scan based on Affymetrix Human Mapping 50K Array Xba240 single nucleotide polymorphism genotypes in 3 settings, including the entire sample and then separately in men and women. Nearly one half of the traits were age and sex independent, one quarter were both age and sex dependent, and one eighth were exclusively age or sex dependent. Sex-specific phenotypes are most frequent in heart rate and blood pressure categories, whereas sex- and age-independent determinants are predominant among humoral and biochemical parameters. Twenty sex-specific loci passing multiple testing criteria were corroborated by 2-point single nucleotide polymorphism linkage. Several resting systolic blood pressure measurements showed significant genotype-by-sex interaction, eg, male-specific locus at chromosome 12 (male-female logarithm of odds difference: 4.16; interaction P=0.0002), which was undetectable in the entire population, even after adjustment for sex. Detailed interrogation of this locus revealed a 220-kb block overlapping parts of TAO-kinase 3 and SUDS3 genes. In summary, a large number of complex cardiovascular traits display significant sexual dimorphism, for which we have demonstrated genomic determinants at the haplotype level. Many of these would have been missed in a traditional, sex-adjusted setting.
Dávila, S G; Gil, M G; Resino-Talaván, P; Campo, J L
2014-05-01
The purpose of this study was to investigate the effect of the melanocortin 1 receptor (MC1R) gene on plumage color in chickens. The gene was sequenced in 77 males and 77 females from 13 Spanish breeds, carrying 6 different alleles in the E locus (E*E, E*R, E*WH, E*N, E*B, E*BC), a recessive wheaten (yellowish-white) tester line (E*Y), and a White Leghorn population (heterozygous E*E). A total of 11 significant SNP were detected. Nine of them were nonsynonymous (T212C, G274A, G376A, T398AC, G409A, A427G, C637T, A644C, and G646A, corresponding to amino acid changes Met72Thr, Glu92Lys, Val126Ile, Leu133GlnPro, Ala137Thr, Thr143Ala, Arg213Cys, His215Pro, and Val216Ile), and 2 were synonymous (C69T and C834T). With respect to the significant SNP, 7 had an allelic frequency of 0.5 or greater for some of the alleles at the E locus. These results indicated a significant correlation between MC1R polymorphism and the presence of different alleles at the E locus. All the populations carrying the E*E or E*R alleles, except the Birchen Leonesa, had the G274A polymorphism. Eleven haplotypes were made with 7 of the significant SNP. The distribution of these haplotypes in the different alleles of the E locus showed that each haplotype was predominantly associated to one allele. The number of haplotypes was greatest for the Black Menorca, Birchen Leonesa, and Blue Andaluza breeds, whereas the Quail Castellana and Red-barred Vasca breeds were monomorphic. Our results suggested that the Glu92Lys mutation may be responsible of the activation of the receptor for eumelanin production, being necessary but not sufficient to express the extended black phenotype. They also suggested that the Arg213Cys mutation may be the cause of the loss or the decrease of function of the receptor to produce eumelanin, and the Ala137Thr mutation may be a candidate to attenuate the Glu92Lys effect. The observed co-segregation of the E locus alleles and polymorphisms in MC1R confirms that the E locus is equivalent to MC1R.
Ossa, Carmen G; Larridon, Isabel; Peralta, Gioconda; Asselman, Pieter; Pérez, Fernanda
2016-12-01
The aim of this study was to develop microsatellite markers as a tool to study population structure, genetic diversity and effective population size of Echinopsis chiloensis, an endemic cactus from arid and semiarid regions of Central Chile. We developed 12 polymorphic microsatellite markers for E. chiloensis using next-generation sequencing and tested them in 60 individuals from six sites, covering all the latitudinal range of this species. The number of alleles per locus ranged from 3 to 8, while the observed (Ho) and expected (He) heterozygosity ranged from 0.0 to 0.80 and from 0.10 to 0.76, respectively. We also detected significant differences between sites, with F ST values ranging from 0.05 to 0.29. Microsatellite markers will enable us to estimate genetic diversity and population structure of E. chiloensis in future ecological and phylogeographic studies.
Gonzalez, Lorena B Parra; Straub, Shannon C K; Doyle, Jeff J; Ortega, Paula E Mora; Garrido, Haroldo E Salvo; Butler, Iván J Maureira
2010-08-01
Microsatellite primers were developed in Lupinus luteus L., an emerging temperate protein crop, to investigate genetic diversity, population structure, and to facilitate the generation of better yellow lupine varieties. • Thirteen polymorphic primer sets were evaluated in a European and Eastern European accession collection of L. luteus. The primers amplified di-, tri-, and tetranucleotide repeats with 2-4 alleles per locus. These revealed a moderate to low level of genetic variation, as indicated by an average observed heterozygosity of 0.0126. Select loci also amplified successfully in the closely related species L. hispanicus Boiss. & Reut. and in the New World species L. mutabilis Sweet. • These results indicate the utility of primers for the study of genetic diversity across L. luteus populations and related lupine species. The use of these microsatellite markers will facilitate the implementation of several molecular breeding strategies in yellow lupine.
Novel microsatellite development and characterization for Phacelia formosula (Hydrophyllaceae)1
Schwabe, Anna L.; Neale, Jennifer Ramp
2017-01-01
Premise of the study: Microsatellite primers were developed to characterize genetic diversity and structuring in the genus Phacelia (Hydrophyllaceae) and to further conservation efforts for P. formosula. Methods and Results: Fifteen novel microsatellite primers were developed for P. formosula. These were characterized for genetic variation in three separate P. formosula populations. Two to nine alleles were found per locus. Overall observed heterozygosity and expected heterozygosity ranged from 0.000 to 0.800 and 0.000 to 0.840, respectively. Additionally, these loci were successfully amplified and showed polymorphism in P. gina-glenneae and a potential new Phacelia species. Conclusions: These microsatellite markers will be useful in assessing genetic diversity, structuring, and gene flow within and among populations of the rare P. formosula, in addition to related Phacelia species. These markers will provide important genetic data needed for appropriate conservation and management of these rare plants. PMID:28791208
Haplotype diversity of the myostatin gene among beef cattle breeds
Dunner, Susana; Miranda, M Eugenia; Amigues, Yves; Cañón, Javier; Georges, Michel; Hanset, Roger; Williams, John; Ménissier, François
2003-01-01
A total of 678 individuals from 28 European bovine breeds were both phenotyped and analysed at the myostatin locus by the Single Strand Conformation Polymorphism (SSCP) method. Seven new mutations were identified which contribute to the high polymorphism (1 SNP every 100 bp) present in this small gene; twenty haplotypes were described and a genotyping method was set up using the Oligonucleotide Ligation Assay (OLA) method. Some haplotypes appeared to be exclusive to a particular breed; this was the case for 5 in the Charolaise (involving mutation Q204X) and 7 in the Maine-Anjou (involving mutation E226X). The relationships between the different haplotypes were studied, thus allowing to test the earlier hypothesis on the origin of muscular hypertrophy in Europe: muscular hypertrophy (namely nt821(del11)) was mainly spread in different waves from northern Europe milk purpose populations in most breeds; however, other mutations (mostly disruptive) arose in a single breed, were highly selected and have since scarcely evolved to other populations. PMID:12605853
Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami
2013-01-01
Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA. PMID:24236053
Arroyo, Juan M.; Munguia-Vega, Adrian; Rodríguez-Estrella, Ricardo; Bascompte, Jordi
2013-01-01
• Premise of the study: Microsatellite primers were developed for the parasitic mistletoe Phoradendron californicum to investigate to what extent population genetic structure depends on host tree distribution within a highly fragmented landscape. • Methods and Results: Fourteen unlinked polymorphic and four monomorphic nuclear microsatellite markers were developed using a genomic shotgun pyrosequencing method. A total of 187 alleles plus four monomorphic loci alleles were found in 98 individuals sampled in three populations from the Sonoran Desert in the Baja California peninsula (Mexico). Loci averaged 13.3 alleles per locus (range 4–28), and observed and expected heterozygosities within populations varied from 0.167–0.879 and 0.364–0.932, respectively. • Conclusions: Levels of polymorphism of the reported markers are adequate for studies of diversity and fragmentation in natural populations of this parasitic plant. Cross-species amplifications in P. juniperinum and P. diguetianum only showed four markers that could be useful in P. diguetianum. PMID:25202503
Sifuentes-Rincón, A M; Trejo-Tapia, A G; Randel, R D; Ambriz-Morales, P; Parra-Bracamonte, G M
2016-02-22
The aim of this study was to analyze the allelic frequency distribution and segregation among breeds and/or between different cattle genetic groups of four novel single nucleotide polymorphisms of the bovine DRD1 and DRD5 genes and one reported SNP from the DRD4 gene. One hundred and nine-animals from ten different cattle breeds were genotyped and allelic frequencies for each locus were estimated. There were significant differences in the allelic frequencies (P < 0.05) among breeds for the DRD1 and DRD5 markers. The allelic frequencies for markers DRD1-825A>G and DRD5-378C>T were also significantly different between groups differing in genetic background. Because differences in temperament have been reported between Bos taurus taurus and B. taurus indicus breeds and their crosses, further studies are needed to investigate if any association exists between described markers and cattle behavior traits.
Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami
2013-01-01
Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.
Haplotag: Software for Haplotype-Based Genotyping-by-Sequencing Analysis
Tinker, Nicholas A.; Bekele, Wubishet A.; Hattori, Jiro
2016-01-01
Genotyping-by-sequencing (GBS), and related methods, are based on high-throughput short-read sequencing of genomic complexity reductions followed by discovery of single nucleotide polymorphisms (SNPs) within sequence tags. This provides a powerful and economical approach to whole-genome genotyping, facilitating applications in genomics, diversity analysis, and molecular breeding. However, due to the complexity of analyzing large data sets, applications of GBS may require substantial time, expertise, and computational resources. Haplotag, the novel GBS software described here, is freely available, and operates with minimal user-investment on widely available computer platforms. Haplotag is unique in fulfilling the following set of criteria: (1) operates without a reference genome; (2) can be used in a polyploid species; (3) provides a discovery mode, and a production mode; (4) discovers polymorphisms based on a model of tag-level haplotypes within sequenced tags; (5) reports SNPs as well as haplotype-based genotypes; and (6) provides an intuitive visual “passport” for each inferred locus. Haplotag is optimized for use in a self-pollinating plant species. PMID:26818073
Genetic heterogeneity and Alzheimer`s disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schellenberg, G.D.; Wijsman, E.M.; Bird, T.D.
1994-09-01
In some early-onset Alzheimer`s disease (AD) families, inheritance is autosomal dominant. (Early-onset AD is arbitarily defined as onset at {le} 60 years.) Two loci have been identified which are causative for early-onset familial AD (FAD). One is the amyloid precursor protein gene in which specific mutation have been identified. The second is a locus at 14q24.3 (AD3) which has been localized by linkage analysis; the gene and specific mutations have not been identified. Linkage studies place this locus between D14S61 and D14S63. These 2 loci, however, do not account for all early-onset FAD. The Volga German (VG) kindreds are descendantsmore » of families which emigrated from Germany to the Volga river region of Russia and subsequently to the US; AD in these families is hypothesized to be the result of a common genetic founder. The average age-at-onset in these families is 57 years. Linkage analysis for this group has been negative for the APP gene and for chromosome 14 markers. Thus, there is at least 1 other early-onset FAD locus. Recently, the {epsilon}4 allele of apolipoprotein E (ApoE) was identified as a risk-factor for late-onset AD. In a series of 53 late-onset kindreds, a strong genetic association was observed between the ApoE {epsilon}4 allele and AD. However, when linkage analysis was performed using a highly polymorphic locus at the ApoCII gene, which is within 30 kb of ApoE, significant evidence for co-segregation was not observed. This and other data suggests that while ApoE is an age-at-onset modifying locus, another gene(s), located elsewhere, contribute(s) to late-onset AD. Thus, there is probably at least 1 other late-onset locus. Once the VG locus is identified, it will be possible to determine whether an allelic variant of this locus is responsible for late-onset FAD.« less
Littlejohn, Mathew D.; Tiplady, Kathryn; Lopdell, Thomas; Law, Tania A.; Scott, Andrew; Harland, Chad; Sherlock, Ric; Henty, Kristen; Obolonkin, Vlad; Lehnert, Klaus; MacGibbon, Alistair; Spelman, Richard J.; Davis, Stephen R.; Snell, Russell G.
2014-01-01
Milk is composed of a complex mixture of lipids, proteins, carbohydrates and various vitamins and minerals as a source of nutrition for young mammals. The composition of milk varies between individuals, with lipid composition in particular being highly heritable. Recent reports have highlighted a region of bovine chromosome 27 harbouring variants affecting milk fat percentage and fatty acid content. We aimed to further investigate this locus in two independent cattle populations, consisting of a Holstein-Friesian x Jersey crossbreed pedigree of 711 F2 cows, and a collection of 32,530 mixed ancestry Bos taurus cows. Bayesian genome-wide association mapping using markers imputed from the Illumina BovineHD chip revealed a large quantitative trait locus (QTL) for milk fat percentage on chromosome 27, present in both populations. We also investigated a range of other milk composition phenotypes, and report additional associations at this locus for fat yield, protein percentage and yield, lactose percentage and yield, milk volume, and the proportions of numerous milk fatty acids. We then used mammary RNA sequence data from 212 lactating cows to assess the transcript abundance of genes located in the milk fat percentage QTL interval. This analysis revealed a strong eQTL for AGPAT6, demonstrating that high milk fat percentage genotype is also additively associated with increased expression of the AGPAT6 gene. Finally, we used whole genome sequence data from six F1 sires to target a panel of novel AGPAT6 locus variants for genotyping in the F2 crossbreed population. Association analysis of 58 of these variants revealed highly significant association for polymorphisms mapping to the 5′UTR exons and intron 1 of AGPAT6. Taken together, these data suggest that variants affecting the expression of AGPAT6 are causally involved in differential milk fat synthesis, with pleiotropic consequences for a diverse range of other milk components. PMID:24465687
Microsatellite markers for Plathymenia reticulata (Leguminosae)1.
Oliveira, Fernanda A; Tarazi, Roberto; Menezes, Ivandilson P P; Van Den Berg, Cassio; Tsai, Siu M; Gaiotto, Fernanda A
2012-10-01
Microsatellite markers were developed and characterized to investigate genetic diversity and gene flow and to help in conservation efforts for the endangered timber species Plathymenia reticulata. • Eleven microsatellite loci were characterized using 60 adult trees of two populations of P. reticulata from the Atlantic Forest of southern Bahia, Brazil. Of these, nine loci were polymorphic, with an average of 4.39 alleles per locus. The average expected heterozygosity per population ranged from 0.47 to 0.55. The combined exclusion probability was 0.99996. • Our results reveal that the microsatellite markers developed in this study are an effective tool for paternity and genetic structure analysis that may be useful for conservation strategies.
Tumour necrosis factor-alpha polymorphism as one of the complex inherited factors in pemphigus.
Torzecka, Jolanta Dorota; Narbutt, Joanna; Sysa-Jedrzejowska, Anna; Borowiec, Maciej; Ptasinska, Anetta; Woszczek, Grzegorz; Kowalski, Marek L
2003-01-01
The aim of our study was to analyse a significance of tumour necrosis factor (TNF)-alpha promoter gene polymorphisms in relation to the HLA-DR locus in genetic predisposition to pemphigus. TNF-alpha gene polymorphisms in position -238 and -308 were identified using a modified polymerase chain reaction-restriction fragment length polymorphism method in 53 patients with pemphigus (38 with pemphigus vulgaris, 15 with pemphigus foliaceus) and 87 healthy controls. The HLA-DRB1 locus was typed using the polymerase chain reaction SSO method in all the patients and 152 population controls. Carriers of the TNF-alpha polymorphic -308 A allele were found to be more frequent in the pemphigus foliaceus group in comparison with the control group (odds ratio (OR) = 8.12; p = 0.0005). A significant association between HLA-DRB1*04 (OR = 3.86; pcor = 0.0001) and DRB1*14 (OR = 8.4; pcor = 0.0001) and pemphigus vulgaris was found. In this group of patients a decreased frequency of HLA-DRB1*07 (OR = 0.08; pcor = 0.006) was also identified. We have shown for the first time a positive association of TNF-alpha polymorphism in position -308 with pemphigus foliaceus. PMID:14760938
Tumour necrosis factor-alpha polymorphism as one of the complex inherited factors in pemphigus.
Torzecka, Jolanta Dorota; Narbutt, Joanna; Sysa-Jedrzejowska, Anna; Borowiec, Maciej; Ptasinska, Anetta; Woszczek, Grzegorz; Kowalski, Marek L
2003-10-01
The aim of our study was to analyse a significance of tumour necrosis factor (TNF)-alpha promoter gene polymorphisms in relation to the HLA-DR locus in genetic predisposition to pemphigus. TNF-alpha gene polymorphisms in position -238 and -308 were identified using a modified polymerase chain reaction-restriction fragment length polymorphism method in 53 patients with pemphigus (38 with pemphigus vulgaris, 15 with pemphigus foliaceus) and 87 healthy controls. The HLA-DRB1 locus was typed using the polymerase chain reaction SSO method in all the patients and 152 population controls. Carriers of the TNF-alpha polymorphic -308 A allele were found to be more frequent in the pemphigus foliaceus group in comparison with the control group (odds ratio (OR) = 8.12; p = 0.0005). A significant association between HLA-DRB1*04 (OR = 3.86; pcor = 0.0001) and DRB1*14 (OR = 8.4; pcor = 0.0001) and pemphigus vulgaris was found. In this group of patients a decreased frequency of HLA-DRB1*07 (OR = 0.08; pcor = 0.006) was also identified. We have shown for the first time a positive association of TNF-alpha polymorphism in position -308 with pemphigus foliaceus.
Philippe, Claude; Vargas-Landin, Dulce B; Doucet, Aurélien J; van Essen, Dominic; Vera-Otarola, Jorge; Kuciak, Monika; Corbin, Antoine; Nigumann, Pilvi; Cristofari, Gaël
2016-01-01
LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants. DOI: http://dx.doi.org/10.7554/eLife.13926.001 PMID:27016617
An improved and validated RNA HLA class I SBT approach for obtaining full length coding sequences.
Gerritsen, K E H; Olieslagers, T I; Groeneweg, M; Voorter, C E M; Tilanus, M G J
2014-11-01
The functional relevance of human leukocyte antigen (HLA) class I allele polymorphism beyond exons 2 and 3 is difficult to address because more than 70% of the HLA class I alleles are defined by exons 2 and 3 sequences only. For routine application on clinical samples we improved and validated the HLA sequence-based typing (SBT) approach based on RNA templates, using either a single locus-specific or two overlapping group-specific polymerase chain reaction (PCR) amplifications, with three forward and three reverse sequencing reactions for full length sequencing. Locus-specific HLA typing with RNA SBT of a reference panel, representing the major antigen groups, showed identical results compared to DNA SBT typing. Alleles encountered with unknown exons in the IMGT/HLA database and three samples, two with Null and one with a Low expressed allele, have been addressed by the group-specific RNA SBT approach to obtain full length coding sequences. This RNA SBT approach has proven its value in our routine full length definition of alleles. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ma, Chun-Lei; Jin, Ji-Qiang; Li, Chun-Fang; Wang, Rong-Kai; Zheng, Hong-Kun; Yao, Ming-Zhe; Chen, Liang
2015-01-01
Genetic maps are important tools in plant genomics and breeding. The present study reports the large-scale discovery of single nucleotide polymorphisms (SNPs) for genetic map construction in tea plant. We developed a total of 6,042 valid SNP markers using specific-locus amplified fragment sequencing (SLAF-seq), and subsequently mapped them into the previous framework map. The final map contained 6,448 molecular markers, distributing on fifteen linkage groups corresponding to the number of tea plant chromosomes. The total map length was 3,965 cM, with an average inter-locus distance of 1.0 cM. This map is the first SNP-based reference map of tea plant, as well as the most saturated one developed to date. The SNP markers and map resources generated in this study provide a wealth of genetic information that can serve as a foundation for downstream genetic analyses, such as the fine mapping of quantitative trait loci (QTL), map-based cloning, marker-assisted selection, and anchoring of scaffolds to facilitate the process of whole genome sequencing projects for tea plant. PMID:26035838
Breaux, Breanna; Deiss, Thaddeus C.; Chen, Patricia L.; Cruz-Schneider, Maria Paula; Sena, Leonardo; Hunter, Margaret E.; Bonde, Robert K.; Criscitiello, Michael F.
2017-01-01
Manatees are a vulnerable, charismatic sentinel species from the evolutionarily divergent Afrotheria. Manatee health and resistance to infectious disease is of great concern to conservation groups, but little is known about their immune system. To develop manatee-specific tools for monitoring health, we first must have a general knowledge of how the immunoglobulin heavy (IgH) chain locus is organized and transcriptionally expressed. Using the genomic scaffolds of the Florida manatee (Trichechus manatus latirostris), we characterized the potential IgH segmental diversity and constant region isotypic diversity and performed the first Afrotherian repertoire analysis. The Florida manatee has low V(D)J combinatorial diversity (3744 potential combinations) and few constant region isotypes. They also lack clan III V segments, which may have caused reduced VH segment numbers. However, we found productive somatic hypermutation concentrated in the complementarity determining regions. In conclusion, manatees have limited IGHV clan and combinatorial diversity. This suggests that clan III V segments are essential for maintaining IgH locus diversity.
Breaux, Breanna; Deiss, Thaddeus C; Chen, Patricia L; Cruz-Schneider, Maria Paula; Sena, Leonardo; Hunter, Margaret E; Bonde, Robert K; Criscitiello, Michael F
2017-07-01
Manatees are a vulnerable, charismatic sentinel species from the evolutionarily divergent Afrotheria. Manatee health and resistance to infectious disease is of great concern to conservation groups, but little is known about their immune system. To develop manatee-specific tools for monitoring health, we first must have a general knowledge of how the immunoglobulin heavy (IgH) chain locus is organized and transcriptionally expressed. Using the genomic scaffolds of the Florida manatee (Trichechus manatus latirostris), we characterized the potential IgH segmental diversity and constant region isotypic diversity and performed the first Afrotherian repertoire analysis. The Florida manatee has low V(D)J combinatorial diversity (3744 potential combinations) and few constant region isotypes. They also lack clan III V segments, which may have caused reduced VH segment numbers. However, we found productive somatic hypermutation concentrated in the complementarity determining regions. In conclusion, manatees have limited IGHV clan and combinatorial diversity. This suggests that clan III V segments are essential for maintaining IgH locus diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Russell, George C; Scholes, Sandra F; Twomey, David F; Courtenay, Ann E; Grant, Dawn M; Lamond, Bruce; Norris, David; Willoughby, Kim; Haig, David M; Stewart, James P
2014-08-06
In order to define better virus isolates from animals with malignant catarrhal fever (MCF), segments of three genes of ovine herpesvirus-2 were amplified from diagnostic samples representing MCF cases with a range of clinical presentations in cattle, including head and eye, alimentary and neurological. The variation within each gene segment was estimated by DNA sequencing, which confirmed that the newly-annotated Ov9.5 gene was significantly more polymorphic than either of the other loci tested (segments of ORF50 and ORF75), with alleles that differed at over 60% of nucleotide positions. Despite this, the nine Ov9.5 alleles characterised had identical predicted splicing patterns and could be translated into Ov9.5 polypeptides with at least 49% amino acid identity. This multi-locus approach has potential for use in epidemiological studies and in charactering chains of infection. However there was no association between specific variants of OvHV-2 and the clinical/pathological presentation of MCF in the cattle analysed. Copyright © 2014 Elsevier B.V. All rights reserved.
African American-preponderant single nucleotide polymorphisms (SNPs) and risk of breast cancer
Kato, Ikuko; Cichon, Michelle; Yee, Cecilia L.; Land, Susan; Korczak, Jeannette F.
2009-01-01
Background African American women more often present with more aggressive types of breast cancer than Caucasian women, but little is known whether genetic polymorphisms specific to or disproportionate in African Americans are associated with their risk of breast cancer. Methods A population-based case-control study was conducted including 194 cases identified through the Metropolitan Detroit Cancer Surveillance System and 189 controls recruited through random digit dialing to examine polymorphisms in genes involved in estrogen metabolism and action. Results The African American-specific CYP1A1 5639C allele was associated with an increased risk of breast cancer (odds ratio(OR)=2.34, 95%confidence interval (CI): 1.23–4.44) and this association with the CYP1A1 5639 locus was dependent on another polymorphism in the CYP3A4 gene (P=0.043 for the interaction). In addition, African American-predominant CYP1B1 432 Val allele was significantly more often found in the cases than in the controls overall and the HSD17B1 312 Gly allele was specifically associated with premenopausal breast cancer risk (OR=3.00, 95% CI: 1.29–6.99). Conclusion These observations need to be confirmed in larger studies due to the limited statistical power of the study based on a small number of cases. PMID:19679043
Maricic, Natalie; Dawid, Suzanne
2014-09-30
Streptococcus pneumoniae colonizes the highly diverse polymicrobial community of the nasopharynx where it must compete with resident organisms. We have shown that bacterially produced antimicrobial peptides (bacteriocins) dictate the outcome of these competitive interactions. All fully-sequenced pneumococcal strains harbor a bacteriocin-like peptide (blp) locus. The blp locus encodes for a range of diverse bacteriocins and all of the highly conserved components needed for their regulation, processing, and secretion. The diversity of the bacteriocins found in the bacteriocin immunity region (BIR) of the locus is a major contributor of pneumococcal competition. Along with the bacteriocins, immunity genes are found in the BIR and are needed to protect the producer cell from the effects of its own bacteriocin. The overlay assay is a quick method for examining a large number of strains for competitive interactions mediated by bacteriocins. The overlay assay also allows for the characterization of bacteriocin-specific immunity, and detection of secreted quorum sensing peptides. The assay is performed by pre-inoculating an agar plate with a strain to be tested for bacteriocin production followed by application of a soft agar overlay containing a strain to be tested for bacteriocin sensitivity. A zone of clearance surrounding the stab indicates that the overlay strain is sensitive to the bacteriocins produced by the pre-inoculated strain. If no zone of clearance is observed, either the overlay strain is immune to the bacteriocins being produced or the pre-inoculated strain does not produce bacteriocins. To determine if the blp locus is functional in a given strain, the overlay assay can be adapted to evaluate for peptide pheromone secretion by the pre-inoculated strain. In this case, a series of four lacZ-reporter strains with different pheromone specificity are used in the overlay.
Kalyana Babu, B; Sood, Salej; Kumar, Dinesh; Joshi, Anjeli; Pattanayak, A; Kant, Lakshmi; Upadhyaya, H D
2018-02-01
Barnyard millet ( Echinochloa spp.) is an important crop from nutritional point of view, nevertheless, the genetic information is very scarce. In the present investigation, rice and finger millet genomic SSRs were used for assessing cross transferability, identification of polymorphic markers, syntenic regions, genetic diversity and population structure analysis of barnyard millet genotypes. We observed 100% cross transferability for finger millet SSRs, of which 91% were polymorphic, while 71% of rice markers were cross transferable with 48% polymorphic out of them. Twenty-nine and sixteen highly polymorphic finger millet and rice SSRs yielded a mean of 4.3 and 3.38 alleles per locus in barnyard millet genotypes, respectively. The PIC values varied from 0.27 to 0.73 at an average of 0.54 for finger millet SSRs, whereas it was from 0.15 to 0.67 at an average of 0.44 for rice SSRs. High synteny was observed for markers related to panicle length, yield-related traits, spikelet fertility, plant height, root traits, leaf senescence, blast and brown plant hopper resistance. Although the rice SSRs located on chromosome 10 followed by chromosome 6 and 11 were found to be more transferable to barnyard millet, the finger millet SSRs were more polymorphic and transferable to barnyard millet genotypes. These SSR data of finger millet and rice individually as well as combined together grouped the 11 barnyard millet genotypes into 2 major clusters. The results of population structure analysis were similar to cluster analysis.
Turner, Adam W; Martinuk, Amy; Silva, Anada; Lau, Paulina; Nikpay, Majid; Eriksson, Per; Folkersen, Lasse; Perisic, Ljubica; Hedin, Ulf; Soubeyrand, Sebastien; McPherson, Ruth
2016-05-01
A recent genome-wide association study meta-analysis identified an intronic single nucleotide polymorphism in SMAD3, rs56062135C>T, the minor allele (T) which associates with protection from coronary artery disease. Relevant to atherosclerosis, SMAD3 is a key contributor to transforming growth factor-β pathway signaling. Here, we seek to identify ≥1 causal coronary artery disease-associated single nucleotide polymorphisms at the SMAD3 locus and characterize mechanisms whereby the risk allele(s) contribute to coronary artery disease risk. By genetic and epigenetic fine mapping, we identified a candidate causal single nucleotide polymorphism rs17293632C>T (D', 0.97; r(2), 0.94 with rs56062135) in intron 1 of SMAD3 with predicted functional effects. We show that the sequence encompassing rs17293632 acts as a strong enhancer in human arterial smooth muscle cells. The common allele (C) preserves an activator protein (AP)-1 site and enhancer function, whereas the protective (T) allele disrupts the AP-1 site and significantly reduces enhancer activity (P<0.001). Pharmacological inhibition of AP-1 activity upstream demonstrates that this allele-specific enhancer effect is AP-1 dependent (P<0.001). Chromatin immunoprecipitation experiments reveal binding of several AP-1 component proteins with preferential binding to the (C) allele. We show that rs17293632 is an expression quantitative trait locus for SMAD3 in blood and atherosclerotic plaque with reduced expression of SMAD3 in carriers of the protective allele. Finally, siRNA knockdown of SMAD3 in human arterial smooth muscle cells increases cell viability, consistent with an antiproliferative role. The coronary artery disease-associated rs17293632C>T single nucleotide polymorphism represents a novel functional cis-acting element at the SMAD3 locus. The protective (T) allele of rs17293632 disrupts a consensus AP-1 binding site in a SMAD3 intron 1 enhancer, reduces enhancer activity and SMAD3 expression, altering human arterial smooth muscle cell proliferation. © 2016 American Heart Association, Inc.
Liguori, Rosario; Labruna, Giuseppe; Alfieri, Andreina; Martone, Domenico; Farinaro, Eduardo; Contaldo, Franco; Sacchetti, Lucia; Pasanisi, Fabrizio; Buono, Pasqualina
2014-08-01
Gene variants in MC4R, SIRT1 and FTO are associated with severe obesity and metabolic impairment in Caucasians. We investigated whether common variants in these genes are associated with metabolic syndrome (MetS) in a large group of morbidly obese young adults from southern Italy. One thousand morbidly obese subjects (62% women, mean body mass index 46.5 kg/m(2), mean age 32.6 years) whose families had lived in southern Italy for at least 2 generations were recruited. Single-nucleotide polymorphisms (SNPs) rs12970134, rs477181, rs502933 (MC4R locus), rs3818292, rs7069102, rs730821, rs2273773, rs12413112 (SIRT1 locus) and rs1421085, rs9939609, 9930506, 1121980 (FTO locus) were genotyped by Taqman assay; blood parameters were assayed by routine methods; the Fat Mass, Fat Free Mass, Respiratory Quotient, Basal Metabolic Rate (BMR) and waist circumference were also determined. Binomial logistic regression showed that the TA heterozygous genotype of SNP rs9939609 in the FTO gene was associated with the presence of MetS in our population [OR (95% CI): 2.53 (1.16-5.55)]. Furthermore, the FTO rs9939609 genotype accounted for 21.3% of the MetS phenotype together with total cholesterol, BMR and age. Our results extend the knowledge on genotype susceptibility for MetS in relation to a specific geographical area of residence. Copyright © 2014 Elsevier Ltd. All rights reserved.
Carneiro, Miguel; Ferrand, Nuno
2007-01-01
Kappa-casein (CSN3) plays an important role in stabilising the Ca-sensitive caseins in the micelle. The European rabbit (Oryctolagus cuniculus) CSN3 has previously been shown to possess two alleles (A and B), which differ deeply in their intronic regions (indels of 100 and 1550 nucleotides in introns 1 and 4, respectively). Furthermore, a correlation between several reproductive performance traits and the different alleles was described. However, all these data were exclusively collected in rabbit domestic breeds, preventing a deeper understanding of the extensive polymorphism observed in the CSN3 gene. Additionally, the techniques available for the typing of both indel polymorphisms were until now not suitable for large-scale studies. In this report, we describe a simple, PCR-based typing method to distinguish rabbit CSN3 alleles. We analyse both ancient wild rabbit populations from the Iberian Peninsula and France, and the more recently derived English wild rabbits and domestic stocks. A new allele (C) showing another major indel (250 bp) in intron 1 was found, but exclusively detected in Iberian wild rabbits. In addition, our survey revealed the occurrence of new haplotypes in wild populations, suggesting that intragenic recombination is important in creating genetic diversity at this locus. This easy and low cost single-step PCR-based method results in an improvement over previous described techniques, can be easily set up in a routine molecular laboratory and would probably be a valuable tool in the management of rabbit domestic breeds. PMID:17433245
2010-01-01
Background Various enzyme inhibitors act on key insect gut digestive hydrolases, including alpha-amylases and proteinases. Alpha-amylase inhibitors have been widely investigated for their possible use in strengthening a plant's defense against insects that are highly dependent on starch as an energy source. We attempted to unravel the diversity of monomeric alpha-amylase inhibitor genes of Israeli and Golan Heights' wild emmer wheat with different ecological factors (e.g., geography, water, and temperature). Population methods that analyze the nature and frequency of allele diversity within a species and the codon analysis method (comparing patterns of synonymous and non-synonymous changes in protein coding sequences) were used to detect natural selection. Results Three hundred and forty-eight sequences encoding monomeric alpha-amylase inhibitors (WMAI) were obtained from 14 populations of wild emmer wheat. The frequency of SNPs in WMAI genes was 1 out of 16.3 bases, where 28 SNPs were detected in the coding sequence. The results of purifying and the positive selection hypothesis (p < 0.05) showed that the sequences of WMAI were contributed by both natural selection and co-evolution, which ensured conservation of protein function and inhibition against diverse insect amylases. The majority of amino acid substitutions occurred at the C-terminal (positive selection domain), which ensured the stability of WMAI. SNPs in this gene could be classified into several categories associated with water, temperature, and geographic factors, respectively. Conclusions Great diversity at the WMAI locus, both between and within populations, was detected in the populations of wild emmer wheat. It was revealed that WMAI were naturally selected for across populations by a ratio of dN/dS as expected. Ecological factors, singly or in combination, explained a significant proportion of the variations in the SNPs. A sharp genetic divergence over very short geographic distances compared to a small genetic divergence between large geographic distances also suggested that the SNPs were subjected to natural selection, and ecological factors had an important evolutionary role in polymorphisms at this locus. According to population and codon analysis, these results suggested that monomeric alpha-amylase inhibitors are adaptively selected under different environmental conditions. PMID:20534122
Estimation of selection intensity under overdominance by Bayesian methods.
Buzbas, Erkan Ozge; Joyce, Paul; Abdo, Zaid
2009-01-01
A balanced pattern in the allele frequencies of polymorphic loci is a potential sign of selection, particularly of overdominance. Although this type of selection is of some interest in population genetics, there exists no likelihood based approaches specifically tailored to make inference on selection intensity. To fill this gap, we present Bayesian methods to estimate selection intensity under k-allele models with overdominance. Our model allows for an arbitrary number of loci and alleles within a locus. The neutral and selected variability within each locus are modeled with corresponding k-allele models. To estimate the posterior distribution of the mean selection intensity in a multilocus region, a hierarchical setup between loci is used. The methods are demonstrated with data at the Human Leukocyte Antigen loci from world-wide populations.
USDA-ARS?s Scientific Manuscript database
Eleven polymorphic microsatellite markers were developed for the Uredinales fungus Phragmidium violaceum, which causes leaf rust on European blackberry (Rubus fruticosus L. aggregate). Allele frequency ranged between two and seventeen alleles per locus with no evidence of linkage disequilibrium amon...
Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice
2009-11-01
The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that the continuous variation in anthocyanin content in grape was explained mainly by a single gene cluster of three VvMybA genes. The use of natural diversity helped to reduce one QTL to a set of five quantitative trait nucleotides and gave a clear picture of how isogenes combined their effects to shape grape color. Such analysis also illustrates how isogenes combine their effect to shape a complex quantitative trait and enables the definition of markers directly targeted for upcoming breeding programs.
Comparative nucleotide diversity across North American and European populus species.
Ismail, Mohamed; Soolanayakanahally, Raju Y; Ingvarsson, Pär K; Guy, Robert D; Jansson, Stefan; Silim, Salim N; El-Kassaby, Yousry A
2012-06-01
Nucleotide polymorphisms in two North American balsam poplars (Populus trichocarpa Torr. & Gray and P. balsamifera L.; section Tacamahaca), and one Eurasian aspen (P. tremula L.; section Populus) were compared using nine loci involved in defense, stress response, photoperiodism, freezing tolerance, and housekeeping. Nucleotide diversity varied among species and was highest for P. tremula (θ(w) = 0.005, π(T) = 0.007) as compared to P. balsamifera (θ(w) = 0.004, π(T) = 0.005) or P. trichocarpa (θ(w) = 0.002, π(T) = 0.003). Across species, the defense and the stress response loci accounted for the majority of the observed level of nucleotide diversity. In general, the studied loci did not deviate from neutral expectation either at the individual locus (non-significant normalized Fay and Wu's H) or at the multi-locus level (non-significant HKA test). Using molecular clock analysis, section Tacamahaca probably shared a common ancestor with section Populus approximately 4.5 million year ago. Divergence between the two closely related balsam poplars was about 0.8 million years ago, a pattern consistent with an isolation-with-migration (IM) model. As expected, P. tremula showed a five-fold higher substitution rate (2 × 10(-8) substitution/site/year) compared to the North American species (0.4 × 10(-8) substitution/site/year), probably reflecting its complex demographic history. Linkage disequilibrium (LD) varied among species with a more rapid decay in the North American species (<400 bp) in comparison to P. tremula (≫400 bp). The similarities in nucleotide diversity pattern and LD decay of the two balsam poplar species likely reflects the recent time of their divergence.
Two hybridization events define the population structure of Trypanosoma cruzi.
Westenberger, Scott J; Barnabé, Christian; Campbell, David A; Sturm, Nancy R
2005-10-01
Genetic variation in Trypanosoma cruzi is likely a key determinant in transmission and pathogenesis of Chagas disease. We have examined nine loci as markers for the extant T. cruzi strains. Four distinct alleles were found for each locus, corresponding to the sequence classes present in the homozygous discrete typing units (DTUs) I, IIa, IIb, and IIc. The alleles in DTUs IIa and IIc showed a spectrum of polymorphism ranging from DTU I-like to DTU IIb-like, in addition to DTU-specific sequence variation. DTUs IId and IIe were indistinguishable, showing DTU homozygosity at one locus and heterozygosity with DTU IIb and IIc allelic sequences at eight loci. Recombination between the DTU IIb and IIc alleles is evidenced from mosaic polymorphisms. These data imply that two discrete hybridization events resulted in the formation of the current DTUs. We propose a model in which a fusion between ancestral DTU I and IIb strains gave rise to a heterozygous hybrid that homogenized its genome to become the homozygous progenitor of DTUs IIa and IIc. The second hybridization between DTU IIb and IIc strains that generated DTUs IId and IIe resulted in extensive heterozygosity with subsequent recombination of parental genotypes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roger, T.; Morisset, J.; Seman, M.
1996-12-31
The mouse Tcrg locus comprises seven Tcrg-V, four Tcrg-J, and four Tcrg-C segments which generate only six major types of functional g chains, Vg7-, Vg4-, Vg6-, or Vg5-Jg1-Cg1, Vg2-Jg2-Cg2, and Vg1-Jg4-Cg4. A complete analysis of restriction fragment length polymorphism (RFLP) of the Tcrg locus in wild and inbred mice suggested its relative conservation compared to other loci of the immunoglobulin (Ig) gene family. Three haplotypes have been characterized in laboratory mice: gA, gB, and gC, represented by BALB/c, DBA/2, and AKR prototypes. Tcr-gA and -gC haplotypes are highly related. By contrast, Tcr-gB, likely inherited from Asian mouse subspecies, appeared verymore » different by RFLP analysis. Yet only partial sequence data have been reported on gA and gB Tcrg-V genes. Here, the complete sequence of all Tcrg-V genes of the two haplotypes is described. 16 refs., 1 fig.« less
Witsenboer, H; Michelmore, R W; Vogel, J
1997-12-01
Selectively amplified microsatellite polymorphic locus (SAMPL) analysis is a method of amplifying microsatellite loci using generic PCR primers. SAMPL analysis uses one AFLP primer in combination with a primer complementary to microsatellite sequences. SAMPL primers based on compound microsatellite sequences provided the clearest amplification patterns. We explored the potential of SAMPL analysis in lettuce to detect PCR-based codominant microsatellite markers. Fifty-eight SAMPLs were identified and placed on the genetic map. Seventeen were codominant. SAMPLs were dispersed with RFLP markers on 11 of the 12 main linkage groups in lettuce, indicating that they have a similar genomic distribution. Some but not all fragments amplified by SAMPL analysis were confirmed to contain microsatellite sequences by Southern hybridization. Forty-five cultivars of lettuce and five wild species of Lactuca were analyzed to determine the allelic diversity for codominant SAMPLs. From 3 to 11 putative alleles were found for each SAMPL; 2-6 alleles were found within Lactuca sativa and 1-3 alleles were found among the crisphead genotypes, the most genetically homogeneous plant type of L. sativa. This allelic diversity is greater than that found for RFLP markers. Numerous new alleles were observed in the wild species; however, there were frequent null alleles. Therefore, SAMPL analysis is more applicable to intraspecific than to interspecific comparisons. A phenetic analysis based on SAMPLs resulted in a dendrogram similar to those based on RFLP and AFLP markers.
Li, Rong; Yang, Jie; Yang, Junbo; Dao, Zhiling
2012-01-01
Twenty-one microsatellite markers from the genome of Cardiocrinum giganteum var. yunnanense, an important economic plant in China, were developed with a fast isolation protocol by amplified fragment length polymorphism of sequences containing repeats (FIASCO). Polymorphism within each locus was assessed in 24 wild individuals from Gaoligong Mountains in western Yunnan Province, China. The number of alleles per locus ranged from 2 to 4 with a mean of 2.9. The expected and observed levels of heterozygosity ranged from 0.042 to 0.726 and from 0.000 to 1.000, with averages of 0.44 and 0.31, respectively. These polymorphic microsatellite markers should prove useful in population genetics studies and assessments of genetic variation to develop conservation and management strategies for this species. PMID:22408400
Campillo, José Antonio; López-Hernández, Ruth; Martínez-Banaclocha, Helios; Bolarín, José Miguel; Gimeno, Lourdes; Mrowiec, Anna; López, Manuela; Las Heras, Beatriz; Minguela, Alfredo; Moya-Quiles, Maria Rosa; Legáz, Isabel; Frías-Iniesta, José Francisco; García-Alonso, Ana María; Álvarez-López, María Rocío; Martínez-Escribano, Jorge Antonio; Muro, Manuel
2015-01-01
A limited number of studies have been performed so far on the polymorphism in the transmembrane region (exon 5) of the major histocompatibility complex class I chain-related gene A (MICA) in patients with melanoma. However, the influence of MICA polymorphism in extracellular domains (exons 2, 3, and 4) has not been investigated on melanoma disease. This study aims to characterize the influence of extracellular MICA polymorphism, and its previously described linkage disequilibrium with HLA-B locus, on patients with cutaneous melanoma from southeastern Spain. For this purpose, MICA and HLA-B genotyping was performed in 233 patients and 200 ethnically matched controls by luminex technology. Patients were classified according to the presence of methionine or valine at codon 129 of MICA gene. We found a high frequency of MICA(*)009 in melanoma patients compared with controls (P = 0.002, Pc = 0.03). Our results also showed an association between MICA(*)009 and HLA-B(*)51 alleles in both patients and controls. This association was stronger in patients than controls (P = 0.015). However, a multivariate logistic regression model showed that neither MICA(*)009 nor the combination MICA(*)009/HLA-B(*)51 was associated with melanoma susceptibility. No relationship was observed between MICA-129 dimorphism and melanoma nor when MICA polymorphism was evaluated according to clinical findings at diagnosis.
Zhang, Xiaoyan; Hu, Jinguo; Bao, Shiying; Hao, Junjie; Li, Ling; He, Yuhua; Jiang, Junye; Wang, Fang; Tian, Shufang; Zong, Xuxiao
2015-01-01
Pea (Pisum sativum L.) is an important food legume globally, and is the plant species that J.G. Mendel used to lay the foundation of modern genetics. However, genomics resources of pea are limited comparing to other crop species. Application of marker assisted selection (MAS) in pea breeding has lagged behind many other crops. Development of a large number of novel and reliable SSR (simple sequence repeat) or microsatellite markers will help both basic and applied genomics research of this crop. The Illumina HiSeq 2500 System was used to uncover 8,899 putative SSR containing sequences, and 3,275 non-redundant primers were designed to amplify these SSRs. Among the 1,644 SSRs that were randomly selected for primer validation, 841 yielded reliable amplifications of detectable polymorphisms among 24 genotypes of cultivated pea (Pisum sativum L.) and wild relatives (P. fulvum Sm.) originated from diverse geographical locations. The dataset indicated that the allele number per locus ranged from 2 to 10, and that the polymorphism information content (PIC) ranged from 0.08 to 0.82 with an average of 0.38. These 1,644 novel SSR markers were also tested for polymorphism between genotypes G0003973 and G0005527. Finally, 33 polymorphic SSR markers were anchored on the genetic linkage map of G0003973 × G0005527 F2 population. PMID:26440522
Sassa, Hidenori
2016-01-01
Self-incompatibility (SI) is a major obstacle for stable fruit production in fruit trees of Rosaceae. SI of Rosaceae is controlled by the S locus on which at least two genes, pistil S and pollen S, are located. The product of the pistil S gene is a polymorphic and extracellular ribonuclease, called S-RNase, while that of the pollen S gene is a protein containing the F-box motif, SFB (S haplotype-specific F-box protein)/SFBB (S locus F-box brothers). Recent studies suggested that SI of Rosaceae includes two different systems, i.e., Prunus of tribe Amygdaleae exhibits a self-recognition system in which its SFB recognizes self-S-RNase, while tribe Pyreae (Pyrus and Malus) shows a non-self-recognition system in which many SFBB proteins are involved in SI, each recognizing subset of non-self-S-RNases. Further biochemical and biological characterization of the S locus genes, as well as other genes required for SI not located at the S locus, will help our understanding of the molecular mechanisms, origin, and evolution of SI of Rosaceae, and may provide the basis for breeding of self-compatible fruit tree cultivars.
Sassa, Hidenori
2016-01-01
Self-incompatibility (SI) is a major obstacle for stable fruit production in fruit trees of Rosaceae. SI of Rosaceae is controlled by the S locus on which at least two genes, pistil S and pollen S, are located. The product of the pistil S gene is a polymorphic and extracellular ribonuclease, called S-RNase, while that of the pollen S gene is a protein containing the F-box motif, SFB (S haplotype-specific F-box protein)/SFBB (S locus F-box brothers). Recent studies suggested that SI of Rosaceae includes two different systems, i.e., Prunus of tribe Amygdaleae exhibits a self-recognition system in which its SFB recognizes self-S-RNase, while tribe Pyreae (Pyrus and Malus) shows a non-self-recognition system in which many SFBB proteins are involved in SI, each recognizing subset of non-self-S-RNases. Further biochemical and biological characterization of the S locus genes, as well as other genes required for SI not located at the S locus, will help our understanding of the molecular mechanisms, origin, and evolution of SI of Rosaceae, and may provide the basis for breeding of self-compatible fruit tree cultivars. PMID:27069396
Wang, Yuanfei; Yang, Wenli; Cama, Vitaliano; Wang, Lin; Cabrera, Lilia; Ortega, Ynes; Bern, Caryn; Feng, Yaoyu; Gilman, Robert; Xiao, Lihua
2014-07-01
Population genetic studies have been used to understand the transmission of pathogens in humans and animals, especially the role of zoonotic infections and evolution and dispersal of virulent subtypes. In this study, we analysed the genetic diversity and population structure of Cryptosporidium meleagridis, the only known Cryptosporidium species that infects both avian and mammalian hosts and is responsible for approximately 10% of human cryptosporidiosis in some areas. A total of 62 C. meleagridis specimens from children, AIDS patients, and birds in Lima, Peru were characterised by sequence analysis of the ssrRNA gene and five minisatellite, microsatellite and polymorphic markers in chromosome 6, including the 60 kDa glycoprotein (gp60), 47 kDa glycoprotein (CP47), a serine repeat antigen (MSC6-5), retinitis pigmentosa GTPase regulator (RPGR) and thrombospondin protein 8 (TSP8). The multilocus sequence analysis identified concurrent infections with Cryptosporidium hominis in four AIDS patients and three children. Unique subtypes of C. meleagridis ranged from eight at the gp60 locus (gene diversity -Hd=0.651), three at the RPGR (Hd=0.556), three at the MSC6-5 locus (Hd=0.242), two at TSP8 (Hd=0.198), to one at CP47 (monomorphic), much lower than that of C. hominis in the same area. Intragenic linkage disequilibrium was strong and complete at all gene loci. Intergenic linkage disequilibrium was highly significant (P<0.001) for all pairs of polymorphic loci. Two major groups of subtypes were seen, with most subtypes belonging to group 1. Within group 1, there was no clear population segregation, and two of the 14 multilocus subtypes of C. meleagridis were found in both AIDS patients and birds. We believe that these results provide the first evidence of a clonal population structure of C. meleagridis and the likely occurrence of cross-species transmission of C. meleagridis between birds and humans. Published by Elsevier Ltd.
Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.].
Jia, Xiaoping; Zhang, Zhongbao; Liu, Yinghui; Zhang, Chengwei; Shi, Yunsu; Song, Yanchun; Wang, Tianyu; Li, Yu
2009-02-01
SSR markers are desirable markers in analysis of genetic diversity, quantitative trait loci mapping and gene locating. In this study, SSR markers were developed from two genomic libraries enriched for (GA)n and (CA)n of foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China. A total of 100 SSR markers among the 193 primer pairs detected polymorphism between two mapping parents of an F(2) population, i.e. "B100" of cultivated S. italica and "A10" of wild S. viridis. Excluding 14 markers with unclear amplifications, and five markers unlinked with any linkage group, a foxtail millet SSR linkage map was constructed by integrating 81 new developed SSR markers with 20 RFLP anchored markers. The 81 SSRs covered nine chromosomes of foxtail millet. The length of the map was 1,654 cM, with an average interval distance between markers of 16.4 cM. The 81 SSR markers were not evenly distributed throughout the nine chromosomes, with Ch.8 harbouring the least (3 markers) and Ch.9 harbouring the most (18 markers). To verify the usefulness of the SSR markers developed, 37 SSR markers were randomly chosen to analyze genetic diversity of 40 foxtail millet accessions. Totally 228 alleles were detected, with an average 6.16 alleles per locus. Polymorphism information content (PIC) value for each locus ranged from 0.413 to 0.847, with an average of 0.697. A positive correlation between PIC and number of alleles and between PIC and number of repeat unit were found [0.802 and 0.429, respectively (P < 0.01)]. UPGMA analysis revealed that the 40 foxtail millet cultivars could be grouped into five clusters in which the landraces' grouping was largely consistent with ecotypes while the breeding varieties from different provinces in China tended to be grouped together.
Foroughmand, Ali Mohammad; Nikkhah, Emad; Galehdari, Hamid; Jadbabaee, Mohammad Hossin
2015-01-01
Objective Coronary artery disease (CAD) is a multi-factorial and heterogenic disease with atherosclerosis plaques formation in internal wall of coronary artery. Plaque formation results to limitation of the blood reaching to myocardium leading to appearance of some problems, such as ischemia, sudden thrombosis veins and myocardial infarction (MI). Several environmental and genetic factors are involved in prevalence and incident of CAD as follows: hypertension, high low density lipoprotein-cholesterol (LDL-C), age, diabetes mellitus, family history of early-onset heart disease and smoking. According to genome wide association studies (GWAS), five polymorphisms in the 9p21 locus seem to be associated with the CAD. We aimed to evaluate the remarkable association of two polymorphisms at 9p21 locus, rs1333049 and rs10757274, with CAD. Materials and Methods This experimental study was conducted in Golestan, Aria Hospitals and Genetics Lab of Shahid Chamran University in the city of Ahvaz, Iran, in 2010- 2011. The collected blood samples belonging to 170 CAD patients (case group) and 100 healthy individuals (control group) were analyzed by tetra-primer amplification refractory mutation system (ARMS)-polymerase chain reaction (PCR) technique. The results were analyzed using software package used for statistical analysis (SPSS; SPSS Inc., USA) version 16. A value of p<0.05 and an odd ratio (OR) with 95% confidence intervals (CI) were considered significant. Results The frequencies of CC, CG and GG genotypes for rs1333049 polymorphism in patients were 18.2, 65.3 and 16.5%, while in controls, the related values were 25, 67 and 8%, respectively. GG genotypes of rs1333049 polymorphism in CAD patients were more than control cases (OR: 0.354, 95%CI: 0.138-0.912, p=0.032). The frequencies of AA, AG and GG genotypes for rs10757274 in CAD patients were 8.2, 58.3 and 33.5%, while in controls, the related values were 35, 63 and 2%, respectively. GG Genotype in rs10757274 polymorphism in CAD patients was found more than control cases (OR: 0.014, 95% CI: 0.003 -0.065, p=0.0001). Conclusion The rs1333049 polymorphism at 9p21 locus shows a weak association with CAD, whereas rs10757274 polymorphism reveals a significant association with CAD. These variants may help the identification of patients with increased risk for coronary artery disease. PMID:25870838
Jaratlerdsiri, Weerachai; Isberg, Sally R.; Higgins, Damien P.; Miles, Lee G.; Gongora, Jaime
2014-01-01
Major Histocompatibility Complex (MHC) class II genes encode for molecules that aid in the presentation of antigens to helper T cells. MHC characterisation within and between major vertebrate taxa has shed light on the evolutionary mechanisms shaping the diversity within this genomic region, though little characterisation has been performed within the Order Crocodylia. Here we investigate the extent and effect of selective pressures and trans-species polymorphism on MHC class II α and β evolution among 20 extant species of Crocodylia. Selection detection analyses showed that diversifying selection influenced MHC class II β diversity, whilst diversity within MHC class II α is the result of strong purifying selection. Comparison of translated sequences between species revealed the presence of twelve trans-species polymorphisms, some of which appear to be specific to the genera Crocodylus and Caiman. Phylogenetic reconstruction clustered MHC class II α sequences into two major clades representing the families Crocodilidae and Alligatoridae. However, no further subdivision within these clades was evident and, based on the observation that most MHC class II α sequences shared the same trans-species polymorphisms, it is possible that they correspond to the same gene lineage across species. In contrast, phylogenetic analyses of MHC class II β sequences showed a mixture of subclades containing sequences from Crocodilidae and/or Alligatoridae, illustrating orthologous relationships among those genes. Interestingly, two of the subclades containing sequences from both Crocodilidae and Alligatoridae shared specific trans-species polymorphisms, suggesting that they may belong to ancient lineages pre-dating the divergence of these two families from the common ancestor 85–90 million years ago. The results presented herein provide an immunogenetic resource that may be used to further assess MHC diversity and functionality in Crocodylia. PMID:24503938
Sun, Penglin; Li, Shu; Lu, Dihong; Williams, Justin S; Kao, Teh-Hui
2015-07-01
Many flowering plants show self-incompatibility, an intra-specific reproductive barrier by which pistils reject self-pollen to prevent inbreeding and accept non-self pollen to promote out-crossing. In Petunia, the polymorphic S-locus determines self/non-self recognition. The locus contains a gene encoding an S-RNase, which controls pistil specificity, and multiple S-locus F-box (SLF) genes that collectively control pollen specificity. Each SLF is a component of an SCF (Skp1/Cullin/F-box) complex that is responsible for mediating degradation of non-self S-RNase(s), with which the SLF interacts, via the ubiquitin-26S proteasome pathway. A complete set of SLFs is required to detoxify all non-self S-RNases to allow cross-compatible pollination. Here, we show that SLF1 of Petunia inflata is itself subject to degradation via the ubiquitin-26S proteasome pathway, and identify an 18 amino acid sequence in the C-terminal region of S2 -SLF1 (SLF1 of S2 haplotype) that contains a degradation motif. Seven of the 18 amino acids are conserved among all 17 SLF proteins of S2 haplotype and S3 haplotype involved in pollen specificity, suggesting that all SLF proteins are probably subject to similar degradation. Deleting the 18 amino acid sequence from S2 -SLF1 stabilized the protein but abolished its function in self-incompatibility, suggesting that dynamic cycling of SLF proteins is an integral part of their function in self-incompatibility. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Zhang, Yu-Dang; Shen, Chun-Mei; Jin, Rui; Li, Ya-Ni; Wang, Bo; Ma, Li-Xia; Meng, Hao-Tian; Yan, Jiang-Wei; Dan Wang, Hong-; Yang, Ze-Long; Zhu, Bo-Feng
2015-05-01
Insertion/deletion polymorphisms have become a research hot spot in forensic science due to their tremendous potential in recent years. In the present study, we investigated 30 indel loci in a Chinese Yi ethnic group. The allele frequencies of the short allele of the 30 indel loci were in the range of 0.1025-0.9221. The power of discrimination values were observed ranging from to 0.2630 (HLD111 locus) to 0.6607 (HLD70 locus) and probability of exclusion values ranged from 0.0189 (HLD111 locus) to 0.2343 (HLD56 locus). The combined power of discrimination and power of exclusion for 30 loci in the studied Yi group were 0.99999999995713 and 0.97746, respectively, which showed tremendous potential for forensic personal identification in the Yi group. Moreover, the DA distances, phylogenetic tree, principal component analysis, and cluster analysis showed the Yi group had close genetic relationships with the Tibetan, South Korean, Chinese Han, and She groups. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A new polymorphic pepsinogen locus (Pg-2) in the rat (Rattus norvegicus).
Hamada, S; Yamada, J; Bender, K; Adams, M
1987-07-01
Only two types of pepsinogens, which are products of the Pg-1 locus, are present in rat urine. In gastric mucosa, however, additional pepsinogen isozymes are expressed. We have found a polymorphism for rat gastric mucosa pepsinogen using agarose gel electrophoresis. Some inbred rat strains expressed a pepsinogen band, while others did not. The trait was found to be controlled by a single autosomal locus. We tentatively designated the locus as Pg-2 with two alleles, Pg-2a for the one controlling presence of the band and Pg-2o for the one controlling absence. Linkage analysis using BN and TM strains revealed that Pg-2 was closely linked to Pg-1 (3.7 +/- 1.8 cM), and that it did not belong to LG I (Hbb and p), LG II (Acon-1 and Mup-1), LG IV (Hao-1 and Svp-1), LG V (Es-1 and Es-3), LG VI (Gc and h), LG IX (RT1), LG X (Fh and Pep-3), nor a LG containing Ahd-2 (as yet undetermined).
Bangham, Jenny; Knott, Sara A; Kim, Kang-Wook; Young, Robert S; Jiggins, Francis M
2008-09-01
In natural populations, genetic variation affects resistance to disease. Whether that genetic variation comprises lots of small-effect polymorphisms or a small number of large-effect polymorphisms has implications for adaptation, selection and how genetic variation is maintained in populations. Furthermore, how much genetic variation there is, and the genes that underlie this variation, affects models of co-evolution between parasites and their hosts. We are studying the genetic variation that affects the resistance of Drosophila melanogaster to its natural pathogen--the vertically transmitted sigma virus. We have carried out three separate quantitative trait locus mapping analyses to map gene variants on the second chromosome that cause variation in the rate at which males transmit the infection to their offspring. All three crosses identified a locus in a similar chromosomal location that causes a large drop in the rate at which the virus is transmitted. We also found evidence for an additional smaller-effect quantitative trait locus elsewhere on the chromosome. Our data, together with previous experiments on the sigma virus and parasitoid wasps, indicate that the resistance of D. melanogaster to co-evolved pathogens is controlled by a limited number of major-effect polymorphisms.
Shao, Chengchen; Zhang, Yaqi; Zhou, Yueqin; Zhu, Wei; Xu, Hongmei; Liu, Zhiping; Tang, Qiqun; Shen, Yiwen; Xie, Jianhui
2015-01-01
Aim To systemically select and evaluate short tandem repeats (STRs) on the chromosome 14 and obtain new STR loci as expanded genotyping markers for forensic application. Methods STRs on the chromosome 14 were filtered from Tandem Repeats Database and further selected based on their positions on the chromosome, repeat patterns of the core sequences, sequence homology of the flanking regions, and suitability of flanking regions in primer design. The STR locus with the highest heterozygosity and polymorphism information content (PIC) was selected for further analysis of genetic polymorphism, forensic parameters, and the core sequence. Results Among 26 STR loci selected as candidates, D14S739 had the highest heterozygosity (0.8691) and PIC (0.8432), and showed no deviation from the Hardy-Weinberg equilibrium. 14 alleles were observed, ranging in size from 21 to 34 tetranucleotide units in the core region of (GATA)9-18 (GACA)7-12 GACG (GACA)2 GATA. Paternity testing showed no mutations. Conclusion D14S739 is a highly informative STR locus and could be a suitable genetic marker for forensic applications in the Han Chinese population. PMID:26526885
Lowry, David B.; Logan, Tierney L.; Santuari, Luca; Hardtke, Christian S.; Richards, James H.; DeRose-Wilson, Leah J.; McKay, John K.; Sen, Saunak; Juenger, Thomas E.
2013-01-01
The regulation of gene expression is crucial for an organism’s development and response to stress, and an understanding of the evolution of gene expression is of fundamental importance to basic and applied biology. To improve this understanding, we conducted expression quantitative trait locus (eQTL) mapping in the Tsu-1 (Tsushima, Japan) × Kas-1 (Kashmir, India) recombinant inbred line population of Arabidopsis thaliana across soil drying treatments. We then used genome resequencing data to evaluate whether genomic features (promoter polymorphism, recombination rate, gene length, and gene density) are associated with genes responding to the environment (E) or with genes with genetic variation (G) in gene expression in the form of eQTLs. We identified thousands of genes that responded to soil drying and hundreds of main-effect eQTLs. However, we identified very few statistically significant eQTLs that interacted with the soil drying treatment (GxE eQTL). Analysis of genome resequencing data revealed associations of several genomic features with G and E genes. In general, E genes had lower promoter diversity and local recombination rates. By contrast, genes with eQTLs (G) had significantly greater promoter diversity and were located in genomic regions with higher recombination. These results suggest that genomic architecture may play an important a role in the evolution of gene expression. PMID:24045022
Wang, Lu; Mariño-Ramírez, Leonardo
2017-01-01
Abstract Transposable element (TE) derived sequences are known to contribute to the regulation of the human genome. The majority of known TE-derived regulatory sequences correspond to relatively ancient insertions, which are fixed across human populations. The extent to which human genetic variation caused by recent TE activity leads to regulatory polymorphisms among populations has yet to be thoroughly explored. In this study, we searched for associations between polymorphic TE (polyTE) loci and human gene expression levels using an expression quantitative trait loci (eQTL) approach. We compared locus-specific polyTE insertion genotypes to B cell gene expression levels among 445 individuals from 5 human populations. Numerous human polyTE loci correspond to both cis and trans eQTL, and their regulatory effects are directly related to cell type-specific function in the immune system. PolyTE loci are associated with differences in expression between European and African population groups, and a single polyTE loci is indirectly associated with the expression of numerous genes via the regulation of the B cell-specific transcription factor PAX5. The polyTE-gene expression associations we found indicate that human TE genetic variation can have important phenotypic consequences. Our results reveal that TE-eQTL are involved in population-specific gene regulation as well as transcriptional network modification. PMID:27998931
Witonski, D. ; Stefanova, R.; Ranganathan, A.; Schutze, G. E.; Eisenach, K. D.; Cave, M. D.
2006-01-01
The genome of Salmonella enterica subsp. enterica serovar Typhimurium strain LT2 was analyzed for direct repeats, and 54 sequences containing variable-number tandem repeat loci were identified. Ten primer pairs that anneal upstream and downstream of each selected locus were designed and used to amplify PCR targets in isolates of S. enterica serovars Typhimurium and Newport. Four of the 10 loci did not show polymorphism in the length of products. Six loci were selected for analysis. Isolates of S. enterica serovars Typhimurium and Newport that were related to specific outbreaks and showed identical pulsed-field gel electrophoresis patterns were indistinguishable by the length of the six variable-number tandem repeats. Isolates that differed in their pulsed-field gel electrophoresis patterns showed polymorphism in variable-number tandem repeat profiles. Length of the products was confirmed by DNA sequence analysis. Only 2 of the 10 loci contained exact integers of the direct repeat. Eight loci contained partial copies. The partial copies were maintained at the ends of the variable-number tandem repeat loci in all isolates. In spite of having partial copies that were maintained in all isolates, the number of direct repeats at a locus was polymorphic. Six variable-number tandem repeat loci were useful in distinguishing isolates of S. enterica serovars Typhimurium and Newport that had different pulsed-field gel electrophoresis patterns and in identifying outbreak-associated cases that shared a common pulsed-field gel pattern. PMID:16943354
Augusto, Raphael; Maranho, Rone Charles; Mangolin, Claudete Aparecida; Pires da Silva Machado, Maria de Fátima
2015-01-01
High and low polymorphisms in simple sequence repeats of expressed sequence tag (EST-SSR) for specific proteins and enzymes, such as β-amylase, cellulose synthase, xyloglucan endotransglucosylase, fructose 1,6-bisphosphate aldolase, and fructose 1,6-bisphosphatase, were used to illustrate the genetic divergence within and between varieties of sugarcane (Saccharum spp.) and to guide the technological paths to optimize ethanol production from lignocellulose biomass. The varieties RB72454, RB867515, RB92579, and SP813250 on the second stage of cutting, all grown in the state of Paraná (PR), and the varieties RB92579 and SP813250 cultured in the PR state and in Northeastern Brazil, state of Pernambuco (PE), were analyzed using five EST-SSR primers for EstC66, EstC67, EstC68, EstC69, and EstC91 loci. Genetic divergence was evident in the EstC67 and EstC69 loci for β-amylase and cellulose synthase, respectively, among the four sugarcane varieties. An extremely high level of genetic differentiation was also detected in the EstC67 locus from the RB82579 and SP813250 varieties cultured in the PR and PE states. High polymorphism in SSR of the cellulose synthase locus may explain the high variability of substrates used in pretreatment and enzymatic hydrolysis processes, which has been an obstacle to effective industrial adaptations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erlich, H.; Zangenberg, G.; Bugawan, T.
The rate at which allelic diversity at the HLA class I and class II loci evolves has been the subject of considerable controversy as have the mechanisms which generate new alleles. The patchwork pattern of polymorphism, particularly within the second exon of the HLA-DPB1 locus where the polymorphic sequence motifs are localized to 6 discrete regions, is consistent with the hypothesis that much of the allelic sequence variation may have been generated by segmental exchange (gene conversion). To measure the rate of new DPB1 variant generation, we have developed a strategy in which DPB1 second exon sequences are amplified frommore » pools of FACS-sorted sperm (n=50) from a heterozygous sperm donor. Pools of sperm from these heterozygous individuals are amplified with an allele-specific primer for one allele and analyzed with sequence-specific oligonucleotide probes (SSOP) complementary to the other allele. This screening procedure, which is capable of detecting a single variant molecule in a pool of parental alleles, allows the identification of new variants that have been generated by recombination and/or gene conversion between the two parental alleles. To control for potential PCR artifacts, the same screening procedure was carried out with mixtures of sperm from DPB1 *0301/*0301 and DPB1 *0401/ 0401 individuals. Pools containing putative new variants DPB1 alleles were analyzed further by cloning into M13 and sequencing the M13 clones. Our current estimate is that about 1/10,000 sperm from these heterozygous individuals represents a new DPB1 allele generated by micro-gene conversion within the second exon.« less
Association between CYP2E1 polymorphisms and risk of differentiated thyroid carcinoma.
Pellé, Lucia; Cipollini, Monica; Tremmel, Roman; Romei, Cristina; Figlioli, Gisella; Gemignani, Federica; Melaiu, Ombretta; De Santi, Chiara; Barone, Elisa; Elisei, Rossella; Seiser, Eric; Innocenti, Federico; Zanger, Ulrich M; Landi, Stefano
2016-12-01
Differentiated thyroid carcinoma (DTC) results from complex interactions between genetic and environmental factors. Known etiological factors include exposure to ionizing radiations, previous thyroid diseases, and hormone factors. It has been speculated that dietary acrylamide (AA) formed in diverse foods following the Maillard's reaction could be a contributing factor for DTC in humans. Upon absorption, AA is biotransformed mainly by cytochrome P450 2E1 (CYP2E1) to glycidamide (GA). Considering that polymorphisms within CYP2E1 were found associated with endogenous levels of AA-Valine and GA-Valine hemoglobin adducts in humans, we raised the hypothesis that specific CYP2E1 genotypes could be associated with the risk of DTC. Analysis of four haplotype tagging SNPs (ht-SNPs) within the locus in a discovery case-control study (N = 350/350) indicated an association between rs2480258 and DTC risk. This ht-SNP resides within a linkage disequilibrium block spanning intron VIII and the 3'-untranslated region. Extended analysis in a large replication set (2429 controls and 767 cases) confirmed the association, with odds ratios for GA and AA genotypes of 1.24 (95 % confidence interval (CI) 1.03-1.48) and 1.56 (95 % CI, 1.06-2.30), respectively. Functionally, the minor allele was associated with low levels of CYP2E1 mRNA and protein expression as well as lower enzymatic activity in a series of 149 human liver samples. Our data support the hypothesis that inter-individual differences in CYP2E1 activity could modulate the risk of developing DTC suggesting that the exposure to specific xenobiotics, such as AA, could play a role in this process.
Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli 0157:H7
USDA-ARS?s Scientific Manuscript database
Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP) based typing panel was developed that redundantly identified eleven genogroups that span ...
Smýkal, P; Bačová-Kerteszová, N; Kalendar, R; Corander, J; Schulman, A H; Pavelek, M
2011-05-01
Retrotransposon segments were characterized and inter-retrotransposon amplified polymorphism (IRAP) markers developed for cultivated flax (Linum usitatissimum L.) and the Linum genus. Over 75 distinct long terminal repeat retrotransposon segments were cloned, the first set for Linum, and specific primers designed for them. IRAP was then used to evaluate genetic diversity among 708 accessions of cultivated flax comprising 143 landraces, 387 varieties, and 178 breeding lines. These included both traditional and modern, oil (86), fiber (351), and combined-use (271) accessions, originating from 36 countries, and 10 wild Linum species. The set of 10 most polymorphic primers yielded 141 reproducible informative data points per accession, with 52% polymorphism and a 0.34 Shannon diversity index. The maximal genetic diversity was detected among wild Linum species (100% IRAP polymorphism and 0.57 Jaccard similarity), while diversity within cultivated germplasm decreased from landraces (58%, 0.63) to breeding lines (48%, 0.85) and cultivars (50%, 0.81). Application of Bayesian methods for clustering resulted in the robust identification of 20 clusters of accessions, which were unstratified according to origin or user type. This indicates an overlap in genetic diversity despite disruptive selection for fiber versus oil types. Nevertheless, eight clusters contained high proportions (70-100%) of commercial cultivars, whereas two clusters were rich (60%) in landraces. These findings provide a basis for better flax germplasm management, core collection establishment, and exploration of diversity in breeding, as well as for exploration of the role of retrotransposons in flax genome dynamics.
Cook, David E.; Bayless, Adam M.; Wang, Kai; Guo, Xiaoli; Song, Qijian; Jiang, Jiming; Bent, Andrew F.
2014-01-01
Copy number variation of kilobase-scale genomic DNA segments, beyond presence/absence polymorphisms, can be an important driver of adaptive traits. Resistance to Heterodera glycines (Rhg1) is a widely utilized quantitative trait locus that makes the strongest known contribution to resistance against soybean cyst nematode (SCN), Heterodera glycines, the most damaging pathogen of soybean (Glycine max). Rhg1 was recently discovered to be a complex locus at which resistance-conferring haplotypes carry up to 10 tandem repeat copies of a 31-kb DNA segment, and three disparate genes present on each repeat contribute to SCN resistance. Here, we use whole-genome sequencing, fiber-FISH (fluorescence in situ hybridization), and other methods to discover the genetic variation at Rhg1 across 41 diverse soybean accessions. Based on copy number variation, transcript abundance, nucleic acid polymorphisms, and differentially methylated DNA regions, we find that SCN resistance is associated with multicopy Rhg1 haplotypes that form two distinct groups. The tested high-copy-number Rhg1 accessions, including plant introduction (PI) 88788, contain a flexible number of copies (seven to 10) of the 31-kb Rhg1 repeat. The identified low-copy-number Rhg1 group, including PI 548402 (Peking) and PI 437654, contains three copies of the Rhg1 repeat and a newly identified allele of Glyma18g02590 (a predicted α-SNAP [α-soluble N-ethylmaleimide–sensitive factor attachment protein]). There is strong evidence for a shared origin of the two resistance-conferring multicopy Rhg1 groups and subsequent independent evolution. Differentially methylated DNA regions also were identified within Rhg1 that correlate with SCN resistance. These data provide insights into copy number variation of multigene segments, using as the example a disease resistance trait of high economic importance. PMID:24733883
Sieber, Alisa-Naomi; Longin, C Friedrich H; Leiser, Willmar L; Würschum, Tobias
2016-06-01
Frost tolerance in durum wheat is mainly controlled by copy number variation of CBF - A14 at the Fr - A2 locus. Frost tolerance is a key trait for successful breeding of winter durum wheat (Triticum durum) which can increase the yield performance in regions favoring autumn-sown winter cereals. The aim of this study was to investigate the genetic architecture of frost tolerance in order to provide molecular support for the breeding of winter durum wheat. To this end, a diverse panel of 170 winter and 14 spring durum wheat genotypes of worldwide origin was evaluated for frost tolerance in the field, as well as in a semi-controlled test. A total of 30,611 polymorphic genome-wide markers obtained by a genotyping-by-sequencing approach and markers for candidate loci were used to assess marker-trait associations. One major QTL was detected on chromosome 5A, likely corresponding to Frost Resistance-A2 (Fr-A2). Further analyses strongly support the conclusion that copy number variation of CBF-A14 at the Fr-A2 locus is the causal polymorphism underlying this major QTL. It explains 91.6 % of the genotypic variance and a haploblock of two strongly associated markers in the QTL region also allowed to capture the variance of this QTL. In addition to this major QTL, a much smaller contribution of 4.2 % was observed for Fr-B2. We further investigated this major QTL and found that the copy number of CBF-A14 and the frequency of the frost tolerant haplotype mirrored the climatic conditions in the genotypes' country of origin, suggesting selection through breeding. Two functional KASP markers were developed which facilitate a high-throughput screening of the haploblock and thus a marker-based breeding of frost tolerance in winter durum wheat.
A simple repeat polymorphism in the MITF-M promoter is a key regulator of white spotting in dogs.
Baranowska Körberg, Izabella; Sundström, Elisabeth; Meadows, Jennifer R S; Rosengren Pielberg, Gerli; Gustafson, Ulla; Hedhammar, Åke; Karlsson, Elinor K; Seddon, Jennifer; Söderberg, Arne; Vilà, Carles; Zhang, Xiaolan; Åkesson, Mikael; Lindblad-Toh, Kerstin; Andersson, Göran; Andersson, Leif
2014-01-01
The white spotting locus (S) in dogs is colocalized with the MITF (microphtalmia-associated transcription factor) gene. The phenotypic effects of the four S alleles range from solid colour (S) to extreme white spotting (s(w)). We have investigated four candidate mutations associated with the s(w) allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs.
A Simple Repeat Polymorphism in the MITF-M Promoter Is a Key Regulator of White Spotting in Dogs
Meadows, Jennifer R. S.; Rosengren Pielberg, Gerli; Gustafson, Ulla; Hedhammar, Åke; Karlsson, Elinor K.; Seddon, Jennifer; Söderberg, Arne; Vilà, Carles; Zhang, Xiaolan; Åkesson, Mikael; Lindblad-Toh, Kerstin; Andersson, Göran; Andersson, Leif
2014-01-01
The white spotting locus (S) in dogs is colocalized with the MITF (microphtalmia-associated transcription factor) gene. The phenotypic effects of the four S alleles range from solid colour (S) to extreme white spotting (sw). We have investigated four candidate mutations associated with the sw allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs. PMID:25116146
Ma, Baiquan; Liao, Liao; Peng, Qian; Fang, Ting; Zhou, Hui; Korban, Schuyler S; Han, Yuepeng
2017-03-01
Identifying DNA sequence variations is a fundamental step towards deciphering the genetic basis of traits of interest. Here, a total of 20 cultivated and 10 wild apples were genotyped using specific-locus amplified fragment sequencing, and 39,635 single nucleotide polymorphisms with no missing genotypes and evenly distributed along the genome were selected to investigate patterns of genome-wide genetic variations between cultivated and wild apples. Overall, wild apples displayed higher levels of genetic diversity than cultivated apples. Linkage disequilibrium (LD) decays were observed quite rapidly in cultivated and wild apples, with an r 2 -value below 0.2 at 440 and 280 bp, respectively. Moreover, bidirectional gene flow and different distribution patterns of LD blocks were detected between domesticated and wild apples. Most LD blocks unique to cultivated apples were located within QTL regions controlling fruit quality, thus suggesting that fruit quality had probably undergone selection during apple domestication. The genome of the earliest cultivated apple in China, Nai, was highly similar to that of Malus sieversii, and contained a small portion of genetic material from other wild apple species. This suggested that introgression could have been an important driving force during initial domestication of apple. These findings will facilitate future breeding and genetic dissection of complex traits in apple. © 2017 Institute of Botany, Chinese Academy of Sciences.
de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas
2014-06-01
The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Armas, Federica; Camperio, Cristina; Coltella, Luana; Selvaggini, Serena; Boniotti, Maria Beatrice; Pacciarini, Maria Lodovica; Di Marco Lo Presti, Vincenzo; Marianelli, Cinzia
2017-08-04
Highly discriminatory genotyping strategies are essential in molecular epidemiological studies of tuberculosis. In this study we evaluated, for the first time, the efficacy of the repetitive sequence-based PCR (rep-PCR) DiversiLab Mycobacterium typing kit over spoligotyping, 12-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and embB single nucleotide polymorphism (SNP) analysis for Mycobacterium bovis typing. A total of 49 M. bovis animal isolates were used. DNA was extracted and genomic DNA was amplified using the DiversiLab Mycobacterium typing kit. The amplified fragments were separated and detected using a microfluidics chip with Agilent 2100. The resulting rep-PCR-based DNA fingerprints were uploaded to and analysed using web-based DiversiLab software through Pearson's correlation coefficient. Rep-PCR DiversiLab grouped M. bovis isolates into ten different clusters. Most isolates sharing identical spoligotype, MIRU-VNTR profile or embB gene polymorphism were grouped into different rep-PCR clusters. Rep-PCR DiversiLab displayed greater discriminatory power than spoligotyping and embB SNP analysis but a lower resolution power than the 12-locus MIRU-VNTR analysis. MIRU-VNTR confirmed that it is superior to the other PCR-based methods tested here. In combination with spoligotyping and 12-locus MIRU-VNTR analysis, rep-PCR improved the discriminatory power for M. bovis typing.
Gene amplification of the Hps locus in Glycine max
Gijzen, Mark; Kuflu, Kuflom; Moy, Pat
2006-01-01
Background Hydrophobic protein from soybean (HPS) is an 8 kD cysteine-rich polypeptide that causes asthma in persons allergic to soybean dust. HPS is synthesized in the pod endocarp and deposited on the seed surface during development. Past evidence suggests that the protein may mediate the adherence or dehiscence of endocarp tissues during maturation and affect the lustre, or glossiness of the seed surface. Results A comparison of soybean germplasm by genomic DNA blot hybridization shows that the copy number and structure of the Hps locus is polymorphic among soybean cultivars and related species. Changes in Hps gene copy number were also detected by comparative genomic DNA hybridization using cDNA microarrays. The Hps copy number polymorphisms co-segregated with seed lustre phenotype and HPS surface protein in a cross between dull- and shiny-seeded soybeans. In soybean cultivar Harosoy 63, a minimum of 27 ± 5 copies of the Hps gene were estimated to be present in each haploid genome. The isolation and analysis of genomic clones indicates that the core Hps locus is comprised of a tandem array of reiterated units, with each 8.6 kb unit containing a single HPS open reading frame. Conclusion This study shows that polymorphisms at the Hps locus arise from changes in the gene copy number via gene amplification. We present a model whereby Hps copy number modulates protein expression levels and seed lustre, and we suggest that gene amplification may result from selection pressures imposed on crop plants. PMID:16536872
Boronnikova, S V; Kalendar', R N
2010-01-01
Species-specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm' region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP-markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.
Clonal Population Structure of Pseudomonas stutzeri, a Species with Exceptional Genetic Diversity
Rius, Núria; Fusté, M. Carme; Guasp, Caterina; Lalucat, Jorge; Lorén, José G.
2001-01-01
Genetic diversity and genetic relationships among 42 Pseudomonas stutzeri strains belonging to several genomovars and isolated from different sources were investigated in an examination of 20 metabolic enzymes by multilocus enzyme electrophoresis analysis. Forty-two distinct allele profiles were identified, indicating that all multilocus genotypes were represented by a single strain. All 20 loci were exceptionally polymorphic, with an average of 15.9 alleles per locus. To the best of our knowledge, this P. stutzeri sample exhibited the highest mean genetic diversity (H = 0.876) found to date in all bacterial species studied by multilocus enzyme electrophoresis. A high frequency of occurrence of null alleles was identified. The index of association (IA) for the P. stutzeri strains analyzed was 1.10. The IA values were always significantly different from zero for all subgroups studied, including clinical and environmental isolates and strains classified as genomovar 1. These results suggest that the population structure of P. stutzeri is strongly clonal, indicating that there is no significant level of assortative recombination that might destroy linkage disequilibrium. PMID:11133969
Chiang, Tzen-Yuh; Tzeng, Tzong-Der; Lin, Hung-Du; Cho, Ching-Ju; Lin, Feng-Jiau
2012-01-01
The red-spot prawn, Metapenaeopsis barbata, is a commercially important, widely distributed demersal species in the Indo-West Pacific Ocean. Overfishing has made its populations decline in the past decade. To study conservation genetics, eight polymorphic microsatellite loci were isolated. Genetic characteristics of the SSR (simple sequence repeat) fingerprints were estimated in 61 individuals from adjacent seas of Taiwan and China. The number of alleles, ranging from 2 to 4, as well as observed and expected heterozygosities in populations, ranging from 0.048 to 0.538, and 0.048 and 0.654, respectively, were detected. No deviation from Hardy–Weinberg expectations was detected at either locus. No significant linkage disequilibrium was detected in locus pairs. The polymorphic microsatellite loci will be useful for investigations of the genetic variation, population structure, and conservation genetics of this species. PMID:22489123
Changes in variation at the MHC class II DQA locus during the final demise of the woolly mammoth
NASA Astrophysics Data System (ADS)
Pečnerová, Patrícia; Díez-Del-Molino, David; Vartanyan, Sergey; Dalén, Love
2016-05-01
According to the nearly-neutral theory of evolution, the relative strengths of selection and drift shift in favour of drift at small population sizes. Numerous studies have analysed the effect of bottlenecks and small population sizes on genetic diversity in the MHC, which plays a central role in pathogen recognition and immune defense and is thus considered a model example for the study of adaptive evolution. However, to understand changes in genetic diversity at loci under selection, it is necessary to compare the genetic diversity of a population before and after the bottleneck. In this study, we analyse three fragments of the MHC DQA gene in woolly mammoth samples radiocarbon dated to before and after a well-documented bottleneck that took place about ten thousand years ago. Our results indicate a decrease in observed heterozygosity and number of alleles, suggesting that genetic drift had an impact on the variation on MHC. Based on coalescent simulations, we found no evidence of balancing selection maintaining MHC diversity during the Holocene. However, strong trans-species polymorphism among mammoths and elephants points to historical effects of balancing selection on the woolly mammoth lineage.
2009-01-01
Based on nine microsatellite loci, the aim of this study was to appraise the genetic diversity of 42 cassava (Manihot esculenta) landraces from selected regions in Brazil, and examine how this variety is distributed according to origin in several municipalities in the states of Minas Gerais, São Paulo, Mato Grosso do Sul, Amazonas and Mato Grosso. High diversity values were found among the five above-mentioned regions, with 3.3 alleles per locus on an average, a high percentage of polymorphic loci varying from 88.8% to 100%, an average of 0.265 for observed heterozygosity and 0.570 for gene diversity. Most genetic diversity was concentrated within the regions themselves (HS = 0.52). Cluster analysis and principal component based scatter plotting showed greater similarity among landraces from São Paulo, Mato Grosso do Sul and Amazonas, whereas those from Minas Gerais were clustered into a sub-group within this group. The plants from Mato Grosso, mostly collected in the municipality of General Carneiro, provided the highest differentiation. The migration of human populations is one among the possible reasons for this closer resemblance or greater disparity among plants from the various regions. PMID:21637653
Gajurel, Jyoti Prasad; Cornejo, Carolina; Werth, Silke; Shrestha, Krishna Kumar; Scheidegger, Christoph
2013-03-01
Microsatellite primers were developed in the endangered tree species Taxus wallichiana from Nepal to investigate regional genetic differentiation, local genetic diversity, and gene flow for the conservation of this species under climate- and land-use change scenarios in mountain regions of Nepal. • We developed 10 highly polymorphic microsatellite markers from 454 DNA sequencing. Characterization of the new microsatellite loci was done in 99 individuals collected from three valleys with different climatic regimes. The number of alleles per locus varied from four to 12. Observed heterozygosity of populations, averaged across loci, ranged from 0.30 to 0.59. • The new markers provided by this study will substantially increase the resolution for detailed studies in phylogeography, population genetics, and parentage analysis.
Genetic mapping of the female mimic morph locus in the ruff
2013-01-01
Background Ruffs (Aves: Philomachus pugnax) possess a genetic polymorphism for male mating behaviour resulting in three permanent alternative male reproductive morphs: (i) territorial ‘Independents’, (ii) non-territorial ‘Satellites’, and (iii) female-mimicking ‘Faeders’. Development into independent or satellite morphs has previously been shown to be due to a single-locus, two-allele autosomal Mendelian mode of inheritance at the Satellite locus. Here, we use linkage analysis to map the chromosomal location of the Faeder locus, which controls development into the Faeder morph, and draw further conclusions about candidate genes, assuming shared synteny with other birds. Results Segregation data on the Faeder locus were obtained from captive-bred pedigrees comprising 64 multi-generation families (N = 381). There was no evidence that the Faeder locus was linked to the Satellite locus, but it was linked with microsatellite marker Ppu020. Comparative mapping of ruff microsatellite markers against the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes places the Ppu020 and Faeder loci on a region of chromosome 11 that includes the Melanocortin-1 receptor (MC1R) gene, which regulates colour polymorphisms in numerous birds and other vertebrates. Melanin-based colouration varies with life-history strategies in ruffs and other species, thus the MC1R gene is a strong candidate to play a role in alternative male morph determination. Conclusion Two unlinked loci appear to control behavioural development in ruffs. The Faeder locus is linked to Ppu020, which, assuming synteny, is located on avian chromosome 11. MC1R is a candidate gene involved in alternative male morph determination in ruffs. PMID:24256185
Residue-Specific Side-Chain Polymorphisms via Particle Belief Propagation.
Ghoraie, Laleh Soltan; Burkowski, Forbes; Li, Shuai Cheng; Zhu, Mu
2014-01-01
Protein side chains populate diverse conformational ensembles in crystals. Despite much evidence that there is widespread conformational polymorphism in protein side chains, most of the X-ray crystallography data are modeled by single conformations in the Protein Data Bank. The ability to extract or to predict these conformational polymorphisms is of crucial importance, as it facilitates deeper understanding of protein dynamics and functionality. In this paper, we describe a computational strategy capable of predicting side-chain polymorphisms. Our approach extends a particular class of algorithms for side-chain prediction by modeling the side-chain dihedral angles more appropriately as continuous rather than discrete variables. Employing a new inferential technique known as particle belief propagation, we predict residue-specific distributions that encode information about side-chain polymorphisms. Our predicted polymorphisms are in relatively close agreement with results from a state-of-the-art approach based on X-ray crystallography data, which characterizes the conformational polymorphisms of side chains using electron density information, and has successfully discovered previously unmodeled conformations.
Qiu, T; Jiang, L L; Yang, Y F
2016-08-19
The genetic and epigenetic diversity and structure of naturally occurring Phragmites australis populations occupying two different habitats on a small spatial scale in the Songnen Prairie in northeastern China were investigated by assessing amplified fragment length polymorphisms (AFLPs) and methylation-sensitive amplified polymorphisms (MSAPs) through fluorescent capillary detection. The two groups of P. australis were located in a seasonal waterlogged low-lying and alkalized meadow with a pH of 8-8.5 and in an alkaline patch without accumulated rainwater and with a pH greater than 10. These groups showed high levels of genetic diversity at the habitat level based on the percentage of polymorphic bands (90.32, 82.56%), Nei's gene diversity index (0.262, 0.248), and the Shannon diversity index (0.407, 0.383). Although little is known about the between-habitat genetic differentiation of P. australis on a small spatial scale, our results implied significant genetic differentiation between habitats. Extensive epigenetic diversity within habitats, along with clear differentiation, was found. Specifically, the former habitat (Habitat 1, designated H1) harbored higher levels of genetic and epigenetic diversity than the latter (Habitat 2, designated H2), and population-level diversity was also high. This study represents one of few attempts to predict habitat-based genetic differentiation of reeds on a small scale. These assessments of genetic and epigenetic variation are integral aspects of molecular ecological studies on P. australis. Possible causes for within- and between-habitat genetic and epigenetic variations are discussed.
Glew, Michelle D.; Marenda, Marc; Rosengarten, Renate; Citti, Christine
2002-01-01
The ruminant pathogen Mycoplasma agalactiae possesses a family of abundantly expressed variable surface lipoproteins called Vpmas. Phenotypic switches between Vpma members have previously been correlated with DNA rearrangements within a locus of vpma genes and are proposed to play an important role in disease pathogenesis. In this study, six vpma genes were characterized in the M. agalactiae type strain PG2. All vpma genes clustered within an 8-kb region and shared highly conserved 5′ untranslated regions, lipoprotein signal sequences, and short N-terminal sequences. Analyses of the vpma loci from consecutive clonal isolates showed that vpma DNA rearrangements were site specific and that cleavage and strand exchange occurred within a minimal region of 21 bp located within the 5′ untranslated region of all vpma genes. This process controlled expression of vpma genes by effectively linking the open reading frame (ORF) of a silent gene to a unique active promoter sequence within the locus. An ORF (xer1) immediately adjacent to one end of the vpma locus did not undergo rearrangement and had significant homology to a distinct subset of genes belonging to the λ integrase family of site-specific xer recombinases. It is proposed that xer1 codes for a site-specific recombinase that is not involved in chromosome dimer resolution but rather is responsible for the observed vpma-specific recombination in M. agalactiae. PMID:12374833
Schoville, Sean D.; Flowers, Jonathan M.; Burton, Ronald S.
2012-01-01
The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations. PMID:22768211
Eight polymorphic microsatellite loci for the Australian plague locust, Chortoicetes terminifera.
Chapuis, Marie-Pierre; Popple, Julie-Anne; Simpson, Stephen J; Estoup, Arnaud; Martin, Jean-François; Steinbauer, Martin; McCulloch, Laurence; Sword, Gregory A
2008-11-01
Few population genetics studies have been carried out on major locust species. In particular, an understanding of the population genetic structure of the Australian plague locust, Chortoicetes terminifera, is lacking. We isolated and characterized eight polymorphic microsatellite loci in C. terminifera, and described experimental conditions for polymerase chain reaction multiplexing and genotyping these loci. The number of alleles per locus ranged from 11 to 29 and the expected heterozygosity ranged from 0.797 to 0.977. One locus was found to be X-linked. Results of cross-taxon amplification tests are reported in four species of the Oedipodinae subfamily. Journal compilation © 2008 Blackwell Publishing Ltd. No claim to original US government works.
Miller, Adam D; Van Rooyen, Anthony; Sweeney, Oisín F; Whiterod, Nick S; Weeks, Andrew R
2013-07-01
The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as 'endangered' under the Environment Protection and Biodiversity Conservation Act 1999, and 'vulnerable' under the International Union for Conservation of Nature's Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy-Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E. bispinosus.
An, Hye Suck; Lee, Jang Wook; Hong, Seong Wan
2012-01-01
The small abalone, Haliotis diversicolor supertexta, of the family Haliotidae, is one of the most important species of marine shellfish in eastern Asia. Over the past few decades, this species has drastically declined in Korea. Thus, hatchery-bred seeds have been released into natural coastal areas to compensate for the reduced fishery resources. However, information on the genetic background of the small abalone is scarce. In this study, 20 polymorphic microsatellite DNA markers were identified using next-generation sequencing techniques and used to compare allelic variation between wild and released abalone populations in Korea. Using high-throughput genomic sequencing, a total of 1516 (2.26%; average length of 385 bp) reads containing simple sequence repeats were obtained from 86,011 raw reads. Among the 99 loci screened, 28 amplified successfully, and 20 were polymorphic. When comparing allelic variation between wild and released abalone populations, a total of 243 different alleles were observed, with 18.7 alleles per locus. High genetic diversity (mean heterozygosity = 0.81; mean allelic number = 15.5) was observed in both populations. A statistical analysis of the fixation index (F(ST)) and analysis of molecular variance (AMOVA) indicated limited genetic differences between the two populations (F(ST) = 0.002, p > 0.05). Although no significant reductions in the genetic diversity were found in the released population compared with the wild population (p > 0.05), the genetic diversity parameters revealed that the seeds released for stock abundance had a different genetic composition. These differences are likely a result of hatchery selection and inbreeding. Additionally, all the primer pair sets were effectively amplified in another congeneric species, H. diversicolor diversicolor, indicating that these primers are useful for both abalone species. These microsatellite loci may be valuable for future aquaculture and population genetic studies aimed at developing conservation and management plans for these two abalone species.
NASA Astrophysics Data System (ADS)
Kang, Hyun-Sil; Hong, Hyun-Ki; Park, Kyung-Il; Cho, Moonjae; Youn, Seok-Hyun; Choi, Kwang-Sik
2017-03-01
Manila clam Ruditapes philippinarum is one of the most important benthic animals in the coastal north Pacific region, where clam populations have been mixed genetically through trade and aquaculture activities. Accordingly, identification of the genetically different clam populations has become one of the most important issues to manage interbreeding of the local and introduced clam populations. To identify genetically different populations of clam populations, we developed 11 expressed sequence tag (EST)-microsatellite loci (i.e., simple sequence repeat, SSR) from 1,128 clam hemocyte cDNA clones challenged by the protozoan parasite Perkinsus olseni. Genotype analysis using the markers developed in this study demonstrated that clams from a tidal flat on the west coast contained 6 to 19 alleles per locus, and a population from Jeju Island had 4 to 20 alleles per locus. The expected heterozygosity of the 2 clam populations ranged from 0.472 to 0.919 for clams from the west coast, and 0.494 to 0.919 for clams from Jeju Island, respectively. Among the 11 loci discovered in this study, 7 loci significantly deviated from the Hardy-Weinberg equilibrium after Bonferroni correction. The 5 loci developed in this study also successfully amplified the SSRs of R. variegatus, a clam species taxonomically very close to R. philippinarum, from Hong Kong and Jeju Island. We believe that the 11 novel polymorphic SSR developed in this study can be utilized successfully in Manila clam genetic diversity analysis, as well as in genetic discrimination of different clam populations.
Scala, Valeria; Grottoli, Alessandro; Aiese Cigliano, Riccardo; Anzar, Irantzu; Beccaccioli, Marzia; Fanelli, Corrado; Dall'Asta, Chiara; Battilani, Paola; Reverberi, Massimo; Sanseverino, Walter
2017-05-31
Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1 , in F. verticillioides . A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1 -deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1 -mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically) punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome.
Scala, Valeria; Grottoli, Alessandro; Aiese Cigliano, Riccardo; Anzar, Irantzu; Beccaccioli, Marzia; Fanelli, Corrado; Dall’Asta, Chiara; Battilani, Paola; Reverberi, Massimo; Sanseverino, Walter
2017-01-01
Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1, in F. verticillioides. A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1-deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1-mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically) punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome. PMID:28561789
Azêvedo, H S F S; Sousa, A C B; Martins, K; Oliveira, J C; Yomura, R B T; Silva, L M; Valls, J F M; Assis, G M L; Campos, T
2016-09-09
Arachis pintoi and A. repens are legumes with a high forage value that are used to feed ruminants in consortium systems. Not only do they increase the persistence and quality of pastures, they are also used for ornamental and green cover. The objective of this study was to analyze microsatellite markers in order to access the genetic diversity of 65 forage peanut germplasm accessions in the section Caulorrhizae of the genus Arachis in the Jequitinhonha, São Francisco and Paranã River valleys of Brazil. Fifty-seven accessions of A. pintoi and eight of A. repens were analyzed using 17 microsatellites, and the observed heterozygosity (H O ), expected heterozygosity (H E ), number of alleles per locus, discriminatory power, and polymorphism information content were all estimated. Ten loci (58.8%) were polymorphic, and 125 alleles were found in total. The H E ranged from 0.30 to 0.94, and H O values ranged from 0.03 to 0.88. By using Bayesian analysis, the accessions were genetically differentiated into three gene pools. Neither the unweighted pair group method with arithmetic mean nor a neighbor-joining analysis clustered samples into species, origin, or collection area. These results reveal a very weak genetic structure that does not form defined clusters, and that there is a high degree of similarity between the two species.
[Genomics of type I diabetes mellitus and its late complications].
Nosikov, V V
2004-01-01
In ethnic Russians, MHC (HLA) was shown to be the major locus determining the predisposition to type 1 diabetes mellitus (T1DM). To map the regions linked to T1DM, families with concordant or discordant sib pairs were selected from the Russian population of Moscow. With these families, linkage to T1DM was demonstrated for CTLA4 (IDDM12, 2q32.1-q33), which codes for a T-cell surface antigen, and PDCD2 (IDDM8, 6q25-q27), which is homologous to the mouse programmed cell death activator gene. With polymorphic microsatellites, regions 3q21-q25 (IDDM9) and 10p12.2 (IDDM10) were also linked to T1DM. Case/control and family studies of the polymorphic markers from region 11p13 revealed a new T1DM-associated locus in the vicinity of the catalase gene (CAT); linkage to this locus was not reported earlier for other populations. Diabetic polyneuropathy (DPN) proved to be associated with single-nucleotide polymorphisms Ala(-9)Val (SOD2), Arg213Gly (SOD3), and T(-262)C (CAT) and with a polymorphic microsatellite of the NOS2 promoter. Hence oxidative stress, which results from hyperglycemia, increased mitochondrial production of superoxide radicals, and insufficient activities of antioxidative enzymes, was assumed to play an important part in DPN development in T1DM. Diabetic nephropathy (DN) showed no association with the antioxidative enzyme genes. However, the association was observed for the insertion/deletion (I/D) polymorphism of ACE and the ecNOS34a/4b polymorphism of NOS3, two genes involved in controlling vascular tonicity, and for the I/D polymorphism of APOB and the epsilon 2/epsilon 3/epsilon 4 polymorphism of APOE, two genes involved in lipid transport. In addition, polymorphic microsatellites of chromosome 3q21-q25 proved to be closely associated with DN. The tightest association was established for D3S1550, carriers of allele 12 or genotype 12/14 having high risk of DN (OR = 4.85 and 6.25, respectively). Region 3q21-q25 was assumed to contain a major gene determining DN development, while the other DN-associated genes mostly affect the progression of DN.
Devkota, Shiva; Cornejo, Carolina; Werth, Silke; Chaudhary, Ram Prasad; Scheidegger, Christoph
2014-05-01
Microsatellite loci were developed for the rare, Himalayan, endemic haploid lichen fungus, Lobaria pindarensis, to study its population subdivision and the species' response to forest disturbance and fragmentation. • We developed 18 polymorphic microsatellite markers using 454 pyrosequencing data and assessed them in 109 individuals. The number of alleles per locus ranged from three to 11 with an average of 6.9. Nei's unbiased gene diversity, averaged over loci, ranged from 0.514 to 0.685 in the three populations studied. The cross-amplification success with related species (L. chinensis, L. gyrophorica, L. isidiophora, L. orientalis, L. pulmonaria, L. spathulata, and Lobaria sp.) was generally high and decreased with decreasing relationship to L. pindarensis. • The new markers will allow the study of genetic diversity and differentiation within L. pindarensis across its distribution. Moreover, they will enable us to study the effects of forest management on the genetic population structure of this tree-colonizing lichen and to carry out population genetic studies of related species in East Asia.
Beyer, Maila; Nazareno, Alison G.; Lohmann, Lúcia G.
2017-01-01
Premise of the study: We developed chloroplast microsatellite markers (cpSSRs) to be used to study the patterns of genetic structure and genetic diversity of populations of Stizophyllum riparium (Bignonieae, Bignoniaceae). Methods and Results: We used genomic data obtained through an Illumina HiSeq sequencing platform to develop a set of cpSSRs for S. riparium. A total of 36 primer pairs were developed, of which 28 displayed polymorphisms across 59 individuals from three populations. Two to 12 alleles were recorded, and the unbiased haploid diversity per locus ranged from 0.037 to 0.905. All 28 cpSSRs presented transferability to two closely related species, S. inaequilaterum and S. perforatum. Conclusions: We report a set of 28 cpSSRs for S. riparium. All markers were shown to be variable in S. riparium, indicating that these markers will be valuable for population genetic studies across S. riparium and congeneric species. PMID:29109920
Schwartz, John C; Gibson, Mark S; Heimeier, Dorothea; Koren, Sergey; Phillippy, Adam M; Bickhart, Derek M; Smith, Timothy P L; Medrano, Juan F; Hammond, John A
2017-04-01
Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups. We compared the NKC structure between mammalian species using new high-quality draft genome assemblies for cattle and goat; re-annotated sheep, pig, and horse genome assemblies; and the published human, rat, and mouse lemur NKC. The major NKC genes are largely in the equivalent positions in all eight species, with significant independent expansions and deletions between species, allowing us to propose a model for NKC evolution during mammalian radiation. The ruminant species, cattle and goats, have independently evolved a second KLRC locus flanked by KLRA and KLRJ, and a novel KLRH-like gene has acquired an activating tail. This novel gene has duplicated several times within cattle, while other activating receptor genes have been selectively disrupted. Targeted genome enrichment in cattle identified varying levels of allelic polymorphism between the NKC genes concentrated in the predicted extracellular ligand-binding domains. This novel recombination and allelic polymorphism is consistent with NKC evolution under balancing selection, suggesting that this diversity influences individual immune responses and may impact on differential outcomes of pathogen infection and vaccination.
Peace, Cameron; Bassil, Nahla; Main, Dorrie; Ficklin, Stephen; Rosyara, Umesh R.; Stegmeir, Travis; Sebolt, Audrey; Gilmore, Barbara; Lawley, Cindy; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Iezzoni, Amy
2012-01-01
High-throughput genome scans are important tools for genetic studies and breeding applications. Here, a 6K SNP array for use with the Illumina Infinium® system was developed for diploid sweet cherry (Prunus avium) and allotetraploid sour cherry (P. cerasus). This effort was led by RosBREED, a community initiative to enable marker-assisted breeding for rosaceous crops. Next-generation sequencing in diverse breeding germplasm provided 25 billion basepairs (Gb) of cherry DNA sequence from which were identified genome-wide SNPs for sweet cherry and for the two sour cherry subgenomes derived from sweet cherry (avium subgenome) and P. fruticosa (fruticosa subgenome). Anchoring to the peach genome sequence, recently released by the International Peach Genome Initiative, predicted relative physical locations of the 1.9 million putative SNPs detected, preliminarily filtered to 368,943 SNPs. Further filtering was guided by results of a 144-SNP subset examined with the Illumina GoldenGate® assay on 160 accessions. A 6K Infinium® II array was designed with SNPs evenly spaced genetically across the sweet and sour cherry genomes. SNPs were developed for each sour cherry subgenome by using minor allele frequency in the sour cherry detection panel to enrich for subgenome-specific SNPs followed by targeting to either subgenome according to alleles observed in sweet cherry. The array was evaluated using panels of sweet (n = 269) and sour (n = 330) cherry breeding germplasm. Approximately one third of array SNPs were informative for each crop. A total of 1825 polymorphic SNPs were verified in sweet cherry, 13% of these originally developed for sour cherry. Allele dosage was resolved for 2058 polymorphic SNPs in sour cherry, one third of these being originally developed for sweet cherry. This publicly available genomics resource represents a significant advance in cherry genome-scanning capability that will accelerate marker-locus-trait association discovery, genome structure investigation, and genetic diversity assessment in this diploid-tetraploid crop group. PMID:23284615
Draye, Xavier; Lin, Yann-Rong; Qian, Xiao-yin; Bowers, John E.; Burow, Gloria B.; Morrell, Peter L.; Peterson, Daniel G.; Presting, Gernot G.; Ren, Shu-xin; Wing, Rod A.; Paterson, Andrew H.
2001-01-01
The small genome of sorghum (Sorghum bicolor L. Moench.) provides an important template for study of closely related large-genome crops such as maize (Zea mays) and sugarcane (Saccharum spp.), and is a logical complement to distantly related rice (Oryza sativa) as a “grass genome model.” Using a high-density RFLP map as a framework, a robust physical map of sorghum is being assembled by integrating hybridization and fingerprint data with comparative data from related taxa such as rice and using new methods to resolve genomic duplications into locus-specific groups. By taking advantage of allelic variation revealed by heterologous probes, the positions of corresponding loci on the wheat (Triticum aestivum), rice, maize, sugarcane, and Arabidopsis genomes are being interpolated on the sorghum physical map. Bacterial artificial chromosomes for the small genome of rice are shown to close several gaps in the sorghum contigs; the emerging rice physical map and assembled sequence will further accelerate progress. An important motivation for developing genomic tools is to relate molecular level variation to phenotypic diversity. “Diversity maps,” which depict the levels and patterns of variation in different gene pools, shed light on relationships of allelic diversity with chromosome organization, and suggest possible locations of genomic regions that are under selection due to major gene effects (some of which may be revealed by quantitative trait locus mapping). Both physical maps and diversity maps suggest interesting features that may be integrally related to the chromosomal context of DNA—progress in cytology promises to provide a means to elucidate such relationships. We seek to provide a detailed picture of the structure, function, and evolution of the genome of sorghum and its relatives, together with molecular tools such as locus-specific sequence-tagged site DNA markers and bacterial artificial chromosome contigs that will have enduring value for many aspects of genome analysis. PMID:11244113
Comparative genomics of the mimicry switch in Papilio dardanus.
Timmermans, Martijn J T N; Baxter, Simon W; Clark, Rebecca; Heckel, David G; Vogel, Heiko; Collins, Steve; Papanicolaou, Alexie; Fukova, Iva; Joron, Mathieu; Thompson, Martin J; Jiggins, Chris D; ffrench-Constant, Richard H; Vogler, Alfried P
2014-07-22
The African Mocker Swallowtail, Papilio dardanus, is a textbook example in evolutionary genetics. Classical breeding experiments have shown that wing pattern variation in this polymorphic Batesian mimic is determined by the polyallelic H locus that controls a set of distinct mimetic phenotypes. Using bacterial artificial chromosome (BAC) sequencing, recombination analyses and comparative genomics, we show that H co-segregates with an interval of less than 500 kb that is collinear with two other Lepidoptera genomes and contains 24 genes, including the transcription factor genes engrailed (en) and invected (inv). H is located in a region of conserved gene order, which argues against any role for genomic translocations in the evolution of a hypothesized multi-gene mimicry locus. Natural populations of P. dardanus show significant associations of specific morphs with single nucleotide polymorphisms (SNPs), centred on en. In addition, SNP variation in the H region reveals evidence of non-neutral molecular evolution in the en gene alone. We find evidence for a duplication potentially driving physical constraints on recombination in the lamborni morph. Absence of perfect linkage disequilibrium between different genes in the other morphs suggests that H is limited to nucleotide positions in the regulatory and coding regions of en. Our results therefore support the hypothesis that a single gene underlies wing pattern variation in P. dardanus.
Matsumoto, Daiki; Tao, Ryutaro
2016-07-01
Many species in the Rosaceae, the Solanaceae, and the Plantaginaceae exhibit S-RNase-based gametophytic self-incompatibility (GSI). This system comprises S-ribonucleases (S-RNases) as the pistil S determinant and a single or multiple F-box proteins as the pollen S determinants. In Prunus, pollen specificity is determined by a single S haplotype-specific F-box protein (SFB). The results of several studies suggested that SFB exerts cognate S-RNase cytotoxicity, and a hypothetical general inhibitor (GI) is assumed to detoxify S-RNases in non-specific manner unless it is affected by SFB. Although the identity of the GI is unknown, phylogenetic and evolutionary analyses have indicated that S locus F-box like 1-3 (or S locus F-box with low allelic sequence polymorphism 1-3; SLFL1-3), which are encoded by a region of the Prunus genome linked to the S locus, are good GI candidates. Here, we examined the biochemical characteristics of SLFL1-3 to determine whether they have appropriate GI characteristics. Pull-down assays and quantitative expression analyses indicated that Prunus avium SLFL1-3 mainly formed a canonical SCF complex with PavSSK1 and PavCul1A. Binding assays with PavS(1,3,4,6)-RNases showed that PavSLFL1, PavSLFL2, and PavSLFL3 bound to PavS(3)-RNase, all PavS-RNases tested, and none of the PavS-RNases tested, respectively. Together, these results suggested that SLFL2 has the appropriate characteristics to be the GI in sweet cherry pollen, while SLFL1 may redundantly work with SLFL2 to detoxify all S-RNases. We discuss the possible roles of SLFL1-3 as the GI in the Prunus-specific S-RNase-based GSI mechanism.
Development of SSR Markers and Genetic Diversity in White Birch (Betula platyphylla)
Hao, Wei; Wang, Shengji; Liu, Huajing; Zhou, Boru; Wang, Xinwang; Jiang, Tingbo
2015-01-01
In order to study genetic diversity of white birch (Betula platyphylla), 544 primer pairs were designed based on the genome-wide Solexa sequences. Among them, 215 primer pairs showed polymorphism between five genotypes and 111 primer pairs that presented clear visible bands in genotyping 41 white birch plants that were collected from 6 different geographical regions. A total of 717 alleles were obtained at 111 loci with a range of 2 to 12 alleles per locus. The results of statistic analysis showed that polymorphic frequency of the alleles ranged from 17% to 100% with a mean of 55.85%; polymorphism information content (PIC) of the loci was from 0.09 to 0.58 with a mean of 0.30; and gene diversity between the tested genotypes was from 0.01 to 0.66 with a mean of 0.36. The results also indicated that major allele frequency ranged from 0.39 to 1.00 with an mean of 0.75; expected heterozygosity from 0.22 to 0.54 with a mean of 0.46; observed heterozygosity from 0.02 to 0.95 with a mean of 0.26; Nei's index from 0.21 to 0.54 with a mean of 0.46; and Shannon's Information from 0.26 to 0.87 with a mean of 0.66. The 41 white birch genotypes at the 111 selected SSR loci showed low to moderate similarity (0.025-0.610), indicating complicated genetic diversity among the white birch collections. The UPGMA-based clustering analysis of the allelic constitution of 41 white birch genotypes at 111 SSR loci suggested that the six different geographical regions can be further separated into four clusters at a similarity coefficient of 0.22. Genotypes from Huanren and Liangshui provenances were grouped into Cluster I, genotypes from Xiaobeihu and Qingyuan provenances into Cluster II, genotypes from Finland provenance into Cluster III, and genotypes from Maoershan into Cluster IV. The information provided in this study could help for genetic improvement and germplasm conservation, evaluation and utilization in white birch tree breeding program. PMID:25923698
Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections
Tobin, David M.; Roca, Francisco J.; Oh, Sungwhan F.; McFarland, Ross; Vickery, Thad W.; Ray, John P.; Ko, Dennis C.; Zou, Yuxia; Bang, Nguyen D.; Chau, Tran T. H.; Vary, Jay C.; Hawn, Thomas R.; Dunstan, Sarah J.; Farrar, Jeremy J.; Thwaites, Guy E.; King, Mary-Claire; Serhan, Charles N.; Ramakrishnan, Lalita
2012-01-01
Summary Susceptibility to tuberculosis is historically ascribed to an inadequate immune response that fails to control infecting mycobacteria. In zebrafish, we find that susceptibility to Mycobacterium marinum can result from either inadequate or excessive acute inflammation. Modulation of the leukotriene A4 hydrolase (LTA4H) locus, which controls the balance of pro- and anti-inflammatory eicosanoids, reveals two distinct molecular routes to mycobacterial susceptibility converging on dysregulated TNF levels: inadequate inflammation caused by excess lipoxins and hyperinflammation driven by excess leukotriene B4. We identify therapies that specifically target each of these extremes. In humans, we identify a single nucleotide polymorphism in the LTA4H promoter that regulates its transcriptional activity. In tuberculous meningitis, the polymorphism is associated with inflammatory cell recruitment, patient survival and response to adjunctive anti-inflammatory therapy. Together, our findings suggest that host-directed therapies tailored to patient LTA4H genotypes may counter detrimental effects of either extreme of inflammation. PMID:22304914
Stable MSAP markers for the distinction of Vitis vinifera cv Pinot noir clones.
Ocaña, Juan; Walter, Bernard; Schellenbaum, Paul
2013-11-01
Grapevine is one of the most economically important fruit crops. Molecular markers have been used to study grapevine diversity. For instance, simple sequence repeats are a powerful tool for identification of grapevine cultivars, while amplified fragment length polymorphisms have shown their usefulness in intra-varietal diversity studies. Other techniques such as sequence-specific amplified polymorphism are based on the presence of mobile elements in the genome, but their detection lies upon their activity. Relevant attention has been drawn toward epigenetic sources of variation. In this study, a set of Vitis vinifera cv Pinot noir clones were analyzed using the methylation-sensitive amplified polymorphism technique with isoschizomers MspI and HpaII. Nine out of fourteen selective primer combinations were informative and generated two types of polymorphic fragments which were categorized as "stable" and "unstable." In total, 23 stable fragments were detected and they discriminated 92.5 % of the studied clones. Detected stable polymorphisms were either common to several clones, restricted to a few clones or unique to a single clone. The identification of these stable epigenetic markers will be useful in clonal diversity studies. We highlight the relevance of stable epigenetic variation in V. vinifera clones and analyze at which level these markers could be applicable for the development of forthright techniques for clonal distinction.
Sutton, M D; Holmes, N G; Brennan, F B; Binns, M M; Kelly, E P; Duke, E J
1998-06-01
Pairwise analysis of HinfI/33.6 DNA fingerprints from a total of one hundred and fifty-three Irish greyhounds of known pedigree were used to determine band-share estimates of unrelated, first-degree and second-degree relationships. Forty-eight unrelated Irish greyhounds were used to determine allele frequencies for three single-locus minisatellites, and following a preliminary screen, eight of the most polymorphic tetra-nucleotide microsatellites from a panel of 15. The results indicated that both band-share estimates by DNA fingerprinting and microsatellite allele frequencies are highly effective in resolving parentage in this greyhound population, while single-locus minisatellites showed limited polymorphism and could not be used alone for routine parentage testing in this breed. The present study also demonstrated that, to obtain optimal resolution of parentage, sample sets of known pedigree status are required to determine the band-share distribution and/or microsatellite allele frequencies.
Børud, Bente; Bårnes, Guro K; Brynildsrud, Ola Brønstad; Fritzsønn, Elisabeth; Caugant, Dominique A
2018-03-19
Species within the genus Neisseria display significant glycan diversity associated with the O -linked protein glycosylation ( pgl ) systems due to phase variation, polymorphic genes and gene content. The aim of this study was to examine in detail the pgl genotype and glycosylation phenotype in meningococcal isolates and the changes occurring during short-term asymptomatic carriage. Paired meningococcal isolates derived from 50 asymptomatic meningococcal carriers, taken about two months apart, were analyzed with whole genome sequencing. The O -linked protein glycosylation genes were characterized in detail using the Genome Comparator tool at the PubMLST.org database. Immunoblotting with glycan specific antibodies were used to investigate the protein glycosylation phenotype. All major pgl locus polymorphisms identified in N. meningitidis to date were present in our isolate collection, with the variable presence of pglG-pglH, both in combination with either pglB or pglB2. We identified significant changes and diversity in the pgl genotype and/or glycan phenotype in 96% of the paired isolates. There was also a high degree of glycan microheterogeneity, in which different variants of glycan structures were found at a given glycoprotein. The main mechanism responsible for the observed differences was phase variable expression of the involved glycosyltransferases and the O-acetyltransferase. To our knowledge, this is the first characterization of the pgl genotype and glycosylation phenotype in a larger strain collection. This study thus provides important insight into glycan diversity in N. meningitidis and phase variability changes that influence the expressed glycoform repertoire during meningococcal carriage. Importance Bacterial meningitis is a serious global health problem and one of the major causative organisms is Neisseria meningitidis , which is also a common commensal in the upper respiratory tract of healthy humans. In bacteria, numerous loci involved in biosynthesis of surface exposed antigenic structures that are involved in the interaction between bacteria and host, are frequently subjected to homologous recombination and phase variation. These mechanisms are well described in Neisseria, and phase variation provides the ability to change these structures reversibly in response to the environment. Protein glycosylation systems are becoming widely identified in bacteria, yet little is known about the mechanisms and evolutionary forces influencing glycan composition during carriage and disease. Copyright © 2018 American Society for Microbiology.
Prevalence of multiple sclerosis in Verona, Italy: an epidemiological and genetic study.
Gajofatto, A; Stefani, A; Turatti, M; Bianchi, M R; Lira, M G; Moretto, G; Salviati, A; Benedetti, M D
2013-04-01
Recent multiple sclerosis (MS) prevalence studies classify Italy as a high-risk area without intra-regional latitude effect. To determine MS prevalence in Verona, Italy, and frequency of myelin oligodendrocyte glycoprotein (MOG) gene G511C polymorphism and HLA-DRB1*15 locus in a sample of cases and healthy controls. The study area population on the prevalence date (31 December 2001) was 253208 (133508 women, 119700 men). Multiple case sources were examined. Patients fulfilling McDonald's criteria (2001) were included. Crude, age- and sex-specific prevalence rates were computed. MOG G511C polymorphism and HLA-DRB1*15 were determined by standard methods. We identified 270 cases of MS yielding a crude prevalence rate of 106.6/100000 (95% CI: 94-120). Prevalence was higher in women (140.8/100000) than in men (68.5/100000). The age-adjusted prevalence rate standardized to the European population was 96.0/100000. MOG G511C polymorphism did not differ between cases and controls. HLA-DRB1*15 frequency was 58/155 (37%) in cases and 24/157 (15%) in controls (P<0.001). There was no HLA-DRB1*15 influence on susceptibility to other autoimmune disorders. The high MS prevalence in Verona confirms Italy as a high-risk area with a homogenous distribution across the country. HLA-DRB1*15 is a relevant MS susceptibility locus in the Italian population, possibly with little influence on the occurrence of concomitant autoimmune disorders. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.
Polymorphism at Expressed DQ and DR Loci in Five Common Equine MHC Haplotypes
Miller, Donald; Tallmadge, Rebecca L.; Binns, Matthew; Zhu, Baoli; Mohamoud, Yasmin Ali; Ahmed, Ayeda; Brooks, Samantha A.; Antczak, Douglas F.
2016-01-01
The polymorphism of Major Histocompatibility Complex (MHC) class II DQ and DR genes in five common Equine Leukocyte Antigen (ELA) haplotypes was determined through sequencing of mRNA transcripts isolated from lymphocytes of eight ELA homozygous horses. Ten expressed MHC class II genes were detected in horses of the ELA-A3 haplotype carried by the donor horses of the equine Bacterial Artificial Chromosome (BAC) library and the reference genome sequence: four DR genes and six DQ genes. The other four ELA haplotypes contained at least eight expressed polymorphic MHC class II loci. Next Generation Sequencing (NGS) of genomic DNA of these four MHC haplotypes revealed stop codons in the DQA3 gene in the ELA-A2, ELA-A5, and ELA-A9 haplotypes. Few NGS reads were obtained for the other MHC class II genes that were not amplified in these horses. The amino acid sequences across haplotypes contained locus-specific residues, and the locus clusters produced by phylogenetic analysis were well supported. The MHC class II alleles within the five tested haplotypes were largely non-overlapping between haplotypes. The complement of equine MHC class II DQ and DR genes appears to be well conserved between haplotypes, in contrast to the recently described variation in class I gene loci between equine MHC haplotypes. The identification of allelic series of equine MHC class II loci will aid comparative studies of mammalian MHC conservation and evolution and may also help to interpret associations between the equine MHC class II region and diseases of the horse. PMID:27889800
Danies, Giovanna; Myers, Kevin; Mideros, María F.; Restrepo, Silvia; Martin, Frank N.; Cooke, David E. L.; Smart, Christine D.; Ristaino, Jean B.; Seaman, Abby J.; Gugino, Beth K.; Grünwald, Niklaus J.; Fry, William E.
2014-01-01
Phytophthora infestans, the causal agent of late blight disease, has been reported in North America since the mid-nineteenth century. In the United States the lack of or very limited sexual reproduction has resulted in largely clonal populations of P. infestans. In 2010 and 2011, but not in 2012 or 2013, 20 rare and diverse genotypes of P. infestans were detected in a region that centered around central New York State. The ratio of A1 to A2 mating types among these genotypes was close to the 50∶50 ratio expected for sexual recombination. These genotypes were diverse at the glucose-6-phosphate isomerase locus, differed in their microsatellite profiles, showed different banding patterns in a restriction fragment length polymorphism assay using a moderately repetitive and highly polymorphic probe (RG57), were polymorphic for four different nuclear genes and differed in their sensitivity to the systemic fungicide mefenoxam. The null hypothesis of linkage equilibrium was not rejected, which suggests the population could be sexual. These new genotypes were monomorphic in their mitochondrial haplotype that was the same as US-22. Through parentage exclusion testing using microsatellite data and sequences of four nuclear genes, recent dominant lineages US-8, US-11, US-23, and US-24 were excluded as possible parents for these genotypes. Further analyses indicated that US-22 could not be eliminated as a possible parent for 14 of the 20 genotypes. We conclude that US-22 could be a parent of some, but not all, of the new genotypes found in 2010 and 2011. There were at least two other parents for this population and the genotypic characteristics of the other parents were identified. PMID:25551215
Storz, Jay F.; Natarajan, Chandrasekhar; Cheviron, Zachary A.; Hoffmann, Federico G.; Kelly, John K.
2012-01-01
Spatially varying selection on a given polymorphism is expected to produce a localized peak in the between-population component of nucleotide diversity, and theory suggests that the chromosomal extent of elevated differentiation may be enhanced in cases where tandemly linked genes contribute to fitness variation. An intriguing example is provided by the tandemly duplicated β-globin genes of deer mice (Peromyscus maniculatus), which contribute to adaptive differentiation in blood–oxygen affinity between high- and low-altitude populations. Remarkably, the two β-globin genes segregate the same pair of functionally distinct alleles due to a history of interparalog gene conversion and alleles of the same functional type are in perfect coupling-phase linkage disequilibrium (LD). Here we report a multilocus analysis of nucleotide polymorphism and LD in highland and lowland mice with different genetic backgrounds at the β-globin genes. The analysis of haplotype structure revealed a paradoxical pattern whereby perfect LD between the two β-globin paralogs (which are separated by 16.2 kb) is maintained in spite of the fact that LD within both paralogs decays to background levels over physical distances of less than 1 kb. The survey of nucleotide polymorphism revealed that elevated levels of altitudinal differentiation at each of the β-globin genes drop away quite rapidly in the external flanking regions (upstream of the 5′ paralog and downstream of the 3′ paralog), but the level of differentiation remains unexpectedly high across the intergenic region. Observed patterns of diversity and haplotype structure are difficult to reconcile with expectations of a two-locus selection model with multiplicative fitness. PMID:22042573
McCue, Molly E.; Bannasch, Danika L.; Petersen, Jessica L.; Gurr, Jessica; Bailey, Ernie; Binns, Matthew M.; Distl, Ottmar; Guérin, Gérard; Hasegawa, Telhisa; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Penedo, M. Cecilia T.; Røed, Knut H.; Ryder, Oliver A.; Swinburne, June E.; Tozaki, Teruaki; Valberg, Stephanie J.; Vaudin, Mark; Lindblad-Toh, Kerstin
2012-01-01
An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species. PMID:22253606
Inheritance of allozyme variants in bishop pine (Pinus muricata D.Don)
Constance I. Millar
1985-01-01
Isozyme phenotypes are described for 45 structural loci and I modifier locus in bishop pine (Pinus muricata D. Don,) and segregation data are presented for a subset of 31 polymorphic loci from 19 enzyme systems. All polymorphic loci had alleles that segregated within single-focus Mendelian expectations, although one pair of alleles at each of three...
Randomly amplified polymorphic DNA linkage relationships in different Norway spruce populations
M. Troggio; Thomas L. Kubisiak; G. Bucci; P. Menozzi
2001-01-01
We tested the constancy of linkage relationships of randomly amplified polymorphic DNA (RAPD) marker loci used to construct a population-based consensus map in material from an Italian stand of Picea abies (L.) Karst. in 29 individuals from three Norwegian populations. Thirteen marker loci linked in the Italian stand did show a consistent locus...
Cardona, Samir Julián Calvo; Cadavid, Henry Cardona; Corrales, Juan David; Munilla, Sebastián; Cantet, Rodolfo J C; Rogberg-Muñoz, Andrés
2016-09-01
The κ-casein (CSN-3) and β-lactoglobulin (BLG) genes are extensively polymorphic in ruminants. Several association studies have estimated the effects of polymorphisms in these genes on milk yield, milk composition, and cheese-manufacturing properties. Usually, these results are based on production integrated over the lactation curve or on cross-sectional studies at specific days in milk (DIM). However, as differential expression of milk protein genes occurs over lactation, the effect of the polymorphisms may change over time. In this study, we fitted a mixed-effects regression model to test-day records of milk yield and milk quality traits (fat, protein, and total solids yields) from Colombian tropical dairy goats. We used the well-characterized A/B polymorphisms in the CSN-3 and BLG genes. We argued that this approach provided more efficient estimators than cross-sectional designs, given the same number and pattern of observations, and allowed exclusion of between-subject variation from model error. The BLG genotype AA showed a greater performance than the BB genotype for all traits along the whole lactation curve, whereas the heterozygote showed an intermediate performance. We observed no such constant pattern for the CSN-3 gene between the AA homozygote and the heterozygote (the BB genotype was absent from the sample). The differences among the genotypic effects of the BLG and the CSN-3 polymorphisms were statistically significant during peak and mid lactation (around 40-160 DIM) for the BLG gene and only for mid lactation (80-145 DIM) for the CSN-3 gene. We also estimated the additive and dominant effects of the BLG locus. The locus showed a statistically significant additive behavior along the whole lactation trajectory for all quality traits, whereas for milk yield the effect was not significant at later stages. In turn, we detected a statistically significant dominance effect only for fat yield in the early and peak stages of lactation (at about 1-45 DIM). The longitudinal analysis of test-day records allowed us to estimate the differential effects of polymorphisms along the lactation curve, pointing toward stages that could be affected by the gene. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Cuc, Luu M; Mace, Emma S; Crouch, Jonathan H; Quang, Vu D; Long, Tran D; Varshney, Rajeev K
2008-01-01
Background Cultivated peanut or groundnut (Arachis hypogaea L.) is the fourth most important oilseed crop in the world, grown mainly in tropical, subtropical and warm temperate climates. Due to its origin through a single and recent polyploidization event, followed by successive selection during breeding efforts, cultivated groundnut has a limited genetic background. In such species, microsatellite or simple sequence repeat (SSR) markers are very informative and useful for breeding applications. The low level of polymorphism in cultivated germplasm, however, warrants a need of larger number of polymorphic microsatellite markers for cultivated groundnut. Results A microsatellite-enriched library was constructed from the genotype TMV2. Sequencing of 720 putative SSR-positive clones from a total of 3,072 provided 490 SSRs. 71.2% of these SSRs were perfect type, 13.1% were imperfect and 15.7% were compound. Among these SSRs, the GT/CA repeat motifs were the most common (37.6%) followed by GA/CT repeat motifs (25.9%). The primer pairs could be designed for a total of 170 SSRs and were optimized initially on two genotypes. 104 (61.2%) primer pairs yielded scorable amplicon and 46 (44.2%) primers showed polymorphism among 32 cultivated groundnut genotypes. The polymorphic SSR markers detected 2 to 5 alleles with an average of 2.44 per locus. The polymorphic information content (PIC) value for these markers varied from 0.12 to 0.75 with an average of 0.46. Based on 112 alleles obtained by 46 markers, a phenogram was constructed to understand the relationships among the 32 genotypes. Majority of the genotypes representing subspecies hypogaea were grouped together in one cluster, while the genotypes belonging to subspecies fastigiata were grouped mainly under two clusters. Conclusion Newly developed set of 104 markers extends the repertoire of SSR markers for cultivated groundnut. These markers showed a good level of PIC value in cultivated germplasm and therefore would be very useful for germplasm analysis, linkage mapping, diversity studies and phylogenetic relationships in cultivated groundnut as well as related Arachis species. PMID:18482440
Individual specific DNA fingerprints from a hypervariable region probe: alpha-globin 3'HVR.
Fowler, S J; Gill, P; Werrett, D J; Higgs, D R
1988-06-01
A probe detecting a hypervariable region (HVR) 3' to the alpha globin locus on chromosome 16 has been used to produce DNA fingerprints. Segregation analysis has revealed multiple, randomly dispersed DNA fragments inherited in a Mendelian fashion with minimal allelism and linkage. The fingerprints are highly polymorphic (probability of chance association between random individuals much less than 10(-14]. The probe is, therefore, a powerful discriminating tool: it is envisaged that this probe will have forensic applications, including paternity cases, and will be informative in linkage analysis.
Aledo, Rosa; Padró, Teresa; Mata, Pedro; Alonso, Rodrigo; Badimon, Lina
2015-04-01
Recent genome-wide association studies have identified a locus on chromosome 12q13.3 associated with plasma levels of triglyceride and high-density lipoprotein cholesterol, with rs11613352 being the lead single nucleotide polymorphism in this genome-wide association study locus. The aim of the study is to investigate the involvement of rs11613352 in a population with high cardiovascular risk due to familial hypercholesterolemia. The single nucleotide polymorphism was genotyped by Taqman(®) assay in a cohort of 601 unrelated familial hypercholesterolemia patients and its association with plasma triglyceride and high-density lipoprotein cholesterol levels was analyzed by multivariate methods based on linear regression. Minimal allele frequency was 0.17 and genotype frequencies were 0.69, 0.27, and 0.04 for CC, CT, and TT genotypes, respectively. The polymorphism is associated in a recessive manner (TT genotype) with a decrease in triglyceride levels (P=.002) and with an increase in high-density lipoprotein cholesterol levels (P=.021) after adjusting by age and sex. The polymorphism rs11613352 may contribute to modulate the cardiovascular risk by modifying plasma lipid levels in familial hypercholesterolemia patients. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Developmental Stability Covaries with Genome-Wide and Single-Locus Heterozygosity in House Sparrows
Vangestel, Carl; Mergeay, Joachim; Dawson, Deborah A.; Vandomme, Viki; Lens, Luc
2011-01-01
Fluctuating asymmetry (FA), a measure of developmental instability, has been hypothesized to increase with genetic stress. Despite numerous studies providing empirical evidence for associations between FA and genome-wide properties such as multi-locus heterozygosity, support for single-locus effects remains scant. Here we test if, and to what extent, FA co-varies with single- and multilocus markers of genetic diversity in house sparrow (Passer domesticus) populations along an urban gradient. In line with theoretical expectations, FA was inversely correlated with genetic diversity estimated at genome level. However, this relationship was largely driven by variation at a single key locus. Contrary to our expectations, relationships between FA and genetic diversity were not stronger in individuals from urban populations that experience higher nutritional stress. We conclude that loss of genetic diversity adversely affects developmental stability in P. domesticus, and more generally, that the molecular basis of developmental stability may involve complex interactions between local and genome-wide effects. Further study on the relative effects of single-locus and genome-wide effects on the developmental stability of populations with different genetic properties is therefore needed. PMID:21747940
Garzón-Martínez, Gina A.; Osorio-Guarín, Jaime A.; Delgadillo-Durán, Paola; Mayorga, Franklin; Enciso-Rodríguez, Felix E.; Landsman, David
2015-01-01
The genus Physalis is common in the Americas and includes several economically important species, among them Physalis peruviana that produces appetizing edible fruits. We studied the genetic diversity and population structure of P. peruviana and characterized 47 accessions of this species along with 13 accessions of related taxa consisting of 222 individuals from the Colombian Corporation of Agricultural Research (CORPOICA) germplasm collection, using Conserved Orthologous Sequences (COSII) and Immunity Related Genes (IRGs). In addition, 642 Single Nucleotide Polymorphism (SNPs) markers were identified and used for the genetic diversity analysis. A total of 121 alleles were detected in 24 InDels loci ranging from 2 to 9 alleles per locus, with an average of 5.04 alleles per locus. The average number of alleles in the SNP markers was two. The observed heterozygosity for P. peruviana with InDel and SNP markers was higher (0.48 and 0.59) than the expected heterozygosity (0.30 and 0.41). Interestingly, the observed heterozygosity in related taxa (0.4 and 0.12) was lower than the expected heterozygosity (0.59 and 0.25). The coefficient of population differentiation FST was 0.143 (InDels) and 0.038 (SNPs), showing a relatively low level of genetic differentiation among P. peruviana and related taxa. Higher levels of genetic variation were instead observed within populations based on the AMOVA analysis. Population structure analysis supported the presence of two main groups and PCA analysis based on SNP markers revealed two distinct clusters in the P. peruviana accessions corresponding to their state of cultivation. In this study, we identified molecular markers useful to detect genetic variation in Physalis germplasm for assisting conservation and crossbreeding strategies. PMID:26550601
Garzón-Martínez, Gina A; Osorio-Guarín, Jaime A; Delgadillo-Durán, Paola; Mayorga, Franklin; Enciso-Rodríguez, Felix E; Landsman, David; Mariño-Ramírez, Leonardo; Barrero, Luz Stella
2015-12-01
The genus Physalis is common in the Americas and includes several economically important species, among them Physalis peruviana that produces appetizing edible fruits. We studied the genetic diversity and population structure of P. peruviana and characterized 47 accessions of this species along with 13 accessions of related taxa consisting of 222 individuals from the Colombian Corporation of Agricultural Research (CORPOICA) germplasm collection, using Conserved Orthologous Sequences (COSII) and Immunity Related Genes (IRGs). In addition, 642 Single Nucleotide Polymorphism (SNPs) markers were identified and used for the genetic diversity analysis. A total of 121 alleles were detected in 24 InDels loci ranging from 2 to 9 alleles per locus, with an average of 5.04 alleles per locus. The average number of alleles in the SNP markers was two. The observed heterozygosity for P. peruviana with InDel and SNP markers was higher (0.48 and 0.59) than the expected heterozygosity (0.30 and 0.41). Interestingly, the observed heterozygosity in related taxa (0.4 and 0.12) was lower than the expected heterozygosity (0.59 and 0.25). The coefficient of population differentiation F ST was 0.143 (InDels) and 0.038 (SNPs), showing a relatively low level of genetic differentiation among P. peruviana and related taxa. Higher levels of genetic variation were instead observed within populations based on the AMOVA analysis. Population structure analysis supported the presence of two main groups and PCA analysis based on SNP markers revealed two distinct clusters in the P. peruviana accessions corresponding to their state of cultivation. In this study, we identified molecular markers useful to detect genetic variation in Physalis germplasm for assisting conservation and crossbreeding strategies.
Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.
Black, W C; Gorrochotegui-Escalante, N; Duteau, N M
2006-03-01
Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.
CASC15-S is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus
Russell, Mike R.; Penikis, Annalise; Oldridge, Derek A.; Alvarez-Dominguez, Juan R.; McDaniel, Lee; Diamond, Maura; Padovan, Olivia; Raman, Pichai; Li, Yimei; Wei, Jun S.; Zhang, Shile; Gnanchandran, Janahan; Seeger, Robert; Asgharzadeh, Shahab; Khan, Javed; Diskin, Sharon J.; Maris, John M.; Cole, Kristina A.
2015-01-01
Chromosome 6p22 was identified recently as a neuroblastoma susceptibility locus, but its mechanistic contributions to tumorigenesis are as yet undefined. Here we report that the most highly significant single nucleotide polymorphism (SNP) associations reside within CASC15, a long non-coding RNA that we define as a tumor suppressor at 6p22. Low-level expression of a short CASC15 isoform (CASC15-S) associated highly with advanced neuroblastoma and poor patient survival. In human neuroblastoma cells, attenuating CASC15-S increased cellular growth and migratory capacity. Gene expression analysis revealed downregulation of neuroblastoma-specific markers in cells with attenuated CASC15-S, with concomitant increases in cell adhesion and extracellular matrix transcripts. Altogether, our results point to CASC15-S as a mediator of neural growth and differentiation, which impacts neuroblastoma initiation and progression. PMID:26100672
Lazzi, Camilla; Bove, Claudio Giorgio; Sgarbi, Elisa; Gatti, Monica; Monica, Gatti; La Gioia, Federica; Torriani, Sandra; Sandra, Torriani; Neviani, Erasmo
2009-10-01
Streptococcus thermophilus is a lactic acid bacteria (LAB) widely used in milk fermentation processes as a starter culture. In this work the genetic diversity of S. thermophilus isolates from different sources was analyzed using Amplified Fragment Length Polymorphism fingerprinting (AFLP). Since this is the first report that indicates the application of AFLP in order to study genotypic polymorphism in S. thermophilus species, an optimization of experimental conditions was carried out to decide the optimal AFLP analysis protocol. Furthermore the fingerprinting resolutions of AFLP and RAPD (Random Amplified Polymorphic DNA) were evaluated and compared. The overall data suggest that genotypic characterization performed by AFLP provide a better view of microbial diversity of S. thermophilus, indicating that RAPD is less discriminating than AFLP. The successful use of AFLP analysis in the characterization of S. thermophilus strains reported in this study suggests the potential uses for this technique to define the whole-genome diversity of each specific strain, as an alternative to the fingerprinting methods used till now.
Adib-Samii, Poneh; Rost, Natalia; Traylor, Matthew; Devan, William; Biffi, Alessandro; Lanfranconi, Silvia; Fitzpatrick, Kaitlin; Bevan, Steve; Kanakis, Allison; Valant, Valerie; Gschwendtner, Andreas; Malik, Rainer; Richie, Alexa; Gamble, Dale; Segal, Helen; Parati, Eugenio A.; Ciusani, Emilio; Holliday, Elizabeth G.; Maguire, Jane; Wardlaw, Joanna; Worrall, Bradford; Bis, Joshua; Wiggins, Kerri L.; Longstreth, Will; Kittner, Steve J.; Cheng, Yu-Ching; Mosley, Thomas; Falcone, Guido J.; Furie, Karen L.; Leiva-Salinas, Carlos; Lau, Benison C.; Khan, Muhammed Saleem; Sharma, Pankaj; Fornage, Myriam; Mitchell, Braxton D.; Psaty, Bruce M.; Sudlow, Cathie; Levi, Christopher; Boncoraglio, Giorgio B.; Rothwell, Peter M.; Meschia, James; Dichgans, Martin; Rosand, Jonathan; Markus, Hugh S.
2013-01-01
Background and Purpose Recently, a novel locus at 17q25 was associated with white matter hyperintensities (WMH) on MRI in stroke-free individuals. We aimed to replicate the association with WMH volume (WMHV) in patients with ischemic stroke. If the association acts by promoting a small vessel arteriopathy, it might be expected to also associate with lacunar stroke. Methods We quantified WMH on MRI in the stroke-free hemisphere of 2588 ischemic stroke cases. Association between WMHV and 6 single-nucleotide polymorphisms at chromosome 17q25 was assessed by linear regression. These single-nucleotide polymorphisms were also investigated for association with lacunar stroke in 1854 cases and 51 939 stroke-free controls from METASTROKE. Meta-analyses with previous reports and a genetic risk score approach were applied to identify other novel WMHV risk variants and uncover shared genetic contributions to WMHV in community participants without stroke and ischemic stroke. Results Single-nucleotide polymorphisms at 17q25 were associated with WMHV in ischemic stroke, the most significant being rs9894383 (P=0.0006). In contrast, there was no association between any single-nucleotide polymorphism and lacunar stroke. A genetic risk score analysis revealed further genetic components to WMHV shared between community participants without stroke and ischemic stroke. Conclusions This study provides support for an association between the 17q25 locus and WMH. In contrast, it is not associated with lacunar stroke, suggesting that the association does not act by promoting small-vessel arteriopathy or the same arteriopathy responsible for lacunar infarction. PMID:23674528
Adato, A; Weil, D; Kalinski, H; Pel-Or, Y; Ayadi, H; Petit, C; Korostishevsky, M; Bonne-Tamir, B
1997-10-01
Usher syndrome types I (USH1A-USH1E) are a group of autosomal recessive diseases characterized by profound congenital hearing loss, vestibular areflexia, and progressive visual loss due to retinitis pigmentosa. The human myosin VIIA gene, located on 11q14, has been shown to be responsible for Usher syndrome type 1B (USH1B). Haplotypes were constructed in 28 USH1 families by use of the following polymorphic markers spanning the USH1B locus: D11S787, D11S527, D11S1789, D11S906, D11S4186, and OMP. Affected individuals and members of their families from 12 different ethnic origins were screened for the presence of mutations in all 49 exons of the myosin VIIA gene. In 15 families myosin VIIA mutations were detected, verifying their classification as USH1B. All these mutations are novel, including three missense mutations, one premature stop codon, two splicing mutations, one frameshift, and one deletion of >2 kb comprising exons 47 and 48, a part of exon 49, and the introns between them. Three mutations were shared by more than one family, consistent with haplotype similarities. Altogether, 16 USH1B haplotypes were observed in the 15 families; most haplotypes were population specific. Several exonic and intronic polymorphisms were also detected. None of the 20 known USH1B mutations reported so far in other world populations were identified in our families.
Zhang, Q; Baldwin, V J; Acland, G M; Parshall, C J; Haskel, J; Aguirre, G D; Ray, K
1999-01-01
Photoreceptor dysplasia (pd) is one of a group of at least six distinct autosomal and one X-linked retinal disorders identified in dogs which are collectively known as progressive retinal atrophy (PRA). It is an early onset retinal disease identified in miniature schnauzer dogs, and pedigree analysis and breeding studies have established autosomal recessive inheritance of the disease. Using a gene-based approach, a number of retina-expressed genes, including some members of the phototransduction pathway, have been causally implicated in retinal diseases of humans and other animals. Here we examined seven such potential candidate genes (opsin, RDS/peripherin, ROM1, rod cGMP-gated cation channel alpha-subunit, and three subunits of transducin) for their causal association with the pd locus by testing segregation of intragenic markers with the disease locus, or, in the absence of informative polymorphisms, sequencing of the coding regions of the genes. Based on these results, we have conclusively excluded four photoreceptor-specific genes as candidates for pd by linkage analysis. For three other photoreceptor-specific genes, we did not find any mutation in the coding sequences of the genes and have excluded them provisionally. Formal exclusion would require investigation of the levels of expression of the candidate genes in pd-affected dogs relative to age-matched controls. At present we are building suitable informative pedigrees for the disease locus with a sufficient number of meiosis to be useful for genomewide screening. This should identify markers linked to the disease locus and eventually permit progress toward the identification of the photoreceptor dysplasia gene and the disease-causing mutation.
Harley, H G; Brook, J D; Floyd, J; Rundle, S A; Crow, S; Walsh, K V; Thibault, M C; Harper, P S; Shaw, D J
1991-01-01
We have examined the linkage of two new polymorphic DNA markers (D19S62 and D19S63) and a previously unreported polymorphism with an existing DNA marker (ERCC1) to the myotonic dystrophy (DM) locus. In addition, we have used pulsed-field gel electrophoresis to obtain a fine-structure map of this region. The detection of linkage disequilibrium between DM and one of these markers (D19S63) is the first demonstration of this phenomenon in a heterogeneous DM population. The results suggest that at least 58% of DM patients in the British population, as well as those in a French-Canadian subpopulation, are descended from the same ancestral DM mutation. We discuss the implications of this finding in terms of strategies for cloning the DM gene, for a possible role in modification of risk for prenatal and presymptomatic testing, and we speculate on the origin and number of existing mutations which may result in a DM phenotype. PMID:2063878
Kanchanaketu, T; Sangduen, N; Toojinda, T; Hongtrakul, V
2012-04-13
Genetic analysis of 56 samples of Jatropha curcas L. collected from Thailand and other countries was performed using the methylation-sensitive amplification polymorphism (MSAP) technique. Nine primer combinations were used to generate MSAP fingerprints. When the data were interpreted as amplified fragment length polymorphism (AFLP) markers, 471 markers were scored. All 56 samples were classified into three major groups: γ-irradiated, non-toxic and toxic accessions. Genetic similarity among the samples was extremely high, ranging from 0.95 to 1.00, which indicated very low genetic diversity in this species. The MSAP fingerprint was further analyzed for DNA methylation polymorphisms. The results revealed differences in the DNA methylation level among the samples. However, the samples collected from saline areas and some species hybrids showed specific DNA methylation patterns. AFLP data were used, together with methylation-sensitive AFLP (MS-AFLP) data, to construct a phylogenetic tree, resulting in higher efficiency to distinguish the samples. This combined analysis separated samples previously grouped in the AFLP analysis. This analysis also distinguished some hybrids. Principal component analysis was also performed; the results confirmed the separation in the phylogenetic tree. Some polymorphic bands, involving both nucleotide and DNA methylation polymorphism, that differed between toxic and non-toxic samples were identified, cloned and sequenced. BLAST analysis of these fragments revealed differences in DNA methylation in some known genes and nucleotide polymorphism in chloroplast DNA. We conclude that MSAP is a powerful technique for the study of genetic diversity for organisms that have a narrow genetic base.
Retter, Ida; Chevillard, Christophe; Scharfe, Maren; Conrad, Ansgar; Hafner, Martin; Im, Tschong-Hun; Ludewig, Monika; Nordsiek, Gabriele; Severitt, Simone; Thies, Stephanie; Mauhar, America; Blöcker, Helmut; Müller, Werner; Riblet, Roy
2009-01-01
Although the entire mouse genome has been sequenced, there remain challenges concerning the elucidation of particular complex and polymorphic genomic loci. In the murine Igh locus, different haplotypes exist in different inbred mouse strains. For example, the Ighb haplotype sequence of the Mouse Genome Project strain C57BL/6 differs considerably from the Igha haplotype of BALB/c, which has been widely used in the analyses of Ab responses. We have sequenced and annotated the 3′ half of the Igha locus of 129S1/SvImJ, covering the CH region and approximately half of the VH region. This sequence comprises 128 VH genes, of which 49 are judged to be functional. The comparison of the Igha sequence with the homologous Ighb region from C57BL/6 revealed two major expansions in the germline repertoire of Igha. In addition, we found smaller haplotype-specific differences like the duplication of five VH genes in the Igha locus. We generated a VH allele table by comparing the individual VH genes of both haplotypes. Surprisingly, the number and position of DH genes in the 129S1 strain differs not only from the sequence of C57BL/6 but also from the map published for BALB/c. Taken together, the contiguous genomic sequence of the 3′ part of the Igha locus allows a detailed view of the recent evolution of this highly dynamic locus in the mouse. PMID:17675503
The HLA-DRB9 gene and the origin of HLA-DR haplotypes.
Gongora, R; Figueroa, F; Klein, J
1996-11-01
HLA-DRB9 is a gene fragment consisting of exon 2 and flanking intron sequences. It is located at the extreme end of the DRB subregion, whose other end is demarcated by the DRB1 locus. We sequenced approximately 1400 base pairs of the segment encompassing the DRB9 locus from eight human haplotypes (DR1, DR10, DR2, DR3, DR5, DR6, DR8, and DR9, the DR4 and DR7 having been sequenced by others earlier), as well as two chimpanzee, five gorillas, one orangutan and one macaque haplotype. The analysis of these sequences indicates that the DRB9 locus, which we estimate to be more than 58 million years (my) old, has been coevolving with the DRB1 locus for the last 4.2 my. As a consequence of this coevolution, the human DRB9 alleles fall into groups that correlate with the DRB1 allelic groups and with the gene organization of the human haplotypes. This observation implies that the present-day HLA-DR haplotype groups (DR1, DR51, DR52, DR8, and DR53) were founded more than 4 my ago and have remained intact (barring minor internal rearrangements that did not recombine the DRB1 and DRB9 genes) for this period of time. The haplotypes have been transmitted during speciations from ancestral to emerging species just like allelic lineages at the DRB1 locus. Thus not only allelic but also haplotype polymorphism evolves trans-specifically.
Genetic Architectures of Quantitative Variation in RNA Editing Pathways
Gu, Tongjun; Gatti, Daniel M.; Srivastava, Anuj; Snyder, Elizabeth M.; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L.; Dotu, Ivan; Chuang, Jeffrey H.; Keller, Mark P.; Attie, Alan D.; Braun, Robert E.; Churchill, Gary A.
2016-01-01
RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing. PMID:26614740
Bryan, Glenn J.; McLean, Karen; Waugh, Robbie; Spooner, David M.
2017-01-01
DNA-based marker analysis of plant genebank material has become a useful tool in the evaluation of levels of genetic diversity and for the informed use and maintenance of germplasm. In this study, we quantify levels of amplified fragment length polymorphism (AFLP) in representative accessions of wild and cultivated potato species of differing geographic origin, ploidy, and breeding system. We generated 449 polymorphic AFLP fragments in 619 plants, representing multiple plants (16–23) from 17 accessions of 14 potato taxa as well as single plants sampled from available accessions (from 3 to 56) of the same 14 taxa. Intra-accession diversities were compared to those of a synthetic ‘taxon-wide’ population comprising a single individual from a variable number of available accessions of each sampled taxon. Results confirm the expected considerably lower levels of polymorphism within accessions of self-compatible as compared to self-incompatible taxa. We observed broadly similar levels of ‘taxon-wide’ polymorphism among self-compatible and self-incompatible species, with self-compatible taxa showing only slightly lower rates of polymorphism. The most diverse accessions were the two cultivated potato accessions examined, the least diverse being the Mexican allohexaploids Solanum demissum and S. iopetalum. Generally allopolyploid self-compatible accessions exhibited lower levels of diversity. Some purported self-incompatible accessions showed relatively low levels of marker diversity, similar to the more diverse self-compatible material surveyed. Our data indicate that for self-compatible species a single plant is highly representative of a genebank accession. The situation for self-incompatible taxa is less clear, and sampling strategies used will depend on the type of investigation. These results have important implications for those seeking novel trait variation (e.g., disease resistance) in gene banks as well as for the selection of individuals for genomics studies. We also show that AFLPs, despite having been largely replaced by other marker types, is highly suitable for the evaluation of within and between accession diversity in genebanks. PMID:28983315
CRISPR-cas subtype I-Fb in Acinetobacter baumannii: evolution and utilization for strain subtyping.
Karah, Nabil; Samuelsen, Ørjan; Zarrilli, Raffaele; Sahl, Jason W; Wai, Sun Nyunt; Uhlin, Bernt Eric
2015-01-01
Clustered regularly interspaced short palindromic repeats (CRISPR) are polymorphic elements found in the genome of some or all strains of particular bacterial species, providing them with a system of acquired immunity against invading bacteriophages and plasmids. Two CRISPR-Cas systems have been identified in Acinetobacter baumannii, an opportunistic pathogen with a remarkable capacity for clonal dissemination. In this study, we investigated the mode of evolution and diversity of spacers of the CRISPR-cas subtype I-Fb locus in a global collection of 76 isolates of A. baumannii obtained from 14 countries and 4 continents. The locus has basically evolved from a common ancestor following two main lineages and several pathways of vertical descent. However, this vertical passage has been interrupted by occasional events of horizontal transfer of the whole locus between distinct isolates. The isolates were assigned into 40 CRISPR-based sequence types (CST). CST1 and CST23-24 comprised 18 and 9 isolates, representing two main sub-clones of international clones CC1 and CC25, respectively. Epidemiological data showed that some of the CST1 isolates were acquired or imported from Iraq, where it has probably been endemic for more than one decade and occasionally been able to spread to USA, Canada, and Europe. CST23-24 has shown a remarkable ability to cause national outbreaks of infections in Sweden, Argentina, UAE, and USA. The three isolates of CST19 were independently imported from Thailand to Sweden and Norway, raising a concern about the prevalence of CST19 in Thailand. Our study highlights the dynamic nature of the CRISPR-cas subtype I-Fb locus in A. baumannii, and demonstrates the possibility of using a CRISPR-based approach for subtyping a significant part of the global population of A. baumannii.
CRISPR-cas Subtype I-Fb in Acinetobacter baumannii: Evolution and Utilization for Strain Subtyping
Karah, Nabil; Samuelsen, Ørjan; Zarrilli, Raffaele; Sahl, Jason W.; Wai, Sun Nyunt; Uhlin, Bernt Eric
2015-01-01
Clustered regularly interspaced short palindromic repeats (CRISPR) are polymorphic elements found in the genome of some or all strains of particular bacterial species, providing them with a system of acquired immunity against invading bacteriophages and plasmids. Two CRISPR-Cas systems have been identified in Acinetobacter baumannii, an opportunistic pathogen with a remarkable capacity for clonal dissemination. In this study, we investigated the mode of evolution and diversity of spacers of the CRISPR-cas subtype I-Fb locus in a global collection of 76 isolates of A. baumannii obtained from 14 countries and 4 continents. The locus has basically evolved from a common ancestor following two main lineages and several pathways of vertical descent. However, this vertical passage has been interrupted by occasional events of horizontal transfer of the whole locus between distinct isolates. The isolates were assigned into 40 CRISPR-based sequence types (CST). CST1 and CST23-24 comprised 18 and 9 isolates, representing two main sub-clones of international clones CC1 and CC25, respectively. Epidemiological data showed that some of the CST1 isolates were acquired or imported from Iraq, where it has probably been endemic for more than one decade and occasionally been able to spread to USA, Canada, and Europe. CST23-24 has shown a remarkable ability to cause national outbreaks of infections in Sweden, Argentina, UAE, and USA. The three isolates of CST19 were independently imported from Thailand to Sweden and Norway, raising a concern about the prevalence of CST19 in Thailand. Our study highlights the dynamic nature of the CRISPR-cas subtype I-Fb locus in A. baumannii, and demonstrates the possibility of using a CRISPR-based approach for subtyping a significant part of the global population of A. baumannii. PMID:25706932
Fillo, Silvia; Giordani, Francesco; Anniballi, Fabrizio; Gorgé, Olivier; Ramisse, Vincent; Vergnaud, Gilles; Riehm, Julia M.; Scholz, Holger C.; Splettstoesser, Wolf D.; Kieboom, Jasper; Olsen, Jaran-Strand; Fenicia, Lucia; Lista, Florigio
2011-01-01
Clostridium botulinum is a taxonomic designation that encompasses a broad variety of spore-forming, Gram-positive bacteria producing the botulinum neurotoxin (BoNT). C. botulinum is the etiologic agent of botulism, a rare but severe neuroparalytic disease. Fine-resolution genetic characterization of C. botulinum isolates of any BoNT type is relevant for both epidemiological studies and forensic microbiology. A 10-locus multiple-locus variable-number tandem-repeat analysis (MLVA) was previously applied to isolates of C. botulinum type A. The present study includes five additional loci designed to better address proteolytic B and F serotypes. We investigated 79 C. botulinum group I strains isolated from human and food samples in several European countries, including types A (28), B (36), AB (4), and F (11) strains, and 5 nontoxic Clostridium sporogenes. Additional data were deduced from in silico analysis of 10 available fully sequenced genomes. This 15-locus MLVA (MLVA-15) scheme identified 86 distinct genotypes that clustered consistently with the results of amplified fragment length polymorphism (AFLP) and MLVA genotyping in previous reports. An MLVA-7 scheme, a subset of the MLVA-15, performed on a lab-on-a-chip device using a nonfluorescent subset of primers, is also proposed as a first-line assay. The phylogenetic grouping obtained with the MLVA-7 does not differ significantly from that generated by the MLVA-15. To our knowledge, this report is the first to analyze genetic variability among all of the C. botulinum group I serotypes by MLVA. Our data provide new insights into the genetic variability of group I C. botulinum isolates worldwide and demonstrate that this group is genetically highly diverse. PMID:22012011
Fillo, Silvia; Giordani, Francesco; Anniballi, Fabrizio; Gorgé, Olivier; Ramisse, Vincent; Vergnaud, Gilles; Riehm, Julia M; Scholz, Holger C; Splettstoesser, Wolf D; Kieboom, Jasper; Olsen, Jaran-Strand; Fenicia, Lucia; Lista, Florigio
2011-12-01
Clostridium botulinum is a taxonomic designation that encompasses a broad variety of spore-forming, Gram-positive bacteria producing the botulinum neurotoxin (BoNT). C. botulinum is the etiologic agent of botulism, a rare but severe neuroparalytic disease. Fine-resolution genetic characterization of C. botulinum isolates of any BoNT type is relevant for both epidemiological studies and forensic microbiology. A 10-locus multiple-locus variable-number tandem-repeat analysis (MLVA) was previously applied to isolates of C. botulinum type A. The present study includes five additional loci designed to better address proteolytic B and F serotypes. We investigated 79 C. botulinum group I strains isolated from human and food samples in several European countries, including types A (28), B (36), AB (4), and F (11) strains, and 5 nontoxic Clostridium sporogenes. Additional data were deduced from in silico analysis of 10 available fully sequenced genomes. This 15-locus MLVA (MLVA-15) scheme identified 86 distinct genotypes that clustered consistently with the results of amplified fragment length polymorphism (AFLP) and MLVA genotyping in previous reports. An MLVA-7 scheme, a subset of the MLVA-15, performed on a lab-on-a-chip device using a nonfluorescent subset of primers, is also proposed as a first-line assay. The phylogenetic grouping obtained with the MLVA-7 does not differ significantly from that generated by the MLVA-15. To our knowledge, this report is the first to analyze genetic variability among all of the C. botulinum group I serotypes by MLVA. Our data provide new insights into the genetic variability of group I C. botulinum isolates worldwide and demonstrate that this group is genetically highly diverse.
Assessment of the genetic diversity of the Tunisian citrus rootstock germplasm
2012-01-01
Background Citrus represents a substantial income for farmers in the Mediterranean Basin. However, the Mediterranean citrus industry faces increasing biotic and abiotic constraints. Therefore the breeding and selection of new rootstocks are now of the utmost importance. In Tunisia, in addition to sour orange, the most widespread traditional rootstock of the Mediterranean area, other citrus rootstocks and well adapted to local environmental conditions, are traditionally used and should be important genetic resources for breeding. To characterize the diversity of Tunisian citrus rootstocks, two hundred and one local accessions belonging to four facultative apomictic species (C. aurantium, sour orange; C. sinensis, orange; C. limon, lemon; and C. aurantifolia, lime) were collected and genotyped using 20 nuclear SSR markers and four indel mitochondrial markers. Multi-locus genotypes (MLGs) were compared to references from French and Spanish collections. Results The differentiation of the four varietal groups was well-marked. The groups displayed a relatively high allelic diversity, primarily due to very high heterozygosity. Sixteen distinct MLGs were identified. Ten of these were noted in sour oranges. However, the majority of the analysed sour orange accessions corresponded with only two MLGs, differentiated by a single allele, likely due to a mutation. The most frequent MLG is shared with the reference sour oranges. No polymorphism was found within the sweet orange group. Two MLGs, differentiated by a single locus, were noted in lemon. The predominant MLG was shared with the reference lemons. Limes were represented by three genotypes. Two corresponded to the 'Mexican lime' and 'limonette de Marrakech' references. The MLG of 'Chiiri' lime was unique. Conclusions The Tunisian citrus rootstock genetic diversity is predominantly due to high heterozygosity and differentiation between the four varietal groups. The phenotypic diversity within the varietal groups has resulted from multiple introductions, somatic mutations and rare sexual recombination events. Finally, this diversity study enabled the identification of a core sample of accessions for further physiological and agronomical evaluations. These core accessions will be integrated into citrus rootstock breeding programs for the Mediterranean Basin. PMID:22429788
Keely, Scott P.; Cushion, Melanie T.; Stringer, James R.
2003-01-01
Pneumocystis carinii expresses a surface glycoprotein called MSG. Different isoforms of MSG are encoded by a gene family spread over at least 15 telomeric sites. Only one locus, called UCS, supports the production of MSG mRNA. Previous studies showed that P. carinii populations from individual rats exhibited high degrees of diversity with respect to the MSG genes attached to the UCS locus. This diversity could have been generated primarily in the rats studied. Alternatively, the rats may have been infected by P. carinii organisms that were already different at the UCS locus. To investigate this issue, we examined the UCS locus in P. carinii from rats that had been exposed to few of the microbes at a specified time, which produced a bottleneck in the microbial population. Some of the rats with bottlenecks produced P. carinii populations in which a single MSG sequence resided at the UCS locus in 80 to 90% of the organisms, showing that P. carinii can proliferate within a rat without generating the very high levels of UCS diversity previously seen. From the degree of diversity observed in the bottlenecked populations, the maximum rate of switching appeared to be 0.01 event per generation. These data also suggest that the infectious dose is as low as one organism, that rats that share a cage readily infect each other, and that the doubling time of P. carinii in vivo is ∼3 days. In addition, we found that inoculation with 107 P. carinii organisms from a population highly heterogeneous at the UCS locus reproduced this heterogeneity. By contrast, shifts in population structure occurred in rats given 104 P. carinii organisms, suggesting that a small fraction of these proliferated. PMID:12496148
NASA Astrophysics Data System (ADS)
Liu, Ting; Li, Qi; Song, Junlin; Yu, Hong
2017-02-01
There is an increasing requirement for traceability of aquaculture products, both for consumer protection and for food safety. There are high error rates in the conventional traceability systems depending on physical labels. Genetic traceability technique depending on DNA-based tracking system can overcome this problem. Genealogy information is essential for genetic traceability, and microsatellite DNA marker is a good choice for pedigree analysis. As increasing genotyping throughput of microsatellites, microsatellite multiplex PCR has become a fast and cost-effective technique. As a commercially important cultured aquatic species, Pacific oyster Crassostrea gigas has the highest global production. The objective of this study was to develop microsatellite multiplex PCR panels with dye-labeled universal primer for pedigree analysis in C. gigas, and these multiplex PCRs were validated using 12 full-sib families with known pedigrees. Here we developed six informative multiplex PCRs using 18 genomic microsatellites in C. gigas. Each multiplex panel contained a single universal primer M13(-21) used as a tail on each locus-specific forward primer and a single universal primer M13(-21) labeled with fluorophores. The polymorphisms of the markers were moderate, with an average of 10.3 alleles per locus and average polymorphic information content of 0.740. The observed heterozygosity per locus ranged from 0.492 to 0.822. Cervus simulations revealed that the six panels would still be of great value when massive families were analysed. Pedigree analysis of real offspring demonstrated that 100% of the offspring were unambiguously allocated to their parents when two multiplex PCRs were used. The six sets of multiplex PCRs can be an important tool for tracing cultured individuals, population genetic analysis, and selective breeding program in C. gigas.
Casellas, J; Cañas-Álvarez, J J; González-Rodríguez, A; Puig-Oliveras, A; Fina, M; Piedrafita, J; Molina, A; Díaz, C; Baró, J A; Varona, L
2017-02-01
Transmission ratio distortion (TRD) is the departure from the expected Mendelian ratio in offspring, a poorly investigated biological phenomenon in livestock species. Given the current availability of specific parametric methods for the analysis of segregation data, this study focused on the screening of TRD in 602 402 single nucleotide polymorphisms covering all autosomal chromosomes in seven Spanish beef cattle breeds. On average, 0.13% (n = 786) and 0.01% (n = 29) of genetic markers evidenced sire- or dam-specific TRD respectively. There were no single nucleotide polymorphisms accounting for both sire- and dam-specific TRD at the same time, and only one marker (rs43147474) accounted for (sire-specific) TRD in all seven breeds. It must be noted that rs43147474 is located in the fourth intronic region of the GTP-binding protein 10 gene, and this locus has been previously linked to the maintenance of mitochondria and nucleolar architectures. Alternatively, other candidate genes surround this hot-spot for sire-specific TRD in the cattle genome, and they are related to embryonic and postnatal lethality as well as prostate cancer, among others. This research characterized the distribution of TRD in the bovine genome, highlighting heterogeneous results when comparing across breeds. © 2016 Stichting International Foundation for Animal Genetics.
Zila, Charles T.; Samayoa, L. Fernando; Santiago, Rogelio; Butrón, Ana; Holland, James B.
2013-01-01
Fusarium ear rot is a common disease of maize that affects food and feed quality globally. Resistance to the disease is highly quantitative, and maize breeders have difficulty incorporating polygenic resistance alleles from unadapted donor sources into elite breeding populations without having a negative impact on agronomic performance. Identification of specific allele variants contributing to improved resistance may be useful to breeders by allowing selection of resistance alleles in coupling phase linkage with favorable agronomic characteristics. We report the results of a genome-wide association study to detect allele variants associated with increased resistance to Fusarium ear rot in a maize core diversity panel of 267 inbred lines evaluated in two sets of environments. We performed association tests with 47,445 single-nucleotide polymorphisms (SNPs) while controlling for background genomic relationships with a mixed model and identified three marker loci significantly associated with disease resistance in at least one subset of environments. Each associated SNP locus had relatively small additive effects on disease resistance (±1.1% on a 0–100% scale), but nevertheless were associated with 3 to 12% of the genotypic variation within or across environment subsets. Two of three identified SNPs colocalized with genes that have been implicated with programmed cell death. An analysis of associated allele frequencies within the major maize subpopulations revealed enrichment for resistance alleles in the tropical/subtropical and popcorn subpopulations compared with other temperate breeding pools. PMID:24048647
Molecular phylogeny analysis and species identification of Dendrobium (Orchidaceae) in China.
Feng, Shang-Guo; Lu, Jiang-Jie; Gao, Ling; Liu, Jun-Jun; Wang, Hui-Zhong
2014-04-01
Dendrobium plants are important commercial herbs in China, widely used in traditional medicine and ornamental horticulture. In this study, sequence-related amplified polymorphism (SRAP) markers were applied to molecular phylogeny analysis and species identification of 31 Chinese Dendrobium species. Fourteen SRAP primer pairs produced 727 loci, 97% of which (706) showed polymorphism. Average polymorphism information content of the SRAP pairs was 0.987 (0.982-0.991), showing that plenty of genetic diversity exists at the interspecies level of Chinese Dendrobium. The molecular phylogeny analysis (UPGMA) grouped the 31 Dendrobium species into six clusters. We obtained 18 species-specific markers, which can be used to identify 10 of the 31 species. Our results indicate the SRAP marker system is informative and would facilitate further application in germplasm appraisal, evolution, and genetic diversity studies in the genus Dendrobium.
Norman, Paul J.; Parham, Peter
2012-01-01
Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals’ classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores. PMID:23001684
Sasazuki, Takehiko; Inoko, Hidetoshi; Morishima, Satoko; Morishima, Yasuo
2016-01-01
The human leukocyte antigen (HLA) genomic region spanning about 4 Mb is the most gene dense and the polymorphic stretches in the human genome. A total of the 269 loci were identified, including 145 protein coding genes mostly important for immunity and 50 noncoding RNAs (ncRNAs). Biological function of these ncRNAs remains unknown, becoming hot spot in the studies of HLA-associated diseases. The genomic diversity analysis in the HLA region facilitated by next-generation sequencing will pave the way to molecular understanding of linkage disequilibrium structure, population diversity, histocompatibility in transplantation, and associations with autoimmune diseases. The 4-digit DNA genotyping of HLA for six HLA loci, HLA-A through DP, in the patients with Graves' disease (GD) and Hashimoto thyroiditis (HT) identified six susceptible and three resistant HLA alleles. Their epistatic interactions in controlling the development of these diseases are shown. Four susceptible and one resistant HLA alleles are shared by GD and HT. Two HLA alleles associated with GD or HT control the titers of autoantibodies to thyroid antigens. All these observations led us to propose a new model for the development of GD and HT. Hematopoietic stem cell transplantation from unrelated donor (UR-HSCT) provides a natural experiment to elucidate the role of allogenic HLA molecules in immune response. Large cohort studies using HLA allele and clinical outcome data have elucidated that (1) HLA locus, allele, and haplotype mismatches between donor and patient, (2) specific amino acid substitution at specific positions of HLA molecules, and (3) ethnic background are all responsible for the immunological events related to UR-HSCT including acute graft-versus-host disease (GVHD), chronic GVHD, graft-versus-leukemia (GvL) effect, and graft failure. © 2016 Elsevier Inc. All rights reserved.
Meece, J.K.; Anderson, J.L.; Fisher, M.C.; Henk, D.A.; Sloss, Brian L.; Reed, K.D.
2011-01-01
Blastomyces dermatitidis, a thermally dimorphic fungus, is the etiologic agent of North American blastomycosis. Clinical presentation is varied, ranging from silent infections to fulminant respiratory disease and dissemination to skin and other sites. Exploration of the population genetic structure of B. dermatitidis would improve our knowledge regarding variation in virulence phenotypes, geographic distribution, and difference in host specificity. The objective of this study was to develop and test a panel of microsatellite markers to delineate the population genetic structure within a group of clinical and environmental isolates of B. dermatitidis. We developed 27 microsatellite markers and genotyped B. dermatitidis isolates from various hosts and environmental sources (n = 112). Assembly of a neighbor-joining tree of allele-sharing distance revealed two genetically distinct groups, separated by a deep node. Bayesian admixture analysis showed that two populations were statistically supported. Principal coordinate analysis also reinforced support for two genetic groups, with the primary axis explaining 61.41% of the genetic variability. Group 1 isolates average 1.8 alleles/locus, whereas group 2 isolates are highly polymorphic, averaging 8.2 alleles/locus. In this data set, alleles at three loci are unshared between the two groups and appear diagnostic. The mating type of individual isolates was determined by PCR. Both mating type-specific genes, the HMG and ??-box domains, were represented in each of the genetic groups, with slightly more isolates having the HMG allele. One interpretation of this study is that the species currently designated B. dermatitidis includes a cryptic subspecies or perhaps a separate species. ?? 2011, American Society for Microbiology.
Meece, Jennifer K.; Anderson, Jennifer L.; Fisher, Matthew C.; Henk, Daniel A.; Sloss, Brian L.; Reed, Kurt D.
2011-01-01
Blastomyces dermatitidis, a thermally dimorphic fungus, is the etiologic agent of North American blastomycosis. Clinical presentation is varied, ranging from silent infections to fulminant respiratory disease and dissemination to skin and other sites. Exploration of the population genetic structure of B. dermatitidis would improve our knowledge regarding variation in virulence phenotypes, geographic distribution, and difference in host specificity. The objective of this study was to develop and test a panel of microsatellite markers to delineate the population genetic structure within a group of clinical and environmental isolates of B. dermatitidis. We developed 27 microsatellite markers and genotyped B. dermatitidis isolates from various hosts and environmental sources (n=112). Assembly of a neighbor-joining tree of allele-sharing distance revealed two genetically distinct groups, separated by a deep node. Bayesian admixture analysis showed that two populations were statistically supported. Principal coordinate analysis also reinforced support for two genetic groups, with the primary axis explaining 61.41% of the genetic variability. Group 1 isolates average 1.8 alleles/locus, whereas group 2 isolates are highly polymorphic, averaging 8.2 alleles/locus. In this data set, alleles at three loci are unshared between the two groups and appear diagnostic. The mating type of individual isolates was determined by PCR. Both mating type-specific genes, the HMG and α-box domains, were represented in each of the genetic groups, with slightly more isolates having the HMG allele. One interpretation of this study is that the species currently designated B. dermatitidis includes a cryptic subspecies or perhaps a separate species.
Distinct evolutionary strategies of human leucocyte antigen loci in pathogen-rich environments
Sanchez-Mazas, Alicia; Lemaître, Jean-François; Currat, Mathias
2012-01-01
Human leucocyte antigen (HLA) loci have a complex evolution where both stochastic (e.g. genetic drift) and deterministic (natural selection) forces are involved. Owing to their extraordinary level of polymorphism, HLA genes are useful markers for reconstructing human settlement history. However, HLA variation often deviates significantly from neutral expectations towards an excess of genetic diversity. Because HLA molecules play a crucial role in immunity, this observation is generally explained by pathogen-driven-balancing selection (PDBS). In this study, we investigate the PDBS model by analysing HLA allelic diversity on a large database of 535 populations in relation to pathogen richness. Our results confirm that geographical distances are excellent predictors of HLA genetic differentiation worldwide. We also find a significant positive correlation between genetic diversity and pathogen richness at two HLA class I loci (HLA-A and -B), as predicted by PDBS, and a significant negative correlation at one HLA class II locus (HLA-DQB1). Although these effects are weak, as shown by a loss of significance when populations submitted to rapid genetic drift are removed from the analysis, the inverse relationship between genetic diversity and pathogen richness at different loci indicates that HLA genes have adopted distinct evolutionary strategies to provide immune protection in pathogen-rich environments. PMID:22312050
Schousboe, Mette L.; Ranjitkar, Samir; Rajakaruna, Rupika S.; Amerasinghe, Priyanie H.; Morales, Francisco; Pearce, Richard; Ord, Rosalyn; Leslie, Toby; Rowland, Mark; Gadalla, Nahla B.; Konradsen, Flemming; Bygbjerg, Ib C.; Roper, Cally; Alifrangis, Michael
2015-01-01
Background Chloroquine combined with primaquine has been the recommended antimalarial treatment of Plasmodium vivax malaria infections for six decades but the efficacy of this treatment regimen is threatened by chloroquine resistance (CQR). Single nucleotide polymorphisms (SNPs) in the multidrug resistance gene, Pvmdr1 are putative determinants of CQR but the extent of their emergence at population level remains to be explored. Objective In this study we describe the prevalence of SNPs in the Pvmdr1 among samples collected in seven P. vivax endemic countries and we looked for molecular evidence of drug selection by characterising polymorphism at microsatellite (MS) loci flanking the Pvmdr1 gene. Methods We examined the prevalence of SNPs in the Pvmdr1 gene among 267 samples collected from Pakistan, Afghanistan, Sri Lanka, Nepal, Sudan, São Tomé and Ecuador. We measured and diversity in four microsatellite (MS) markers flanking the Pvmdr1 gene to look evidence of selection on mutant alleles. Results SNP polymorphism in the Pvmdr1 gene was largely confined to codons T958M, Y976F and F1076L. Only 2.4% of samples were wildtype at all three codons (TYF, n = 5), 13.3% (n = 28) of the samples were single mutant MYF, 63.0% of samples (n = 133) were double mutant MYL, and 21.3% (n = 45) were triple mutant MFL. Clear geographic differences in the prevalence of these Pvmdr mutation combinations were observed. Significant linkage disequilibrium (LD) between Pvmdr1 and MS alleles was found in populations sampled in Ecuador, Nepal and Sri Lanka, while significant LD between Pvmdr1 and the combined 4 MS locus haplotype was only seen in Ecuador and Sri Lanka. When combining the 5 loci, high level diversity, measured as expected heterozygosity (He), was seen in the complete sample set (He = 0.99), while He estimates for individual loci ranged from 0.00–0.93. Although Pvmdr1 haplotypes were not consistently associated with specific flanking MS alleles, there was significant differentiation between geographic sites which could indicate directional selection through local drug pressure. Conclusions Our observations suggest that Pvmdr1 mutations emerged independently on multiple occasions even within the same population. In Sri Lanka population analysis at multiple sites showed evidence of local selection and geographical dispersal of Pvmdr1 mutations between sites. PMID:26539821
2011-01-01
Background Over recent years, a growing effort has been made to develop microsatellite markers for the genomic analysis of the common bean (Phaseolus vulgaris) to broaden the knowledge of the molecular genetic basis of this species. The availability of large sets of expressed sequence tags (ESTs) in public databases has given rise to an expedient approach for the identification of SSRs (Simple Sequence Repeats), specifically EST-derived SSRs. In the present work, a battery of new microsatellite markers was obtained from a search of the Phaseolus vulgaris EST database. The diversity, degree of transferability and polymorphism of these markers were tested. Results From 9,583 valid ESTs, 4,764 had microsatellite motifs, from which 377 were used to design primers, and 302 (80.11%) showed good amplification quality. To analyze transferability, a group of 167 SSRs were tested, and the results showed that they were 82% transferable across at least one species. The highest amplification rates were observed between the species from the Phaseolus (63.7%), Vigna (25.9%), Glycine (19.8%), Medicago (10.2%), Dipterix (6%) and Arachis (1.8%) genera. The average PIC (Polymorphism Information Content) varied from 0.53 for genomic SSRs to 0.47 for EST-SSRs, and the average number of alleles per locus was 4 and 3, respectively. Among the 315 newly tested SSRs in the BJ (BAT93 X Jalo EEP558) population, 24% (76) were polymorphic. The integration of these segregant loci into a framework map composed of 123 previously obtained SSR markers yielded a total of 199 segregant loci, of which 182 (91.5%) were mapped to 14 linkage groups, resulting in a map length of 1,157 cM. Conclusions A total of 302 newly developed EST-SSR markers, showing good amplification quality, are available for the genetic analysis of Phaseolus vulgaris. These markers showed satisfactory rates of transferability, especially between species that have great economic and genomic values. Their diversity was comparable to genomic SSRs, and they were incorporated in the common bean reference genetic map, which constitutes an important contribution to and advance in Phaseolus vulgaris genomic research. PMID:21554695
Han, Zhi-Gang; Tao, Jie; Yu, Ting-Ting; Shan, Li
2017-04-26
BACKGROUND Gene polymorphisms are associated with sensitivity to platinum drugs. This study aimed to investigate the polymorphisms of GSTP1 rs1695 locus and ABCC2 rs717620 locus, and the sensitivity of patients with advanced non-small cell lung cancer (NSCLC) to platinum drugs in a Xinjiang Uygur population. MATERIAL AND METHODS The gene polymorphisms of GSTP1 rs1695 and ABCC2 rs717620 of Uygur NSCLC patients were assessed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The relationship between the prognosis of advanced NSCLC Uygur patients and the gene polymorphisms of GSTP1 rs1695 and ABCC2 rs717620 was analyzed using progression-free survival (PFS) and overall survival (OS) as the major outcome indicators. RESULTS The median PFS of patients with advanced NSCLC was 6.9 months and the OS of Uygur patients with advanced NSCLC was 10.8 months. Kaplan-Meier survival analysis indicated that survival time of patients with GSTP1 AG + GG was significantly longer than in patients with AA gene (P<0.05), and survival time of patients with ABCC2 CT + TT was significantly longer than in patients with the CC gene (P<0.05). CONCLUSIONS Polymorphisms of GSTP1 rs1695 and ABCC2 rs717620 can be used to predict the outcomes of Uygur patients with advanced NSCLC who have received platinum-based chemotherapy. Additionally, this information could be used to guide the individualized treatment of Uygur patients with advanced NSCLC.
Caugant, D A; Zollinger, W D; Mocca, L F; Frasch, C E; Whittam, T S; Frøholm, L O; Selander, R K
1987-01-01
Two hundred and thirty-four strains of Neisseria meningitidis, including 94 serotype 2a, 111 serotype 2b, and 19 serotype 2c isolates, together with 10 isolates that were serotyped as 2 with polyvalent antiserum but did not react with monoclonal antibodies, were characterized by the electrophoretic mobilities of 15 metabolic enzymes. Of these enzymes, 14 were polymorphic, and 56 distinctive combinations of alleles at the enzyme loci (electrophoretic types) were identified, among which the mean genetic diversity per locus was 0.413, or about 75% of that recorded for the species N. meningitidis as a whole. Mean genetic diversity among electrophoretic types of the same serotype (2a, 2b, or 2c) was, however, on average, less than half the total species diversity, and no multilocus genotypes were shared between isolates of the different serotypes, which belong to distinctive clonal lineages. Recent temporal changes in the frequencies of recovery of pathogenic strains of serotypes 2a and 2b in South Africa and North America resulted from clone replacement in these populations rather than evolutionary modification of the serotype protein of the initially dominant clones. PMID:3106223
Genetic affinities of Helicobacter pylori isolates from ethnic Arabs in Kuwait
2010-01-01
Helicobacter pylori is one of the most genetically diverse of bacterial species, and since the 5'-end of cagA gene and the middle allele of vacA gene of H. pylori from different populations exhibit considerable polymorphisms, these sequence diversities were used to gain insights into the genetic affinities of this gastric pathogen from different populations. Because the genetic affinity of Arab strains from the Arabian Gulf is not known, we carried out genetic analysis based on sequence diversities of the cagA and the vacA genes of H. pylori from 9 ethnic Arabs in Kuwait. The analysis showed that the Kuwaiti isolates are closely related to the Indo-European group of strains, although some strains have a tendency to form a separate cluster close to the Indo- European group, but clearly distinct from East Asian strains. However, these results need to be confirmed by analyses of neutral markers (house-keeping genes in a multi-locus sequence typing [MLST]) platform. The profiling of virulence-associated genes may have resulted from ecologically distinct populations due to human migration and geographical separation over long periods of time. PMID:20602767
Cha, Thye San; Anne-Marie, Kaben; Chuah, Tse Seng
2014-02-01
Eleusine indica is one of the most common weed species found in agricultural land worldwide. Although herbicide-glyphosate provides good control of the weed, its frequent uses has led to abundant reported cases of resistance. Hence, the development of genetic markers for quick detection of glyphosate-resistance in E. indica population is imperative for the control and management of the weed. In this study, a total of 14 specific random amplified polymorphic DNA (RAPD) markers were identified and two of the markers, namely S4R727 and S26R6976 were further sequence characterized. Sequence alignment revealed that marker S4R727 showing a 12-bp nucleotides deletion in resistant biotypes, while marker S26R6976 contained a 167-bp nucleotides insertion in the resistant biotypes. Based on these sequence differences, three pairs of new sequence characterized amplified region (SCAR) primers were developed. The specificity of these primer pairs were further validated with genomic DNA extracted from ten individual plants of one glyphosate-susceptible and five glyphosate-resistant (R2, R4, R6, R8 and R11) populations. The resulting RAPD-SCAR markers provided the basis for assessing genetic diversity between glyphosate-susceptible and -resistant E. indica biotypes, as well for the identification of genetic locus link to glyphosate-resistance event in the species.
Wang, Jinjin; Yu, Xiaomu; Zhao, Kai; Zhang, Yaoguang; Tong, Jingou; Peng, Zuogang
2012-01-01
Megalobrama pellegrini is an endemic fish species found in the upper Yangtze River basin in China. This species has become endangered due to the construction of the Three Gorges Dam and overfishing. However, the available genetic data for this species is limited. Here, we developed 26 polymorphic microsatellite markers from the M. pellegrini genome using next-generation sequencing techniques. A total of 257,497 raw reads were obtained from a quarter-plate run on 454 GS-FLX titanium platforms and 49,811 unique sequences were generated with an average length of 404 bp; 24,522 (49.2%) sequences contained microsatellite repeats. Of the 53 loci screened, 33 were amplified successfully and 26 were polymorphic. The genetic diversity in M. pellegrini was moderate, with an average of 3.08 alleles per locus, and the mean observed and expected heterozygosity were 0.47 and 0.51, respectively. In addition, we tested cross-species amplification for all 33 loci in four additional breams: M. amblycephala, M. skolkovii, M. terminalis, and Sinibrama wui. The cross-species amplification showed a significant high level of transferability (79%–97%), which might be due to their dramatically close genetic relationships. The polymorphic microsatellites developed in the current study will not only contribute to further conservation genetic studies and parentage analyses of this endangered species, but also facilitate future work on the other closely related species. PMID:22489139
Yang, Li; Wang, Chunyu; Wang, Haijun; Meng, Qingfeng; Wang, Quankai
2015-04-11
Bovine tuberculosis has led to serious economic losses for Sika Deer producers in China. Strategies for controlling the spread of Mycobacterium bovis are often hampered by a lack of epidemiological data. Specifically, tracing infections requires the ability to trace back infections, which, in turn, requires the ability to determine isolates with a common source. This study was planned to assess the discriminatory power of each mycobacterial interspersed repetitive unit (MIRU)-variable number tandem repeats (VNTR) locus and evaluate the most appropriate combination of MIRU-VNTR loci for molecular epidemiological studies on Sika Deer in China. The discriminatory power of MIRU-VNTR typing based on 22 known loci (12 MIRUs, 2 ETRs, 4 QUBs, and 4 Mtubs) were assessed in 96 Mycobacterium bovis strains collected sequentially from Sika Deer at a slaughterhouse in northeastern China. We defined four loci (MIRU4, ETRA, QUB11b, and Mtub4) as highly discriminative, eight loci (MIRU2, MIRU23, MIRU27, MIRU31, MIRU39, MIRU40, QUB26, and Mtub21) as moderately discriminative, and three loci (MIRU16, Mtub30, and Mtub34) as poorly discriminative. The final locus showed no polymorphism between strains. MIRU-VNTR typing as a whole was highly discriminative, with an overall allelic diversity of 0.897. Of the loci tested, the four highly discriminative loci and eight moderately discriminative loci proved to be most appropriate for first line typing of M. bovis from Sika Deer, with the same resolving ability as all 22 loci (H = 0.897). MIRU-VNTR typing is quick and effective for typing bovine tuberculosis isolates from Sika Deer in China.
Brewer, G; Gilman, J; Noble, N; Crews, V
1978-08-01
Two sublines of commercially available Long-Evans hooded rats have been developed by genetic selection. These sublines have widely differing levels of erythrocyte 2,3-diphosphoglycerate (DPG) due to different alleles at a single genetic locus. In the present work, it is shown that rats from the commercial population are also polymorphic at a hemoglobin locus, probably involving two alleles of the IIIbeta-globin chain locus. Particular hemoglobin types have been found to be strongly associated with certain DPG types, not only in the high-DPG and low-DPG lines but also in the commercial population. Two explanations for this association are considered. One is a single-locus hypothesis, with hemoglobin allelic variation causing DPG variation, and the other is a two-locus hypothesis, with marked linkage disequilibrium.
Ben Romdhane, Mériam; Riahi, Leila; Jardak, Rahma; Ghorbel, Abdelwahed; Zoghlami, Nejia
2018-01-01
Hybridity and the genuineness of hybrids are prominent characteristics for quality control of seeds and thereby for varietal improvement. In the current study, the cross between two local barley genotypes (Ardhaoui: female; Testour: male) previously identified as susceptible/tolerant to salt stress in Tunisia was achieved. The hybrid genetic purity of the generated F 1 putative hybrids and the fingerprinting of the parents along with their offspring were assessed using a set of 17 nuclear SSR markers. Among the analyzed loci, 11 nSSR were shown polymorphic among the parents and their offspring. Based on the applied 11 polymorphic SSR loci, a total of 28 alleles were detected with an average of 2.54 alleles per locus. The locus HVM33 presented the highest number of alleles. The highest polymorphism information content value was detected for the locus HVM33 (0.6713) whereas the lowest PIC value (0.368) was revealed by the loci BMAC0156 , EBMAC0970 and BMAG0013 with a mean value of 0.4619. The probabilities of identical genotypes PI for the 11 microsatellite markers were 8.63 × 10 -7 . Banding patterns among parents and hybrids showed polymorphic fragments. The 11 SSR loci had produced unique fingerprints for each analyzed genotype and segregate between the two parental lines and their four hybrids. Parentage analysis confirms the hybrid purity of the four analyzed genotypes. Six Tunisian barley accessions were used as an outgroup in the multivariate analysis to confirm the efficiency of the employed 11 nSSR markers in genetic differentiation among various barley germplasms. Thus, neighbor joining and factorial analysis revealed clearly the discrimination among the parental lines, the four hybrids and the outgroup accessions. Out of the detected polymorphic 11 nuclear SSR markers, a set of five markers ( HVM33 , WMC1E8 , BMAC0154 , BMAC0040 and BMAG0007 ) were shown to be sufficient and informative enough to discriminate among the six genotypes representing the two parental lines and the four hybrids from each others. These five nSSR markers presented the highest number of alleles per locus ( A n ), expected heterozygosity ( H e ), PIC values and the lowest probabilities of identity (PI). These nSSR loci may be used as referral SSR markers for unambiguous discrimination and genetic purity assessment in barley breeding programs.
USDA-ARS?s Scientific Manuscript database
DNA-based marker analysis of plant genebank material has become a useful tool in the evaluation of levels of genetic diversity and for the informed use and maintenance of germplasm. In this study we quantify levels of Amplified Fragment Length Polymorphism (AFLP) in representative accessions of wild...
Hu, Zhuang; Zhang, Tian; Gao, Xiao-Xiao; Wang, Yang; Zhang, Qiang; Zhou, Hui-Juan; Zhao, Gui-Fang; Wang, Ma-Li; Woeste, Keith E; Zhao, Peng
2016-04-01
Manchurian walnut (Juglans mandshurica Maxim.) is a vulnerable, temperate deciduous tree valued for its wood and nut, but transcriptomic and genomic data for the species are very limited. Next generation sequencing (NGS) has made it possible to develop molecular markers for this species rapidly and efficiently. Our goal is to use transcriptome information from RNA-Seq to understand development in J. mandshurica and develop polymorphic simple sequence repeats (SSRs, microsatellites) to understand the species' population genetics. In this study, more than 47.7 million clean reads were generated using Illumina sequencing technology. De novo assembly yielded 99,869 unigenes with an average length of 747 bp. Based on sequence similarity search with known proteins, a total of 39,708 (42.32 %) genes were identified. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) identified 15,903 (16.9 %) unigenes. Further, we identified and characterized 63 new transcriptome-derived microsatellite markers. By testing the markers on 4 to 14 individuals from four populations, we found that 20 were polymorphic and easily amplified. The number of alleles per locus ranged from 2 to 8. The observed and expected heterozygosity per locus ranged from 0.209 to 0.813 and 0.335 to 0.842, respectively. These twenty microsatellite markers will be useful for studies of population genetics, diversity, and genetic structure, and they will undoubtedly benefit future breeding studies of this walnut species. Moreover, the information uncovered in this research will also serve as a useful genetic resource for understanding the transcriptome and development of J. mandshurica and other Juglans species.
Autosomal dominant familial spastic paraplegia: Tight linkage to chromosome 15q
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, J.K.; Wu, C.T.B.; Jones, S.M.
1994-09-01
Familial spastic paraplegia (FSP) (MIM No.18260) constitutes a clinically and genetically diverse group of disorders that share the primary feature of progressive, severe, lower extremity spasticity. FSP is classified according to the mode of inheritance and whether progressive spasticity occurs in isolation ({open_quotes}uncomplicated FSP{close_quotes}) or with other neurologic abnormalities ({open_quotes}complicated FSP{close_quotes}), including optic neuropathy, retinopathy, extrapyramidal disturbance, dementia, ataxia, ichthyosis, mental retardation, or deafness. Recently, autosomal dominant, uncomplicated FSP was shown to be genetically heterogeneous and tightly linked to a group of microsatellite markers on chromosome 14q in one large kindred. We examined 126 members of a non-consanguineous North Americanmore » kindred of Irish descent. FSP was diagnosed in 31 living subjects who developed insidiously progressive gait disturbance between ages 12 and 35 years. Using genetic linkage analysis to microsatellite DNA polymorphisms, we showed that the FSP locus on chromosome 14q was exluded from linkage with the disorder in our family. Subsequently, we searched for genetic linkage between the disorder and microsatellite DNA polymorphisms spanning approximately 50% of the genome. We observed significantly positive, two-point maximum lod scores (Z) for markers on chromosome 15q: D15S128 (Z=9.70, {theta}=0.05), D15S165 (Z=3.30, {theta}=0.10), and UT511 (Z=3.86, {theta}=0.10). Our data clearly establishes that one locus for autosomal dominant, uncomplicated FSP is mapped to the pericentric region of chromosome 15q. Identifying genes responsible for chromosome 15q-linked and chromosome 14q-linked FSP will greatly advance our understanding of this condition and hopefully other inherited and degenerative brain and spinal cord disorders that are also characterized by axonal degeneration.« less
Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.
2016-01-01
Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145
Putaporntip, C; Kuamsab, N; Kosuwin, R; Tantiwattanasub, W; Vejakama, P; Sueblinvong, T; Seethamchai, S; Jongwutiwes, S; Hughes, A L
2016-03-01
Resistance of Plasmodium falciparum to artemisinin combination therapy (ACT) in Southeast Asia can have a devastating impact on chemotherapy and control measures. In this study, the evolution of artemisinin-resistant P. falciparum in Thailand was assessed by exploring mutations in the K13 locus believed to confer drug resistance phenotype. P. falciparum-infected blood samples were obtained from patients in eight provinces of Thailand over two decades (1991-2014; n = 904). Analysis of the K13 gene was performed by either sequencing the complete coding region (n = 259) or mutation-specific PCR-restriction fragment length polymorphism method (n = 645). K13 mutations related to artesunate resistance were detected in isolates from Trat province bordering Cambodia in 1991, about 4 years preceding widespread deployment of ACT in Thailand and increased in frequency over time. Nonsynonymous nucleotide diversity exceeded synonymous nucleotide diversity in the propeller region of the K13 gene, supporting the hypothesis that this diversity was driven by natural selection. No single mutant appeared to be favoured in every population, and propeller-region mutants were rarely observed in linkage with each other in the same haplotype. On the other hand, there was a highly significant association between the occurrence of a propeller mutant and the insertion of two or three asparagines after residue 139 of K13. Whether this insertion plays a compensatory role for deleterious effects of propeller mutants on the function of the K13 protein requires further investigation. However, modification of duration of ACT from 2-day to 3-day regimens in 2008 throughout the country does not halt the increase in frequency of mutants conferring artemisinin resistance phenotype. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. All rights reserved.
Zurawek, Magdalena; Fichna, Marta; Januszkiewicz, Danuta; Fichna, Piotr; Nowak, Jerzy
2013-02-01
The interferon-induced helicase C domain-containing protein 1 (IFIH1) gene encodes a sensor for double-stranded RNA that initiates antiviral activity against enteroviruses. Previous investigations have indicated a role for IFIH1 in autoimmunity, as common and rare polymorphisms in this gene have been associated with type 1 diabetes. We hypothesized that polymorphisms in the IFIH1 locus may play a role in the pathogenesis of autoimmune Addison's disease (AAD). We analysed the association of rs3747517, rs1990760, rs2111485 and rs13422767 single-nucleotide polymorphisms (SNPs) in the IFIH1 gene and intergenic region with AAD in a Polish cohort. The study comprised 120 patients with AAD and 689 healthy control individuals. Genotyping was performed using TaqMan genotyping assays. The major AA genotype of the coding SNP rs1990760 appeared significantly more frequently in AAD compared with healthy individuals (AG vs AA OR 0·62, 95%CI 0·40-0·95, P = 0·03). We also observed a significant difference in the distribution of the rs13422767 SNP alleles. The major G allele was more frequent in the AAD group (A vs G OR 0·65, 95%CI 0·43-0·98, P = 0·04). Both statistically significant differences, for rs1990760 and rs13422767 SNPs, did not survive the Bonferroni correction (P = 0·11 and P = 0·15, for AA genotype and G allele, respectively). Subsequently, a meta-analysis of 519 patients with AAD and 1362 controls from three different European populations was performed. Under a fixed-effect model, a pooled OR for A allele and AA genotype of rs1990760 did not display any significant increase among AAD (OR = 1·05, P = 0·56 and OR = 1·08, P = 0·50, respectively). The IFIH1 locus polymorphisms are unlikely to be associated with Addison's disease. © 2012 Blackwell Publishing Ltd.
Analysis of ELA-DQB exon 2 polymorphism in Argentine Creole horses by PCR-RFLP and PCR-SSCP.
Villegas-Castagnasso, E E; Díaz, S; Giovambattista, G; Dulout, F N; Peral-García, P
2003-08-01
The second exon of equine leucocyte antigen (ELA)-DQB genes was amplified from genomic DNA of 32 Argentine Creole horses by PCR. Amplified DNA was analysed by PCR-restriction fragment length polymorphism (RFLP) and PCR-single-strand conformation polymorphism (SSCP). The PCR-RFLP analysis revealed two HaeIII patterns, four RsaI patterns, five MspI patterns and two HinfI patterns. EcoRI showed no variation in the analysed sample. Additional patterns that did not account for known exon 2 DNA sequences were observed, suggesting the existence of novel ELA-DQB alleles. PCR-SSCP analysis exhibited seven different band patterns, and the number of bands per animal ranged from four to nine. Both methods indicated that at least two DQB genes are present. The presence of more than two alleles in each animal showed that the primers employed in this work are not specific for a unique DQB locus. The improvement of this PCR-RFLP method should provide a simple and rapid technique for an accurate definition of ELA-DQB typing in horses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsugu, H.; Horowitz, R.; Gibson, N.
1994-12-01
Sera from approximately 30% of patients with systemic lupus erythematosus (SLE) contain high titers of autoantibodies that bind to the 52-kDa Ro/SSA protein. We previously detected polymorphisms in the 52-kDa Ro/SSA gene (SSA1) with restriction enzymes, one of which is strongly associated with the presence of SLE (P < 0.0005) in African Americans. A higher disease frequency and more severe forms of the disease are commonly noted among these female patients. To determine the location and nature of this polymorphism, we obtained two clones that span 8.5 kb of the 52-kDa Ro/SSA locus including its upstream regulatory region. Six exonsmore » were identified, and their nucleotide sequences plus adjacent noncoding regions were determined. No differences were found between these exons and the coding region of one of the reported cDNAs. The disease-associated polymorphic site suggested by a restriction enzyme map and confirmed by DNA amplification and nucleotide sequencing was present upstream of exon 1. This polymorphism may be a genetic marker for a disease-related variation in the coding region for the protein or in the upstream regulatory region of this gene. Although this RFLP is present in Japanese, it is not associated with lupus in this race. 41 refs., 4 figs., 2 tabs.« less
Herkert, Patricia Fernanda; Meis, Jacques F; Lucca de Oliveira Salvador, Gabriel; Rodrigues Gomes, Renata; Aparecida Vicente, Vania; Dominguez Muro, Marisol; Lameira Pinheiro, Rosangela; Lopes Colombo, Arnaldo; Vargas Schwarzbold, Alexandre; Sakuma de Oliveira, Carla; Simão Ferreira, Marcelo; Queiroz-Telles, Flávio; Hagen, Ferry
2018-04-01
Cryptococcosis is acquired from the environment by the inhalation of Cryptococcus cells and may establish from an asymptomatic latent infection into pneumonia or meningoencephalitis. The genetic diversity of a Cryptococcus neoformans species complex has been investigated by several molecular tools, such as multi-locus sequence typing, amplified fragment length polymorphism (AFLP), restriction fragment length polymorphism and microsatellite analysis. This study aimed to investigate the genotype distributions and antifungal susceptibility profiles of C. neoformans sensu lato isolates from southern Brazil. We studied 219 C. neoformans sensu lato isolates with mating- and serotyping, AFLP fingerprinting, microsatellite typing and antifungal susceptibility testing.Results/Key findings. Among the isolates, 136 (69 %) were from HIV-positive patients. Only C. neoformans mating-type α and serotype A were observed. AFLP fingerprinting analysis divided the isolates into AFLP1/VNI (n=172; 78.5 %), AFLP1A/VNII (n=19; 8.7 %), AFLP1B/VNII (n=4; 1.8 %) and a new AFLP pattern AFLP1C (n=23; 10.5 %). All isolates were susceptible to tested antifungals and no correlation between antifungal susceptibility and genotypes was observed. Through microsatellite analysis, most isolates clustered in a major microsatellite complex and Simpson's diversity index of this population was D=0.9856. The majority of C. neoformans sensu stricto infections occurred in HIV-positive patients. C. neoformans AFLP1/VNI was the most frequent genotype and all antifungal drugs had high in vitro activity against this species. Microsatellite analyses showed a high genetic diversity within the regional C. neoformans sensu stricto population, and correlation between environmental and clinical isolates, as well as a temporal and geographic relationship.
Genetic polymorphisms in varied environments.
Powell, J R
1971-12-03
Thirteen experimenital populationis of Drosophila willistoni were maintained in cages, in some of which the environments were relatively constant and in others varied. After 45 weeks, the populations were assayed by gel electrophoresis for polymorphisms at 22 protein loci. The average heterozygosity per individual and the average unmber of alleles per locus were higher in populations maintained in heterogeneous environments than in populations in more constant enviroments.
Taylor, S.E.; Oyler-McCance, S.J.; Quinn, T.W.
2003-01-01
Primers for five polymorphic microsatellite loci were developed for Greater Sage-Grouse (Centrocercus urophasianus) using an enrichment/detection protocol. The high level of polymorphism (nine to 33 alleles) suggests that these loci will be applicable for investigating mating systems and paternity analysis as well as population genetics. Cross-species amplification was successful for each locus in at least two other galliform species.
Zalapa, J E; Brunet, J; Guries, R P
2008-01-01
Ulmus pumila is an elm species, non-native to the USA that hybridizes with Ulmus rubra. In order to study the genetic structure and hybridization patterns between these two elm species, we developed 15 primer pairs for microsatellite loci in U. rubra and tested their cross-amplification in U. pumila. All 15 primers amplified in both species, 11 of which possessed species-specific alleles. Eight loci were polymorphic in U. pumila and eight in U. rubra, each with two to eight alleles per locus. In addition, five primer pairs previously developed in U. laevis and U. carpinifolia (syn. U. minor) cross-amplified and showed polymorphic loci in U. pumila and/or U. rubra. These markers will facilitate the study of genetic structure and gene flow between U. rubra and exotic, invasive U. pumila. © 2007 Blackwell Publishing Ltd No claim to original US government works.
Kotze, M J; Langenhoven, E; Retief, A E; Seftel, H C; Henderson, H E; Weich, H F
1989-01-01
Ten useful two allele restriction fragment length polymorphisms of the low density lipoprotein receptor gene were used for haplotype analysis in 45 unrelated familial hypercholesterolaemic (FH) patients, 60 normal controls, and 32 FH homozygotes, all of whom were white Afrikaners. Pedigree analysis in 27 informative heterozygous FH and 23 normal families has shown the segregation of at least 17 haplotypes in the normal population (111 chromosomes) compared to a predominant association of two of these haplotypes with the disease in the FH subjects. This association was further confirmed in 32 FH homozygotes, indicating at least two 'founder' members for the disease in the Afrikaner population. Recombination events were not detected in any of the families studied and we thus conclude that the haplotypes associated with FH function as specific markers for the disease and will allow presymptomatic diagnosis in affected families. PMID:2565980
Rindi, Laura; Lari, Nicoletta; Garzelli, Carlo
2012-10-01
The Euro-American lineage of the Mycobacterium tuberculosis complex consists of 10 sublineages, each defined by a deletion of a large genomic region (RD, region of difference); by spoligotyping, that probes the polymorphism of the Direct Repeat (DR) locus, the Euro-American strains are classified into 5 lineages (T, Haarlem, LAM, S and X) and 34 sublineages, but the relationships between the RD-defined sublineages and the spoligotype groupings are largely unclear. By testing a global sample of 158 Euro-American strains, mutually exclusive deletions of RD115, RD122, RD174, RD182, RD183, RD193, RD219, RD726 or RD761 were found in 122 strains; deletion of RD724, typical of strains from Central Africa, was not found. The RD-defined sublineages, tested for katG463/gyrA95 polymorphism, belonged to Principal Genotypic Group (PGG) 2, with the exception of RD219 sublineage belonging to PGG3; the 36 strains with no deletion were of either PGG2 or 3. Based on these polymorphisms, a phylogenetic reconstruction of the Euro-American lineage, that integrates the previously reported phylogeny, is proposed. Although certain deletions were found to be associated to certain spoligotype lineages (i.e., deletion RD115 to T and LAM, RD174 to LAM, RD182 to Haarlem, RD219 to T), our analysis indicates a general lack of concordance between RD-defined sublineages and spoligotype groupings. Moreover, of the 42 spoligotypes detected among the study strains, sixteen were shared by strains belonging to different RD sublineages. IS6110-RFLP analysis of strains sharing spoligotypes confirmed a poor genetic relatedness between strains of different RD sublineages. These findings provide evidence for the occurrence of a high degree of homoplasy in the DR locus leading to convergent evolution to identical spoligotypes. The incongruence between Large Sequence Polymorphism and spoligotype polymorphism argues against the use of spoligotyping for establishing phylogenetic relationships within the Euro-American lineage. Copyright © 2012 Elsevier B.V. All rights reserved.
Pedersen, N C; Dhanota, J K; Liu, H
2016-10-15
Specific polymorphisms in the endoplasmic reticulum amino peptidase genes ERAP1 and ERAP2, when present with certain MHC class receptor types, have been associated with increased risk for specific cancers, infectious diseases and autoimmune disorders in humans. This increased risk has been linked to distinct polymorphisms in both ERAPs and MHC class I receptors that affect the way cell-generated peptides are screened for antigenicity. The incidence of cancer, infectious disease and autoimmune disorders differ greatly among pure breeds of dogs as it does in humans and it is possible that this heightened susceptibility is also due to specific polymorphisms in ERAP1 and ERAP2. In order to determine if such polymorphisms exist, the ERAP1 and ERAP2 genes of 10 dogs of nine diverse breeds were sequenced and SNPs causing synonymous or non-synonymous amino acid changes, deletions or insertions were identified. Eight ERAP1 and 10 ERAP2 SNPs were used to create a Sequenom MassARRAY iPLEX based test panel which defined 24 ERAP1, 36 ERAP2 and 128 ERAP1/2 haplotypes. The prevalence of these haplotypes was then measured among dog, wolf, coyote, jackal and red fox populations. Some haplotypes were species specific, while others were shared across species, especially between dog, wolf, coyote and jackal. The prevalence of these haplotypes was then compared among various canid populations, and in particular between various populations of random- and pure-bred dogs. Human-directed positive selection has led to loss of ERAP diversity and segregation of certain haplotypes among various dog breeds. A phylogenetic tree generated from 45 of the most common ERAP1/2 haplotypes demonstrated three distinct clades, all of which were rooted with haplotypes either shared among species or specific to contemporary dogs, coyote and wolf. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Zhou, Shao-zhang; Zhu, Wei-liang; Li, Ming-ying; Li, Hong-yi; Zhang, Ji-ren
2008-08-01
To study the association of single nucleotide polymorphism at interleukin-10 gene 1082 locus with Helicobacter pylori (Hp) infection and the risk of gastric cancer in high prevalent region (Shaanxi Province)aand low prevalence region (Guangdong Province) in China. The genomic DNA was extracted from the peripheral blood of 104 healthy individuals, 104 gastric cancer patients from Guangdong Province, and from 102 healthy volunteers and 102 gastric cancer patients in Shaanxi Province, China. The single nucleotide polymorphism at IL-10 gene 1082 locus was analyzed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). The serum levels of anit-Hp IgG was measured by enzyme-linked immunosorbent assay. The frequencies of IL-10-1082 A/A, A/G and G/G genotypes in the 412 subjects were 86.7%, 10.7% and 2.4%, respectively. In the low prevalence region, the number of carriers of IL-10-1082 G* was much greater in the cancer patients than in the healthy controls (14.4% vs 7.7%, Chi2=4.02, P<0.05, OR=1.01, 95% CI=1.08-3.10). The presence of IL-10-1082 G* was associated with significantly increased risk of gastric cancer following Hp infection (Chi(2)=5.36, P<0.05, OR=6.0, 95% CI=1.23-17.52). In the high prevalence region, the frequency of IL-10-1082 G* was slightly higher among the cancer patients than in the healthy controls, but this difference was not statistically significant (12.7% vs 16.6%, P>0.05). The G* genotype of IL-10 gene 1082 locus may be associated with increased risk of gastric cancer in China.
Crews, D E; Kamboh, M I; Mancilha-Carvalho, J J; Kottke, B
1993-04-01
Using isoelectric focusing and immunoblotting techniques, we screened 96 serum samples from Yanomami Indians of northwestern Brazil to determine structural variation at three apolipoprotein loci: A4, E, and H. The APO-H locus, which is commonly polymorphic in white and black samples, was found to be monomorphic. At the APO-E locus only two alleles, APOE*3 and APOE*4, rather than the three-allele polymorphism commonly seen in Caucasians, was observed. At the APO-A4 locus no example of the APOA4*2 allele, found in Caucasians, was detected. However, the frequency of the less common APOA4*4 allele was above what has been observed in any other population. We investigated the impact of genetic variation at both polymorphic loci on quantitative differences in lipids, apolipoproteins, serum glucose, glycated hemoglobin, and uric acid. Contrary to the cholesterol-elevating effect of APOE*4 reported elsewhere, in both univariate analyses and after adjustments for age, sex, weight, and height, APOE*4 was associated with about a 4% lower mean serum cholesterol. Only after adjustment was this association statistically significant. The APOE*4 allele was significantly associated with unadjusted APO-A1 and APO-E levels but not with any other dependent variable; associations with adjusted APO-A1, APO-C2, and uric acid also approached standard levels of statistical significance (p < or = 0.05). In univariate analyses the APOA4*4 allele was significantly associated with APO-B, serum glucose, percent glycated hemoglobin, and uric acid, but no significant associations were observed after dependent variables were adjusted for age, sex, weight, and height. These results support the notion that apolipoprotein distributions and their associations with lipid and carbohydrate metabolism show ethnic variability.
Kongchum, Pawapol; Palti, Yniv; Hallerman, Eric M; Hulata, Gideon; David, Lior
2010-08-01
Single nucleotide polymorphisms (SNPs) in immune response genes have been reported as markers for susceptibility to infectious diseases in human and livestock. A disease caused by cyprinid herpesvirus 3 (CyHV-3) is highly contagious and virulent in common carp (Cyprinus carpio). With the aim to develop molecular tools for breeding CyHV-3-resistant carp, we have amplified and sequenced 11 candidate genes for viral disease resistance including TLR2, TLR3, TLR4ba, TLR7, TLR9, TLR21, TLR22, MyD88, TRAF6, type I IFN and IL-1beta. For each gene, we initially cloned and sequenced PCR amplicons from 8 to 12 fish (2-3 fish per strain) from the SNP discovery panel. We then identified and evaluated putative SNPs for their polymorphisms in the SNP discovery panel and validated their usefulness for linkage analysis in a full-sib family using the SNaPshot method. Our sequencing results and phylogenetic analyses suggested that TLR3, TLR7 and MyD88 genes are duplicated in the common carp genome. We, therefore, developed locus-specific PCR primers and SNP genotyping assays for the duplicated loci. A total of 48 SNP markers were developed from PCR fragments of the 13 loci (7 single-locus and 3 duplicated genes). Thirty-nine markers were polymorphic with estimated minor allele frequencies of more than 0.1. The utility of the SNP markers was evaluated in one full-sib family and revealed that 20 markers from 9 loci segregated in a disomic and Mendelian pattern and would be useful for linkage analysis. Published by Elsevier Ltd.
Jia, Xiang-Jie; Wang, Chang-Fa; Yang, Gui-Wen; Huang, Jin-Ming; Li, Qiu-Ling; Zhong, Ji-Feng
2011-12-01
Three novel SNPs were found by DNA sequencing, PCR-RFLP and CRS-PCR methods were used for genotyping in 979 Chinese Holstein cattle. One SNP, G1178C, was identified in exon 2 of POU1F1 gene. Two novel SNPs, A906G and A1134G, were identified in 5'-flanking regulatory region (5'-UTR) of PRL gene. The association between polymorphisms of the two genes and milk performance traits were analyzed with PROC GLM of SAS. The results showed that GC genotype at 1178 locus of POU1F1 gene was advantageous for milk yield, milk protein yield, and milk fat yield. AG genotype at 906 locus was advantageous for milk yield. There was no significant difference between 1134 locus and milk performance traits of 5'-UTR of PRL gene. Analysis of genotype combination effect on milk production traits showed that the effect of combined genotype was not simple sum of single genotypes and the effects of gene pyramiding seemed to be more important in molecular breeding.
Kliman, R. M.; Hey, J.
1993-01-01
A 1.9-kilobase region of the period locus was sequenced in six individuals of Drosophila melanogaster and from six individuals of each of three sibling species: Drosophila simulans, Drosophila sechellia and Drosophila mauritiana. Extensive genealogical analysis of 174 polymorphic sites reveals a complex history. It appears that D. simulans, as a large population still segregating very old lineages, gave rise to the island species D. mauritiana and D. sechellia. Rather than considering these speciation events as having produced ``sister'' taxa, it seems more appropriate to consider D. simulans a parent species to D. sechellia and D. mauritiana. The order, in time, of these two phylogenetic events remains unclear. D. mauritiana supports a large number of polymorphisms, many of which are shared with D. simulans, and so appears to have begun and persisted as a large population. In contrast, D. sechellia has very little variation and seems to have experienced a severe population bottleneck. Alternatively, the low variation in D. sechellia could be due to recent directional selection and genetic hitchhiking at or near the per locus. PMID:8436278
Development of microsatellite primers of the largest seagrass, Enhalus acoroides (Hydrocharitaceae).
Gao, Hui; Jiang, Kai; Geng, Yan; Chen, Xiao-Yong
2012-03-01
Microsatellite primers were developed for the seagrass Enhalus acoroides to investigate genetic variation and identify clonal structure. Four polymorphic loci and 32 monomorphic loci were developed in E. acoroides. Two to four alleles per locus were observed at the polymorphic loci across 60 individuals of two E. acoroides populations. The observed and expected heterozygosities within populations ranged from 0.100 to 0.5667 and from 0.0977 to 0.5079, respectively. Our study revealed very low polymorphism in E. acoroides, even at the polymorphic loci. Nevertheless, these primers are a useful tool to study genetic variation, clonal structure, and mating system.
spads 1.0: a toolbox to perform spatial analyses on DNA sequence data sets.
Dellicour, Simon; Mardulyn, Patrick
2014-05-01
SPADS 1.0 (for 'Spatial and Population Analysis of DNA Sequences') is a population genetic toolbox for characterizing genetic variability within and among populations from DNA sequences. In view of the drastic increase in genetic information available through sequencing methods, spads was specifically designed to deal with multilocus data sets of DNA sequences. It computes several summary statistics from populations or groups of populations, performs input file conversions for other population genetic programs and implements locus-by-locus and multilocus versions of two clustering algorithms to study the genetic structure of populations. The toolbox also includes two MATLAB and r functions, GDISPAL and GDIVPAL, to display differentiation and diversity patterns across landscapes. These functions aim to generate interpolating surfaces based on multilocus distance and diversity indices. In the case of multiple loci, such surfaces can represent a useful alternative to multiple pie charts maps traditionally used in phylogeography to represent the spatial distribution of genetic diversity. These coloured surfaces can also be used to compare different data sets or different diversity and/or distance measures estimated on the same data set. © 2013 John Wiley & Sons Ltd.
Novy, Ari; Flory, S Luke; Honig, Joshua A; Bonos, Stacy; Hartman, Jean Marie
2012-02-01
Microsatellite markers were developed for the invasive plant Microstegium vimineum (Poaceae) to assess its population structure and to facilitate tracking of invasion expansion. Using 454 sequencing, 11 polymorphic and six monomorphic microsatellite primer sets were developed for M. vimineum. The primer sets were tested on individuals sampled from six populations in the United States and China. The polymorphic primers amplified di-, tri-, and tetranucleotide repeats with three to 10 alleles per locus. These markers will be useful for a variety of applications including tracking of invasion dynamics and population genetics studies.
Pappas, Derek J; Marin, Wesley; Hollenbach, Jill A; Mack, Steven J
2016-03-01
Bridging ImmunoGenomic Data-Analysis Workflow Gaps (BIGDAWG) is an integrated data-analysis pipeline designed for the standardized analysis of highly-polymorphic genetic data, specifically for the HLA and KIR genetic systems. Most modern genetic analysis programs are designed for the analysis of single nucleotide polymorphisms, but the highly polymorphic nature of HLA and KIR data require specialized methods of data analysis. BIGDAWG performs case-control data analyses of highly polymorphic genotype data characteristic of the HLA and KIR loci. BIGDAWG performs tests for Hardy-Weinberg equilibrium, calculates allele frequencies and bins low-frequency alleles for k×2 and 2×2 chi-squared tests, and calculates odds ratios, confidence intervals and p-values for each allele. When multi-locus genotype data are available, BIGDAWG estimates user-specified haplotypes and performs the same binning and statistical calculations for each haplotype. For the HLA loci, BIGDAWG performs the same analyses at the individual amino-acid level. Finally, BIGDAWG generates figures and tables for each of these comparisons. BIGDAWG obviates the error-prone reformatting needed to traffic data between multiple programs, and streamlines and standardizes the data-analysis process for case-control studies of highly polymorphic data. BIGDAWG has been implemented as the bigdawg R package and as a free web application at bigdawg.immunogenomics.org. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
DNA profiling of pineapple cultivars in Japan discriminated by SSR markers
Shoda, Moriyuki; Urasaki, Naoya; Sakiyama, Sumisu; Terakami, Shingo; Hosaka, Fumiko; Shigeta, Narumi; Nishitani, Chikako; Yamamoto, Toshiya
2012-01-01
We developed 18 polymorphic simple sequence repeat (SSR) markers in pineapple (Ananas comosus) by using genomic libraries enriched for GA and CA motifs. The markers were used to genotype 31 pineapple accessions, including seven cultivars and 11 breeding lines from Okinawa Prefecture, 12 foreign accessions and one from a related species. These SSR loci were highly polymorphic: the 31 accessions contained three to seven alleles per locus, with an average of 4.1. The values of expected heterozygosity ranged from 0.09 to 0.76, with an average of 0.52. All 31 accessions could be successfully differentiated by the 18 SSR markers, with the exception of ‘N67-10’ and ‘Hawaiian Smooth Cayenne’. A single combination of three markers TsuAC004, TsuAC010 and TsuAC041, was enough to distinguish all accessions with one exception. A phenogram based on the SSR genotypes did not show any distinct groups, but it suggested that pineapples bred in Japan are genetically diversed. We reconfirmed the parentage of 14 pineapple accessions by comparing the SSR alleles at 17 SSR loci in each accession and its reported parents. The obtained information will contribute substantially to protecting plant breeders’ rights. PMID:23341750
Komínková, Eva; Dreiseitl, Antonín; Malečková, Eva; Doležel, Jaroslav
2016-01-01
Population surveys of Blumeria graminis f. sp. hordei (Bgh), a causal agent of more than 50% of barley fungal infections in the Czech Republic, have been traditionally based on virulence tests, at times supplemented with non-specific Restriction fragment length polymorphism or Random amplified polymorphic DNA markers. A genomic sequence of Bgh, which has become available recently, enables identification of potential markers suitable for population genetics studies. Two major strategies relying on transposable elements and microsatellites were employed in this work to develop a set of Repeat junction markers, Single sequence repeat and Single nucleotide polymorphism markers. A resolution power of the new panel of markers comprising 33 polymorphisms was demonstrated by a phylogenetic analysis of 158 Bgh isolates. A core set of 97 Czech isolates was compared to a set 50 Australian isolates on the background of 11 diverse isolates collected throughout the world. 73.2% of Czech isolates were found to be genetically unique. An extreme diversity of this collection was in strong contrast with the uniformity of the Australian one. This work paves the way for studies of population structure and dynamics based on genetic variability among different Bgh isolates originating from geographically limited regions. PMID:27875588
Baurens, Franc-Christophe; Bocs, Stéphanie; Rouard, Mathieu; Matsumoto, Takashi; Miller, Robert N G; Rodier-Goud, Marguerite; MBéguié-A-MBéguié, Didier; Yahiaoui, Nabila
2010-07-16
Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana.
Laing, Chad R; Buchanan, Cody; Taboada, Eduardo N; Zhang, Yongxiang; Karmali, Mohamed A; Thomas, James E; Gannon, Victor Pj
2009-06-29
Many approaches have been used to study the evolution, population structure and genetic diversity of Escherichia coli O157:H7; however, observations made with different genotyping systems are not easily relatable to each other. Three genetic lineages of E. coli O157:H7 designated I, II and I/II have been identified using octamer-based genome scanning and microarray comparative genomic hybridization (mCGH). Each lineage contains significant phenotypic differences, with lineage I strains being the most commonly associated with human infections. Similarly, a clade of hyper-virulent O157:H7 strains implicated in the 2006 spinach and lettuce outbreaks has been defined using single-nucleotide polymorphism (SNP) typing. In this study an in silico comparison of six different genotyping approaches was performed on 19 E. coli genome sequences from 17 O157:H7 strains and single O145:NM and K12 MG1655 strains to provide an overall picture of diversity of the E. coli O157:H7 population, and to compare genotyping methods for O157:H7 strains. In silico determination of lineage, Shiga-toxin bacteriophage integration site, comparative genomic fingerprint, mCGH profile, novel region distribution profile, SNP type and multi-locus variable number tandem repeat analysis type was performed and a supernetwork based on the combination of these methods was produced. This supernetwork showed three distinct clusters of strains that were O157:H7 lineage-specific, with the SNP-based hyper-virulent clade 8 synonymous with O157:H7 lineage I/II. Lineage I/II/clade 8 strains clustered closest on the supernetwork to E. coli K12 and E. coli O55:H7, O145:NM and sorbitol-fermenting O157 strains. The results of this study highlight the similarities in relationships derived from multi-locus genome sampling methods and suggest a "common genotyping language" may be devised for population genetics and epidemiological studies. Future genotyping methods should provide data that can be stored centrally and accessed locally in an easily transferable, informative and extensible format based on comparative genomic analyses.
Development and characterization of microsatellite markers for Berberis thunbergii (Berberidaceae).
Allen, Jenica M; Obae, Samuel G; Brand, Mark H; Silander, John A; Jones, Kenneth L; Nunziata, Schyler O; Lance, Stacey L
2012-05-01
Microsatellite markers were isolated and characterized in Berberis thunbergii, an invasive and ornamental shrub in the eastern United States, to assess genetic diversity among populations and potentially identify horticultural cultivars. A total of 12 loci were identified for the species. Eight of the loci were polymorphic and were screened in 24 individuals from two native (Tochigi and Ibaraki prefectures, Japan) and one invasive (Connecticut, USA) population and 21 horticultural cultivars. The number of alleles per locus ranged from three to seven, and observed heterozygosity ranged from 0.048 to 0.636. These new markers will provide tools for examining genetic relatedness of B. thunbergii plants in the native and invasive range, including phylogeographic studies and assessment of rapid evolution in the invasive range. These markers may also provide tools for examining hybridization with other related species in the invasive range.
A Single IGF1 Allele Is a Major Determinant of Small Size in Dogs
Sutter, Nathan B.; Bustamante, Carlos D.; Chase, Kevin; Gray, Melissa M.; Zhao, Keyan; Zhu, Lan; Padhukasahasram, Badri; Karlins, Eric; Davis, Sean; Jones, Paul G.; Quignon, Pascale; Johnson, Gary S.; Parker, Heidi G.; Fretwell, Neale; Mosher, Dana S.; Lawler, Dennis F.; Satyaraj, Ebenezer; Nordborg, Magnus; Lark, K. Gordon; Wayne, Robert K.; Ostrander, Elaine A.
2009-01-01
The domestic dog exhibits greater diversity in body size than any other terrestrial vertebrate. We used a strategy that exploits the breed structure of dogs to investigate the genetic basis of size. First, through a genome-wide scan, we identified a major quantitative trait locus (QTL) on chromosome 15 influencing size variation within a single breed. Second, we examined genetic variation in the 15-megabase interval surrounding the QTL in small and giant breeds and found marked evidence for a selective sweep spanning a single gene (IGF1), encoding insulin-like growth factor 1. A single IGF1 single-nucleotide polymorphism haplotype is common to all small breeds and nearly absent from giant breeds, suggesting that the same causal sequence variant is a major contributor to body size in all small dogs. PMID:17412960
Skogen, Krissa A; Hilpman, Evan T; Todd, Sadie L; Fant, Jeremie B
2012-08-01
Microsatellite markers were developed in the annual herb, Oenothera harringtonii, to investigate patterns of genetic diversity, gene flow, and parentage within and among populations of this Colorado endemic. Ten polymorphic loci were identified in O. harringtonii and tested in four populations sampled across the range of the species. These loci contained trinucleotide repeats with 7-29 alleles per locus. Nine of the 10 loci also amplified in O. caespitosa subsp. macroglottis, O. caespitosa subsp. marginata, and O. caespitosa subsp. navajoensis. In addition, we optimized three markers developed for O. biennis and provide reports of their effectiveness in all four taxa. These results indicate the utility of these markers in O. harringtonii for future studies of genetic structure, gene flow, and parentage as well as their applicability in other members of the O. caespitosa species complex.
A single IGF1 allele is a major determinant of small size in dogs.
Sutter, Nathan B; Bustamante, Carlos D; Chase, Kevin; Gray, Melissa M; Zhao, Keyan; Zhu, Lan; Padhukasahasram, Badri; Karlins, Eric; Davis, Sean; Jones, Paul G; Quignon, Pascale; Johnson, Gary S; Parker, Heidi G; Fretwell, Neale; Mosher, Dana S; Lawler, Dennis F; Satyaraj, Ebenezer; Nordborg, Magnus; Lark, K Gordon; Wayne, Robert K; Ostrander, Elaine A
2007-04-06
The domestic dog exhibits greater diversity in body size than any other terrestrial vertebrate. We used a strategy that exploits the breed structure of dogs to investigate the genetic basis of size. First, through a genome-wide scan, we identified a major quantitative trait locus (QTL) on chromosome 15 influencing size variation within a single breed. Second, we examined genetic variation in the 15-megabase interval surrounding the QTL in small and giant breeds and found marked evidence for a selective sweep spanning a single gene (IGF1), encoding insulin-like growth factor 1. A single IGF1 single-nucleotide polymorphism haplotype is common to all small breeds and nearly absent from giant breeds, suggesting that the same causal sequence variant is a major contributor to body size in all small dogs.
Cai, Ruibo; Shafer, Aaron B A; Laguardia, Alice; Lin, Zhenzhen; Liu, Shuqiang; Hu, Defu
2015-11-25
The forest musk deer (Moschus berezovskii) is a high elevation species distributed across western China and northern Vietnam. Once abundant, habitat loss and poaching has led to a dramatic decrease in population numbers prompting the IUCN to list the species as endangered. Here, we characterized the genetic diversity of a Major Histocompatibility Complex (MHC) locus and teased apart driving factors shaping its variation. Seven DRB exon 2 alleles were identified among a group of randomly sampled forest musk deer from a captive population in the Sichuan province of China. Compared to other endangered or captive ungulates, forest musk deer have relatively low levels of MHC genetic diversity. Non-synonymous substitutions primarily occurred in the putative peptide-binding region (PBR), with analyses suggesting that recombination and selection has shaped the genetic diversity across the locus. Specifically, inter-allelic recombination generated novel allelic combinations, with evidence for both positive selection acting on the PBR and negative selection on the non-PBR. An improved understanding of functional genetic variability of the MHC will facilitate better design and management of captive breeding programs for this endangered species.
Sun, Penglin; Kao, Teh-hui
2013-01-01
The highly polymorphic S (for self-incompatibility) locus regulates self-incompatibility in Petunia inflata; the S-RNase regulates pistil specificity, and multiple S-locus F-box (SLF) genes regulate pollen specificity. The collaborative non-self recognition model predicts that, for any S-haplotype, an unknown number of SLFs collectively recognize all non-self S-RNases to mediate their ubiquitination and degradation. Using a gain-of-function assay, we examined the relationships between S2-SLF1 (for S2-allelic product of Type-1 SLF) and four S-RNases. The results suggest that S2-SLF1 interacts with S7- and S13-RNases, and the previously identified S1- and S3-RNases, but not with S5- or S11-RNase. An artificial microRNA expressed by the S2-SLF1 promoter, but not by the vegetative cell-specific promoter, Late Anther Tomato 52, suppressed expression of S2-SLF1 in S2 pollen, suggesting that SLF1 is specific to the generative cell. The S2 pollen with S2-SLF1 suppressed was compatible with S3-, S5-, S7-, S11-, and S13-carrying pistils, confirming that other SLF proteins are responsible for detoxifying S5- and S11-RNases and suggesting that S2-SLF1 is not the only SLF in S2 pollen that interacts with S3-, S7-, and S13-RNases. Petunia may have evolved at least two types of SLF proteins to detoxify any non-self S-RNase to minimize the deleterious effects of mutation in any SLF. PMID:23444333
Sun, Penglin; Kao, Teh-hui
2013-02-01
The highly polymorphic S (for self-incompatibility) locus regulates self-incompatibility in Petunia inflata; the S-RNase regulates pistil specificity, and multiple S-locus F-box (SLF) genes regulate pollen specificity. The collaborative non-self recognition model predicts that, for any S-haplotype, an unknown number of SLFs collectively recognize all non-self S-RNases to mediate their ubiquitination and degradation. Using a gain-of-function assay, we examined the relationships between S2-SLF1 (for S2-allelic product of Type-1 SLF) and four S-RNases. The results suggest that S2-SLF1 interacts with S7- and S13-RNases, and the previously identified S1- and S3-RNases, but not with S5- or S11-RNase. An artificial microRNA expressed by the S2-SLF1 promoter, but not by the vegetative cell-specific promoter, Late Anther Tomato 52, suppressed expression of S2-SLF1 in S2 pollen, suggesting that SLF1 is specific to the generative cell. The S2 pollen with S2-SLF1 suppressed was compatible with S3-, S5-, S7-, S11-, and S13-carrying pistils, confirming that other SLF proteins are responsible for detoxifying S5- and S11-RNases and suggesting that S2-SLF1 is not the only SLF in S2 pollen that interacts with S3-, S7-, and S13-RNases. Petunia may have evolved at least two types of SLF proteins to detoxify any non-self S-RNase to minimize the deleterious effects of mutation in any SLF.
Breed traceability of buffalo meat using microsatellite genotyping technique.
Kannur, Bheemashankar H; Fairoze, Md Nadeem; Girish, P S; Karabasanavar, Nagappa; Rudresh, B H
2017-02-01
Although buffalo has emerged as a major meat producing animal in Asia, major research on breed traceability has so far been focused on cattle (beef). This research gap on buffalo breed traceability has impelled development and validation of buffalo breed traceability using a set of eight microsatellite (STR) markers in seven Indian buffalo breeds (Bhadawari, Jaffaarabadi, Murrah, Mehsana, Nagpuri, Pandharpuri and Surti). Probability of sharing same profile by two individuals at a specific locus was computed considering different STR numbers, allele pooling in breed and population. Match probabilities per breed were considered and six most polymorphic loci were genotyped. Out of eight microsatellite markers studied, markers CSSMO47, DRB3 and CSSM060 were found most polymorphic. Developed technique was validated with known and unknown, blood and meat samples; wherein, samples were genetically traced in 24 out of 25 samples tested. Results of this study showed potential applications of the methodology and encourage other researchers to address the problem of buffalo traceability so as to create a world-wide archive of breed specific genotypes. This work is the first report of breed traceability of buffalo meat utilizing microsatellite genotyping technique.
Yamada, Yoshiji; Sakuma, Jun; Takeuchi, Ichiro; Yasukochi, Yoshiki; Kato, Kimihiko; Oguri, Mitsutoshi; Fujimaki, Tetsuo; Horibe, Hideki; Muramatsu, Masaaki; Sawabe, Motoji; Fujiwara, Yoshinori; Taniguchi, Yu; Obuchi, Shuichi; Kawai, Hisashi; Shinkai, Shoji; Mori, Seijiro; Arai, Tomio; Tanaka, Masashi
2017-06-13
We have performed exome-wide association studies to identify genetic variants that influence body mass index or confer susceptibility to obesity or metabolic syndrome in Japanese. The exome-wide association study for body mass index included 12,890 subjects, and those for obesity and metabolic syndrome included 12,968 subjects (3954 individuals with obesity, 9014 controls) and 6817 subjects (3998 individuals with MetS, 2819 controls), respectively. Exome-wide association studies were performed with Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relation of genotypes of single nucleotide polymorphisms to body mass index was examined by linear regression analysis, and that of allele frequencies of single nucleotide polymorphisms to obesity or metabolic syndrome was evaluated with Fisher's exact test. The exome-wide association studies identified six, 11, and 40 single nucleotide polymorphisms as being significantly associated with body mass index, obesity (P <1.21 × 10-6), or metabolic syndrome (P <1.20 × 10-6), respectively. Subsequent multivariable logistic regression analysis with adjustment for age and sex revealed that three and five single nucleotide polymorphisms were related (P < 0.05) to obesity or metabolic syndrome, respectively, with one of these latter polymorphisms-rs7350481 (C/T) at chromosome 11q23.3-also being significantly (P < 3.13 × 10-4) associated with metabolic syndrome. The polymorphism rs7350481 may thus be a novel susceptibility locus for metabolic syndrome in Japanese. In addition, single nucleotide polymorphisms in three genes (CROT, TSC1, RIN3) and at four loci (ANKK1, ZNF804B, CSRNP3, 17p11.2) were implicated as candidate determinants of obesity and metabolic syndrome, respectively.
Reynolds, Michelle H.; Pearce, John M.; Lavretsky, Philip; Peters Jeffrey L,; Courtot, Karen; Seixas, Pedro P.
2015-01-01
Genetic diversity is assumed to reflect the evolutionary potential and adaptability of populations, and thus quantifying the genetic diversity of endangered species is useful for recovery programs. In particular, if conservation strategies include reintroductions, periodic genetic assessments are useful to evaluate whether management efforts have resulted in the maximization or loss of genetic variation within populations over generations. In this study, we collected blood, feather, and tissue samples during 1999–2009 and quantified genetic diversity for a critically endangered waterfowl species endemic to the Hawaiian archipelago, the Laysan teal or duck (Anas laysanensis; n = 239 individual birds sampled). The last extant population of this species at Laysan Island was sourced in 2004–2005 for a ‘wild to wild’ translocation of 42 individuals for an experimental reintroduction to Midway Atoll. To inform future management strategies, we compared genetic diversity sampled from the source population (n = 133 Laysan birds) including 23 of Midway’s founders and offspring of the translocated population 2–5 years post release (n = 96 Midway birds). We attempted to identify polymorphic markers by screening nuclear microsatellite (N = 83) and intronic loci (N = 19), as well as the mitochondrial control region (mtDNA) for a subset of samples. Among 83 microsatellite loci screened, six were variable. We found low nuclear variation consistent with the species’ historical population bottlenecks and sequence variation was observed at a single intron locus. We detected no variation within the mtDNA. We found limited but similar estimates of allelic richness (2.58 alleles per locus) and heterozygosity within islands. Two rare alleles found in the Laysan Island source population were not present in the Midway translocated group, and a rare allele was discovered in an individual on Midway in 2008. We found similar genetic diversity and low, but statistically significant, levels of differentiation (0.6%) between island populations suggesting that genetic drift (as a result of translocation-induced population bottlenecking) has had a limited effect within five years post-release. Our results have utility for informing translocation and genetic management decisions.
Genetic affinities of north and northeastern populations of India: inference from HLA-based study.
Agrawal, S; Srivastava, S K; Borkar, M; Chaudhuri, T K
2008-08-01
India is like a microcosm of the world in terms of its diversity; religion, climate and ethnicity which leads to genetic variations in the populations. As a highly polymorphic marker, the human leukocyte antigen (HLA) system plays an important role in the genetic differentiation studies. To assess the genetic diversity of HLA class II loci, we studied a total of 1336 individuals from north India using DNA-based techniques. The study included four endogamous castes (Kayastha, Mathurs, Rastogies and Vaishyas), two inbreeding Muslim populations (Shias and Sunnis) from north India and three northeast Indian populations (Lachung, Mech and Rajbanshi). A total of 36 alleles were observed at DRB1 locus in both Hindu castes and Muslims from north, while 21 alleles were seen in northeast Indians. At the DQA1 locus, the number of alleles ranged from 11 to 17 in the studied populations. The total number of alleles at DQB1 was 19, 12 and 20 in the studied castes, Muslims and northeastern populations, respectively. The most frequent haplotypes observed in all the studied populations were DRB1*0701-DQA1*0201-DQB1*0201 and DRB1*1501-DQA1*0103-DQB1*0601. Upon comparing our results with other world populations, we observed the presence of Caucasoid element in north Indian population. However, differential admixturing among Sunnis and Shias with the other north Indians was evident. Northeastern populations showed genetic affinity with Mongoloids from southeast Asia. When genetic distances were calculated, we found the north Indians and northeastern populations to be markedly unrelated.
Antigen processing and presentation: evolution from a bird's eye view.
Kaufman, Jim
2013-09-01
Most detailed knowledge of the MHC outside of mammals has come from studies of chickens, originally due to the economic importance of the poultry industry. We have used our discoveries about the chicken MHC to develop a framework for understanding the evolution of the MHC, based on the importance of genomic organisation for gene co-evolution. In humans, MHC class I molecules are polymorphic and determine the specificity of peptide presentation, while the molecules involved in antigen processing are functionally monomorphic. The genes for tapasin, transporters associated with antigen presentation (TAPs) and inducible proteasome components (LMPs) are located in and beyond the class II region, far away from the class I genes in the class I region. In contrast, chickens express only one class I locus at high levels, which can result in strong MHC associations with resistance to particular infectious pathogens. The chicken TAP and tapasin genes are located very close to the class I genes, and have high levels of allelic polymorphism and moderate sequence diversity, co-evolving their specificities to work optimally with the dominantly expressed class I molecule. The salient features of the chicken MHC are found in many if not most non-mammalian species examined, and are likely to represent the ancestral organisation of the MHC. Comparison with the MHC organisation of humans and typical mammals suggests that a large inversion brought the class III region into the middle of the MHC, separating the antigen processing genes from the class I gene, breaking the co-evolutionary relationships and allowing a multigene family of well-expressed class I genes. Such co-evolution in the primordial MHC was likely responsible for the appearance of the antigen presentation pathways and receptor-ligand interactions at the birth of the adaptive immune system. Of course, much further work is required to understand this evolutionary framework in more detail. Copyright © 2012 Elsevier Ltd. All rights reserved.
Isakova, Zh T; Talaibekova, E T; Asambaeva, D A; Kerimkulova, A S; Lunegova, O S; Aldasheva, N M; Aldashev, A A
To analyze the association of genotype combinations of the polymorphic markers G276T in the ADIPOQ gene, Glu23Lys in the KCNJ11 gene, and IVS3C>T in the TCF7L2 gene with the development of type 2 diabetes mellitus (T2DM) in the Kyrgyz population. The investigation enrolled 23 Kyrgyz people, of whom there were 114 patients with T2DM and 109 without T2DM (a control group). T2DM was diagnosed in accordance with the WHO criteria (1999). The genotypes of ADIPOQ (G276T), KCNJ11 (Glu23Lys), and TCF7L2 (IVS3C>T) gene polymorphisms were identified using the restriction fragment length polymorphism analysis. When typing at the polymorphic loci G276T in the ADIPOQ gene, Glu23Lys in the KCNJ11 gene, and IVS3C>T in the TCF7L2 gene, the development of T2DM in the Kyrgyz population was associated with the T allele (odds ratio (OR), 1.68; p=0.025), the heterozygous G276T genotype (OR 1,8; p=0.036) in the ADIPOQ gene; the 23Lys allele (OR, 1.62; p=0.019) in the KCNJ11 gene; a two-locus genotype combination in the genes ADIPOQ/KCNJ11: G276T/Glu23Lys (OR, 4.88; p=0.0013), G276G/Lys23Lys (OR, 4.65; p=0.019), G276T/Glu23Glu (OR, 3.10; p=0.022), a two-locus genotype combination in the genes ADIPOQ/TCF7L2: G276T/СС (OR, 1.97; p=0.04); two-locus genotype combinations in the genes KCNJ11/TCF7L2: Lys23Lys/CC (ОR, 2.65; p=0.042), Glu23Lys/CT (OR, 3.88; p=0.027); and a three-locus genotype combination in the genes ADIPOQ/KCNJ11/TCF7L2: G276T/Glu23Lys/CT (OR, 14.48; p=0.02). The development of T2DM in the Kyrgyz population is genetically determined by ADIPOQ (G276T) gene, KCNJ11 (Glu23Lys), and TCF7L (IVS3C>T) gene polymorphisms with the predisposing value of the T allele of the heterozygous G276T genotype in the ADIPOQ gene; the 23Lys allele in the KCNJ1 gene; as well as by genotype combinations in the genes ADIPOQ/KCNJ11 (G276T/Glu23Lys, G276G/Lys23Lys, G276T/Glu23Glu); ADIPOQ/TCF7L2 (G276T/SS); KCNJ11/TCF7L2 (Lys23Lys/CC, Glu23Lys/CT); ADIPOQ/KCNJ11/TCF7L2 (G276T/Glu23Lys /CT). The IVS3C>T locus in the TCF7L2 gene is not independently statistically significantly associated with the development of T2DM; however, its predisposing effect has been identified in its combination with the variant genotypes of the polymorphic loci G276T in the ADIPOQ gene and Glu23Lys in the KCNJ11 gene.
The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus
USDA-ARS?s Scientific Manuscript database
We identify the wheat stem rust resistance gene Sr50 by physical mapping, mutation and complementation as homologous to barley Mla encoding a Coiled-Coil-Nucleotide-Binding-Leucine-Rich Repeat (CC-NB-LRR) protein. We show that Sr50 confers a unique resistance specificity, different from Sr31 and oth...
Wang, Yankun; Chen, Wenjing; Chu, Pu; Wan, Shubei; Yang, Mao; Wang, Mingming; Guan, Rongzhan
2016-08-18
Key genes related to plant type traits have played very important roles in the "green revolution" by increasing lodging resistance and elevating the harvest indices of crop cultivars. Although there have been numerous achievements in the development of dwarfism and plant type in Brassica napus breeding, exploring new materials conferring oilseed rape with efficient plant types that provide higher yields is still of significance in breeding, as well as in elucidating the mechanisms underlying plant development. Here, we report a new dwarf architecture with down-curved leaf mutant (Bndwf/dcl1) isolated from an ethyl methanesulphonate (EMS)-mutagenized B. napus line, together with its inheritance and gene mapping, and pleiotropic effects of the mapped locus on plant-type traits. We constructed a high-density single-nucleotide polymorphism (SNP) map using a backcross population derived from the Bndwf/dcl1 mutant and the canola cultivar 'zhongshuang11' ('ZS11') and mapped the dwarf architecture with the down-curved leaf dominant locus, BnDWF/DCL1, in a 6.58-cM interval between SNP marker bins M46180 and M49962 on the linkage group (LG) C05 of B. napus. Further mapping with other materials derived from Bndwf/dcl1 narrowed the interval harbouring BnDWF/DCL1 to 175 kb in length and this interval contained 16 annotated genes. Quantitative trait locus (QTL) mappings with the backcross population for plant type traits, including plant height, branching height, main raceme length and average branching interval, indicated that the mapped QTLs for plant type traits were located at the same position as the BnDWF/DCL1 locus. This study suggests that the BnDWF/DCL1 locus is a major pleiotropic locus/QTL in B. napus, which may reduce plant height, alter plant type traits and change leaf shape, and thus may lead to compact plant architecture. Accordingly, this locus may have substantial breeding potential for increasing planting density.
Yuan, Y; Shangguan, J B; Li, Z B; Ning, Y F; Huang, Y S; Li, B B; Mao, X Q
2015-11-30
Until recently, Fenneropenaeus penicillatus was considered a commercial shrimp species. However, in 2005, it was included on the Red List as an endangered species by the Chinese government. In this study, 19 new microsatellite markers in F. penicillatus were developed and tested in samples of 32 wild individuals from Nanao, China. Twelve loci were polymorphic and 7 were monomorphic. Of the 12 polymorphic loci, the number of alleles per locus ranged from 3 to 6, with an average of 4.42 alleles per locus. The polymorphism information content ranged from 0.302 to 0.670, with a mean of 0.4817. The observed and expected heterozygosities ranged from 0.2250 to 0.8889 and from 0.1111 to 0.7750, respectively. Significant deviations from Hardy-Weinberg equilibrium (HWE, adjusted P < 0.0042) after a Bonferroni correction were observed in 3 loci (NA-9, NA-57, and NA-64), whereas the other 9 loci were in HWE. These new microsatellite markers will be useful in further research on the population genetic structure of F. penicillatus.
Comprehensive analysis of Arabidopsis expression level polymorphisms with simple inheritance
Plantegenet, Stephanie; Weber, Johann; Goldstein, Darlene R; Zeller, Georg; Nussbaumer, Cindy; Thomas, Jérôme; Weigel, Detlef; Harshman, Keith; Hardtke, Christian S
2009-01-01
In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5′ regulatory sequence variation in the corresponding genes is indeed increased. However, ∼42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL. PMID:19225455
Polymorphic mimicry, microhabitat use, and sex-specific behaviour.
Joron, M
2005-05-01
In order to assess the adaptive importance of microhabitat segregation for the maintenance of mimetic diversity, I explore how flight height varies between the sympatric forms of the polymorphic butterfly Heliconius numata and their respective models in the genus Melinaea. There is no evidence for vertical stratification of mimicry rings in these tiger-patterned butterflies, but males of H. numata tend to fly significantly higher than females and the Melinaea models. This difference in microhabitat preference likely results from females searching for host plants whereas males are patrolling for mates. I then present an extension of Muller's mimicry model for the case of partial behavioural or spatial segregation of sexes. The analysis suggests that sex-specific behaviours can make mimicry more beneficial, simply by reducing the effective population size participating in mimicry. The interaction between mimicry and sex-specific behaviours may therefore facilitate the evolution of polymorphism via enhanced, fine-scale local adaptation.
Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R. K.; Singh, N. K.; Singh, Rakesh
2013-01-01
Simple sequence repeat (SSR) and Single Nucleotide Polymorphic (SNP), the two most robust markers for identifying rice varieties were compared for assessment of genetic diversity and population structure. Total 375 varieties of rice from various regions of India archived at the Indian National GeneBank, NBPGR, New Delhi, were analyzed using thirty six genetic markers, each of hypervariable SSR (HvSSR) and SNP which were distributed across 12 rice chromosomes. A total of 80 alleles were amplified with the SSR markers with an average of 2.22 alleles per locus whereas, 72 alleles were amplified with SNP markers. Polymorphic information content (PIC) values for HvSSR ranged from 0.04 to 0.5 with an average of 0.25. In the case of SNP markers, PIC values ranged from 0.03 to 0.37 with an average of 0.23. Genetic relatedness among the varieties was studied; utilizing an unrooted tree all the genotypes were grouped into three major clusters with both SSR and SNP markers. Analysis of molecular variance (AMOVA) indicated that maximum diversity was partitioned between and within individual level but not between populations. Principal coordinate analysis (PCoA) with SSR markers showed that genotypes were uniformly distributed across the two axes with 13.33% of cumulative variation whereas, in case of SNP markers varieties were grouped into three broad groups across two axes with 45.20% of cumulative variation. Population structure were tested using K values from 1 to 20, but there was no clear population structure, therefore Ln(PD) derived Δk was plotted against the K to determine the number of populations. In case of SSR maximum Δk was at K=5 whereas, in case of SNP maximum Δk was found at K=15, suggesting that resolution of population was higher with SNP markers, but SSR were more efficient for diversity analysis. PMID:24367635
Cavaleiro, Nathalia P; Solé-Cava, Antonio M; Lazoski, Cristiano; Cunha, Haydée A
2013-12-01
Using a CA/CAA enriched library screening procedure, we isolated and characterised a total of seventeen polymorphic microsatellite loci for two species of Crassostrea with recognised economic importance. Eleven microsatellite loci were developed for C. rhizophorae, a Western Atlantic species for which no microsatellites were previously known. Another six loci were developed for C. gasar, a species that occurs on both sides of the South Atlantic, adding to the ten loci previously described for the species. The levels of polymorphism were estimated using 24 C. rhizophorae from Southeast Brazil (São Paulo) and 23 C. gasar individuals from North Brazil (Maranhão). The number of alleles per polymorphic locus varied from 3 to 27, and the observed and expected heterozygosities ranged between 0.174 and 0.958 and between 0.237 and 0.972 in C. rhizophorae and C. gasar, respectively. No linkage disequilibrium was found between any locus pair, and four of them exhibited deviations from Hardy-Weinberg expectations. Of the 17 loci developed, 8 cross-amplified in C. gigas and 13 in C. virginica. These markers are useful for evolution and population genetics studies of Crassostrea species and may provide fundamental data for the future cultivation of native oysters in Western Atlantic.
Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei
2017-08-01
Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Linkage analysis with chromosome 9 markers in hereditary essential tremor.
Conway, D; Bain, P G; Warner, T T; Davis, M B; Findley, L J; Thompson, P D; Marsden, C D; Harding, A E
1993-07-01
Hereditary essential tremor (ET) is an autosomal dominant disorder with variable expression and reduced penetrance. A tremor indistinguishable from ET may be observed in patients with autosomal dominant idiopathic torsion dystonia (ITD), in which the disease locus has been mapped to 9q32-34 in some kindreds, tightly linked to the argininosuccinate synthetase (ASS) locus. We performed linkage analysis in 15 families with ET containing 60 definitely affected individuals, using dinucleotide repeat polymorphisms at the ASS locus and the Abelson locus (ABL). Cumulative lod scores were -19.5 for ASS and -10.8 for ABL at a recombination fraction of 0.01, and tight linkage to ASS was excluded individually in 11 of the families. These data indicate that the ET gene is not allelic to that causing ITD.
Ding, Zhen; Liu, Guo-Liang; Li, Xiang; Chen, Xue-Yan; Wu, Yi-Xia; Cui, Can-Can; Zhang, Xi; Yang, Guang; Xie, Lin
2016-06-01
The fatty acid desaturase (FADS) controls polyunsaturated fatty acid (PUFA) synthesis in human tissues and breast milk. Evaluate the influence of 10 single nucleotide polymorphisms (SNPs) and various haplotypes in the FADS gene cluster (FADS1, FADS2, FADS3) on PUFA concentration in the breast milk of 209 healthy Chinese women. PUFA concentrations were measured in breast milk using gas chromatography and genotyping was performed using the Sequenom Mass Array system. A SNP (rs1535) and 2-locus haplotypes (rs3834458-rs1535, rs1535-rs174575) in the FADS2 gene were associated with concentrations of γ-linoleic acid (GLA) and arachidonic acid (AA) in breast milk. Likewise, in the FADS1 gene, a 2-locus constructed haplotype (rs174547-rs174553) also affected GLA and AA concentration (P<0.05 for all). Minor allele carriers of the SNP and haplotypes described above had lower concentrations of GLA and AA. In the FADS2 gene, the 3-locus haplotype rs3834458-rs1535-rs174575, significantly affected concentrations of GLA but not AA. Pairwise comparison showed that individuals major homozygous for the SNP rs1000778 in the FADS3 gene had lower concentrations of ALA and linoleic acid (LA) in their breast milk. Polymorphisms in the FADS gene cluster influence PUFA concentrations in the breast milk of Chinese Han lactating women. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genetic susceptibility factors for alcohol-induced chronic pancreatitis.
Aghdassi, Ali A; Weiss, F Ulrich; Mayerle, Julia; Lerch, Markus M; Simon, Peter
2015-07-01
Chronic pancreatitis is a progressive inflammatory disease of the pancreas and frequently associated with immoderate alcohol consumption. Since only a small proportion of alcoholics eventually develop chronic pancreatitis genetic susceptibility factors have long been suspected to contribute to the pathogenesis of the disease. Smaller studies in ethnically defined populations have found that not only polymorphism in proteins involved in the metabolism of ethanol, such as Alcohol Dehydrogenase and Aldehyde Dehydrogenase, can confer a risk for developing chronic pancreatitis but also mutations that had previously been reported in association with idiopathic pancreatitis, such as SPINK1 mutations. In a much broader approach employing genome wide search strategies the NAPS study found that polymorphisms in the Trypsin locus (PRSS1 rs10273639), and the Claudin 2 locus (CLDN2-RIPPLY1-MORC4 locus rs7057398 and rs12688220) confer an increased risk of developing alcohol-induced pancreatitis. These results from North America have now been confirmed by a European consortium. In another genome wide approach polymorphisms in the genes encoding Fucosyltransferase 2 (FUT2) non-secretor status and blood group B were not only found in association with higher serum lipase levels in healthy volunteers but also to more than double the risk for developing alcohol-associated chronic pancreatitis. These novel genetic associations will allow to investigate the pathophysiological and biochemical basis of alcohol-induced chronic pancreatitis on a cellular level and in much more detail than previously possible. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Mishra, Sudhanshu; Singh, Sujeet Kumar; Munjal, Ashok Kumar; Aspi, Jouni; Goyal, Surendra Prakash
2014-01-03
In India, six landscapes and source populations that are important for long-term conservation of Bengal tigers (Panthera tigris tigris) have been identified. Except for a few studies, nothing is known regarding the genetic structure and extent of gene flow among most of the tiger populations across India as the majority of them are small, fragmented and isolated. Thus, individual-based relationships are required to understand the species ecology and biology for planning effective conservation and genetics-based individual identification has been widely used. But this needs screening and describing characteristics of microsatellite loci from DNA from good-quality sources so that the required number of loci can be selected and the genotyping error rate minimized. In the studies so far conducted on the Bengal tiger, a very small number of loci (n = 35) have been tested with high-quality source of DNA, and information on locus-specific characteristics is lacking. The use of such characteristics has been strongly recommended in the literature to minimize the error rate and by the International Society for Forensic Genetics (ISFG) for forensic purposes. Therefore, we describe for the first time locus-specific genetic and genotyping profile characteristics, crucial for population genetic studies, using high-quality source of DNA of the Bengal tiger. We screened 39 heterologous microsatellite loci (Sumatran tiger, domestic cat, Asiatic lion and snow leopard) in captive individuals (n = 8), of which 21 loci are being reported for the first time in the Bengal tiger, providing an additional choice for selection. The mean relatedness coefficient (R = -0.143) indicates that the selected tigers were unrelated. Thirty-four loci were polymorphic, with the number of alleles ranging from 2 to 7 per locus, and the remaining five loci were monomorphic. Based on the PIC values (> 0.500), and other characteristics, we suggest that 16 loci (3 to 7 alleles) be used for genetic and forensic study purposes. The probabilities of matching genotypes of unrelated individuals (3.692 × 10(-19)) and siblings (4.003 × 10(-6)) are within the values needed for undertaking studies in population genetics, relatedness, sociobiology and forensics.
Variath, Murali Tottekkad; Joshi, Gopal; Bali, Sapinder; Agarwal, Manu; Kumar, Amar; Jagannath, Arun; Goel, Shailendra
2015-01-01
Background Safflower (Carthamus tinctorius L.), an Asteraceae member, yields high quality edible oil rich in unsaturated fatty acids and is resilient to dry conditions. The crop holds tremendous potential for improvement through concerted molecular breeding programs due to the availability of significant genetic and phenotypic diversity. Genomic resources that could facilitate such breeding programs remain largely underdeveloped in the crop. The present study was initiated to develop a large set of novel microsatellite markers for safflower using next generation sequencing. Principal Findings Low throughput genome sequencing of safflower was performed using Illumina paired end technology providing ~3.5X coverage of the genome. Analysis of sequencing data allowed identification of 23,067 regions harboring perfect microsatellite loci. The safflower genome was found to be rich in dinucleotide repeats followed by tri-, tetra-, penta- and hexa-nucleotides. Primer pairs were designed for 5,716 novel microsatellite sequences with repeat length ≥ 20 bases and optimal flanking regions. A subset of 325 microsatellite loci was tested for amplification, of which 294 loci produced robust amplification. The validated primers were used for assessment of 23 safflower accessions belonging to diverse agro-climatic zones of the world leading to identification of 93 polymorphic primers (31.6%). The numbers of observed alleles at each locus ranged from two to four and mean polymorphism information content was found to be 0.3075. The polymorphic primers were tested for cross-species transferability on nine wild relatives of cultivated safflower. All primers except one showed amplification in at least two wild species while 25 primers amplified across all the nine species. The UPGMA dendrogram clustered C. tinctorius accessions and wild species separately into two major groups. The proposed progenitor species of safflower, C. oxyacantha and C. palaestinus were genetically closer to cultivated safflower and formed a distinct cluster. The cluster analysis also distinguished diploid and tetraploid wild species of safflower. Conclusion Next generation sequencing of safflower genome generated a large set of microsatellite markers. The novel markers developed in this study will add to the existing repertoire of markers and can be used for diversity analysis, synteny studies, construction of linkage maps and marker-assisted selection. PMID:26287743
Cox, David G.; Curtit, Elsa; Romieu, Gilles; Fumoleau, Pierre; Rios, Maria; Bonnefoi, Hervé; Bachelot, Thomas; Soulié, Patrick; Jouannaud, Christelle; Bourgeois, Hugues; Petit, Thierry; Tennevet, Isabelle; Assouline, David; Mathieu, Marie-Christine; Jacquin, Jean-Philippe; Lavau-Denes, Sandrine; Darut-Jouve, Ariane; Ferrero, Jean-Marc; Tarpin, Carole; Lévy, Christelle; Delecroix, Valérie; Trillet-Lenoir, Véronique; Cojocarasu, Oana; Meunier, Jérôme; Pierga, Jean-Yves; Faure-Mercier, Céline; Blanché, Hélène; Sahbatou, Mourad; Boland, Anne; Bacq, Delphine; Besse, Céline; Deleuze, Jean-François; Pauporté, Iris; Thomas, Gilles; Pivot, Xavier
2016-01-01
Genetic polymorphisms are associated with breast cancer risk. Clinical and epidemiological observations suggest that clinical characteristics of breast cancer, such as estrogen receptor or HER2 status, are also influenced by hereditary factors. To identify genetic variants associated with pathological characteristics of breast cancer patients, a Genome Wide Association Study was performed in a cohort of 9365 women from the French nationwide SIGNAL/PHARE studies (NCT00381901/RECF1098). Strong association between the FGFR2 locus and ER status of breast cancer patients was observed (ER-positive n=6211, ER-negative n=2516; rs3135718 OR=1.34 p=5.46×10−12). This association was limited to patients with HER2-negative tumors (ER-positive n=4267, ER-negative n=1185; rs3135724 OR=1.85 p=1.16×10−11). The FGFR2 locus is known to be associated with breast cancer risk. This study provides sound evidence for an association between variants in the FGFR2 locus and ER status among breast cancer patients, particularly among patients with HER2-negative disease. This refinement of the association between FGFR2 variants and ER-status to HER2-negative disease provides novel insight to potential biological and clinical influence of genetic polymorphisms on breast tumors. PMID:27764800