Sample records for diversity patterns observed

  1. A phenological mid-domain effect in flowering diversity.

    PubMed

    Morales, Manuel A; Dodge, Gary J; Inouye, David W

    2005-01-01

    In this paper, we test the mid-domain hypothesis as an explanation for observed patterns of flowering diversity in two sub-alpine communities of insect-pollinated plants. Observed species richness patterns showed an early-season increase in richness, a mid-season peak, and a late-season decrease. We show that a "mid-domain" null model can qualitatively match this pattern of flowering species richness, with R(2) values typically greater than 60%. We find significant or marginally significant departures from expected patterns of diversity for only 3 out of 12 year-site combinations. On the other hand, we do find a consistent pattern of departure when comparing observed versus null-model predicted flowering diversity averaged across years. Our results therefore support the hypothesis that ecological factors shape patterns of flowering phenology, but that the strength or nature of these environmental forcings may differ between years or the two habitats we studied, or may depend on species-specific characteristics of these plant communities. We conclude that mid-domain null models provide an important baseline from which to test departure of expected patterns of flowering diversity across temporal domains. Geometric constraints should be included first in the list of factors that drive seasonal patterns of flowering diversity.

  2. A metric for quantifying El Niño pattern diversity with implications for ENSO-mean state interaction

    NASA Astrophysics Data System (ADS)

    Lemmon, Danielle E.; Karnauskas, Kristopher B.

    2018-04-01

    Recent research on the El Niño-Southern Oscillation (ENSO) phenomenon increasingly reveals the highly complex and diverse nature of ENSO variability. A method of quantifying ENSO spatial pattern uniqueness and diversity is presented, which enables (1) formally distinguishing between unique and "canonical" El Niño events, (2) testing whether historical model simulations aptly capture ENSO diversity by comparing with instrumental observations, (3) projecting future ENSO diversity using future model simulations, (4) understanding the dynamics that give rise to ENSO diversity, and (5) analyzing the associated diversity of ENSO-related atmospheric teleconnection patterns. Here we develop a framework for measuring El Niño spatial SST pattern uniqueness and diversity for a given set of El Niño events using two indices, the El Niño Pattern Uniqueness (EPU) index and El Niño Pattern Diversity (EPD) index, respectively. By applying this framework to instrumental records, we independently confirm a recent regime shift in El Niño pattern diversity with an increase in unique El Niño event sea surface temperature patterns. However, the same regime shift is not observed in historical CMIP5 model simulations; moreover, a comparison between historical and future CMIP5 model scenarios shows no robust change in future ENSO diversity. Finally, we support recent work that asserts a link between the background cooling of the eastern tropical Pacific and changes in ENSO diversity. This robust link between an eastern Pacific cooling mode and ENSO diversity is observed not only in instrumental reconstructions and reanalysis, but also in historical and future CMIP5 model simulations.

  3. Higher speciation and lower extinction rates influence mammal diversity gradients in Asia.

    PubMed

    Tamma, Krishnapriya; Ramakrishnan, Uma

    2015-02-04

    Little is known about the patterns and correlates of mammal diversity gradients in Asia. In this study, we examine patterns of species distributions and phylogenetic diversity in Asia and investigate if the observed diversity patterns are associated with differences in diversification rates between the tropical and non-tropical regions. We used species distribution maps and phylogenetic trees to generate species and phylogenetic diversity measures for 1° × 1° cells across mainland Asia. We constructed lineage-through-time plots and estimated diversification shift-times to examine the temporal patterns of diversifications across orders. Finally, we tested if the observed gradients in Asia could be associated with geographical differences in diversification rates across the tropical and non-tropical biomes. We estimated speciation, extinction and dispersal rates across these two regions for mammals, both globally and for Asian mammals. Our results demonstrate strong latitudinal and longitudinal gradients of species and phylogenetic diversity with Southeast Asia and the Himalayas showing highest diversity. Importantly, our results demonstrate that differences in diversification (speciation, extinction and dispersal) rates between the tropical and the non-tropical biomes influence the observed diversity gradients globally and in Asia. For the first time, we demonstrate that Asian tropics act as both cradles and museums of mammalian diversity. Temporal and spatial variation in diversification rates across different lineages of mammals is an important correlate of species diversity gradients observed in Asia.

  4. Consumer preference for seeds and seedlings of rare species impacts tree diversity at multiple scales.

    PubMed

    Young, Hillary S; McCauley, Douglas J; Guevara, Roger; Dirzo, Rodolfo

    2013-07-01

    Positive density-dependent seed and seedling predation, where herbivores selectively eat seeds or seedlings of common species, is thought to play a major role in creating and maintaining plant community diversity. However, many herbivores and seed predators are known to exhibit preferences for rare foods, which could lead to negative density-dependent predation. In this study, we first demonstrate the occurrence of increased predation of locally rare tree species by a widespread group of insular seed and seedling predators, land crabs. We then build computer simulations based on these empirical data to examine the effects of such predation on diversity patterns. Simulations show that herbivore preferences for locally rare species are likely to drive scale-dependent effects on plant community diversity: at small scales these foraging patterns decrease plant community diversity via the selective consumption of rare plant species, while at the landscape level they should increase diversity, at least for short periods, by promoting clustered local dominance of a variety of species. Finally, we compared observed patterns of plant diversity at the site to those obtained via computer simulations, and found that diversity patterns generated under simulations were highly consistent with observed diversity patterns. We posit that preference for rare species by herbivores may be prevalent in low- or moderate-diversity systems, and that these effects may help explain diversity patterns across different spatial scales in such ecosystems.

  5. Large-scale dark diversity estimates: new perspectives with combined methods.

    PubMed

    Ronk, Argo; de Bello, Francesco; Fibich, Pavel; Pärtel, Meelis

    2016-09-01

    Large-scale biodiversity studies can be more informative if observed diversity in a study site is accompanied by dark diversity, the set of absent although ecologically suitable species. Dark diversity methodology is still being developed and a comparison of different approaches is needed. We used plant data at two different scales (European and seven large regions) and compared dark diversity estimates from two mathematical methods: species co-occurrence (SCO) and species distribution modeling (SDM). We used plant distribution data from the Atlas Florae Europaeae (50 × 50 km grid cells) and seven different European regions (10 × 10 km grid cells). Dark diversity was estimated by SCO and SDM for both datasets. We examined the relationship between the dark diversity sizes (type II regression) and the overlap in species composition (overlap coefficient). We tested the overlap probability according to the hypergeometric distribution. We combined the estimates of the two methods to determine consensus dark diversity and composite dark diversity. We tested whether dark diversity and completeness of site diversity (log ratio of observed and dark diversity) are related to various natural and anthropogenic factors differently than simple observed diversity. Both methods provided similar dark diversity sizes and distribution patterns; dark diversity is greater in southern Europe. The regression line, however, deviated from a 1:1 relationship. The species composition overlap of two methods was about 75%, which is much greater than expected by chance. Both consensus and composite dark diversity estimates showed similar distribution patterns. Both dark diversity and completeness measures exhibit relationships to natural and anthropogenic factors different than those exhibited by observed richness. In summary, dark diversity revealed new biodiversity patterns which were not evident when only observed diversity was examined. A new perspective in dark diversity studies can incorporate a combination of methods.

  6. Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally

    PubMed Central

    Ramirez, Kelly S.; Leff, Jonathan W.; Barberán, Albert; Bates, Scott Thomas; Betley, Jason; Crowther, Thomas W.; Kelly, Eugene F.; Oldfield, Emily E.; Shaw, E. Ashley; Steenbock, Christopher; Bradford, Mark A.; Wall, Diana H.; Fierer, Noah

    2014-01-01

    Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents. PMID:25274366

  7. Temporal and Spatial Diversity of Bacterial Communities in Coastal Waters of the South China Sea

    PubMed Central

    Du, Jikun; Xiao, Kai; Li, Li; Ding, Xian; Liu, Helu; Lu, Yongjun; Zhou, Shining

    2013-01-01

    Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns. PMID:23785512

  8. A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY

    EPA Science Inventory

    In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

  9. Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally.

    PubMed

    Ramirez, Kelly S; Leff, Jonathan W; Barberán, Albert; Bates, Scott Thomas; Betley, Jason; Crowther, Thomas W; Kelly, Eugene F; Oldfield, Emily E; Shaw, E Ashley; Steenbock, Christopher; Bradford, Mark A; Wall, Diana H; Fierer, Noah

    2014-11-22

    Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages

    PubMed Central

    Aguirre, Luis F.; Montaño-Centellas, Flavia A.; Gavilanez, M. Mercedes; Stevens, Richard D.

    2016-01-01

    Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further, we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however, diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dissimilarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phylogenetic nor taxonomic diversity can fully account for patterns of functional diversity, highlighting the need for examining different dimensions of biodiversity of bats in hyperdiverse ecosystems. PMID:27384441

  11. Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages.

    PubMed

    Aguirre, Luis F; Montaño-Centellas, Flavia A; Gavilanez, M Mercedes; Stevens, Richard D

    2016-01-01

    Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further, we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however, diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dissimilarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phylogenetic nor taxonomic diversity can fully account for patterns of functional diversity, highlighting the need for examining different dimensions of biodiversity of bats in hyperdiverse ecosystems.

  12. Nucleotide variation in genes invloved in wood formation in two pine species

    Treesearch

    David Pot; Lisa McMillan; Craig Echt; Gregoire Le Provost; Pauline Garnier-Gere; Sheree Cato; Christophe Plomion

    2005-01-01

    Nucleotide diversity in eight genes related to wood formation was investigated in two pine species, Pinus pinaster and P. radiata. The nucleotide diversity patterns observed and their properties were compared between the two species according to the specific characteristics of the samples analysed. A lower diversity was observed in P. radiata...

  13. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide

    USGS Publications Warehouse

    Prober, Suzanne M.; Leff, Jonathan W.; Bates, Scott T.; Borer, Elizabeth T.; Firn, Jennifer; Harpole, W. Stanley; Lind, Eric M.; Seabloom, Eric W.; Adler, Peter B.; Bakker, Jonathan D.; Cleland, Elsa E.; DeCrappeo, Nicole; DeLorenze, Elizabeth; Hagenah, Nicole; Hautier, Yann; Hofmockel, Kirsten S.; Kirkman, Kevin P.; Knops, Johannes M. H.; La Pierre, Kimberly J.; MacDougall, Andrew S.; McCulley, Rebecca L.; Mitchell, Charles E.; Risch, Anita C.; Schuetz, Martin; Stevens, Carly J.; Williams, Ryan J.; Fierer, Noah

    2015-01-01

    Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.

  14. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity

    PubMed Central

    Bryant, Jessica A.; Lamanna, Christine; Morlon, Hélène; Kerkhoff, Andrew J.; Enquist, Brian J.; Green, Jessica L.

    2008-01-01

    The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely related taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly related taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic comparisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ. PMID:18695215

  15. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity

    PubMed Central

    Wolfe, Benjamin E.; Button, Julie E.; Santarelli, Marcela; Dutton, Rachel J.

    2014-01-01

    SUMMARY Tractable microbial communities are needed to bridge the gap between observations of patterns of microbial diversity and mechanisms that can explain these patterns. We developed cheese rinds as model microbial communities by characterizing in situ patterns of diversity and by developing an in vitro system for community reconstruction. Sequencing of 137 different rind communities across 10 countries revealed 24 widely distributed and culturable genera of bacteria and fungi as dominant community members. Reproducible community types formed independent of geographic location of production. Intensive temporal sampling demonstrated that assembly of these communities is highly reproducible. Patterns of community composition and succession observed in situ can be recapitulated in a simple in vitro system. Widespread positive and negative interactions were identified between bacterial and fungal community members. Cheese rind microbial communities represent an experimentally tractable system for defining mechanisms that influence microbial community assembly and function. PMID:25036636

  16. Cross-taxon congruence and environmental conditions.

    PubMed

    Toranza, Carolina; Arim, Matías

    2010-07-16

    Diversity patterns of different taxa typically covary in space, a phenomenon called cross-taxon congruence. This pattern has been explained by the effect of one taxon diversity on taxon diversity, shared biogeographic histories of different taxa, and/or common responses to environmental conditions. A meta-analysis of the association between environment and diversity patterns found that in 83 out of 85 studies, more than 60% of the spatial variability in species richness was related to variables representing energy, water or their interaction. The role of the environment determining taxa diversity patterns leads us to hypothesize that this would explain the observed cross-taxon congruence. However, recent analyses reported the persistence of cross-taxon congruence when environmental effect was statistically removed. Here we evaluate this hypothesis, analyzing the cross-taxon congruence between birds and mammals in the Brazilian Cerrado, and assess the environmental role on the spatial covariation in diversity patterns. We found a positive association between avian and mammal richness and a positive latitudinal trend for both groups in the Brazilian Cerrado. Regression analyses indicated an effect of latitude, PET, and mean temperature over both biological groups. In addition, we show that NDVI was only associated with avian diversity; while the annual relative humidity, was only correlated with mammal diversity. We determined the environmental effects on diversity in a path analysis that accounted for 73% and 76% of the spatial variation in avian and mammal richness. However, an association between avian and mammal diversity remains significant. Indeed, the importance of this link between bird and mammal diversity was also supported by a significant association between birds and mammal spatial autoregressive model residuals. Our study corroborates the main role of environmental conditions on diversity patterns, but suggests that other important mechanisms, which have not been properly evaluated, are involved in the observed cross-taxon congruence. The approaches introduced here indicate that the prevalence of a significant association among taxa, after considering the environmental determinant, could indicate both the need to incorporate additional processes (e.g. biogeographic and evolutionary history or trophic interactions) and/or the existence of a shared trend in detection biases among taxa and regions.

  17. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales.

    PubMed

    Hendershot, John Nicholas; Read, Quentin D; Henning, Jeremiah A; Sanders, Nathan J; Classen, Aimée T

    2017-07-01

    Macroecology seeks to understand broad-scale patterns in the diversity and abundance of organisms, but macroecologists typically study aboveground macroorganisms. Belowground organisms regulate numerous ecosystem functions, yet we lack understanding of what drives their diversity. Here, we examine the controls on belowground diversity along latitudinal and elevational gradients. We performed a global meta-analysis of 325 soil communities across 20 studies conducted along temperature and soil pH gradients. Belowground taxa, whether bacterial or fungal, observed along a given gradient of temperature or soil pH were equally likely to show a linear increase, linear decrease, humped pattern, trough-shaped pattern, or no pattern in diversity along the gradient. Land-use intensity weakly affected the diversity-temperature relationship, but no other factor did so. Our study highlights disparities among diversity patterns of soil microbial communities. Belowground diversity may be controlled by the associated climatic and historical contexts of particular gradients, by factors not typically measured in community-level studies, or by processes operating at scales that do not match the temporal and spatial scales under study. Because these organisms are responsible for a suite of key processes, understanding the drivers of their distribution and diversity is fundamental to understanding the functioning of ecosystems. © 2017 by the Ecological Society of America.

  18. Taxonomic distinctness and richness of helminth parasite assemblages of freshwater fishes in Mexican hydrological basins.

    PubMed

    Quiroz-Martínez, Benjamín; Salgado-Maldonado, Guillermo

    2013-01-01

    In this paper, we analyse the distributional patterns of adult helminth parasites of freshwater fishes with respect to the main hydrological basins of Mexico. We use the taxonomic distinctness and the variation in taxonomic distinctness to explore patterns of parasite diversity and how these patterns change between zoogeographical regions. We address questions about the factors that determine the variation of observed diversity of helminths between basins. We also investigate patterns of richness, taxonomic distinctness and distance decay of similarity amongst basins. Our analyses suggest that the evolution of the fauna of helminth parasites in Mexico is mostly dominated by independent host colonization events and that intra--host speciation could be a minor factor explaining the origin of this diversity. This paper points out a clear separation between the helminth faunas of northern--nearctic and southern--neotropical components in Mexican continental waters, suggesting the availability of two distinct taxonomic pools of parasites in Mexican drainage basins. Data identifies Mexican drainage basins as unities inhabited by freshwater fishes, hosting a mixture of neotropical and nearctic species, in addition, data confirms neotropical and neartic basins/helminth faunas. The neotropical basins of Mexico are host to a richest and more diversified helminth fauna, including more families, genera and species, compared to the less rich and less diverse helminth fauna in the nearctic basins. The present analysis confirms distance--decay as one of the important factors contributing to the patterns of diversity observed. The hypothesis that helminth diversity could be explained by the ichthyological diversity of the basin received no support from present analysis.

  19. Taxonomic Distinctness and Richness of Helminth Parasite Assemblages of Freshwater Fishes in Mexican Hydrological Basins

    PubMed Central

    Quiroz-Martínez, Benjamín; Salgado-Maldonado, Guillermo

    2013-01-01

    In this paper, we analyse the distributional patterns of adult helminth parasites of freshwater fishes with respect to the main hydrological basins of Mexico. We use the taxonomic distinctness and the variation in taxonomic distinctness to explore patterns of parasite diversity and how these patterns change between zoogeographical regions. We address questions about the factors that determine the variation of observed diversity of helminths between basins. We also investigate patterns of richness, taxonomic distinctness and distance decay of similarity amongst basins. Our analyses suggest that the evolution of the fauna of helminth parasites in Mexico is mostly dominated by independent host colonization events and that intra - host speciation could be a minor factor explaining the origin of this diversity. This paper points out a clear separation between the helminth faunas of northern - nearctic and southern - neotropical components in Mexican continental waters, suggesting the availability of two distinct taxonomic pools of parasites in Mexican drainage basins. Data identifies Mexican drainage basins as unities inhabited by freshwater fishes, hosting a mixture of neotropical and nearctic species, in addition, data confirms neotropical and neartic basins/helminth faunas. The neotropical basins of Mexico are host to a richest and more diversified helminth fauna, including more families, genera and species, compared to the less rich and less diverse helminth fauna in the nearctic basins. The present analysis confirms distance - decay as one of the important factors contributing to the patterns of diversity observed. The hypothesis that helminth diversity could be explained by the ichthyological diversity of the basin received no support from present analysis. PMID:24086342

  20. Fine-Scale Bacterial Beta Diversity within a Complex Ecosystem (Zodletone Spring, OK, USA): The Role of the Rare Biosphere

    PubMed Central

    Youssef, Noha H.; Couger, M. B.; Elshahed, Mostafa S.

    2010-01-01

    Background The adaptation of pyrosequencing technologies for use in culture-independent diversity surveys allowed for deeper sampling of ecosystems of interest. One extremely well suited area of interest for pyrosequencing-based diversity surveys that has received surprisingly little attention so far, is examining fine scale (e.g. micrometer to millimeter) beta diversity in complex microbial ecosystems. Methodology/Principal Findings We examined the patterns of fine scale Beta diversity in four adjacent sediment samples (1mm apart) from the source of an anaerobic sulfide and sulfur rich spring (Zodletone spring) in southwestern Oklahoma, USA. Using pyrosequencing, a total of 292,130 16S rRNA gene sequences were obtained. The beta diversity patterns within the four datasets were examined using various qualitative and quantitative similarity indices. Low levels of Beta diversity (high similarity indices) were observed between the four samples at the phylum-level. However, at a putative species (OTU0.03) level, higher levels of beta diversity (lower similarity indices) were observed. Further examination of beta diversity patterns within dominant and rare members of the community indicated that at the putative species level, beta diversity is much higher within rare members of the community. Finally, sub-classification of rare members of Zodletone spring community based on patterns of novelty and uniqueness, and further examination of fine scale beta diversity of each of these subgroups indicated that members of the community that are unique, but non novel showed the highest beta diversity within these subgroups of the rare biosphere. Conclusions/Significance The results demonstrate the occurrence of high inter-sample diversity within seemingly identical samples from a complex habitat. We reason that such unexpected diversity should be taken into consideration when exploring gamma diversity of various ecosystems, as well as planning for sequencing-intensive metagenomic surveys of highly complex ecosystems. PMID:20865128

  1. Mitochondrial phylogeography of a Beringian relict: the endemic freshwater genus of blackfish Dallia (Esociformes).

    PubMed

    Campbell, M A; Lopéz, J A

    2014-02-01

    Mitochondrial genetic variability among populations of the blackfish genus Dallia (Esociformes) across Beringia was examined. Levels of divergence and patterns of geographic distribution of mitochondrial DNA lineages were characterized using phylogenetic inference, median-joining haplotype networks, Bayesian skyline plots, mismatch analysis and spatial analysis of molecular variance (SAMOVA) to infer genealogical relationships and to assess patterns of phylogeography among extant mitochondrial lineages in populations of species of Dallia. The observed variation includes extensive standing mitochondrial genetic diversity and patterns of distinct spatial segregation corresponding to historical and contemporary barriers with minimal or no mixing of mitochondrial haplotypes between geographic areas. Mitochondrial diversity is highest in the common delta formed by the Yukon and Kuskokwim Rivers where they meet the Bering Sea. Other regions sampled in this study host comparatively low levels of mitochondrial diversity. The observed levels of mitochondrial diversity and the spatial distribution of that diversity are consistent with persistence of mitochondrial lineages in multiple refugia through the last glacial maximum. © 2014 The Fisheries Society of the British Isles.

  2. Global marine bacterial diversity peaks at high latitudes in winter

    PubMed Central

    Ladau, Joshua; Sharpton, Thomas J; Finucane, Mariel M; Jospin, Guillaume; Kembel, Steven W; O'Dwyer, James; Koeppel, Alexander F; Green, Jessica L; Pollard, Katherine S

    2013-01-01

    Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms. PMID:23514781

  3. Postglacial recolonization shaped the genetic diversity of the winter moth (Operophtera brumata) in Europe

    Treesearch

    Jeremy C. Andersen; Nathan P. Havill; Adalgisa Caccone; Joseph S. Elkinton

    2017-01-01

    Changes in climate conditions, particularly during the Quaternary climatic oscillations, have long been recognized to be important for shaping patterns of species diversity. For species residing in the western Palearctic, two commonly observed genetic patterns resulting from these cycles are as follows: (1) that the numbers and distributions of genetic lineages...

  4. Patterns and controlling factors of species diversity in the Arctic Ocean

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, Gene; van Dijken, Gert; Arrigo, Kevin R.; Cronin, Thomas M.; Wollenburg, Jutta E.

    2012-01-01

    Aim  The Arctic Ocean is one of the last near-pristine regions on Earth, and, although human activities are expected to impact on Arctic ecosystems, we know very little about baseline patterns of Arctic Ocean biodiversity. This paper aims to describe Arctic Ocean-wide patterns of benthic biodiversity and to explore factors related to the large-scale species diversity patterns.Location  Arctic Ocean.Methods  We used large ostracode and foraminiferal datasets to describe the biodiversity patterns and applied comprehensive ecological modelling to test the degree to which these patterns are potentially governed by environmental factors, such as temperature, productivity, seasonality, ice cover and others. To test environmental control of the observed diversity patterns, subsets of samples for which all environmental parameters were available were analysed with multiple regression and model averaging.Results  Well-known negative latitudinal species diversity gradients (LSDGs) were found in metazoan Ostracoda, but the LSDGs were unimodal with an intermediate maximum with respect to latitude in protozoan foraminifera. Depth species diversity gradients were unimodal, with peaks in diversity shallower than those in other oceans. Our modelling results showed that several factors are significant predictors of diversity, but the significant predictors were different among shallow marine ostracodes, deep-sea ostracodes and deep-sea foraminifera.Main conclusions  On the basis of these Arctic Ocean-wide comprehensive datasets, we document large-scale diversity patterns with respect to latitude and depth. Our modelling results suggest that the underlying mechanisms causing these species diversity patterns are unexpectedly complex. The environmental parameters of temperature, surface productivity, seasonality of productivity, salinity and ice cover can all play a role in shaping large-scale diversity patterns, but their relative importance may depend on the ecological preferences of taxa and the oceanographic context of regions. These results suggest that a multiplicity of variables appear to be related to community structure in this system.

  5. A Systematic Review of Global Drivers of Ant Elevational Diversity

    PubMed Central

    Szewczyk, Tim; McCain, Christy M.

    2016-01-01

    Ant diversity shows a variety of patterns across elevational gradients, though the patterns and drivers have not been evaluated comprehensively. In this systematic review and reanalysis, we use published data on ant elevational diversity to detail the observed patterns and to test the predictions and interactions of four major diversity hypotheses: thermal energy, the mid-domain effect, area, and the elevational climate model. Of sixty-seven published datasets from the literature, only those with standardized, comprehensive sampling were used. Datasets included both local and regional ant diversity and spanned 80° in latitude across six biogeographical provinces. We used a combination of simulations, linear regressions, and non-parametric statistics to test multiple quantitative predictions of each hypothesis. We used an environmentally and geometrically constrained model as well as multiple regression to test their interactions. Ant diversity showed three distinct patterns across elevations: most common were hump-shaped mid-elevation peaks in diversity, followed by low-elevation plateaus and monotonic decreases in the number of ant species. The elevational climate model, which proposes that temperature and precipitation jointly drive diversity, and area were partially supported as independent drivers. Thermal energy and the mid-domain effect were not supported as primary drivers of ant diversity globally. The interaction models supported the influence of multiple drivers, though not a consistent set. In contrast to many vertebrate taxa, global ant elevational diversity patterns appear more complex, with the best environmental model contingent on precipitation levels. Differences in ecology and natural history among taxa may be crucial to the processes influencing broad-scale diversity patterns. PMID:27175999

  6. Sporadic sampling, not climatic forcing, drives observed early hominin diversity.

    PubMed

    Maxwell, Simon J; Hopley, Philip J; Upchurch, Paul; Soligo, Christophe

    2018-05-08

    The role of climate change in the origin and diversification of early hominins is hotly debated. Most accounts of early hominin evolution link observed fluctuations in species diversity to directional shifts in climate or periods of intense climatic instability. None of these hypotheses, however, have tested whether observed diversity patterns are distorted by variation in the quality of the hominin fossil record. Here, we present a detailed examination of early hominin diversity dynamics, including both taxic and phylogenetically corrected diversity estimates. Unlike past studies, we compare these estimates to sampling metrics for rock availability (hominin-, primate-, and mammal-bearing formations) and collection effort, to assess the geological and anthropogenic controls on the sampling of the early hominin fossil record. Taxic diversity, primate-bearing formations, and collection effort show strong positive correlations, demonstrating that observed patterns of early hominin taxic diversity can be explained by temporal heterogeneity in fossil sampling rather than genuine evolutionary processes. Peak taxic diversity at 1.9 million years ago (Ma) is a sampling artifact, reflecting merely maximal rock availability and collection effort. In contrast, phylogenetic diversity estimates imply peak diversity at 2.4 Ma and show little relation to sampling metrics. We find that apparent relationships between early hominin diversity and indicators of climatic instability are, in fact, driven largely by variation in suitable rock exposure and collection effort. Our results suggest that significant improvements in the quality of the fossil record are required before the role of climate in hominin evolution can be reliably determined. Copyright © 2018 the Author(s). Published by PNAS.

  7. Biogeographical Interpretation of Elevational Patterns of Genus Diversity of Seed Plants in Nepal

    PubMed Central

    Li, Miao; Feng, Jianmeng

    2015-01-01

    This study tests if the biogeographical affinities of genera are relevant for explaining elevational plant diversity patterns in Nepal. We used simultaneous autoregressive (SAR) models to investigate the explanatory power of several predictors in explaining the diversity-elevation relationships shown in genera with different biogeographical affinities. Delta akaike information criterion (ΔAIC) was used for multi-model inferences and selections. Our results showed that both the total and tropical genus diversity peaked below the mid-point of the elevational gradient, whereas that of temperate genera had a nearly symmetrical, unimodal relationship with elevation. The proportion of temperate genera increased markedly with elevation, while that of tropical genera declined. Compared to tropical genera, temperate genera had wider elevational ranges and were observed at higher elevations. Water-related variables, rather than mid-domain effects (MDE), were the most significant predictors of elevational patterns of tropical genus diversity. The temperate genus diversity was influenced by energy availability, but only in quadratic terms of the models. Though climatic factors and mid-domain effects jointly explained most of the variation in the diversity of temperate genera with elevation, the former played stronger roles. Total genus diversity was most strongly influenced by climate and the floristic overlap of tropical and temperate floras, while the influences of mid-domain effects were relatively weak. The influences of water-related and energy-related variables may vary with biogeographical affinities. The elevational patterns may be most closely related to climatic factors, while MDE may somewhat modify the patterns. Caution is needed when investigating the causal factors underlying diversity patterns for large taxonomic groups composed of taxa of different biogeographical affinities. Right-skewed diversity-elevation patterns may be produced by the differential response of taxa with varying biogeographical affinities to climatic factors and MDE. PMID:26488164

  8. Biogeographical Interpretation of Elevational Patterns of Genus Diversity of Seed Plants in Nepal.

    PubMed

    Li, Miao; Feng, Jianmeng

    2015-01-01

    This study tests if the biogeographical affinities of genera are relevant for explaining elevational plant diversity patterns in Nepal. We used simultaneous autoregressive (SAR) models to investigate the explanatory power of several predictors in explaining the diversity-elevation relationships shown in genera with different biogeographical affinities. Delta akaike information criterion (ΔAIC) was used for multi-model inferences and selections. Our results showed that both the total and tropical genus diversity peaked below the mid-point of the elevational gradient, whereas that of temperate genera had a nearly symmetrical, unimodal relationship with elevation. The proportion of temperate genera increased markedly with elevation, while that of tropical genera declined. Compared to tropical genera, temperate genera had wider elevational ranges and were observed at higher elevations. Water-related variables, rather than mid-domain effects (MDE), were the most significant predictors of elevational patterns of tropical genus diversity. The temperate genus diversity was influenced by energy availability, but only in quadratic terms of the models. Though climatic factors and mid-domain effects jointly explained most of the variation in the diversity of temperate genera with elevation, the former played stronger roles. Total genus diversity was most strongly influenced by climate and the floristic overlap of tropical and temperate floras, while the influences of mid-domain effects were relatively weak. The influences of water-related and energy-related variables may vary with biogeographical affinities. The elevational patterns may be most closely related to climatic factors, while MDE may somewhat modify the patterns. Caution is needed when investigating the causal factors underlying diversity patterns for large taxonomic groups composed of taxa of different biogeographical affinities. Right-skewed diversity-elevation patterns may be produced by the differential response of taxa with varying biogeographical affinities to climatic factors and MDE.

  9. Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling

    NASA Astrophysics Data System (ADS)

    Tian, Chang-Hai; Zhang, Xi-Yun; Wang, Zhen-Hua; Liu, Zong-Hua

    2017-06-01

    Chimera states have been studied in 1D arrays, and a variety of different chimera states have been found using different models. Research has recently been extended to 2D arrays but only to phase models of them. Here, we extend it to a nonphase model of 2D arrays of neurons and focus on the influence of nonlocal coupling. Using extensive numerical simulations, we find, surprisingly, that this system can show most types of previously observed chimera states, in contrast to previous models, where only one or a few types of chimera states can be observed in each model. We also find that this model can show some special chimera-like patterns such as gridding and multicolumn patterns, which were previously observed only in phase models. Further, we present an effective approach, i.e., removing some of the coupling links, to generate heterogeneous coupling, which results in diverse chimera-like patterns and even induces transformations from one chimera-like pattern to another.

  10. Environmental heterogeneity predicts species richness of freshwater mollusks in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Hauffe, T.; Schultheiß, R.; Van Bocxlaer, B.; Prömmel, K.; Albrecht, C.

    2016-09-01

    Species diversity and how it is structured on a continental scale is influenced by stochastic, ecological, and evolutionary driving forces, but hypotheses on determining factors have been mainly examined for terrestrial and marine organisms. The extant diversity of African freshwater mollusks is in general well assessed to facilitate conservation strategies and because of the medical importance of several taxa as intermediate hosts for tropical parasites. This historical accumulation of knowledge has, however, not resulted in substantial macroecological studies on the spatial distribution of freshwater mollusks. Here, we use continental distribution data and a recently developed method of random and cohesive allocation of species distribution ranges to test the relative importance of various factors in shaping species richness of Bivalvia and Gastropoda. We show that the mid-domain effect, that is, a hump-shaped richness gradient in a geographically bounded system despite the absence of environmental gradients, plays a minor role in determining species richness of freshwater mollusks in sub-Saharan Africa. The western branch of the East African Rift System was included as dispersal barrier in richness models, but these simulation results did not fit observed diversity patterns significantly better than models where this effect was not included, which suggests that the rift has played a more complex role in generating diversity patterns. Present-day precipitation and temperature explain richness patterns better than Eemian climatic condition. Therefore, the availability of water and energy for primary productivity during the past does not influence current species richness patterns much, and observed diversity patterns appear to be in equilibrium with contemporary climate. The availability of surface waters was the best predictor of bivalve and gastropod richness. Our data indicate that habitat diversity causes the observed species-area relationship, and hence, that environmental heterogeneity is a principal driver of freshwater mollusk richness on a continental scale.

  11. An investigation of the relationship between innovation and cultural diversity.

    PubMed

    Kandler, Anne; Laland, Kevin N

    2009-08-01

    In this paper we apply reaction-diffusion models to explore the relationship between the rate of behavioural innovation and the level of cultural diversity. We investigate how both independent invention and the modification and refinement of established innovations impact on cultural dynamics and diversity. Further, we analyse these relationships in the presence of biases in cultural learning and find that the introduction of new variants typically increases cultural diversity substantially in the short term, but may decrease long-term diversity. Independent invention generally supports higher levels of cultural diversity than refinement. Repeated patterns of innovation through refinement generate characteristic oscillating trends in diversity, with increasing trends towards greater average diversity observed for medium but not low innovation rates. Conformity weakens the relationship between innovation and diversity. The level of cultural diversity, and pattern of temporal dynamics, potentially provide clues as to the underlying process, which can be used to interpret empirical data.

  12. Beta Diversity of Demersal Fish Assemblages in the North-Eastern Pacific: Interactions of Latitude and Depth

    PubMed Central

    Anderson, Marti J.; Tolimieri, Nick; Millar, Russell B.

    2013-01-01

    Knowledge of broad-scale global patterns in beta diversity (i.e., variation or turnover in identities of species) for marine systems is in its infancy. We analysed the beta diversity of groundfish communities along the North American Pacific coast, from trawl data spanning 32.57°N to 48.52°N and 51 m to 1200 m depth. Analyses were based on both the Jaccard measure and the probabilistic Raup-Crick measure, which accounts for variation in alpha diversity. Overall, beta diversity decreased with depth, and this effect was strongest at lower latitudes. Superimposed on this trend were peaks in beta diversity at around 400–600 m and also around 1000–1200 m, which may indicate high turnover around the edges of the oxygen minimum zone. Beta diversity was also observed to decrease with latitude, but this effect was only observed in shallower waters (<200 m); latitudinal turnover began to disappear at depths >800 m. At shallower depths (<200 m), peaks in latitudinal turnover were observed at ∼43°N, 39°N, 35°N and 31°N, which corresponded well with several classically observed oceanographic boundaries. Turnover with depth was stronger than latitudinal turnover, and is likely to reflect strong environmental filtering over relatively short distances. Patterns in beta diversity, including latitude-by-depth interactions, should be integrated with other biodiversity measures in ecosystem-based management and conservation of groundfish communities. PMID:23526960

  13. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time.

    PubMed

    Mannion, Philip D; Upchurch, Paul; Carrano, Matthew T; Barrett, Paul M

    2011-02-01

    The accurate reconstruction of palaeobiodiversity patterns is central to a detailed understanding of the macroevolutionary history of a group of organisms. However, there is increasing evidence that diversity patterns observed directly from the fossil record are strongly influenced by fluctuations in the quality of our sampling of the rock record; thus, any patterns we see may reflect sampling biases, rather than genuine biological signals. Previous dinosaur diversity studies have suggested that fluctuations in sauropodomorph palaeobiodiversity reflect genuine biological signals, in comparison to theropods and ornithischians whose diversity seems to be largely controlled by the rock record. Most previous diversity analyses that have attempted to take into account the effects of sampling biases have used only a single method or proxy: here we use a number of techniques in order to elucidate diversity. A global database of all known sauropodomorph body fossil occurrences (2024) was constructed. A taxic diversity curve for all valid sauropodomorph genera was extracted from this database and compared statistically with several sampling proxies (rock outcrop area and dinosaur-bearing formations and collections), each of which captures a different aspect of fossil record sampling. Phylogenetic diversity estimates, residuals and sample-based rarefaction (including the first attempt to capture 'cryptic' diversity in dinosaurs) were implemented to investigate further the effects of sampling. After 'removal' of biases, sauropodomorph diversity appears to be genuinely high in the Norian, Pliensbachian-Toarcian, Bathonian-Callovian and Kimmeridgian-Tithonian (with a small peak in the Aptian), whereas low diversity levels are recorded for the Oxfordian and Berriasian-Barremian, with the Jurassic/Cretaceous boundary seemingly representing a real diversity trough. Observed diversity in the remaining Triassic-Jurassic stages appears to be largely driven by sampling effort. Late Cretaceous diversity is difficult to elucidate and it is possible that this interval remains relatively under-sampled. Despite its distortion by sampling biases, much of sauropodomorph palaeobiodiversity can be interpreted as a reflection of genuine biological signals, and fluctuations in sea level may account for some of these diversity patterns. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  14. Evaluating simulated functional trait patterns and quantifying modelled trait diversity effects on simulated ecosystem fluxes

    NASA Astrophysics Data System (ADS)

    Pavlick, R.; Schimel, D.

    2014-12-01

    Dynamic Global Vegetation Models (DGVMs) typically employ only a small set of Plant Functional Types (PFTs) to represent the vast diversity of observed vegetation forms and functioning. There is growing evidence, however, that this abstraction may not adequately represent the observed variation in plant functional traits, which is thought to play an important role for many ecosystem functions and for ecosystem resilience to environmental change. The geographic distribution of PFTs in these models is also often based on empirical relationships between present-day climate and vegetation patterns. Projections of future climate change, however, point toward the possibility of novel regional climates, which could lead to no-analog vegetation compositions incompatible with the PFT paradigm. Here, we present results from the Jena Diversity-DGVM (JeDi-DGVM), a novel traits-based vegetation model, which simulates a large number of hypothetical plant growth strategies constrained by functional tradeoffs, thereby allowing for a more flexible temporal and spatial representation of the terrestrial biosphere. First, we compare simulated present-day geographical patterns of functional traits with empirical trait observations (in-situ and from airborne imaging spectroscopy). The observed trait patterns are then used to improve the tradeoff parameterizations of JeDi-DGVM. Finally, focusing primarily on the simulated leaf traits, we run the model with various amounts of trait diversity. We quantify the effects of these modeled biodiversity manipulations on simulated ecosystem fluxes and stocks for both present-day conditions and transient climate change scenarios. The simulation results reveal that the coarse treatment of plant functional traits by current PFT-based vegetation models may contribute substantial uncertainty regarding carbon-climate feedbacks. Further development of trait-based models and further investment in global in-situ and spectroscopic plant trait observations are needed.

  15. Analysis of Geographical Distribution Patterns in Plants Using Fractals

    NASA Astrophysics Data System (ADS)

    Bari, A.; Ayad, G.; Padulosi, S.; Hodgkin, T.; Martin, A.; Gonzalez-Andujar, J. L.; Brown, A. H. D.

    Geographical distribution patterns in plants have been observed since primeval times and have been used by plant explorers to trace the origin of plants species. These patterns embody the effects of fundamental law-like processes. Diversity in plants has also been found to be proportionate with the area, and this scaling behavior is also known as fractal behavior. In the present study, we use fractal geometry to analyze the distribution patterns of wild taxa of cowpea with the objective to locate where their diversity would be the highest to aid in the planning of targeted explorations and conservation measures.

  16. Phylogenetic diversity and ecological pattern of ammonia-oxidizing archaea in the surface sediments of the western Pacific.

    PubMed

    Cao, Huiluo; Hong, Yiguo; Li, Meng; Gu, Ji-Dong

    2011-11-01

    The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean.

  17. Patterns of oribatid mite species diversity: testing the effects of elevation, area and sampling effort.

    PubMed

    Mumladze, Levan; Murvanidze, Maka; Maraun, Mark

    2017-07-01

    Elevational gradients in species diversity and species area relationships are two well established patterns that are not mutually exclusive in space and time. Elevation and area are both considered as good proxies to detect and characterize the patterns of species diversity distribution. However, such studies are hampered by the incomplete biodiversity data available for ecologists, which may affect the pattern perceptions. Using the large dataset of oribatid mite communities sampled in Georgia, we tested the effects of altitude and area on species distribution using various approaches, while explicitly considering the biases from sampling effort. Our results showed that elevation and area are strongly correlated (with increasing absolute elevation, land area decreases) and both have strong linear effects on species diversity distribution when studied separately. Approaches based on multiple regression and direct removal of co-varied factors, indicated that the effect of area can actually override the effect of elevation in describing the oribatid species diversity distribution along with elevation. On the other hand, the bias of sampling proved significant in perception of elevational species richness pattern with less effect on elevational species area relationship. We suggest that the sampling alone may be responsible for patterns observed and thus should be considered in ecological studies when eligible.

  18. Impact of Environmental and Disturbance Variables on Avian Community Structure along a Gradient of Urbanization in Jamshedpur, India

    PubMed Central

    Verma, Sushant Kumar; Murmu, Thakur Das

    2015-01-01

    Gradient pattern analysis was used to investigate the impact of environmental and disturbance variables on species richness, species diversity, abundance and seasonal variation of birds in and around Jamshedpur, which is one of the fastest growing cities of India. It was observed that avian community structure is highly influenced by the vegetation habitat variables, food availability and human-related disturbance variables. A total of 61 species belonging to 33 families were recorded from the suburban area. 55 species belonging to 32 families were observed in nearby wildland habitat consisting of natural vegetation whereas only 26 species belonging to 18 families were observed in urban area. Results indicated that the suburban habitat had more complex bird community structure in terms of higher species richness, higher species diversity and higher evenness in comparison to urban and wildland habitat. Bird species richness and diversity varied across seasons. Maximum species richness and diversity was observed during spring season in all type of habitat. Most of the birds observed in urban areas were found to belong to either rare or irregular category on the basis of their abundance. The observed pattern of avian community structure is due to combined effect of both environmental and human related disturbance variables. PMID:26218583

  19. Decoupled temporal patterns of evolution and ecology in two post-Paleozoic clades

    NASA Technical Reports Server (NTRS)

    McKinney, F. K.; Lidgard, S.; Sepkoski, J. J. Jr; Taylor, P. D.

    1998-01-01

    Counts of taxonomic diversity are the prevailing standards for documenting large-scale patterns of evolution in the fossil record. However, the secular pattern of relative ecological importance between the bryozoan clades Cyclostomata and Cheilostomata is not reflected fully in compilations of generic diversity or within-fauna species richness, and the delayed ecological recovery of the Cheilostomata after the mass extinction at the Cretaceous-Tertiary boundary is missed entirely. These observations demonstrate that evolutionary success and ecological dominance can be decoupled and profoundly different, even over tens of millions of years.

  20. Mechanism underlying the diverse collective behavior in the swarm oscillator model

    NASA Astrophysics Data System (ADS)

    Iwasa, Masatomo; Tanaka, Dan

    2017-09-01

    The swarm oscillator model describes the long-time behavior of interacting chemotactic particles, and it shows numerous types of macroscopic patterns. However, the reason why so many kinds of patterns emerge is not clear. In this study, we elucidate the mechanism underlying the diversity of the pattens by analyzing the model for two particles. Focusing on the behavior when the two particles are spatially close, we find that the dynamics is classified into eight types, which explain most of the observed 13 types of patterns.

  1. Disturbance, neutral theory, and patterns of beta diversity in soil communities.

    PubMed

    Maaß, Stefanie; Migliorini, Massimo; Rillig, Matthias C; Caruso, Tancredi

    2014-12-01

    Beta diversity describes how local communities within an area or region differ in species composition/abundance. There have been attempts to use changes in beta diversity as a biotic indicator of disturbance, but lack of theory and methodological caveats have hampered progress. We here propose that the neutral theory of biodiversity plus the definition of beta diversity as the total variance of a community matrix provide a suitable, novel, starting point for ecological applications. Observed levels of beta diversity (BD) can be compared to neutral predictions with three possible outcomes: Observed BD equals neutral prediction or is larger (divergence) or smaller (convergence) than the neutral prediction. Disturbance might lead to either divergence or convergence, depending on type and strength. We here apply these ideas to datasets collected on oribatid mites (a key, very diverse soil taxon) under several regimes of disturbances. When disturbance is expected to increase the heterogeneity of soil spatial properties or the sampling strategy encompassed a range of diverging environmental conditions, we observed diverging assemblages. On the contrary, we observed patterns consistent with neutrality when disturbance could determine homogenization of soil properties in space or the sampling strategy encompassed fairly homogeneous areas. With our method, spatial and temporal changes in beta diversity can be directly and easily monitored to detect significant changes in community dynamics, although the method itself cannot inform on underlying mechanisms. However, human-driven disturbances and the spatial scales at which they operate are usually known. In this case, our approach allows the formulation of testable predictions in terms of expected changes in beta diversity, thereby offering a promising monitoring tool.

  2. Habitat connectivity and in-stream vegetation control temporal variability of benthic invertebrate communities.

    PubMed

    Huttunen, K-L; Mykrä, H; Oksanen, J; Astorga, A; Paavola, R; Muotka, T

    2017-05-03

    One of the key challenges to understanding patterns of β diversity is to disentangle deterministic patterns from stochastic ones. Stochastic processes may mask the influence of deterministic factors on community dynamics, hindering identification of the mechanisms causing variation in community composition. We studied temporal β diversity (among-year dissimilarity) of macroinvertebrate communities in near-pristine boreal streams across 14 years. To assess whether the observed β diversity deviates from that expected by chance, and to identify processes (deterministic vs. stochastic) through which different explanatory factors affect community variability, we used a null model approach. We observed that at the majority of sites temporal β diversity was low indicating high community stability. When stochastic variation was unaccounted for, connectivity was the only variable explaining temporal β diversity, with weakly connected sites exhibiting higher community variability through time. After accounting for stochastic effects, connectivity lost importance, suggesting that it was related to temporal β diversity via random colonization processes. Instead, β diversity was best explained by in-stream vegetation, community variability decreasing with increasing bryophyte cover. These results highlight the potential of stochastic factors to dampen the influence of deterministic processes, affecting our ability to understand and predict changes in biological communities through time.

  3. Habitat history improves prediction of biodiversity in rainforest fauna

    PubMed Central

    Graham, Catherine H.; Moritz, Craig; Williams, Stephen E.

    2006-01-01

    Patterns of biological diversity should be interpreted in light of both contemporary and historical influences; however, to date, most attempts to explain diversity patterns have largely ignored history or have been unable to quantify the influence of historical processes. The historical effects on patterns of diversity have been hypothesized to be most important for taxonomic groups with poor dispersal abilities. We quantified the relative stability of rainforests over the late Quaternary period by modeling rainforest expansion and contraction in 21 biogeographic subregions in northeast Australia across four time periods. We demonstrate that historical habitat stability can be as important, and in endemic low-dispersal taxa even more important, than current habitat area in explaining spatial patterns of species richness. In contrast, patterns of endemic species richness for taxa with high dispersal capacity are best predicted by using current environmental parameters. We also show that contemporary patterns of species turnover across the region are best explained by historical patterns of habitat connectivity. These results clearly demonstrate that spatially explicit analyses of the historical processes of persistence and colonization are both effective and necessary for understanding observed patterns of biodiversity. PMID:16407139

  4. Can a linguistic serial founder effect originating in Africa explain the worldwide phonemic cline?

    PubMed Central

    2016-01-01

    It has been proposed that a serial founder effect could have caused the present observed pattern of global phonemic diversity. Here we present a model that simulates the human range expansion out of Africa and the subsequent spatial linguistic dynamics until today. It does not assume copying errors, Darwinian competition, reduced contrastive possibilities or any other specific linguistic mechanism. We show that the decrease of linguistic diversity with distance (from the presumed origin of the expansion) arises under three assumptions, previously introduced by other authors: (i) an accumulation rate for phonemes; (ii) small phonemic inventories for the languages spoken before the out-of-Africa dispersal; (iii) an increase in the phonemic accumulation rate with the number of speakers per unit area. Numerical simulations show that the predictions of the model agree with the observed decrease of linguistic diversity with increasing distance from the most likely origin of the out-of-Africa dispersal. Thus, the proposal that a serial founder effect could have caused the present observed pattern of global phonemic diversity is viable, if three strong assumptions are satisfied. PMID:27122180

  5. The rich get richer: Patterns of plant invasions in the United States

    USGS Publications Warehouse

    Stohlgren, T.J.; Barnett, D.T.; Kartesz, J.T.

    2003-01-01

    Observations from islands, small-scale experiments, and mathematical models have generally supported the paradigm that habitats of low plant diversity are more vulnerable to plant invasions than areas of high plant diversity. We summarize two independent data sets to show exactly the opposite pattern at multiple spatial scales. More significant, and alarming, is that hotspots of native plant diversity have been far more heavily invaded than areas of low plant diversity in most parts of the United States when considered at larger spatial scales. Our findings suggest that we cannot expect such hotspots to repel invasions, and that the threat of invasion is significant and predictably greatest in these areas.

  6. Patterns and drivers of bacterial α- and β-diversity across vertical profiles from surface to subsurface sediments.

    PubMed

    Luna, Gian Marco; Corinaldesi, Cinzia; Rastelli, Eugenio; Danovaro, Roberto

    2013-10-01

    We investigated the patterns and drivers of bacterial α- and β-diversity, along with viral and prokaryotic abundance and the carbon production rates, in marine surface and subsurface sediments (down to 1 m depth) in two habitats: vegetated sediments (seagrass meadow) and non-vegetated sediments. Prokaryotic abundance and production decreased with depth in the sediment, but cell-specific production rates and the virus-to-prokaryote ratio increased, highlighting unexpectedly high activity in the subsurface. The highest diversity was observed in vegetated sediments. Bacterial β-diversity between sediment horizons was high, and only a minor number of taxa was shared between surface and subsurface layers. Viruses significantly contributed to explain α- and β-diversity patterns. Despite potential limitations due to the only use of fingerprinting techniques, this study indicates that the coastal subsurface host highly active and diversified bacterial assemblages, that subsurface cells are more active than expected and that viruses promote β-diversity and stimulate bacterial metabolism in subsurface layers. The limited number of taxa shared between habitats, and between surface and subsurface sediment horizons, suggests that future investigations of the shallow subsurface will provide insights into the census of bacterial diversity, and the comprehension of the patterns and drivers of prokaryotic diversity in marine ecosystems. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns.

    PubMed

    Rojas, Bibiana

    2017-05-01

    The role of colours and colour patterns in behavioural ecology has been extensively studied in a variety of contexts and taxa, while almost overlooked in many others. For decades anurans have been the focus of research on acoustic signalling due to the prominence of vocalisations in their communication. Much less attention has been paid to the enormous diversity of colours, colour patterns, and other types of putative visual signals exhibited by frogs. With the exception of some anecdotal observations and studies, the link between colour patterns and the behavioural and evolutionary ecology of anurans had not been addressed until approximately two decades ago. Since then, there has been ever-increasing interest in studying how colouration is tied to different aspects of frog behaviour, ecology and evolution. Here I review the literature on three different contexts in which frog colouration has been recently studied: predator-prey interactions, intraspecific communication, and habitat use; and I highlight those aspects that make frogs an excellent, yet understudied, group to examine the role of colour in the evolution of anti-predation strategies and animal communication systems. Further, I argue that in addition to natural-history observations, more experiments are needed in order to elucidate the functions of anuran colouration and the selective pressures involved in its diversity. To conclude, I encourage researchers to strengthen current experimental approaches, and suggest future directions that may broaden our current understanding of the adaptive value of anuran colour pattern diversity. © 2016 Cambridge Philosophical Society.

  8. Multiscale patterns in the diversity and organization of benthic intertidal fauna among French Atlantic estuaries

    NASA Astrophysics Data System (ADS)

    Blanchet, Hugues; Gouillieux, Benoît; Alizier, Sandrine; Amouroux, Jean-Michel; Bachelet, Guy; Barillé, Anne-Laure; Dauvin, Jean-Claude; de Montaudouin, Xavier; Derolez, Valérie; Desroy, Nicolas; Grall, Jacques; Grémare, Antoine; Hacquebart, Pascal; Jourde, Jérôme; Labrune, Céline; Lavesque, Nicolas; Meirland, Alain; Nebout, Thiebaut; Olivier, Frédéric; Pelaprat, Corine; Ruellet, Thierry; Sauriau, Pierre-Guy; Thorin, Sébastien

    2014-07-01

    Based on a parallel sampling conducted during autumn 2008, a comparative study of the intertidal benthic macrofauna among 10 estuarine systems located along the Channel and Atlantic coasts of France was performed in order to assess the level of fauna similarity among these sites and to identify possible environmental factors involved in the observed pattern at both large (among sites) and smaller (benthic assemblages) scales. More precisely this study focused on unraveling the observed pattern of intertidal benthic fauna composition and diversity observed at among-site scale by exploring both biotic and abiotic factors acting at the among- and within-site scales. Results showed a limited level of similarity at the among-site level in terms of intertidal benthic fauna composition and diversity. The observed pattern did not fit with existing transitional water classification methods based on fish or benthic assemblages developed in the frame of the European Water Framework Directive (WFD). More particularly, the coastal plain estuaries displayed higher among-site similarity compared to ria systems. These coastal plain estuaries were characterized by higher influence of river discharge, lower communication with the ocean and high suspended particulate matter levels. On the other hand, the ria-type systems were more dissimilar and different from the coastal plain estuaries. The level of similarity among estuaries was mainly linked to the relative extent of the intertidal "Scrobicularia plana-Cerastoderma edule" and "Tellina tenuis" or "Venus" communities as a possible consequence of salinity regime, suspended matter concentrations and fine particles supply with consequences on the trophic functioning, structure and organization of benthic fauna. Despite biogeographical patterns, the results also suggest that, in the context of the WFD, these estuaries should only be compared on the basis of the most common intertidal habitat occurring throughout all estuarine systems and that the EUNIS biotope classification might be used for this purpose. In addition, an original inverse relation between γ-diversity and area was shown; however, its relevance might be questioned.

  9. A phylogenetic perspective on species diversity, β-diversity and biogeography for the microbial world.

    PubMed

    Barberán, Albert; Casamayor, Emilio O

    2014-12-01

    There is an increasing interest to combine phylogenetic data with distributional and ecological records to assess how natural communities arrange under an evolutionary perspective. In the microbial world, there is also a need to go beyond the problematic species definition to deeply explore ecological patterns using genetic data. We explored links between evolution/phylogeny and community ecology using bacterial 16S rRNA gene information from a high-altitude lakes district data set. We described phylogenetic community composition, spatial distribution, and β-diversity and biogeographical patterns applying evolutionary relatedness without relying on any particular operational taxonomic unit definition. High-altitude lakes districts usually contain a large mosaic of highly diverse small water bodies and conform a fine biogeographical model of spatially close but environmentally heterogeneous ecosystems. We sampled 18 lakes in the Pyrenees with a selection criteria focused on capturing the maximum environmental variation within the smallest geographical area. The results showed highly diverse communities nonrandomly distributed with phylogenetic β-diversity patterns mainly shaped by the environment and not by the spatial distance. Community similarity based on both bacterial taxonomic composition and phylogenetic β-diversity shared similar patterns and was primarily structured by similar environmental drivers. We observed a positive relationship between lake area and phylogenetic diversity with a slope consistent with highly dispersive planktonic organisms. The phylogenetic approach incorporated patterns of common ancestry into bacterial community analysis and emerged as a very convenient analytical tool for direct inter- and intrabiome biodiversity comparisons and sorting out microbial habitats with potential application in conservation studies. © 2014 John Wiley & Sons Ltd.

  10. Trail networks formed by populations of immune cells

    NASA Astrophysics Data System (ADS)

    Yang, Taeseok Daniel; Kwon, Tae Goo; Park, Jin-sung; Lee, Kyoung J.

    2014-02-01

    Populations of biological cells that communicate with each other can organize themselves to generate large-scale patterns. Examples can be found in diverse systems, ranging from developing embryos, cardiac tissues, chemotaxing ameba and swirling bacteria. The similarity, often shared by the patterns, suggests the existence of some general governing principle. On the other hand, rich diversity and system-specific properties are exhibited, depending on the type of involved cells and the nature of their interactions. The study on the similarity and the diversity constitutes a rapidly growing field of research. Here, we introduce a new class of self-organized patterns of cell populations that we term as ‘cellular trail networks’. They were observed with populations of rat microglia, the immune cells of the brain and the experimental evidence suggested that haptotaxis is the key element responsible for them. The essential features of the observed patterns are well captured by the mathematical model cells that actively crawl and interact with each other through a decomposing but non-diffusing chemical attractant laid down by the cells. Our finding suggests an unusual mechanism of socially cooperative long-range signaling for the crawling immune cells.

  11. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins.

    PubMed

    Sallaberry-Pincheira, Nicole; González-Acuña, Daniel; Padilla, Pamela; Dantas, Gisele P M; Luna-Jorquera, Guillermo; Frere, Esteban; Valdés-Velásquez, Armando; Vianna, Juliana A

    2016-10-01

    The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.

  12. Frequency-dependent selection predicts patterns of radiations and biodiversity.

    PubMed

    Melián, Carlos J; Alonso, David; Vázquez, Diego P; Regetz, James; Allesina, Stefano

    2010-08-26

    Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches.

  13. Contrasting land uses in Mediterranean agro-silvo-pastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms.

    PubMed

    Bagella, Simonetta; Filigheddu, Rossella; Caria, Maria Carmela; Girlanda, Mariangela; Roggero, Pier Paolo

    2014-12-01

    The aims of this paper were (i) to define how contrasting land uses affected plant biodiversity in Mediterranean agro-silvo-pastoral-systems across a gradient of disturbance regimes: cork oak forests, secondary grasslands, hay crops, grass covered vineyards, tilled vineyards; (ii) to determine whether these patterns mirrored those of below-ground microorganisms and whether the components of γ-diversity followed a similar model. The disturbance regimes affected plant assemblage composition. Species richness decreased with increasing land use intensity, the Shannon index showed the highest values in grasslands and hay crops. Plant assemblage composition patterns mirrored those of Basidiomycota and Ascomycota. Richness in Basidiomycota, denitrifying bacteria and microbial biomass showed the same trend as that observed for vascular plant richness. The Shannon index pattern of below-ground microorganisms was different from that of plants. The plant γ-diversity component model weakly mirrored those of Ascomycota. Patchy diversity patterns suggest that the maintenance of contrasting land uses associated with different productions typical of agro-silvo-pastoral-systems can guarantee the conservation of biodiversity. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. Is plant temporal beta diversity of field margins related to changes in management practices?

    NASA Astrophysics Data System (ADS)

    Alignier, Audrey; Baudry, Jacques

    2016-08-01

    Field margins have considerable ecological significance in agriculture-dominated landscapes by supporting biodiversity and associated services. However, agricultural changes during mid-20th century led to their drastic loss with a serious threat for biodiversity. Using time-series data, we aimed to get better insights into processes underlying plant patterns of field margins through time by i) quantifying plant temporal beta diversity components, ii) assessing whether the observed changes in plant communities can be related to changes in management practices applied to field margins. During the springs of 1994, 1998 and 2001, we surveyed plant communities and management practices of the same 116 field margins in three contrasted landscapes. We estimated temporal beta diversity in plant communities and partitioned it into its two dissimilarity resultant components, accounting for replacement of species (i.e. turnover) and for the nested gain or loss of species (i.e. nestedness). We then tested whether the observed changes in plant communities between 1994 and 1998 and, between 1998 and 2001 were related to changes in management practices using linear models. Plant communities of field margins exhibited strong temporal beta diversity dominated by turnover. Temporal turnover in plant communities was partly related to changes in management practices, i.e., a decrease of grazing concomitant to an increase of herbicide spraying. However, relationships were not consistent between all landscape contexts nor time period, suggesting that other unmeasured deterministic or stochastic processes could be driving the observed plant patterns. Taken together, our results suggest that maintaining a wide diversity of field margins with contrasted management contribute to maintaining plant diversity at a landscape scale. They underline the value of investigating plant temporal diversity patterns using time-series data and thus, the need to develop long-term studies making it possible to understand ecological processes shaping plant communities in agricultural landscapes.

  15. Scale dependency of forest functional diversity assessed using imaging spectroscopy and airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Schneider, F. D.; Morsdorf, F.; Schmid, B.; Petchey, O. L.; Hueni, A.; Schimel, D.; Schaepman, M. E.

    2016-12-01

    Forest functional traits offer a mechanistic link between ecological processes and community structure and assembly rules. However, measuring functional traits of forests in a continuous and consistent way is particularly difficult due to the complexity of in-situ measurements and geo-referencing. New imaging spectroscopy measurements overcome these limitations allowing to map physiological traits on broad spatial scales. We mapped leaf chlorophyll, carotenoids and leaf water content over 900 ha of temperate mixed forest (Fig. 1a). The selected traits are functionally important because they are indicating the photosynthetic potential of trees, leaf longevity and protection, as well as tree water and drought stress. Spatially continuous measurements on the scale of individual tree crowns allowed to assess functional diversity patterns on a range of ecological extents. We used indexes of functional richness, divergence and evenness to map different aspects of diversity. Fig. 1b shows an example of physiological richness at an extent of 240 m radius. We compared physiological to morphological diversity patterns, derived based on plant area index, canopy height and foliage height diversity. Our results show that patterns of physiological and morphological diversity generally agree, independently measured by airborne imaging spectroscopy and airborne laser scanning, respectively. The occurrence of disturbance areas and mixtures of broadleaf and needle trees were the main drivers of the observed diversity patterns. Spatial patterns at varying extents and richness-area relationships indicated that environmental filtering is the predominant community assembly process. Our results demonstrate the potential for mapping physiological and morphological diversity in a temperate mixed forest between and within species on scales relevant to study community assembly and structure from space and test the corresponding measurement schemes.

  16. Contrasting species and functional beta diversity in montane ant assemblages.

    PubMed

    Bishop, Tom R; Robertson, Mark P; van Rensburg, Berndt J; Parr, Catherine L

    2015-09-01

    Beta diversity describes the variation in species composition between sites and can be used to infer why different species occupy different parts of the globe. It can be viewed in a number of ways. First, it can be partitioned into two distinct patterns: turnover and nestedness. Second, it can be investigated from either a species identity or a functional-trait point of view. We aim to document for the first time how these two aspects of beta diversity vary in response to a large environmental gradient. Maloti-Drakensberg Mountains, southern Africa. We sampled ant assemblages along an extensive elevational gradient (900-3000 m a.s.l.) twice yearly for 7 years, and collected functional-trait information related to the species' dietary and habitat-structure preferences. We used recently developed methods to partition species and functional beta diversity into their turnover and nestedness components. A series of null models were used to test whether the observed beta diversity patterns differed from random expectations. Species beta diversity was driven by turnover, but functional beta diversity was composed of both turnover and nestedness patterns at different parts of the gradient. Null models revealed that deterministic processes were likely to be responsible for the species patterns but that the functional changes were indistinguishable from stochasticity. Different ant species are found with increasing elevation, but they tend to represent an increasingly nested subset of the available functional strategies. This finding is unique and narrows down the list of possible factors that control ant existence across elevation. We conclude that diet and habitat preferences have little role in structuring ant assemblages in montane environments and that some other factor must be driving the non-random patterns of species turnover. This finding also highlights the importance of distinguishing between different kinds of beta diversity.

  17. Diversity of contexts in drug use among street adolescents.

    PubMed

    Goncalves de Moura, Yone; van der Meer Sanchez, Zila; Noto, Ana Regina

    2010-09-01

    In this study we aimed to investigate through ethnographic methods the different contexts of drug use by street adolescents in Sao Paulo, Brazil. Participant observations and semistructured interviews were performed at 11 major points of adolescent concentration in the streets of the city and in 10 care institutions. The sample was composed of 17 adolescents between 12 and 17 years of age. Data showed diverse patterns of drug use distributed by geographic situation and street circumstances. Observations were grouped into three main contexts: (a) immersion: greater intensity of drug use associated with greater involvement in the street culture; (b) surface: less drug use associated with family closeness; and (c) alternative-migratory: greater involvement with drug trafficking and prostitution associated with less family closeness and street culture. The drug use patterns varied in accordance with the diversity of street situations. Therefore, the peculiarities of each context should be taken into consideration in the development of social/ health policies.

  18. Global diversity and distribution of macrofungi

    Treesearch

    Gregory M. Mueller; John P. Schmit; Patrick R. Leacock; Bart Buyck; Joaquin Cifuentes; Dennis E. Desjardin; Roy E. Halling; Kurt Hjortstam; Teresa Iturriaga; Karl-Henrik Larsson; D. Jean Lodge; Tom W. May; David Minter; Mario Rajchenberg; Scott A. Redhead; Leif Ryvarden; James M. Trappe; Roy Watling; Qiuxin Wu

    2007-01-01

    Data on macrofungal diversity and distribution patterns were compiled for major geographical regions of the world. Macrofungi are defined here to include ascomycetes and basidiomycetes with large, easily observed spore-bearing structures that form above or below ground. Each coauthor either provided data on a particular taxonomic group of macrofungi or information on...

  19. Spatial extent of analysis influences observed patterns of population genetic structure in a widespread darter species (Percidae)

    USGS Publications Warehouse

    Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.

    2018-01-01

    Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or loss of genetic diversity, they reduce population connectivity and may impact long‐term population persistence.The broad spatial scale of this study demonstrated the large spatial extent of some variegate darter populations and indicated that dispersal is more extensive than expected given the movement patterns typically observed for small‐bodied, benthic fish. Dam impacts depended on underlying population size and stability, with larger populations more resilient to genetic drift and allelic richness loss than smaller populations.Other darters that inhabit large river habitats may show similar patterns in landscape‐scale studies, and large river barriers may impact populations of small‐bodied fish more than previously expected. Estimation of dispersal rates and behaviours is critical to conservation of imperilled riverine species such as darters.

  20. Additive Partitioning of Coral Reef Fish Diversity across Hierarchical Spatial Scales throughout the Caribbean

    PubMed Central

    Francisco-Ramos, Vanessa; Arias-González, Jesús Ernesto

    2013-01-01

    There is an increasing need to examine regional patterns of diversity in coral-reef systems since their biodiversity is declining globally. In this sense, additive partitioning might be useful since it quantifies the contribution of alpha and beta to total diversity across different scales. We applied this approach using an unbalanced design across four hierarchical scales (80 sites, 22 subregions, six ecoregions, and the Caribbean basin). Reef-fish species were compiled from the Reef Environmental Education Foundation (REEF) database and distributions were confirmed with published data. Permutation tests were used to compare observed values to those expected by chance. The primary objective was to identify patterns of reef-fish diversity across multiple spatial scales under different scenarios, examining factors such as fisheries and demographic connectivity. Total diversity at the Caribbean scale was attributed to β-diversity (nearly 62% of the species), with the highest β-diversity at the site scale. α¯-diversity was higher than expected by chance in all scenarios and at all studied scales. This suggests that fish assemblages are more homogenous than expected, particularly at the ecoregion scale. Within each ecoregion, diversity was mainly attributed to alpha, except for the Southern ecoregion where there was a greater difference in species among sites. β-components were lower than expected in all ecoregions, indicating that fishes within each ecoregion are a subsample of the same species pool. The scenario involving the effects of fisheries showed a shift in dominance for β-diversity from regions to subregions, with no major changes to the diversity patterns. In contrast, demographic connectivity partially explained the diversity pattern. β-components were low within connectivity regions and higher than expected by chance when comparing between them. Our results highlight the importance of ecoregions as a spatial scale to conserve local and regional coral reef-fish diversity. PMID:24205311

  1. Benthic communities in the deep Mediterranean Sea: exploring microbial and meiofaunal patterns in slope and basin ecosystems

    NASA Astrophysics Data System (ADS)

    Sevastou, K.; Lampadariou, N.; Polymenakou, P. N.; Tselepides, A.

    2012-12-01

    The long held perception of the deep sea consisting of monotonous slopes and uniform oceanic basins has over the decades given way to the idea of a complex system with wide habitat heterogeneity. Under the prism of a highly diverse environment, a large dataset was used to describe and compare spatial patterns of the dominant small-size components of deep-sea benthos, metazoan meiofauna and bacteria, from Mediterranean basins and slopes. A grid of 73 stations sampled at five geographical areas along the central-eastern Mediterranean basin (central Mediterranean, northern Aegean Sea, Cretan Sea, Libyan Sea, eastern Levantine) spanning over 4 km in depth revealed a high diversity in terms of both metazoan meiofauna and microbial communities. The higher meiofaunal abundance and richness observed in the northern Aegean Sea highlights the effect of productivity on benthic patterns. Non parametric analyses detected no differences for meiobenthic standing stocks and major taxa diversity (α, β, γ and δ components) between the two habitats (basin vs. slope) for the whole investigated area and within each region, but revealed significant bathymetric trends: abundance and richness follow the well-known gradient of decreasing values with increasing depth, whereas differentiation diversity (β- and δ-diversity) increases with depth. In spite of a similar bathymetric trend observed for nematode genera richness, no clear pattern was detected with regard to habitat type; the observed number of nematode genera suggests higher diversity in slopes, whereas richness estimator Jack1 found no differences between habitats. On the other hand, δ-diversity was higher at the basin habitat, but no differences were found among depth ranges, though turnover values were high in all pairwise comparisons of the different depth categories. Results of multivariate analysis are in line with the above findings, indicating high within habitat variability of meiofaunal communities and a gradual change of meiofaunal structure towards the abyssal stations. In contrast to meiobenthic results, microbial richness is significantly higher at the basin ecosystem and tends to increase with depth, while community structure varies greatly among samples regardless of the type of habitat, depth or area. The results presented here suggest that differences in benthic parameters between the two habitats are neither strong nor consistent; it appears that within habitat variability is high and differences among depth ranges are more important.

  2. The Influence of Weather Variation, Urban Design and Built Environment on Objectively Measured Sedentary Behaviour in Children.

    PubMed

    Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem

    2016-01-01

    With emerging evidence indicating that independent of physical activity, sedentary behaviour (SB) can be detrimental to health, researchers are increasingly aiming to understand the influence of multiple contexts such as urban design and built environment on SB. However, weather variation, a factor that continuously interacts with all other environmental variables, has been consistently underexplored. This study investigated the influence of diverse environmental exposures (including weather variation, urban design and built environment) on SB in children. This cross-sectional observational study is part of an active living research initiative set in the Canadian prairie city of Saskatoon. Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive SB of 331 10-14 year old children in 25 one week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample. Accelerometer data were matched with localized weather patterns derived from Environment Canada weather data. Multilevel modeling using Hierarchical Linear and Non-linear Modeling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on SB. Both weather variation and urban design played a significant role in SB. After factoring in weather variation, it was observed that children living in grid-pattern neighbourhoods closer to the city centre (with higher diversity of destinations) were less likely to be sedentary. This study demonstrates a methodology that could be replicated to integrate geography-specific weather patterns with existing cross-sectional accelerometry data to understand the influence of urban design and built environment on SB in children.

  3. Lesser snow goose helminths show recurring and positive parasite infection-diversity relations.

    PubMed

    Dargent, Felipe; Morrill, André; Alisauskas, Ray T; McLaughlin, J Daniel; Shutler, Dave; Forbes, Mark R

    2017-04-01

    The patterns and mechanisms by which biological diversity is associated with parasite infection risk are important to study because of their potential implications for wildlife population's conservation and management. Almost all research in this area has focused on host species diversity and has neglected parasite diversity, despite evidence that parasites are important drivers of community structure and ecosystem processes. Here, we assessed whether presence or abundance of each of nine helminth species parasitizing lesser snow geese ( Chen caerulescens ) was associated with indices of parasite diversity (i.e. species richness and Shannon's Diversity Index). We found repeated instances of focal parasite presence and abundance having significant positive co-variation with diversity measures of other parasites. These results occurred both within individual samples and for combinations of all samples. Whereas host condition and parasite facilitation could be drivers of the patterns we observed, other host- or parasite-level effects, such as age or sex class of host or taxon of parasite, were discounted as explanatory variables. Our findings of recurring and positive associations between focal parasite abundance and diversity underscore the importance of moving beyond pairwise species interactions and contexts, and of including the oft-neglected parasite species diversity in infection-diversity studies.

  4. Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal

    NASA Astrophysics Data System (ADS)

    Proença, Vânia M.; Pereira, Henrique M.; Guilherme, João; Vicente, Luís

    2010-03-01

    Forest ecosystems have been subjected to continuous dynamics between deforestation and forestation. Assessing the effects of these processes on biodiversity could be essential for conservation planning. We analyzed patterns of species richness, diversity and evenness of plants and birds in patches of natural forest of Quercus spp. and in stands of native Pinus pinaster and exotic Eucalyptus globulus in NW Portugal. We analyzed data of forest and non-forest species separately, at the intra-patch, patch and inter-patch scales. Forest plant richness, diversity and evenness were higher in oak forest than in pine and eucalypt plantations. In total, 52 species of forest plants were observed in oak forest, 33 in pine plantation and 28 in eucalypt plantation. Some forest species, such as Euphorbia dulcis, Omphalodes nitida and Eryngium juresianum, were exclusively or mostly observed in oak forest. Forest bird richness and diversity were higher in both oak and pine forests than in eucalypt forest; evenness did not differ among forests. In total, 16 species of forest birds were observed in oak forest, 18 in pine forest and 11 in eucalypt forest. Species such as Certhia brachydactyla, Sitta europaea and Dendrocopos major were common in oak and/or pine patches but were absent from eucalypt stands. Species-area relationships of forest plants and forest birds in oak patches had consistently a higher slope, at both the intra and inter-patch scales, than species-area relationships of forest species in plantations and non-forest species in oak forest. These findings demonstrate the importance of oak forest for the conservation of forest species diversity, pointing the need to conserve large areas of oak forest due to the apparent vulnerability of forest species to area loss. Additionally, diversity patterns in pine forest were intermediate between oak forest and eucalypt forest, suggesting that forest species patterns may be affected by forest naturalness.

  5. Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Qingyun; Stegen, James C.; Yu, Yuhe

    Uncovering which environmental factors have the greatest influence on community diversity patterns and how ecological processes govern community turnover are key questions related to understanding community assembly mechanisms. Although we have good understanding of plant and animal community assembly, the mechanisms regulating diversity patterns of aquatic bacterial communities in lake ecosystems remains poorly understood. Here we present nearly a decade-long time-series study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing. We found strong repeatable seasonal patterns for the overall community, common (detected in more than 50% samples) and dominant bacterial taxa (relativemore » abundance > 1%). Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is an important environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern across the main lake areas was overwhelmed by temporal variability in this eutrophic lake system. Phylogenetic analysis further indicated that 75%-82% of community turnover was governed by homogeneous selection, suggesting that the bacterioplankton communities are mainly controlled by niche-based processes. However, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout this lake system. This study gives us important insights into community assembly and seasonal turnover of lake bacterioplankton, it may be also useful to predict temporal patterns of other planktonic communities.« less

  6. Population and labour force growth and patterns in ASEAN countries.

    PubMed

    Saw, S

    1988-01-01

    "The paper shows that the diverse labor dimensions prevailing in the ASEAN region can be attributed to changes in the structure of the society and economy in the course of recent economic development. It observes the considerable variety in the growth of the population and its effect on the labor force in the ASEAN region.... The paper details the similarity and diversity in the level and type of labor force participation rates. A common feature shared by ASEAN countries is a general pattern in the age-specific participation rate of men. In contrast, the women, aside from participating in the labor force at a much lower level than men at almost all ages, display diverse patterns of participation over the working age range. Lastly, the distribution of the labor force according to major industrial sectors in the six ASEAN countries is presented...." excerpt

  7. Digging up the roots of an insular hotspot of genetic diversity: decoupled mito-nuclear histories in the evolution of the Corsican-Sardinian endemic lizard Podarcis tiliguerta.

    PubMed

    Salvi, Daniele; Pinho, Catarina; Harris, D James

    2017-03-02

    Mediterranean islands host a disproportionately high level of biodiversity and endemisms. Growing phylogeographic evidence on island endemics has unveiled unexpectedly complex patterns of intra-island diversification, which originated at diverse spatial and temporal scales. We investigated multilocus genetic variation of the Corsican-Sardinian endemic lizard Podarcis tiliguerta with the aim of shedding more light on the evolutionary processes underlying the origin of Mediterranean island biodiversity. We analysed DNA sequences of mitochondrial (12S and nd4) and nuclear (acm4 and mc1r) gene fragments in 174 individuals of P. tiliguerta from 81 localities across the full range of the species in a geographic and genealogical framework. We found surprisingly high genetic diversity both at mitochondrial and nuclear loci. Seventeen reciprocally monophyletic allopatric mitochondrial haplogroups were sharply divided into four main mitochondrial lineages (two in Corsica and two in Sardinia) of Miocene origin. In contrast, shallow divergence and shared diversity within and between islands was observed at the nuclear loci. We evaluated alternative biogeographic and evolutionary scenarios to explain such profound discordance in spatial and phylogenetic patterning between mitochondrial and nuclear genomes. While neutral models provided unparsimonious explanations for the observed pattern, the hypothesis of environmental selection driving mitochondrial divergence in the presence of nuclear gene flow is favoured. Our study on the genetic variation of P. tiliguerta reveals surprising levels of diversity underlining a complex phylogeographic pattern with a striking example of mito-nuclear discordance. These findings have profound implications, not only for the taxonomy and conservation of P. tiliguerta. Growing evidence on deep mitochondrial breaks in absence of geographic barriers and of climatic factors associated to genetic variation of Corsican-Sardinian endemics warrants additional investigation on the potential role of environmental selection driving the evolution of diversity hotspots within Mediterranean islands.

  8. Seasonal Diversity Patterns of a Coastal Synechococcus Population

    NASA Astrophysics Data System (ADS)

    Hunter-Cevera, K. R.; Sosik, H. M.; Neubert, M.; Hammar, K.; Post, A.

    2016-02-01

    Understanding how environmental and ecological factors determine phytoplankton species abundances requires knowledge of the diversity present within a population. For the important primary producer Synechococcus, clades demonstrate differences in temperature tolerance, light acclimation, grazer palatability, and more. Marine Synechococcus populations are often composed of more than one clade, and overall population dynamics will be governed by the types of cells present and by their individual physiological capabilities. We investigate the diversity of the Synechococcus assemblage at the Martha's Vineyard Coastal Observatory with high-throughput sequencing of the V6 hypervariable region of the 16S rRNA gene. Small nucleotide differences within this region allow for resolution of distinct phylotypes that can have a direct correspondence to the well-defined Synechococcus clades. From a three-year time series, we find that the Synechococcus population is dominated by 5 distinct phylotypes, and that each type exhibits a repeatable, seasonal pattern in relative abundance. We use compositional data analysis techniques to investigate the relationships between these patterns and environmental factors. We further interpret these patterns in the context of Synechococcus population dynamics assessed by automated, submersible flow cytometry (FlowCytobot). Observed diel changes in cell size distributions, coupled with a validated matrix population model, provide estimates of in situ population division rates. We find strong evidence that the main seasonal diversity patterns are governed by temperature, but that biological loss agents likely shape the diversity structure for certain times of year. For some phylotypes, relative abundance patterns are also related to light and nutrients. The composition of Synechococcus over the annual cycle appears to directly affect seasonal features of cell abundance patterns, such as the spring bloom.

  9. Contrasting Patterns of Genomic Diversity Reveal Accelerated Genetic Drift but Reduced Directional Selection on X-Chromosome in Wild and Domestic Sheep Species.

    PubMed

    Chen, Ze-Hui; Zhang, Min; Lv, Feng-Hua; Ren, Xue; Li, Wen-Rong; Liu, Ming-Jun; Nam, Kiwoong; Bruford, Michael W; Li, Meng-Hua

    2018-04-01

    Analyses of genomic diversity along the X chromosome and of its correlation with autosomal diversity can facilitate understanding of evolutionary forces in shaping sex-linked genomic architecture. Strong selective sweeps and accelerated genetic drift on the X-chromosome have been inferred in primates and other model species, but no such insight has yet been gained in domestic animals compared with their wild relatives. Here, we analyzed X-chromosome variability in a large ovine data set, including a BeadChip array for 943 ewes from the world's sheep populations and 110 whole genomes of wild and domestic sheep. Analyzing whole-genome sequences, we observed a substantially reduced X-to-autosome diversity ratio (∼0.6) compared with the value expected under a neutral model (0.75). In particular, one large X-linked segment (43.05-79.25 Mb) was found to show extremely low diversity, most likely due to a high density of coding genes, featuring highly conserved regions. In general, we observed higher nucleotide diversity on the autosomes, but a flat diversity gradient in X-linked segments, as a function of increasing distance from the nearest genes, leading to a decreased X: autosome (X/A) diversity ratio and contrasting to the positive correlation detected in primates and other model animals. Our evidence suggests that accelerated genetic drift but reduced directional selection on X chromosome, as well as sex-biased demographic events, explain low X-chromosome diversity in sheep species. The distinct patterns of X-linked and X/A diversity we observed between Middle Eastern and non-Middle Eastern sheep populations can be explained by multiple migrations, selection, and admixture during the domestic sheep's recent postdomestication demographic expansion, coupled with natural selection for adaptation to new environments. In addition, we identify important novel genes involved in abnormal behavioral phenotypes, metabolism, and immunity, under selection on the sheep X-chromosome.

  10. Contrasting Patterns of Genomic Diversity Reveal Accelerated Genetic Drift but Reduced Directional Selection on X-Chromosome in Wild and Domestic Sheep Species

    PubMed Central

    Chen, Ze-Hui; Zhang, Min; Lv, Feng-Hua; Ren, Xue; Li, Wen-Rong; Liu, Ming-Jun; Nam, Kiwoong; Bruford, Michael W; Li, Meng-Hua

    2018-01-01

    Abstract Analyses of genomic diversity along the X chromosome and of its correlation with autosomal diversity can facilitate understanding of evolutionary forces in shaping sex-linked genomic architecture. Strong selective sweeps and accelerated genetic drift on the X-chromosome have been inferred in primates and other model species, but no such insight has yet been gained in domestic animals compared with their wild relatives. Here, we analyzed X-chromosome variability in a large ovine data set, including a BeadChip array for 943 ewes from the world’s sheep populations and 110 whole genomes of wild and domestic sheep. Analyzing whole-genome sequences, we observed a substantially reduced X-to-autosome diversity ratio (∼0.6) compared with the value expected under a neutral model (0.75). In particular, one large X-linked segment (43.05–79.25 Mb) was found to show extremely low diversity, most likely due to a high density of coding genes, featuring highly conserved regions. In general, we observed higher nucleotide diversity on the autosomes, but a flat diversity gradient in X-linked segments, as a function of increasing distance from the nearest genes, leading to a decreased X: autosome (X/A) diversity ratio and contrasting to the positive correlation detected in primates and other model animals. Our evidence suggests that accelerated genetic drift but reduced directional selection on X chromosome, as well as sex-biased demographic events, explain low X-chromosome diversity in sheep species. The distinct patterns of X-linked and X/A diversity we observed between Middle Eastern and non-Middle Eastern sheep populations can be explained by multiple migrations, selection, and admixture during the domestic sheep’s recent postdomestication demographic expansion, coupled with natural selection for adaptation to new environments. In addition, we identify important novel genes involved in abnormal behavioral phenotypes, metabolism, and immunity, under selection on the sheep X-chromosome. PMID:29790980

  11. Estimating planktonic diversity through spatial dominance patterns in a model ocean.

    PubMed

    Soccodato, Alice; d'Ovidio, Francesco; Lévy, Marina; Jahn, Oliver; Follows, Michael J; De Monte, Silvia

    2016-10-01

    In the open ocean, the observation and quantification of biodiversity patterns is challenging. Marine ecosystems are indeed largely composed by microbial planktonic communities whose niches are affected by highly dynamical physico-chemical conditions, and whose observation requires advanced methods for morphological and molecular classification. Optical remote sensing offers an appealing complement to these in-situ techniques. Global-scale coverage at high spatiotemporal resolution is however achieved at the cost of restrained information on the local assemblage. Here, we use a coupled physical and ecological model ocean simulation to explore one possible metrics for comparing measures performed on such different scales. We show that a large part of the local diversity of the virtual plankton ecosystem - corresponding to what accessible by genomic methods - can be inferred from crude, but spatially extended, information - as conveyed by remote sensing. Shannon diversity of the local community is indeed highly correlated to a 'seascape' index, which quantifies the surrounding spatial heterogeneity of the most abundant functional group. The error implied in drastically reducing the resolution of the plankton community is shown to be smaller in frontal regions as well as in regions of intermediate turbulent energy. On the spatial scale of hundreds of kms, patterns of virtual plankton diversity are thus largely sustained by mixing communities that occupy adjacent niches. We provide a proof of principle that in the open ocean information on spatial variability of communities can compensate for limited local knowledge, suggesting the possibility of integrating in-situ and satellite observations to monitor biodiversity distribution at the global scale. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Metacommunity versus Biogeography: A Case Study of Two Groups of Neotropical Vegetation-Dwelling Arthropods

    PubMed Central

    Gonçalves-Souza, Thiago; Romero, Gustavo Q.; Cottenie, Karl

    2014-01-01

    Biogeography and metacommunity ecology provide two different perspectives on species diversity. Both are spatial in nature but their spatial scales do not necessarily match. With recent boom of metacommunity studies, we see an increasing need for clear discrimination of spatial scales relevant for both perspectives. This discrimination is a necessary prerequisite for improved understanding of ecological phenomena across scales. Here we provide a case study to illustrate some spatial scale-dependent concepts in recent metacommunity studies and identify potential pitfalls. We presented here the diversity patterns of Neotropical lepidopterans and spiders viewed both from metacommunity and biogeographical perspectives. Specifically, we investigated how the relative importance of niche- and dispersal-based processes for community assembly change at two spatial scales: metacommunity scale, i.e. within a locality, and biogeographical scale, i.e. among localities widely scattered along a macroclimatic gradient. As expected, niche-based processes dominated the community assembly at metacommunity scale, while dispersal-based processes played a major role at biogeographical scale for both taxonomical groups. However, we also observed small but significant spatial effects at metacommunity scale and environmental effects at biogeographical scale. We also observed differences in diversity patterns between the two taxonomical groups corresponding to differences in their dispersal modes. Our results thus support the idea of continuity of processes interactively shaping diversity patterns across scales and emphasize the necessity of integration of metacommunity and biogeographical perspectives. PMID:25549332

  13. Mating system and early viability resistance to habitat fragmentation in a bird-pollinated eucalypt

    PubMed Central

    Breed, M F; Ottewell, K M; Gardner, M G; Marklund, M H K; Stead, M G; Harris, J B C; Lowe, A J

    2015-01-01

    Habitat fragmentation has been shown to disrupt ecosystem processes such as plant-pollinator mutualisms. Consequently, mating patterns in remnant tree populations are expected to shift towards increased inbreeding and reduced pollen diversity, with fitness consequences for future generations. However, mating patterns and phenotypic assessments of open-pollinated progeny have rarely been combined in a single study. Here, we collected seeds from 37 Eucalyptus incrassata trees from contrasting stand densities following recent clearance in a single South Australian population (intact woodland=12.6 trees ha−1; isolated pasture=1.7 trees ha−1; population area=10 km2). 649 progeny from these trees were genotyped at eight microsatellite loci. We estimated genetic diversity, spatial genetic structure, indirect contemporary pollen flow and mating patterns for adults older than the clearance events and open-pollinated progeny sired post-clearance. A proxy of early stage progeny viability was assessed in a common garden experiment. Density had no impact on mating patterns, adult and progeny genetic diversity or progeny growth, but was associated with increased mean pollen dispersal. Weak spatial genetic structure among adults suggests high historical gene flow. We observed preliminary evidence for inbreeding depression related to stress caused by fungal infection, but which was not associated with density. Higher observed heterozygosities in adults compared with progeny may relate to weak selection on progeny and lifetime-accumulated mortality of inbred adults. E. incrassata appears to be resistant to the negative mating pattern and fitness changes expected within fragmented landscapes. This pattern is likely explained by strong outcrossing and regular long-distance pollen flow. PMID:23188172

  14. Stability versus diversity of the dentition during evolutionary radiation in cyprinine fish

    PubMed Central

    Pasco-Viel, Emmanuel; Yang, Lei; Veran, Monette; Balter, Vincent; Mayden, Richard L.; Laudet, Vincent; Viriot, Laurent

    2014-01-01

    Evolutionary radiations, especially adaptive radiations, have been widely studied but mainly for recent events such as in cichlid fish or Anolis lizards. Here, we investigate the radiation of the subfamily Cyprininae, which includes more than 1300 species and is estimated to have originated from Southeast Asia around 55 Ma. In order to decipher a potential adaptive radiation, within a solid phylogenetic framework, we investigated the trophic apparatus, and especially the pharyngeal dentition, as teeth have proved to be important markers of ecological specialization. We compared two tribes within Cyprininae, Poropuntiini and Labeonini, displaying divergent dental patterns, as well as other characters related to their trophic apparatus. Our results suggest that the anatomy of the trophic apparatus and diet are clearly correlated and this explains the difference in dental patterns observed between these two tribes. Our results illustrate the diversity of mechanisms that account for species diversity in this very diverse clade: diversification of dental characters from an ancestral pattern on the one hand, conservation of a basal synapomorphy leading to ecological specialization on the other hand. By integrating morphological, ecological and phylogenetic analyses, it becomes possible to investigate ancient radiation events that have shaped the present diversity of species. PMID:24523268

  15. Developing spectral, structural, and phenological diversity proxies for monitoring biodiversity change across space and time using ESA's Sentinel satellites

    NASA Astrophysics Data System (ADS)

    Ma, X.; Mahecha, M. D.; Migliavacca, M.; Luo, Y.; Urban, M.; Bohn, F. J.; Huth, A.; Reichstein, M.

    2017-12-01

    A key challenge for monitoring biodiversity change is the lack of consistent measures of biodiversity across space and time. This challenge may be addressed by exploring the potentials provided by novel remote sensing observations. By continuously observing broad-scale patterns of vegetation and land surface parameters, remote sensing can complement the restricted coverage afforded by field measurements. Here we develop methods to infer spatial patterns of biodiversity at ecosystem level from ESA's next-generation Sentinel sensors (Sentinel-1: C-band radar & Sentinel-2: multispectral). Both satellites offer very high spatial (10 m) and temporal resolutions (5 days) measurements with global coverage. We propose and test several ecosystem biodiversity proxies, including landscape spectral diversity, phenological diversity, and canopy structural diversity. These diversity proxies are highly related to some key aspects of essential biodiversity variables (EBVs) as defined by GEO-BON, such as habitat structure, community composition, ecosystem function and structure. We verify spaceborne retrievals of these biodiversity proxies with in situ measurements from drone (spectral diversity), phenocam (phenological diversity), and airborne LiDAR (canopy structural diversity) over multiple flux tower sites within the Mediterranean region. We further compare our remote sensing retrievals of biodiversity proxies against several biodiversity indices as derived from field measurements (incl. ⍺-/β- diversity and Shannon-index) to explore the limitations and potentials of extending the RS proxies to a greater spatial extent. We expect the new concept as to maximize the potential of remote sensing information might help to monitor key aspects of EBVs on a global scale.

  16. Residence rule flexibility and descent groups dynamics shape uniparental genetic diversities in South East Asia.

    PubMed

    Ly, Goki; Alard, Bérénice; Laurent, Romain; Lafosse, Sophie; Toupance, Bruno; Monidarin, Chou; Diffloth, Gérard; Bourdier, Frédéric; Evrard, Olivier; Pavard, Samuel; Chaix, Raphaëlle

    2018-03-01

    Social organization plays a major role in shaping human population genetic diversity. In particular, matrilocal populations tend to exhibit less mitochondrial diversity than patrilocal populations, and the other way around for Y chromosome diversity. However, several studies have not replicated such findings. The objective of this study is to understand the reasons for such inconsistencies and further evaluate the influence of social organization on genetic diversity. We explored uniparental diversity patterns using mitochondrial HV1 sequences and 17 Y-linked short tandem repeats (STRs) in 12 populations (n = 619) from mainland South-East Asia exhibiting a wide range of social organizations, along with quantitative ethno-demographic information sampled at the individual level. MtDNA diversity was lower in matrilocal than in multilocal and patrilocal populations while Y chromosome diversity was similar among these social organizations. The reasons for such asymmetry at the genetic level were understood by quantifying sex-specific migration rates from our ethno-demographic data: while female migration rates varied between social organizations, male migration rates did not. This unexpected lack of difference in male migrations resulted from a higher flexibility in residence rule in patrilocal than in matrilocal populations. In addition, our data suggested an impact of clan fission process on uniparental genetic patterns. The observed lack of signature of patrilocality on Y chromosome patterns might be attributed to the higher residence flexibility in the studied patrilocal populations, thus providing a potential explanation for the apparent discrepancies between social and genetic structures. Altogether, this study highlights the need to quantify the actual residence and descent patterns to fit social to genetic structures. © 2018 Wiley Periodicals, Inc.

  17. Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view.

    PubMed

    Soto, A; Robledo-Arnuncio, J J; González-Martínez, S C; Smouse, P E; Alía, R

    2010-04-01

    Quaternary climatic fluctuations have left contrasting historical footprints on the neutral genetic diversity patterns of existing populations of different tree species. We should expect the demography, and consequently the neutral genetic structure, of taxa less tolerant to particular climatic extremes to be more sensitive to long-term climate fluctuations. We explore this hypothesis here by sampling all six pine species found in the Iberian Peninsula (2464 individuals, 105 populations), using a common set of chloroplast microsatellite markers, and by looking at the association between neutral genetic diversity and species-specific climatic requirements. We found large variation in neutral genetic diversity and structure among Iberian pines, with cold-enduring mountain species (Pinus uncinata, P. sylvestris and P. nigra) showing substantially greater diversity than thermophilous taxa (P. pinea and P. halepensis). Within species, we observed a significant positive correlation between population genetic diversity and summer precipitation for some of the mountain pines. The observed pattern is consistent with the hypotheses that: (i) more thermophilous species have been subjected to stronger demographic fluctuations in the past, as a consequence of their maladaptation to recurrent glacial cold stages; and (ii) altitudinal migrations have allowed the maintenance of large effective population sizes and genetic variation in cold-tolerant species, especially in more humid regions. In the light of these results and hypotheses, we discuss some potential genetic consequences of impending climate change.

  18. Regional patterns of genetic diversity in swine influenza A viruses in the United States from 2010 to 2016.

    PubMed

    Walia, Rasna R; Anderson, Tavis K; Vincent, Amy L

    2018-04-06

    Regular spatial and temporal analyses of the genetic diversity and evolutionary patterns of influenza A virus (IAV) in swine informs control efforts and improves animal health. Initiated in 2009, the USDA passively surveils IAV in U.S. swine, with a focus on subtyping clinical respiratory submissions, sequencing at minimum the hemagglutinin (HA) and neuraminidase (NA) genes, and sharing these data publicly. In this study, our goal was to quantify and describe regional and national patterns in the genetic diversity and evolution of IAV in U.S. swine from 2010 to 2016. A comprehensive phylogenetic and epidemiological analysis of publicly available HA and NA genes generated by the USDA surveillance system collected from January 2010 to December 2016 was conducted. The dominant subtypes and genetic clades detected during the study period were H1N1 (H1-γ/1A.3.3.3, N1-classical, 29%), H1N2 (H1-δ1/1B.2.2, N2-2002, 27%), and H3N2 (H3-IV-A, N2-2002, 15%), but many other minor clades were also maintained. Year-round circulation was observed, with a primary epidemic peak in October-November and a secondary epidemic peak in March-April. Partitioning these data into 5 spatial zones revealed that genetic diversity varied regionally and was not correlated with aggregated national patterns of HA/NA diversity. These data suggest that vaccine composition and control efforts should consider IAV diversity within swine production regions in addition to aggregated national patterns. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. CITRATE 1.0: Phytoplankton continuous trait-distribution model with one-dimensional physical transport applied to the North Pacific

    NASA Astrophysics Data System (ADS)

    Chen, Bingzhang; Smith, Sherwood Lan

    2018-02-01

    Diversity plays critical roles in ecosystem functioning, but it remains challenging to model phytoplankton diversity in order to better understand those roles and reproduce consistently observed diversity patterns in the ocean. In contrast to the typical approach of resolving distinct species or functional groups, we present a ContInuous TRAiT-basEd phytoplankton model (CITRATE) that focuses on macroscopic system properties such as total biomass, mean trait values, and trait variance. This phytoplankton component is embedded within a nitrogen-phytoplankton-zooplankton-detritus-iron model that itself is coupled with a simplified one-dimensional ocean model. Size is used as the master trait for phytoplankton. CITRATE also incorporates trait diffusion for sustaining diversity and simple representations of physiological acclimation, i.e., flexible chlorophyll-to-carbon and nitrogen-to-carbon ratios. We have implemented CITRATE at two contrasting stations in the North Pacific where several years of observational data are available. The model is driven by physical forcing including vertical eddy diffusivity imported from three-dimensional general ocean circulation models (GCMs). One common set of model parameters for the two stations is optimized using the Delayed-Rejection Adaptive Metropolis-Hasting Monte Carlo (DRAM) algorithm. The model faithfully reproduces most of the observed patterns and gives robust predictions on phytoplankton mean size and size diversity. CITRATE is suitable for applications in GCMs and constitutes a prototype upon which more sophisticated continuous trait-based models can be developed.

  20. Seasonal cycles, phylogenetic assembly, and functional diversity of orchid bee communities.

    PubMed

    Ramírez, Santiago R; Hernández, Carlos; Link, Andres; López-Uribe, Margarita M

    2015-05-01

    Neotropical rainforests sustain some of the most diverse terrestrial communities on Earth. Euglossine (or orchid) bees are a diverse lineage of insect pollinators distributed throughout the American tropics, where they provide pollination services to a staggering diversity of flowering plant taxa. Elucidating the seasonal patterns of phylogenetic assembly and functional trait diversity of bee communities can shed new light into the mechanisms that govern the assembly of bee pollinator communities and the potential effects of declining bee populations. Male euglossine bees collect, store, and accumulate odoriferous compounds (perfumes) to subsequently use during courtship display. Thus, synthetic chemical baits can be used to attract and monitor euglossine bee populations. We conducted monthly censuses of orchid bees in three sites in the Magdalena valley of Colombia - a region where Central and South American biotas converge - to investigate the structure, diversity, and assembly of euglossine bee communities through time in relation to seasonal climatic cycles. In particular, we tested the hypothesis that phylogenetic community structure and functional trait diversity changed in response to seasonal rainfall fluctuations. All communities exhibited strong to moderate phylogenetic clustering throughout the year, with few pronounced bursts of phylogenetic overdispersion that coincided with the transition from wet-to-dry seasons. Despite the heterogeneous distribution of functional traits (e.g., body size, body mass, and proboscis length) and the observed seasonal fluctuations in phylogenetic diversity, we found that functional trait diversity, evenness, and divergence remained constant during all seasons in all communities. However, similar to the pattern observed with phylogenetic diversity, functional trait richness fluctuated markedly with rainfall in all sites. These results emphasize the importance of considering seasonal fluctuations in community assembly and provide a glimpse to the potential effects that climatic alterations may have on both pollinator communities and the ecosystem services they provide.

  1. Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity

    NASA Astrophysics Data System (ADS)

    Leyequien, Euridice; Verrelst, Jochem; Slot, Martijn; Schaepman-Strub, Gabriela; Heitkönig, Ignas M. A.; Skidmore, Andrew

    2007-02-01

    Amongst many ongoing initiatives to preserve biodiversity, the Millennium Ecosystem Assessment again shows the importance to slow down the loss of biological diversity. However, there is still a gap in the overview of global patterns of species distributions. This paper reviews how remote sensing has been used to assess terrestrial faunal diversity, with emphasis on proxies and methodologies, while exploring prospective challenges for the conservation and sustainable use of biodiversity. We grouped and discussed papers dealing with the faunal taxa mammals, birds, reptiles, amphibians, and invertebrates into five classes of surrogates of animal diversity: (1) habitat suitability, (2) photosynthetic productivity, (3) multi-temporal patterns, (4) structural properties of habitat, and (5) forage quality. It is concluded that the most promising approach for the assessment, monitoring, prediction, and conservation of faunal diversity appears to be the synergy of remote sensing products and auxiliary data with ecological biodiversity models, and a subsequent validation of the results using traditional observation techniques.

  2. Solution NMR studies provide structural basis for endotoxin pattern recognition by the innate immune receptor CD14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Seth; Chen Bin; Holbrook, Kristen

    CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern ofmore » residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.« less

  3. Patterns of genetic variability and habitat occupancy in Crepis triasii (Asteraceae) at different spatial scales: insights on evolutionary processes leading to diversification in continental islands.

    PubMed

    Mayol, Maria; Palau, Carles; Rosselló, Josep A; González-Martínez, Santiago C; Molins, Arántzazu; Riba, Miquel

    2012-02-01

    Archipelagos are unique systems for studying evolutionary processes promoting diversification and speciation. The islands of the Mediterranean basin are major areas of plant richness, including a high proportion of narrow endemics. Many endemic plants are currently found in rocky habitats, showing varying patterns of habitat occupancy at different spatial scales throughout their range. The aim of the present study was to understand the impact of varying patterns of population distribution on genetic diversity and structure to shed light on demographic and evolutionary processes leading to population diversification in Crepis triasii, an endemic plant from the eastern Balearic Islands. Using allozyme and chloroplast markers, we related patterns of genetic structure and diversity to those of habitat occupancy at a regional (between islands and among populations within islands) and landscape (population size and connectivity) scale. Genetic diversity was highly structured both at the regional and at the landscape level, and was positively correlated with population connectivity in the landscape. Populations located in small isolated mountains and coastal areas, with restricted patterns of regional occupancy, were genetically less diverse and much more differentiated. In addition, more isolated populations had stronger fine-scale genetic structure than well-connected ones. Changes in habitat availability and quality arising from marine transgressions during the Quaternary, as well as progressive fragmentation associated with the aridification of the climate since the last glaciation, are the most plausible factors leading to the observed patterns of genetic diversity and structure. Our results emphasize the importance of gene flow in preventing genetic erosion and maintaining the evolutionary potential of populations. They also agree with recent studies highlighting the importance of restricted gene flow and genetic drift as drivers of plant evolution in Mediterranean continental islands.

  4. Diversity of abundance patterns of neutron-capture elements in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Aoki, Misa; Aoki, Wako; Ishimaru, Yuhri; Wanajo, Shinya

    2014-05-01

    Observations of Very Metal-Poor stars indicate that there are at least two sites to r-process; "weak r-process" and "main r-process". A question is whether these two are well separated or there exists a variation in the r-process. We present the results of abundance analysis of neutron-capture elements in the two Very Metal-Poor stars HD107752 and HD110184 in the Milky Way halo observed with the Subaru Telescope HDS. The abundance patterns show overabundace at light n-capture elements (e.g. Sr, Y), inferring the element yielding of weak r-process, while heavy neutron-capture elements (e.g. Ba, Eu) are deficient; however, the overabundance of light ones is not as significant as that previously found in stars representing the weak r-process (e.g. HD122563; Honda et al. 2006). Our study show diversity in the abundance patterns from light to heavy neutron-capture elements in VMP stars, suggesting a variation in r-process, which may depend on electron fraction of environment.

  5. Direct and indirect effects of glaciers on aquatic biodiversity in high Andean peatlands.

    PubMed

    Quenta, Estefania; Molina-Rodriguez, Jorge; Gonzales, Karina; Rebaudo, François; Casas, Jérôme; Jacobsen, Dean; Dangles, Olivier

    2016-09-01

    The rapid melting of glacier cover is one of the most obvious impacts of climate change on alpine ecosystems and biodiversity. Our understanding of the impact of a decrease in glacier runoff on aquatic biodiversity is currently based on the 'glacier-heterogeneity-diversity' paradigm, according to which there is high α-diversity at intermediate levels of glacial influence due to the high degree of environmental heterogeneity caused by glacier water. This α-diversity pattern generates high levels of between-site aquatic community variation (high β diversity) and increases regional diversity (γ-diversity). There is a rich conceptual background in favor of this paradigm, but empirical data supporting it are scarce. We investigated this paradigm by analyzing the different diversity patterns (α, β and γ-diversity) of four aquatic groups (zooplankton, macroinvertebrates, algae and macrophytes) living in high-elevation peatlands (>4500 m above sea level). We sampled 200 pools from 20 peatlands along a glacier gradient in the Cordillera Real of Bolivia. We performed structural equation modeling (SEM) to analyze the potential mechanisms underlying the observed diversity patterns. Intermediate levels of glacial influence (15-20% cover) resulted in high heterogeneity, but α-diversity responded to glacial influence only for the zooplankton group (Cladocera). Our SEM analysis did not identify environmental heterogeneity as a significant variable explaining the relationship between glacier and α-diversity. Peatland area had a strong positive effect on heterogeneity and diversity. β-diversity was significantly associated with glacier gradient, and 12.9% of the total regional diversity (γ-diversity) was restricted to peatlands with a high degree of glacial influence. These species might be lost in a context of glacial retreat. These findings provide new insight into the potential effects of glacial retreat on the aquatic environment and biodiversity in the peatlands of the tropical Andes. © 2016 John Wiley & Sons Ltd.

  6. Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales

    NASA Astrophysics Data System (ADS)

    Duffy, Leanne M.; Kuhnert, Petra M.; Pethybridge, Heidi R.; Young, Jock W.; Olson, Robert J.; Logan, John M.; Goñi, Nicolas; Romanov, Evgeny; Allain, Valerie; Staudinger, Michelle D.; Abecassis, Melanie; Choy, C. Anela; Hobday, Alistair J.; Simier, Monique; Galván-Magaña, Felipe; Potier, Michel; Ménard, Frederic

    2017-06-01

    Predator-prey interactions for three commercially valuable tuna species: yellowfin (Thunnus albacares), bigeye (T. obesus), and albacore (T. alalunga), collected over a 40-year period from the Pacific, Indian, and Atlantic Oceans, were used to quantitatively assess broad, macro-scale trophic patterns in pelagic ecosystems. Analysis of over 14,000 tuna stomachs, using a modified classification tree approach, revealed for the first time the global expanse of pelagic predatory fish diet and global patterns of micronekton diversity. Ommastrephid squids were consistently one of the top prey groups by weight across all tuna species and in most ocean bodies. Interspecific differences in prey were apparent, with epipelagic scombrid and mesopelagic paralepidid fishes globally important for yellowfin and bigeye tunas, respectively, while vertically-migrating euphausiid crustaceans were important for albacore tuna in the Atlantic and Pacific Oceans. Diet diversity showed global and regional patterns among tuna species. In the central and western Pacific Ocean, characterized by low productivity, a high diversity of micronekton prey was detected while low prey diversity was evident in highly productive coastal waters where upwelling occurs. Spatial patterns of diet diversity were most variable in yellowfin and bigeye tunas while a latitudinal diversity gradient was observed with lower diversity in temperate regions for albacore tuna. Sea-surface temperature was a reasonable predictor of the diets of yellowfin and bigeye tunas, whereas chlorophyll-a was the best environmental predictor of albacore diet. These results suggest that the ongoing expansion of warmer, less productive waters in the world's oceans may alter foraging opportunities for tunas due to regional changes in prey abundances and compositions.

  7. Seasonal and species-specific patterns in abundance of freshwater mussel glochidia in stream drift

    Treesearch

    Jacob J. Culp; Wendell R. Haag; D. Albrey Arrington; Thomas B. Kennedy

    2011-01-01

    Abstract. We examined seasonal patterns of abundance of mussel larvae (glochidia) in stream drift in a diverse, large-stream mussel assemblage in the Sipsey River, Alabama, across 1 y. We used recently developed techniques for glochidial identification combined with information about mussel fecundity and benthic assemblages to evaluate how well observed glochidial...

  8. Pollen flow in fragmented landscapes maintains genetic diversity following stand-replacing disturbance in a neotropical pioneer tree, Vochysia ferruginea Mart.

    PubMed

    Davies, S J; Cavers, S; Finegan, B; White, A; Breed, M F; Lowe, A J

    2015-08-01

    In forests with gap disturbance regimes, pioneer tree regeneration is typically abundant following stand-replacing disturbances, whether natural or anthropogenic. Differences in pioneer tree density linked to disturbance regime can influence pollinator behaviour and impact on mating patterns and genetic diversity of pioneer populations. Such mating pattern shifts can manifest as higher selfing rates and lower pollen diversity in old growth forest populations. In secondary forest, where more closely related pollen donors occur, an increase in biparental inbreeding is a potential problem. Here, we investigate the consequences of secondary forest colonisation on the mating patterns and genetic diversity of open-pollinated progeny arrays for the long-lived, self-compatible pioneer tree, Vochysia ferruginea, at two Costa Rican sites. Five microsatellite loci were screened across adult and seed cohorts from old growth forest with lower density, secondary forest with higher density, and isolated individual trees in pasture. Progeny from both old growth and secondary forest contexts were predominantly outcrossed (tm=1.00) and experienced low levels of biparental inbreeding (tm-ts=0.00-0.04). In contrast to predictions, our results indicated that the mating patterns of V. ferruginea are relatively robust to density differences between old growth and secondary forest stands. In addition, we observed that pollen-mediated gene flow possibly maintained the genetic diversity of open-pollinated progeny arrays in stands of secondary forest adults. As part of a natural resource management strategy, we suggest that primary forest remnants should be prioritised for conservation to promote restoration of genetic diversity during forest regeneration.

  9. The Contributions of Places to Metropolitan Ethnoracial Diversity and Segregation: Decomposing Change Across Space and Time

    PubMed Central

    Fowler, Christopher S.; Lee, Barrett A.; Matthews, Stephen A.

    2016-01-01

    Although the trend toward greater ethnoracial diversity in the United States has been documented at a variety of geographic scales, most research tracks diversity one scale at a time. Our study bridges scales, asking how the diversity and segregation patterns of metropolitan areas are influenced by shifts in the racial/ethnic composition of their constituent places. Drawing on 1980–2010 decennial census data, we use a new visual tool to compare the distributions of place diversity for 50 U.S. metro areas over three decades. We also undertake a decomposition analysis of segregation within these areas to evaluate hypotheses about the roles of different types of places in ethnoracial change. The decomposition indicates that although principal cities continue to shape the overall diversity of metro areas, their relative impact has declined since 1980. Inner suburbs have experienced substantial increases in diversity during the same period. Places with large white majorities now contribute more to overall metropolitan diversity than in the past. In contrast, majority black and majority Hispanic places contribute less to metropolitan diversity than in the past. The complexity of the patterns we observe is underscored through an inspection of two featured metropolises: Chicago and Dallas. PMID:27783360

  10. Polychaete richness and abundance enhanced in anthropogenically modified estuaries despite high concentrations of toxic contaminants.

    PubMed

    Dafforn, Katherine A; Kelaher, Brendan P; Simpson, Stuart L; Coleman, Melinda A; Hutchings, Pat A; Clark, Graeme F; Knott, Nathan A; Doblin, Martina A; Johnston, Emma L

    2013-01-01

    Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a 'positive' response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively 'pristine' estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification.

  11. Polychaete Richness and Abundance Enhanced in Anthropogenically Modified Estuaries Despite High Concentrations of Toxic Contaminants

    PubMed Central

    Dafforn, Katherine A.; Kelaher, Brendan P.; Simpson, Stuart L.; Coleman, Melinda A.; Hutchings, Pat A.; Clark, Graeme F.; Knott, Nathan A.; Doblin, Martina A.; Johnston, Emma L.

    2013-01-01

    Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a ‘positive’ response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively ‘pristine’ estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification. PMID:24098816

  12. Surviving in mountain climate refugia: new insights from the genetic diversity and structure of the relict shrub Myrtus nivellei (Myrtaceae) in the Sahara Desert.

    PubMed

    Migliore, Jérémy; Baumel, Alex; Juin, Marianick; Fady, Bruno; Roig, Anne; Duong, Nathalie; Médail, Frédéric

    2013-01-01

    The identification of past glacial refugia has become a key topic for conservation under environmental change, since they contribute importantly to shaping current patterns of biodiversity. However, little attention has been paid so far to interglacial refugia despite their key role for the survival of relict species currently occurring in climate refugia. Here, we focus on the genetic consequences of range contraction on the relict populations of the evergreen shrub Myrtus nivellei, endemic in the Saharan mountains since at least the end of the last Green Sahara period, around 5.5 ka B.P. Multilocus genotypes (nuclear microsatellites and AFLP) were obtained from 215 individuals collected from 23 wadis (temporary rivers) in the three main mountain ranges in southern Algeria (the Hoggar, Tassili n'Ajjer and Tassili n'Immidir ranges). Identical genotypes were found in several plants growing far apart within the same wadis, a pattern taken as evidence of clonality. Multivariate analyses and Bayesian clustering revealed that genetic diversity was mainly structured among the mountain ranges, while low isolation by distance was observed within each mountain range. The range contraction induced by the last episode of aridification has likely increased the genetic isolation of the populations of M. nivellei, without greatly affecting the genetic diversity of the species as a whole. The pattern of genetic diversity observed here suggests that high connectivity may have prevailed during humid periods, which is consistent with recent paleoenvironmental reconstructions.

  13. A rich diversity of opercle bone shape among teleost fishes

    PubMed Central

    Small, Clayton M.; Knope, Matthew L.

    2017-01-01

    The opercle is a prominent craniofacial bone supporting the gill cover in all bony fish and has been the subject of morphological, developmental, and genetic investigation. We surveyed the shapes of this bone among 110 families spanning the teleost tree and examined its pattern of occupancy in a principal component-based morphospace. Contrasting with expectations from the literature that suggest the local morphospace would be only sparsely occupied, we find primarily dense, broad filling of the morphological landscape, indicating rich diversity. Phylomorphospace plots suggest that dynamic evolution underlies the observed spatial patterning. Evolutionary transits through the morphospaces are sometimes long, and occur in a variety of directions. The trajectories seem to represent both evolutionary divergences and convergences, the latter supported by convevol analysis. We suggest that that this pattern of occupancy reflects the various adaptations of different groups of fishes, seemingly paralleling their diverse marine and freshwater ecologies and life histories. Opercle shape evolution within the acanthomorphs, spiny ray-finned fishes, appears to have been especially dynamic. PMID:29281662

  14. Modeling Effects of Local Extinctions on Culture Change and Diversity in the Paleolithic

    PubMed Central

    Premo, L. S.; Kuhn, Steven L.

    2010-01-01

    The persistence of early stone tool technologies has puzzled archaeologists for decades. Cognitively based explanations, which presume either lack of ability to innovate or extreme conformism, do not account for the totality of the empirical patterns. Following recent research, this study explores the effects of demographic factors on rates of culture change and diversification. We investigate whether the appearance of stability in early Paleolithic technologies could result from frequent extinctions of local subpopulations within a persistent metapopulation. A spatially explicit agent-based model was constructed to test the influence of local extinction rate on three general cultural patterns that archaeologists might observe in the material record: total diversity, differentiation among spatially defined groups, and the rate of cumulative change. The model shows that diversity, differentiation, and the rate of cumulative cultural change would be strongly affected by local extinction rates, in some cases mimicking the results of conformist cultural transmission. The results have implications for understanding spatial and temporal patterning in ancient material culture. PMID:21179418

  15. Temporal species richness-biomass relationships along successional gradients

    USGS Publications Warehouse

    Guo, Q.

    2003-01-01

    Diversity-biomass relationships are frequently reported to be hump-shaped over space at a given time. However, it is not yet clear how diversity and biomass change simultaneously and how they are related to each other over time (e.g. in succession) at one locality. This study develops a temporal model based on the projected changes of various community variables in a generalized terrestrial environment after fire and uses post-fire succession data on Santa Monica Mountains of southern California and other published succession data to examine the temporal diversity-biomass relationships. The results indicate that in the early stages of succession, both diversity and biomass increase and a positive relationship appears, while in the late stages of succession, biomass continued to increase but diversity usually declines; thus a negative relationship may be observed. When the scales of measurement become sufficiently large so that the measured diversity and biomass cross various stages of succession, a 'hump-shaped' relationship can emerge. The diversity-biomass relationship appears to be concordant in space and time when appropriate scales are used. Formerly proposed explanations for spatial patterns may well apply to the temporal patterns (particularly colonization, facilitation and competitive exclusion).

  16. Temporal species richness-biomass relationships along successional gradients

    USGS Publications Warehouse

    Guo, Q.

    2003-01-01

    Diversity-biomass relationships are frequently reported to be hump-shaped over space at a given time. However, it is not yet clear how diversity and biomass change simultaneously and how they are related to each other overtime (e.g. in succession) at one locality. This study develops a temporal model based on the projected changes of various community variables in a generalized terrestrial environment after fire and uses post-fire succession data on Santa Monica Mountains of southern California and other published succession data to examine the temporal diversity-biomass relationships. The results indicate that in the early stages of succession, both diversity and biomass increase and a positive relationship appears, while in the late stages of succession, biomass continued to increase but diversity usually declines; thus a negative relationship may be observed. When the scales of measurement become sufficiently large so that the measured diversity and biomass cross various stages of succession, a 'hump-shaped' relationship can emerge. The diversity-biomass relationship appears to be concordant in space and time when appropriate scales are used. Formerly proposed explanations for spatial patterns may well apply to the temporal patterns (particularly colonization, facilitation and competitive exclusion).

  17. Pre-Quaternary divergence and subsequent radiation explain longitudinal patterns of genetic and morphological variation in the striped skink, Heremites vittatus.

    PubMed

    Baier, Felix; Schmitz, Andreas; Sauer-Gürth, Hedwig; Wink, Michael

    2017-06-09

    Many animal and plant species in the Middle East and northern Africa have a predominantly longitudinal distribution, extending from Iran and Turkey along the eastern Mediterranean coast into northern Africa. These species are potentially characterized by longitudinal patterns of biological diversity, but little is known about the underlying biogeographic mechanisms and evolutionary timescales. We examined these questions in the striped skink, Heremites vittatus, one such species with a roughly longitudinal distribution across the Middle East and northern Africa, by analyzing range-wide patterns of mitochondrial DNA (mtDNA) sequence and multi-trait morphological variation. The striped skink exhibits a basic longitudinal organization of mtDNA diversity, with three major mitochondrial lineages inhabiting northern Africa, the eastern Mediterranean coast, and Turkey/Iran. Remarkably, these lineages are of pre-Quaternary origin, and are characterized by p-distances of 9-10%. In addition, within each of these lineages a more recent Quaternary genetic diversification was observed, as evidenced by deep subclades and high haplotype diversity especially in the Turkish/Iranian and eastern Mediterranean lineages. Consistent with the genetic variation, our morphological analysis revealed that the majority of morphological traits show significant mean differences between specimens from northern Africa, the eastern Mediterranean coast, and Turkey/Iran, suggesting lineage-specific trait evolution. In addition, a subset of traits exhibits clinal variation along the eastern Mediterranean coast, potentially indicating selection gradients at the geographic transition from northern Africa to Anatolia. The existence of allopatric, morphologically and genetically divergent lineages suggests that Heremites vittatus might represent a complex with several taxa. Our work demonstrates that early divergence events in the Pliocene, likely driven by both climatic and geological factors, established the longitudinal patterns and distribution of Heremites vittatus. Subsequent radiation during the Pleistocene generated the genetic and morphological diversity observed today. Our study provides further evidence that longitudinal diversity patterns and species distributions in the Middle East and northern Africa were shaped by complex evolutionary processes, involving the region's intricate geological history, climatic oscillations, and the presence of the Sahara.

  18. Why do different oceanic archipelagos harbour contrasting levels of species diversity? The macaronesian endemic genus Pericallis (Asteraceae) provides insight into explaining the 'Azores diversity Enigma'.

    PubMed

    Jones, K E; Pérez-Espona, S; Reyes-Betancort, J A; Pattinson, D; Caujapé-Castells, J; Hiscock, S J; Carine, M A

    2016-10-08

    Oceanic archipelagos typically harbour extensive radiations of flowering plants and a high proportion of endemics, many of which are restricted to a single island (Single Island Endemics; SIEs). The Azores represents an anomaly as overall levels of endemism are low; there are few SIEs and few documented cases of intra-archipelago radiations. The distinctiveness of the flora was first recognized by Darwin and has been referred to as the 'Azores Diversity Enigma' (ADE). Diversity patterns in the Macaronesian endemic genus Pericallis (Asteraceae) exemplify the ADE. In this study we used morphometric, Amplified Length Polymorphisms, and bioclimatic data for herbaceous Pericallis lineages endemic to the Azores and the Canaries, to test two key hypotheses proposed to explain the ADE: i) that it is a taxonomic artefact or Linnean shortfall, ie. the under description of taxa in the Azores or the over-splitting of taxa in the Canaries and (ii) that it reflects the greater ecological homogeneity of the Azores, which results in limited opportunity for ecological diversification compared to the Canaries. In both the Azores and the Canaries, morphological patterns were generally consistent with current taxonomic classifications. However, the AFLP data showed no genetic differentiation between the two currently recognized Azorean subspecies that are ecologically differentiated. Instead, genetic diversity in the Azores was structured geographically across the archipelago. In contrast, in the Canaries genetic differentiation was mostly consistent with morphology and current taxonomic treatments. Both Azorean and Canarian lineages exhibited ecological differentiation between currently recognized taxa. Neither a Linnean shortfall nor the perceived ecological homogeneity of the Azores fully explained the ADE-like pattern observed in Pericallis. Whilst variation in genetic data and morphological data in the Canaries were largely congruent, this was not the case in the Azores, where genetic patterns reflected inter-island geographical isolation, and morphology reflected intra-island bioclimatic variation. The combined effects of differences in (i) the extent of geographical isolation, (ii) population sizes and (iii) geographical occupancy of bioclimatic niche space, coupled with the morphological plasticity of Pericallis, may all have contributed to generating the contrasting patterns observed in the archipelagos.

  19. Do Patterns of Bacterial Diversity along Salinity Gradients Differ from Those Observed for Macroorganisms?

    PubMed Central

    Zhang, Yong; Shen, Ji; van der Gast, Christopher; Hahn, Martin W.; Wu, Qinglong

    2011-01-01

    It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE) with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers) of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline). For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity), the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns. PMID:22125616

  20. The Influence of Weather Variation, Urban Design and Built Environment on Objectively Measured Sedentary Behaviour in Children

    PubMed Central

    Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem

    2016-01-01

    With emerging evidence indicating that independent of physical activity, sedentary behaviour (SB) can be detrimental to health, researchers are increasingly aiming to understand the influence of multiple contexts such as urban design and built environment on SB. However, weather variation, a factor that continuously interacts with all other environmental variables, has been consistently underexplored. This study investigated the influence of diverse environmental exposures (including weather variation, urban design and built environment) on SB in children. This cross-sectional observational study is part of an active living research initiative set in the Canadian prairie city of Saskatoon. Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive SB of 331 10–14 year old children in 25 one week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample. Accelerometer data were matched with localized weather patterns derived from Environment Canada weather data. Multilevel modeling using Hierarchical Linear and Non-linear Modeling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on SB. Both weather variation and urban design played a significant role in SB. After factoring in weather variation, it was observed that children living in grid-pattern neighbourhoods closer to the city centre (with higher diversity of destinations) were less likely to be sedentary. This study demonstrates a methodology that could be replicated to integrate geography-specific weather patterns with existing cross-sectional accelerometry data to understand the influence of urban design and built environment on SB in children. PMID:29546188

  1. Ancient Urban Ecology Reconstructed from Archaeozoological Remains of Small Mammals in the Near East

    PubMed Central

    Weissbrod, Lior; Malkinson, Dan; Cucchi, Thomas; Gadot, Yuval; Finkelstein, Israel; Bar-Oz, Guy

    2014-01-01

    Modern rapidly expanding cities generate intricate patterns of species diversity owing to immense complexity in urban spatial structure and current growth trajectories. We propose to identify and uncouple the drivers that give rise to these patterns by looking at the effect of urbanism on species diversity over a previously unexplored long temporal frame that covers early developments in urbanism. To provide this historical perspective we analyzed archaeozoological remains of small mammals from ancient urban and rural sites in the Near East from the 2nd to the 1st millennium BCE, and compared them to observations from modern urban areas. Our data show that ancient urban assemblages consistently comprised two main taxa (Mus musculus domesticus and Crocidura sp.), whereas assemblages of contemporaneous rural sites were significantly richer. Low species diversity also characterizes high-density core areas of modern cities, suggesting that similar ecological drivers have continued to operate in urban areas despite the vast growth in their size and population densities, as well as in the complexity of their technologies and social organization. Research in urban ecology has tended to emphasize the relatively high species diversity observed in low-density areas located on the outskirts of cities, where open and vegetated patches are abundant. The fact that over several millennia urban evolution did not significantly alter species diversity suggests that low diversity is an attribute of densely-populated settlements. The possibility that high diversity in peripheral urban areas arose only recently as a short-term phenomenon in urban ecology merits further research based on long-term data. PMID:24622726

  2. Ancient urban ecology reconstructed from archaeozoological remains of small mammals in the Near East.

    PubMed

    Weissbrod, Lior; Malkinson, Dan; Cucchi, Thomas; Gadot, Yuval; Finkelstein, Israel; Bar-Oz, Guy

    2014-01-01

    Modern rapidly expanding cities generate intricate patterns of species diversity owing to immense complexity in urban spatial structure and current growth trajectories. We propose to identify and uncouple the drivers that give rise to these patterns by looking at the effect of urbanism on species diversity over a previously unexplored long temporal frame that covers early developments in urbanism. To provide this historical perspective we analyzed archaeozoological remains of small mammals from ancient urban and rural sites in the Near East from the 2nd to the 1st millennium BCE, and compared them to observations from modern urban areas. Our data show that ancient urban assemblages consistently comprised two main taxa (Mus musculus domesticus and Crocidura sp.), whereas assemblages of contemporaneous rural sites were significantly richer. Low species diversity also characterizes high-density core areas of modern cities, suggesting that similar ecological drivers have continued to operate in urban areas despite the vast growth in their size and population densities, as well as in the complexity of their technologies and social organization. Research in urban ecology has tended to emphasize the relatively high species diversity observed in low-density areas located on the outskirts of cities, where open and vegetated patches are abundant. The fact that over several millennia urban evolution did not significantly alter species diversity suggests that low diversity is an attribute of densely-populated settlements. The possibility that high diversity in peripheral urban areas arose only recently as a short-term phenomenon in urban ecology merits further research based on long-term data.

  3. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors

    PubMed Central

    Raman, Baranidharan; Joseph, Joby; Tang, Jeff; Stopfer, Mark

    2010-01-01

    Odorants are represented as spatiotemporal patterns of spikes in neurons of the antennal lobe (AL, insects) and olfactory bulb (OB, vertebrates). These response patterns have been thought to arise primarily from interactions within the AL/OB, an idea supported, in part, by the assumption that olfactory receptor neurons (ORNs) respond to odorants with simple firing patterns. However, activating the AL directly with simple pulses of current evoked responses in AL neurons that were much less diverse, complex, and enduring than responses elicited by odorants. Similarly, models of the AL driven by simplistic inputs generated relatively simple output. How then are dynamic neural codes for odors generated? Consistent with recent results from several other species, our recordings from locust ORNs showed a great diversity of temporal structure. Further, we found that, viewed as a population, many response features of ORNs were remarkably similar to those observed within the AL. Using a set of computational models constrained by our electrophysiological recordings, we found that the temporal heterogeneity of responses of ORNs critically underlies the generation of spatiotemporal odor codes in the AL. A test then performed in vivo confirmed that, given temporally homogeneous input, the AL cannot create diverse spatiotemporal patterns on its own; however, given temporally heterogeneous input, the AL generated realistic firing patterns. Finally, given the temporally structured input provided by ORNs, we clarified several separate, additional contributions of the AL to olfactory information processing. Thus, our results demonstrate the origin and subsequent reformatting of spatiotemporal neural codes for odors. PMID:20147528

  4. Herbivory and drought interact to enhance spatial patterning and diversity in a savanna understory.

    PubMed

    Porensky, Lauren M; Wittman, Sarah E; Riginos, Corinna; Young, Truman P

    2013-10-01

    The combination of abiotic stress and consumer stress can have complex impacts on plant community structure. Effective conservation and management of semi-arid ecosystems requires an understanding of how different stresses interact to structure plant communities. We explored the separate and combined impacts of episodic drought, livestock grazing, and wild ungulate herbivory on species co-occurrence and diversity patterns in a relatively productive, semi-arid Acacia savanna. Specifically, we analyzed 9 years of biannual plant community data from the Kenya long-term exclosure experiment, a broad-scale manipulative experiment that has excluded different combinations of large mammalian herbivores from 18 4-ha plots since 1995. During droughts, we observed low species diversity and random species co-occurrence patterns. However, when rain followed a major drought, areas exposed to moderate cattle grazing displayed high species diversity and evidence of significant species aggregation. These patterns were not apparent in the absence of cattle, even if other large herbivores were present. To explore possible mechanisms, we examined patterns separately for common and rare species. We found that aggregation patterns were likely driven by rare species responding similarly to the availability of open micro-sites. Our results indicate that in a productive, fire-suppressed savanna, the combination of periodic drought and moderate cattle grazing can enhance plant biodiversity and fine-scale spatial heterogeneity by opening up space for species that are otherwise rare or cryptic. Our findings also emphasize that domestic herbivores can have significantly stronger impacts on plant community dynamics than wild herbivores, even in an ecosystem with a long history of grazing.

  5. Genetic diversity in aspen and its relation to arthropod abundance

    PubMed Central

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  6. Gender differences in patterns of experienced sexual coercion and associated vulnerability factors among young people in the Netherlands.

    PubMed

    Kuyper, Lisette; de Wit, John; Smolenski, Derek; Adam, Philippe; Woertman, Liesbeth; van Berlo, Willy

    2013-11-01

    The development of effective policies and programs to prevent sexual coercion among young people requires thorough understanding of the diversity of coercive sexual experiences, patterns in such types of experiences, and similarities and differences between subgroups, especially by gender, in patterns of coercive sexual experiences and associations with potential vulnerability factors. The present online self-report study assessed a wide range of coercive sexual experiences and potential vulnerability factors among a sociodemographically diverse sample of 1,319 young people (16-25 years old) in The Netherlands. Findings confirm that sexual coercion comprises a diversity of experiences, with rates differing substantially across types of coercion. Latent class analysis revealed distinct patterns of coercive sexual experiences for young women and young men. Among young men, three patterns of experiences were found: no coercive sexual experiences, experience with verbal pressure, and experience with verbal pressure as well as coercion related to alcohol intoxication. Among young women, four patterns of coercive experiences were identified. In addition to the three patterns observed among young men, a fourth pattern encompassed experiences with verbal pressure as well as the use of force or violence. Higher numbers of sexual partners, lower levels of sexual refusal skills, and higher levels of token resistance were consistently associated with increased vulnerability. Findings illustrate the importance of communication skills and suggest that sexual communication training should be an integral part of sexuality education.

  7. The genomic evolution of H1 influenza A viruses from swine detected in the United States between 2009 and 2016.

    PubMed

    Gao, Shibo; Anderson, Tavis K; Walia, Rasna R; Dorman, Karin S; Janas-Martindale, Alicia; Vincent, Amy L

    2017-08-01

    Transmission of influenza A virus (IAV) from humans to swine occurs with relative frequency and is a critical contributor to swine IAV diversity. Subsequent to the introduction of these human seasonal lineages, there is often reassortment with endemic viruses and antigenic drift. To address whether particular genome constellations contributed to viral persistence following the introduction of the 2009 H1N1 human pandemic virus to swine in the USA, we collated and analysed 616 whole genomes of swine H1 isolates. For each gene, sequences were aligned, the best-known maximum likelihood phylogeny was inferred, and each virus was assigned a clade based upon its evolutionary history. A time-scaled Bayesian approach was implemented for the haemagglutinin (HA) gene to determine the patterns of genetic diversity over time. From these analyses, we observed an increase in genome diversity across all H1 lineages and clades, with the H1-γ and H1-δ1 genetic clades containing the greatest number of unique genome patterns. We documented 74 genome patterns from 2009 to 2016, of which 3 genome patterns were consistently detected at a significantly higher level than others across the entire time period. Eight genome patterns increased significantly, while five genome patterns were shown to decline in detection over time. Viruses with genome patterns identified as persisting in the US swine population may possess a greater capacity to infect and transmit in swine. This study highlights the emerging genetic diversity of US swine IAV from 2009 to 2016, with implications for swine and public health and vaccine control efforts.

  8. The genomic evolution of H1 influenza A viruses from swine detected in the United States between 2009 and 2016

    PubMed Central

    Gao, Shibo; Anderson, Tavis K.; Walia, Rasna R.; Dorman, Karin S.; Janas-Martindale, Alicia

    2017-01-01

    Transmission of influenza A virus (IAV) from humans to swine occurs with relative frequency and is a critical contributor to swine IAV diversity. Subsequent to the introduction of these human seasonal lineages, there is often reassortment with endemic viruses and antigenic drift. To address whether particular genome constellations contributed to viral persistence following the introduction of the 2009 H1N1 human pandemic virus to swine in the USA, we collated and analysed 616 whole genomes of swine H1 isolates. For each gene, sequences were aligned, the best-known maximum likelihood phylogeny was inferred, and each virus was assigned a clade based upon its evolutionary history. A time-scaled Bayesian approach was implemented for the haemagglutinin (HA) gene to determine the patterns of genetic diversity over time. From these analyses, we observed an increase in genome diversity across all H1 lineages and clades, with the H1-γ and H1-δ1 genetic clades containing the greatest number of unique genome patterns. We documented 74 genome patterns from 2009 to 2016, of which 3 genome patterns were consistently detected at a significantly higher level than others across the entire time period. Eight genome patterns increased significantly, while five genome patterns were shown to decline in detection over time. Viruses with genome patterns identified as persisting in the US swine population may possess a greater capacity to infect and transmit in swine. This study highlights the emerging genetic diversity of US swine IAV from 2009 to 2016, with implications for swine and public health and vaccine control efforts. PMID:28758634

  9. Demographic Histories, Isolation and Social Factors as Determinants of the Genetic Structure of Alpine Linguistic Groups

    PubMed Central

    Coia, Valentina; Capocasa, Marco; Anagnostou, Paolo; Pascali, Vincenzo; Scarnicci, Francesca; Boschi, Ilaria; Battaggia, Cinzia; Crivellaro, Federica; Ferri, Gianmarco; Alù, Milena; Brisighelli, Francesca; Busby, George B. J.; Capelli, Cristian; Maixner, Frank; Cipollini, Giovanna; Viazzo, Pier Paolo; Zink, Albert; Destro Bisol, Giovanni

    2013-01-01

    Great European mountain ranges have acted as barriers to gene flow for resident populations since prehistory and have offered a place for the settlement of small, and sometimes culturally diverse, communities. Therefore, the human groups that have settled in these areas are worth exploring as an important potential source of diversity in the genetic structure of European populations. In this study, we present new high resolution data concerning Y chromosomal variation in three distinct Alpine ethno-linguistic groups, Italian, Ladin and German. Combining unpublished and literature data on Y chromosome and mitochondrial variation, we were able to detect different genetic patterns. In fact, within and among population diversity values observed vary across linguistic groups, with German and Italian speakers at the two extremes, and seem to reflect their different demographic histories. Using simulations we inferred that the joint effect of continued genetic isolation and reduced founding group size may explain the apportionment of genetic diversity observed in all groups. Extending the analysis to other continental populations, we observed that the genetic differentiation of Ladins and German speakers from Europeans is comparable or even greater to that observed for well known outliers like Sardinian and Basques. Finally, we found that in south Tyroleans, the social practice of Geschlossener Hof, a hereditary norm which might have favored male dispersal, coincides with a significant intra-group diversity for mtDNA but not for Y chromosome, a genetic pattern which is opposite to those expected among patrilocal populations. Together with previous evidence regarding the possible effects of “local ethnicity” on the genetic structure of German speakers that have settled in the eastern Italian Alps, this finding suggests that taking socio-cultural factors into account together with geographical variables and linguistic diversity may help unveil some yet to be understood aspects of the genetic structure of European populations. PMID:24312576

  10. Demographic histories, isolation and social factors as determinants of the genetic structure of Alpine linguistic groups.

    PubMed

    Coia, Valentina; Capocasa, Marco; Anagnostou, Paolo; Pascali, Vincenzo; Scarnicci, Francesca; Boschi, Ilaria; Battaggia, Cinzia; Crivellaro, Federica; Ferri, Gianmarco; Alù, Milena; Brisighelli, Francesca; Busby, George B J; Capelli, Cristian; Maixner, Frank; Cipollini, Giovanna; Viazzo, Pier Paolo; Zink, Albert; Destro Bisol, Giovanni

    2013-01-01

    Great European mountain ranges have acted as barriers to gene flow for resident populations since prehistory and have offered a place for the settlement of small, and sometimes culturally diverse, communities. Therefore, the human groups that have settled in these areas are worth exploring as an important potential source of diversity in the genetic structure of European populations. In this study, we present new high resolution data concerning Y chromosomal variation in three distinct Alpine ethno-linguistic groups, Italian, Ladin and German. Combining unpublished and literature data on Y chromosome and mitochondrial variation, we were able to detect different genetic patterns. In fact, within and among population diversity values observed vary across linguistic groups, with German and Italian speakers at the two extremes, and seem to reflect their different demographic histories. Using simulations we inferred that the joint effect of continued genetic isolation and reduced founding group size may explain the apportionment of genetic diversity observed in all groups. Extending the analysis to other continental populations, we observed that the genetic differentiation of Ladins and German speakers from Europeans is comparable or even greater to that observed for well known outliers like Sardinian and Basques. Finally, we found that in south Tyroleans, the social practice of Geschlossener Hof, a hereditary norm which might have favored male dispersal, coincides with a significant intra-group diversity for mtDNA but not for Y chromosome, a genetic pattern which is opposite to those expected among patrilocal populations. Together with previous evidence regarding the possible effects of "local ethnicity" on the genetic structure of German speakers that have settled in the eastern Italian Alps, this finding suggests that taking socio-cultural factors into account together with geographical variables and linguistic diversity may help unveil some yet to be understood aspects of the genetic structure of European populations.

  11. Nematode Spatial and Ecological Patterns from Tropical and Temperate Rainforests

    PubMed Central

    Porazinska, Dorota L.; Giblin-Davis, Robin M.; Powers, Thomas O.; Thomas, W. Kelley

    2012-01-01

    Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates), but not for microscopic organisms (e.g. nematodes). Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy) of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica) using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1) nematode communities were unique without even a single common species between the two rainforests, 2) nematode communities were unique among habitats in both rainforests, 3) total species richness was 300% more in the tropical than in the temperate rainforest, 4) 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5) more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats) and large (rainforests) spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota. PMID:22984536

  12. Stronger tests of mechanisms underlying geographic gradients of biodiversity: insights from the dimensionality of biodiversity.

    PubMed

    Stevens, Richard D; Tello, J Sebastián; Gavilanez, María Mercedes

    2013-01-01

    Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km(2) grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota.

  13. Stronger Tests of Mechanisms Underlying Geographic Gradients of Biodiversity: Insights from the Dimensionality of Biodiversity

    PubMed Central

    Stevens, Richard D.; Tello, J. Sebastián; Gavilanez, María Mercedes

    2013-01-01

    Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km2 grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota. PMID:23451099

  14. Stream microbial diversity in response to environmental changes: review and synthesis of existing research

    PubMed Central

    Zeglin, Lydia H.

    2015-01-01

    The importance of microbial activity to ecosystem function in aquatic ecosystems is well established, but microbial diversity has been less frequently addressed. This review and synthesis of 100s of published studies on stream microbial diversity shows that factors known to drive ecosystem processes, such as nutrient availability, hydrology, metal contamination, contrasting land-use and temperature, also cause heterogeneity in bacterial diversity. Temporal heterogeneity in stream bacterial diversity was frequently observed, reflecting the dynamic nature of both stream ecosystems and microbial community composition. However, within-stream spatial differences in stream bacterial diversity were more commonly observed, driven specifically by different organic matter (OM) compartments. Bacterial phyla showed similar patterns in relative abundance with regard to compartment type across different streams. For example, surface water contained the highest relative abundance of Actinobacteria, while epilithon contained the highest relative abundance of Cyanobacteria and Bacteroidetes. This suggests that contrasting physical and/or nutritional habitats characterized by different stream OM compartment types may select for certain bacterial lineages. When comparing the prevalence of physicochemical effects on stream bacterial diversity, effects of changing metal concentrations were most, while effects of differences in nutrient concentrations were least frequently observed. This may indicate that although changing nutrient concentrations do tend to affect microbial diversity, other environmental factors are more likely to alter stream microbial diversity and function. The common observation of connections between ecosystem process drivers and microbial diversity suggests that microbial taxonomic turnover could mediate ecosystem-scale responses to changing environmental conditions, including both microbial habitat distribution and physicochemical factors. PMID:26042102

  15. Diversity spurs diversification in ecological communities

    PubMed Central

    Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice

    2017-01-01

    Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss. PMID:28598423

  16. Diversity spurs diversification in ecological communities

    NASA Astrophysics Data System (ADS)

    Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice

    2017-06-01

    Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss.

  17. Diversity spurs diversification in ecological communities.

    PubMed

    Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice

    2017-06-09

    Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss.

  18. Endophyte Microbiome Diversity in Micropropagated Atriplex canescens and Atriplex torreyi var griffithsii

    PubMed Central

    Lucero, Mary E.; Unc, Adrian; Cooke, Peter; Dowd, Scot; Sun, Shulei

    2011-01-01

    Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities. PMID:21437280

  19. En Face Optical Coherence Tomography for Visualization of the Choroid.

    PubMed

    Savastano, Maria Cristina; Rispoli, Marco; Savastano, Alfonso; Lumbroso, Bruno

    2015-05-01

    To assess posterior pole choroid patterns in healthy eyes using en face optical coherence tomography (OCT). This observational study included 154 healthy eyes of 77 patients who underwent en face OCT. The mean age of the patients was 31.2 years (standard deviation: 13 years); 40 patients were women, and 37 patients were men. En face imaging of the choroidal vasculature was assessed using an OCT Optovue RTVue (Optovue, Fremont, CA). To generate an appropriate choroid image, the best detectable vessels in Haller's layer below the retinal pigment epithelium surface parallel plane were selected. Images of diverse choroidal vessel patterns at the posterior pole were observed and recorded with en face OCT. Five different patterns of Haller's layer with different occurrences were assessed. Pattern 1 (temporal herringbone) represented 49.2%, pattern 2 (branched from below) and pattern 3 (laterally diagonal) represented 14.2%, pattern 4 (doubled arcuate) was observed in 11.9%, and pattern 5 (reticular feature) was observed in 10.5% of the reference plane. In vivo assessment of human choroid microvasculature in healthy eyes using en face OCT demonstrated five different patterns. The choroid vasculature pattern may play a role in the origin and development of neuroretinal pathologies, with potential importance in chorioretinal diseases and circulatory abnormalities. Copyright 2015, SLACK Incorporated.

  20. Altitudinal Patterns of Species Diversity and Phylogenetic Diversity across Temperate Mountain Forests of Northern China.

    PubMed

    Zhang, Wenxin; Huang, Dizhou; Wang, Renqing; Liu, Jian; Du, Ning

    2016-01-01

    The spatial patterns of biodiversity and their underlying mechanisms have been an active area of research for a long time. In this study, a total of 63 samples (20m × 30m) were systematically established along elevation gradients on Mount Tai and Mount Lao, China. We explored altitudinal patterns of plant diversity in the two mountain systems. In order to understand the mechanisms driving current diversity patterns, we used phylogenetic approaches to detect the spatial patterns of phylogenetic diversity and phylogenetic structure along two elevation gradients. We found that total species richness had a monotonically decreasing pattern and tree richness had a unimodal pattern along the elevation gradients in the two study areas. However, altitudinal patterns in shrub richness and herbs richness were not consistent on the two mountains. At low elevation, anthropogenic disturbances contributed to the increase of plant diversity, especially for shrubs and herbs in understory layers, which are more sensitive to changes in microenvironment. The phylogenetic structure of plant communities exhibited an inverted hump-shaped pattern along the elevation gradient on Mount Tai, which demonstrates that environmental filtering is the main driver of plant community assembly at high and low elevations and inter-specific competition may be the main driver of plant community assembly in the middle elevations. However, the phylogenetic structure of plant communities did not display a clear pattern on Mount Lao where the climate is milder. Phylogenetic beta diversity and species beta diversity consistently increased with increasing altitudinal divergence in the two study areas. However, the altitudinal patterns of species richness did not completely mirror phylogenetic diversity patterns. Conservation areas should be selected taking into consideration the preservation of high species richness, while maximizing phylogenetic diversity to improve the potential for diversification in the future.

  1. Genetic Diversity in Nothofagus alessandrii (Fagaceae), an Endangered Endemic Tree Species of the Coastal Maulino Forest of Central Chile

    PubMed Central

    Torres-Díaz, Cristian; Ruiz, Eduardo; González, Fidelina; Fuentes, Glenda; Cavieres, Lohengrin A.

    2007-01-01

    Background and Aims The endemic tree Nothofagus alessandrii (Fagaceae) has been historically restricted to the coastal range of Region VII of central Chile, and its forests have been increasingly destroyed and fragmented since the end of the 19th century. In this study, the patterns of within- and among-population genetic diversity in seven fragments of this endangered narrowly endemic tree were examined. Methods Allozyme electrophoresis of seven loci of N. alessandrii was used to estimate genetic diversity, genetic structure and gene flow. Key Results High levels of genetic diversity were found as shown by mean expected heterozygosity (He = 0·182 ± 0·034), percentage of polymorphic loci (Pp = 61·2 %), mean number of alleles per locus (A = 1·8) and mean number of alleles per polymorphic locus (Ap = 2·3). Genetic differentiation was also high (GST = 0·257 and Nm = 0·7). These values are high compared with more widespread congeneric species. Conclusions Despite its endemic status and restricted geographical range N. alessandrii showed high levels of genetic diversity. The observed patterns of diversity are explained in part by historical processes and more recent human fragmentation. PMID:17513870

  2. Understanding global patterns of mammalian functional and phylogenetic diversity

    PubMed Central

    Safi, Kamran; Cianciaruso, Marcus V.; Loyola, Rafael D.; Brito, Daniel; Armour-Marshall, Katrina; Diniz-Filho, José Alexandre F.

    2011-01-01

    Documenting and exploring the patterns of diversity of life on Earth has always been a central theme in biology. Species richness despite being the most commonly used measure of diversity in macroecological studies suffers from not considering the evolutionary and ecological differences among species. Phylogenetic diversity (PD) and functional diversity (FD) have been proposed as alternative measures to overcome this limitation. Although species richness, PD and FD are closely related, their relationships have never been investigated on a global scale. Comparing PD and FD with species richness corroborated the general assumptions of surrogacy of the different diversity measures. However, the analysis of the residual variance suggested that the mismatches between the diversity measures are influenced by environmental conditions. PD increased relative to species richness with increasing mean annual temperature, whereas FD decreased with decreasing seasonality relative to PD. We also show that the tropical areas are characterized by a FD deficit, a phenomenon, that suggests that in tropical areas more species can be packed into the ecological space. We discuss potential mechanisms that could have resulted in the gradient of spatial mismatch observed in the different biodiversity measures and draw parallels to local scale studies. We conclude that the use of multiple diversity measures on a global scale can help to elucidate the relative importance of historical and ecological processes shaping the present gradients in mammalian diversity. PMID:21807734

  3. Phylogenetic conservatism of thermal traits explains dispersal limitation and genomic differentiation of Streptomyces sister-taxa.

    PubMed

    Choudoir, Mallory J; Buckley, Daniel H

    2018-06-07

    The latitudinal diversity gradient is a pattern of biogeography observed broadly in plants and animals but largely undocumented in terrestrial microbial systems. Although patterns of microbial biogeography across broad taxonomic scales have been described in a range of contexts, the mechanisms that generate biogeographic patterns between closely related taxa remain incompletely characterized. Adaptive processes are a major driver of microbial biogeography, but there is less understanding of how microbial biogeography and diversification are shaped by dispersal limitation and drift. We recently described a latitudinal diversity gradient of species richness and intraspecific genetic diversity in Streptomyces by using a geographically explicit culture collection. Within this geographically explicit culture collection, we have identified Streptomyces sister-taxa whose geographic distribution is delimited by latitude. These sister-taxa differ in geographic distribution, genomic diversity, and ecological traits despite having nearly identical SSU rRNA gene sequences. Comparative genomic analysis reveals genomic differentiation of these sister-taxa consistent with restricted gene flow across latitude. Furthermore, we show phylogenetic conservatism of thermal traits between the sister-taxa suggesting that thermal trait adaptation limits dispersal and gene flow across climate regimes as defined by latitude. Such phylogenetic conservatism of thermal traits is commonly associated with latitudinal diversity gradients for plants and animals. These data provide further support for the hypothesis that the Streptomyces latitudinal diversity gradient was formed as a result of historical demographic processes defined by dispersal limitation and driven by paleoclimate dynamics.

  4. Microbial functional diversity plays an important role in the degradation of polyhydroxybutyrate (PHB) in soil.

    PubMed

    Dey, Samrat; Tribedi, Prosun

    2018-03-01

    Towards bioremediation of recalcitrant materials like synthetic polymer, soil has been recognized as a traditional site for disposal and subsequent degradation as some microorganisms in soil can degrade the polymer in a non-toxic, cost-effective, and environment friendly way. Microbial functional diversity is a constituent of biodiversity that includes wide range of metabolic activities that can influence numerous aspects of ecosystem functioning like ecosystem stability, nutrient availability, ecosystem dynamics, etc. Thus, in the current study, we assumed that microbial functional diversity could play an important role in polymer degradation in soil. To verify this hypothesis, we isolated soil from five different sites of landfill and examined several microbiological parameters wherein we observed a significant variation in heterotrophic microbial count as well as microbial activities among the soil microcosms tested. Multivariate analysis (principle component analysis) based on the carbon sources utilization pattern revealed that soil microcosms showed different metabolic patterns suggesting the variable distribution of microorganisms among the soil microcosms tested. Since microbial functional diversity depends on both microbial richness and evenness, Shannon diversity index was determined to measure microbial richness and Gini coefficient was determined to measure microbial evenness. The tested soil microcosms exhibited variation in both microbial richness and evenness suggesting the considerable difference in microbial functional diversity among the tested microcosms. We then measured polyhydroxybutyrate (PHB) degradation in soil microcosms after desired period of incubation of PHB in soil wherein we found that soil microcosms having higher functional diversity showed enhanced PHB degradation and soil microcosms having lower functional diversity showed reduced PHB degradation. We also noticed that all the tested soil microcosms showed similar pattern in both microbial functional diversity and PHB degradation suggesting a strong positive correlation ( r  = 0.95) between microbial functional diversity and PHB degradation. Thus, the results demonstrate that microbial functional diversity plays an important role in PHB degradation in soil by exhibiting versatile microbial metabolic potentials that lead to the enhanced degradation of PHB.

  5. Morphological Diversity in Crystal Growth of l-Ascorbic Acid Dissolved in Methanol

    NASA Astrophysics Data System (ADS)

    Ito, Miho; Izui, Machiko; Yamazaki, Yoshihiro; Matsushita, Mitsugu

    2003-06-01

    Morphological diagram with respect to crystal growth of l-ascorbic acid (C6H8O6; so-called vitamin C) from methanol solution on a flat glass dish is presented. Varying humidity and initial concentration of l-ascorbic acid in methanol solution, the following three distinct kinds of growing patterns have been observed: homogeneous disk, concentric ring and dendrite. In addition, in higher concentration clearly faceted small single crystals grow in any humidity less than 90%. Crossovers from one pattern to another were observed, too.

  6. Generation of Earth's First-Order Biodiversity Pattern

    NASA Astrophysics Data System (ADS)

    Krug, Andrew Z.; Jablonski, David; Valentine, James W.; Roy, Kaustuv

    2009-02-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (≥60°) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  7. Generation of Earth's first-order biodiversity pattern.

    PubMed

    Krug, Andrew Z; Jablonski, David; Valentine, James W; Roy, Kaustuv

    2009-01-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (> or =60 degrees ) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  8. Patterns of genetic variability and habitat occupancy in Crepis triasii (Asteraceae) at different spatial scales: insights on evolutionary processes leading to diversification in continental islands

    PubMed Central

    Mayol, Maria; Palau, Carles; Rosselló, Josep A.; González-Martínez, Santiago C.; Molins, Arántzazu; Riba, Miquel

    2012-01-01

    Background and Aims Archipelagos are unique systems for studying evolutionary processes promoting diversification and speciation. The islands of the Mediterranean basin are major areas of plant richness, including a high proportion of narrow endemics. Many endemic plants are currently found in rocky habitats, showing varying patterns of habitat occupancy at different spatial scales throughout their range. The aim of the present study was to understand the impact of varying patterns of population distribution on genetic diversity and structure to shed light on demographic and evolutionary processes leading to population diversification in Crepis triasii, an endemic plant from the eastern Balearic Islands. Methods Using allozyme and chloroplast markers, we related patterns of genetic structure and diversity to those of habitat occupancy at a regional (between islands and among populations within islands) and landscape (population size and connectivity) scale. Key Results Genetic diversity was highly structured both at the regional and at the landscape level, and was positively correlated with population connectivity in the landscape. Populations located in small isolated mountains and coastal areas, with restricted patterns of regional occupancy, were genetically less diverse and much more differentiated. In addition, more isolated populations had stronger fine-scale genetic structure than well-connected ones. Changes in habitat availability and quality arising from marine transgressions during the Quaternary, as well as progressive fragmentation associated with the aridification of the climate since the last glaciation, are the most plausible factors leading to the observed patterns of genetic diversity and structure. Conclusions Our results emphasize the importance of gene flow in preventing genetic erosion and maintaining the evolutionary potential of populations. They also agree with recent studies highlighting the importance of restricted gene flow and genetic drift as drivers of plant evolution in Mediterranean continental islands. PMID:22167790

  9. Trophic diversity, size and biomass spectrum of Bay of Bengal nematodes: A study case on depth and latitudinal patterns

    NASA Astrophysics Data System (ADS)

    Ansari, Kapuli Gani Mohamed Thameemul; Lyla, Somasundharanair; Khan, Syed Ajmal; Bhadury, Punyasloke

    2017-09-01

    Depth and latitudinal patterns of nematode functional attributes were investigated from 35 stations of Bay of Bengal (BoB) continental shelf. We aim to address whether depth and latitudinal variations can modify nematode community structure and their functional attributes (trophic diversity, size and biomass spectra). Global trend of depth and latitudinal related variations have also been noticed from BoB shelf in terms of nematode abundance and species richness, albeit heterogeneity patterns were encountered in functional attributes. Index of trophic diversity values revealed higher trophic diversity across the BoB shelf and suggested variety of food resource availability. However, downstream analysis of trophic status showed depth and latitude specific patterns but not reflected in terms of size and biomass spectrum. The peaks at different positions clearly visualized heterogeneity in distribution patterns for both size and biomass spectrum and also there was evidence of availability of diversified food resources. Nematode biomass spectra (NBS) constructed for nematode communities showed shift in peak biomass values towards lower to moderate size classes particularly in shallower depth but did not get reflected in latitudes. However, Chennai and Parangipettai transects demonstrated shift in peak biomass values towards higher biomass classes explaining the representation of higher nematode abundance. Our findings concluded that depth and latitudes are physical variables; they may not directly affect nematode community structure and functional attributes but they might influence the other factors such as food availability, sediment deposition and settlement rate. Our observations suggest that the local factors (seasonal character) of phytodetrital food flux can be very important for shaping the nematode community structure and success of nematode functional heterogeneity patterns across the Bay of Bengal shelf.

  10. Biodiversity patterns along ecological gradients: unifying β-diversity indices.

    PubMed

    Szava-Kovats, Robert C; Pärtel, Meelis

    2014-01-01

    Ecologists have developed an abundance of conceptions and mathematical expressions to define β-diversity, the link between local (α) and regional-scale (γ) richness, in order to characterize patterns of biodiversity along ecological (i.e., spatial and environmental) gradients. These patterns are often realized by regression of β-diversity indices against one or more ecological gradients. This practice, however, is subject to two shortcomings that can undermine the validity of the biodiversity patterns. First, many β-diversity indices are constrained to range between fixed lower and upper limits. As such, regression analysis of β-diversity indices against ecological gradients can result in regression curves that extend beyond these mathematical constraints, thus creating an interpretational dilemma. Second, despite being a function of the same measured α- and γ-diversity, the resultant biodiversity pattern depends on the choice of β-diversity index. We propose a simple logistic transformation that rids beta-diversity indices of their mathematical constraints, thus eliminating the possibility of an uninterpretable regression curve. Moreover, this transformation results in identical biodiversity patterns for three commonly used classical beta-diversity indices. As a result, this transformation eliminates the difficulties of both shortcomings, while allowing the researcher to use whichever beta-diversity index deemed most appropriate. We believe this method can help unify the study of biodiversity patterns along ecological gradients.

  11. Biodiversity Patterns along Ecological Gradients: Unifying β-Diversity Indices

    PubMed Central

    Szava-Kovats, Robert C.; Pärtel, Meelis

    2014-01-01

    Ecologists have developed an abundance of conceptions and mathematical expressions to define β-diversity, the link between local (α) and regional-scale (γ) richness, in order to characterize patterns of biodiversity along ecological (i.e., spatial and environmental) gradients. These patterns are often realized by regression of β-diversity indices against one or more ecological gradients. This practice, however, is subject to two shortcomings that can undermine the validity of the biodiversity patterns. First, many β-diversity indices are constrained to range between fixed lower and upper limits. As such, regression analysis of β-diversity indices against ecological gradients can result in regression curves that extend beyond these mathematical constraints, thus creating an interpretational dilemma. Second, despite being a function of the same measured α- and γ-diversity, the resultant biodiversity pattern depends on the choice of β-diversity index. We propose a simple logistic transformation that rids beta-diversity indices of their mathematical constraints, thus eliminating the possibility of an uninterpretable regression curve. Moreover, this transformation results in identical biodiversity patterns for three commonly used classical beta-diversity indices. As a result, this transformation eliminates the difficulties of both shortcomings, while allowing the researcher to use whichever beta-diversity index deemed most appropriate. We believe this method can help unify the study of biodiversity patterns along ecological gradients. PMID:25330181

  12. Diversity and distribution of hyperiid amphipods along a latitudinal transect in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Burridge, Alice K.; Tump, Marloes; Vonk, Ronald; Goetze, Erica; Peijnenburg, Katja T. C. A.

    2017-11-01

    As commensals and parasitoids of gelatinous plankton, hyperiid amphipods play unique and important ecological roles in pelagic food webs. Because the diversity and biogeography of this group in oceanic waters is poorly known, we examined diversity and distribution patterns of hyperiids along a basin-scale meridional transect in the Atlantic Ocean (Atlantic Meridional Transect cruise 22). Hyperiids were collected from epipelagic and upper mesopelagic depths at 27 stations between 39°N and 45°S. A total of 70 species in 36 genera and 17 families were identified, the majority of which belonged to the epipelagic Physocephalata infraorder. We observed maximum species and genus richness in the equatorial upwelling region (up to 35 species, 27 genera per station; 7°N-8°S), which appeared largely driven by increased diversity in the superfamily Platysceloidea, as well as a significant and positive relationship between species richness and sea surface temperature. Cluster analyses of hyperiid species assemblages along the transect broadly supported a division into gyral, equatorial, transitional, and subantarctic assemblages, congruent with Longhurst's biogeochemical provinces. Steepest transitions in hyperiid species composition occurred at the southern subtropical convergence zone (34-38°S). The majority of zooplankton groups show maximal diversity in subtropical waters, and our observations of equatorial maxima in species and genus richness for hyperiids suggest that the mechanisms controlling diversity in this group are distinct from other zooplanktonic taxa. These patterns may be driven by the distribution and diversity of gelatinous hosts for hyperiids, which remain poorly characterized at ocean basin scales. The data reported here provide new distributional records for epipelagic and upper mesopelagic hyperiids across six major oceanic provinces in the Atlantic Ocean.

  13. Contrasting diversity patterns of soil mites and nematodes in secondary succession

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardol, Paul; Newton, Jeffrey S.; Bezemer, T Martijn

    2009-01-01

    Soil biodiversity has been recognized as a key feature of ecosystem functioning and stability. However, soil biodiversity is strongly impaired by agriculture and relatively little is known on how and at what spatial and temporal scales soil biodiversity is restored after the human disturbances have come to an end. Here, a multi-scale approach was used to compare diversity patterns of soil mites and nematodes at four stages (early, mid, late, reference site) along a secondary succession chronosequence from abandoned arable land to heath land. In each field four soil samples were taken during four successive seasons. We determined soil diversitymore » within samples ({alpha}-diversity), between samples ({beta}-diversity) and within field sites ({gamma}-diversity). The patterns of {alpha}- and {gamma}-diversity developed similarly along the chronosequence for oribatid mites, but not for nematodes. Nematode {alpha}-diversity was highest in mid- and late-successional sites, while {gamma}-diversity was constant along the chronosequence. Oribatid mite {beta}-diversity was initially high, but decreased thereafter, whereas nematode {beta}-diversity increased when succession proceeded; indicating that patterns of within-site heterogeneity diverged for oribatid mites and nematodes. The spatio-temporal diversity patterns after land abandonment suggest that oribatid mite community development depends predominantly on colonization of new taxa, whereas nematode community development depends on shifts in dominance patterns. This would imply that at old fields diversity patterns of oribatid mites are mainly controlled by dispersal, whereas diversity patterns of nematodes are mainly controlled by changing abiotic or biotic soil conditions. Our study shows that the restoration of soil biodiversity along secondary successional gradients can be both scale- and phylum-dependent.« less

  14. A multi-perspective view of genetic variation in Cameroon.

    PubMed

    Coia, V; Brisighelli, F; Donati, F; Pascali, V; Boschi, I; Luiselli, D; Battaggia, C; Batini, C; Taglioli, L; Cruciani, F; Paoli, G; Capelli, C; Spedini, G; Destro-Bisol, G

    2009-11-01

    In this study, we report the genetic variation of autosomal and Y-chromosomal microsatellites in a large Cameroon population dataset (a total of 11 populations) and jointly analyze novel and previous genetic data (mitochondrial DNA and protein coding loci) taking geographic and cultural factors into consideration. The complex pattern of genetic variation of Cameroon can in part be described by contrasting two geographic areas (corresponding to the northern and southern part of the country), which differ substantially in environmental, biological, and cultural aspects. Northern Cameroon populations show a greater within- and among-group diversity, a finding that reflects the complex migratory patterns and the linguistic heterogeneity of this area. A striking reduction of Y-chromosomal genetic diversity was observed in some populations of the northern part of the country (Podokwo and Uldeme), a result that seems to be related to their demographic history rather than to sampling issues. By exploring patterns of genetic, geographic, and linguistic variation, we detect a preferential correlation between genetics and geography for mtDNA. This finding could reflect a female matrimonial mobility that is less constrained by linguistic factors than in males. Finally, we apply the island model to mitochondrial and Y-chromosomal data and obtain a female-to-male migration Nnu ratio that was more than double in the northern part of the country. The combined effect of the propensity to inter-populational admixture of females, favored by cultural contacts, and of genetic drift acting on Y-chromosomal diversity could account for the peculiar genetic pattern observed in northern Cameroon.

  15. Ignimbrite textural properties as determinants of endolithic colonization patterns from hyper-arid Atacama Desert.

    PubMed

    Cámara, Beatriz; Suzuki, Shino; Nealson, Kenneth H; Wierzchos, Jacek; Ascaso, Carmen; Artieda, Octavio; de los Ríos, Asunción

    2014-12-01

    This study explores the photosynthetic microbial colonization of rhyolitic ignimbrites in Lomas de Tilocalar, a hyper-arid region of the Atacama Desert, Chile. Colonization appeared in the form of a green layer a few millimeters beneath the ignimbrite surface. Some ignimbrite rocks revealed two distinct micromorphological areas of identical mineralogical and chemical composition but different textural properties. According to texture, colonization patterns varied in terms of the extension and depth of colonization. The diversity of photosynthetic microorganisms was assessed by denaturing gradient gel electrophoresis (DGGE) of the 23S rRNA gene and by generating clone libraries of the 16S rRNA gene. We observed a low diversity of photosynthetic microorganisms colonizing the ignimbrite microhabitat. Most rRNA gene sequences recovered greatly resembled those of Chroococcidiopsis hypolith clones from arid deserts. These results point to highly restrictive conditions of the hyper-arid Atacama Desert conditioning the diversity of cyanobacteria, and suggest that microbial colonization and composition patterns might be determined by the microscale physico-chemical properties of the ignimbrite rocks. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  16. Integrating abundance and functional traits reveals new global hotspots of fish diversity.

    PubMed

    Stuart-Smith, Rick D; Bates, Amanda E; Lefcheck, Jonathan S; Duffy, J Emmett; Baker, Susan C; Thomson, Russell J; Stuart-Smith, Jemina F; Hill, Nicole A; Kininmonth, Stuart J; Airoldi, Laura; Becerro, Mikel A; Campbell, Stuart J; Dawson, Terence P; Navarrete, Sergio A; Soler, German A; Strain, Elisabeth M A; Willis, Trevor J; Edgar, Graham J

    2013-09-26

    Species richness has dominated our view of global biodiversity patterns for centuries. The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management. However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling). Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao's Q), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only. There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites ('community evenness'), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness. Our findings suggest that the contribution of species diversity to a range of ecosystem functions varies over large scales, and imply that in tropical regions, which have higher numbers of species, each species contributes proportionally less to community-level ecological processes on average than species in temperate regions. Metrics of ecological function usefully complement metrics of species diversity in conservation management, including when identifying planning priorities and when tracking changes to biodiversity values.

  17. Bacterial diversity along a 2600 km river continuum

    PubMed Central

    Savio, Domenico; Sinclair, Lucas; Ijaz, Umer Z.; Parajka, Juraj; Reischer, Georg H.; Stadler, Philipp; Blaschke, Alfred P.; Blöschl, Günter; Mach, Robert L.; Kirschner, Alexander K. T.; Farnleitner, Andreas H.

    2015-01-01

    Summary The bacterioplankton diversity in large rivers has thus far been under‐sampled despite the importance of streams and rivers as components of continental landscapes. Here, we present a comprehensive dataset detailing the bacterioplankton diversity along the midstream of the Danube River and its tributaries. Using 16S rRNA‐gene amplicon sequencing, our analysis revealed that bacterial richness and evenness gradually declined downriver in both the free‐living and particle‐associated bacterial communities. These shifts were also supported by beta diversity analysis, where the effects of tributaries were negligible in regards to the overall variation. In addition, the river was largely dominated by bacteria that are commonly observed in freshwaters. Dominated by the acI lineage, the freshwater SAR11 (LD12) and the P olynucleobacter group, typical freshwater taxa increased in proportion downriver and were accompanied by a decrease in soil and groundwater‐affiliated bacteria. Based on views of the meta‐community and River Continuum Concept, we interpret the observed taxonomic patterns and accompanying changes in alpha and beta diversity with the intention of laying the foundation for a unified concept for river bacterioplankton diversity. PMID:25922985

  18. Unique pattern of dietary adaptation in the dentition of Carnivora: its advantage and developmental origin

    PubMed Central

    Saito, Kazuyuki; Kishida, Takushi; Takahashi, Katsu; Bessho, Kazuhisa

    2016-01-01

    Carnivora is a successful taxon in terms of dietary diversity. We investigated the dietary adaptations of carnivoran dentition and the developmental background of their dental diversity, which may have contributed to the success of the lineage. A developmental model was tested and extended to explain the unique variability and exceptional phenotypes observed in carnivoran dentition. Carnivorous mammalian orders exhibited two distinct patterns of dietary adaptation in molars and only Carnivora evolved novel variability, exhibiting a high correlation between relative molar size and the shape of the first molar. Studies of Bmp7-hetero-deficient mice, which may exhibit lower Bmp7 expression, suggested that Bmp7 has pleiotropic effects on these two dental traits. Its effects are consistent with the pattern of dietary adaptation observed in Carnivora, but not that observed in other carnivorous mammals. A molecular evolutionary analysis revealed that Bmp7 sequence evolved by natural selection during ursid evolution, suggesting that it plays an evolutionary role in the variation of carnivoran dentition. Using mouse experiments and a molecular evolutionary analysis, we extrapolated the causal mechanism of the hitherto enigmatic ursid dentition (larger M2 than M1 and M3). Our results demonstrate how carnivorans acquired novel dental variability that benefits their dietary divergence.

  19. Dispersal responses override density effects on genetic diversity during post-disturbance succession

    PubMed Central

    Landguth, Erin L.; Bull, C. Michael; Banks, Sam C.; Gardner, Michael G.; Driscoll, Don A.

    2016-01-01

    Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus. We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity in N. stellatus. Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. PMID:27009225

  20. Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem.

    PubMed

    Pasulka, Alexis L; Levin, Lisa A; Steele, Josh A; Case, David H; Landry, Michael R; Orphan, Victoria J

    2016-09-01

    Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Gut microbiome composition is associated with temperament during early childhood

    PubMed Central

    Christian, Lisa M.; Galley, Jeffrey D.; Hade, Erinn M.; Schoppe-Sullivan, Sarah; Kamp-Dush, Claire; Bailey, Michael T.

    2014-01-01

    Background Understanding the dynamics of the gut-brain axis has clinical implications for physical and mental health conditions, including obesity and anxiety. As such disorders have early life antecedents, it is of value to determine if associations between the gut microbiome and behavior are present in early life in humans. Methods We used next generation pyrosequencing to examine associations between the community structure of the gut microbiome and maternal ratings of child temperament in 77 children at 18-27 months of age. It was hypothesized that children would differ in their gut microbial structure, as indicated by measures of alpha and beta diversity, based on their temperamental characteristics. Results Among both boys and girls, greater Surgency/Extraversion was associated greater phylogenetic diversity. In addition, among boys only, subscales loading on this composite scale were associated with differences in phylogenetic diversity, the Shannon Diversity index (SDI), beta diversity, and differences in abundances of Dialister, Rikenellaceae, Ruminococcaceae, and Parabacteroides. In girls only, higher Effortful Control was associated with a lower SDI score and differences in both beta diversity and Rikenellaceae were observed in relation to Fear. Some differences in dietary patterns were observed in relation to temperament, but these did not account for the observed differences in the microbiome. Conclusions Differences in gut microbiome composition, including alpha diversity, beta diversity, and abundances of specific bacterial species, were observed in association with temperament in toddlers. This study was cross-sectional and observational and, therefore, does not permit determination of the causal direction of effects. However, if bidirectional brain-gut relationships are present in humans in early life, this may represent an opportunity for intervention relevant to physical as well as mental health disorders. PMID:25449582

  2. Coalescent patterns for chromosomal inversions in divergent populations

    PubMed Central

    Guerrero, Rafael F.; Rousset, François; Kirkpatrick, Mark

    2012-01-01

    Chromosomal inversions allow genetic divergence of locally adapted populations by reducing recombination between chromosomes with different arrangements. Divergence between populations (or hybridization between species) is expected to leave signatures in the neutral genetic diversity of the inverted region. Quantitative expectations for these patterns, however, have not been obtained. Here, we develop coalescent models of neutral sites linked to an inversion polymorphism in two locally adapted populations. We consider two scenarios of local adaptation: selection on the inversion breakpoints and selection on alleles inside the inversion. We find that ancient inversion polymorphisms cause genetic diversity to depart dramatically from neutral expectations. Other situations, however, lead to patterns that may be difficult to detect; important determinants are the age of the inversion and the rate of gene flux between arrangements. We also study inversions under genetic drift, finding that they produce patterns similar to locally adapted inversions of intermediate age. Our results are consistent with empirical observations, and provide the foundation for quantitative analyses of the roles that inversions have played in speciation. PMID:22201172

  3. Spatial organization of bacterial chromosomes

    PubMed Central

    Wang, Xindan; Rudner, David Z.

    2014-01-01

    Bacterial chromosomes are organized in stereotypical patterns that are faithfully and robustly regenerated in daughter cells. Two distinct spatial patterns were described almost a decade ago in our most tractable model organisms. In recent years, analysis of chromosome organization in a larger and more diverse set of bacteria and a deeper characterization of chromosome dynamics in the original model systems have provided a broader and more complete picture of both chromosome organization and the activities that generate the observed spatial patterns. Here, we summarize these different patterns highlighting similarities and differences and discuss the protein factors that help establish and maintain them. PMID:25460798

  4. Synaptic Scaling in Combination with Many Generic Plasticity Mechanisms Stabilizes Circuit Connectivity

    PubMed Central

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Wörgötter, Florentin

    2011-01-01

    Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural circuits in specific regimes. Together with other processes, such as conventional synaptic plasticity in the form of long term depression and potentiation, synaptic scaling changes the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-dependent connectivity. How synaptic patterns are generated and stabilized, however, is largely unknown. Here we formally describe and analyze synaptic scaling based on results from experimental studies and demonstrate that the combination of different conventional plasticity mechanisms and synaptic scaling provides a powerful general framework for regulating network connectivity. In addition, we design several simple models that reproduce experimentally observed synaptic distributions as well as the observed synaptic modifications during sustained activity changes. These models predict that the combination of plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling can robustly yield neuronal circuits with high synaptic diversity, which potentially enables robust dynamic storage of complex activation patterns. This mechanism is even more pronounced when considering networks with a realistic degree of inhibition. Synaptic scaling combined with plasticity could thus be the basis for learning structured behavior even in initially random networks. PMID:22203799

  5. Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes.

    PubMed

    Chen, Poyin; den Bakker, Henk C; Korlach, Jonas; Kong, Nguyet; Storey, Dylan B; Paxinos, Ellen E; Ashby, Meredith; Clark, Tyson; Luong, Khai; Wiedmann, Martin; Weimer, Bart C

    2017-02-01

    Listeria monocytogenes is a bacterial pathogen that is found in a wide variety of anthropogenic and natural environments. Genome sequencing technologies are rapidly becoming a powerful tool in facilitating our understanding of how genotype, classification phenotypes, and virulence phenotypes interact to predict the health risks of individual bacterial isolates. Currently, 57 closed L. monocytogenes genomes are publicly available, representing three of the four phylogenetic lineages, and they suggest that L. monocytogenes has high genomic synteny. This study contributes an additional 15 closed L. monocytogenes genomes that were used to determine the associations between the genome and methylome with host invasion magnitude. In contrast to previous findings, large chromosomal inversions and rearrangements were detected in five isolates at the chromosome terminus and within rRNA genes, including a previously undescribed inversion within rRNA-encoding regions. Each isolate's epigenome contained highly diverse methyltransferase recognition sites, even within the same serotype and methylation pattern. Eleven strains contained a single chromosomally encoded methyltransferase, one strain contained two methylation systems (one system on a plasmid), and three strains exhibited no methylation, despite the occurrence of methyltransferase genes. In three isolates a new, unknown DNA modification was observed in addition to diverse methylation patterns, accompanied by a novel methylation system. Neither chromosome rearrangement nor strain-specific patterns of epigenome modification observed within virulence genes were correlated with serotype designation, clonal complex, or in vitro infectivity. These data suggest that genome diversity is larger than previously considered in L. monocytogenes and that as more genomes are sequenced, additional structure and methylation novelty will be observed in this organism. Listeria monocytogenes is the causative agent of listeriosis, a disease which manifests as gastroenteritis, meningoencephalitis, and abortion. Among Salmonella, Escherichia coli, Campylobacter, and Listeria-causing the most prevalent foodborne illnesses-infection by L. monocytogenes carries the highest mortality rate. The ability of L. monocytogenes to regulate its response to various harsh environments enables its persistence and transmission. Small-scale comparisons of L. monocytogenes focusing solely on genome contents reveal a highly syntenic genome yet fail to address the observed diversity in phenotypic regulation. This study provides a large-scale comparison of 302 L. monocytogenes isolates, revealing the importance of the epigenome and restriction-modification systems as major determinants of L. monocytogenes phylogenetic grouping and subsequent phenotypic expression. Further examination of virulence genes of select outbreak strains reveals an unprecedented diversity in methylation statuses despite high degrees of genome conservation. Copyright © 2017 American Society for Microbiology.

  6. Global investigation of composition and interaction networks in gut microbiomes of individuals belonging to diverse geographies and age-groups.

    PubMed

    Yadav, Deepak; Ghosh, Tarini Shankar; Mande, Sharmila S

    2016-01-01

    Factors like ethnicity, diet and age of an individual have been hypothesized to play a role in determining the makeup of gut microbiome. In order to investigate the gut microbiome structure as well as the inter-microbial associations present therein, we have performed a comprehensive global comparative profiling of the structure (composition, relative heterogeneity and diversity) and the inter-microbial networks in the gut microbiomes of 399 individuals of eight different nationalities. The study identified certain geography-specific trends with respect to composition, intra-group heterogeneity and diversity of the gut microbiomes. Interestingly, the gut microbial association/mutual-exlusion networks were observed to exhibit several cross-geography trends. It was seen that though the composition of gut microbiomes of the American and European individuals were similar, there were distinct patterns in their microbial interaction networks. Amongst European gut-microbiomes, the co-occurrence network obtained for the Danish population was observed to be most dense. Distinct patterns were also observed within Chinese, Japanese and Indian datasets. While performing an age-wise comparison, it was observed that the microbial interactions increased with the age of individuals. Furthermore, certain bacterial groups were identified to be present only in the older age groups. The trends observed in gut microbial networks could be due to the inherent differences in the diet of individuals belonging to different nationalities. For example, the higher number of microbial associations in the Danish population as compared to the Spanish population, may be attributed to the evenly distributed diet of the later. This is in line with previously reported findings which indicate an increase in functional interdependency of microbes in individuals with higher nutritional status. To summarise, the present study identifies geography and age specific patterns in the composition as well as microbial interactions in gut microbiomes.

  7. A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces

    DOE PAGES

    Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; ...

    2016-04-12

    We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and bothmore » beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Furthermore, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.« less

  8. A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces

    PubMed Central

    Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; Kelly, Peter J.; Choudoir, Mallory J.

    2016-01-01

    ABSTRACT We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift. PMID:27073097

  9. Biogeographical distribution and diversity of bacterial communities in surface sediments of the South China Sea.

    PubMed

    Li, Tao; Wang, Peng

    2013-05-01

    This paper aims at an investigation of the features of bacterial communities in surface sediments of the South China Sea (SCS). In particular, biogeographical distribution patterns and the phylogenetic diversity of bacteria found in sediments collected from a coral reef platform, a continental slope, and a deep-sea basin were determined. Bacterial diversity was measured by an observation of 16S rRNA genes, and 18 phylogenetic groups were identified in the bacterial clone library. Planctomycetes, Deltaproteobacteria, candidate division OP11, and Alphaproteobacteria made up the majority of the bacteria in the samples, with their mean bacterial clones being 16%, 15%, 12%, and 9%, respectively. By comparison, the bacterial communities found in the SCS surface sediments were significantly different from other previously observed deep-sea bacterial communities. This research also emphasizes the fact that geographical factors have an impact on the biogeographical distribution patterns of bacterial communities. For instance, canonical correspondence analyses illustrated that the percentage of sand weight and water depth are important factors affecting the bacterial community composition. Therefore, this study highlights the importance of adequately determining the relationship between geographical factors and the distribution of bacteria in the world's seas and oceans.

  10. Processes underpinning development and maintenance of diversity in rice in West Africa: evidence from combining morphological and molecular markers.

    PubMed

    Mokuwa, Alfred; Nuijten, Edwin; Okry, Florent; Teeken, Béla; Maat, Harro; Richards, Paul; Struik, Paul C

    2014-01-01

    We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp.) from 6 West African countries were characterized. Principal component analysis showed that the four botanical groups (Oryza sativa ssp. indica, O. sativa ssp. japonica, O. glaberrima, and interspecific farmer hybrids) exhibited different patterns of morphological diversity. Regarding O. glaberrima, morphological and molecular data were in greater conformity than for the other botanical groups. A clear difference in morphological features was observed between O. glaberrima rices from the Togo hills and those from the Upper Guinea Coast, and among O. glaberrima rices from the Upper Guinea Coast. For the other three groups such clear patterns were not observed. We argue that this is because genetic diversity is shaped by different environmental and socio-cultural selection pressures. For O. glaberrima, recent socio-cultural selection pressures seemed to restrict genetic diversity while this was not observed for the other botanical groups. We also show that O. glaberrima still plays an important role in the selection practices of farmers and resulting variety development pathways. This is particularly apparent in the case of interspecific farmer hybrids where a relationship was found between pericarp colour, panicle attitude and genetic diversity. Farmer varieties are the product of long and complex trajectories of selection governed by local human agency. In effect, rice varieties have emerged that are adapted to West African farming conditions through genotype × environment × society interactions. The diversity farmers maintain in their rice varieties is understood to be part of a risk-spreading strategy that also facilitates successful and often serendipitous variety innovations. We advocate, therefore, that farmers and farmer varieties should be more effectively involved in crop development.

  11. Processes Underpinning Development and Maintenance of Diversity in Rice in West Africa: Evidence from Combining Morphological and Molecular Markers

    PubMed Central

    Maat, Harro; Richards, Paul; Struik, Paul C.

    2014-01-01

    We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp.) from 6 West African countries were characterized. Principal component analysis showed that the four botanical groups (Oryza sativa ssp. indica, O. sativa ssp. japonica, O. glaberrima, and interspecific farmer hybrids) exhibited different patterns of morphological diversity. Regarding O. glaberrima, morphological and molecular data were in greater conformity than for the other botanical groups. A clear difference in morphological features was observed between O. glaberrima rices from the Togo hills and those from the Upper Guinea Coast, and among O. glaberrima rices from the Upper Guinea Coast. For the other three groups such clear patterns were not observed. We argue that this is because genetic diversity is shaped by different environmental and socio-cultural selection pressures. For O. glaberrima, recent socio-cultural selection pressures seemed to restrict genetic diversity while this was not observed for the other botanical groups. We also show that O. glaberrima still plays an important role in the selection practices of farmers and resulting variety development pathways. This is particularly apparent in the case of interspecific farmer hybrids where a relationship was found between pericarp colour, panicle attitude and genetic diversity. Farmer varieties are the product of long and complex trajectories of selection governed by local human agency. In effect, rice varieties have emerged that are adapted to West African farming conditions through genotype × environment × society interactions. The diversity farmers maintain in their rice varieties is understood to be part of a risk-spreading strategy that also facilitates successful and often serendipitous variety innovations. We advocate, therefore, that farmers and farmer varieties should be more effectively involved in crop development. PMID:24465809

  12. A modeling study of the impacts of Mississippi River diversion and sea-level rise on water quality of a deltaic estuary

    USGS Publications Warehouse

    Wang, Hongqing; Chen, Qin; Hu, Kelin; LaPeyre, Megan K.

    2017-01-01

    Freshwater and sediment management in estuaries affects water quality, particularly in deltaic estuaries. Furthermore, climate change-induced sea-level rise (SLR) and land subsidence also affect estuarine water quality by changing salinity, circulation, stratification, sedimentation, erosion, residence time, and other physical and ecological processes. However, little is known about how the magnitudes and spatial and temporal patterns in estuarine water quality variables will change in response to freshwater and sediment management in the context of future SLR. In this study, we applied the Delft3D model that couples hydrodynamics and water quality processes to examine the spatial and temporal variations of salinity, total suspended solids, and chlorophyll-α concentration in response to small (142 m3 s−1) and large (7080 m3 s−1) Mississippi River (MR) diversions under low (0.38 m) and high (1.44 m) relative SLR (RSLR = eustatic SLR + subsidence) scenarios in the Breton Sound Estuary, Louisiana, USA. The hydrodynamics and water quality model were calibrated and validated via field observations at multiple stations across the estuary. Model results indicate that the large MR diversion would significantly affect the magnitude and spatial and temporal patterns of the studied water quality variables across the entire estuary, whereas the small diversion tends to influence water quality only in small areas near the diversion. RSLR would also play a significant role on the spatial heterogeneity in estuary water quality by acting as an opposite force to river diversions; however, RSLR plays a greater role than the small-scale diversion on the magnitude and spatial pattern of the water quality parameters in this deltaic estuary.

  13. Patterns of Genetic Diversity and Co-Existence in Open Ocean Diatoms: the Effects of Water Mass Structure, Selection and Sex

    NASA Astrophysics Data System (ADS)

    Rynearson, T. A.; Chen, G.

    2016-02-01

    The open ocean North Atlantic spring bloom influences regional ecology and global biogeochemistry. Diatoms dominate the peak of the bloom and significantly impact productivity and export of organic carbon from the bloom. Despite their key role in a yearly event with global impacts, the genetic diversity and population structure of diatoms that comprise this open ocean bloom are unknown. Here we investigated the population genetics of the diatom Thalassiosira gravida sampled during the 2008 North Atlantic Bloom Experiment using newly-developed microsatellite markers. Here, we show that the genetic diversity of open ocean diatoms is high and that their population structure differs dramatically from coastal diatoms. High levels of genetic diversity were observed across all water samples and did not change during the bloom. Four genetically distinct populations were identified but were not associated with different water masses, depths or time points during the bloom. Instead, all four populations co-existed within samples, spanning different water masses, stages of the bloom and depths of over >300 m. The pattern of genetically distinct, co-existing populations in the open ocean contrasts dramatically with coastal habitats, where distinct populations have not been observed to co-exist at the same time and place. It is likely that populations originate via transport from disparate locations combined with overwintering capacity in the water column or sediments. The pattern of co-existence suggests that the open ocean may serve as a gene pool that harbors different populations that are then available for selection to act upon, which may contribute to the ecological and biogeochemical success of diatoms and influence their long-term evolutionary survival.

  14. Parent-child mealtime interactions in racially/ethnically diverse families with preschool-age children.

    PubMed

    Kong, Angela; Jones, Blake L; Fiese, Barbara H; Schiffer, Linda A; Odoms-Young, Angela; Kim, Yoonsang; Bailey, Lauren; Fitzgibbon, Marian L

    2013-12-01

    Family meals may improve diet and weight outcomes in children; however, results from nationally representative samples suggest that these relationships vary by race/ethnicity. Observing parent-child mealtime interactions may lend insight to why racial/ethnic differences exist. In this pilot study, a multi-ethnic sample of low-income families (n = 30) with a preschool-age child was videotaped during a dinner in their home. A global coding scheme was used to assess the following: 'Action' (behaviors that divert attention from eating), 'Behavior Control' (behaviors intended to modify another person's behavior), and 'Communication' (i.e., meal-oriented, interpersonal, and critical). All families spent a significant amount of time in 'action' oriented behaviors that diverted their attention from eating. We also observed racial/ethnic differences in communication (i.e. critical) and behavior patterns (i.e. behavior control). This study demonstrated that this approach for observing parent-child mealtime interactions in a naturalistic setting among a diverse study sample was feasible; however, future studies should address how these patterns relate to dietary intake and weight status. © 2013.

  15. Parent-child mealtime interactions in racially/ethnically diverse families with preschool-age children

    PubMed Central

    Kong, Angela; Jones, Blake L.; Fiese, Barbara H.; Schiffer, Linda A.; Odoms-Young, Angela; Kim, Yoonsang; Bailey, Lauren; Fitzgibbon, Marian L.

    2013-01-01

    Family meals may improve diet and weight outcomes in children; however, results from nationally representative samples suggest these relationships vary by race/ethnicity. Observing parent-child mealtime interactions may lend insight to why racial/ethnic differences exist. In this pilot study, a multi-ethnic sample of low-income families (n=30) with a preschool-age child were videotaped during a dinner in their home. A global coding scheme was used to assess the following: `Action' (behaviors that divert attention from eating), `Behavior Control' (behaviors intended to modify another person's behavior), and `Communication' (i.e., meal-oriented, interpersonal, and critical). All families spent a significant amount of time in `action' oriented behaviors that diverted their attention from eating. We also observed racial/ethnic differences in communication (i.e. critical) and behavior patterns (i.e. behavior control). This study demonstrated that this approach for observing parent-child mealtime interactions in a naturalistic setting among a diverse study sample was feasible; however, future studies should address how these patterns relate to dietary intake and weight status. PMID:24183134

  16. Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes.

    PubMed

    Leys, Marie; Petit, Eric J; El-Bahloul, Yasmina; Liso, Camille; Fournet, Sylvain; Arnaud, Jean-François

    2014-05-01

    Understanding the factors that contribute to population genetic divergence across a species' range is a long-standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present-day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco - the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic-Mediterranean refugia after the last glacial period, with leading-edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long-distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life-history and major geographic features interact to shape the distribution of genetic diversity.

  17. Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes

    PubMed Central

    Leys, Marie; Petit, Eric J; El-Bahloul, Yasmina; Liso, Camille; Fournet, Sylvain; Arnaud, Jean-François

    2014-01-01

    Understanding the factors that contribute to population genetic divergence across a species' range is a long-standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present-day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco – the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic-Mediterranean refugia after the last glacial period, with leading-edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long-distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life-history and major geographic features interact to shape the distribution of genetic diversity. PMID:24963380

  18. UV Light Reveals the Diversity of Jurassic Shell Colour Patterns: Examples from the Cordebugle Lagerstätte (Calvados, France)

    PubMed Central

    Caze, Bruno; Merle, Didier; Schneider, Simon

    2015-01-01

    Viewed under UV light the diverse and exceptionally well-preserved molluscs from the Late Jurassic Cordebugle Konservat Lagerstätte (Calvados, Normandy, France) reveal fluorescent fossil shell colour patterns predating the oldest previously known instance of such patterns by 100 Myr. Evidently, residual colour patterns are observable in Mesozoic molluscs by application of this non-destructive method, provided the shells are not decalcified or recrystallized. Among 46 species which are assigned to twelve gastropod families and eight bivalve families, no less than 25 species yielded positive results. Out of nine colour pattern morphologies that have been distinguished six occur in gastropods and three in bivalves. The presence of these variant morphologies clearly indicates a significant pre-Cenozoic diversification of colour patterns, especially in gastropods. In addition, the occurrence of two distinct types of fluorescence highlights a major difference in the chemical composition of the pigments involved in colour pattern formation in gastropods. This discovery enables us to discriminate members of higher clades, i.e. the Vetigastropoda emitting red fluorescence from the Caenogastropoda and Heterobranchia emitting whitish-beige to yellow fluorescence. Consequently, fluorescent colour patterns may help to allocate part of the numerous enigmatic Mesozoic gastropod taxa to their correct systematic position. PMID:26039592

  19. Fish assemblage in a semi-arid Neotropical reservoir: composition, structure and patterns of diversity and abundance.

    PubMed

    Novaes, J L C; Moreira, S I L; Freire, C E C; Sousa, M M O; Costa, R S

    2014-05-01

    The aim of this study was to analyse the composition, structure and spatial and temporal patterns of diversity and abundance of the ichthyofauna of the Santa Cruz Reservoir in semi-arid Brazil. Data were collected quarterly at eight sampling locations on the reservoir between February 2010 and November 2011 using gillnets from 12- to 70-mm mesh that were left in the water for 12h00min during the night. We evaluated the composition, structure and assemblage descriptors (Shannon-Wiener diversity index and equitability, respectively) and catch per unit effort by the number (CPUEn) and biomass (CPUEb) of the ichthyofauna. The 6,047 individuals (399,211.6 g) captured represented three orders, ten families and 20 species, of which four belonged to introduced species. The family Characidae was the most abundant with a total of 2,772 (45.8%) individuals captured. The species-abundance curve fit the log-normal model. In the spatial analysis of diversity, there were significant differences between sampling sites in the lacustrine and fluvial regions, and the highest values were found in the lacustrine region. In the temporal analysis of diversity, significant differences were also observed between the rainy and dry seasons, and the higher values were found during the dry season. Equitability followed the same spatiotemporal pattern as diversity. The Spearman correlation was significantly negative between diversity and rainfall. A cluster analysis spatially separated the ichthyofauna into two groups: one group formed by sampling sites in the fluvial region and another group formed by the remainder of the points in the lacustrine region. Both the CPUEn and CPUEb values were higher at point 8 (fluvial region) and during the rainy season. A two-way ANOVA showed that the CPUEn and CPUEb values were spatially and temporally significant. We conclude that the spatial and temporal trends of diversity in the Santa Cruz reservoir differ from those of other Brazilian reservoirs but that the fish community composition and spatiotemporal patterns of abundance were similar.

  20. The Effects of Captivity on the Mammalian Gut Microbiome

    PubMed Central

    McKenzie, Valerie J.; Song, Se Jin; Delsuc, Frédéric; Prest, Tiffany L.; Oliverio, Angela M.; Korpita, Timothy M.; Alexiev, Alexandra; Amato, Katherine R.; Metcalf, Jessica L.; Kowalewski, Martin; Avenant, Nico L.; Link, Andres; Di Fiore, Anthony; Seguin-Orlando, Andaine; Feh, Claudia; Orlando, Ludovic; Mendelson, Joseph R.; Sanders, Jon; Knight, Rob

    2017-01-01

    Synopsis Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host. PMID:28985326

  1. Contrasting patterns of diversity and population differentiation at the innate immunity gene toll-like receptor 2 (TLR2) in two sympatric rodent species.

    PubMed

    Tschirren, Barbara; Andersson, Martin; Scherman, Kristin; Westerdahl, Helena; Råberg, Lars

    2012-03-01

    Comparing patterns of diversity and divergence between populations at immune genes and neutral markers can give insights into the nature and geographic scale of parasite-mediated selection. To date, studies investigating such patterns of selection in vertebrates have primarily focused on the acquired branch of the immune system, whereas it remains largely unknown how parasite-mediated selection shapes innate immune genes both within and across vertebrate populations. Here, we present a study on the diversity and population differentiation at the innate immune gene Toll-like receptor 2 (TLR2) across nine populations of yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) in southern Sweden. In yellow-necked mice, TLR2 diversity was very low, as was TLR2 population differentiation compared to neutral loci. In contrast, several TLR2 haplotypes co-occurred at intermediate frequencies within and across bank vole populations, and pronounced isolation by distance between populations was observed. The diversity and differentiation at neutral loci was similar in the two species. These results indicate that parasite-mediated selection has been acting in dramatically different ways on a given immune gene in ecologically similar and sympatric species. Furthermore, the finding of TLR2 population differentiation at a small geographical scale in bank voles highlights that vertebrate innate immune defense may be evolutionarily more dynamic than has previously been appreciated. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  2. Diversity and patterns of interaction of an anuran-parasite network in a neotropical wetland.

    PubMed

    Campião, K M; Ribas, A; Tavares, L E R

    2015-12-01

    We describe the diversity and structure of a host-parasite network of 11 anuran species and their helminth parasites in the Pantanal wetland, Brazil. Specifically, we investigate how the heterogeneous use of space by hosts changes parasite community diversity, and how the local pool of parasites exploits sympatric host species of different habits. We examined 229 anuran specimens, interacting with 32 helminth parasite taxa. Mixed effect models indicated the influence of anuran body size, but not habit, as a determinant of parasite species richness. Variation in parasite taxonomic diversity, however, was not significantly correlated with host size or habit. Parasite community composition was not correlated with host phylogeny, indicating no strong effect of the evolutionary relationships among anurans on the similarities in their parasite communities. Host-parasite network showed a nested and non-modular pattern of interaction, which is probably a result of the low host specificity observed for most helminths in this study. Overall, we found host body size was important in determining parasite community richness, whereas low parasite specificity was important to network structure.

  3. Low Mitochondrial DNA Diversity in an Ancient Population from China: Insight into Social Organization at the Fujia Site.

    PubMed

    Dong, Yu; Li, Chunxiang; Luan, Fengshi; Li, Zhenguang; Li, Hongjie; Cui, Yinqiu; Zhou, Hui; Malhi, Ripan S

    2015-01-01

    To gain insight into the social organization of a population associated with the Dawenkou period, we performed ancient DNA analysis of 18 individuals from human remains from the Fujia site in Shandong Province, China. Directly radiocarbon dated to 4800-4500 cal BP, the Fujia site is assumed to be associated with a transitional phase from matrilineal clans to patrilineal monogamous families. Our results reveal a low mitochondrial DNA diversity from the site and population. Combined with Y chromosome data, the pattern observed at the Fujia site is most consistent with a matrilineal community. The patterns also suggest that the bond of marriage was de-emphasized compared with the bonds of descent at Fujia.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.

    We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and bothmore » beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Furthermore, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.« less

  5. The Patterns and Drivers of Bacterial and Fungal β-Diversity in a Typical Dryland Ecosystem of Northwest China.

    PubMed

    Wang, Jianming; Zhang, Tianhan; Li, Liping; Li, Jingwen; Feng, Yiming; Lu, Qi

    2017-01-01

    Dryland ecosystems cover more than 30% of the terrestrial area of China, while processes that shape the biogeographic patterns of bacterial and fungal β-diversity have rarely been evaluated synchronously. To compare the biogeographic patterns and its drivers of bacterial and fungal β-diversity, we collected 62 soil samples from a typical dryland region of northwest China. We assessed bacterial and fungal communities by sequencing bacterial 16S rRNA gene and fungal ITS data. Meanwhile, the β-diversity was decomposed into two components: species replacement (species turnover) and nestedness to further explore the bacterial and fungal β-diversity patterns and its causes. The results show that both bacterial and fungal β-diversity were derived almost entirely from species turnover rather than from species nestedness. Distance-decay relationships confirmed that the geographic patterns of bacterial and fungal β-diversity were significantly different. Environmental factors had the dominant influence on both the bacterial and fungal β-diversity and species turnover, however, the role of geographic distance varied across bacterial and fungal communities. Furthermore, both bacterial and fungal nestedness did not significantly respond to the environmental and geographic distance. Our findings suggest that the different response of bacterial and fungal species turnover to dispersal limitation and other, unknown processes may result in different biogeographic patterns of bacterial and fungal β-diversity in the drylands of northwest China. Together, we highlight that the drivers of β-diversity patterns vary between bacterial and fungal communities, and microbial β-diversity are driven by multiple factors in the drylands of northwest China.

  6. Diversity of Histologic Patterns and Expression of Cytoskeletal Proteins in Canine Skeletal Osteosarcoma.

    PubMed

    Nagamine, E; Hirayama, K; Matsuda, K; Okamoto, M; Ohmachi, T; Kadosawa, T; Taniyama, H

    2015-09-01

    Osteosarcoma (OS), the most common bone tumor, includes OS of the head (OSH) and appendicular OS (OSA). In dogs, it is classified into 6 histologic subtypes: osteoblastic, chondroblastic, fibroblastic, telangiectatic, giant cell, and poorly differentiated. This study investigated the significance of the histologic classification relevant to clinical outcome and the histologic and immunohistochemical relationships between pleomorphism and expression of cytoskeletal proteins in 60 cases each of OSH and OSA. Most neoplasms exhibited histologic diversity, and 64% of OS contained multiple subtypes. In addition to the above 6 subtypes, myxoid, round cell, and epithelioid subtypes were observed. Although the epithelioid subtypes were observed in only OSH, no significant difference in the frequency of other subtypes was observed. Also, no significant relevance was observed between the clinical outcome and histologic subtypes. Cytokeratin (CK) was expressed in both epithelioid and sarcomatoid tumor cells in various subtypes, and all CK-positive tumor cells also expressed vimentin. Vimentin and α-smooth muscle actin (SMA) were expressed in all subtypes. A few SMA-positive spindle-shaped tumor cells exhibited desmin expression. Glial fibrillary acidic protein-positive tumor cells were observed in many subtypes, and some of these cells showed neurofilament expression. Although OSH exhibited significantly stronger immunoreactivity for SMA than OSA, no significant difference in other cytoskeletal proteins was observed. Some tumor cells had cytoskeletal protein expression compatible with the corresponding histologic subtypes, such as CK in the epithelioid subtype and SMA in the fibroblastic subtype. Thus, canine skeletal OS is composed of pleomorphic and heterogenous tumor cells as is reflected in the diversity of histologic patterns and expression of cytoskeletal proteins. © The Author(s) 2015.

  7. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau.

    PubMed

    Chen, Yong-Liang; Deng, Ye; Ding, Jin-Zhi; Hu, Hang-Wei; Xu, Tian-Le; Li, Fei; Yang, Gui-Biao; Yang, Yuan-He

    2017-12-01

    Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer. © 2017 John Wiley & Sons Ltd.

  8. Population genetic structure and direct observations reveal sex-reversed patterns of dispersal in a cooperative bird.

    PubMed

    Harrison, Xavier A; York, Jennifer E; Young, Andrew J

    2014-12-01

    Sex-biased dispersal is pervasive and has diverse evolutionary implications, but the fundamental drivers of dispersal sex biases remain unresolved. This is due in part to limited diversity within taxonomic groups in the direction of dispersal sex biases, which leaves hypothesis testing critically dependent upon identifying rare reversals of taxonomic norms. Here, we use a combination of observational and genetic data to demonstrate a rare reversal of the avian sex bias in dispersal in the cooperatively breeding white-browed sparrow weaver (Plocepasser mahali). Direct observations revealed that (i) natal philopatry was rare, with both sexes typically dispersing locally to breed, and (ii), unusually for birds, males bred at significantly greater distances from their natal group than females. Population genetic analyses confirmed these patterns, as (i) corrected Assignment index (AIc), FST tests and isolation-by-distance metrics were all indicative of longer dispersal distances among males than females, and (ii) spatial autocorrelation analysis indicated stronger within-group genetic structure among females than males. Examining the spatial scale of extra-group mating highlighted that the resulting 'sperm dispersal' could have acted in concert with individual dispersal to generate these genetic patterns, but gamete dispersal alone cannot account entirely for the sex differences in genetic structure observed. That leading hypotheses for the evolution of dispersal sex biases cannot readily account for these sex-reversed patterns of dispersal in white-browed sparrow weavers highlights the continued need for attention to alternative explanations for this enigmatic phenomenon. We highlight the potential importance of sex differences in the distances over which dispersal opportunities can be detected. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  9. Global patterns of predator diversity in the open oceans.

    PubMed

    Worm, Boris; Sandow, Marcel; Oschlies, Andreas; Lotze, Heike K; Myers, Ransom A

    2005-08-26

    The open oceans comprise most of the biosphere, yet patterns and trends of species diversity there are enigmatic. Here, we derive worldwide patterns of tuna and billfish diversity over the past 50 years, revealing distinct subtropical "hotspots" that appeared to hold generally for other predators and zooplankton. Diversity was positively correlated with thermal fronts and dissolved oxygen and a nonlinear function of temperature (approximately 25 degrees C optimum). Diversity declined between 10 and 50% in all oceans, a trend that coincided with increased fishing pressure, superimposed on strong El Niño-Southern Oscillation-driven variability across the Pacific. We conclude that predator diversity shows a predictable yet eroding pattern signaling ecosystem-wide changes linked to climate and fishing.

  10. Beyond Serial Founder Effects: The Impact of Admixture and Localized Gene Flow on Patterns of Regional Genetic Diversity.

    PubMed

    Hunley, Keith L; Cabana, Graciela S

    2016-07-01

    Geneticists have argued that the linear decay in within-population genetic diversity with increasing geographic distance from East Africa is best explained by a phylogenetic process of repeated founder effects, growth, and isolation. However, this serial founder effect (SFE) process has not yet been adequately vetted against other evolutionary processes that may also affect geospatial patterns of diversity. Additionally, studies of the SFE process have been largely based on a limited 52-population sample. Here, we assess the effects of founder effect, admixture, and localized gene flow processes on patterns of global and regional diversity using a published data set of 645 autosomal microsatellite genotypes from 5,415 individuals in 248 widespread populations. We used a formal tree-fitting approach to explore the role of founder effects. The approach involved fitting global and regional population trees to extant patterns of gene diversity and then systematically examining the deviations in fit. We also informally tested the SFE process using linear models of gene diversity versus waypoint geographic distances from Africa. We tested the role of localized gene flow using partial Mantel correlograms of gene diversity versus geographic distance controlling for the confounding effects of treelike genetic structure. We corroborate previous findings that global patterns of diversity, both within and between populations, are the product of an out-of-Africa SFE process. Within regions, however, diversity within populations is uncorrelated with geographic distance from Africa. Here, patterns of diversity have been largely shaped by recent interregional admixture and secondary range expansions. Our detailed analyses of the pattern of diversity within and between populations reveal that the signatures of different evolutionary processes dominate at different geographic scales. These findings have important implications for recent publications on the biology of race.

  11. High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt

    PubMed Central

    Arriaga-Jiménez, Alfonsina; Halffter, Gonzalo

    2018-01-01

    Insect diversity patterns of high mountain ecosystems remain poorly studied in the tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt (TMVB) in the Mexican transition zone at 2,700 and 3,400 MASL, and on the windward and leeward sides. Sampling units represented a forest–shrubland–pasture (FSP) mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung beetle species were collected. Diversity, abundance and compositional similarity (CS) displayed a high variability at all scales; elevation, cardinal direction, or FSP mosaics did not show any patterns of higher or lower values of those measures. The four mountains were different regarding dispersion patterns and taxonomic groups, both for species and individuals. Onthophagus chevrolati dominated all four mountains with an overall relative abundance of 63%. CS was not related to distance among mountains, but when O. chevrolati was excluded from the analysis, CS values based on species abundance decreased with increasing distance. Speciation, dispersion, and environmental instability are suggested as the main drivers of high mountain diversity patterns, acting together at different spatial and temporal scales. Three species new to science were collected (>10% of all species sampled). These discoveries may indicate that speciation rate is high among these volcanoes—a hypothesis that is also supported by the elevated number of collected species with a restricted montane distribution. Dispersion is an important factor in driving species composition, although naturally limited between high mountains; horizontal colonization events at different time scales may best explain the observed species composition in the TMVB, complemented by vertical colonization events to a lesser extent. Environmental instability may be the main factor causing the high variability of diversity and abundance patterns found during sampling. Together, we interpret these results as indicating that species richness and composition in the high mountains of the TMVB may be driven by biogeographical history while variability in diversity is determined by ecological factors. We argue that current conservation strategies do not focus sufficiently on protecting high mountain fauna, and that there is a need for developing and applying new conservation concepts that take into account the high spatial and temporal variability of this system. PMID:29507842

  12. Molecular Detection of Hematozoa Infections in Tundra Swans Relative to Migration Patterns and Ecological Conditions at Breeding Grounds

    PubMed Central

    Ramey, Andrew M.; Ely, Craig R.; Schmutz, Joel A.; Pearce, John M.; Heard, Darryl J.

    2012-01-01

    Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska. PMID:23049862

  13. Molecular detection of hematozoa infections in tundra swans relative to migration patterns and ecological conditions at breeding grounds

    USGS Publications Warehouse

    Ramey, Andrew M.; Ely, Craig R.; Schmutz, Joel A.; Pearce, John M.; Heard, Darryl J.

    2012-01-01

    Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.

  14. Natural Allelic Diversity, Genetic Structure and Linkage Disequilibrium Pattern in Wild Chickpea

    PubMed Central

    Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Kumar, Vinod; Singh, Mohar; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2014-01-01

    Characterization of natural allelic diversity and understanding the genetic structure and linkage disequilibrium (LD) pattern in wild germplasm accessions by large-scale genotyping of informative microsatellite and single nucleotide polymorphism (SNP) markers is requisite to facilitate chickpea genetic improvement. Large-scale validation and high-throughput genotyping of genome-wide physically mapped 478 genic and genomic microsatellite markers and 380 transcription factor gene-derived SNP markers using gel-based assay, fluorescent dye-labelled automated fragment analyser and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass array have been performed. Outcome revealed their high genotyping success rate (97.5%) and existence of a high level of natural allelic diversity among 94 wild and cultivated Cicer accessions. High intra- and inter-specific polymorphic potential and wider molecular diversity (11–94%) along with a broader genetic base (13–78%) specifically in the functional genic regions of wild accessions was assayed by mapped markers. It suggested their utility in monitoring introgression and transferring target trait-specific genomic (gene) regions from wild to cultivated gene pool for the genetic enhancement. Distinct species/gene pool-wise differentiation, admixed domestication pattern, and differential genome-wide recombination and LD estimates/decay observed in a six structured population of wild and cultivated accessions using mapped markers further signifies their usefulness in chickpea genetics, genomics and breeding. PMID:25222488

  15. Molecular detection of hematozoa infections in tundra swans relative to migration patterns and ecological conditions at breeding grounds.

    PubMed

    Ramey, Andrew M; Ely, Craig R; Schmutz, Joel A; Pearce, John M; Heard, Darryl J

    2012-01-01

    Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.

  16. The relationship between satellite-derived indices and species diversity across African savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Mapfumo, Ratidzo B.; Murwira, Amon; Masocha, Mhosisi; Andriani, R.

    2016-10-01

    The ability to use remotely sensed diversity is important for the management of ecosystems at large spatial extents. However, to achieve this, there is still need to develop robust methods and approaches that enable large-scale mapping of species diversity. In this study, we tested the relationship between species diversity measured in situ with the Normalized Difference Vegetation Index (NDVI) and the Coefficient of Variation in the NDVI (CVNDVI) derived from high and medium spatial resolution satellite data at dry, wet and coastal savanna woodlands. We further tested the effect of logging on NDVI along the transects and between transects as disturbance may be a mechanism driving the patterns observed. Overall, the results of this study suggest that high tree species diversity is associated with low and high NDVI and at intermediate levels is associated with low tree species diversity and NDVI. High tree species diversity is associated with high CVNDVI and vice versa and at intermediate levels is associated with high tree species diversity and CVNDVI.

  17. Genotypic variability and persistence of Legionella pneumophila PFGE patterns in 34 cooling towers from two different areas.

    PubMed

    Sanchez, Inma; Garcia-Nuñez, Marian; Ragull, Sonia; Sopena, Nieves; Pedro-Botet, Maria Luisa; Estere, Maria; Rey-Joly, Celestino; Sabria, Miquel; Esteve, Maria

    2008-02-01

    Genotypic variability and clonal persistence are important concepts in molecular epidemiology as they facilitate the search for the source of sporadic cases or outbreaks of legionellosis. We studied the genotypic variability and persistence of Legionella pulsed-field gel electrophoresis (PFGE) patterns over time (period > 6 months) in 34 positive cooling towers from two different areas. In area A, radius of 70 km, 52 indistinguishable PFGE patterns were differentiated among the 27 cooling towers. In 13 cooling towers we observed >or= 2 PFGE patterns. Each cooling tower had its own indistinguishable Legionella PFGE pattern which was not shared with any other cooling tower. In area B, radius of 1 km, 10 indistinguishable PFGE patterns were obtained from the seven cooling towers. In four, we observed >or= 2 PFGE patterns. Three of these 10 indistinguishable PFGE patterns were shared by more than one cooling tower. In 27 of 34 cooling towers the same PFGE pattern was recovered after 6 months to up to 5 years of follow-up. The large genotypic diversity of Legionella observed in the cooling towers aids in the investigation of community outbreaks of Legionnaires' disease. However, shared patterns in small areas may confound the epidemiological investigation. The persistence of some PFGE patterns in cooling towers makes the recovery of the Legionella isolate causing the outbreak possible over time.

  18. Postglacial recolonization shaped the genetic diversity of the winter moth (Operophtera brumata) in Europe.

    PubMed

    Andersen, Jeremy C; Havill, Nathan P; Caccone, Adalgisa; Elkinton, Joseph S

    2017-05-01

    Changes in climate conditions, particularly during the Quaternary climatic oscillations, have long been recognized to be important for shaping patterns of species diversity. For species residing in the western Palearctic, two commonly observed genetic patterns resulting from these cycles are as follows: (1) that the numbers and distributions of genetic lineages correspond with the use of geographically distinct glacial refugia and (2) that southern populations are generally more diverse than northern populations (the "southern richness, northern purity" paradigm). To determine whether these patterns hold true for the widespread pest species the winter moth ( Operophtera brumata ), we genotyped 699 individual winter moths collected from 15 Eurasian countries with 24 polymorphic microsatellite loci. We find strong evidence for the presence of two major genetic clusters that diverged ~18 to ~22 ka, with evidence that secondary contact (i.e., hybridization) resumed ~ 5 ka along a well-established hybrid zone in Central Europe. This pattern supports the hypothesis that contemporary populations descend from populations that resided in distinct glacial refugia. However, unlike many previous studies of postglacial recolonization, we found no evidence for the "southern richness, northern purity" paradigm. We also find evidence for ongoing gene flow between populations in adjacent Eurasian countries, suggesting that long-distance dispersal plays an important part in shaping winter moth genetic diversity. In addition, we find that this gene flow is predominantly in a west-to-east direction, suggesting that recently debated reports of cyclical outbreaks of winter moth spreading from east to west across Europe are not the result of dispersal.

  19. Plasmodium vivax merozoite surface protein-3 alpha: a high-resolution marker for genetic diversity studies.

    PubMed

    Prajapati, Surendra Kumar; Joshi, Hema; Valecha, Neena

    2010-06-01

    Malaria, an ancient human infectious disease caused by five species of Plasmodium, among them Plasmodium vivax is the most widespread human malaria species and causes huge morbidity to its host. Identification of genetic marker to resolve higher genetic diversity for an ancient origin organism is a crucial task. We have analyzed genetic diversity of P. vivax field isolates using highly polymorphic antigen gene merozoite surface protein-3 alpha (msp-3 alpha) and assessed its suitability as high-resolution genetic marker for population genetic studies. 27 P. vivax field isolates collected during chloroquine therapeutic efficacy study at Chennai were analyzed for genetic diversity. PCR-RFLP was employed to assess the genetic variations using highly polymorphic antigen gene msp-3 alpha. We observed three distinct PCR alleles at msp-3 alpha, and among them allele A showed significantly high frequency (53%, chi2 = 8.22, p = 0.001). PCR-RFLP analysis revealed 14 and 17 distinct RFLP patterns for Hha1 and Alu1 enzymes respectively. Further, RFLP analysis revealed that allele A at msp-3 alpha is more diverse in the population compared with allele B and C. Combining Hha1 and Alu1 RFLP patterns revealed 21 distinct genotypes among 22 isolates reflects higher diversity resolution power of msp-3 alpha in the field isolates. P. vivax isolates from Chennai region revealed substantial amount of genetic diversity and comparison of allelic diversity with other antigen genes and microsatellites suggesting that msp-3 alpha could be a high-resolution marker for genetic diversity studies among P. vivax field isolates.

  20. Simulated tri-trophic networks reveal complex relationships between species diversity and interaction diversity

    PubMed Central

    Lumpkin, Will; Hurtado, Paul J.; Dyer, Lee A.

    2018-01-01

    Most of earth’s biodiversity is comprised of interactions among species, yet it is unclear what causes variation in interaction diversity across space and time. We define interaction diversity as the richness and relative abundance of interactions linking species together at scales from localized, measurable webs to entire ecosystems. Large-scale patterns suggest that two basic components of interaction diversity differ substantially and predictably between different ecosystems: overall taxonomic diversity and host specificity of consumers. Understanding how these factors influence interaction diversity, and quantifying the causes and effects of variation in interaction diversity are important goals for community ecology. While previous studies have examined the effects of sampling bias and consumer specialization on determining patterns of ecological networks, these studies were restricted to two trophic levels and did not incorporate realistic variation in species diversity and consumer diet breadth. Here, we developed a food web model to generate tri-trophic ecological networks, and evaluated specific hypotheses about how the diversity of trophic interactions and species diversity are related under different scenarios of species richness, taxonomic abundance, and consumer diet breadth. We investigated the accumulation of species and interactions and found that interactions accumulate more quickly; thus, the accumulation of novel interactions may require less sampling effort than sampling species in order to get reliable estimates of either type of diversity. Mean consumer diet breadth influenced the correlation between species and interaction diversity significantly more than variation in both species richness and taxonomic abundance. However, this effect of diet breadth on interaction diversity is conditional on the number of observed interactions included in the models. The results presented here will help develop realistic predictions of the relationships between consumer diet breadth, interaction diversity, and species diversity within multi-trophic communities, which is critical for the conservation of biodiversity in this period of accelerated global change. PMID:29579077

  1. Simulated tri-trophic networks reveal complex relationships between species diversity and interaction diversity.

    PubMed

    Pardikes, Nicholas A; Lumpkin, Will; Hurtado, Paul J; Dyer, Lee A

    2018-01-01

    Most of earth's biodiversity is comprised of interactions among species, yet it is unclear what causes variation in interaction diversity across space and time. We define interaction diversity as the richness and relative abundance of interactions linking species together at scales from localized, measurable webs to entire ecosystems. Large-scale patterns suggest that two basic components of interaction diversity differ substantially and predictably between different ecosystems: overall taxonomic diversity and host specificity of consumers. Understanding how these factors influence interaction diversity, and quantifying the causes and effects of variation in interaction diversity are important goals for community ecology. While previous studies have examined the effects of sampling bias and consumer specialization on determining patterns of ecological networks, these studies were restricted to two trophic levels and did not incorporate realistic variation in species diversity and consumer diet breadth. Here, we developed a food web model to generate tri-trophic ecological networks, and evaluated specific hypotheses about how the diversity of trophic interactions and species diversity are related under different scenarios of species richness, taxonomic abundance, and consumer diet breadth. We investigated the accumulation of species and interactions and found that interactions accumulate more quickly; thus, the accumulation of novel interactions may require less sampling effort than sampling species in order to get reliable estimates of either type of diversity. Mean consumer diet breadth influenced the correlation between species and interaction diversity significantly more than variation in both species richness and taxonomic abundance. However, this effect of diet breadth on interaction diversity is conditional on the number of observed interactions included in the models. The results presented here will help develop realistic predictions of the relationships between consumer diet breadth, interaction diversity, and species diversity within multi-trophic communities, which is critical for the conservation of biodiversity in this period of accelerated global change.

  2. Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea

    PubMed Central

    Kujur, Alice; Bajaj, Deepak; Upadhyaya, Hari D.; Das, Shouvik; Ranjan, Rajeev; Shree, Tanima; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    The genome-wide discovery and high-throughput genotyping of SNPs in chickpea natural germplasm lines is indispensable to extrapolate their natural allelic diversity, domestication, and linkage disequilibrium (LD) patterns leading to the genetic enhancement of this vital legume crop. We discovered 44,844 high-quality SNPs by sequencing of 93 diverse cultivated desi, kabuli, and wild chickpea accessions using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays that were physically mapped across eight chromosomes of desi and kabuli. Of these, 22,542 SNPs were structurally annotated in different coding and non-coding sequence components of genes. Genes with 3296 non-synonymous and 269 regulatory SNPs could functionally differentiate accessions based on their contrasting agronomic traits. A high experimental validation success rate (92%) and reproducibility (100%) along with strong sensitivity (93–96%) and specificity (99%) of GBS-based SNPs was observed. This infers the robustness of GBS as a high-throughput assay for rapid large-scale mining and genotyping of genome-wide SNPs in chickpea with sub-optimal use of resources. With 23,798 genome-wide SNPs, a relatively high intra-specific polymorphic potential (49.5%) and broader molecular diversity (13–89%)/functional allelic diversity (18–77%) was apparent among 93 chickpea accessions, suggesting their tremendous applicability in rapid selection of desirable diverse accessions/inter-specific hybrids in chickpea crossbred varietal improvement program. The genome-wide SNPs revealed complex admixed domestication pattern, extensive LD estimates (0.54–0.68) and extended LD decay (400–500 kb) in a structured population inclusive of 93 accessions. These findings reflect the utility of our identified SNPs for subsequent genome-wide association study (GWAS) and selective sweep-based domestication trait dissection analysis to identify potential genomic loci (gene-associated targets) specifically regulating important complex quantitative agronomic traits in chickpea. The numerous informative genome-wide SNPs, natural allelic diversity-led domestication pattern, and LD-based information generated in our study have got multidimensional applicability with respect to chickpea genomics-assisted breeding. PMID:25873920

  3. Spatial variability in secondary metabolites of the indo-pacific sponge Stylissa massa.

    PubMed

    Rohde, Sven; Gochfeld, Deborah J; Ankisetty, Sridevi; Avula, Bharathi; Schupp, Peter J; Slattery, Marc

    2012-05-01

    Chemical diversity represents a measure of selective pressures acting on genotypic variability. In order to understand patterns of chemical ecology and biodiversity in the environment, it is necessary to enhance our knowledge of chemical diversity within and among species. Many sponges produce variable levels of secondary metabolites in response to diverse biotic and abiotic environmental factors. This study evaluated intra-specific variability in secondary metabolites in the common Indo-Pacific sponge Stylissa massa over various geographic scales, from local to ocean basin. Several major metabolites were quantified in extracts from sponges collected in American Samoa, Pohnpei, Saipan, and at several sites and depths in Guam. Concentrations of several of these metabolites varied geographically across the Pacific basin, with American Samoa and Pohnpei exhibiting the greatest differences, and Guam and Saipan more similar to each other. There were also significant differences in concentrations among different sites and depths within Guam. The crude extract of S. massa exhibited feeding deterrence against the omnivorous pufferfish Canthigaster solandri at natural concentrations, however, none of the isolated compounds was deterrent at the maximum natural concentrations observed, nor were mixtures of these compounds, thus emphasizing the need for bioassay-guided isolation to characterize specific chemical defenses. Antibacterial activity against a panel of ecologically relevant pathogens was minimal. Depth transplants, predator exclusion, and UV protection experiments were performed, but although temporal variability in compound concentrations was observed, there was no evidence that secondary metabolite concentration in S. massa was induced by any of these factors. Although the reasons behind the variability observed in the chemical constituents of S. massa are still in question, all sponges are not created equal from a chemical standpoint, and these studies provide further insights into patterns of chemical diversity within S. massa.

  4. Variation in species diversity and functional traits of sponge communities near human populations in Bocas del Toro, Panama

    PubMed Central

    Matterson, Kenan O.; Freeman, Christopher J.; Archer, Stephanie K.; Thacker, Robert W.

    2015-01-01

    Recent studies have renewed interest in sponge ecology by emphasizing the functional importance of sponges in a broad array of ecosystem services. Many critically important habitats occupied by sponges face chronic stressors that might lead to alterations in their diversity, relatedness, and functional attributes. We addressed whether proximity to human activity might be a significant factor in structuring sponge community composition, as well as potential functional roles, by monitoring sponge diversity and abundance at two structurally similar sites that vary in distance to areas of high coastal development in Bocas Del Toro, Panama. We surveyed sponge communities at each site using belt transects and differences between two sites were compared using the following variables: (1) sponge species richness, Shannon diversity, and inverse Simpson’s diversity; (2) phylogenetic diversity; (3) taxonomic and phylogenetic beta diversity; (4) trait diversity and dissimilarity; and (5) phylogenetic and trait patterns in community structure. We observed significantly higher sponge diversity at Punta Caracol, the site most distant from human development (∼5 km). Although phylogenetic diversity was lower at Saigon Bay, the site adjacent to a large village including many houses, businesses, and an airport, the sites did not exhibit significantly different patterns of phylogenetic relatedness in species composition. However, each site had a distinct taxonomic and phylogenetic composition (beta diversity). In addition, the sponge community at Saigon included a higher relative abundance of sponges with high microbial abundance and high chlorophyll a concentration, whereas the community at Punta Caracol had a more even distribution of these traits, yielding a significant difference in functional trait diversity between sites. These results suggest that lower diversity and potentially altered community function might be associated with proximity to human populations. This study highlights the importance of evaluating functional traits and phylogenetic diversity in addition to common diversity metrics when assessing potential environmental impacts on benthic communities. PMID:26587347

  5. Embracing heterothermic diversity: non-stationary waveform analysis of temperature variation in endotherms.

    PubMed

    Levesque, Danielle L; Menzies, Allyson K; Landry-Cuerrier, Manuelle; Larocque, Guillaume; Humphries, Murray M

    2017-07-01

    Recent research is revealing incredible diversity in the thermoregulatory patterns of wild and captive endotherms. As a result of these findings, classic thermoregulatory categories of 'homeothermy', 'daily heterothermy', and 'hibernation' are becoming harder to delineate, impeding our understanding of the physiological and evolutionary significance of variation within and around these categories. However, we lack a generalized analytical approach for evaluating and comparing the complex and diversified nature of the full breadth of heterothermy expressed by individuals, populations, and species. Here we propose a new approach that decomposes body temperature time series into three inherent properties-waveform, amplitude, and period-using a non-stationary technique that accommodates the temporal variability of body temperature patterns. This approach quantifies circadian and seasonal variation in thermoregulatory patterns, and uses the distribution of observed thermoregulatory patterns as a basis for intra- and inter-specific comparisons. We analyse body temperature time series from multiple species, including classical hibernators, tropical heterotherms, and homeotherms, to highlight the approach's general usefulness and the major axes of thermoregulatory variation that it reveals.

  6. African diversity from the HLA point of view: influence of genetic drift, geography, linguistics, and natural selection.

    PubMed

    Sanchez-Mazas, A

    2001-09-01

    This study investigates the influence of different evolutionary factors on the patterns of human leukocyte antigen (HLA) genetic diversity within sub-Saharan Africa, and between Africa, Europe, and East Asia. This is done by comparing the significance of several statistics computed on equivalent population data sets tested for two HLA class II loci, DRB1 and DPB1, which strongly differ from each other by the shape of their allelic distributions. Similar results are found for the two loci concerning highly significant correlations between geographic and genetic distances at the world scale, high levels of genetic diversity within sub-Saharan Africa and East Asia, and low within Europe, and low genetic differentiations among the three broad continental areas, with no special divergence of Africa. On the other hand, DPB1 behaves as a neutral polymorphism, although a significant excess of heterozygotes is often observed for DRB1. Whereas the pattern observed for DPB1 is explained by geographic differentiations and genetic drift in isolated populations, balancing selection is likely to have prevented genetic differentiations among populations at the DRB1 locus. However, this selective effect did not disrupt the high correlation found between DRB1 and geography at the world scale, nor between DRB1 and linguistic differentiations at the African level.

  7. The recovery of coral genetic diversity in the Sunda Strait following the 1883 eruption of Krakatau

    NASA Astrophysics Data System (ADS)

    Starger, C. J.; Barber, P. H.; Ambariyanto; Baker, A. C.

    2010-09-01

    Surveys of microsatellite variation show that genetic diversity has largely recovered in two reef-building corals, Pocillopora damicornis and Seriatopora hystrix (Scleractinia: Pocilloporidae), on reefs which were decimated by the eruption of the volcano Krakatau in 1883. Assignment methods and gene flow estimates indicate that the recolonization of Krakatau occurred mainly from the closest upstream reef system, Pulau Seribu, but that larval input from other regions has also occurred. This pattern is clearer in S. hystrix, which is traditionally the more dispersal-limited species. Despite these observed patterns of larval dispersal, self-recruitment appears to now be the most important factor in supplying larvae to coral populations in Krakatau. This suggests that the colonization of devastated reefs can occur quickly through larval dispersal; however, their survival requires local sources of larvae for self-recruitment. This research supports the observation that the recovery of genetic diversity in coral reef animals can occur on the order of decades and centuries rather than millennia. Conservation measures aimed at sustaining coral reef populations in Krakatau and elsewhere should include both the protection of upstream source populations for larval replenishment should disaster occur as well as the protection of large adult colonies to serve as local larval sources.

  8. Structural Genomics: Correlation Blocks, Population Structure, and Genome Architecture

    PubMed Central

    Hu, Xin-Sheng; Yeh, Francis C.; Wang, Zhiquan

    2011-01-01

    An integration of the pattern of genome-wide inter-site associations with evolutionary forces is important for gaining insights into the genomic evolution in natural or artificial populations. Here, we assess the inter-site correlation blocks and their distributions along chromosomes. A correlation block is broadly termed as the DNA segment within which strong correlations exist between genetic diversities at any two sites. We bring together the population genetic structure and the genomic diversity structure that have been independently built on different scales and synthesize the existing theories and methods for characterizing genomic structure at the population level. We discuss how population structure could shape correlation blocks and their patterns within and between populations. Effects of evolutionary forces (selection, migration, genetic drift, and mutation) on the pattern of genome-wide correlation blocks are discussed. In eukaryote organisms, we briefly discuss the associations between the pattern of correlation blocks and genome assembly features in eukaryote organisms, including the impacts of multigene family, the perturbation of transposable elements, and the repetitive nongenic sequences and GC-rich isochores. Our reviews suggest that the observable pattern of correlation blocks can refine our understanding of the ecological and evolutionary processes underlying the genomic evolution at the population level. PMID:21886455

  9. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    USGS Publications Warehouse

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  10. Functional diversity exhibits a diverse relationship with area, even a decreasing one

    PubMed Central

    Karadimou, Elpida K.; Kallimanis, Athanasios S.; Tsiripidis, Ioannis; Dimopoulos, Panayotis

    2016-01-01

    The relationship between species richness and area is one of the few well-established laws in ecology, and one might expect a similar relationship with functional diversity (FD). However, only a few studies investigate the relationship between trait-based FD and area, the Functional Diversity - Area Relationship (FDAR). To examine FDAR, we constructed the species accumulation curve and the corresponding FD curve. We used plant diversity data from nested plots (1–128 m2), recorded on the Volcanic islands of Santorini Archipelagos, Greece. Six multidimensional FD indices were calculated using 26 traits. We identified a typology of FDARs depending on the facet of FD analyzed: (A) strongly positive for indices quantifying the range of functional traits in the community, (B) negative correlation for indices quantifying the evenness in the distribution of abundance in the trait space, (C) no clear pattern for indices reflecting the functional similarity of species and (D) idiosyncratic patterns with area for functional divergence. As area increases, the range of traits observed in the community increases, but the abundance of traits does not increase proportionally and some traits become dominant, implying a reliance on some functions that may be located in either the center or the periphery of the trait space. PMID:27752086

  11. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates

    PubMed Central

    Gimmler, Anna; Korn, Ralf; de Vargas, Colomban; Audic, Stéphane; Stoeck, Thorsten

    2016-01-01

    Illumina reads of the SSU-rDNA-V9 region obtained from the circumglobal Tara Oceans expedition allow the investigation of protistan plankton diversity patterns on a global scale. We analyzed 6,137,350 V9-amplicons from ocean surface waters and the deep chlorophyll maximum, which were taxonomically assigned to the phylum Ciliophora. For open ocean samples global planktonic ciliate diversity is relatively low (ca. 1,300 observed and predicted ciliate OTUs). We found that 17% of all detected ciliate OTUs occurred in all oceanic regions under study. On average, local ciliate OTU richness represented 27% of the global ciliate OTU richness, indicating that a large proportion of ciliates is widely distributed. Yet, more than half of these OTUs shared <90% sequence similarity with reference sequences of described ciliates. While alpha-diversity measures (richness and exp(Shannon H)) are hardly affected by contemporary environmental conditions, species (OTU) turnover and community similarity (β-diversity) across taxonomic groups showed strong correlation to environmental parameters. Logistic regression models predicted significant correlations between the occurrence of specific ciliate genera and individual nutrients, the oceanic carbonate system and temperature. Planktonic ciliates displayed distinct vertical distributions relative to chlorophyll a. In contrast, the Tara Oceans dataset did not reveal any evidence that latitude is structuring ciliate communities. PMID:27633177

  12. The Biogeographic Pattern of Microbial Functional Genes along an Altitudinal Gradient of the Tibetan Pasture

    PubMed Central

    Qi, Qi; Zhao, Mengxin; Wang, Shiping; Ma, Xingyu; Wang, Yuxuan; Gao, Ying; Lin, Qiaoyan; Li, Xiangzhen; Gu, Baohua; Li, Guoxue; Zhou, Jizhong; Yang, Yunfeng

    2017-01-01

    As the highest place of the world, the Tibetan plateau is a fragile ecosystem. Given the importance of microbial communities in driving soil nutrient cycling, it is of interest to document the microbial biogeographic pattern here. We adopted a microarray-based tool named GeoChip 4.0 to investigate grassland microbial functional genes along an elevation gradient from 3200 to 3800 m above sea level open to free grazing by local herdsmen and wild animals. Interestingly, microbial functional diversities increase with elevation, so does the relative abundances of genes associated with carbon degradation, nitrogen cycling, methane production, cold shock and oxygen limitation. The range of Shannon diversities (10.27–10.58) showed considerably smaller variation than what was previously observed at ungrazed sites nearby (9.95–10.65), suggesting the important role of livestock grazing on microbial diversities. Closer examination showed that the dissimilarity of microbial community at our study sites increased with elevations, revealing an elevation-decay relationship of microbial functional genes. Both microbial functional diversity and the number of unique genes increased with elevations. Furthermore, we detected a tight linkage of greenhouse gas (CO2) and relative abundances of carbon cycling genes. Our biogeographic study provides insights on microbial functional diversity and soil biogeochemical cycling in Tibetan pastures. PMID:28659870

  13. Extensive variation at MHC DRB in the New Zealand sea lion (Phocarctos hookeri) provides evidence for balancing selection

    PubMed Central

    Osborne, A J; Zavodna, M; Chilvers, B L; Robertson, B C; Negro, S S; Kennedy, M A; Gemmell, N J

    2013-01-01

    Marine mammals are often reported to possess reduced variation of major histocompatibility complex (MHC) genes compared with their terrestrial counterparts. We evaluated diversity at two MHC class II B genes, DQB and DRB, in the New Zealand sea lion (Phocarctos hookeri, NZSL) a species that has suffered high mortality owing to bacterial epizootics, using Sanger sequencing and haplotype reconstruction, together with next-generation sequencing. Despite this species' prolonged history of small population size and highly restricted distribution, we demonstrate extensive diversity at MHC DRB with 26 alleles, whereas MHC DQB is dimorphic. We identify four DRB codons, predicted to be involved in antigen binding, that are evolving under adaptive evolution. Our data suggest diversity at DRB may be maintained by balancing selection, consistent with the role of this locus as an antigen-binding region and the species' recent history of mass mortality during a series of bacterial epizootics. Phylogenetic analyses of DQB and DRB sequences from pinnipeds and other carnivores revealed significant allelic diversity, but little phylogenetic depth or structure among pinniped alleles; thus, we could neither confirm nor refute the possibility of trans-species polymorphism in this group. The phylogenetic pattern observed however, suggests some significant evolutionary constraint on these loci in the recent past, with the pattern consistent with that expected following an epizootic event. These data may help further elucidate some of the genetic factors underlying the unusually high susceptibility to bacterial infection of the threatened NZSL, and help us to better understand the extent and pattern of MHC diversity in pinnipeds. PMID:23572124

  14. Chemical Abundance Measurements of Ultra-Faint Dwarf Galaxies Discovered by the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Nagasawa, Daniel; Marshall, Jennifer L.; Simon, Joshua D.; Hansen, Terese; Li, Ting; Bernstein, Rebecca; Balbinot, Eduardo; Drlica-Wagner, Alex; Pace, Andrew; Strigari, Louis; Pellegrino, Craig; DePoy, Darren L.; Suntzeff, Nicholas; Bechtol, Keith; Dark Energy Suvey

    2018-01-01

    We present chemical abundance analysis results derived from high-resolution spectroscopy of ultra-faint dwarfs discovered by the Dark Energy Survey. Ultra-faint dwarf galaxies preserve a fossil record of the chemical abundance patterns imprinted by the first stars in the Universe. High-resolution spectroscopic observations of member stars in several recently discovered Milky Way satellites reveal a range of abundance patterns among ultra-faint dwarfs suggesting that star formation processes in the early Universe were quite diverse. The chemical content provides a glimpse not only of the varied nucleosynthetic processes and chemical history of the dwarfs themselves, but also the environment in which they were formed. We present the chemical abundance analysis of these objects and discuss possible explanations for the observed abundance patterns.

  15. Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity.

    PubMed

    Jubery, Talukder Z; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K; Ganapathysubramanian, Baskar

    2016-01-01

    Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy outline traits was observed for origins, and maturity indexes. These results indicate the usefulness of EFT method for reconstruction and study of canopy morphometric traits, and provides opportunities for data reduction of large images for ease in future use.

  16. THE ROLE OF SELF-INJURY IN THE ORGANIZATION OF BEHAVIOUR

    PubMed Central

    Sandman, Curt A.; Kemp, Aaron S.; Mabini, Christopher; Pincus, David; Magnusson, Magnus

    2012-01-01

    Background Self-injuring acts are among the most dramatic behaviours exhibited by human beings. There is no known single cause and there is no universally agreed upon treatment. Sophisticated sequential and temporal analysis of behaviour has provided alternative descriptions of self-injury that provide new insights into its initiation and maintenance. Method Forty hours of observations for each of 32 participants were collected in a contiguous two-week period. Twenty categories of behavioural and environmental events were recorded electronically that captured the precise time each observation occurred. Temporal behavioural/environmental patterns associated with self-injurious events were revealed with a method (t-patterns; THEME) for detecting non-linear, real-time patterns. Results Results indicated that acts of self-injury contributed both to more patterns and to more complex patterns. Moreover, self-injury left its imprint on the organization of behaviour even when counts of self-injury were expelled from the continuous record. Conclusions Behaviour of participants was organized in a more diverse array of patterns with SIB was present. Self-injuring acts may function as singular points, increasing coherence within self-organizing patterns of behaviour. PMID:22452417

  17. Modeling α- and β-diversity in a tropical forest from remotely sensed and spatial data

    NASA Astrophysics Data System (ADS)

    Hernández-Stefanoni, J. Luis; Gallardo-Cruz, J. Alberto; Meave, Jorge A.; Rocchini, Duccio; Bello-Pineda, Javier; López-Martínez, J. Omar

    2012-10-01

    Comprehensive information on species distribution and species composition patterns of plant communities is required for effective conservation and management of biodiversity. Remote sensing offers an inexpensive means of attaining complete spatial coverage for large areas, at regular time intervals, and can therefore be extremely useful for estimating both species richness and spatial variation of species composition (α- and β-diversity). An essential step to map such attributes is to identify and understand their main drivers. We used remotely sensed data as a surrogate of plant productivity and habitat structure variables for explaining α- and β-diversity, and evaluated the relative roles of productivity-habitat structure and spatial variables in explaining observed patterns of α- and β-diversity by using a Principal Coordinates of Neighbor Matrices analysis. We also examined the relationship between remotely sensed and field data, in order to map α- and β-diversity at the landscape-level in the Yucatan Peninsula, using a regression kriging procedure. These two procedures integrate the relationship of species richness and spatial species turnover both with remotely sensed data and spatial structure. The empirical models so obtained can be used to predict species richness and variation in species composition, and they can be regarded as valuable tools not only for identifying areas with high local species richness (α-diversity), but also areas with high species turnover (β-diversity). Ultimately, information obtained in this way can help maximize the number of species preserved in a landscape.

  18. Global variation in elevational diversity patterns

    Treesearch

    Qinfeng Guo; Douglas A. Kelt; Zhongyu Sun; Hongxiao Liu; Liangjun Hu; Hai Ren; Jun We

    2013-01-01

    While horizontal gradients of biodiversity have been examined extensively in the past, vertical diversity gradients (elevation, water depth) are attracting increasing attention. We compiled data from 443 elevational gradients involving diverse organisms worldwide to investigate how elevational diversity patterns may vary between the Northern and Southern hemispheres...

  19. Differential organization of taxonomic and functional diversity in an urban woody plant metacommunity

    Treesearch

    Christopher M. Swan; Anna Johnson; David J. Nowak; Alicia Acosta

    2016-01-01

    Questions: Urban ecosystems present an opportunity to study ecological communities in the context of unprecedented environmental change. In the face of urban land conversion, ecologists observe new patterns of species composition, dominance, behaviour and dispersal.We propose a hypothetical socioeconomic template that describes a gradient...

  20. Social Acts, Class and the Construction of Personhood in Indian Families.

    ERIC Educational Resources Information Center

    Bhatia, Sunil

    2001-01-01

    Observed Hindi-speaking Indian caregivers and their children to examine how caregivers use language to create diverse conceptions of personhood. Distributional analyses examined the proportion of person references and class-based patterns of co-occurrence between particular social acts and person references. Discussion explored ways in which…

  1. Discovering high-resolution patterns of differential DNA methylation that correlate with gene expression changes

    PubMed Central

    VanderKraats, Nathan D.; Hiken, Jeffrey F.; Decker, Keith F.; Edwards, John R.

    2013-01-01

    Methylation of the CpG-rich region (CpG island) overlapping a gene’s promoter is a generally accepted mechanism for silencing expression. While recent technological advances have enabled measurement of DNA methylation and expression changes genome-wide, only modest correlations between differential methylation at gene promoters and expression have been found. We hypothesize that stronger associations are not observed because existing analysis methods oversimplify their representation of the data and do not capture the diversity of existing methylation patterns. Recently, other patterns such as CpG island shore methylation and long partially hypomethylated domains have also been linked with gene silencing. Here, we detail a new approach for discovering differential methylation patterns associated with expression change using genome-wide high-resolution methylation data: we represent differential methylation as an interpolated curve, or signature, and then identify groups of genes with similarly shaped signatures and corresponding expression changes. Our technique uncovers a diverse set of patterns that are conserved across embryonic stem cell and cancer data sets. Overall, we find strong associations between these methylation patterns and expression. We further show that an extension of our method also outperforms other approaches by generating a longer list of genes with higher quality associations between differential methylation and expression. PMID:23748561

  2. Genomic distribution and estimation of nucleotide diversity in natural populations: perspectives from the collared flycatcher (Ficedula albicollis) genome.

    PubMed

    Dutoit, Ludovic; Burri, Reto; Nater, Alexander; Mugal, Carina F; Ellegren, Hans

    2017-07-01

    Properly estimating genetic diversity in populations of nonmodel species requires a basic understanding of how diversity is distributed across the genome and among individuals. To this end, we analysed whole-genome resequencing data from 20 collared flycatchers (genome size ≈1.1 Gb; 10.13 million single nucleotide polymorphisms detected). Genomewide nucleotide diversity was almost identical among individuals (mean = 0.00394, range = 0.00384-0.00401), but diversity levels varied extensively across the genome (95% confidence interval for 200-kb windows = 0.0013-0.0053). Diversity was related to selective constraint such that in comparison with intergenic DNA, diversity at fourfold degenerate sites was reduced to 85%, 3' UTRs to 82%, 5' UTRs to 70% and nondegenerate sites to 12%. There was a strong positive correlation between diversity and chromosome size, probably driven by a higher density of targets for selection on smaller chromosomes increasing the diversity-reducing effect of linked selection. Simulations exploring the ability of sequence data from a small number of genetic markers to capture the observed diversity clearly demonstrated that diversity estimation from finite sampling of such data is bound to be associated with large confidence intervals. Nevertheless, we show that precision in diversity estimation in large outbred population benefits from increasing the number of loci rather than the number of individuals. Simulations mimicking RAD sequencing showed that this approach gives accurate estimates of genomewide diversity. Based on the patterns of observed diversity and the performed simulations, we provide broad recommendations for how genetic diversity should be estimated in natural populations. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  3. Long Distance Dispersal of Zooplankton Endemic to Isolated Mountaintops - an Example of an Ecological Process Operating on an Evolutionary Time Scale

    PubMed Central

    Vanschoenwinkel, Bram; Mergeay, Joachim; Pinceel, Tom; Waterkeyn, Aline; Vandewaerde, Hanne; Seaman, Maitland; Brendonck, Luc

    2011-01-01

    Recent findings suggest a convergence of time scales between ecological and evolutionary processes which is usually explained in terms of rapid micro evolution resulting in evolution on ecological time scales. A similar convergence, however, can also emerge when slow ecological processes take place on evolutionary time scales. A good example of such a slow ecological process is the colonization of remote aquatic habitats by passively dispersed zooplankton. Using variation at the protein coding mitochondrial COI gene, we investigated the balance between mutation and migration as drivers of genetic diversity in two Branchipodopsis fairy shrimp species (Crustacea, Anostraca) endemic to remote temporary rock pool clusters at the summit of isolated mountaintops in central South Africa. We showed that both species colonized the region almost simultaneously c. 0.8 My ago, but exhibit contrasting patterns of regional genetic diversity and demographic history. The haplotype network of the common B. cf. wolfi showed clear evidence of 11 long distance dispersal events (up to 140 km) with five haplotypes that are shared among distant inselbergs, as well as some more spatially isolated derivates. Similar patterns were not observed for B. drakensbergensis presumably since this rarer species experienced a genetic bottleneck. We conclude that the observed genetic patterns reflect rare historic colonization events rather than frequent ongoing gene flow. Moreover, the high regional haplotype diversity combined with a high degree of haplotype endemicity indicates that evolutionary- (mutation) and ecological (migration) processes in this system operate on similar time scales. PMID:22102865

  4. Attending to Communication and Patterns of Interaction: Culturally Sensitive Mental Health Care for Groups of Urban, Ethnically Diverse, Impoverished, and Underserved Women.

    PubMed

    Molewyk Doornbos, Mary; Zandee, Gail Landheer; DeGroot, Joleen

    2014-07-01

    The United States is ethnically diverse. This diversity presents challenges to nurses, who, without empirical evidence to design culturally congruent interventions, may contribute to mental health care disparities. Using Leininger's theory of culture care diversity and universality, this study documented communication and interaction patterns of ethnically diverse, urban, impoverished, and underserved women. Using a community-based participatory research framework, 61 Black, Hispanic, and White women participated in focus groups around their experiences with anxiety/depression. Researchers recorded verbal communication, nonverbal behavior, and patterns of interaction. The women's communication and interaction patterns gave evidence of three themes that were evident across all focus groups and five subthemes that emerged along ethnic lines. The results suggest cultural universalities and cultural uniquenesses relative to the communication and interaction patterns of urban, ethnically diverse, impoverished, and underserved women that may assist in the design of culturally sensitive mental health care. © The Author(s) 2014.

  5. Effect of latitudinal gradient and impact of logging on genetic diversity of Cedrela lilloi along the Argentine Yungas Rainforest

    PubMed Central

    Inza, Maria V; Zelener, Noga; Fornes, Luis; Gallo, Leonardo A

    2012-01-01

    Cedrela lilloi C. DC. (cedro coya, Meliaceae), an important south American timber species, has been historically overexploited through selective logging in Argentine Yungas Rainforest. Management and conservation programs of the species require knowledge of its genetic variation patterns; however, no information is available. Molecular genetic variability of the species was characterized to identify high-priority populations for conservation and domestication purposes. Fourteen native populations (160 individuals) along a latitudinal gradient and with different logging's intensities were assessed by 293 polymorphic AFLP (amplified fragment length polymorphism) markers. Genetic diversity was low (Ht = 0.135), according to marginal location of the species in Argentina. Most of the diversity was distributed within populations (87%). Northern populations showed significant higher genetic diversity (R2= 0.69) that agreed with latitudinal pattern of distribution of taxonomic diversity in the Yungas. Three clusters were identified by Bayesian analysis in correspondence with northern, central, and southern Yungas. An analysis of molecular variance (AMOVA) revealed significant genetic differences among latitudinal clusters even when logging (ΦRT = 0.07) and unlogging populations (ΦPT = 0.10) were separately analyzed. Loss of genetic diversity with increasing logging intensity was observed between neighboring populations with different disturbance (ΦPT = 0.03–0.10). Bottlenecks in disturbed populations are suggested as the main cause. Our results emphasize both: the necessity of maintaining the genetic diversity in protected areas that appear as possible long-term refuges of the species; and to rescue for the national system of protected areas some high genetic diversity populations that are on private fields. PMID:23170208

  6. Origin matters: diversity affects the performance of alien invasive species but not of native species.

    PubMed

    Sun, Yan; Müller-Schärer, Heinz; Maron, John L; Schaffner, Urs

    2015-06-01

    At local scales, it has often been found that invasibility decreases with increasing resident plant diversity. However, whether resident community diversity similarly resists invasion by alien versus native species is seldom studied. We examined this issue by invading constructed native plant assemblages that varied in species and functional richness with invasive alien or native Asteraceae species. Assemblages were also invaded with spotted knapweed, Centaurea stoebe, a native European aster that has been previously used in diversity-invasibility experiments in North America. We also conducted a field survey to explore the generality of the patterns generated from our experimental study. Both experimental and observational work revealed that increasing diversity reduced the performance of alien but not native invaders. Centaurea stoebe invading its native community performed poorly regardless of resident diversity, whereas in a parallel, previously published study conducted in North America, C. stoebe easily invaded low-diversity but not high-diversity assemblages. Our results suggest that diversity is an attribute of resident communities that makes them more or less susceptible to invasion by novel invasive alien but not native plant species.

  7. Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles.

    PubMed

    Thormann, Birthe; Ahrens, Dirk; Espinosa, Carlos Iván; Armijos, Diego Marín; Wagner, Thomas; Wägele, Johann W; Peters, Marcell K

    2018-05-01

    Elevational diversity gradients are typically studied without considering the complex small-scale topography of large mountains, which generates habitats of strongly different environmental conditions within the same elevational zones. Here we analyzed the importance of small-scale topography for elevational diversity patterns of hyperdiverse tropical leaf beetles (Coleoptera: Chrysomelidae). We compared patterns of elevational diversity and species composition of beetles in two types of forests (on mountain ridges and in valleys) and analyzed whether differences in the rate of species turnover among forest habitats lead to shifts in patterns of elevational diversity when scaling up from the local study site to the elevational belt level. We sampled beetle assemblages at 36 sites in the Podocarpus National Park, Ecuador, which were equally distributed over two forest habitats and three elevational levels. DNA barcoding and Poisson tree processes modelling were used to delimitate putative species. On average, local leaf beetle diversity showed a clear hump-shaped pattern. However, only diversity in forests on mountain ridges peaked at mid-elevation, while beetle diversity in valleys was similarly high at low- and mid-elevation and only declined at highest elevations. A higher turnover of species assemblages at lower than at mid-elevations caused a shift from a hump-shaped diversity pattern found at the local level to a low-elevation plateau pattern (with similar species numbers at low and mid-elevation) at the elevational belt level. Our study reveals an important role of small-scale topography and spatial scale for the inference on gradients of elevational species diversity.

  8. Sexual dimorphism in digital dermatoglyphic traits among Sinhalese people in Sri Lanka

    PubMed Central

    2013-01-01

    Background The purpose of this study was to evaluate gender-wise diversity of digital dermatoglyphic traits in a sample of Sinhalese people in Sri Lanka. Findings Four thousand and thirty-four digital prints of 434 Sinhalese individuals (217 males and 217 females) were examined for their digital dermatoglyphic pattern distribution. The mean age for the entire group was 23.66 years (standard deviation = 4.93 years). The loop pattern is observed more frequently (n = 2,592, 59.72%) compared to whorl (n = 1,542, 35.53%) and arch (n = 206, 4.75%) in the Sinhalese population. Females (n = 1,274, 58.71%) have a more ulnar loop pattern than males (n = 1,231, 56.73%). The plain whorl pattern is observed more frequently in males (n = 560, 25.81%) compared to females (n = 514, 23.69%).The double loop pattern is observed more frequently on the right and left thumb (digit 1) of both males and females. Pattern intensity index, Dankmeijer index and Furuhata index are higher in males. Conclusions Ulnar loop is the most frequently occurring digital dermatoglyphic pattern among the Sinhalese. All pattern indices are higher in males. To some extent, dermatoglyphic patterns of Sinhalese are similar to North Indians and other Caucasoid populations. Further studies with larger sample sizes are recommended to confirm our findings. PMID:24377367

  9. Benthic communities in the deep Mediterranean Sea: exploring microbial and meiofaunal patterns in slope and basin ecosystems

    NASA Astrophysics Data System (ADS)

    Sevastou, K.; Lampadariou, N.; Polymenakou, P. N.; Tselepides, A.

    2013-07-01

    The long-held perception of the deep sea consisting of monotonous slopes and uniform oceanic basins has over the decades given way to the idea of a complex system with wide habitat heterogeneity. Under the prism of a highly diverse environment, a large dataset was used to describe and compare spatial patterns of the dominant small-size components of deep-sea benthos, metazoan meiofauna and microbes, from Mediterranean basins and slopes. A grid of 73 stations sampled at five geographical areas along the central-eastern Mediterranean Basin (central Mediterranean, northern Aegean Sea, Cretan Sea, Libyan Sea, eastern Levantine) spanning over 4 km in depth revealed a high diversity, irrespective of the benthic group or level of taxonomic analysis. A common decreasing bathymetric trend was detected for meiobenthic abundance, major taxa diversity and nematode genera richness, but no differences were found between the two habitats (basin vs slope). In contrast, microbial richness is significantly higher at the basin ecosystem and tends to increase with depth. Multivariate analyses (β- and δ-diversity and ordination analysis) complemented these results and underlined the high within-habitat variability of benthic communities. Meiofaunal communities in particular were found to change gradually and vary more towards the abyss. On the other hand, microbial communities were highly variable, even among samples of the same area, habitat and bathymetry. A significant proportion of the variation of benthic communities and their descriptors was explained by depth and proxies of food availability (sedimentary pigments and organic content), but the combination of predictor variables and the strength of the relationship varied depending on the data set used (based on type of habitat, benthic component, taxonomic level). This, along with the observed high within-habitat variability suggests that other factors, which tend to vary at local scale (hydrodynamics, substrate structure, geochemistry, food quality, etc.), may also relate to the observed benthic patterns. Overall, the results presented here suggest that differences in small-size benthos between the basin and slope habitats are neither strong nor consistent; it appears that within-habitat variability is high, differences among depth ranges are important and further investigation of possible environmental drivers of benthic patterns is needed.

  10. The effects of climate change on fungal diversity patterns in the UK and Greece: Contrasting trends and ecological interpretations

    NASA Astrophysics Data System (ADS)

    Damialis, A.; Gange, A. C.; Mohammad, A. B.; Halley, J. M.

    2013-05-01

    It is well known that climate change has been affecting the ecology of living organisms. However, very little research has been done concerning alterations in fungal ecology. The changes in climate are expected to have an impact on fungal biodiversity patterns. Such changes in turn might have implications for public health since the spores of certain fungal taxa (e.g. Alternaria, Cladosporium) cause respiratory problems in sensitised individuals, with symptoms manifested even as acute respiratory failure. The objectives of this study were: a) to perform a comprehensive analysis of trends in long-term time series of fungal fruiting and sporulation variables for a wide range of fungal taxa, b) to investigate the response of fungal abundance and diversity to environmental variability. Data from two different geoclimatic areas were used: a) England, UK from more than 350 fungal species belonging to 10 different functional groups and with phenological records of fungal fruiting (start, end and duration) since 1950, b) Thessaloniki, Greece for 14 airborne fungal types with quantitative records (total annual concentration) and phenological records (start, peak, end, duration) of the atmospheric spore season since 1987. In parallel, various meteorological factors were examined in both areas in order to elucidate the relationship between climate and fungal diversity patterns. Long-term trends were found in most cases: these were particularly pronounced in the UK, where more than 300 species (~82%) displayed trends. Of these, ~77% were towards an earlier beginning and ~81% towards a later ending of the fruiting season; overall, an extension of the fruiting season seems to occur in more than 200 species. On a per-functional-group basis, except for manure, soil and mycorrhizal deciduous fungal species, all the other (137 species) exhibited earlier first fruiting dates and extended seasons. On the other hand, in Greece, although a tendency was observed towards lower yearly spore concentration (86% of the total) and later and shorter spore season (86% and 71% of the total, respectively), most cases only approached statistical significance. However, in both study areas the sole meteorological factor to change significantly over the last decades was minimum air temperature, and especially in the case of Thessaloniki, Greece. We observed a persistent correlation of this factor with fungal data, which frequently revealed a lag-effect of several decades. Particularly in the longer time-series of fungal fruiting in the UK, several fungal functional groups and species displayed a persistent 'memory' lasting up to four decades in the past as observed through patterns of variance growth. Biodiversity in the two study areas exhibits contrasting patterns over time with diversity increasing with time in the UK and decreasing in Greece, which suggests a more nuanced role for climate change as a driver of fungal diversity.

  11. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation

    PubMed Central

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    Objectives The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Spatio-Temporal Patterns of the Microbial Communities Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Macrofauna, Microbes and the Benthic N-Cycle Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment. PMID:26102286

  12. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21.

    PubMed

    Patil, N; Berno, A J; Hinds, D A; Barrett, W A; Doshi, J M; Hacker, C R; Kautzer, C R; Lee, D H; Marjoribanks, C; McDonough, D P; Nguyen, B T; Norris, M C; Sheehan, J B; Shen, N; Stern, D; Stokowski, R P; Thomas, D J; Trulson, M O; Vyas, K R; Frazer, K A; Fodor, S P; Cox, D R

    2001-11-23

    Global patterns of human DNA sequence variation (haplotypes) defined by common single nucleotide polymorphisms (SNPs) have important implications for identifying disease associations and human traits. We have used high-density oligonucleotide arrays, in combination with somatic cell genetics, to identify a large fraction of all common human chromosome 21 SNPs and to directly observe the haplotype structure defined by these SNPs. This structure reveals blocks of limited haplotype diversity in which more than 80% of a global human sample can typically be characterized by only three common haplotypes.

  13. Nuclear microsatellites reveal contrasting patterns of genetic structure between western and southeastern European populations of the common ash (Fraxinus excelsior L.).

    PubMed

    Heuertz, Myriam; Hausman, Jean-François; Hardy, Olivier J; Vendramin, Giovanni G; Frascaria-Lacoste, Nathalie; Vekemans, Xavier

    2004-05-01

    To determine extant patterns of population genetic structure in common ash and gain insight into postglacial recolonization processes, we applied multilocus-based Bayesian approaches to data from 36 European populations genotyped at five nuclear microsatellite loci. We identified two contrasting patterns in terms of population genetic structure: (1) a large area from the British Isles to Lithuania throughout central Europe constituted effectively a single deme, whereas (2) strong genetic differentiation occurred over short distances in Sweden and southeastern Europe. Concomitant geographical variation was observed in estimates of allelic richness and genetic diversity, which were lowest in populations from southeastern Europe, that is, in regions close to putative ice age refuges, but high in western and central Europe, that is, in more recently recolonized areas. We suggest that in southeastern Europe, restricted postglacial gene flow caused by a rapid expansion of refuge populations in a mountainous topography is responsible for the observed strong genetic structure. In contrast, admixture of previously differentiated gene pools and high gene flow at the onset of postglacial recolonization of western and central Europe would have homogenized the genetic structure and raised the levels of genetic diversity above values in the refuges.

  14. Scaling laws of marine predator search behaviour.

    PubMed

    Sims, David W; Southall, Emily J; Humphries, Nicolas E; Hays, Graeme C; Bradshaw, Corey J A; Pitchford, Jonathan W; James, Alex; Ahmed, Mohammed Z; Brierley, Andrew S; Hindell, Mark A; Morritt, David; Musyl, Michael K; Righton, David; Shepard, Emily L C; Wearmouth, Victoria J; Wilson, Rory P; Witt, Matthew J; Metcalfe, Julian D

    2008-02-28

    Many free-ranging predators have to make foraging decisions with little, if any, knowledge of present resource distribution and availability. The optimal search strategy they should use to maximize encounter rates with prey in heterogeneous natural environments remains a largely unresolved issue in ecology. Lévy walks are specialized random walks giving rise to fractal movement trajectories that may represent an optimal solution for searching complex landscapes. However, the adaptive significance of this putative strategy in response to natural prey distributions remains untested. Here we analyse over a million movement displacements recorded from animal-attached electronic tags to show that diverse marine predators-sharks, bony fishes, sea turtles and penguins-exhibit Lévy-walk-like behaviour close to a theoretical optimum. Prey density distributions also display Lévy-like fractal patterns, suggesting response movements by predators to prey distributions. Simulations show that predators have higher encounter rates when adopting Lévy-type foraging in natural-like prey fields compared with purely random landscapes. This is consistent with the hypothesis that observed search patterns are adapted to observed statistical patterns of the landscape. This may explain why Lévy-like behaviour seems to be widespread among diverse organisms, from microbes to humans, as a 'rule' that evolved in response to patchy resource distributions.

  15. Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia.

    PubMed

    Chávez-Galarza, Julio; Henriques, Dora; Johnston, J Spencer; Carneiro, Miguel; Rufino, José; Patton, John C; Pinto, M Alice

    2015-06-01

    Dissecting diversity patterns of organisms endemic to Iberia has been truly challenging for a variety of taxa, and the Iberian honey bee is no exception. Surveys of genetic variation in the Iberian honey bee are among the most extensive for any honey bee subspecies. From these, differential and complex patterns of diversity have emerged, which have yet to be fully resolved. Here, we used a genome-wide data set of 309 neutrally tested single nucleotide polymorphisms (SNPs), scattered across the 16 honey bee chromosomes, which were genotyped in 711 haploid males. These SNPs were analysed along with an intergenic locus of the mtDNA, to reveal historical patterns of population structure across the entire range of the Iberian honey bee. Overall, patterns of population structure inferred from nuclear loci by multiple clustering approaches and geographic cline analysis were consistent with two major clusters forming a well-defined cline that bisects Iberia along a northeastern-southwestern axis, a pattern that remarkably parallels that of the mtDNA. While a mechanism of primary intergradation or isolation by distance could explain the observed clinal variation, our results are more consistent with an alternative model of secondary contact between divergent populations previously isolated in glacial refugia, as proposed for a growing list of other Iberian taxa. Despite current intense honey bee management, human-mediated processes have seemingly played a minor role in shaping Iberian honey bee genetic structure. This study highlights the complexity of the Iberian honey bee patterns and reinforces the importance of Iberia as a reservoir of Apis mellifera diversity. © 2015 John Wiley & Sons Ltd.

  16. Larval adaptations and patterns of brachiopod diversity in space and time

    NASA Technical Reports Server (NTRS)

    Valentine, J. W.; Jablonski, D.

    1983-01-01

    Modern biodistributional patterns suggest that modes of larval development are a factor in determining the patterns of diversity in benthic invertebrates. Paleozoic brachiopods had diversity patterns suggesting that they possessed both planktotrophic and nonplanktotrophic modes. It is presently hypothesized that the planktotrophic lineages were lost to extinction, largely or entirely during the Permian-Triassic event, and that the failure of the articulate brachiopods to regain their former importance is substantially due to their nonplanktotrophic developmental mode.

  17. Genetic diversity in the candidate trees of Madhuca indica J. F. Gmel. (Mahua) revealed by inter-simple sequence repeats (ISSRs).

    PubMed

    Nimbalkar, S D; Jade, S S; Kauthale, V K; Agale, S; Bahulikar, R A

    2018-03-01

    Madhuca indica provides livelihood to several tribal people in India, where the flowers are used for extraction of sweet juices having multiple applications. Certain trees have more value as judged by the tribal people mainly based on yield and quality performance of the trees, and these trees were selected for the genetic diversity analyses. Genetic diversity of 48 candidate Mahua trees from Etapalli, Dadagaon, and Jawhar, Maharashtra, India, was assessed using ISSR markers. Fourteen ISSR primers revealed a total of 132 polymorphic bands giving overall 92% polymorphism. Genetic diversity, in terms of expected number of alleles (Ne), the observed number of alleles (Na), Nei's genetic diversity (H), and Shannon's information index ( I ) was 1.921, 1.333, 0.211, and 0.337, respectively, and suggested lower genetic diversity. Region wise analysis revealed higher genetic diversity for site Etapalli ( H  = 0.206) and lowest at Dhadgaon ( H  = 0.140). Etapalli area possesses higher forest cover than Dhadgaon and Jawhar. Additionally, in Dhadgaon and Jawhar M. indica trees are restricted to field bunds; both reasons might contribute to lower genetic diversity in these regions. The dendrogram and the principal coordinate analyses showed no region-specific clustering. The clustering patterns were supported by AMOVA where higher genetic variance was observed within trees and lower variance among regions. Long-distance dispersal and/or higher human interference might be responsible for low diversity and higher genetic variance within the candidate trees.

  18. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted groups. Local samples for the cosmopolitan C. briggsae mirror its pan-tropical patterns of intraspecific polymorphism. It remains an important challenge to decipher what drives Caenorhabditis distributions and diversity within and between species. PMID:23311925

  19. Conflicting patterns of genetic structure produced by nuclear and mitochondrial markers in the Oregon Slender Salamander (Batrachoseps wrighti): implications for conservation efforts and species management

    USGS Publications Warehouse

    Miller, Mark; Haig, Susan M.; Wagner, R.S.

    2005-01-01

    Endemic to Oregon in the northwestern US, the Oregon slender salamander (Batrachoseps wrighti) is a terrestrial plethodontid found associated with late successional mesic forests. Consequently, forest management practices such as timber harvesting may impact their persistence. Therefore, to infer possible future effects of these practices on population structure and differentiation, we used mitochondrial DNA sequences (cytochrome b) and RAPD markers to analyze 22 populations across their range. Phylogenetic analyses of sequence data (774 bp) revealed two historical lineages corresponding to northern and southern-distributed populations. Relationships among haplotypes and haplotype diversity within lineages suggested that the northern region may have more recently been colonized compared to the southern region. In contrast to the mitochondrial data, analyses of 46 RAPD loci suggested an overall pattern of isolation-by-distance in the set of populations examined and no particularly strong clustering of populations based on genetic distances. We propose two non-exclusive hypotheses to account for discrepancies between mitochondrial and nuclear data sets. First, our data may reflect an overall ancestral pattern of isolation-by-distance that has subsequently been influenced by vicariance. Alternately, our analyses may suggest that male-mediated gene flow and female philopatry are important contributors to the pattern of genetic diversity. We discuss the importance of distinguishing between these two hypotheses for the purposes of identifying conservation units and note that, regardless of the relative contribution of each mechanism towards the observed pattern of diversity, protection of habitat will likely prove critical for the long-term persistence of this species.

  20. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution.

    PubMed

    Smaers, J B; Soligo, C

    2013-05-22

    Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning.

  1. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution

    PubMed Central

    Smaers, J. B.; Soligo, C.

    2013-01-01

    Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning. PMID:23536600

  2. Analysis of genetic diversity and population structure of oil palm (Elaeis guineensis) from China and Malaysia based on species-specific simple sequence repeat markers.

    PubMed

    Zhou, L X; Xiao, Y; Xia, W; Yang, Y D

    2015-12-08

    Genetic diversity and patterns of population structure of the 94 oil palm lines were investigated using species-specific simple sequence repeat (SSR) markers. We designed primers for 63 SSR loci based on their flanking sequences and conducted amplification in 94 oil palm DNA samples. The amplification result showed that a relatively high level of genetic diversity was observed between oil palm individuals according a set of 21 polymorphic microsatellite loci. The observed heterozygosity (Ho) was 0.3683 and 0.4035, with an average of 0.3859. The Ho value was a reliable determinant of the discriminatory power of the SSR primer combinations. The principal component analysis and unweighted pair-group method with arithmetic averaging cluster analysis showed the 94 oil palm lines were grouped into one cluster. These results demonstrated that the oil palm in Hainan Province of China and the germplasm introduced from Malaysia may be from the same source. The SSR protocol was effective and reliable for assessing the genetic diversity of oil palm. Knowledge of the genetic diversity and population structure will be crucial for establishing appropriate management stocks for this species.

  3. Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine

    PubMed Central

    2014-01-01

    Background The accessibility of high-throughput genotyping technologies has contributed greatly to the development of genomic resources in non-model organisms. High-density genotyping arrays have only recently been developed for some economically important species such as conifers. The potential for using genomic technologies in association mapping and breeding depends largely on the genome wide patterns of diversity and linkage disequilibrium in current breeding populations. This study aims to deepen our knowledge regarding these issues in maritime pine, the first species used for reforestation in south western Europe. Results Using a new map merging algorithm, we first established a 1,712 cM composite linkage map (comprising 1,838 SNP markers in 12 linkage groups) by bringing together three already available genetic maps. Using rigorous statistical testing based on kernel density estimation and resampling we identified cold and hot spots of recombination. In parallel, 186 unrelated trees of a mass-selected population were genotyped using a 12k-SNP array. A total of 2,600 informative SNPs allowed to describe historical recombination, genetic diversity and genetic structure of this recently domesticated breeding pool that forms the basis of much of the current and future breeding of this species. We observe very low levels of population genetic structure and find no evidence that artificial selection has caused a reduction in genetic diversity. By combining these two pieces of information, we provided the map position of 1,671 SNPs corresponding to 1,192 different loci. This made it possible to analyze the spatial pattern of genetic diversity (H e ) and long distance linkage disequilibrium (LD) along the chromosomes. We found no particular pattern in the empirical variogram of H e across the 12 linkage groups and, as expected for an outcrossing species with large effective population size, we observed an almost complete lack of long distance LD. Conclusions These results are a stepping stone for the development of strategies for studies in population genomics, association mapping and genomic prediction in this economical and ecologically important forest tree species. PMID:24581176

  4. Microbial biogeography of San Francisco Bay sediments

    NASA Astrophysics Data System (ADS)

    Lee, J. A.; Francis, C. A.

    2014-12-01

    The largest estuary on the west coast of North America, San Francisco Bay is an ecosystem of enormous biodiversity, and also enormous human impact. The benthos has experienced dredging, occupation by invasive species, and over a century of sediment input as a result of hydraulic mining. Although the Bay's great cultural and ecological importance has inspired numerous surveys of the benthic macrofauna, to date there has been almost no investigation of the microbial communities on the Bay floor. An understanding of those microbial communities would contribute significantly to our understanding of both the biogeochemical processes (which are driven by the microbiota) and the physical processes (which contribute to microbial distributions) in the Bay. Here, we present the first broad survey of bacterial and archaeal taxa in the sediments of the San Francisco Bay. We conducted 16S rRNA community sequencing of bacteria and archaea in sediment samples taken bimonthly for one year, from five sites spanning the salinity gradient between Suisun and Central Bay, in order to capture the effect of both spatial and temporal environmental variation on microbial diversity. From the same samples we also conducted deep sequencing of a nitrogen-cycling functional gene, nirS, allowing an assessment of evolutionary diversity at a much finer taxonomic scale within an important and widespread functional group of bacteria. We paired these sequencing projects with extensive geochemical metadata as well as information about macrofaunal distribution. Our data reveal a diversity of distinct biogeographical patterns among different taxa: clades ubiquitous across sites; clades that respond to measurable environmental drivers; and clades that show geographical site-specificity. These community datasets allow us to test the hypothesis that salinity is a major driver of both overall microbial community structure and community structure of the denitrifying bacteria specifically; and to assess whether patterns of diversity observed at the broadest of taxonomic scales also apply to patterns observed within a single extremely diverse gene (nirS). In sum, this project provides a first look at the forces driving the migration and selection of microbial communities in San Francisco Bay.

  5. Streptococcus pyogenes strains in Sao Paulo, Brazil: molecular characterization as a basis for StreptInCor coverage capacity analysis.

    PubMed

    Freschi de Barros, Samar; De Amicis, Karine Marafigo; Alencar, Raquel; Smeesters, Pierre Robert; Trunkel, Ariel; Postól, Edilberto; Almeida Junior, João Nóbrega; Rossi, Flavia; Pignatari, Antonio Carlos Campos; Kalil, Jorge; Guilherme, Luiza

    2015-08-05

    Several human diseases are caused by Streptococcus pyogenes, ranging from common infections to autoimmunity. Characterization of the most prevalent strains worldwide is a useful tool for evaluating the coverage capacity of vaccines under development. In this study, a collection of S. pyogenes strains from Sao Paulo, Brazil, was analyzed to describe the diversity of strains and assess the vaccine coverage capacity of StreptInCor. Molecular epidemiology of S. pyogenes strains was performed by emm-genotyping the 229 isolates from different clinical sites, and PCR was used for superantigen profile analysis. The emm-pattern and tissue tropism for these M types were also predicted and compared based on the emm-cluster classification. The strains were fit into 12 different emm-clusters, revealing a diverse phylogenetic origin and, consequently, different mechanisms of infection and escape of the host immune system. Forty-eight emm-types were distinguished in 229 samples, and the 10 most frequently observed types accounted for 69 % of all isolates, indicating a diverse profile of circulating strains comparable to other countries under development. A similar proportion of E and A-C emm-patterns were observed, whereas pattern D was less frequent, indicating that the strains of this collection primarily had a tissue tropism for the throat. In silico analysis of the coverage capacity of StreptInCor, an M protein-conserved regionally based vaccine candidate developed by our group, had a range of 94.5 % to 59.7 %, with a mean of 71.0 % identity between the vaccine antigen and the predicted amino acid sequence of the emm-types included here. This is the first report of S. pyogenes strain characterization in Sao Paulo, one of the largest cities in the world; thus, the strain panel described here is a representative sample for vaccine coverage capacity analysis. Our results enabled evaluation of StreptInCor candidate vaccine coverage capacity against diverse M-types, indicating that the vaccine candidate likely would induce protection against the diverse strains worldwide.

  6. The Effects of Captivity on the Mammalian Gut Microbiome.

    PubMed

    McKenzie, Valerie J; Song, Se Jin; Delsuc, Frédéric; Prest, Tiffany L; Oliverio, Angela M; Korpita, Timothy M; Alexiev, Alexandra; Amato, Katherine R; Metcalf, Jessica L; Kowalewski, Martin; Avenant, Nico L; Link, Andres; Di Fiore, Anthony; Seguin-Orlando, Andaine; Feh, Claudia; Orlando, Ludovic; Mendelson, Joseph R; Sanders, Jon; Knight, Rob

    2017-10-01

    Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca)

    PubMed Central

    Matzen da Silva, Joana; Creer, Simon; dos Santos, Antonina; Costa, Ana C.; Cunha, Marina R.; Costa, Filipe O.; Carvalho, Gary R.

    2011-01-01

    Background Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world. Methodology/Principal Findings We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content. Conclusions/Significance Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod biodiversity, as well as elucidating the mechanisms and constraints shaping the patterns observed. PMID:21589909

  8. Diversity and Distribution Patterns of Cetaceans in the Subtropical Southwestern Atlantic Outer Continental Shelf and Slope

    PubMed Central

    Di Tullio, Juliana Couto; Gandra, Tiago B. R.; Zerbini, Alexandre N.; Secchi, Eduardo R.

    2016-01-01

    Temporal and spatial patterns of cetacean diversity and distribution were investigated through eight ship-based surveys carried out during spring and autumn between 2009 and 2014 on the outer continental shelf (~150m) and slope (1500m) off southeastern and southern Brazil (~23°S to ~34°S). The survey area was divided into southeast and south areas according to their oceanographic characteristics. Twenty-one species were observed in 503 sightings. The overall number of species was similar between the two areas, though it was higher in the spring in the south area. Five species were dominant and diversity varied more seasonally than spatially. ANOVA and kernel analyses showed that overall cetacean densities were higher in spring compared to autumn. Physeter macrocephalus, the most frequent species, concentrated throughout the south area at depths over 1000m in both seasons. Despite the overlapped occurrence at a broader scale, small delphinids presented latitudinal and in-offshore gradients as well as seasonal variation in distribution patterns, which could indicate habitat partitioning between some species. Delphinus delphis was only recorded in the south and its density decreased in areas where the presence of Stenella frontalis increased, mainly beyond the 250m isobath. Densities of S. longirostris and S. attenuata increased in lower latitudes and beyond the shelf break. The large delphinids Tursiops truncatus and Globicephala melas formed mixed groups in many occasions and were observed along the study area around depths of 500m. Grampus griseus was twice as frequent in the south area and densities increased in waters deeper than 600m. As expected, densities of both small and large migratory whales were higher during spring, over the continental slope, in the southeast area. The results presented here provided strong evidence on the importance of the outer continental shelf and slope to a diverse community of cetaceans occurring in the subtropical Southwestern Atlantic. PMID:27243455

  9. Diversity and Distribution Patterns of Cetaceans in the Subtropical Southwestern Atlantic Outer Continental Shelf and Slope.

    PubMed

    Di Tullio, Juliana Couto; Gandra, Tiago B R; Zerbini, Alexandre N; Secchi, Eduardo R

    2016-01-01

    Temporal and spatial patterns of cetacean diversity and distribution were investigated through eight ship-based surveys carried out during spring and autumn between 2009 and 2014 on the outer continental shelf (~150m) and slope (1500m) off southeastern and southern Brazil (~23°S to ~34°S). The survey area was divided into southeast and south areas according to their oceanographic characteristics. Twenty-one species were observed in 503 sightings. The overall number of species was similar between the two areas, though it was higher in the spring in the south area. Five species were dominant and diversity varied more seasonally than spatially. ANOVA and kernel analyses showed that overall cetacean densities were higher in spring compared to autumn. Physeter macrocephalus, the most frequent species, concentrated throughout the south area at depths over 1000m in both seasons. Despite the overlapped occurrence at a broader scale, small delphinids presented latitudinal and in-offshore gradients as well as seasonal variation in distribution patterns, which could indicate habitat partitioning between some species. Delphinus delphis was only recorded in the south and its density decreased in areas where the presence of Stenella frontalis increased, mainly beyond the 250m isobath. Densities of S. longirostris and S. attenuata increased in lower latitudes and beyond the shelf break. The large delphinids Tursiops truncatus and Globicephala melas formed mixed groups in many occasions and were observed along the study area around depths of 500m. Grampus griseus was twice as frequent in the south area and densities increased in waters deeper than 600m. As expected, densities of both small and large migratory whales were higher during spring, over the continental slope, in the southeast area. The results presented here provided strong evidence on the importance of the outer continental shelf and slope to a diverse community of cetaceans occurring in the subtropical Southwestern Atlantic.

  10. Modern and Interglacial Marine Ostracode Species Diversity Patterns off Eastern North America

    NASA Astrophysics Data System (ADS)

    Chiu, W. T. R.; Yasuhara, M.; Cronin, T. M.; Hunt, G.; Gemery, L.

    2016-02-01

    Latitudinal species diversity gradients (LSDGs) are a major feature of various marine groups. However, the detailed shape of LSDG in each marine taxonomic group and the causes of the diversity patterns, notably climatic factors, are still controversial due to limited sampling of many taxa in the world's oceans. We analyzed benthic podocopid ostracode faunal assemblages on the continental shelf regions from Arctic to tropical regions off eastern North America to determine biodiversity patterns and their relationships to oceanographic conditions (temperature, productivity, etc). Our database consists of 200 ostracode species from more than 100 bottom sediment samples. Preliminary results suggest that biodiversity, as measured using simple diversity (S), rarefaction, Shannon and α-Fisher indices, show strong latitudinal diversity gradients in which diversity is 2 to 3 times higher in tropical and subtropical regions that in northern high latitude areas. These modern ostracode diversity patterns will be compared with those from past interglacial periods of global warmth during the Pliocene and Pleistocene to assess the impact of warmer-than- present climate conditions on diversity.

  11. Evolution of genomic diversity and sex at extreme environments: Fungal life under hypersaline Dead Sea stress

    PubMed Central

    Kis-Papo, Tamar; Kirzhner, Valery; Wasser, Solomon P.; Nevo, Eviatar

    2003-01-01

    We have found that genomic diversity is generally positively correlated with abiotic and biotic stress levels (1–3). However, beyond a high-threshold level of stress, the diversity declines to a few adapted genotypes. The Dead Sea is the harshest planetary hypersaline environment (340 g·liter–1 total dissolved salts, ≈10 times sea water). Hence, the Dead Sea is an excellent natural laboratory for testing the “rise and fall” pattern of genetic diversity with stress proposed in this article. Here, we examined genomic diversity of the ascomycete fungus Aspergillus versicolor from saline, nonsaline, and hypersaline Dead Sea environments. We screened the coding and noncoding genomes of A. versicolor isolates by using >600 AFLP (amplified fragment length polymorphism) markers (equal to loci). Genomic diversity was positively correlated with stress, culminating in the Dead Sea surface but dropped drastically in 50- to 280-m-deep seawater. The genomic diversity pattern paralleled the pattern of sexual reproduction of fungal species across the same southward gradient of increasing stress in Israel. This parallel may suggest that diversity and sex are intertwined intimately according to the rise and fall pattern and adaptively selected by natural selection in fungal genome evolution. Future large-scale verification in micromycetes will define further the trajectories of diversity and sex in the rise and fall pattern. PMID:14645702

  12. Altitudinal patterns of plant diversity on the Jade Dragon Snow Mountain, southwestern China.

    PubMed

    Xu, Xiang; Zhang, Huayong; Tian, Wang; Zeng, Xiaoqiang; Huang, Hai

    2016-01-01

    Understanding altitudinal patterns of biological diversity and their underlying mechanisms is critically important for biodiversity conservation in mountainous regions. The contribution of area to plant diversity patterns is widely acknowledged and may mask the effects of other determinant factors. In this context, it is important to examine altitudinal patterns of corrected taxon richness by eliminating the area effect. Here we adopt two methods to correct observed taxon richness: a power-law relationship between richness and area, hereafter "method 1"; and richness counted in equal-area altitudinal bands, hereafter "method 2". We compare these two methods on the Jade Dragon Snow Mountain, which is the nearest large-scale altitudinal gradient to the Equator in the Northern Hemisphere. We find that seed plant species richness, genus richness, family richness, and species richness of trees, shrubs, herbs and Groups I-III (species with elevational range size <150, between 150 and 500, and >500 m, respectively) display distinct hump-shaped patterns along the equal-elevation altitudinal gradient. The corrected taxon richness based on method 2 (TRcor2) also shows hump-shaped patterns for all plant groups, while the one based on method 1 (TRcor1) does not. As for the abiotic factors influencing the patterns, mean annual temperature, mean annual precipitation, and mid-domain effect explain a larger part of the variation in TRcor2 than in TRcor1. In conclusion, for biodiversity patterns on the Jade Dragon Snow Mountain, method 2 preserves the significant influences of abiotic factors to the greatest degree while eliminating the area effect. Our results thus reveal that although the classical method 1 has earned more attention and approval in previous research, method 2 can perform better under certain circumstances. We not only confirm the essential contribution of method 1 in community ecology, but also highlight the significant role of method 2 in eliminating the area effect, and call for more application of method 2 in further macroecological studies.

  13. Dyadic Coregulation and Deviant Talk in Adolescent Friendships: Interaction Patterns Associated with Problematic Substance Use in Early Adulthood

    ERIC Educational Resources Information Center

    Piehler, Timothy F.; Dishion, Thomas J.

    2014-01-01

    In a sample of 711 ethnically diverse adolescents, the observed interpersonal dynamics of dyadic adolescent friendship interactions were coded to predict early adulthood tobacco, alcohol, and marijuana use. Deviant discussion content within the interactions was coded along with dyadic coregulation (i.e., interpersonal coordination, attention…

  14. Contrasting Microbial Community Assembly Hypotheses: A Reconciling Tale from the Río Tinto

    PubMed Central

    Palacios, Carmen; Zettler, Erik; Amils, Ricardo; Amaral-Zettler, Linda

    2008-01-01

    Background The Río Tinto (RT) is distinguished from other acid mine drainage systems by its natural and ancient origins. Microbial life from all three domains flourishes in this ecosystem, but bacteria dominate metabolic processes that perpetuate environmental extremes. While the patchy geochemistry of the RT likely influences the dynamics of bacterial populations, demonstrating which environmental variables shape microbial diversity and unveiling the mechanisms underlying observed patterns, remain major challenges in microbial ecology whose answers rely upon detailed assessments of community structures coupled with fine-scale measurements of physico-chemical parameters. Methodology/Principal Findings By using high-throughput environmental tag sequencing we achieved saturation of richness estimators for the first time in the RT. We found that environmental factors dictate the distribution of the most abundant taxa in this system, but stochastic niche differentiation processes, such as mutation and dispersal, also contribute to observed diversity patterns. Conclusions/Significance We predict that studies providing clues to the evolutionary and ecological processes underlying microbial distributions will reconcile the ongoing debate between the Baas Becking vs. Hubbell community assembly hypotheses. PMID:19052647

  15. Contrasting microbial community assembly hypotheses: a reconciling tale from the Río Tinto.

    PubMed

    Palacios, Carmen; Zettler, Erik; Amils, Ricardo; Amaral-Zettler, Linda

    2008-01-01

    The Río Tinto (RT) is distinguished from other acid mine drainage systems by its natural and ancient origins. Microbial life from all three domains flourishes in this ecosystem, but bacteria dominate metabolic processes that perpetuate environmental extremes. While the patchy geochemistry of the RT likely influences the dynamics of bacterial populations, demonstrating which environmental variables shape microbial diversity and unveiling the mechanisms underlying observed patterns, remain major challenges in microbial ecology whose answers rely upon detailed assessments of community structures coupled with fine-scale measurements of physico-chemical parameters. By using high-throughput environmental tag sequencing we achieved saturation of richness estimators for the first time in the RT. We found that environmental factors dictate the distribution of the most abundant taxa in this system, but stochastic niche differentiation processes, such as mutation and dispersal, also contribute to observed diversity patterns. We predict that studies providing clues to the evolutionary and ecological processes underlying microbial distributions will reconcile the ongoing debate between the Baas Becking vs. Hubbell community assembly hypotheses.

  16. Longitudinal and Cross-Sectional Genetic Diversity in the Korean Peninsula Based on the P vivax Merozoite Surface Protein Gene.

    PubMed

    Kim, Jung-Yeon; Suh, Eun-Jung; Yu, Hyo-Soon; Jung, Hyun-Sik; Park, In-Ho; Choi, Yien-Kyeoug; Choi, Kyoung-Mi; Cho, Shin-Hyeong; Lee, Won-Ja

    2011-12-01

    Vivax malaria has reemerged and become endemic in Korea. Our study aimed to analyze by both longitudinal and cross-sectional genetic diversity of this malaria based on the P vivax Merozoite Surface Protein (PvMSP) gene parasites recently found in the Korean peninsula. PvMSP-1 gene sequence analysis from P vivax isolates (n = 835) during the 1996-2010 period were longitudinally analyzed and the isolates from the Korean peninsula through South Korea, the demilitarized zone and North Korea collected in 2008-2010 were enrolled in an overall analysis of MSP-1 gene diversity. New recombinant subtypes and severe multiple-cloneinfection rates were observed in recent vivax parasites. Regional variation was also observed in the study sites. This study revealed the great complexity of genetic variation and rapid dissemination of genes in P vivax. It also showed interesting patterns of diversity depending, on the region in the Korean Peninsula. Understanding the parasiteninsula. Under genetic variation may help to analyze trends and assess the extent of endemic malaria in Korea.

  17. D-loop haplotype diversity in Brazilian horse breeds

    PubMed Central

    Ianella, Patrícia; Albuquerque, Maria do Socorro Maués; Paiva, Samuel Rezende; do Egito, Andréa Alves; Almeida, Leonardo Daniel; Sereno, Fabiana T. P. S.; Carvalho, Luiz Felipe Ramos; Mariante, Arthur da Silva; McManus, Concepta Margaret

    2017-01-01

    Abstract The first horses were brought to Brazil by the colonizers after 1534. Over the centuries, these animals evolved and adapted to local environmental conditions usually unsuitable for exotic breeds, thereby originating locally adapted Brazilian breeds. The present work represents the first description of maternal genetic diversity in these horse breeds based on D-loop sequences. A D-Loop HSV-I fragment of 252 bp, from 141 horses belonging to ten Brazilian breeds / genetic groups (locally adapted and specialized breeds) were analysed. Thirty-five different haplotypes belonging to 18 haplogroups were identified with 33 polymorphic sites. Haplotype diversity (varying from 0.20 to 0.96) and nucleotide diversity (varying from 0.0039 to 0.0239) was lower for locally adapted than for specialized breeds, with the same pattern observed for FST values. Haplogroups identified in Brazilian breeds are in agreement with previous findings in South American samples. The low variability observed mainly in locally adapted breeds, indicates that, to ensure conservation of these breeds, careful reproductive management is needed. Additional genetic characterization studies are required to support accurate decision-making. PMID:28863209

  18. Biostratigraphy, taxonomic diversity and patterns of morphological evolution of Ordovician acritarchs (organic-walled microphytoplankton) from the northern Gondwana margin in relation to palaeoclimatic and palaeogeographic changes

    NASA Astrophysics Data System (ADS)

    Vecoli, Marco; Le Hérissé, Alain

    2004-10-01

    Acritarchs, the fossilizable, resting cysts of phytoplanktonic algal protists, are the dominant component of marine organic-walled microfossils in the Palaeozoic. The majority of acritarchs show strong similarities with dinoflagellate cysts in morphological and biogeochemical features, as well as distributional patterns in the sediments. The production of these organic-walled microfossils and their distribution and survivorship in the sediments were controlled by differences in ecological tolerances and life cycle (autecology) of the planktonic parent organisms. Calculation of evolutionary rates and development of a detailed diversity curve at specific level, form the basis for discussing the influence of global palaeoenvironmental perturbations on the evolution of organic-walled microphytoplankton in northern Gondwana during latest Cambrian through Ordovician times. The potential of acritarchs for biostratigraphic correlation at the regional scale (northern Gondwana domain) is much improved by our detailed revision of distributional patterns of 245 acritarch taxa. The most important Cambro-Ordovician acritarch bio-events are short periods of diversification, which also correspond to introduction of morphological innovations, observed in latest Cambrian and earliest Tremadoc, late Tremadoc, early Arenig, basal Llanvirn, and latest Ashgill, and an important extinction phase in the early Caradoc. Overall, acritarch diversity increased from the basal Ordovician up to the middle Llanvirn, then declined in the early and middle Caradoc. During Ashgill times, the assemblages are poorly diversified at the generic level as a result of a combined effect of sea level drawdown and onset of glacial conditions, but no major extinction event is observed in connection with the end-Ordovician biotic crisis. The peak in acritarch diversity during Middle Ordovician times appears to be correlated to maximum spread of palaeogeographical assembly. Acritarch dynamics appear largely uncorrelated to second order sea-level oscillations; the primary abiotic controls on acritarch evolution were palaeogeographical and the associated palaeoceanographic changes (especially during Middle Ordovician), and the end-Ordovician palaeoclimatic shift. The acritarch fossil record provides important information on the evolution of oceanic primary producers, however, the relationships between acritarch diversity, oceanic productivity, and evolution of invertebrate animals are proving much more complex than previously thought. In particular, the hypothesis of a causal relationship between changes in acritarch diversity and metazoan evolution in the Palaeozoic is not supported by our data.

  19. Heterogeneous genetic diversity pattern in Plasmodium vivax genes encoding merozoite surface proteins (MSP) -7E, -7F and -7L.

    PubMed

    Garzón-Ospina, Diego; Forero-Rodríguez, Johanna; Patarroyo, Manuel A

    2014-12-13

    The msp-7 gene has become differentially expanded in the Plasmodium genus; Plasmodium vivax has the highest copy number of this gene, several of which encode antigenic proteins in merozoites. DNA sequences from thirty-six Colombian clinical isolates from P. vivax (pv) msp-7E, -7F and -7L genes were analysed for characterizing and studying the genetic diversity of these pvmsp-7 members which are expressed during the intra-erythrocyte stage; natural selection signals producing the variation pattern so observed were evaluated. The pvmsp-7E gene was highly polymorphic compared to pvmsp-7F and pvmsp-7L which were seen to have limited genetic diversity; pvmsp-7E polymorphism was seen to have been maintained by different types of positive selection. Even though these copies seemed to be species-specific duplications, a search in the Plasmodium cynomolgi genome (P. vivax sister taxon) showed that both species shared the whole msp-7 repertoire. This led to exploring the long-term effect of natural selection by comparing the orthologous sequences which led to finding signatures for lineage-specific positive selection. The results confirmed that the P. vivax msp-7 family has a heterogeneous genetic diversity pattern; some members are highly conserved whilst others are highly diverse. The results suggested that the 3'-end of these genes encode MSP-7 proteins' functional region whilst the central region of pvmsp-7E has evolved rapidly. The lineage-specific positive selection signals found suggested that mutations occurring in msp-7s genes during host switch may have succeeded in adapting the ancestral P. vivax parasite population to humans.

  20. Dissecting global diversity patterns: examples from the Ordovician Radiation

    NASA Technical Reports Server (NTRS)

    Miller, A. I.

    1997-01-01

    Although the history of life has been characterized by intermittent episodes of radiation that can be recognized in global compilations of biodiversity, it does not necessarily follow that these episodes are caused by processes that occurred uniformly around the world. Major diversity increases could be generated by the cumulative effects of different mechanisms operating simultaneously at several geographic or environmental scales. The purpose of this review is to describe ongoing research on the manifestations, at several scales, of the Ordovician Radiation, which was among the most extensive intervals of diversification in the history of life. Through much of the period, diversity was concentrated most heavily near regions of active mountain building and volcanism; differences in diversity patterns from continent to continent, and among regions within continents, reflect this overprint. While this suggests a linkage of the Radiation and tectonic activity, this is by no means the only mediating agent. Outcrop-based research in North America has demonstrated that tectonic activity was detrimental to some biotic elements, in contrast to its effects on other organisms. Moreover, in the Great Basin of North America where the local stratigraphic record is of particularly high quality, biotic transitions characteristic of the period occurred far more rapidly than observed in global compilations of diversity, suggesting that the global rate of transition may represent the aggregate sum of transitions that occurred abruptly, but at different times, around the world. Finally, it has been demonstrated that, in concert with an increase in average age, the environmental and geographic ranges of Ordovician genera both increased significantly through the period, indicating a role for intrinsic factors in producing Ordovician biotic patterns.

  1. Applications of Ecophylogenetics to Benthic Communities in the Northern Gulf of Mexico: Do Functional Traits Follow Phylogeny?

    NASA Astrophysics Data System (ADS)

    Gadeken, K.; Dorgan, K. M.; Moore, J.; Berke, S. K.

    2016-02-01

    Evolutionary relationships may shed light on observed patterns of diversity and functional traits when viewed through the lens of phylogeny. The potential for phylogenetic information to be used to explain patterns in community structure, such as niche partitioning and responses to stress, is extensive. Differential distribution of related species with similar functional traits suggests niche partitioning, and local redundancy in functional traits may indicate the potential for interspecific competition. In this study, we investigated phylogenetic and functional diversity as a function of habitat for sites with varying levels of oil contamination in the Northern Gulf of Mexico. Our study was conducted in a shallow benthic community at the Chandeleur Islands, a group of uninhabited barrier islands. Infauna were sampled from seagrass (Halodule wrightii) and bare sediment at three sites along the island chain that experienced variable levels of oil impact from the Deepwater Horizon oil spill. Individuals were preserved and 18S and COI genes sequenced, and a phylogenetic tree was constructed of the local community using maximum likelihood. Phylogenetic diversity and evenness were quantified. Ecologically important functional traits were then compiled into respective distance matrices, evaluated through different functional diversity indices, and assessed for correlation with the phylogeny. This integration of functional and phylogenetic diversity has the potential to provide greater insight into factors driving community structure than either metric alone. Determining relevant metrics of diversity is critical to understanding the ecological effects of major disturbances such as oil spills.

  2. Phylogeography of the tropical planktonic foraminifera lineage globigerinella reveals isolation inconsistent with passive dispersal by ocean currents.

    PubMed

    Weiner, Agnes K M; Weinkauf, Manuel F G; Kurasawa, Atsushi; Darling, Kate F; Kucera, Michal; Grimm, Guido W

    2014-01-01

    Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification rates.

  3. Psychological and Demographic Correlates of Career Patterns

    ERIC Educational Resources Information Center

    Reitzle, Matthias; Korner, Astrid; Vondracek, Fred W.

    2009-01-01

    Recent years have witnessed a growing diversity of career patterns, resulting from the relative decline of stable employment. In the present study of 1368 employed and self-employed German adults career pattern diversity was assessed using nine pictograms. The goal was to identify psychological and demographic correlates of these patterns and to…

  4. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient.

    PubMed

    Collins, Courtney G; Stajich, Jason E; Weber, Sören E; Pombubpa, Nuttapon; Diez, Jeffrey M

    2018-04-19

    Global climate and land use change are altering plant and soil microbial communities worldwide, particularly in arctic and alpine biomes where warming is accelerated. The widespread expansion of woody shrubs into historically herbaceous alpine plant zones is likely to interact with climate to affect soil microbial community structure and function; however, our understanding of alpine soil ecology remains limited. This study aimed to (i) determine whether the diversity and community composition of soil fungi vary across elevation gradients and to (ii) assess the impact of woody shrub expansion on these patterns. In the White Mountains of California, sagebrush (Artemisia rothrockii) shrubs have been expanding upwards into alpine areas since 1960. In this study, we combined observational field data with a manipulative shrub removal experiment along an elevation transect of alpine shrub expansion. We utilized next-generation sequencing of the ITS1 region for fungi and joint distribution modelling to tease apart effects of the environment and intracommunity interactions on soil fungi. We found that soil fungal diversity declines and community composition changes with increasing elevation. Both abiotic factors (primarily soil moisture and soil organic C) and woody sagebrush range expansion had significant effects on these patterns. However, fungal diversity and relative abundance had high spatial variation, overwhelming the predictive power of vegetation type, elevation and abiotic soil conditions at the landscape scale. Finally, we observed positive and negative associations among fungal taxa which may be important in structuring community responses to global change. © 2018 John Wiley & Sons Ltd.

  5. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    NASA Astrophysics Data System (ADS)

    Li, Yu-Ye; Ding, Xue-Li

    2014-12-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.

  6. ASSOCIATIONS BETWEEN GENETIC DIVERSITY AND ANTHROPOGENIC DISTURBANCE IN MIDWESTERN STREAM-DWELLING MINNOWS

    EPA Science Inventory

    Anthropogenic disturbances may leave imprints on patterns of intraspecific genetic diversity through their effects on population size, adaptation, migration, and mutation. We examined patterns of genetic diversity for a stream-dwelling minnow (the central stoneroller, Campostoma...

  7. Genetic diversity of functional food species Spinacia oleracea L. by protein markers.

    PubMed

    Rashid, M; Yousaf, Z; Haider, M S; Khalid, S; Rehman, H A; Younas, A; Arif, A

    2014-01-01

    Exploration of genetic diversity contributes primarily towards crop improvement. Spinaciaoleracea L. is a functional food species but unfortunately the genetic diversity of this vegetable is still unexplored. Therefore, this research was planned to explore the genetic diversity of S. oleracea by using morphological and protein markers. Protein profile of 25 accessions was generated on sodium dodecyl sulphate polyacrylamide gel. Total allelic variation of 27 bands was found. Out of these, 20 were polymorphic and the rest of the bands were monomorphic. Molecular weights of the bands ranged from 12.6 to 91.2 kDa. Major genetic differences were observed in accession 20541 (Peshawar) followed by 20180 (Lahore) and 19902 (AVRDC). Significant differences exist in the protein banding pattern. This variation can further be studied by advanced molecular techniques, including two-dimensional electrophoresis and DNA markers.

  8. The Biogeographic Pattern of Microbial Functional Genes along an Altitudinal Gradient of the Tibetan Pasture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Qi; Zhao, Mengxin; Wang, Shiping

    As the highest place of the world, the Tibetan plateau is a fragile ecosystem. Given the importance of microbial communities in driving soil nutrient cycling, it is of interest to document the microbial biogeographic pattern here. We adopted a microarray-based tool named GeoChip 4.0 to investigate grassland microbial functional genes along an elevation gradient from 3200 to 3800 m above sea level open to free grazing by local herdsmen and wild animals. Interestingly, microbial functional diversities increase with elevation, so does the relative abundances of genes associated with carbon degradation, nitrogen cycling, methane production, cold shock and oxygen limitation. Themore » range of Shannon diversities (10.27–10.58) showed considerably smaller variation than what was previously observed at ungrazed sites nearby (9.95–10.65), suggesting the important role of livestock grazing on microbial diversities. Closer examination showed that the dissimilarity of microbial community at our study sites increased with elevations, revealing an elevation-decay relationship of microbial functional genes. Both microbial functional diversity and the number of unique genes increased with elevations. Furthermore, we detected a tight linkage of greenhouse gas (CO2) and relative abundances of carbon cycling genes. Our biogeographic study provides insights on microbial functional diversity and soil biogeochemical cycling in Tibetan pastures.« less

  9. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin.

    PubMed

    Longo, Ana V; Zamudio, Kelly R

    2017-09-01

    Host-associated bacterial communities on the skin act as the first line of defence against invading pathogens. Yet, for most natural systems, we lack a clear understanding of how temperature variability affects structure and composition of skin bacterial communities and, in turn, promotes or limits the colonization of opportunistic pathogens. Here, we examine how natural temperature fluctuations might be related to changes in skin bacterial diversity over time in three amphibian populations infected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Our focal host species (Eleutherodactylus coqui) is a direct-developing frog that has suffered declines at some populations in the last 20 years, while others have not experienced any changes. We quantified skin bacterial alpha- and beta-diversity at four sampling time points, a period encompassing two seasons and ample variation in natural infections and environmental conditions. Despite the different patterns of infection across populations, we detected an overall increase in bacterial diversity through time, characterized by the replacement of bacterial operational taxonomic units (OTUs). Increased frog body temperatures possibly allowed the colonization of bacteria as well as the recruitment of a subset of indicator OTUs, which could have promoted the observed changes in diversity patterns. Our results suggest that natural environmental fluctuations might be involved in creating opportunities for bacterial replacement, potentially attenuating pathogen transmission and thus contributing to host persistence in E. coqui populations. © 2017 John Wiley & Sons Ltd.

  10. Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics

    PubMed Central

    Breed, M F; Ottewell, K M; Gardner, M G; Marklund, M H K; Dormontt, E E; Lowe, A J

    2015-01-01

    Most woody plants are animal-pollinated, but the global problem of habitat fragmentation is changing the pollination dynamics. Consequently, the genetic diversity and fitness of the progeny of animal-pollinated woody plants sired in fragmented landscapes tend to decline due to shifts in plant-mating patterns (for example, reduced outcrossing rate, pollen diversity). However, the magnitude of this mating-pattern shift should theoretically be a function of pollinator mobility. We first test this hypothesis by exploring the mating patterns of three ecologically divergent eucalypts sampled across a habitat fragmentation gradient in southern Australia. We demonstrate increased selfing and decreased pollen diversity with increased fragmentation for two small-insect-pollinated eucalypts, but no such relationship for the mobile-bird-pollinated eucalypt. In a meta-analysis, we then show that fragmentation generally does increase selfing rates and decrease pollen diversity, and that more mobile pollinators tended to dampen these mating-pattern shifts. Together, our findings support the premise that variation in pollinator form contributes to the diversity of mating-pattern responses to habitat fragmentation. PMID:24002239

  11. The genetic pattern of population threat and loss: a case study of butterflies.

    PubMed

    Schmitt, T; Hewitt, G M

    2004-01-01

    Recent decreases in biodiversity in Europe are commonly thought to be due to land use and climate change. However, the genetic diversity of populations is also seen as one essential factor for their fitness. Genetic diversity in species across the continent of Europe has been recognized as being in part a consequence of ice age isolation in southern refugia and postglacial colonization northwards, and these phylogeographical patterns may themselves affect the adaptability of populations. Recent work on butterfly species with different refugia, colonization paths and genetic structures allows this idea to be examined. The 'chalk-hill blue' pattern is one of decreasing genetic diversity from south to north, whereas the 'woodland ringlet' pattern shows greater genetic diversity in eastern than in western lineages. Comparison of population demographic trends in species with these biogeographical patterns reveals higher rates of decrease with lower genetic diversity. This indicates reduced adaptability due to genetic impoverishment as a result of glacial and postglacial range changes. Analysis of phylogeographical pattern may be a useful guide to interpreting demographic trends and in conservation planning.

  12. Self-organization in a diversity induced thermodynamics.

    PubMed

    Scirè, Alessandro; Annovazzi-Lodi, Valerio

    2017-01-01

    In this work we show how global self-organized patterns can come out of a disordered ensemble of point oscillators, as a result of a deterministic, and not of a random, cooperative process. The resulting system dynamics has many characteristics of classical thermodynamics. To this end, a modified Kuramoto model is introduced, by including Euclidean degrees of freedom and particle polarity. The standard deviation of the frequency distribution is the disorder parameter, diversity, acting as temperature, which is both a source of motion and of disorder. For zero and low diversity, robust static phase-synchronized patterns (crystals) appear, and the problem reverts to a generic dissipative many-body problem. From small to moderate diversity crystals display vibrations followed by structure disintegration in a competition of smaller dynamic patterns, internally synchronized, each of which is capable to manage its internal diversity. In this process a huge variety of self-organized dynamic shapes is formed. Such patterns can be seen again as (more complex) oscillators, where the same description can be applied in turn, renormalizing the problem to a bigger scale, opening the possibility of pattern evolution. The interaction functions are kept local because our idea is to build a system able to produce global patterns when its constituents only interact at the bond scale. By further increasing the oscillator diversity, the dynamics becomes erratic, dynamic patterns show short lifetime, and finally disappear for high diversity. Results are neither qualitatively dependent on the specific choice of the interaction functions nor on the shape of the probability function assumed for the frequencies. The system shows a phase transition and a critical behaviour for a specific value of diversity.

  13. Re-evaluation of characters in Apolemiidae (Siphonophora), with description of two new species from Monterey Bay, California.

    PubMed

    Siebert, Stefan; Pugh, Phil R; Haddock, Steven H D; Dunn, Casey W

    2013-01-01

    Siphonophores are polymorphic planktonic marine Cnidarians. The family Apolemiidae is sister to all other species of physonect and calycophoran siphonophores. Although this enigmatic group arguably includes the longest animal species on the planet, their colony-level organization and growth patterns are not well understood. Here we describe two new apolemiid species: Apolemia lanosa sp. nov. and A. rubriversa sp. nov. We provide detailed descriptions of zooid budding and the organization of mature zooids within the siphosome. Our findings reveal that at least two distinct general patterns of siphosomal organization are found in different Apolemia species. In the first pattern, dispersed organization, zooids independently attach directly to the siphosomal stem. In the second pattern, pedunculate organization, only the gastrozooid is attached directly to the stem, and the other zooids of the cormidium branch from its peduncle. This diversity within Apolemia indicates that fundamental aspects of zooid budding and organization are homoplastic within Siphonophora, as both patterns are also found in other siphonophores. The observations presented here greatly clarify the interpretation of diagnostic characters within Apolemiidae, bear on the status of the three previously described species, provide critical detail for understanding the diversity of colony-level organization in siphonophores, and establish a foundation for the description of additional apolemiid species.

  14. Assessment of variations in taxonomic diversity, forest structure, and aboveground biomass using remote sensing along an altitudinal gradient in tropical montane forest of Costa Rica

    NASA Astrophysics Data System (ADS)

    Robinson, C. M.; Saatchi, S. S.; Clark, D.; Fricker, G. A.; Wolf, J.; Gillespie, T. W.; Rovzar, C. M.; Andelman, S.

    2012-12-01

    This research sought to understand how alpha and beta diversity of plants vary and relate to the three-dimensional vegetation structure and aboveground biomass along environmental gradients in the tropical montane forests of Braulio Carrillo National Park in Costa Rica. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and along with abiotic factors (climate and edaphic) control the phenotypic and functional variations across landscapes. It is well documented that strong subdivisions at local and regional scales are found mainly on geologic or climate gradients. These general determinants of biodiversity are best demonstrated in regions with natural gradients such as tropical montane forests. Altitudinal gradients provide a landscape scale changes through variations in topography, climate, and edaphic conditions on which we tested several theoretical and biological hypotheses regarding drivers of biodiversity. The study was performed by using forest inventory and botanical data from nine 1-ha plots ranging from 100 m to 2800 m above sea level and remote sensing data from airborne lidar and radar sensors to quantify variations in forest structure. In this study we report on the effectiveness of relating patterns of tree taxonomic alpha diversity to three-dimensional structure of a tropical montane forest using lidar and radar observations of forest structure and biomass. We assessed alpha and beta diversity at the species, genus, and family levels utilizing datasets provided by the Terrestrial Ecology Assessment and Monitoring (TEAM) Network. Through the comparison to active remote sensing imagery, our results show that there is a strong relationship between forest 3D-structure, and alpha and beta diversity controlled by variations in abiotic factors along the altitudinal gradient. Using spatial analysis with the aid of remote sensing data, we find distinct patterns along the environmental gradients defining species turnover and changes in functional diversity. The study will provide novel approaches to use detailed spatial information from remote sensing data to study relations between functional and taxonomic dimensions of diversity.

  15. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    PubMed

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. Patterns of selection and allele diversity of class I and class II major histocompatibility loci across the species range of sockeye salmon (Oncorhynchus nerka).

    PubMed

    McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Kaukinen, Karia H; Beacham, Terry D; Withler, Ruth E; Miller, Kristina M

    2013-09-01

    The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non-neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations. © 2013 John Wiley & Sons Ltd.

  17. Mitochondrial phylogeography of moose (Alces alces) in North America

    USGS Publications Warehouse

    Hundertmark, Kris J.; Bowyer, R. Terry; Shields, Gerald F.; Schwartz, Charles C.

    2003-01-01

    Nucleotide variation was assessed from the mitochondrial control region of North American moose (Alces alces) to test predictions of a model of range expansion by stepping-stone dispersal and to determine whether patterns of genetic variation support the current recognition of 4 subspecies. Haplotypes formed a star phylogeny indicative of a recent expansion of populations. Values of nucleotide and haplotype diversity were low continentwide but were greatest in the central part of the continent and lowest in peripheral populations. Despite low mitochondrial diversity, moose exhibited a high degree of differentiation regionally, which was not explained by isolation by distance. Our data indicate a pattern of colonization consistent with a large central population that supplied founders to peripheral populations (other than Alaska), perhaps through rare, long-distance dispersal events (leptokurtic dispersal) rather than mass dispersal by a stepping-stone model. The colonization scenario does not account for the low haplotype diversity observed in Alaska, which may be derived from a postcolonization bottleneck. Establishment of peripheral populations by leptokurtic dispersal and subsequent local adaptation may have been sufficient for development of morphological differentiation among extant subspecies.

  18. Genetic diversity of Babesia bovis in virulent and attenuated strains.

    PubMed

    Mazuz, M L; Molad, T; Fish, L; Leibovitz, B; Wolkomirsky, R; Fleiderovitz, L; Shkap, V

    2012-03-01

    The aim of this study was to compare the genetic diversity of the single copy Bv80 gene sequences of Babesia bovis in populations of attenuated and virulent parasites. PCR/ RT-PCR followed by cloning and sequence analyses of 4 attenuated and 4 virulent strains were performed. Multiple fragments in the range of 420 to 744 bp were amplified by PCR or RT-PCR. Cloning of the PCR fragments and sequence analyses revealed the presence of mixed subpopulations in either virulent or attenuated parasites with a total of 19 variants with 12 different sequences that differed in number and type of tandem repeats. High levels of intra- and inter-strain diversity of the Bv80 gene, with the presence of mixed populations of parasites were found in both the virulent field isolates and the attenuated vaccine strains. In addition, during the attenuation process, sequence analyses showed changes in the pattern of the parasite subpopulations. Despite high polymorphism found by sequence analyses, the patterns observed and the number of repeats, order, or motifs found could not discriminate between virulent field isolates and attenuated vaccine strains of the parasite.

  19. Diversity and Spatial-Temporal Distribution of Soil Macrofauna Communities Along Elevation in the Changbai Mountain, China.

    PubMed

    Yin, Xiuqin; Qiu, Lili; Jiang, Yunfeng; Wang, Yeqiao

    2017-06-01

    The understanding of patterns of vertical variation and diversity of flora and fauna along elevational change has been well established over the past century. However, it is unclear whether there is an elevational distribution pattern for soil fauna. This study revealed the diversity and spatial-temporal distribution of soil macrofauna communities in different vegetation zones from forest to alpine tundra along elevation of the Changbai Mountain, China. The abundance, richness, and Shannon-Wiener diversity index of soil macrofauna communities were compared in four distinguished vegetation zones including the coniferous and broadleaved mixed forest zone, the coniferous forest zone, the subalpine dwarf birch (Betula ermanii) forest zone, and the alpine tundra zone. Soil macrofauna were extracted in May, July, and September of 2009. In each season, the abundance and richness of the soil macrofauna decreased with the ascending elevation. The Shannon-Wiener diversity indices of the soil macrofauna were higher in the vegetation zones of lower elevation than of higher elevation. Significant differences were observed in the abundance, richness, and Shannon-Wiener diversity index for the studied vegetation zones. Soil macrofauna congregated mainly to the litter layer in the low-elevation areas and in the 0-5 cm soil layer of the higher elevation areas. The results emphasized that the diversity of soil macrofauna communities decreased as the elevation increased and possess the distinct characteristics of zonation in the mountain ecosystem. The diversity and distribution of soil macrofauna communities were influenced by mean annual precipitation, altitude, annual radiation quantity, and mean annual temperature. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Biogeographic patterns of soil diazotrophic communities across six forests in the North America.

    PubMed

    Tu, Qichao; Deng, Ye; Yan, Qingyun; Shen, Lina; Lin, Lu; He, Zhili; Wu, Liyou; Van Nostrand, Joy D; Buzzard, Vanessa; Michaletz, Sean T; Enquist, Brian J; Weiser, Michael D; Kaspari, Michael; Waide, Robert B; Brown, James H; Zhou, Jizhong

    2016-06-01

    Soil diazotrophs play important roles in ecosystem functioning by converting atmospheric N2 into biologically available ammonium. However, the diversity and distribution of soil diazotrophic communities in different forests and whether they follow biogeographic patterns similar to macroorganisms still remain unclear. By sequencing nifH gene amplicons, we surveyed the diversity, structure and biogeographic patterns of soil diazotrophic communities across six North American forests (126 nested samples). Our results showed that each forest harboured markedly different soil diazotrophic communities and that these communities followed traditional biogeographic patterns similar to plant and animal communities, including the taxa-area relationship (TAR) and latitudinal diversity gradient. Significantly higher community diversity and lower microbial spatial turnover rates (i.e. z-values) were found for rainforests (~0.06) than temperate forests (~0.1). The gradient pattern of TARs and community diversity was strongly correlated (r(2)  > 0.5) with latitude, annual mean temperature, plant species richness and precipitation, and weakly correlated (r(2)  < 0.25) with pH and soil moisture. This study suggests that even microbial subcommunities (e.g. soil diazotrophs) follow general biogeographic patterns (e.g. TAR, latitudinal diversity gradient), and indicates that the metabolic theory of ecology and habitat heterogeneity may be the major underlying ecological mechanisms shaping the biogeographic patterns of soil diazotrophic communities. © 2016 John Wiley & Sons Ltd.

  1. Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field.

    PubMed

    Xiang, Ying; Zhou, Meng-jie; Xu, Ming-Ya; Salamon, Péter; Éber, Nándor; Buka, Ágnes

    2015-04-01

    Electric-field-induced patterns of diverse morphology have been observed over a wide frequency range in a recently synthesized bent-core nematic (BCN) liquid crystal. At low frequencies (up to ∼25 Hz), the BCN exhibited unusual polarity-dependent patterns. When the amplitude of the ac field was enhanced, these two time-asymmetrical patterns turned into time-symmetrical prewavylike stripes. At ac frequencies in the middle-frequency range (∼50-3000 Hz), zigzag patterns were detected whose obliqueness varied with the frequency. Finally, if the frequency was increased above 3 kHz, the zigzag pattern was replaced by another, prewavylike pattern, whose threshold voltage depended on the frequency; however, the wave vector did not. For a more complete characterization, material parameters such as elastic constants, dielectric permittivities, and the anisotropy of the diamagnetic susceptibility were also determined.

  2. Genetic Diversity Analysis of Highly Incomplete SNP Genotype Data with Imputations: An Empirical Assessment

    PubMed Central

    Fu, Yong-Bi

    2014-01-01

    Genotyping by sequencing (GBS) recently has emerged as a promising genomic approach for assessing genetic diversity on a genome-wide scale. However, concerns are not lacking about the uniquely large unbalance in GBS genotype data. Although some genotype imputation has been proposed to infer missing observations, little is known about the reliability of a genetic diversity analysis of GBS data, with up to 90% of observations missing. Here we performed an empirical assessment of accuracy in genetic diversity analysis of highly incomplete single nucleotide polymorphism genotypes with imputations. Three large single-nucleotide polymorphism genotype data sets for corn, wheat, and rice were acquired, and missing data with up to 90% of missing observations were randomly generated and then imputed for missing genotypes with three map-independent imputation methods. Estimating heterozygosity and inbreeding coefficient from original, missing, and imputed data revealed variable patterns of bias from assessed levels of missingness and genotype imputation, but the estimation biases were smaller for missing data without genotype imputation. The estimates of genetic differentiation were rather robust up to 90% of missing observations but became substantially biased when missing genotypes were imputed. The estimates of topology accuracy for four representative samples of interested groups generally were reduced with increased levels of missing genotypes. Probabilistic principal component analysis based imputation performed better in terms of topology accuracy than those analyses of missing data without genotype imputation. These findings are not only significant for understanding the reliability of the genetic diversity analysis with respect to large missing data and genotype imputation but also are instructive for performing a proper genetic diversity analysis of highly incomplete GBS or other genotype data. PMID:24626289

  3. Conserved and Divergent Molecular and Anatomic Features of Human and Mouse Nephron Patterning.

    PubMed

    Lindström, Nils O; Tran, Tracy; Guo, Jinjin; Rutledge, Elisabeth; Parvez, Riana K; Thornton, Matthew E; Grubbs, Brendan; McMahon, Jill A; McMahon, Andrew P

    2018-03-01

    The nephron is the functional unit of the kidney, but the mechanism of nephron formation during human development is unclear. We conducted a detailed analysis of nephron development in humans and mice by immunolabeling, and we compared human and mouse nephron patterning to describe conserved and divergent features. We created protein localization maps that highlight the emerging patterns along the proximal-distal axis of the developing nephron and benchmark expectations for localization of functionally important transcription factors, which revealed unanticipated cellular diversity. Moreover, we identified a novel nephron subdomain marked by Wnt4 expression that we fate-mapped to the proximal mature nephron. Significant conservation was observed between human and mouse patterning. We also determined the time at which markers for mature nephron cell types first emerge-critical data for the renal organoid field. These findings have conceptual implications for the evolutionary processes driving the diversity of mammalian organ systems. Furthermore, these findings provide practical insights beyond those gained with mouse and rat models that will guide in vitro efforts to harness the developmental programs necessary to build human kidney structures. Copyright © 2018 by the American Society of Nephrology.

  4. Assessing Diversity of DNA Structure-Related Sequence Features in Prokaryotic Genomes

    PubMed Central

    Huang, Yongjie; Mrázek, Jan

    2014-01-01

    Prokaryotic genomes are diverse in terms of their nucleotide and oligonucleotide composition as well as presence of various sequence features that can affect physical properties of the DNA molecule. We present a survey of local sequence patterns which have a potential to promote non-canonical DNA conformations (i.e. different from standard B-DNA double helix) and interpret the results in terms of relationships with organisms' habitats, phylogenetic classifications, and other characteristics. Our present work differs from earlier similar surveys not only by investigating a wider range of sequence patterns in a large number of genomes but also by using a more realistic null model to assess significant deviations. Our results show that simple sequence repeats and Z-DNA-promoting patterns are generally suppressed in prokaryotic genomes, whereas palindromes and inverted repeats are over-represented. Representation of patterns that promote Z-DNA and intrinsic DNA curvature increases with increasing optimal growth temperature (OGT), and decreases with increasing oxygen requirement. Additionally, representations of close direct repeats, palindromes and inverted repeats exhibit clear negative trends with increasing OGT. The observed relationships with environmental characteristics, particularly OGT, suggest possible evolutionary scenarios of structural adaptation of DNA to particular environmental niches. PMID:24408877

  5. Factors Determining Forest Diversity and Biomass on a Tropical Volcano, Mt. Rinjani, Lombok, Indonesia

    PubMed Central

    Dossa, Gbadamassi G. O.; Paudel, Ekananda; Fujinuma, Junichi; Yu, Haiying; Chutipong, Wanlop; Zhang, Yuan; Paz, Sherryl; Harrison, Rhett D.

    2013-01-01

    Tropical volcanoes are an important but understudied ecosystem, and the relationships between plant species diversity and compositional change and elevation may differ from mountains created by uplift, because of their younger and more homogeneous soils. We sampled vegetation over an altitudinal gradient on Mt. Rinjani, Lombok, Indonesia. We modeled alpha- (plot) and beta- (among plot) diversity (Fisher's alpha), compositional change, and biomass against elevation and selected covariates. We also examined community phylogenetic structure across the elevational gradient. We recorded 902 trees and shrubs among 92 species, and 67 species of ground-cover plants. For understorey, subcanopy and canopy plants, an increase in elevation was associated with a decline in alpha-diversity, whereas data for ground-cover plants suggested a hump-shaped pattern. Elevation was consistently the most important factor in determining alpha-diversity for all components. The alpha-diversity of ground-cover vegetation was also negatively correlated with leaf area index, which suggests low light conditions in the understorey may limit diversity at lower elevations. Beta-diversity increased with elevation for ground-cover plants and declined at higher elevations for other components of the vegetation. However, statistical power was low and we could not resolve the relative importance to beta-diversity of different factors. Multivariate GLMs of variation in community composition among plots explained 67.05%, 27.63%, 18.24%, and 19.80% of the variation (deviance) for ground-cover, understorey, subcanopy and canopy plants, respectively, and demonstrated that elevation was a consistently important factor in determining community composition. Above-ground biomass showed no significant pattern with elevation and was also not significantly associated with alpha-diversity. At lower elevations communities had a random phylogenetic structure, but from 1600 m communities were phylogenetically clustered. This suggests a greater role of environmental filtering at higher elevations, and thus provides a possible explanation for the observed decline in diversity with elevation. PMID:23935842

  6. The role of self-injury in the organisation of behaviour.

    PubMed

    Sandman, C A; Kemp, A S; Mabini, C; Pincus, D; Magnusson, M

    2012-05-01

    Self-injuring acts are among the most dramatic behaviours exhibited by human beings. There is no known single cause and there is no universally agreed upon treatment. Sophisticated sequential and temporal analysis of behaviour has provided alternative descriptions of self-injury that provide new insights into its initiation and maintenance. Forty hours of observations for each of 32 participants were collected in a contiguous 2-week period. Twenty categories of behavioural and environmental events were recorded electronically that captured the precise time each observation occurred. Temporal behavioural/environmental patterns associated with self-injurious events were revealed with a method (t-patterns; THEME) for detecting non-linear, real-time patterns. Results indicated that acts of self-injury contributed both to more patterns and to more complex patterns. Moreover, self-injury left its imprint on the organisation of behaviour even when counts of self-injury were expelled from the continuous record. Behaviour of participants was organised in a more diverse array of patterns when self-injurious behaviour was present. Self-injuring acts may function as singular points, increasing coherence within self-organising patterns of behaviour. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 Blackwell Publishing Ltd.

  7. Evolution of land mammal diversity in North America during the Cenozoic

    NASA Technical Reports Server (NTRS)

    Stucky, Richard K.

    1990-01-01

    The North American continental patterns of generic richness, extinction, and origination have been reexamined and analyzed in the context of alpha and beta species diversity. The major models of diversity are discussed as well as primary concepts and theories based on studies of living organisms. The adequacy of the fossil record is considered and patterns of genetic richness and species level diversity are outlined. Major shifts in mammalian community structures are reviewed and hypotheses are presented on diversity origin, regulation, and maintenance for the North American record. Results demonstrate a complex relationship between continental alpha and beta diversity characterized by marked changes through time and differences in patterns at each level. It is clear that both biotic and abiotic factors have strongly influenced the evolution of North American species diversity and that major restructuring occurred in Cenozoic mammalian communities.

  8. Pattern formation and self-organization in plasmas interacting with surfaces

    NASA Astrophysics Data System (ADS)

    Trelles, Juan Pablo

    2016-10-01

    Pattern formation and self-organization are fascinating phenomena commonly observed in diverse types of biological, chemical and physical systems, including plasmas. These phenomena are often responsible for the occurrence of coherent structures found in nature, such as recirculation cells and spot arrangements; and their understanding and control can have important implications in technology, e.g. from determining the uniformity of plasma surface treatments to electrode erosion rates. This review comprises theoretical, computational and experimental investigations of the formation of spatiotemporal patterns that result from self-organization events due to the interaction of low-temperature plasmas in contact with confining or intervening surfaces, particularly electrodes. The basic definitions associated to pattern formation and self-organization are provided, as well as some of the characteristics of these phenomena within natural and technological contexts, especially those specific to plasmas. Phenomenological aspects of pattern formation include the competition between production/forcing and dissipation/transport processes, as well as nonequilibrium, stability, bifurcation and nonlinear interactions. The mathematical modeling of pattern formation in plasmas has encompassed from theoretical approaches and canonical models, such as reaction-diffusion systems, to drift-diffusion and nonequilibrium fluid flow models. The computational simulation of pattern formation phenomena imposes distinct challenges to numerical methods, such as high sensitivity to numerical approximations and the occurrence of multiple solutions. Representative experimental and numerical investigations of pattern formation and self-organization in diverse types of low-temperature electrical discharges (low and high pressure glow, dielectric barrier and arc discharges, etc) in contact with solid and liquid electrodes are reviewed. Notably, plasmas in contact with liquids, found in diverse emerging applications ranging from nanomaterial synthesis to medicine, show marked sensitivity to pattern formation and a broadened range of controlling parameters. The results related to the characteristics of the patterns, such as their geometric configuration and static or dynamic nature; as well as their controlling factors, including gas composition, driving voltage and current, electrode cooling, and imposed gas flow, are summarized and discussed. The article finalizes with an outlook of the research area, including theoretical, computational, and experimental needs to advance the field.

  9. Time-location patterns of a diverse population of older adults: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air).

    PubMed

    Spalt, Elizabeth W; Curl, Cynthia L; Allen, Ryan W; Cohen, Martin; Adar, Sara D; Stukovsky, Karen H; Avol, Ed; Castro-Diehl, Cecilia; Nunn, Cathy; Mancera-Cuevas, Karen; Kaufman, Joel D

    2016-06-01

    The primary aim of this analysis was to present and describe questionnaire data characterizing time-location patterns of an older, multiethnic population from six American cities. We evaluated the consistency of results from repeated administration of this questionnaire and between this questionnaire and other questionnaires collected from participants of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Participants reported spending most of their time inside their homes (average: 121 h/week or 72%). More than 50% of the participants reported spending no time in several of the location options, including at home outdoors, at work/volunteer/school locations indoors or outdoors, or in "other" locations outdoors. We observed consistency between self-reported time-location patterns from repeated administration of the time-location questionnaire and compared with other survey instruments. Comparisons with national cohorts demonstrated the differences in time-location patterns in the MESA Air cohort due to differences in demographics, but the data showed similar trends in patterns by age, gender, season, and employment status. This study was the first to explicitly examine the time-location patterns in an older, multiethnic population and the first to add data on Chinese participants. These data can be used to inform future epidemiological research of MESA Air and other studies that include diverse populations.

  10. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem.

    PubMed

    Piacenza, Susan E; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lee, Jonathan D; Lindsley, Amy J; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Thurman, Lindsey L; Heppell, Selina S

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55-183 m depth) and slope habitats (184-1280 m depth) off the US West Coast (47°20'N-32°40'N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale, suggesting that coast-wide patterns can obscure important correlates at smaller scales. Our study provides insight into complex diversity patterns of the deep water soft substrate benthic ecosystems off the US West Coast.

  11. Characterizing heterogeneous cellular responses to perturbations.

    PubMed

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-09

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  12. The ecology and diversity of microbial eukaryotes in geothermal springs.

    PubMed

    Oliverio, Angela M; Power, Jean F; Washburne, Alex; Cary, S Craig; Stott, Matthew B; Fierer, Noah

    2018-04-16

    Decades of research into the Bacteria and Archaea living in geothermal spring ecosystems have yielded great insight into the diversity of life and organismal adaptations to extreme environmental conditions. Surprisingly, while microbial eukaryotes (protists) are also ubiquitous in many environments, their diversity across geothermal springs has mostly been ignored. We used high-throughput sequencing to illuminate the diversity and structure of microbial eukaryotic communities found in 160 geothermal springs with broad ranges in temperature and pH across the Taupō Volcanic Zone in New Zealand. Protistan communities were moderately predictable in composition and varied most strongly across gradients in pH and temperature. Moreover, this variation mirrored patterns observed for bacterial and archaeal communities across the same spring samples, highlighting that there are similar ecological constraints across the tree of life. While extreme pH values were associated with declining protist diversity, high temperature springs harbored substantial amounts of protist diversity. Although protists are often overlooked in geothermal springs and other extreme environments, our results indicate that such environments can host distinct and diverse protistan communities.

  13. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa

    PubMed Central

    Aanen, Duur K; Ros, Vera ID; de Fine Licht, Henrik H; Mitchell, Jannette; de Beer, Z Wilhelm; Slippers, Bernard; Rouland-LeFèvre, Corinne; Boomsma, Jacobus J

    2007-01-01

    Background Termites of the subfamily Macrotermitinae live in a mutualistic symbiosis with basidiomycete fungi of the genus Termitomyces. Here, we explored interaction specificity in fungus-growing termites using samples from 101 colonies in South-Africa and Senegal, belonging to eight species divided over three genera. Knowledge of interaction specificity is important to test the hypothesis that inhabitants (symbionts) are taxonomically less diverse than 'exhabitants' (hosts) and to test the hypothesis that transmission mode is an important determinant for interaction specificity. Results Analysis of Molecular Variance among symbiont ITS sequences across termite hosts at three hierarchical levels showed that 47 % of the variation occurred between genera, 18 % between species, and the remaining 35 % between colonies within species. Different patterns of specificity were evident. High mutual specificity was found for the single Macrotermes species studied, as M. natalensis was associated with a single unique fungal haplotype. The three species of the genus Odontotermes showed low symbiont specificity: they were all associated with a genetically diverse set of fungal symbionts, but their fungal symbionts showed some host specificity, as none of the fungal haplotypes were shared between the studied Odontotermes species. Finally, bilaterally low specificity was found for the four tentatively recognized species of the genus Microtermes, which shared and apparently freely exchanged a common pool of divergent fungal symbionts. Conclusion Interaction specificity was high at the genus level and generally much lower at the species level. A comparison of the observed diversity among fungal symbionts with the diversity among termite hosts, indicated that the fungal symbiont does not follow the general pattern of an endosymbiont, as we found either similar diversity at both sides or higher diversity in the symbiont. Our results further challenge the hypothesis that transmission-mode is a general key-determinant of interaction specificity in fungus-growing termites. PMID:17629911

  14. High-fidelity large area nano-patterning of silicon with femtosecond light sheet

    NASA Astrophysics Data System (ADS)

    Sidhu, Mehra S.; Munjal, Pooja; Singh, Kamal P.

    2018-01-01

    We employ a femtosecond light sheet generated by a cylindrical lens to rapidly produce high-fidelity nano-structures over large area on silicon surface. The Fourier analysis of electron microscopy images of the laser-induced surface structures reveals sharp peaks indicating good homogeneity. We observed an emergence of second-order spatial periodicity on increasing the scan speed. Our reliable approach may rapidly nano-pattern curved solid surfaces and tiny objects for diverse potential applications in optical devices, structural coloring, plasmonic substrates and in high-harmonic generation.

  15. A six-year grazing exclusion changed plant species diversity of a Stipa breviflora desert steppe community, northern China.

    PubMed

    Wang, Xing; Yang, Xinguo; Wang, Lei; Chen, Lin; Song, Naiping; Gu, Junlong; Xue, Yi

    2018-01-01

    Excluding grazers is one of most efficient ways to restore degraded grasslands in desert-steppe communities, but may negatively affect the recovery of plant species diversity. However, diversity differences between grazed and fenced grasslands in desert-steppe are poorly known. In a Stipa breviflora desert steppe community in Northern China, we established six plots to examine spatial patterns of plant species diversity under grazed and fenced conditions, respectively. We addressed three aspects of species diversity: (1) The logistic, exponential and power models were used to describe the species-area curve (SAR). Species richness, abundance and Shannon diversity values change differently with increasing sampling areas inside and outside of the fence. The best fitted model for SAR was the logistic model. Excluding grazers had a significant impact on the shape of SAR. (2) Variograms was applied to examine the spatial characteristics of plant species diversity. We found strong spatial autocorrelations in the diversity variables both inside and outside the fence. After grazing exclusion, the spatial heterogeneity decreased in species richness, increased in abundance and did not change in Shannon diversity. (3) We used variance partitioning to determine the relative contributions of spatial and environmental factors to plant species diversity patterns. Environmental factors explained the largest proportion of variation in species diversity, while spatial factors contributed little. Our results suggest that grazing enclosures decreased species diversity patterns and the spatial pattern of the S. breviflora desert steppe community was predictable.

  16. A six-year grazing exclusion changed plant species diversity of a Stipa breviflora desert steppe community, northern China

    PubMed Central

    Wang, Xing; Yang, Xinguo; Wang, Lei; Chen, Lin; Gu, Junlong; Xue, Yi

    2018-01-01

    Excluding grazers is one of most efficient ways to restore degraded grasslands in desert-steppe communities, but may negatively affect the recovery of plant species diversity. However, diversity differences between grazed and fenced grasslands in desert-steppe are poorly known. In a Stipa breviflora desert steppe community in Northern China, we established six plots to examine spatial patterns of plant species diversity under grazed and fenced conditions, respectively. We addressed three aspects of species diversity: (1) The logistic, exponential and power models were used to describe the species-area curve (SAR). Species richness, abundance and Shannon diversity values change differently with increasing sampling areas inside and outside of the fence. The best fitted model for SAR was the logistic model. Excluding grazers had a significant impact on the shape of SAR. (2) Variograms was applied to examine the spatial characteristics of plant species diversity. We found strong spatial autocorrelations in the diversity variables both inside and outside the fence. After grazing exclusion, the spatial heterogeneity decreased in species richness, increased in abundance and did not change in Shannon diversity. (3) We used variance partitioning to determine the relative contributions of spatial and environmental factors to plant species diversity patterns. Environmental factors explained the largest proportion of variation in species diversity, while spatial factors contributed little. Our results suggest that grazing enclosures decreased species diversity patterns and the spatial pattern of the S. breviflora desert steppe community was predictable. PMID:29456890

  17. Genomic patterns of species diversity and divergence in Eucalyptus.

    PubMed

    Hudson, Corey J; Freeman, Jules S; Myburg, Alexander A; Potts, Brad M; Vaillancourt, René E

    2015-06-01

    We examined genome-wide patterns of DNA sequence diversity and divergence among six species of the important tree genus Eucalyptus and investigated their relationship with genomic architecture. Using c. 90 range-wide individuals of each Eucalyptus species (E. grandis, E. urophylla, E. globulus, E. nitens, E. dunnii and E. camaldulensis), genetic diversity and divergence were estimated from 2840 polymorphic diversity arrays technology markers covering the 11 chromosomes. Species differentiating markers (SDMs) identified in each of 15 pairwise species comparisons, along with species diversity (HHW ) and divergence (FST ), were projected onto the E. grandis reference genome. Across all species comparisons, SDMs totalled 1.1-5.3% of markers and were widely distributed throughout the genome. Marker divergence (FST and SDMs) and diversity differed among and within chromosomes. Patterns of diversity and divergence were broadly conserved across species and significantly associated with genomic features, including the proximity of markers to genes, the relative number of clusters of tandem duplications, and gene density within or among chromosomes. These results suggest that genomic architecture influences patterns of species diversity and divergence in the genus. This influence is evident across the six species, encompassing diverse phylogenetic lineages, geography and ecology. © 2015 University of Tasmania New Phytologist © 2015 New Phytologist Trust.

  18. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process

    PubMed Central

    Chai, Yongfu; Yue, Ming; Liu, Xiao; Guo, Yaoxin; Wang, Mao; Xu, Jinshi; Zhang, Chenguang; Chen, Yu; Zhang, Lixia; Zhang, Ruichang

    2016-01-01

    Quantifying the drivers underlying the distribution of biodiversity during succession is a critical issue in ecology and conservation, and also can provide insights into the mechanisms of community assembly. Ninety plots were established in the Loess Plateau region of northern Shaanxi in China. The taxonomic and phylogenetic (alpha and beta) diversity were quantified within six succession stages. Null models were used to test whether phylogenetic distance observed differed from random expectations. Taxonomic beta diversity did not show a regular pattern, while phylogenetic beta diversity decreased throughout succession. The shrub stage occurred as a transition from phylogenetic overdispersion to clustering either for NRI (Net Relatedness Index) or betaNRI. The betaNTI (Nearest Taxon Index) values for early stages were on average phylogenetically random, but for the betaNRI analyses, these stages were phylogenetically overdispersed. Assembly of woody plants differed from that of herbaceous plants during late community succession. We suggest that deterministic and stochastic processes respectively play a role in different aspects of community phylogenetic structure for early succession stage, and that community composition of late succession stage is governed by a deterministic process. In conclusion, the long-lasting evolutionary imprints on the present-day composition of communities arrayed along the succession gradient. PMID:27272407

  19. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process.

    PubMed

    Chai, Yongfu; Yue, Ming; Liu, Xiao; Guo, Yaoxin; Wang, Mao; Xu, Jinshi; Zhang, Chenguang; Chen, Yu; Zhang, Lixia; Zhang, Ruichang

    2016-06-08

    Quantifying the drivers underlying the distribution of biodiversity during succession is a critical issue in ecology and conservation, and also can provide insights into the mechanisms of community assembly. Ninety plots were established in the Loess Plateau region of northern Shaanxi in China. The taxonomic and phylogenetic (alpha and beta) diversity were quantified within six succession stages. Null models were used to test whether phylogenetic distance observed differed from random expectations. Taxonomic beta diversity did not show a regular pattern, while phylogenetic beta diversity decreased throughout succession. The shrub stage occurred as a transition from phylogenetic overdispersion to clustering either for NRI (Net Relatedness Index) or betaNRI. The betaNTI (Nearest Taxon Index) values for early stages were on average phylogenetically random, but for the betaNRI analyses, these stages were phylogenetically overdispersed. Assembly of woody plants differed from that of herbaceous plants during late community succession. We suggest that deterministic and stochastic processes respectively play a role in different aspects of community phylogenetic structure for early succession stage, and that community composition of late succession stage is governed by a deterministic process. In conclusion, the long-lasting evolutionary imprints on the present-day composition of communities arrayed along the succession gradient.

  20. Protistan Diversity in the Arctic: A Case of Paleoclimate Shaping Modern Biodiversity?

    PubMed Central

    Stoeck, Thorsten; Kasper, Jennifer; Bunge, John; Leslin, Chesley; Ilyin, Valya; Epstein, Slava

    2007-01-01

    Background The impact of climate on biodiversity is indisputable. Climate changes over geological time must have significantly influenced the evolution of biodiversity, ultimately leading to its present pattern. Here we consider the paleoclimate data record, inferring that present-day hot and cold environments should contain, respectively, the largest and the smallest diversity of ancestral lineages of microbial eukaryotes. Methodology/Principal Findings We investigate this hypothesis by analyzing an original dataset of 18S rRNA gene sequences from Western Greenland in the Arctic, and data from the existing literature on 18S rRNA gene diversity in hydrothermal vent, temperate sediments, and anoxic water column communities. Unexpectedly, the community from the cold environment emerged as one of the richest observed to date in protistan species, and most diverse in ancestral lineages. Conclusions/Significance This pattern is consistent with natural selection sweeps on aerobic non-psychrophilic microbial eukaryotes repeatedly caused by low temperatures and global anoxia of snowball Earth conditions. It implies that cold refuges persisted through the periods of greenhouse conditions, which agrees with some, although not all, current views on the extent of the past global cooling and warming events. We therefore identify cold environments as promising targets for microbial discovery. PMID:17710128

  1. Identification of genetically diverse genotypes for photoperiod insensitivity in soybean using RAPD markers.

    PubMed

    Singh, R K; Bhatia, V S; Yadav, Sanjeev; Athale, Rashmi; Lakshmi, N; Guruprasad, K N; Chauhan, G S

    2008-10-01

    Most of the Indian soybean varieties were found to be highly sensitive to photoperiod, which limits their cultivation in only localized area. Identification of genetically diverse source of photoperiod insensitive would help to broaden the genetic base for this trait. Present study was undertaken with RAPD markers for genetic diversity estimation in 44 accessions of soybean differing in response to photoperiod sensitivity. The selected twenty-five RAPD primers produced a total of 199 amplicons, which generated 89.9 % polymorphism. The number of amplification products ranged from 2 to 13 for different primers. The polymorphism information content ranged from 0.0 for monomorphic loci to 0.5 with an average of 0.289. Genetic diversity between pairs of genotypes was 37.7% with a range of 3.9 to 71.6%. UPGMA cluster analysis placed all the accessions of soybean into four major clusters. No discernable geographical patterns were observed in clustering however; the smaller groups corresponded well with pedigree. Mantel's test (r = 0.915) indicates very good fit for clustering pattern. Two genotypes, MACS 330 and 111/2/1939 made a very divergent group from other accessions of soybean and highly photoperiod insensitive that may be potential source for broadening the genetic base of soybean for this trait.

  2. Reciprocal translocation of small numbers of inbred individuals rescues immunogenetic diversity.

    PubMed

    Grueber, Catherine E; Sutton, Jolene T; Heber, Sol; Briskie, James V; Jamieson, Ian G; Robertson, Bruce C

    2017-05-01

    Genetic rescue can reduce inbreeding depression and increase fitness of small populations, even when the donor populations are highly inbred. In a recent experiment involving two inbred island populations of the New Zealand South Island robin, Petroica australis, reciprocal translocations improved microsatellite diversity and individual fitness. While microsatellite loci may reflect patterns of genome-wide diversity, they generally do not indicate the specific genetic regions responsible for increased fitness. We tested the effectiveness of this reciprocal translocation for rescuing diversity of two immunogenetic regions: Toll-like receptor (TLR) and major histocompatibility complex (MHC) genes. We found that the relatively small number of migrants (seven and ten per island) effectively brought the characteristic TLR gene diversity of each source population into the recipient population. However, when migrants transmitted TLR alleles that were already present at high frequency in the recipient population, it was possible for offspring of mixed heritage to have decreased gene diversity compared to recipient population diversity prior to translocation. In contrast to TLRs, we did not observe substantial changes in MHC allelic diversity following translocation, with limited evidence of a decrease in differentiation, perhaps because most MHC alleles were observed at both sites prior to the translocation. Overall, we conclude that small numbers of migrants may successfully restore the diversity of immunogenetic loci with few alleles, but that translocating larger numbers of animals would provide additional opportunity for the genetic rescue of highly polymorphic immunity regions, such as the MHC, even when the source population is inbred. © 2017 John Wiley & Sons Ltd.

  3. Change Semantic Constrained Online Data Cleaning Method for Real-Time Observational Data Stream

    NASA Astrophysics Data System (ADS)

    Ding, Yulin; Lin, Hui; Li, Rongrong

    2016-06-01

    Recent breakthroughs in sensor networks have made it possible to collect and assemble increasing amounts of real-time observational data by observing dynamic phenomena at previously impossible time and space scales. Real-time observational data streams present potentially profound opportunities for real-time applications in disaster mitigation and emergency response, by providing accurate and timeliness estimates of environment's status. However, the data are always subject to inevitable anomalies (including errors and anomalous changes/events) caused by various effects produced by the environment they are monitoring. The "big but dirty" real-time observational data streams can rarely achieve their full potential in the following real-time models or applications due to the low data quality. Therefore, timely and meaningful online data cleaning is a necessary pre-requisite step to ensure the quality, reliability, and timeliness of the real-time observational data. In general, a straightforward streaming data cleaning approach, is to define various types of models/classifiers representing normal behavior of sensor data streams and then declare any deviation from this model as normal or erroneous data. The effectiveness of these models is affected by dynamic changes of deployed environments. Due to the changing nature of the complicated process being observed, real-time observational data is characterized by diversity and dynamic, showing a typical Big (Geo) Data characters. Dynamics and diversity is not only reflected in the data values, but also reflected in the complicated changing patterns of the data distributions. This means the pattern of the real-time observational data distribution is not stationary or static but changing and dynamic. After the data pattern changed, it is necessary to adapt the model over time to cope with the changing patterns of real-time data streams. Otherwise, the model will not fit the following observational data streams, which may led to large estimation error. In order to achieve the best generalization error, it is an important challenge for the data cleaning methodology to be able to characterize the behavior of data stream distributions and adaptively update a model to include new information and remove old information. However, the complicated data changing property invalidates traditional data cleaning methods, which rely on the assumption of a stationary data distribution, and drives the need for more dynamic and adaptive online data cleaning methods. To overcome these shortcomings, this paper presents a change semantics constrained online filtering method for real-time observational data. Based on the principle that the filter parameter should vary in accordance to the data change patterns, this paper embeds semantic description, which quantitatively depicts the change patterns in the data distribution to self-adapt the filter parameter automatically. Real-time observational water level data streams of different precipitation scenarios are selected for testing. Experimental results prove that by means of this method, more accurate and reliable water level information can be available, which is prior to scientific and prompt flood assessment and decision-making.

  4. Climate change and the future of freshwater fisheries

    Treesearch

    Daniel J. Isaak

    2014-01-01

    My first awareness of the importance that climate has for fish came during my summer field seasons as a Ph.D. student at the University of Wyoming. While conducting electrofishing surveys in the climatically diverse Salt River basin along the mountainous border between Wyoming and Idaho, I observed spatial patterns in species distributions and abundance that strongly...

  5. Observations of bird numbers and species following a historic wildfire in Arizona ponderosa pine forests

    Treesearch

    Peter F. Ffolliott; Cody L. Stropki; Hui Chen; Daniel G. Neary

    2009-01-01

    The Rodeo-Chediski Wildfire, the largest in Arizona's history, damaged or destroyed ecosystem resources or disrupted ecosystem functioning in a mostly mosaic pattern throughout the ponderosa pine (Pinus ponderosa) forests exposed to the burn. Impacts of the wildfire on the occurrence of birds and their diversities were studied on...

  6. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders.

    PubMed

    Ordonez, Alejandro; Svenning, Jens-Christian

    2017-02-23

    Current and historical environmental conditions are known to determine jointly contemporary species distributions and richness patterns. However, whether historical dynamics in species distributions and richness translate to functional diversity patterns remains, for the most part, unknown. The geographic patterns of plant functional space size (richness) and packing (dispersion) for six widely distributed orders of European angiosperms were estimated using atlas distribution data and trait information. Then the relative importance of late-Quaternary glacial-interglacial climate change and contemporary environmental factors (climate, productivity, and topography) as determinants of functional diversity of evaluated orders was assesed. Functional diversity patterns of all evaluated orders exhibited prominent glacial-interglacial climate change imprints, complementing the influence of contemporary environmental conditions. The importance of Quaternary glacial-interglacial climate change factors was comparable to that of contemporary environmental factors across evaluated orders. Therefore, high long-term paleoclimate variability has imposed consistent supplementary constraints on functional diversity of multiple plant groups, a legacy that may permeate to ecosystem functioning and resilience. These findings suggest that strong near-future anthropogenic climate change may elicit long-term functional disequilibria in plant functional diversity.

  7. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity.

    PubMed

    Drury, Crawford; Schopmeyer, Stephanie; Goergen, Elizabeth; Bartels, Erich; Nedimyer, Ken; Johnson, Meaghan; Maxwell, Kerry; Galvan, Victor; Manfrino, Carrie; Lirman, Diego

    2017-08-01

    Threatened Caribbean coral communities can benefit from high-resolution genetic data used to inform management and conservation action. We use Genotyping by Sequencing (GBS) to investigate genetic patterns in the threatened coral, Acropora cervicornis , across the Florida Reef Tract (FRT) and the western Caribbean. Results show extensive population structure at regional scales and resolve previously unknown structure within the FRT. Different regions also exhibit up to threefold differences in genetic diversity (He), suggesting targeted management based on the goals and resources of each population is needed. Patterns of genetic diversity have a strong spatial component, and our results show Broward and the Lower Keys are among the most diverse populations in Florida. The genetic diversity of Caribbean staghorn coral is concentrated within populations and within individual reefs (AMOVA), highlighting the complex mosaic of population structure. This variance structure is similar over regional and local scales, which suggests that in situ nurseries are adequately capturing natural patterns of diversity, representing a resource that can replicate the average diversity of wild assemblages, serving to increase intraspecific diversity and potentially leading to improved biodiversity and ecosystem function. Results presented here can be translated into specific goals for the recovery of A. cervicornis , including active focus on low diversity areas, protection of high diversity and connectivity, and practical thresholds for responsible restoration.

  8. Putting Beta-Diversity on the Map: Broad-Scale Congruence and Coincidence in the Extremes

    PubMed Central

    McKnight, Meghan W; White, Peter S; McDonald, Robert I; Lamoreux, John F; Sechrest, Wes; Ridgely, Robert S; Stuart, Simon N

    2007-01-01

    Beta-diversity, the change in species composition between places, is a critical but poorly understood component of biological diversity. Patterns of beta-diversity provide information central to many ecological and evolutionary questions, as well as to conservation planning. Yet beta-diversity is rarely studied across large extents, and the degree of similarity of patterns among taxa at such scales remains untested. To our knowledge, this is the first broad-scale analysis of cross-taxon congruence in beta-diversity, and introduces a new method to map beta-diversity continuously across regions. Congruence between amphibian, bird, and mammal beta-diversity in the Western Hemisphere varies with both geographic location and spatial extent. We demonstrate that areas of high beta-diversity for the three taxa largely coincide, but areas of low beta-diversity exhibit little overlap. These findings suggest that similar processes lead to high levels of differentiation in amphibian, bird, and mammal assemblages, while the ecological and biogeographic factors influencing homogeneity in vertebrate assemblages vary. Knowledge of beta-diversity congruence can help formulate hypotheses about the mechanisms governing regional diversity patterns and should inform conservation, especially as threat from global climate change increases. PMID:17927449

  9. Multilocus patterns of polymorphism and selection across the X chromosome of Caenorhabditis remanei.

    PubMed

    Cutter, Asher D

    2008-03-01

    Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.

  10. Patterns of genetic diversity reveal multiple introductions and recurrent founder effects during range expansion in invasive populations of Geranium carolinianum (Geraniaceae)

    PubMed Central

    Shirk, R Y; Hamrick, J L; Zhang, C; Qiang, S

    2014-01-01

    Genetic diversity, and thus the adaptive potential of invasive populations, is largely based on three factors: patterns of genetic diversity in the species' native range, the number and location of introductions and the number of founding individuals per introduction. Specifically, reductions in genetic diversity (‘founder effects') should be stronger for species with low within-population diversity in their native range and few introductions of few individuals to the invasive range. We test these predictions with Geranium carolinianum, a winter annual herb native to North America and invasive in China. We measure the extent of founder effects using allozymes and microsatellites, and ask whether this is consistent with its colonization history and patterns of diversity in the native range. In the native range, genetic diversity is higher and structure is lower than expected based on life history traits. In China, our results provide evidence for multiple introductions near Nanjing, Jiangsu province, with subsequent range expansion to the west and south. Patterns of genetic diversity across China reveal weak founder effects that are driven largely by low-diversity populations at the expansion front, away from the introduction location. This suggests that reduced diversity in China has resulted from successive founder events during range expansion, and that the loss of genetic diversity in the Nanjing area was mitigated by multiple introductions from diverse source populations. This has implications for the future of G. carolinianum in China, as continued gene flow among populations should eventually increase genetic diversity within the more recently founded populations. PMID:24346497

  11. Biodiversity and body size are linked across metazoans

    PubMed Central

    McClain, Craig R.; Boyer, Alison G.

    2009-01-01

    Body size variation across the Metazoa is immense, encompassing 17 orders of magnitude in biovolume. Factors driving this extreme diversification in size and the consequences of size variation for biological processes remain poorly resolved. Species diversity is invoked as both a predictor and a result of size variation, and theory predicts a strong correlation between the two. However, evidence has been presented both supporting and contradicting such a relationship. Here, we use a new comprehensive dataset for maximum and minimum body sizes across all metazoan phyla to show that species diversity is strongly correlated with minimum size, maximum size and consequently intra-phylum variation. Similar patterns are also observed within birds and mammals. The observations point to several fundamental linkages between species diversification and body size variation through the evolution of animal life. PMID:19324730

  12. A null model for microbial diversification

    PubMed Central

    Straub, Timothy J.

    2017-01-01

    Whether prokaryotes (Bacteria and Archaea) are naturally organized into phenotypically and genetically cohesive units comparable to animal or plant species remains contested, frustrating attempts to estimate how many such units there might be, or to identify the ecological roles they play. Analyses of gene sequences in various closely related prokaryotic groups reveal that sequence diversity is typically organized into distinct clusters, and processes such as periodic selection and extensive recombination are understood to be drivers of cluster formation (“speciation”). However, observed patterns are rarely compared with those obtainable with simple null models of diversification under stochastic lineage birth and death and random genetic drift. Via a combination of simulations and analyses of core and phylogenetic marker genes, we show that patterns of diversity for the genera Escherichia, Neisseria, and Borrelia are generally indistinguishable from patterns arising under a null model. We suggest that caution should thus be taken in interpreting observed clustering as a result of selective evolutionary forces. Unknown forces do, however, appear to play a role in Helicobacter pylori, and some individual genes in all groups fail to conform to the null model. Taken together, we recommend the presented birth−death model as a null hypothesis in prokaryotic speciation studies. It is only when the real data are statistically different from the expectations under the null model that some speciation process should be invoked. PMID:28630293

  13. Population genetics of the invasive cryptogenic anemone, Anemonia alicemartinae, along the southeastern Pacific coast

    NASA Astrophysics Data System (ADS)

    Canales-Aguirre, C. B.; Quiñones, A.; Hernández, C. E.; Neill, P. E.; Brante, A.

    2015-08-01

    One of the most important issues in biological invasions is understanding the factors and mechanisms determining the invasion success of non-native species. Theoretical and empirical works have shown that genetic diversity is a determinant of invasion success; thus, studying spatial patterns of genetic diversity, and exploring how biological and physical factors shape this population trait, are fundamental for understanding this phenomenon. Coastal marine ecosystems are one of the most susceptible habitats to invasion given the complex network of maritime transport. In this work we study the cryptogenic anemone, Anemonia alicemartinae, which has rapidly increased its geographical range southward during the last 50 years (approx. 2000 km) along the southeastern Pacific coast. Based on COI mtDNA sequences we evaluated three main hypotheses: a) the genetic diversity of A. alicemartinae decreases according to the direction of invasion (from north to south); b) there is biogeographic-phylogeographic concordance at the 30°S biogeographic break; and c) the demographic history is coherent with a recent geographic expansion. A total of 161 individual samples of A. alicemartinae were collected along the southeastern Pacific coast range of distribution, covering more than 2000 km, including samples along the 30°S biogeographical break. Results showed low genetic diversity (Hd = 0.253; π = 0.08) and a lack of geographic population genetic structure (FST = - 0.009, p-value = 0.656). The highest genetic diversity was observed in Peru (Chero and Mesas) and at localities close to the main Chilean seaports. We did not observe concordance between biogeographic and phylogeographic patterns or isolation by distance. Demographic indices (D = - 2.604, p < 0.001; Fu's = - 26.619, p < 0.001), as well as a star-like configuration of the haplotype network support recent population expansion of this species. Our results, together with historical field observations, support the idea that the current distribution of A. alicemartinae may be explained by an increase in population size from one small ancestral population probably from the south of Peru, with subsequent human-mediated southward transport, probably associated with regional-scale maritime activities.

  14. Temporally variable environments maintain more beta-diversity in Mediterranean landscapes

    NASA Astrophysics Data System (ADS)

    Martin, Beatriz; Ferrer, Miguel

    2015-10-01

    We examined the relationships between different environmental factors and the alpha and beta-diversity of terrestrial vertebrates (birds, mammals, amphibians and reptiles) in a Mediterranean region at the landscape level. We investigated whether the mechanisms underlying alpha and beta-diversity patterns are influenced by energy availability, habitat heterogeneity and temporal variability and if the drivers of the diversity patterns differed between both components of diversity. We defined alpha-diversity as synonym of species richness whereas beta-diversity was measured as distinctiveness. We evaluated a total of 13 different predictors using generalized linear mixed model (GLMM) analysis. Habitat spatial heterogeneity increased alpha-diversity, but contrastingly, it did not significantly affect beta-diversity among sites. Disturbed landscapes may show higher habitat spatial variation and higher alpha-diversity due to the contribution of highly generalist species that are wide-distributed and do not differ in composition (beta-diversity) among different sites within the region. Contrastingly, higher beta-diversity levels were negatively related to more stable sites in terms of temporal environmental variation. This negative relationship between environmental stability and beta-diversity levels is explained in terms of species adaptation to the local environmental conditions. Our study highlights the importance of temporal environmental variability in maintaining beta-diversity patterns under highly variable environmental conditions.

  15. HLA DNA Sequence Variation among Human Populations: Molecular Signatures of Demographic and Selective Events

    PubMed Central

    Buhler, Stéphane; Sanchez-Mazas, Alicia

    2011-01-01

    Molecular differences between HLA alleles vary up to 57 nucleotides within the peptide binding coding region of human Major Histocompatibility Complex (MHC) genes, but it is still unclear whether this variation results from a stochastic process or from selective constraints related to functional differences among HLA molecules. Although HLA alleles are generally treated as equidistant molecular units in population genetic studies, DNA sequence diversity among populations is also crucial to interpret the observed HLA polymorphism. In this study, we used a large dataset of 2,062 DNA sequences defined for the different HLA alleles to analyze nucleotide diversity of seven HLA genes in 23,500 individuals of about 200 populations spread worldwide. We first analyzed the HLA molecular structure and diversity of these populations in relation to geographic variation and we further investigated possible departures from selective neutrality through Tajima's tests and mismatch distributions. All results were compared to those obtained by classical approaches applied to HLA allele frequencies. Our study shows that the global patterns of HLA nucleotide diversity among populations are significantly correlated to geography, although in some specific cases the molecular information reveals unexpected genetic relationships. At all loci except HLA-DPB1, populations have accumulated a high proportion of very divergent alleles, suggesting an advantage of heterozygotes expressing molecularly distant HLA molecules (asymmetric overdominant selection model). However, both different intensities of selection and unequal levels of gene conversion may explain the heterogeneous mismatch distributions observed among the loci. Also, distinctive patterns of sequence divergence observed at the HLA-DPB1 locus suggest current neutrality but old selective pressures on this gene. We conclude that HLA DNA sequences advantageously complement HLA allele frequencies as a source of data used to explore the genetic history of human populations, and that their analysis allows a more thorough investigation of human MHC molecular evolution. PMID:21408106

  16. CD8+ TCR repertoire formation is guided primarily by the peptide component of the antigenic complex.

    PubMed

    Koning, Dan; Costa, Ana I; Hoof, Ilka; Miles, John J; Nanlohy, Nening M; Ladell, Kristin; Matthews, Katherine K; Venturi, Vanessa; Schellens, Ingrid M M; Borghans, Jose A M; Kesmir, Can; Price, David A; van Baarle, Debbie

    2013-02-01

    CD8(+) T cells recognize infected or dysregulated cells via the clonotypically expressed αβ TCR, which engages Ag in the form of peptide bound to MHC class I (MHC I) on the target cell surface. Previous studies have indicated that a diverse Ag-specific TCR repertoire can be beneficial to the host, yet the determinants of clonotypic diversity are poorly defined. To better understand the factors that govern TCR repertoire formation, we conducted a comprehensive clonotypic analysis of CD8(+) T cell populations directed against epitopes derived from EBV and CMV. Neither pathogen source nor the restricting MHC I molecule were linked with TCR diversity; indeed, both HLA-A and HLA-B molecules were observed to interact with an overlapping repertoire of expressed TRBV genes. Peptide specificity, however, markedly impacted TCR diversity. In addition, distinct peptides sharing HLA restriction and viral origin mobilized TCR repertoires with distinct patterns of TRBV gene usage. Notably, no relationship was observed between immunodominance and TCR diversity. These findings provide new insights into the forces that shape the Ag-specific TCR repertoire in vivo and highlight a determinative role for the peptide component of the peptide-MHC I complex on the molecular frontline of CD8(+) T cell-mediated immune surveillance.

  17. Large-scale diversity of slope fishes: pattern inconsistency between multiple diversity indices.

    PubMed

    Gaertner, Jean-Claude; Maiorano, Porzia; Mérigot, Bastien; Colloca, Francesco; Politou, Chrissi-Yianna; Gil De Sola, Luis; Bertrand, Jacques A; Murenu, Matteo; Durbec, Jean-Pierre; Kallianiotis, Argyris; Mannini, Alessandro

    2013-01-01

    Large-scale studies focused on the diversity of continental slope ecosystems are still rare, usually restricted to a limited number of diversity indices and mainly based on the empirical comparison of heterogeneous local data sets. In contrast, we investigate large-scale fish diversity on the basis of multiple diversity indices and using 1454 standardized trawl hauls collected throughout the upper and middle slope of the whole northern Mediterranean Sea (36°3'- 45°7' N; 5°3'W - 28°E). We have analyzed (1) the empirical relationships between a set of 11 diversity indices in order to assess their degree of complementarity/redundancy and (2) the consistency of spatial patterns exhibited by each of the complementary groups of indices. Regarding species richness, our results contrasted both the traditional view based on the hump-shaped theory for bathymetric pattern and the commonly-admitted hypothesis of a large-scale decreasing trend correlated with a similar gradient of primary production in the Mediterranean Sea. More generally, we found that the components of slope fish diversity we analyzed did not always show a consistent pattern of distribution according either to depth or to spatial areas, suggesting that they are not driven by the same factors. These results, which stress the need to extend the number of indices traditionally considered in diversity monitoring networks, could provide a basis for rethinking not only the methodological approach used in monitoring systems, but also the definition of priority zones for protection. Finally, our results call into question the feasibility of properly investigating large-scale diversity patterns using a widespread approach in ecology, which is based on the compilation of pre-existing heterogeneous and disparate data sets, in particular when focusing on indices that are very sensitive to sampling design standardization, such as species richness.

  18. Cenozoic dynamics of shallow-marine biodiversity in the Western Pacific

    NASA Astrophysics Data System (ADS)

    Yasuhara, M.; Iwatani, H.; Hunt, G.; Okahashi, H.; Kase, T.; Hayashi, H.; Irizuki, T.; Aguilar, Y. M.; Fernando, A. G. S.; Renema, W.

    2016-12-01

    Cenozoic dynamics of large-scale species diversity patterns remain poorly understood, especially for the Western Pacific, in part because of the paucity of well-dated fossil records from the tropics. Here we show the spatiotemporal dynamics of species diversity in the Western Pacific through the Cenozoic, focusing on the tropical Indo-Australian Archipelago (IAA) biodiversity hotspot. We analysed well-preserved fossil ostracodes from the tropical Western Pacific and combined their diversity data with other published data from the region to reconstruct Cenozoic dynamics of species diversity in the tropical- and northwestern Pacific Ocean. We fit generalized additive models to test for differences in richness over time and across geographic regions while accounting for sample size variation among samples. Low-, mid- and high-latitude regions all show a similar diversity trajectory: diversity is low in the Eocene and Oligocene, increases from the Early Miocene to the Plio-Pleistocene but then declines to the present day. Present day high biodiversity in these regions was established during the Pliocene with a remarkable diversification at that time. Latitudinal diversity patterns are relatively flat and never show as simple decline from the tropics to higher latitudes. Western Pacific Cenozoic ostracodes exhibit a spatiotemporal pattern of species diversity that is inconsistent with the commonly reported and persistent pattern of declining diversity from the tropics to the extratropics. While this inconsistency could be interpreted as evidence that ostracodes are a contrarian clade, Atlantic ostracodes display a standard latitudinal species diversity gradient. Contrasting patterns between oceans suggests an important role for regional factors (e.g., plate tectonics and temporal geomorphological dynamics) in shaping the biodiversity of the Western Pacific.

  19. Helicobacter pylori oipA, vacA and dupA genetic diversity in individual hosts.

    PubMed

    Matteo, Mario José; Armitano, Rita Inés; Granados, Gabriela; Wonaga, Andrés Dario; Sánches, Christian; Olmos, Martín; Catalano, Mariana

    2010-01-01

    Helicobacter pylori putative virulence factors can undergo a continuously evolving mechanism as an approach to bacterial adaptation to the host changing environment during chronic infection. oipA, vacA and dupA genetic diversity among isolates from multiple biopsies (niches) from the antrum and corpus of 40 patients was investigated. A set of 229 isolates was examined. Direct DNA sequence analysis of amplified fragments was used to study oipA 'on/off' expression status as well as the presence of C or T insertion in jhp0917 that originates a continuous (jhp0917-jhp0918) dupA gene. vacA alleles were identified by multiplex PCR. Different inter-niches oipA CT repeat patterns were observed in nine patients; in six of these, 'on' and 'off' mixed patterns were found. In three of these nine patients, different vacA alleles were also observed in a single host. Inter-niche dupA differences involved the absence and presence of jhp0917 and/or jhp0918 or mutations in dupA, including those that may originate a non-functional gene, and they were also present in two patients with mixed oipA CT patterns and in another seven patients. Evidence of mixed infection was observed in two patients only. In conclusion, oipA and dupA genes showed similar inter-niche variability, occurring in approximately 1/4 patients. Conversely, vacA allele microevolution seemed to be a less common event, occurring in approximately 1/10 patients, probably due to the mechanism that this gene evolves 'in vivo'.

  20. Exoskeletons and economics: indoor arthropod diversity increases in affluent neighbourhoods.

    PubMed

    Leong, Misha; Bertone, Matthew A; Bayless, Keith M; Dunn, Robert R; Trautwein, Michelle D

    2016-08-01

    In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The 'luxury effect', in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements. © 2016 The Authors.

  1. Exoskeletons and economics: indoor arthropod diversity increases in affluent neighbourhoods

    PubMed Central

    Bertone, Matthew A.; Bayless, Keith M.; Dunn, Robert R.; Trautwein, Michelle D.

    2016-01-01

    In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The ‘luxury effect’, in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements. PMID:27484644

  2. A test of multiple hypotheses for the species richness gradient of South American owls.

    PubMed

    Diniz-Filho, José Alexandre Felizola; Rangel, Thiago F L V B; Hawkins, Bradford A

    2004-08-01

    Many mechanisms have been proposed to explain broad scale spatial patterns in species richness. In this paper, we evaluate five explanations for geographic gradients in species richness, using South American owls as a model. We compared the explanatory power of contemporary climate, landcover diversity, spatial climatic heterogeneity, evolutionary history, and area. An important aspect of our analyses is that very different hypotheses, such as history and area, can be quantified at the same observation scale and, consequently can be incorporated into a single analytical framework. Both area effects and owl phylogenetic history were poorly associated with richness, whereas contemporary climate, climatic heterogeneity at the mesoscale and landcover diversity explained ca. 53% of the variation in species richness. We conclude that both climate and environmental heterogeneity should be retained as plausible explanations for the diversity gradient. Turnover rates and scaling effects, on the other hand, although perhaps useful for detecting faunal changes and beta diversity at local and regional scales, are not strong explanations for the owl diversity gradient.

  3. Genetic Diversity on the Sex Chromosomes

    PubMed Central

    Wilson Sayres, Melissa A

    2018-01-01

    Abstract Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system. PMID:29635328

  4. Gap formation following climatic events in spatially structured plant communities

    PubMed Central

    Liao, Jinbao; De Boeck, Hans J.; Li, Zhenqing; Nijs, Ivan

    2015-01-01

    Gaps play a crucial role in maintaining species diversity, yet how community structure and composition influence gap formation is still poorly understood. We apply a spatially structured community model to predict how species diversity and intraspecific aggregation shape gap patterns emerging after climatic events, based on species-specific mortality responses. In multispecies communities, average gap size and gap-size diversity increased rapidly with increasing mean mortality once a mortality threshold was exceeded, greatly promoting gap recolonization opportunity. This result was observed at all levels of species richness. Increasing interspecific difference likewise enhanced these metrics, which may promote not only diversity maintenance but also community invasibility, since more diverse niches for both local and exotic species are provided. The richness effects on gap size and gap-size diversity were positive, but only expressed when species were sufficiently different. Surprisingly, while intraspecific clumping strongly promoted gap-size diversity, it hardly influenced average gap size. Species evenness generally reduced gap metrics induced by climatic events, so the typical assumption of maximum evenness in many experiments and models may underestimate community diversity and invasibility. Overall, understanding the factors driving gap formation in spatially structured assemblages can help predict community secondary succession after climatic events. PMID:26114803

  5. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna.

    PubMed

    Busse, Annika; Antiqueira, Pablo A P; Neutzling, Alexandre S; Wolf, Anna M; Romero, Gustavo Q; Petermann, Jana S

    2018-01-01

    The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems.

  6. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna

    PubMed Central

    Antiqueira, Pablo A. P.; Neutzling, Alexandre S.; Wolf, Anna M.; Romero, Gustavo Q.; Petermann, Jana S.

    2018-01-01

    The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems. PMID:29401522

  7. Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone.

    PubMed

    Bryant, Jessica A; Stewart, Frank J; Eppley, John M; DeLong, Edward F

    2012-07-01

    Oxygen minimum zones (OMZs) are natural physical features of the world's oceans. They create steep physiochemical gradients in the water column, which most notably include a dramatic draw down in oxygen concentrations over small vertical distances (<100 m). Microbial communities within OMZs play central roles in ocean and global biogeochemical cycles, yet we still lack a fundamental understanding of how microbial biodiversity is distributed across OMZs. Here, we used metagenomic sequencing to investigate microbial diversity across a vertical gradient in the water column during three seasons in the Eastern Tropical South Pacific (ETSP) OMZ. Based on analysis of small subunit ribosomal RNA (SSU rRNA) gene fragments, we found that both taxonomic and phylogenetic diversity declined steeply along the transition from oxygen-rich surface water to the permanent OMZ. We observed similar declines in the diversity of protein-coding gene categories, suggesting a decrease in functional (trait) diversity with depth. Metrics of functional and trait dispersion indicated that microbial communities are phylogenetically and functionally more overdispersed in oxic waters, but clustered within the OMZ. These dispersion patterns suggest that community assembly drivers (e.g., competition, environmental filtering) vary strikingly across the oxygen gradient. To understand the generality of our findings, we compared OMZ results to two marine depth gradients in subtropical oligotrophic sites and found that the oligotrophic sites did not display similar patterns, likely reflecting unique features found in the OMZ. Finally, we discuss how our results may relate to niche theory, diversity-energy relationships and stress gradients.

  8. Reciprocal relationships and potential feedbacks between biodiversity and disturbance.

    PubMed

    Hughes, A Randall; Byrnes, Jarrett E; Kimbro, David L; Stachowicz, John J

    2007-09-01

    Two major foci of ecological research involve reciprocal views of the relationship between biodiversity and disturbance: disturbance determines community diversity or diversity determines realized disturbance severity. Here, we present an initial attempt to synthesize these two approaches in order to understand whether feedbacks occur, and what their effects on patterns of diversity might be. Our review of published experiments shows that (i) disturbance severity can be both a cause and a consequence of local diversity in a wide range of ecosystems and (ii) shapes of the unidirectional relationships between diversity and disturbance can be quite variable. To explore how feedbacks between diversity and disturbance might operate to alter expected patterns of diversity in nature, we develop and then evaluate a conceptual model that decomposes the relationships into component parts, considering sequentially the effect of diversity on disturbance severity, and the effect of realized disturbance on diversity loss, subsequent recruitment, and competitive exclusion. Our model suggests that feedbacks can increase mean values of richness, decrease variability, and alter the patterns of correlation between diversity and disturbance in nature. We close by offering ideas for future research to help fill gaps in our understanding of reciprocal relationships among ecological variables like diversity and disturbance.

  9. Linguistic, geographic and genetic isolation: a collaborative study of Italian populations.

    PubMed

    Capocasa, Marco; Anagnostou, Paolo; Bachis, Valeria; Battaggia, Cinzia; Bertoncini, Stefania; Biondi, Gianfranco; Boattini, Alessio; Boschi, Ilaria; Brisighelli, Francesca; Caló, Carla Maria; Carta, Marilisa; Coia, Valentina; Corrias, Laura; Crivellaro, Federica; De Fanti, Sara; Dominici, Valentina; Ferri, Gianmarco; Francalacci, Paolo; Franceschi, Zelda Alice; Luiselli, Donata; Morelli, Laura; Paoli, Giorgio; Rickards, Olga; Robledo, Renato; Sanna, Daria; Sanna, Emanuele; Sarno, Stefania; Sineo, Luca; Taglioli, Luca; Tagarelli, Giuseppe; Tofanelli, Sergio; Vona, Giuseppe; Pettener, Davide; Destro Bisol, Giovanni

    2014-01-01

    The animal and plant biodiversity of the Italian territory is known to be one of the richest in the Mediterranean basin and Europe as a whole, but does the genetic diversity of extant human populations show a comparable pattern? According to a number of studies, the genetic structure of Italian populations retains the signatures of complex peopling processes which took place from the Paleolithic to modern era. Although the observed patterns highlight a remarkable degree of genetic heterogeneity, they do not, however, take into account an important source of variation. In fact, Italy is home to numerous ethnolinguistic minorities which have yet to be studied systematically. Due to their difference in geographical origin and demographic history, such groups not only signal the cultural and social diversity of our country, but they are also potential contributors to its bio-anthropological heterogeneity. To fill this gap, research groups from four Italian Universities (Bologna, Cagliari, Pisa and Roma Sapienza) started a collaborative study in 2007, which was funded by the Italian Ministry of Education, University and Research and received partial support by the Istituto Italiano di Antropologia. In this paper, we present an account of the results obtained in the course of this initiative. Four case-studies relative to linguistic minorities from the Eastern Alps, Sardinia, Apennines and Southern Italy are first described and discussed, focusing on their micro-evolutionary and anthropological implications. Thereafter, we present the results of a systematic analysis of the relations between linguistic, geographic and genetic isolation. Integrating the data obtained in the course of the long-term study with literature and unpublished results on Italian populations, we show that a combination of linguistic and geographic factors is probably responsible for the presence of the most robust signatures of genetic isolation. Finally, we evaluate the magnitude of the diversity of Italian populations in the European context. The human genetic diversity of our country was found to be greater than observed throughout the continent at short (0-200 km) and intermediate (700-800km) distances, and accounted for most of the highest values of genetic distances observed at all geographic ranges. Interestingly, an important contribution to this pattern comes from the "linguistic islands"( e.g. German speaking groups of Sappada and Luserna from the Eastern Italian Alps), further proof of the importance of considering social and cultural factors when studying human genetic variation.

  10. Patterns of Gram-stained fecal flora as a quick diagnostic marker in patients with severe SIRS.

    PubMed

    Shimizu, Kentaro; Ogura, Hiroshi; Tomono, Kazunori; Tasaki, Osamu; Asahara, Takashi; Nomoto, Koji; Morotomi, Masami; Matsushima, Asako; Nakahori, Yasutaka; Yamano, Shuhei; Osuka, Akinori; Kuwagata, Yasuyuki; Sugimoto, Hisashi

    2011-06-01

    The gut is an important target organ of injury during critically ill conditions. Although Gram staining is a common and quick method for identifying bacteria, its clinical application has not been fully evaluated in critically ill conditions. This study's aims were to identify patterns of Gram-stained fecal flora and compare them to cultured bacterial counts and to investigate the association between the patterns and septic complications in patients with severe systemic inflammatory response syndrome (SIRS). Fifty-two patients with SIRS were included whose Gram-stained fecal flora was classified into three patterns. In a diverse pattern, large numbers of multiple kinds of bacteria completely covered the field. In a single pattern, one specific kind of bacteria or fungi predominantly covered the field. In a depleted pattern, most bacteria were diminished in the field. In the analysis of fecal flora, the numbers of total obligate anaerobes in the depleted pattern was significantly lower than those in the diverse pattern and single pattern (p < 0.05). The concentrations of total organic acids, acetic acid, and propionic acid in the depleted pattern were significantly lower than those in diverse pattern and single pattern (p < 0.05). Mortality due to multiple organ dysfunction syndrome for the single pattern (52%) and the depleted pattern (64%) was significantly higher than that for the diverse pattern (6%) (p < 0.05). Gram-stained fecal flora can be classified into three patterns and are associated with both cultured bacterial counts and clinical information. Gram-stained fecal bacteria can be used as a quick bedside diagnostic marker for severe SIRS patients.

  11. Factors influencing geographic patterns in diversity of forest bird communities of eastern Connecticut, USA

    USGS Publications Warehouse

    Craig, Robert J.; Klaver, Robert W.

    2012-01-01

    At regional scales, the most important variables associated with diversity are latitudinally-based temperature and net primary productivity, although diversity is also influenced by habitat. We examined bird species richness, community density and community evenness in forests of eastern Connecticut to determine whether: 1) spatial and seasonal patterns exist in diversity, 2) energy explains the greatest proportion of variation in diversity parameters, 3) variation in habitat explains remaining diversity variance, and 4) seasonal shifts in diversity provide clues about how environmental variables shape communities. We sought to discover if our data supported predictions of the species–energy hypothesis. We used the variable circular plot technique to estimate bird populations and quantified the location, elevation, forest type, vegetation type, canopy cover, moisture regime, understory density and primary production for the study sites. We found that 1) summer richness and population densities are roughly equal in northeastern and southeastern Connecticut, whereas in winter both concentrate toward the coast, 2) variables linked with temperature explained much of the patterns in winter diversity, but energy-related variables showed little relationship to summer diversity, 3) the effect of habitat variables on diversity parameters predominated in summer, although their effect was weak, 4) contrary to theory, evenness increased from summer to winter, and 5) support for predictions of species–energy theory was primarily restricted to winter data. Although energy and habitat played a role in explaining community patterns, they left much of the variance in regional diversity unexplained, suggesting that a large stochastic component to diversity also may exist.

  12. A model of onshore-offshore change in faunal diversity

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1991-01-01

    Onshore-offshore patterns of faunal change occurred at many taxonomic scales during the Paleozoic Era, ranging from replacement of the Cambrian evolutionary fauna by the Paleozoic fauna to the environmental expansion of many orders and classes. A simple mathematical model is constructed to investigate such change. The environmental gradient across the marine shelf-slope is treated as a linear array of discrete habitats, each of which holds a set number of species, as observed in the fossil record. During any interval of time, some portion of the species in each habitat becomes extinct by background processes, with rates of extinction varying among both clades and habitats, as also observed in the record. After extinction, species are replaced from within the habitat and from immediately adjacent habitats, with proportions dependent on surviving species. This model leads to the prediction that extinction-resistant clades will always diversify at the expense of extinction-prone clades. But if extinction intensity is highest in nearshore habitats, extinction-resistant clades will expand preferentially in the onshore direction, build up diversity there, and then diversify outward toward the offshore. Thus, onshore-offshore patterns of diversification may be the expectation for faunal change quite independently of whether or not clades originate onshore. When the model is parameterized for Paleozoic trilobites and brachiopods, numerical solutions exhibit both a pattern of faunal change and a time span for diversification similar to that seen in the fossil record. They also generate structure similar to that seen in global diversification, including logistic patterns of growth, declining origination but constant extinction within clades through time, and declining overall extinction across clades through time.

  13. Multiscale Currents Observed by MMS in the Flow Braking Region

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.

    2018-02-01

    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

  14. Phylogeography of Chinese cherry (Prunus pseudocerasus Lindl.) inferred from chloroplast and nuclear DNA: insights into evolutionary patterns and demographic history.

    PubMed

    Chen, T; Chen, Q; Luo, Y; Huang, Z-L; Zhang, J; Tang, H-R; Pan, D-M; Wang, X-R

    2015-07-01

    Chinese cherry (Prunus pseudocerasus Lindl.) is a commercially valuable fruit crop in China. In order to obtain new insights into its evolutionary history and provide valuable recommendations for resource conservation, phylogeographic patterns of 26 natural populations (305 total individuals) from six geographic regions were analyzed using chloroplast and nuclear DNA fragments. Low levels of haplotype and nucleotide diversity were found in these populations, especially in landrace populations. It is likely that a combined effect of botanical characteristics impact the effective population size, such as inbreeding mating system, long life span, as well as vegetative reproduction. In addition, strong bottleneck effect caused by domestication, together with founder effect after dispersal and subsequent demographic expansion, might also accelerate the reduction of the genetic variation in landrace populations. Interestingly, populations from Longmen Mountain (LMM) and Daliangshan Mountain (DLSM) exhibited relatively higher levels of genetic diversity, inferring the two historical genetic diversity centers of the species. Moreover, moderate population subdivision was also detected by both chloroplast DNA (GST = 0.215; NST = 0.256) and nuclear DNA (GST = 0.146; NST = 0.342), respectively. We inferred that the episodes of efficient gene flow through seed dispersal, together with features of long generation cycle and inbreeding mating system, were likely the main contributors causing the observed phylogeographic patterns. Finally, factors that led to the present demographic patterns of populations from these regions and taxonomic varieties were also discussed. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary.

    PubMed

    Wei, Guangshan; Li, Mingcong; Li, Fenge; Li, Han; Gao, Zheng

    2016-11-01

    There are close exchanges between sediment and water in estuaries; however, the patterns of prokaryotic community assembly in these two habitat types are still unclear. This study investigated the bacterial and archaeal abundance, diversity, and community composition in the sediment and the overlying water of the Yellow River estuary. Notably higher prokaryotic abundance and diversity were detected in the sediment than in the water, and bacterial abundance and diversity were remarkably higher than those of archaea. Furthermore, the ratio of bacterial to archaeal 16S rRNA gene abundance was significantly lower in the sediment than in the water. Bacterial communities at different taxonomic levels were apparently distinct between the sediment and water, but archaeal communities were not. The most dominant bacteria were affiliated with Deltaproteobacteria and Gammaproteobacteria in sediment and with Alphaproteobacteria and Betaproteobacteria in water. Euryarchaeota and Thaumarchaeota were the most abundant archaea in both habitats. Although distinct prokaryotic distribution patterns were observed, most of the dominant bacteria and archaea present were related to carbon, nitrogen, and sulfur cycling processes, such as methanogenesis, ammonia oxidation, and sulfate reduction. Unexpectedly, prokaryotes from the water showed a higher sensitivity to environmental factors, while only a few factors affected sediment communities. Additionally, some potential co-occurrence relationships between prokaryotes were also found in this study. These results suggested distinct distribution patterns of bacterial and archaeal communities between sediment and overlying water in this important temperate estuary, which may serve as a useful community model for the further ecological and evolutionary study of prokaryotes in estuarine ecosystems.

  16. Community structure and elevational diversity patterns of soil Acidobacteria.

    PubMed

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Li, Guangliang; Qu, Yuanyuan; Su, Xiujiang; Zhou, Jizhong; Li, Diqiang

    2014-08-01

    Acidobacteria is one of the most dominant and abundant phyla in soil, and was believed to have a wide range of metabolic and genetic functions. Relatively little is known about its community structure and elevational diversity patterns. We selected four elevation gradients from 1000 to 2800 m with typical vegetation types of the northern slope of Shennongjia Mountain in central China. The vegetation types were evergreen broadleaved forest, deciduous broadleaved forest, coniferous forest and sub-alpine shrubs. We analyzed the soil acidobacterial community composition, elevational patterns and the relationship between Acidobacteria subdivisions and soil enzyme activities by using the 16S rRNA meta-sequencing technique and multivariate statistical analysis. The result found that 19 known subdivisions as well as an unclassified phylotype were presented in these forest sites, and Subdivision 6 has the highest number of detectable operational taxonomic units (OTUs). A significant single peak distribution pattern (P<0.05) between the OTU number and the elevation was observed. The Jaccard and Bray-Curtis index analysis showed that the soil Acidobacteria compositional similarity significantly decreased (P<0.01) with the increase in elevation distance. Mantel test analysis showed the most of the soil Acidobacteria subdivisions had the significant relationship (P<0.01) with different soil enzymes. Therefore, soil Acidobacteria may be involved in different ecosystem functions in global elemental cycles. Partial Mantel tests and CCA analysis showed that soil pH, soil temperature and plant diversity may be the key factors in shaping the soil Acidobacterial community structure. Copyright © 2014. Published by Elsevier B.V.

  17. Historical factors shaped species diversity and composition of Salix in eastern Asia.

    PubMed

    Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng

    2017-02-08

    Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species.

  18. Historical factors shaped species diversity and composition of Salix in eastern Asia

    PubMed Central

    Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng

    2017-01-01

    Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species. PMID:28176816

  19. Patterns of genetic and morphometric diversity in baobab (Adansonia digitata) populations across different climatic zones of Benin (West Africa).

    PubMed

    Assogbadjo, A E; Kyndt, T; Sinsin, B; Gheysen, G; van Damme, P

    2006-05-01

    Baobab (Adansonia digitata) is a multi-purpose tree used daily by rural African communities. The present study aimed at investigating the level of morphometric and genetic variation and spatial genetic structure within and between threatened baobab populations from the three climatic zones of Benin. A total of 137 individuals from six populations were analysed using morphometric data as well as molecular marker data generated using the AFLP technique. Five primer pairs resulted in a total of 217 scored bands with 78.34 % of them being polymorphic. A two-level AMOVA of 137 individuals from six baobab populations revealed 82.37 % of the total variation within populations and 17.63 % among populations (P < 0.001). Analysis of population structure with allele-frequency based F-statistics revealed a global F(ST) of 0.127 +/- 0.072 (P < 0.001). The mean gene diversity within populations (H(S)) and the average gene diversity between populations (D(ST)) were estimated at 0.309 +/- 0.000 and 0.045 +/- 0.072, respectively. Baobabs in the Sudanian and Sudan-Guinean zones of Benin were short and produced the highest yields of pulp, seeds and kernels, in contrast to the ones in the Guinean zone, which were tall and produced only a small number of fruits with a low pulp, seed and kernel productivity. A statistically significant correlation with the observed patterns of genetic diversity was observed for three morphological characteristics: height of the trees, number of branches and thickness of the capsules. The results indicate some degree of physical isolation of the populations collected in the different climatic zones and suggest a substantial amount of genetic structuring between the analysed populations of baobab. Sampling options of the natural populations are suggested for in or ex situ conservation.

  20. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis.

    PubMed

    Winternitz, J; Abbate, J L; Huchard, E; Havlíček, J; Garamszegi, L Z

    2017-01-01

    Genes of the major histocompatibility complex (MHC) in vertebrates are integral for effective adaptive immune response and are associated with sexual selection. Evidence from a range of vertebrates supports MHC-based preference for diverse and dissimilar mating partners, but evidence from human mate choice studies has been disparate and controversial. Methodologies and sampling peculiarities specific to human studies make it difficult to know whether wide discrepancies in results among human populations are real or artefact. To better understand what processes may affect MHC-mediated mate choice across humans and nonhuman primates, we performed phylogenetically controlled meta-analyses using 58 effect sizes from 30 studies across seven primate species. Primates showed a general trend favouring more MHC-diverse mates, which was statistically significant for humans. In contrast, there was no tendency for MHC-dissimilar mate choice, and for humans, we observed effect sizes indicating selection of both MHC-dissimilar and MHC-similar mates. Focusing on MHC-similar effect sizes only, we found evidence that preference for MHC similarity was an artefact of population ethnic heterogeneity in observational studies but not among experimental studies with more control over sociocultural biases. This suggests that human assortative mating biases may be responsible for some patterns of MHC-based mate choice. Additionally, the overall effect sizes of primate MHC-based mating preferences are relatively weak (Fisher's Z correlation coefficient for dissimilarity Zr = 0.044, diversity Zr = 0.153), calling for careful sampling design in future studies. Overall, our results indicate that preference for more MHC-diverse mates is significant for humans and likely conserved across primates. © 2016 John Wiley & Sons Ltd.

  1. Cryptic diversity in Afro-tropical lowland forests: The systematics and biogeography of the avian genus Bleda.

    PubMed

    Huntley, Jerry W; Voelker, Gary

    2016-06-01

    Recent investigations of distributional patterns of Afro-tropical lowland forest species have demonstrated to some degree our overall lack of understanding involving historical diversification patterns. Traditionally, researchers have relied upon two hypotheses, each of which views the lowland forest of Africa in differing roles. The Pleistocene Forest Refuge Hypothesis (PFRH) posits that biogeographic patterns of avian lowland species are explained via allopatric speciation during forest fragmentation cycles in the Pleistocene epoch (c. 1.8Ma-11,700Ka). The Montane Speciation Hypothesis (MSH) countered by suggesting that lowland forests are "evolutionary museums" where species, which originally evolved in montane forest refuge centers, remained without further diversification. Furthermore, investigations have largely regarded widespread, avian species which lack phenotypic variability as biogeographically "uninformative", with regards to historical biogeographic patterns. To test the tenets of these ideas, we investigated the systematics and biogeography of the genus Bleda, whose constituent species are restricted to lowland forest and are lacking in phenotypic variation. Using extracted DNA from 179 individuals, we amplified two mitochondrial genes and three nuclear loci and utilized Bayesian phylogenetic methods and molecular clock dating to develop a time-calibrated phylogeny of Bleda. We used LaGrange to develop an ancestral area reconstruction for the genus. Haplotype networks for three species were generated using Network. We recovered the four currently recognized species of Bleda, plus a monophyletic B. ugandae, a current sub-species which may warrant full species status. We found that the origins of the genus Bleda are estimated to be in the Upper Guinean forests of West Africa, dating to the Miocene (c. 7.5Ma), while the speciation events for the rest of the genus are dated to the Pliocene (c. 5-1.8Ma). Our analyses recovered discrete and highly differentiated geographic structuring of genetic diversity in West and Central Africa in three of five species, with many of the diversification events dating to the Pleistocene. The biogeographic patterns observed in Bleda can be explained through a combination of isolation via forest refuges during the Plio-Pleistocene and riverine barriers limiting secondary contact after forest expansion. We find evidence for the PFRH as a driver of intra-specific diversity, but conclude that it does not facilitate an explanation for speciation in the genus Bleda. The "evolutionary museum" concept furnished by the MSH is countered by our evidence of in situ diversification in the lowland forests of Africa. Additionally, our results provide strong evidence of the value of seemingly "uninformative" widespread avian taxa for revealing complex patterns of forest diversity. Overall, our study highlights that past researchers have both underestimated the amount of diversity found in lowland forests and failed to understand the complexity of historical forces shaping that diversity. Gaining a better understanding of lowland forest diversity and the historical factors which have shaped it will crucial in determining conservation tactics in the near future. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Patterns of plant diversity loss and species turnover resulting from land abandonment and intensification in semi-natural grasslands.

    PubMed

    Uchida, Kei; Koyanagi, Tomoyo F; Matsumura, Toshikazu; Koyama, Asuka

    2018-07-15

    Land-use changes cause biodiversity loss in semi-natural ecosystems worldwide. Biotic homogenization has led to biodiversity loss, mainly through declines in species composition turnover. Elucidating patterns of turnover in species composition could enhance our understanding of how anthropogenic activities affect community assembly. Here, we focused on whether the decreasing patterns in plant diversity and turnover of species composition resulting from land-use change vary in two regions. We estimated the species diversity and composition of semi-natural grasslands surrounding paddy fields in satoyama landscapes. We examined the differences in species diversity and composition across three land-use types (abandoned, traditional, and intensified) in two regions (Hyogo and Niigata Prefectures, Japan), which were characterized by different climatic conditions. We then assessed alpha-, beta-, and gamma-diversity to compare the patterns of diversity losses in the two regions as a result of land-use changes. In each region, gamma-diversity was consistently higher in the traditional sites compared to abandoned or intensified sites. The analyses revealed that most of the beta-diversity in traditional sites differed significantly from those of abandoned and intensified sites in both regions. However, the beta-diversity of total and perennial species did not differ between traditional and abandoned sites in the Hyogo region. We noted that the beta-diversity of total and perennial species in intensified sites was much lower than that in the traditional sites of the Niigata region. Overall, the patterns of alpha- and gamma-diversity loss were similar in both study regions. Although the biotic homogenization was caused by intensified land-use in the Niigata region, this hypothesis did not completely explain the loss of biodiversity in the abandoned sites in the Hyogo region. The present study contributes to the growing body of work investigating changes in biodiversity as a result of both biotic homogenization and differentiation in semi-natural ecosystems. Conservationists and policy makers should focus on patterns of species composition responded to land-use changes that continue to increase worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Epigenetic and genetic variation among three separate introductions of the house sparrow (Passer domesticus) into Australia

    PubMed Central

    Schrey, A.; Ragsdale, A.; Griffith, S. C.

    2018-01-01

    Invasive populations are often associated with low levels of genetic diversity owing to population bottlenecks at the initial stages of invasion. Despite this, the ability of invasive species to adapt rapidly in response to novel environments is well documented. Epigenetic mechanisms have recently been proposed to facilitate the success of invasive species by compensating for reduced levels of genetic variation. Here, we use methylation sensitive-amplification fragment length polymorphism and microsatellite analyses to compare levels of epigenetic and genetic diversity and differentiation across 15 sites in the introduced Australian house sparrow population. We find patterns of epigenetic and genetic differentiation that are consistent with historical descriptions of three distinct, introductions events. However unlike genetic differentiation, epigenetic differentiation was higher among sample sites than among invasion clusters, suggesting that patterns of epigenetic variation are more strongly influenced by local environmental stimuli or sequential founder events than the initial diversity in the introduction population. Interestingly, we fail to detect correlations between pairwise site comparisons of epigenetic and genetic differentiation, suggesting that some of the observed epigenetic variation has arisen independently of genetic variation. We also fail to detect the potentially compensatory relationship between epigenetic and genetic diversity that has been detected in a more recent house sparrow invasion in Africa. We discuss the potential for this relationship to be obscured by recovered genetic diversity in more established populations, and highlight the importance of incorporating introduction history into population-wide epigenetic analyses. PMID:29765671

  4. The genomic signature of sexual selection in the genetic diversity of the sex chromosomes and autosomes.

    PubMed

    Corl, Ammon; Ellegren, Hans

    2012-07-01

    Genomic levels of variation can help reveal the selective and demographic forces that have affected a species during its history. The relative amount of genetic diversity observed on the sex chromosomes as compared to the autosomes is predicted to differ among monogamous and polygynous species. Many species show departures from the expectation for monogamy, but it can be difficult to conclude that this pattern results from variation in mating system because forces other than sexual selection can act upon sex chromosome genetic diversity. As a critical test of the role of mating system, we compared levels of genetic diversity on the Z chromosome and autosomes of phylogenetically independent pairs of shorebirds that differed in their mating systems. We found general support for sexual selection shaping sex chromosome diversity because most polygynous species showed relatively reduced genetic variation on their Z chromosomes as compared to monogamous species. Differences in levels of genetic diversity between the sex chromosomes and autosomes may therefore contribute to understanding the long-term history of sexual selection experienced by a species. © 2012 The Author(s).

  5. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea.

    PubMed

    Mindel, Beth L; Neat, Francis C; Trueman, Clive N; Webb, Thomas J; Blanchard, Julia L

    2016-01-01

    Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300-2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  6. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation.

    PubMed

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment.

  7. Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal.

    PubMed

    Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob

    2012-01-01

    Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao's distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000-13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species' Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao.

  8. Present Spatial Diversity Patterns of Theobroma cacao L. in the Neotropics Reflect Genetic Differentiation in Pleistocene Refugia Followed by Human-Influenced Dispersal

    PubMed Central

    Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob

    2012-01-01

    Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao’s distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000–13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species’ Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao. PMID:23112832

  9. Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds.

    PubMed

    Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Faria, Deborah

    2016-01-01

    Biodiversity maintenance in human-altered landscapes (HALs) depends on the species turnover among localities, but the patterns and determinants of β-diversity in HALs are poorly known. In fact, declines, increases and neutral shifts in β-diversity have all been documented, depending on the landscape, ecological group and spatial scale of analysis. We shed some light on this controversy by assessing the patterns and predictors of bird β-diversity across multiple spatial scales considering forest specialist and habitat generalist bird assemblages. We surveyed birds from 144 point counts in 36 different forest sites across two landscapes with different amount of forest cover in the Brazilian Atlantic forest. We analysed β-diversity among points, among sites and between landscapes with multiplicative diversity partitioning of Hill numbers. We tested whether β-diversity among points was related to within-site variations in vegetation structure, and whether β-diversity among sites was related to site location and/or to differences among sites in vegetation structure and landscape composition (i.e. per cent forest and pasture cover surrounding each site). β-diversity between landscapes was lower than among sites and among points in both bird assemblages. In forest specialist birds, the landscape with less forest cover showed the highest β-diversity among sites (bird differentiation among sites), but generalist birds showed the opposite pattern. At the local scale, however, the less forested landscape showed the lowest β-diversity among points (bird homogenization within sites), independently of the bird assemblage. β-diversity among points was weakly related to vegetation structure, but higher β-diversity values were recorded among sites that were more isolated from each other, and among sites with higher differences in landscape composition, particularly in the less forested landscape. Our findings indicate that patterns of bird β-diversity vary across scales and are strongly related to landscape composition. Bird assemblages are shaped by both environmental filtering and dispersal limitation, particularly in less forested landscapes. Conservation and management strategies should therefore prevent deforestation in this biodiversity hotspot. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  10. Altitudinal patterns in breeding bird species richness and density in relation to climate, habitat heterogeneity, and migration influence in a temperate montane forest (South Korea).

    PubMed

    Kim, Jin-Yong; Lee, Sanghun; Shin, Man-Seok; Lee, Chang-Hoon; Seo, Changwan; Eo, Soo Hyung

    2018-01-01

    Altitudinal patterns in the population ecology of mountain bird species are useful for predicting species occurrence and behavior. Numerous hypotheses about the complex interactions among environmental factors have been proposed; however, these still remain controversial. This study aimed to identify the altitudinal patterns in breeding bird species richness or density and to test the hypotheses that climate, habitat heterogeneity (horizontal and vertical), and heterospecific attraction in a temperate forest, South Korea. We conducted a field survey of 142 plots at altitudes between 200 and 1,400 m a.s.l in the breeding season. A total of 2,771 individuals from 53 breeding bird species were recorded. Altitudinal patterns of species richness and density showed a hump-shaped pattern, indicating that the highest richness and density could be observed at moderate altitudes. Models constructed with 13 combinations of six variables demonstrated that species richness was positively correlated with vertical and horizontal habitat heterogeneity. Density was positively correlated with vertical, but not horizontal habitat heterogeneity, and negatively correlated with migratory bird ratio. No significant relationships were found between spring temperature and species richness or density. Therefore, the observed patterns in species richness support the hypothesis that habitat heterogeneity, rather than climate, is the main driver of species richness. Also, neither habitat heterogeneity nor climate hypotheses fully explains the observed patterns in density. However, vertical habitat heterogeneity does likely help explain observed patterns in density. The heterospecific attraction hypothesis did not apply to the distribution of birds along the altitudinal gradient. Appropriate management of vertical habitat heterogeneity, such as vegetation cover, should be maintained for the conservation of bird diversity in this area.

  11. Mate choice for major histocompatibility complex genetic divergence as a bet-hedging strategy in the Atlantic salmon (Salmo salar).

    PubMed

    Evans, Melissa L; Dionne, Mélanie; Miller, Kristina M; Bernatchez, Louis

    2012-01-22

    Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.

  12. Mate choice for major histocompatibility complex genetic divergence as a bet-hedging strategy in the Atlantic salmon (Salmo salar)

    PubMed Central

    Evans, Melissa L.; Dionne, Mélanie; Miller, Kristina M.; Bernatchez, Louis

    2012-01-01

    Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures. PMID:21697172

  13. Factoring in weather variation to capture the influence of urban design and built environment on globally recommended levels of moderate to vigorous physical activity in children

    PubMed Central

    Katapally, Tarun Reddy; Muhajarine, Nazeem

    2015-01-01

    Objectives In curbing physical inactivity, as behavioural interventions directed at individuals have not produced a population-level change, an ecological perspective called active living research has gained prominence. However, active living research consistently underexplores the role played by a perennial phenomenon encompassing all other environmental exposures—variation in weather. After factoring in weather variation, this study investigated the influence of diverse environmental exposures (including urban design and built environment) on the accumulation of globally recommended moderate to vigorous physical activity levels (MVPA) in children. Design This cross-sectional observational study is part of an active living initiative set in the Canadian prairie city of Saskatoon. As part of this study, Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Moreover, diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive MVPA of 331 10–14-year-old children in 25 1-week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample and matched with weather data obtained from Environment Canada. Multilevel modelling using Hierarchical Linear and Non-linear Modelling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on the accumulation of recommended MVPA. Results Urban design, including diversity of destinations within neighbourhoods played a significant role in the accumulation of MVPA. After factoring in weather variation, it was observed that children living in neighbourhoods closer to the city centre (with higher diversity of destinations) were more likely to accumulate recommended MVPA. Conclusions The findings indicate that after factoring in weather variation, certain types of urban design are more likely to be associated with MVPA accumulation. PMID:26621516

  14. Genetic diversity and species diversity of stream fishes covary across a land-use gradient.

    PubMed

    Blum, Michael J; Bagley, Mark J; Walters, David M; Jackson, Suzanne A; Daniel, F Bernard; Chaloud, Deborah J; Cade, Brian S

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems.

  15. Genetic diversity and species diversity of stream fishes covary across a land-use gradient

    USGS Publications Warehouse

    Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackson, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S.

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems. ?? 2011 Springer-Verlag.

  16. Climatic niche conservatism and ecological opportunity in the explosive radiation of arvicoline rodents (Arvicolinae, Cricetidae).

    PubMed

    Lv, Xue; Xia, Lin; Ge, Deyan; Wu, Yongjie; Yang, Qisen

    2016-05-01

    Climatic niche conservatism shapes patterns of diversity in many taxonomic groups, while ecological opportunity (EO) can trigger rapid speciation that is less constrained by the amount of time a lineage has occupied a given habitat. These two processes are well studied, but limited research has considered their joint and relative roles in shaping diversity patterns. We characterized climatic and biogeographic variables for 102 species of arvicoline rodents (Arvicolinae, Cricetidae), testing the effects of climatic niche conservatism and EO on arvicoline diversification as lineages transitioned between biogeographic regions. We found that the amount of time a lineage has occupied a precipitation niche is positively correlated with diversity along a precipitation gradient, suggesting climatic niche conservatism. In contrast, shift in diversification rate explained diversity patterns along a temperature gradient. Our results suggest that an indirect relationship exists between temperature and diversification that is associated with EO as arvicoline rodents colonized warm Palearctic environments. Climatic niche conservatism alone did not fully explain diversity patterns under density-dependence, highlighting the additional importance of EO-related processes in promoting the explosive radiation in arvicoline rodents and shaping diversity pattern among biogeographic regions and along climatic gradients. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  17. Inferring biodiversity maintenance mechanisms from ecological pattern

    NASA Astrophysics Data System (ADS)

    Ostling, Annette

    Among a set of competitors for a single common resource, the best will simply exclude the others. Yet in nature we can see astounding diversity of competing species. Do close similarities in species' response to the local environment primarily explain their coexistence? Or is this diversity possible because of differences between species that stabilize their coexistence? And if so, what particular differences between species are important in particular communities? Some ecological communities lend themselves to experimental manipulation to begin to answer these questions. Yet for many other communities, such as tree species in forests, the logistical hurdles to this approach are daunting. Faster progress could be made in ecology if insight into biodiversity maintenance mechanisms could be gained from patterns exhibited in local ecological communities, such as how coexisting species are distributed in their ecological traits and relative abundance. Hurdles that we need to overcome to be able to gain such insight include: 1) further developing neutral theory, a quantitative process-based null model of community pattern resulting when species similarities are what allow their coexistence, and 2) better understanding what patterns to expect when species differences dominate instead, particularly in the context of stochasticity and immigration. I will describe our ongoing research to overcome these hurdles, to provide better tools for analyzing observed pattern. National Science Foundation Advancing Theory in Biology Grant 1038678, Danish National Research Foundation Grant DNRF 96 for the Center of Macroecology, Evolution and Climate.

  18. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem

    PubMed Central

    Lee, Jonathan D.

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55–183 m depth) and slope habitats (184–1280 m depth) off the US West Coast (47°20′N—32°40′N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale, suggesting that coast-wide patterns can obscure important correlates at smaller scales. Our study provides insight into complex diversity patterns of the deep water soft substrate benthic ecosystems off the US West Coast. PMID:26308521

  19. Low Functional β-Diversity Despite High Taxonomic β-Diversity among Tropical Estuarine Fish Communities

    PubMed Central

    Villéger, Sébastien; Miranda, Julia Ramos; Hernandez, Domingo Flores; Mouillot, David

    2012-01-01

    The concept of β-diversity, defined as dissimilarity among communities, has been widely used to investigate biodiversity patterns and community assembly rules. However, in ecosystems with high taxonomic β-diversity, due to marked environmental gradients, the level of functional β-diversity among communities is largely overlooked while it may reveal processes shaping community structure. Here, decomposing biodiversity indices into α (local) and γ (regional) components, we estimated taxonomic and functional β-diversity among tropical estuarine fish communities, through space and time. We found extremely low functional β-diversity values among fish communities (<1.5%) despite high dissimilarity in species composition and species dominance. Additionally, in contrast to the high α and γ taxonomic diversities, α and γ functional diversities were very close to the minimal value. These patterns were caused by two dominant functional groups which maintained a similar functional structure over space and time, despite the strong dissimilarity in taxonomic structure along environmental gradients. Our findings suggest that taxonomic and functional β-diversity deserve to be quantified simultaneously since these two facets can show contrasting patterns and the differences can in turn shed light on community assembly rules. PMID:22792395

  20. Environmental Predictors of Diversity in Recent Planktonic Foraminifera as Recorded in Marine Sediments

    PubMed Central

    Pearson, Paul N.; Dunkley Jones, Tom; Purvis, Andy

    2016-01-01

    Global diversity patterns are thought to result from a combination of environmental and historical factors. This study tests the set of ecological and evolutionary hypotheses proposed to explain the global variation in present-day coretop diversity in the macroperforate planktonic foraminifera, a clade with an exceptional fossil record. Within this group, marine surface sediment assemblages are thought to represent an accurate, although centennial to millennial time-averaged, representation of recent diversity patterns. Environmental variables chosen to capture ocean temperature, structure, productivity and seasonality were used to model a range of diversity measures across the world’s oceans. Spatial autoregressive models showed that the same broad suite of environmental variables were important in shaping each of the four largely independent diversity measures (rarefied species richness, Simpson’s evenness, functional richness and mean evolutionary age). Sea-surface temperature explains the largest portion of diversity in all four diversity measures, but not in the way predicted by the metabolic theory of ecology. Vertical structure could be linked to increased diversity through the strength of stratification, but not through the depth of the mixed layer. There is limited evidence that seasonal turnover explains diversity patterns. There is evidence for functional redundancy in the low-latitude sites. The evolutionary mechanism of deep-time stability finds mixed support whilst there is relatively little evidence for an out-of-the-tropics model. These results suggest the diversity patterns of planktonic foraminifera cannot be explained by any one environmental variable or proposed mechanism, but instead reflect multiple processes acting in concert. PMID:27851751

  1. Environmental Predictors of Diversity in Recent Planktonic Foraminifera as Recorded in Marine Sediments.

    PubMed

    Fenton, Isabel S; Pearson, Paul N; Dunkley Jones, Tom; Purvis, Andy

    2016-01-01

    Global diversity patterns are thought to result from a combination of environmental and historical factors. This study tests the set of ecological and evolutionary hypotheses proposed to explain the global variation in present-day coretop diversity in the macroperforate planktonic foraminifera, a clade with an exceptional fossil record. Within this group, marine surface sediment assemblages are thought to represent an accurate, although centennial to millennial time-averaged, representation of recent diversity patterns. Environmental variables chosen to capture ocean temperature, structure, productivity and seasonality were used to model a range of diversity measures across the world's oceans. Spatial autoregressive models showed that the same broad suite of environmental variables were important in shaping each of the four largely independent diversity measures (rarefied species richness, Simpson's evenness, functional richness and mean evolutionary age). Sea-surface temperature explains the largest portion of diversity in all four diversity measures, but not in the way predicted by the metabolic theory of ecology. Vertical structure could be linked to increased diversity through the strength of stratification, but not through the depth of the mixed layer. There is limited evidence that seasonal turnover explains diversity patterns. There is evidence for functional redundancy in the low-latitude sites. The evolutionary mechanism of deep-time stability finds mixed support whilst there is relatively little evidence for an out-of-the-tropics model. These results suggest the diversity patterns of planktonic foraminifera cannot be explained by any one environmental variable or proposed mechanism, but instead reflect multiple processes acting in concert.

  2. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes.

    PubMed

    Osborne, Megan J; Perkin, Joshuah S; Gido, Keith B; Turner, Thomas F

    2014-12-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. © 2014 John Wiley & Sons Ltd.

  3. Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison.

    PubMed

    Vergés, Adriana; Bennett, Scott; Bellwood, David R

    2012-01-01

    Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast) and Ningaloo Reef (western coast). The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.

  4. Inexplicable or Simply Unexplained? The Management of Maize Seed in Mexico

    PubMed Central

    Dyer, George A.; López-Feldman, Alejandro

    2013-01-01

    Farmer management of plant germplasm pre-dates crop domestication, but humans’ role in crop evolution and diversity remains largely undocumented and often contested. Seemingly inexplicable practices observed throughout agricultural history, such as exchanging or replacing seed, continue to structure crop populations across the developing world. Seed management practices can be construed as events in the life history of crops and management data used to model crop demography, but this requires suitable quantitative data. As a prerequisite to addressing the causes and implications of maize seed management, we describe its patterns of variation across Mexico by drawing from the literature and new analysis. We find that rates of seed replacement, introduction and diffusion differ significantly across regions and altitudinal zones, but interactions among explanatory factors can obscure patterns of variation. The type, source, geographic origin and ownership of seed help explain observed rates. Yet, controlling for the characteristics of germplasm barely reduces interregional differences vastly exceeding variation across elevations. With few exceptions, monotonic altitudinal trends are absent. Causal relationships between management practices and the physical environment could determine farmers’ wellbeing and crop conservation in the face of climate change. Scarce and inconsistent data on management nevertheless could prevent an understanding of these relationships. Current conceptions on the management and dynamics of maize diversity are founded on a patchwork of observations in surprisingly few and dissimilar environments. Our estimates of management practices should shed light on differences in maize population dynamics across Mexico. Consistency with previous studies spanning over a decade suggests that common sets of forces are present within large areas, but causal associations remain unknown. The next step in explaining crop diversity should address variation in seed management across space and time simultaneously while identifying farmers’ values and motivations as underlying forces. PMID:23840847

  5. Inexplicable or simply unexplained? The management of maize seed in Mexico.

    PubMed

    Dyer, George A; López-Feldman, Alejandro

    2013-01-01

    Farmer management of plant germplasm pre-dates crop domestication, but humans' role in crop evolution and diversity remains largely undocumented and often contested. Seemingly inexplicable practices observed throughout agricultural history, such as exchanging or replacing seed, continue to structure crop populations across the developing world. Seed management practices can be construed as events in the life history of crops and management data used to model crop demography, but this requires suitable quantitative data. As a prerequisite to addressing the causes and implications of maize seed management, we describe its patterns of variation across Mexico by drawing from the literature and new analysis. We find that rates of seed replacement, introduction and diffusion differ significantly across regions and altitudinal zones, but interactions among explanatory factors can obscure patterns of variation. The type, source, geographic origin and ownership of seed help explain observed rates. Yet, controlling for the characteristics of germplasm barely reduces interregional differences vastly exceeding variation across elevations. With few exceptions, monotonic altitudinal trends are absent. Causal relationships between management practices and the physical environment could determine farmers' wellbeing and crop conservation in the face of climate change. Scarce and inconsistent data on management nevertheless could prevent an understanding of these relationships. Current conceptions on the management and dynamics of maize diversity are founded on a patchwork of observations in surprisingly few and dissimilar environments. Our estimates of management practices should shed light on differences in maize population dynamics across Mexico. Consistency with previous studies spanning over a decade suggests that common sets of forces are present within large areas, but causal associations remain unknown. The next step in explaining crop diversity should address variation in seed management across space and time simultaneously while identifying farmers' values and motivations as underlying forces.

  6. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.

    PubMed

    Hakkenberg, C R; Zhu, K; Peet, R K; Song, C

    2018-02-01

    The central role of floristic diversity in maintaining habitat integrity and ecosystem function has propelled efforts to map and monitor its distribution across forest landscapes. While biodiversity studies have traditionally relied largely on ground-based observations, the immensity of the task of generating accurate, repeatable, and spatially-continuous data on biodiversity patterns at large scales has stimulated the development of remote-sensing methods for scaling up from field plot measurements. One such approach is through integrated LiDAR and hyperspectral remote-sensing. However, despite their efficiencies in cost and effort, LiDAR-hyperspectral sensors are still highly constrained in structurally- and taxonomically-heterogeneous forests - especially when species' cover is smaller than the image resolution, intertwined with neighboring taxa, or otherwise obscured by overlapping canopy strata. In light of these challenges, this study goes beyond the remote characterization of upper canopy diversity to instead model total vascular plant species richness in a continuous-cover North Carolina Piedmont forest landscape. We focus on two related, but parallel, tasks. First, we demonstrate an application of predictive biodiversity mapping, using nonparametric models trained with spatially-nested field plots and aerial LiDAR-hyperspectral data, to predict spatially-explicit landscape patterns in floristic diversity across seven spatial scales between 0.01-900 m 2 . Second, we employ bivariate parametric models to test the significance of individual, remotely-sensed predictors of plant richness to determine how parameter estimates vary with scale. Cross-validated results indicate that predictive models were able to account for 15-70% of variance in plant richness, with LiDAR-derived estimates of topography and forest structural complexity, as well as spectral variance in hyperspectral imagery explaining the largest portion of variance in diversity levels. Importantly, bivariate tests provide evidence of scale-dependence among predictors, such that remotely-sensed variables significantly predict plant richness only at spatial scales that sufficiently subsume geolocational imprecision between remotely-sensed and field data, and best align with stand components including plant size and density, as well as canopy gaps and understory growth patterns. Beyond their insights into the scale-dependent patterns and drivers of plant diversity in Piedmont forests, these results highlight the potential of remotely-sensible essential biodiversity variables for mapping and monitoring landscape floristic diversity from air- and space-borne platforms. © 2017 by the Ecological Society of America.

  7. The Brazilian freshwater wetscape: Changes in tree community diversity and composition on climatic and geographic gradients

    PubMed Central

    Wittmann, Florian; Marques, Márcia C. M.; Damasceno Júnior, Geraldo; Budke, Jean Carlos; Piedade, Maria T. F.; de Oliveira Wittmann, Astrid; Montero, Juan Carlos; de Assis, Rafael L.; Targhetta, Natália; Parolin, Pia; Junk, Wolfgang J.

    2017-01-01

    Wetlands harbor an important compliment of regional plant diversity, but in many regions data on wetland diversity and composition is still lacking, thus hindering our understanding of the processes that control it. While patterns of broad-scale terrestrial diversity and composition typically correlate with contemporary climate it is not clear to what extent patterns in wetlands are complimentary, or conflicting. To elucidate this, we consolidate data from wetland forest inventories in Brazil and examine patterns of diversity and composition along temperature and rainfall gradients spanning five biomes. We collated 196 floristic inventories covering an area >220 ha and including >260,000 woody individuals. We detected a total of 2,453 tree species, with the Amazon alone accounting for nearly half. Compositional patterns indicated differences in freshwater wetland floras among Brazilian biomes, although biomes with drier, more seasonal climates tended to have a larger proportion of more widely distributed species. Maximal alpha diversity increased with annual temperature, rainfall, and decreasing seasonality, patterns broadly consistent with upland vegetation communities. However, alpha diversity-climate relationships were only revealed at higher diversity values associated with the uppermost quantiles, and in most sites diversity varied irrespective of climate. Likewise, mean biome-level differences in alpha-diversity were unexpectedly modest, even in comparisons of savanna-area wetlands to those of nearby forested regions. We describe attenuated wetland climate-diversity relationships as a shifting balance of local and regional effects on species recruitment. Locally, excessive waterlogging strongly filters species able to colonize from regional pools. On the other hand, increased water availability can accommodate a rich community of drought-sensitive immigrant species that are able to track buffered wetland microclimates. We argue that environmental conditions in many wetlands are not homogeneous with respect to regional climate, and that responses of wetland tree communities to future climate change may lag behind that of non-wetland, terrestrial habitat. PMID:28394937

  8. Effects of landscape features on population genetic variation of a tropical stream fish, Stone lapping minnow, Garra cambodgiensis, in the upper Nan River drainage basin, northern Thailand.

    PubMed

    Jaisuk, Chaowalee; Senanan, Wansuk

    2018-01-01

    Spatial genetic variation of river-dwelling freshwater fishes is typically affected by the historical and contemporary river landscape as well as life-history traits. Tropical river and stream landscapes have endured extended geological change, shaping the existing pattern of genetic diversity, but were not directly affected by glaciation. Thus, spatial genetic variation of tropical fish populations should look very different from the pattern observed in temperate fish populations. These data are becoming important for designing appropriate management and conservation plans, as these aquatic systems are undergoing intense development and exploitation. This study evaluated the effects of landscape features on population genetic diversity of Garra cambodgiensis, a stream cyprinid , in eight tributary streams in the upper Nan River drainage basin ( n  = 30-100 individuals/location), Nan Province, Thailand. These populations are under intense fishing pressure from local communities. Based on 11 microsatellite loci, we detected moderate genetic diversity within eight population samples (average number of alleles per locus = 10.99 ± 3.00; allelic richness = 10.12 ± 2.44). Allelic richness within samples and stream order of the sampling location were negatively correlated ( P  < 0.05). We did not detect recent bottleneck events in these populations, but we did detect genetic divergence among populations (Global F ST = 0.022, P  < 0.01). The Bayesian clustering algorithms (TESS and STRUCTURE) suggested that four to five genetic clusters roughly coincide with sub-basins: (1) headwater streams/main stem of the Nan River, (2) a middle tributary, (3) a southeastern tributary and (4) a southwestern tributary. We observed positive correlation between geographic distance and linearized F ST ( P  < 0.05), and the genetic differentiation pattern can be moderately explained by the contemporary stream network (STREAMTREE analysis, R 2 = 0.75). The MEMGENE analysis suggested genetic division between northern (genetic clusters 1 and 2) and southern (clusters 3 and 4) sub-basins. We observed a high degree of genetic admixture in each location, highlighting the importance of natural flooding patterns and possible genetic impacts of supplementary stocking. Insights obtained from this research advance our knowledge of the complexity of a tropical stream system, and guide current conservation and restoration efforts for this species in Thailand.

  9. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.

    PubMed

    Borges, Rui; Khan, Imran; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2015-10-06

    The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.

  10. Comparison of antibiotic resistance patterns in collections of Escherichia coli and Proteus mirabilis uropathogenic strains.

    PubMed

    Adamus-Bialek, Wioletta; Zajac, Elzbieta; Parniewski, Pawel; Kaca, Wieslaw

    2013-04-01

    Escherichia coli and Proteus mirabilis are important urinary tract pathogens. The constant increase in the antibiotic resistance of clinical bacterial strains has become an important clinical problem. The aim of this study was to compare the antibiotic resistance of 141 clinical (Sweden and Poland) and 42 laboratory (Czech Republic) P. mirabilis strains and 129 clinical (Poland) uropathogenic E. coli strains. The proportion of unique versus diverse patterns in Swedish clinical and laboratory P. mirabilis strain collections was comparable. Notably, a similar proportion of unique versus diverse patterns was observed in Polish clinical P. mirabilis and E. coli strain collections. Mathematical models of the antibiotic resistance of E. coli and P. mirabilis strains based on Kohonen networks and association analysis are presented. In contrast to the three clinical strain collections, which revealed complex associations with the antibiotics tested, laboratory P. mirabilis strains provided simple antibiotic association diagrams. The monitoring of antibiotic resistance patterns of clinical E. coli and P. mirabilis strains plays an important role in the treatment procedures for urinary tract infections and is important in the context of the spreading drug resistance in uropathogenic strain populations. The adaptability and flexibility of the genomes of E. coli and P. mirabilis strains are discussed.

  11. Seasonal patterns of horse fly richness and abundance in the Pampa biome of southern Brazil.

    PubMed

    Krüger, Rodrigo Ferreira; Krolow, Tiago Kütter

    2015-12-01

    Fluctuations in seasonal patterns of horse fly populations were examined in rainforests of tropical South America, where the climate is seasonal. These patterns were evaluated with robust analytical models rather than identifying the main factors that influenced the fluctuations. We examined the seasonality of populations of horse flies in fields and lowland areas of the Pampa biome of southern Brazil with generalized linear models. We also investigated the diversity of these flies and the sampling effort of Malaise traps in this biome over two years. All of the 29 species had clear seasonality with regard to occurrence and abundance, but only seven species were identified as being influenced by temperature and humidity. The sampling was sufficient and the estimated diversity was 10% more than observed. Seasonal trends were synchronized across species and the populations were most abundant between September and March and nearly zero in other months. While previous studies demonstrated that seasonal patterns in population fluctuations are correlated with climatic conditions in horse fly assemblages in South America rainforests, we show a clear effect of each factor on richness and abundance and the seasonality in the prevalence of horse fly assemblages in localities of the Pampa biome. © 2015 The Society for Vector Ecology.

  12. Pairwise diversity ranking of polychotomous features for ensemble physiological signal classifiers.

    PubMed

    Gupta, Lalit; Kota, Srinivas; Molfese, Dennis L; Vaidyanathan, Ravi

    2013-06-01

    It is well known that fusion classifiers for physiological signal classification with diverse components (classifiers or data sets) outperform those with less diverse components. Determining component diversity, therefore, is of the utmost importance in the design of fusion classifiers that are often employed in clinical diagnostic and numerous other pattern recognition problems. In this article, a new pairwise diversity-based ranking strategy is introduced to select a subset of ensemble components, which when combined will be more diverse than any other component subset of the same size. The strategy is unified in the sense that the components can be classifiers or data sets. Moreover, the classifiers and data sets can be polychotomous. Classifier-fusion and data-fusion systems are formulated based on the diversity-based selection strategy, and the application of the two fusion strategies are demonstrated through the classification of multichannel event-related potentials. It is observed that for both classifier and data fusion, the classification accuracy tends to increase/decrease when the diversity of the component ensemble increases/decreases. For the four sets of 14-channel event-related potentials considered, it is shown that data fusion outperforms classifier fusion. Furthermore, it is demonstrated that the combination of data components that yield the best performance, in a relative sense, can be determined through the diversity-based selection strategy.

  13. Approach to determine the diversity of Legionella species by nested PCR-DGGE in aquatic environments.

    PubMed

    Huang, Wen-Chien; Tsai, Hsin-Chi; Tao, Chi-Wei; Chen, Jung-Sheng; Shih, Yi-Jia; Kao, Po-Min; Huang, Tung-Yi; Hsu, Bing-Mu

    2017-01-01

    In this study, we describe a nested PCR-DGGE strategy to detect Legionella communities from river water samples. The nearly full-length 16S rRNA gene was amplified using bacterial primer in the first step. After, the amplicons were employed as DNA templates in the second PCR using Legionella specific primer. The third round of gene amplification was conducted to gain PCR fragments apposite for DGGE analysis. Then the total numbers of amplified genes were observed in DGGE bands of products gained with primers specific for the diversity of Legionella species. The DGGE patterns are thus potential for a high-throughput preliminary determination of aquatic environmental Legionella species before sequencing. Comparative DNA sequence analysis of excised DGGE unique band patterns showed the identity of the Legionella community members, including a reference profile with two pathogenic species of Legionella strains. In addition, only members of Legionella pneumophila and uncultured Legionella sp. were detected. Development of three step nested PCR-DGGE tactic is seen as a useful method for studying the diversity of Legionella community. The method is rapid and provided sequence information for phylogenetic analysis.

  14. Approach to determine the diversity of Legionella species by nested PCR-DGGE in aquatic environments

    PubMed Central

    Huang, Wen-Chien; Tsai, Hsin-Chi; Tao, Chi-Wei; Chen, Jung-Sheng; Shih, Yi-Jia; Kao, Po-Min; Huang, Tung-Yi; Hsu, Bing-Mu

    2017-01-01

    In this study, we describe a nested PCR-DGGE strategy to detect Legionella communities from river water samples. The nearly full-length 16S rRNA gene was amplified using bacterial primer in the first step. After, the amplicons were employed as DNA templates in the second PCR using Legionella specific primer. The third round of gene amplification was conducted to gain PCR fragments apposite for DGGE analysis. Then the total numbers of amplified genes were observed in DGGE bands of products gained with primers specific for the diversity of Legionella species. The DGGE patterns are thus potential for a high-throughput preliminary determination of aquatic environmental Legionella species before sequencing. Comparative DNA sequence analysis of excised DGGE unique band patterns showed the identity of the Legionella community members, including a reference profile with two pathogenic species of Legionella strains. In addition, only members of Legionella pneumophila and uncultured Legionella sp. were detected. Development of three step nested PCR-DGGE tactic is seen as a useful method for studying the diversity of Legionella community. The method is rapid and provided sequence information for phylogenetic analysis. PMID:28166249

  15. Science knowledge and cognitive strategy use among culturally and linguistically diverse students

    NASA Astrophysics Data System (ADS)

    Lee, Okhee; Fradd, Sandra H.; Sutman, Frank X.

    Science performance is determined, to a large extent, by what students already know about science (i.e., science knowledge) and what techniques or methods students use in performing science tasks (i.e., cognitive strategies). This study describes and compares science knowledge, science vocabulary, and cognitive strategy use among four diverse groups of elementary students: (a) monolingual English Caucasian, (b) African-American, (c) bilingual Spanish, and (d) bilingual Haitian Creole. To facilitate science performance in culturally and linguistically congruent settings, the study included student dyads and teachers of the same language, culture, and gender. Science performance was observed using three science tasks: weather phenomena, simple machines, and buoyancy. Data analysis involved a range of qualitative methods focusing on major themes and patterns, and quantitative methods using coding systems to summarize frequencies and total scores. The findings reveal distinct patterns of science knowledge, science vocabulary, and cognitive strategy use among the four language and culture groups. The findings also indicate relationships among science knowledge, science vocabulary, and cognitive strategy use. These findings raise important issues about science instruction for culturally and linguistically diverse groups of students.Received: 3 January 1995;

  16. Effects of climate change on ecological disturbance in the Northern Rockies Region [Chapter 8

    USGS Publications Warehouse

    Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.

    2018-01-01

    This chapter describes the ecology of important disturbance regimes in the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and the Greater Yellowstone Area, hereafter called the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term disturbance regime describes the general temporal and spatial characteristics of a disturbance agent - insect, disease, fire, weather, even human activity - and the effects of that agent on the landscape (table 8.1). More specifically, a disturbance regime is the cumulative effect of multiple disturbance events over space and time (Keane 2013). Disturbances disrupt an ecosystem, community, or population structure and change elements of the biological environment, physical environment, or both (White and Pickett 1985). The resulting shifting mosaic of diverse ecological patterns and structures in turn affects future patterns of disturbance, in a reciprocal, linked relationship that shapes the fundamental character of landscapes and ecosystems. Disturbance creates and maintains biological diversity in the form of shifting, heterogeneous mosaics of diverse communities and habitats across a landscape (McKinney and Drake 1998), and biodiversity is generally highest when disturbance is neither too rare nor too frequent on the landscape (Grime 1973).

  17. Diversity, competition, extinction: the ecophysics of language change.

    PubMed

    Solé, Ricard V; Corominas-Murtra, Bernat; Fortuny, Jordi

    2010-12-06

    As indicated early by Charles Darwin, languages behave and change very much like living species. They display high diversity, differentiate in space and time, emerge and disappear. A large body of literature has explored the role of information exchanges and communicative constraints in groups of agents under selective scenarios. These models have been very helpful in providing a rationale on how complex forms of communication emerge under evolutionary pressures. However, other patterns of large-scale organization can be described using mathematical methods ignoring communicative traits. These approaches consider shorter time scales and have been developed by exploiting both theoretical ecology and statistical physics methods. The models are reviewed here and include extinction, invasion, origination, spatial organization, coexistence and diversity as key concepts and are very simple in their defining rules. Such simplicity is used in order to catch the most fundamental laws of organization and those universal ingredients responsible for qualitative traits. The similarities between observed and predicted patterns indicate that an ecological theory of language is emerging, supporting (on a quantitative basis) its ecological nature, although key differences are also present. Here, we critically review some recent advances and outline their implications and limitations as well as highlight problems for future research.

  18. Diversity, competition, extinction: the ecophysics of language change

    PubMed Central

    Solé, Ricard V.; Corominas-Murtra, Bernat; Fortuny, Jordi

    2010-01-01

    As indicated early by Charles Darwin, languages behave and change very much like living species. They display high diversity, differentiate in space and time, emerge and disappear. A large body of literature has explored the role of information exchanges and communicative constraints in groups of agents under selective scenarios. These models have been very helpful in providing a rationale on how complex forms of communication emerge under evolutionary pressures. However, other patterns of large-scale organization can be described using mathematical methods ignoring communicative traits. These approaches consider shorter time scales and have been developed by exploiting both theoretical ecology and statistical physics methods. The models are reviewed here and include extinction, invasion, origination, spatial organization, coexistence and diversity as key concepts and are very simple in their defining rules. Such simplicity is used in order to catch the most fundamental laws of organization and those universal ingredients responsible for qualitative traits. The similarities between observed and predicted patterns indicate that an ecological theory of language is emerging, supporting (on a quantitative basis) its ecological nature, although key differences are also present. Here, we critically review some recent advances and outline their implications and limitations as well as highlight problems for future research. PMID:20591847

  19. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, David A.; Raab, Theodore K.; Parker, Melanie

    2015-08-01

    Summary This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth andmore » were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes,« less

  20. Molecular phylogenetics and taxonomy of the African mole-rats, genus Cryptomys and the new genus Coetomys Gray, 1864.

    PubMed

    Ingram, Colleen M; Burda, Hynek; Honeycutt, Rodney L

    2004-06-01

    Cryptomys represents the most speciose and widely distributed genus of the Bathyergidae (Mammalia; Rodentia), a family of mole-rats endemic to sub-Saharan Africa. Throughout its range in southern, central, and western Africa, Cryptomys displays diversity in terms of morphology, patterns of behavior, and chromosome number, thus complicating the systematics of the group. A molecular phylogeny was obtained by separate and combined analyses of the mitochondrial 12S rRNA and intron I of the nuclear transthyretin gene for chromosomally and geographically diverse populations of Cryptomys. Our results show that Cryptomys sensu lato is comprised of two distinct and divergent monophyletic clades: hottentotus and mechowi. Based on our analyses, we propose the elevation of the mechowi clade to the genus Coetomys, retaining Cryptomys as the generic epithet of the South African hottentotus clade. This is supported by: (1) reciprocal monophyly of the two lineages based on independent datasets, (2) the level of sequence divergence observed between these lineages relative to other genera (i.e., Bathyergus and Georychus), and (3) different patterns of chromosomal evolution, with Cryptomys sensu stricto being karyotypically conserved (2N=54) and Coetomys exhibiting high karyotypic diversity (2N=40-78).

  1. Clade age and species richness are decoupled across the eukaryotic tree of life.

    PubMed

    Rabosky, Daniel L; Slater, Graham J; Alfaro, Michael E

    2012-08-01

    Explaining the dramatic variation in species richness across the tree of life remains a key challenge in evolutionary biology. At the largest phylogenetic scales, the extreme heterogeneity in species richness observed among different groups of organisms is almost certainly a function of many complex and interdependent factors. However, the most fundamental expectation in macroevolutionary studies is simply that species richness in extant clades should be correlated with clade age: all things being equal, older clades will have had more time for diversity to accumulate than younger clades. Here, we test the relationship between stem clade age and species richness across 1,397 major clades of multicellular eukaryotes that collectively account for more than 1.2 million described species. We find no evidence that clade age predicts species richness at this scale. We demonstrate that this decoupling of age and richness is unlikely to result from variation in net diversification rates among clades. At the largest phylogenetic scales, contemporary patterns of species richness are inconsistent with unbounded diversity increase through time. These results imply that a fundamentally different interpretative paradigm may be needed in the study of phylogenetic diversity patterns in many groups of organisms.

  2. Short-term invasibility patterns in burnt and unburnt experimental Mediterranean grassland communities of varying diversities.

    PubMed

    Dimitrakopoulos, Panayiotis G; Galanidis, Alexandros; Siamantziouras, Akis-Stavros D; Troumbis, Andreas Y

    2005-04-01

    This paper reports the findings of a short-term natural invasibility field study in constructed Mediterranean herbaceous communities of varying diversities, under a fire treatment. Three components of invasibility, i.e. species richness, density and biomass of invaders, have been monitored in burnt and unburnt experimental plots with resident diversity ranging from monocultures to 18-species mixtures. In general, species richness, density and biomass of invaders decreased significantly with the increase of resident species richness. Furthermore, the density and biomass of invading species were significantly influenced by the species composition of resident communities. Although aboveground biomass, leaf area index, canopy height and percent bare ground of the resident communities explained a significant part of the variation in the success of invading species, these covariates did not fully explain the effects of resident species richness. Fire mainly influenced invasibility via soil nutrient levels. The effect of fire on observed invasibility patterns seems to be less important than the effects of resident species richness. Our results demonstrate the importance of species richness and composition in controlling the initial stages of plant invasions in Mediterranean grasslands but that there was a lack of interaction with the effects of fire disturbance.

  3. Parasites and parallel divergence of the number of individual MHC alleles between sympatric three-spined stickleback Gasterosteus aculeatus morphs in Iceland.

    PubMed

    Natsopoulou, M E; Pálsson, S; Ólafsdóttir, G Á

    2012-10-01

    Two pairs of sympatric three-spined stickleback Gasterosteus aculeatus morphs and two single morph populations inhabiting mud and lava or rocky benthic habitats in four Icelandic lakes were screened for parasites and genotyped for MHC class IIB diversity. Parasitic infection differed consistently between G. aculeatus from different benthic habitats. Gasterosteus aculeatus from the lava or rocky habitats were more heavily infected in all lakes. A parallel pattern was also found in individual MHC allelic variation with lava G. aculeatus morphs exhibiting lower levels of variation than the mud morphs. Evidence for selective divergence in MHC allele number is ambiguous but supported by two findings in addition to the parallel pattern observed. MHC allele diversity was not consistent with diversity reported at neutral markers (microsatellites) and in Þingvallavatn the most common number of alleles in each morph was associated with lower infection levels. In the Þingvallavatn lava morph, lower infection levels by the two most common parasites, Schistocephalus solidus and Diplostomum baeri, were associated with different MHC allele numbers. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  4. Bathymetric zonation and diversity gradient of gastropods and bivalves in West Antarctica from the South Shetland Islands to the Bellingshausen Sea

    NASA Astrophysics Data System (ADS)

    Aldea, Cristian; Olabarria, Celia; Troncoso, Jesús S.

    2008-03-01

    Depth-related zonation and diversity patterns are important topics in the study of deep-sea fauna, at both species and assemblage levels. These patterns may be attributed to complex and combined physical and/or biological factors. The lack of information about the West Antarctic deep sea is an important handicap to understanding the global-scale benthic diversity patterns. Detailed studies of the bathymetric distributions and diversity of deep-sea species in the Antarctic are needed to elucidate the factors contributing to global-scale benthic patterns. This study, based on a large data set, examined the bathymetric distribution, patterns of zonation and diversity-depth trends of gastropods and bivalves in West Antarctica, from the South Shetland Islands to the Bellingshausen Sea, a very poorly known area. A total of 647 individuals of gastropods belonging to 82 species and a total of 2934 individuals of bivalves belonging to 52 species were collected. Most gastropods showed discrete depth distributions, whereas most bivalves showed broader depth ranges. Replacement of species with depth was more gradual for bivalves than gastropods. Nevertheless, three bathymetric boundaries could be recognized: (1) a continental shelf zone from 0 to 400 m with a gradual rate of succession, (2) an upper slope zone from 400 to 800 m and (3) a lower slope zone from 800 to 2000 m, extending to 3300 m for bivalves. Diversity patterns were complex for both groups with no significant trends with depth.

  5. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China

    PubMed Central

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Li, Guangliang; Xue, Yadong; Deng, Ye; Li, Hui; Zhou, Jizhong; Li, Diqiang

    2015-01-01

    Understanding biological diversity elevational pattern and the driver factors are indispensable to develop the ecological theories. Elevational gradient may minimize the impact of environmental factors and is the ideal places to study soil microbial elevational patterns. In this study, we selected four typical vegetation types from 1000 to 2800 m above the sea level on the northern slope of Shennongjia Mountain in central China, and analysed the soil bacterial community composition, elevational patterns and the relationship between soil bacterial diversity and environmental factors by using the 16S rRNA Illumina sequencing and multivariate statistical analysis. The results revealed that the dominant bacterial phyla were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Verrucomicrobia, which accounted for over 75% of the bacterial sequences obtained from tested samples, and the soil bacterial operational taxonomic unit (OTU) richness was a significant monotonous decreasing (P < 0.01) trend with the elevational increasing. The similarity of soil bacterial population composition decreased significantly (P < 0.01) with elevational distance increased as measured by the Jaccard and Bray–Curtis index. Canonical correspondence analysis and Mantel test analysis indicated that plant diversity and soil pH were significantly correlated (P < 0.01) with the soil bacterial community. Therefore, the soil bacterial diversity on Shennongjia Mountain had a significant and different elevational pattern, and plant diversity and soil pH may be the key factors in shaping the soil bacterial spatial pattern. PMID:26032124

  6. Phytoplankton diversity in the Upper Paraná River floodplain during two years of drought (2000 and 2001).

    PubMed

    Borges, P A F; Train, S

    2009-06-01

    Floodplain lakes and lotic environments of the High Paraná River floodplain present notable biodiversity, especially in relation to phytoplanktonic community. The goal of this work was to evaluate phytoplankton diversity (alpha, beta and gamma) in three subsystems during two years of drought (2000 and 2001). We sampled 33 habitats at the pelagic zone subsurface during February and August. Due to low hydrometric levels of the Paraná and Ivinhema Rivers, there was no clear distinction between the potamophase and limnophase periods for the two hydrosedimentological cycles analysed. We recorded 366 taxa. The values obtained for gamma diversity estimators ranged from 55.5-87.8%. DCA and variance analyses revealed only spatial differences in the phytoplankton composition. The mean values of species richness, evenness and Shannon diversity were low, especially when compared to those obtained in previous periods for Baía subsystem. The highest mean values of species richness were verified in the connected floodplain lakes. The highest beta diversity was obtained from the Paraná subsystem and lotic environments in 2001. In general, we observed that the Upper Paraná River floodplain has the highest values of species richness, evenness and H' during the potamophase period, when the flood facilitates dispersion. However, this pattern was not observed in 2000 and 2001, years influenced by La Niña. Besides the low precipitation observed during that period, we must consider the influence of the Porto Primavera impoundment, which also altered the discharge regime of the Paraná River by decreasing the degree of connectivity between fluvial channels and the lentic environments of the floodplain. Thus, the prevalence of conditions characterising the limnophase during 2000 and 2001 explains the lack of significant variability registered for most components of phytoplankton diversity over the study period. We conclude that variations in phytoplankton diversity during the study period were related to the absence of conspicuous potamophase, and that observed variations were more closely related to spatial heterogeneity. These results reveal the importance of conservation in the Area de Proteção Ambiental das Ilhas e Várzeas do Rio Paraná, with its subsystems and diverse aquatic habitats.

  7. Polariton Pattern Formation and Photon Statistics of the Associated Emission

    NASA Astrophysics Data System (ADS)

    Whittaker, C. E.; Dzurnak, B.; Egorov, O. A.; Buonaiuto, G.; Walker, P. M.; Cancellieri, E.; Whittaker, D. M.; Clarke, E.; Gavrilov, S. S.; Skolnick, M. S.; Krizhanovskii, D. N.

    2017-07-01

    We report on the formation of a diverse family of transverse spatial polygon patterns in a microcavity polariton fluid under coherent driving by a blue-detuned pump. Patterns emerge spontaneously as a result of energy-degenerate polariton-polariton scattering from the pump state to interfering high-order vortex and antivortex modes, breaking azimuthal symmetry. The interplay between a multimode parametric instability and intrinsic optical bistability leads to a sharp spike in the value of second-order coherence g(2 )(0 ) of the emitted light, which we attribute to the strongly superlinear kinetics of the underlying scattering processes driving the formation of patterns. We show numerically by means of a linear stability analysis how the growth of parametric instabilities in our system can lead to spontaneous symmetry breaking, predicting the formation and competition of different pattern states in good agreement with experimental observations.

  8. Genetic diversity and geographic differentiation in the threatened species Dysosma pleiantha in China as revealed by ISSR analysis.

    PubMed

    Zong, Min; Liu, Hai-Long; Qiu, Ying-Xiong; Yang, Shu-Zhen; Zhao, Ming-Shui; Fu, Cheng-Xin

    2008-04-01

    Dysosma pleiantha, an important threatened medicinal plant species, is restricted in distribution to southeastern China. The species is capable of reproducing both sexually and asexually. In this study, inter-simple sequence repeat marker data were obtained and analyzed with respect to genetic variation and genetic structure. The extent of clonality, together with the clonal and sexual reproductive strategies, varied among sites, and the populations under harsh ecological conditions tended to have large clones with relatively low clonal diversity caused by vegetative reproduction. The ramets sharing the same genotype show a clumped distribution. Across all populations surveyed, average within-population diversity was remarkably low (e.g., 0.111 for Nei's gene diversity), with populations from the nature reserves maintaining relatively high amounts of genetic diversity. Among all populations, high genetic differentiation (AMOVA: Phi(ST) = 0.500; Nei's genetic diversity: G (ST) = 0.465, Bayesian analysis: Phi(B) = 0.436) was detected, together with an isolation-by-distance pattern. Low seedling recruitment due to inbreeding, restricted gene flow, and genetic drift are proposed as determinant factors responsible for the low genetic diversity and high genetic differentiation observed.

  9. Variability of Cutaneous Leishmaniasis Lesions Is Not Associated with Genetic Diversity of Leishmania tropica in Khyber Pakhtunkhwa Province of Pakistan.

    PubMed

    Khan, Nazma Habib; Llewellyn, Martin S; Schönian, Gabriele; Sutherland, Colin J

    2017-11-01

    Leishmania tropica is the causative agent of cutaneous leishmaniasis in Pakistan. Here, intraspecific diversity of L. tropica from northern Pakistan was investigated using multilocus microsatellite typing. Fourteen polymorphic microsatellite markers were typed in 34 recently collected L. tropica isolates from Pakistan along with 158 archival strains of diverse Afro-Eurasian origins. Previously published profiles for 145 strains of L. tropica originating from different regions of Africa, Central Asia, Iran, and Middle East were included for comparison. Six consistently well-supported genetic groups were resolved: 1) Asia, 2) Morroco A, 3) Namibia and Kenya A, 4) Kenya B/Tunisia and Galilee, 5) Morocco B, and 6) Middle East. Strains from northern Pakistan were assigned to Asian cluster except for three that were placed in a geographically distant genetic group; Morocco A. Lesion variability among these Pakistani strains was not associated with specific L. tropica genetic profile. Pakistani strains showed little genetic differentiation from strains of Iraq, Afghanistan, and Syria (F ST = 0.00-0.06); displayed evidence of modest genetic flow with India (F ST = 0.14). Furthermore, genetic structuring within these isolates was not geographically defined. Pak-Afghan cluster was in significant linkage disequilibrium (I A = 1.43), had low genetic diversity, and displayed comparatively higher heterozygosity (F IS = -0.62). Patterns of genetic diversity observed suggest dominance of a minimally diverse clonal lineage within northern Pakistan. This is surprising as a wide clinical spectrum was observed in patients, suggesting the importance of host and other factors. Further genotyping studies of L. tropica isolates displaying different clinical phenotypes are required to validate this potentially important observation.

  10. Environmental Controls Over Actinobacteria Communities in Ecological Sensitive Yanshan Mountains Zone

    PubMed Central

    Tang, Hui; Shi, Xunxun; Wang, Xiaofei; Hao, Huanhuan; Zhang, Xiu-Min; Zhang, Li-Ping

    2016-01-01

    The Yanshan Mountains are one of the oldest mountain ranges in the world. They are located in an ecologically sensitive zone in northern China near the Hu Huanyong Line. In this metagenomic study, we investigated the diversity of Actinobacteria in soils at 10 sites (YS1–YS10) on the Yanshan Mountains. First, we assessed the effect of different soil prtreatment on Actinobacteria recovery. With the soil pretreatment method: air drying of the soil sample, followed by exposure to 120°C for 1 h, we observed the higher Actinobacteria diversity in a relatively small number of clone libraries. No significant differences were observed in the Actinobacterial diversity of soils from sites YS2, YS3, YS4, YS6, YS8, YS9, or YS10 (P > 0.1). However, there were differences (P < 0.05) from the YS7 site and other sites, especially in response to environmental change. And we observed highly significant differences (P < 0.001) in Actinobacterial diversity of the soil from YS7 and that from YS4 and YS8 sites. The climatic characteristics of mean active accumulated temperature, annual mean precipitation, and annual mean temperature, and biogeochemical data of total phosphorus contributed to the diversity of Actinobacterial communities in soils at YS1, YS3, YS4, and YS5 sites. Compared to the climatic factors, the biogeochemical factors mostly contributed in shaping the Actinobacterial community. This work provides evidence that the diversity of Actinobacterial communities in soils from the Yashan Mountains show regional biogeographic patterns and that community membership change along the north-south distribution of the Hu Huanyong Line. PMID:27047461

  11. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities.

    PubMed

    Birkhofer, Klaus; Gossner, Martin M; Diekötter, Tim; Drees, Claudia; Ferlian, Olga; Maraun, Mark; Scheu, Stefan; Weisser, Wolfgang W; Wolters, Volkmar; Wurst, Susanne; Zaitsev, Andrey S; Smith, Henrik G

    2017-05-01

    Along with the global decline of species richness goes a loss of ecological traits. Associated biotic homogenization of animal communities and narrowing of trait diversity threaten ecosystem functioning and human well-being. High management intensity is regarded as an important ecological filter, eliminating species that lack suitable adaptations. Below-ground arthropods are assumed to be less sensitive to such effects than above-ground arthropods. Here, we compared the impact of management intensity between (grassland vs. forest) and within land-use types (local management intensity) on the trait diversity and composition in below- and above-ground arthropod communities. We used data on 722 arthropod species living above-ground (Auchenorrhyncha and Heteroptera), primarily in soil (Chilopoda and Oribatida) or at the interface (Araneae and Carabidae). Our results show that trait diversity of arthropod communities is not primarily reduced by intense local land use, but is rather affected by differences between land-use types. Communities of Auchenorrhyncha and Chilopoda had significantly lower trait diversity in grassland habitats as compared to forests. Carabidae showed the opposite pattern with higher trait diversity in grasslands. Grasslands had a lower proportion of large Auchenorrhyncha and Carabidae individuals, whereas Chilopoda and Heteroptera individuals were larger in grasslands. Body size decreased with land-use intensity across taxa, but only in grasslands. The proportion of individuals with low mobility declined with land-use intensity in Araneae and Auchenorrhyncha, but increased in Chilopoda and grassland Heteroptera. The proportion of carnivorous individuals increased with land-use intensity in Heteroptera in forests and in Oribatida and Carabidae in grasslands. Our results suggest that gradients in management intensity across land-use types will not generally reduce trait diversity in multiple taxa, but will exert strong trait filtering within individual taxa. The observed patterns for trait filtering in individual taxa are not related to major classifications into above- and below-ground species. Instead, ecologically different taxa resembled each other in their trait diversity and compositional responses to land-use differences. These previously undescribed patterns offer an opportunity to develop management strategies for the conservation of trait diversity across taxonomic groups in permanent grassland and forest habitats. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  12. Multiple spatial scale analyses provide new clues on patterns and drivers of deep-sea nematode diversity

    NASA Astrophysics Data System (ADS)

    Danovaro, Roberto; Carugati, Laura; Corinaldesi, Cinzia; Gambi, Cristina; Guilini, Katja; Pusceddu, Antonio; Vanreusel, Ann

    2013-08-01

    The deep sea is the largest biome of the biosphere. The knowledge of the spatial variability of deep-sea biodiversity is one of the main challenges of marine ecology and evolutionary biology. The choice of the observational spatial scale is assumed to play a key role for understanding processes structuring the deep-sea benthic communities and one of the most typical features of marine biodiversity distribution is the existence of bathymetric gradients. However, the analysis of biodiversity bathymetric gradients and the associated changes in species composition (beta diversity) typically compared large depth ranges (with intervals of 500 to 1000 or even 2000 m depth among sites). To test whether significant changes in alpha and beta diversity occur also at fine-scale bathymetric gradients (i.e., within few hundred-meter depth intervals) the variability of deep-sea nematode biodiversity and assemblage composition along a bathymetric transect (200-1200 m depth) with intervals of 200 m among sampling depths, was investigated. A hierarchical sampling strategy for the analysis of nematode species richness, beta diversity, functional (trophic) diversity, and related environmental variables, was used. The results indicate the lack of significant differences in taxonomic and functional diversity across sampling depths, but the presence of high beta diversity at all spatial scales investigated: between cores collected from the same box corer (on average 56%), among deployments at the same depth (58%), and between all sampling depths (62%). Such high beta diversity is influenced by the presence of small-scale patchiness in the deep sea and is also related to the large number of rare or very rare species (typically accounting for >80% of total species richness). Moreover, the number of ubiquitous nematode species across all sampling depths is quite low (ca. 15%). Multiple regression analyses provide evidence that such patterns could be related to the different availability, composition and size spectra of food particles in the sediments. Additionally, though to a lesser extent, our results indicate, that selective predation can influence the nematode trophic composition. These findings suggest that a multiple scale analysis based on a nested sampling design could significantly improve our knowledge of bathymetric patterns of deep-sea biodiversity and its drivers.

  13. Genomic determinants of epidermal appendage patterning and structure in domestic birds

    PubMed Central

    Boer, Elena F.; Van Hollebeke, Hannah F.; Shapiro, Michael D.

    2017-01-01

    Variation in regional identity, patterning, and structure of epidermal appendages contributes to skin diversity among many vertebrate groups, and is perhaps most striking in birds. In pioneering work on epidermal appendage patterning, John Saunders and his contemporaries took advantage of epidermal appendage diversity within and among domestic chicken breeds to establish the importance of mesoderm-ectoderm signaling in determining skin patterning. Diversity in chickens and other domestic birds, including pigeons, is driving a new wave of research to dissect the molecular genetic basis of epidermal appendage patterning. Domestic birds are not only outstanding models for embryonic manipulations, as Saunders recognized, but they are also ideal genetic models for discovering the specific genes that control normal development and the mutations that contribute to skin diversity. Here, we review recent genetic and genomic approaches to uncover the basis of epidermal macropatterning, micropatterning, and structural variation. We also present new results that confirm expression changes in two limb identity genes in feather-footed pigeons, a case of variation in appendage structure and identity. PMID:28347644

  14. Geographically diverse Australian isolates of Melissococcus pluton exhibit minimal genotypic diversity by restriction endonuclease analysis.

    PubMed

    Djordjevic, S P; Smith, L A; Forbes, W A; Hornitzky, M A

    1999-04-15

    Melissococcus pluton, the causative agent of European foulbrood is an economically significant disease of honey bees (Apis mellifera) across most regions of the world and is prevalent throughout most states of Australia. 49 Isolates of M. pluton recovered from diseased colonies or honey samples in New South Wales, Queensland, South Australia, Tasmania and Victoria were compared using SDS-PAGE, Western immunoblotting and restriction endonuclease analyses. DNA profiles of all 49 geographically diverse isolates showed remarkably similar AluI profiles although four isolates (one each from Queensland, South Australia, New South Wales and Victoria) displayed minor profile variations compared to AluI patterns of all other isolates. DNA from a subset of the 49 Australian and three isolates from the United Kingdom were digested separately with the restriction endonucleases CfoI, RsaI and DraI. Restriction endonuclease fragment patterns generated using these enzymes were also similar although minor variations were noted. SDS-PAGE of whole cell proteins from 13 of the 49 isolates from different states of Australia, including the four isolates which displayed minor profile variations (AluI) produced indistinguishable patterns. Major immunoreactive proteins of approximate molecular masses of 21, 24, 28, 30, 36, 40, 44, 56, 60, 71, 79 and 95 kDa were observed in immunoblots of whole cell lysates of 22 of the 49 isolates and reacted with rabbit hyperimmune antibodies raised against M. pluton whole cells. Neither SDS-PAGE or immunoblotting was capable of distinguishing differences between geographically diverse isolates of M. pluton. Collectively these data confirm that Australian isolates of M. pluton are genetically homogeneous and that this species may be clonal. Plasmid DNA was not detected in whole cell DNA profiles of any isolate resolved using agarose gel electrophoresis.

  15. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?

    PubMed

    Jiggins, Chris D; Wallbank, Richard W R; Hanly, Joseph J

    2017-02-05

    A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).

  16. Strong influence of westerly wind bursts on El Niño diversity

    NASA Astrophysics Data System (ADS)

    Chen, Dake; Lian, Tao; Fu, Congbin; Cane, Mark A.; Tang, Youmin; Murtugudde, Raghu; Song, Xunshu; Wu, Qiaoyan; Zhou, Lei

    2015-05-01

    Despite the tremendous progress in the theory, observation and prediction of El Niño over the past three decades, the classification of El Niño diversity and the genesis of such diversity are still debated. This uncertainty renders El Niño prediction a continuously challenging task, as manifested by the absence of the large warm event in 2014 that was expected by many. We propose a unified perspective on El Niño diversity as well as its causes, and support our view with a fuzzy clustering analysis and model experiments. Specifically, the interannual variability of sea surface temperatures in the tropical Pacific Ocean can generally be classified into three warm patterns and one cold pattern, which together constitute a canonical cycle of El Niño/La Niña and its different flavours. Although the genesis of the canonical cycle can be readily explained by classic theories, we suggest that the asymmetry, irregularity and extremes of El Niño result from westerly wind bursts, a type of state-dependent atmospheric perturbation in the equatorial Pacific. Westerly wind bursts strongly affect El Niño but not La Niña because of their unidirectional nature. We conclude that properly accounting for the interplay between the canonical cycle and westerly wind bursts may improve El Niño prediction.

  17. A New Perspective on El Niño Diversity and Its Genesis

    NASA Astrophysics Data System (ADS)

    Chen, D.

    2015-12-01

    El Niño is by far the most energetic and influential interannual fluctuation in the Earth's climate system. Despite the tremendous progress in the theory, observation and prediction of El Niño over the past three decades, there is still considerable debate on the classification of El Niño diversity and on the genesis of such diversity. This uncertainty renders El Niño prediction a continuously challenging task. Here we provide a unified perspective on El Niño diversity as well as its causes, based on a fuzzy clustering analysis and model experiments. Specifically, the interannual variability of the tropical Pacific sea surface temperature can be generally classified into three warm patterns and one cold pattern, which together constitute a canonical El Niño/La Niña cycle and its different flavors. Whereas the genesis of the canonical cycle can be readily explained by classic theories, the asymmetry, irregularity and extremes of El Niño may well result from westerly wind bursts, a type of state-dependent atmospheric perturbation in the equatorial Pacific, which strongly affects El Niño but not La Niña due to its unidirectional nature. This suggests that properly accounting for the interplay between the canonical cycle and westerly wind bursts may improve El Niño prediction.

  18. Patterns of orchid bee species diversity and turnover among forested plateaus of central Amazonia

    PubMed Central

    Machado, Carolina de Barros; Galetti, Pedro Manoel; Oliveira, Marcio; Dirzo, Rodolfo; Fernandes, Geraldo Wilson

    2017-01-01

    The knowledge of spatial pattern and geographic beta-diversity is of great importance for biodiversity conservation and interpreting ecological information. Tropical forests, especially the Amazon Rainforest, are well known for their high species richness and low similarity in species composition between sites, both at local and regional scales. We aimed to determine the effect and relative importance of area, isolation and climate on species richness and turnover in orchid bee assemblages among plateaus in central Brazilian Amazonia. Variance partitioning techniques were applied to assess the relative effects of spatial and environmental variables on bee species richness, phylogeny and composition. We hypothesized that greater abundance and richness of orchid bees would be found on larger plateaus, with a set of core species occurring on all of them. We also hypothesized that smaller plateaus would possess lower phylogenetic diversity. We found 55 bee species distributed along the nine sampling sites (plateaus) with 17 of them being singletons. There was a significant decrease in species richness with decreasing size of plateaus, and a significant decrease in the similarity in species composition with greater distance and climatic variation among sampling sites. Phylogenetic diversity varied among the sampling sites but was directly related to species richness. Although not significantly related to plateau area, smaller or larger PDFaith were observed in the smallest and the largest plateaus, respectively. PMID:28410432

  19. Genetic diversity of Brucella ovis isolates from Rio Grande do Sul, Brazil, by MLVA16

    PubMed Central

    2014-01-01

    Background Ovine epididymitis is predominantly associated with Brucella ovis infection. Molecular characterization of Brucella spp. achieved by multi-locus variable number of tandem repeats (VNTR) analyses (MLVA) have proved to be a powerful tool for epidemiological trace-back studies. Thus, the aim of this study was to evaluate the genetic diversity of Brucella ovis isolates from Rio Grande do Sul State, Brazil, by MLVA16. Findings MLVA16 genotyping identified thirteen distinct genotypes and a Hunter-Gaston diversity index of 0.989 among the fourteen B. ovis genotyped strains. All B. ovis MLVA16 genotypes observed in the present study represented non-previously described profiles. Analyses of the eight conserved loci included in panel 1 (MLVA8) showed three different genotypes, two new and one already described for B. ovis isolates. Among ten B. ovis isolates from same herd only two strains had identical pattern, whereas the four isolates with no epidemiologic information exhibited a single MLVA16 pattern each. Analysis of minimal spanning tree, constructed using the fourteen B. ovis strains typed in this study together with all nineteen B. ovis MLVA16 genotypes available in the MLVAbank 2014, revealed the existence of two clearly distinct major clonal complexes. Conclusions In conclusion, the results of the present study showed a high genetic diversity among B. ovis field isolates from Rio Grande do Sul State, Brazil, by MLVA16. PMID:25015223

  20. Genetic diversity of Brucella ovis isolates from Rio Grande do Sul, Brazil, by MLVA16.

    PubMed

    Dorneles, Elaine M S; Freire, Guilherme N; Dasso, Maurício G; Poester, Fernando P; Lage, Andrey P

    2014-07-12

    Ovine epididymitis is predominantly associated with Brucella ovis infection. Molecular characterization of Brucella spp. achieved by multi-locus variable number of tandem repeats (VNTR) analyses (MLVA) have proved to be a powerful tool for epidemiological trace-back studies. Thus, the aim of this study was to evaluate the genetic diversity of Brucella ovis isolates from Rio Grande do Sul State, Brazil, by MLVA16. MLVA16 genotyping identified thirteen distinct genotypes and a Hunter-Gaston diversity index of 0.989 among the fourteen B. ovis genotyped strains. All B. ovis MLVA16 genotypes observed in the present study represented non-previously described profiles. Analyses of the eight conserved loci included in panel 1 (MLVA8) showed three different genotypes, two new and one already described for B. ovis isolates. Among ten B. ovis isolates from same herd only two strains had identical pattern, whereas the four isolates with no epidemiologic information exhibited a single MLVA16 pattern each. Analysis of minimal spanning tree, constructed using the fourteen B. ovis strains typed in this study together with all nineteen B. ovis MLVA16 genotypes available in the MLVAbank 2014, revealed the existence of two clearly distinct major clonal complexes. In conclusion, the results of the present study showed a high genetic diversity among B. ovis field isolates from Rio Grande do Sul State, Brazil, by MLVA16.

  1. Patterns of orchid bee species diversity and turnover among forested plateaus of central Amazonia.

    PubMed

    Antonini, Yasmine; Machado, Carolina de Barros; Galetti, Pedro Manoel; Oliveira, Marcio; Dirzo, Rodolfo; Fernandes, Geraldo Wilson

    2017-01-01

    The knowledge of spatial pattern and geographic beta-diversity is of great importance for biodiversity conservation and interpreting ecological information. Tropical forests, especially the Amazon Rainforest, are well known for their high species richness and low similarity in species composition between sites, both at local and regional scales. We aimed to determine the effect and relative importance of area, isolation and climate on species richness and turnover in orchid bee assemblages among plateaus in central Brazilian Amazonia. Variance partitioning techniques were applied to assess the relative effects of spatial and environmental variables on bee species richness, phylogeny and composition. We hypothesized that greater abundance and richness of orchid bees would be found on larger plateaus, with a set of core species occurring on all of them. We also hypothesized that smaller plateaus would possess lower phylogenetic diversity. We found 55 bee species distributed along the nine sampling sites (plateaus) with 17 of them being singletons. There was a significant decrease in species richness with decreasing size of plateaus, and a significant decrease in the similarity in species composition with greater distance and climatic variation among sampling sites. Phylogenetic diversity varied among the sampling sites but was directly related to species richness. Although not significantly related to plateau area, smaller or larger PDFaith were observed in the smallest and the largest plateaus, respectively.

  2. Historical and biological determinants of genetic diversity in the highly endemic triploid sea lavender Limonium dufourii (Plumbaginaceae).

    PubMed

    Palop-Esteban, M; Segarra-Moragues, J G; González-Candelas, F

    2007-09-01

    Microsatellite markers were used to evaluate the genetic diversity and population genetic structure in the critically endangered Limonium dufourii (Plumbaginaceae), a highly endemic triploid species from the coasts of eastern Spain. Sixty-five alleles from 13 microsatellite regions were amplified in a sample of 122 individuals collected from the six extant populations. Microsatellite patterns were consistent with the triploid nature of L. dufourii. Alleles were unambiguously assigned to two different parental subgenomes in this hybrid species and the greater contribution of the diploid parental subgenome was confirmed. Eleven, 25 and 26 multilocus genotypes were recorded from the haploid, diploid and from the combined information of both subgenomes, respectively. Genetic diversity was mostly distributed among populations (72.06% of the total genetic variation). Genotypes from Marjal del Moro populations grouped into two highly structured clusters (88.41% of the total variance). The observed patterns of distribution of genetic diversity are interpreted to result from multiple hybridization events and isolation between populations. Threats to this species are mainly anthropogenic (urbanization and tourism pressure), although stochastic risks cannot be ignored. Therefore, in order to preserve extant genetic variation of L. dufourii, in situ strategies such as the preservation of its habitat are a high priority. Several recommendations in order to assist ex situ measures to guarantee the success of conservation strategies and maintain the relationships between individuals and populations are proposed.

  3. A Hierarchical and Dynamic Seascape Framework for Scaling and Comparing Ocean Biodiversity Observations

    NASA Astrophysics Data System (ADS)

    Kavanaugh, M.; Muller-Karger, F. E.; Montes, E.; Santora, J. A.; Chavez, F.; Messié, M.; Doney, S. C.

    2016-02-01

    The pelagic ocean is a complex system in which physical, chemical and biological processes interact to shape patterns on multiple spatial and temporal scales and levels of ecological organization. Monitoring and management of marine seascapes must consider a hierarchical and dynamic mosaic, where the boundaries, extent, and location of features change with time. As part of a Marine Biodiversity Observing Network demonstration project, we conducted a multiscale classification of dynamic coastal seascapes in the northeastern Pacific and Gulf of Mexico using multivariate satellite and modeled data. Synoptic patterns were validated using mooring and ship-based observations that spanned multiple trophic levels and were collected as part of several long-term monitoring programs, including the Monterey Bay and Florida Keys National Marine Sanctuaries. Seascape extent and habitat diversity varied as a function of both seasonal and interannual forcing. We discuss the patterns of in situ observations in the context of seascape dynamics and the effect on rarefaction, spatial patchiness, and tracking and comparing ecosystems through time. A seascape framework presents an effective means to translate local biodiversity measurements to broader spatiotemporal scales, scales relevant for modeling the effects of global change and enabling whole-ecosystem management in the dynamic ocean.

  4. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics.

    PubMed Central

    Solé, Ricard V; Montoya, José M; Erwin, Douglas H

    2002-01-01

    Biotic recoveries following mass extinctions are characterized by a process in which whole ecologies are reconstructed from low-diversity systems, often characterized by opportunistic groups. The recovery process provides an unexpected window to ecosystem dynamics. In many aspects, recovery is very similar to ecological succession, but important differences are also apparently linked to the innovative patterns of niche construction observed in the fossil record. In this paper, we analyse the similarities and differences between ecological succession and evolutionary recovery to provide a preliminary ecological theory of recoveries. A simple evolutionary model with three trophic levels is presented, and its properties (closely resembling those observed in the fossil record) are compared with characteristic patterns of ecological response to disturbances in continuous models of three-level ecosystems. PMID:12079530

  5. 'Fish' (Actinopterygii and Elasmobranchii) diversification patterns through deep time.

    PubMed

    Guinot, Guillaume; Cavin, Lionel

    2016-11-01

    Actinopterygii (ray-finned fishes) and Elasmobranchii (sharks, skates and rays) represent more than half of today's vertebrate taxic diversity (approximately 33000 species) and form the largest component of vertebrate diversity in extant aquatic ecosystems. Yet, patterns of 'fish' evolutionary history remain insufficiently understood and previous studies generally treated each group independently mainly because of their contrasting fossil record composition and corresponding sampling strategies. Because direct reading of palaeodiversity curves is affected by several biases affecting the fossil record, analytical approaches are needed to correct for these biases. In this review, we propose a comprehensive analysis based on comparison of large data sets related to competing phylogenies (including all Recent and fossil taxa) and the fossil record for both groups during the Mesozoic-Cainozoic interval. This approach provides information on the 'fish' fossil record quality and on the corrected 'fish' deep-time phylogenetic palaeodiversity signals, with special emphasis on diversification events. Because taxonomic information is preserved after analytical treatment, identified palaeodiversity events are considered both quantitatively and qualitatively and put within corresponding palaeoenvironmental and biological settings. Results indicate a better fossil record quality for elasmobranchs due to their microfossil-like fossil distribution and their very low diversity in freshwater systems, whereas freshwater actinopterygians are diverse in this realm with lower preservation potential. Several important diversification events are identified at familial and generic levels for elasmobranchs, and marine and freshwater actinopterygians, namely in the Early-Middle Jurassic (elasmobranchs), Late Jurassic (actinopterygians), Early Cretaceous (elasmobranchs, freshwater actinopterygians), Cenomanian (all groups) and the Paleocene-Eocene interval (all groups), the latter two representing the two most exceptional radiations among vertebrates. For each of these events along with the Cretaceous-Paleogene extinction, we provide an in-depth review of the taxa involved and factors that may have influenced the diversity patterns observed. Among these, palaeotemperatures, sea-levels, ocean circulation and productivity as well as continent fragmentation and environment heterogeneity (reef environments) are parameters that largely impacted on 'fish' evolutionary history, along with other biotic constraints. © 2015 Cambridge Philosophical Society.

  6. Hydrodynamics of freely swimming flagellates

    NASA Astrophysics Data System (ADS)

    Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas; Bohr, Tomas; Andersen, Anders

    2016-11-01

    Flagellates are a diverse group of unicellular organisms forming an important part of the marine ecosystem. The arrangement of flagella around the cell serves as a key trait optimizing and compromising essential functions. With micro-particle image velocimetry we observed time-resolved near-cell flows around freely swimming flagellates, and we developed an analytical model based on the Stokes flow around a solid sphere propelled by a variable number of differently placed, temporally varying point forces, each representing one flagellum. The model allows us to reproduce the observed flow patterns and swimming dynamics, and to extract quantities such as swimming velocities and prey clearance rates as well as flow disturbances revealing the organism to flow-sensing predators. Our results point to optimal flagellar arrangements and beat patterns, and essential trade-offs. For biflagellates with two symmetrically arranged flagella we contrasted two species using undulatory and ciliary beat patterns, respectively, and found breast-stroke type beat patterns with equatorial power strokes to be favorable for fast as well as quiet swimming. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  7. Molecular epidemiology and antimicrobial resistance of Salmonella Typhimurium DT104 on Ontario swine farms

    PubMed Central

    Farzan, Abdolvahab; Friendship, Robert M.; Poppe, Cornelis; Martin, Laura; Dewey, Catherine E.; Funk, Julie

    2008-01-01

    This study was conducted to examine antimicrobial resistances, plasmid profiles, and pulsed-field gel electrophoresis patterns of 80 Salmonella Typhimurium (including var. Copenhagen) DT104 strains (including DT104a and DT104b) recovered from pig and environmental fecal samples on 17 swine farms in Ontario. No resistance was observed to amoxicillin/clavulanic acid, apramycin, carbadox, cephalothin, ceftriaxone, ceftiofur, cefoxitin, ciprofloxacin, nalidixic acid, trimethoprim, and tobramycin. However, the isolates exhibited resistance against 4 to 10 antimicrobials with the most frequent resistance being to sulfonamides (Su), ampicillin (A), streptomycin (S), spectinomycin (Sp), chloramphenicol (C), tetracycline (T), and florfenicol (F). Thirteen distinct resistance patterns were determined but 88% of isolates shared the typical resistance pattern “ACSpSSuT.” Twelve different plasmid profiles were observed; the 62 MDa virulence-associated plasmid was detected in 95% of the isolates. The 2.1 MDa plasmid was the second most frequent one, which was harbored by 65% isolates. The isolates were classified into 23 distinct genotypes by PFGE-SpeI + BlnI when difference in at least one fragment was defined as a distinct genotype. In total, 39 distinct “types” were observed when defining a “type” based on the combination of antimicrobial resistance, plasmid pattern, and PFGE-SpeI + BlnI for each isolate. The highest diversity was 0.96 (95% CI: 0.92, 0.96) for the “type” described above followed by 0.92 (95% CI: 0.88, 0.93) for PFGE-SpeI + BlnI. The diversity of DT104 isolates indicates there might be multiple sources for this microorganism on swine farms. This knowledge might be used to track these sources, as well as to study the extent of human salmonellosis attributed to pork compared to food products derived from other food-producing animals. PMID:18505209

  8. Unique inhibitory cascade pattern of molars in canids contributing to their potential to evolutionary plasticity of diet

    PubMed Central

    Asahara, Masakazu

    2013-01-01

    Developmental origins that guide the evolution of dental morphology and dental formulae are fundamental subjects in mammalian evolution. In a previous study, a developmental model termed the inhibitory cascade model was established. This model could explain variations in relative molar sizes and loss of the lower third molars, which sometimes reflect diet, in murine rodents and other mammals. Here, I investigated the pattern of relative molar sizes (inhibitory cascade pattern) in canids, a taxon exhibiting a wide range of dietary habits. I found that interspecific variation in canid molars suggests a unique inhibitory cascade pattern that differs from that in murine rodents and other previously reported mammals, and that this variation reflects dietary habits. This unique variability in molars was also observed in individual variation in canid species. According to these observations, canid species have greater variability in the relative sizes of first molars (carnassials), which are functionally important for dietary adaptation in the Carnivora. In conclusion, an inhibitory cascade that differs from that in murine rodents and other mammals may have contributed to diverse dietary patterns and to their parallel evolution in canids. PMID:23467478

  9. Large-Scale Diversity of Slope Fishes: Pattern Inconsistency between Multiple Diversity Indices

    PubMed Central

    Gaertner, Jean-Claude; Colloca, Francesco; Politou, Chrissi-Yianna; Gil De Sola, Luis; Bertrand, Jacques A.; Murenu, Matteo; Durbec, Jean-Pierre; Kallianiotis, Argyris; Mannini, Alessandro

    2013-01-01

    Large-scale studies focused on the diversity of continental slope ecosystems are still rare, usually restricted to a limited number of diversity indices and mainly based on the empirical comparison of heterogeneous local data sets. In contrast, we investigate large-scale fish diversity on the basis of multiple diversity indices and using 1454 standardized trawl hauls collected throughout the upper and middle slope of the whole northern Mediterranean Sea (36°3′- 45°7′ N; 5°3′W - 28°E). We have analyzed (1) the empirical relationships between a set of 11 diversity indices in order to assess their degree of complementarity/redundancy and (2) the consistency of spatial patterns exhibited by each of the complementary groups of indices. Regarding species richness, our results contrasted both the traditional view based on the hump-shaped theory for bathymetric pattern and the commonly-admitted hypothesis of a large-scale decreasing trend correlated with a similar gradient of primary production in the Mediterranean Sea. More generally, we found that the components of slope fish diversity we analyzed did not always show a consistent pattern of distribution according either to depth or to spatial areas, suggesting that they are not driven by the same factors. These results, which stress the need to extend the number of indices traditionally considered in diversity monitoring networks, could provide a basis for rethinking not only the methodological approach used in monitoring systems, but also the definition of priority zones for protection. Finally, our results call into question the feasibility of properly investigating large-scale diversity patterns using a widespread approach in ecology, which is based on the compilation of pre-existing heterogeneous and disparate data sets, in particular when focusing on indices that are very sensitive to sampling design standardization, such as species richness. PMID:23843962

  10. Comparative phylogeography of eight herbs and lianas (Marantaceae) in central African rainforests.

    PubMed

    Ley, Alexandra C; Dauby, Gilles; Köhler, Julia; Wypior, Catherina; Röser, Martin; Hardy, Olivier J

    2014-01-01

    Vegetation history in tropical Africa is still to date hardly known and the drivers of population differentiation and speciation processes are little documented. It has often been postulated that population fragmentations following climate changes have played a key role in shaping the geographic distribution patterns of genetic diversity and in driving speciation. Here we analyzed phylogeographic patterns (chloroplast-DNA sequences) within and between eight (sister) species of widespread rainforest herbs and lianas from four genera of Marantaceae (Halopegia, Haumania, Marantochloa, Megaphrynium), searching for concordant patterns across species and concordance with the Pleistocene refuge hypothesis. Using 1146 plastid DNA sequences sampled across African tropical lowland rainforest, particularly in the Lower Guinean (LG) phytogeographic region, we analyzed intra- and interspecific patterns of genetic diversity, endemism and distinctiveness. Intraspecific patterns of haplotype diversity were concordant among most species as well as with the species-level diversity pattern of Marantaceae. Highest values were found in the hilly areas of Cameroon and Gabon. However, the spatial distribution of endemic haplotypes, an indicator for refuge areas in general, was not congruent across species. Each proposed refuge exhibited high values of endemism for one or a few species indicating their potential role as area of retraction for the respective species only. Thus, evolutionary histories seem to be diverse across species. In fact, areas of high diversity might have been both refuge and/or crossing zone of recolonization routes i.e., secondary contact zone. We hypothesize that retraction of species into one or the other refuge happened by chance depending on the species' distribution range at the time of climate deterioration. The idiosyncratic patterns found in Marantaceae species are similar to those found among tropical tree species, especially in southern LG.

  11. Comparative phylogeography of eight herbs and lianas (Marantaceae) in central African rainforests

    PubMed Central

    Ley, Alexandra C.; Dauby, Gilles; Köhler, Julia; Wypior, Catherina; Röser, Martin; Hardy, Olivier J.

    2014-01-01

    Vegetation history in tropical Africa is still to date hardly known and the drivers of population differentiation and speciation processes are little documented. It has often been postulated that population fragmentations following climate changes have played a key role in shaping the geographic distribution patterns of genetic diversity and in driving speciation. Here we analyzed phylogeographic patterns (chloroplast-DNA sequences) within and between eight (sister) species of widespread rainforest herbs and lianas from four genera of Marantaceae (Halopegia, Haumania, Marantochloa, Megaphrynium), searching for concordant patterns across species and concordance with the Pleistocene refuge hypothesis. Using 1146 plastid DNA sequences sampled across African tropical lowland rainforest, particularly in the Lower Guinean (LG) phytogeographic region, we analyzed intra- and interspecific patterns of genetic diversity, endemism and distinctiveness. Intraspecific patterns of haplotype diversity were concordant among most species as well as with the species-level diversity pattern of Marantaceae. Highest values were found in the hilly areas of Cameroon and Gabon. However, the spatial distribution of endemic haplotypes, an indicator for refuge areas in general, was not congruent across species. Each proposed refuge exhibited high values of endemism for one or a few species indicating their potential role as area of retraction for the respective species only. Thus, evolutionary histories seem to be diverse across species. In fact, areas of high diversity might have been both refuge and/or crossing zone of recolonization routes i.e., secondary contact zone. We hypothesize that retraction of species into one or the other refuge happened by chance depending on the species' distribution range at the time of climate deterioration. The idiosyncratic patterns found in Marantaceae species are similar to those found among tropical tree species, especially in southern LG. PMID:25477901

  12. Patterns of Tree Species Diversity in Relation to Climatic Factors on the Sierra Madre Occidental, Mexico

    PubMed Central

    Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian

    2014-01-01

    Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within species, between species, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different species of Pinus (ca. 22% on the whole), 54 species of Quercus (ca. 9–14%), 7 species of Arbutus (ca. 50%) and many other trees species. The objectives of this study were to model how tree species diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum tree species diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of tree species are generally higher in cold, humid temperate climates than in dry, hot climates. PMID:25127455

  13. Patterns of tree species diversity in relation to climatic factors on the Sierra Madre Occidental, Mexico.

    PubMed

    Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian

    2014-01-01

    Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within species, between species, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different species of Pinus (ca. 22% on the whole), 54 species of Quercus (ca. 9-14%), 7 species of Arbutus (ca. 50%) and many other trees species. The objectives of this study were to model how tree species diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum tree species diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of tree species are generally higher in cold, humid temperate climates than in dry, hot climates.

  14. Diversity, abundance, and size structure of bivalve assemblages in the Sipsey River, Alabama

    Treesearch

    Wendell R. Haag; Melvin L. Jr. Warren

    2010-01-01

    1. Patterns of mussel diversity and assemblage structure in the Sipsey River, Alabama, are described. Qualitative data were used to describe river-wide patterns of diversity. Quantitative data were used to describe the structure of mussel assemblages at several sites based on whole-substrate sampling that ensured all size classes were detected. 2. Major human impacts...

  15. Analysis of Land-Use Effects on Landscape Patterns and Biological Diversity in Pacific North Forests: 1972-1991

    NASA Technical Reports Server (NTRS)

    Wallin, David O.; Cohen, Warren B.; Bradshaw, G. A.; Spies, T. A.; Hansen, A.; Huff, M. H.; Lehmkuhl, J. F.; Raphael, M. G.; Ripple, W. J.

    1998-01-01

    While there is widespread recognition of the importance of preserving biological diversity there is considerable uncertainty about how to map current patterns of diversity and monitor changes through time. Ground-based approaches are impractical for examining regional patterns of biological diversity, for monitoring change, and they may actually overlook important higher-order phenomena. Thus, there is a critical need for innovative techniques to examine land-use effects on biological diversity at the landscape and regional scales. In this project, we have used satellite-based remote sensing to examine land-use effects on forest ecosystems in the Pacific NorthWest region (PNW) of the U.S.A. Rates and patterns of forest change throughout the region were quantified for the period from 1972 to 1993. This information was then used to map changes in the abundance and distribution of potential habitat for selected vertebrate species. The results of this project will be useful for identifying "keystone" stands that are important in maintaining habitat connectivity at the regional scale and for evaluating the impact of future land-use on vertebrate diversity throughout the region. The approaches developed here will also be useful in other forested regions throughout the world.

  16. Patterns of Students' and Teachers' Interactions in Learning Centres: A Case Study of Three Teacher Leaders in an Elementary School

    ERIC Educational Resources Information Center

    Badger, James

    2016-01-01

    This study investigated the instructional practices of three teacher leaders employed in a diverse, elementary school in the USA. Through extended observations, it was found that learning centres occupied a central role in the organisation and learning in each of the classrooms. Bernstein's theory of classification and framing was used to analyse…

  17. Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers.

    PubMed

    Despres, Laurence; Loriot, Sandrine; Gaudeul, Myriam

    2002-11-01

    The distribution of genetic variation and the phylogenetic relationships between 18 populations of the arctic-alpine plant Trollius europaeus were analysed in three main regions (Alps, Pyrenees and Fennoscandia) by using dominant AFLP markers. Analysis of molecular variance revealed that most of the genetic variability was found within populations (64%), although variation among regions (17%) and among populations within regions (19%) was highly significant (P < 0.001). Accordingly, the global fixation index FST averaged over loci was high (0.39). The among-population differentiation indicates restricted gene flow, congruent with limited dispersal of specific globeflower's pollinating flies (Chiastocheta spp.). Within-population diversity levels were significantly higher in the Alps (mean Nei's expected heterozygosity HE = 0.229) than in the Pyrenees (HE= 0.197) or in Fennoscandia (HE = 0.158). This finding is congruent with the species-richness of the associated flies, which is maximum in the Alps. We discuss the processes involved in shaping observed patterns of genetic diversity within and among T. europaeus populations. Genetic drift is the major factor acting on the small Pyrenean populations at the southern edge of T. europaeus distribution, while large Fennoscandian populations result probably from a founder effect followed by demographic expansion. The Alpine populations represent moderately fragmented relics of large southern ancestral populations. The patterns of genetic variability observed in the host plant support the hypothesis of sympatric speciation in associated flies, rather than recurrent allopatric speciations.

  18. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest.

    PubMed

    Mangan, Scott A; Schnitzer, Stefan A; Herre, Edward A; Mack, Keenan M L; Valencia, Mariana C; Sanchez, Evelyn I; Bever, James D

    2010-08-05

    The accumulation of species-specific enemies around adults is hypothesized to maintain plant diversity by limiting the recruitment of conspecific seedlings relative to heterospecific seedlings. Although previous studies in forested ecosystems have documented patterns consistent with the process of negative feedback, these studies are unable to address which classes of enemies (for example, pathogens, invertebrates, mammals) exhibit species-specific effects strong enough to generate negative feedback, and whether negative feedback at the level of the individual tree is sufficient to influence community-wide forest composition. Here we use fully reciprocal shade-house and field experiments to test whether the performance of conspecific tree seedlings (relative to heterospecific seedlings) is reduced when grown in the presence of enemies associated with adult trees. Both experiments provide strong evidence for negative plant-soil feedback mediated by soil biota. In contrast, above-ground enemies (mammals, foliar herbivores and foliar pathogens) contributed little to negative feedback observed in the field. In both experiments, we found that tree species that showed stronger negative feedback were less common as adults in the forest community, indicating that susceptibility to soil biota may determine species relative abundance in these tropical forests. Finally, our simulation models confirm that the strength of local negative feedback that we measured is sufficient to produce the observed community-wide patterns in tree-species relative abundance. Our findings indicate that plant-soil feedback is an important mechanism that can maintain species diversity and explain patterns of tree-species relative abundance in tropical forests.

  19. Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity

    PubMed Central

    Keller, Stefanie; Bartolino, Valerio; Hidalgo, Manuel; Bitetto, Isabella; Casciaro, Loredana; Cuccu, Danila; Esteban, Antonio; Garcia, Cristina; Garofalo, Germana; Josephides, Marios; Jadaud, Angelique; Lefkaditou, Evgenia; Maiorano, Porzia; Manfredi, Chiara; Marceta, Bojan; Massutí, Enric; Micallef, Reno; Peristeraki, Panagiota; Relini, Giulio; Sartor, Paolo; Spedicato, Maria Teresa; Tserpes, George; Quetglas, Antoni

    2016-01-01

    Species diversity is widely recognized as an important trait of ecosystems’ functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200–400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversity. PMID:26760965

  20. Comparing spatial diversification and meta-population models in the Indo-Australian Archipelago

    PubMed Central

    Chalmandrier, Loïc; Albouy, Camille; Descombes, Patrice; Sandel, Brody; Faurby, Soren; Svenning, Jens-Christian; Zimmermann, Niklaus E.

    2018-01-01

    Reconstructing the processes that have shaped the emergence of biodiversity gradients is critical to understand the dynamics of diversification of life on Earth. Islands have traditionally been used as model systems to unravel the processes shaping biological diversity. MacArthur and Wilson's island biogeographic model predicts diversity to be based on dynamic interactions between colonization and extinction rates, while treating islands themselves as geologically static entities. The current spatial configuration of islands should influence meta-population dynamics, but long-term geological changes within archipelagos are also expected to have shaped island biodiversity, in part by driving diversification. Here, we compare two mechanistic models providing inferences on species richness at a biogeographic scale: a mechanistic spatial-temporal model of species diversification and a spatial meta-population model. While the meta-population model operates over a static landscape, the diversification model is driven by changes in the size and spatial configuration of islands through time. We compare the inferences of both models to floristic diversity patterns among land patches of the Indo-Australian Archipelago. Simulation results from the diversification model better matched observed diversity than a meta-population model constrained only by the contemporary landscape. The diversification model suggests that the dynamic re-positioning of islands promoting land disconnection and reconnection induced an accumulation of particularly high species diversity on Borneo, which is central within the island network. By contrast, the meta-population model predicts a higher diversity on the mainlands, which is less compatible with empirical data. Our analyses highlight that, by comparing models with contrasting assumptions, we can pinpoint the processes that are most compatible with extant biodiversity patterns. PMID:29657753

  1. Comparing spatial diversification and meta-population models in the Indo-Australian Archipelago.

    PubMed

    Chalmandrier, Loïc; Albouy, Camille; Descombes, Patrice; Sandel, Brody; Faurby, Soren; Svenning, Jens-Christian; Zimmermann, Niklaus E; Pellissier, Loïc

    2018-03-01

    Reconstructing the processes that have shaped the emergence of biodiversity gradients is critical to understand the dynamics of diversification of life on Earth. Islands have traditionally been used as model systems to unravel the processes shaping biological diversity. MacArthur and Wilson's island biogeographic model predicts diversity to be based on dynamic interactions between colonization and extinction rates, while treating islands themselves as geologically static entities. The current spatial configuration of islands should influence meta-population dynamics, but long-term geological changes within archipelagos are also expected to have shaped island biodiversity, in part by driving diversification. Here, we compare two mechanistic models providing inferences on species richness at a biogeographic scale: a mechanistic spatial-temporal model of species diversification and a spatial meta-population model. While the meta-population model operates over a static landscape, the diversification model is driven by changes in the size and spatial configuration of islands through time. We compare the inferences of both models to floristic diversity patterns among land patches of the Indo-Australian Archipelago. Simulation results from the diversification model better matched observed diversity than a meta-population model constrained only by the contemporary landscape. The diversification model suggests that the dynamic re-positioning of islands promoting land disconnection and reconnection induced an accumulation of particularly high species diversity on Borneo, which is central within the island network. By contrast, the meta-population model predicts a higher diversity on the mainlands, which is less compatible with empirical data. Our analyses highlight that, by comparing models with contrasting assumptions, we can pinpoint the processes that are most compatible with extant biodiversity patterns.

  2. Across species-pool aggregation alters grassland productivity and diversity.

    PubMed

    McKenna, Thomas P; Yurkonis, Kathryn A

    2016-08-01

    Plant performance is determined by the balance of intra- and interspecific neighbors within an individual's zone of influence. If individuals interact over smaller scales than the scales at which communities are measured, then altering neighborhood interactions may fundamentally affect community responses. These interactions can be altered by changing the number (species richness), abundances (species evenness), and positions (species pattern) of the resident plant species, and we aimed to test whether aggregating species at planting would alter effects of species richness and evenness on biomass production at a common scale of observation in grasslands. We varied plant species richness (2, 4, or 8 species and monocultures), evenness (0.64, 0.8, or 1.0), and pattern (planted randomly or aggregated in groups of four individuals) within 1 × 1 m plots established with transplants from a pool of 16 tallgrass prairie species and assessed plot-scale biomass production and diversity over the first three growing seasons. As expected, more species-rich plots produced more biomass by the end of the third growing season, an effect associated with a shift from selection to complementarity effects over time. Aggregating conspecifics at a 0.25-m scale marginally reduced biomass production across all treatments and increased diversity in the most even plots, but did not alter biodiversity effects or richness-productivity relationships. Results support the hypothesis that fine-scale species aggregation affects diversity by promoting species coexistence in this system. However, results indicate that inherent changes in species neighborhood relationships along grassland diversity gradients may only minimally affect community (meter) - scale responses among similarly designed biodiversity-ecosystem function studies. Given that species varied in their responses to local aggregation, it may be possible to use such species-specific results to spatially design larger-scale grassland communities to achieve desired diversity and productivity responses.

  3. Morphological and niche divergence of pinyon pines.

    PubMed

    Ortiz-Medrano, Alejandra; Scantlebury, Daniel Patrick; Vázquez-Lobo, Alejandra; Mastretta-Yanes, Alicia; Piñero, Daniel

    2016-05-01

    The environmental variables that define a species ecological niche should be associated with the evolutionary patterns present in the adaptations that resulted from living in these conditions. Thus, when comparing across species, we can expect to find an association between phylogenetically independent phenotypic characters and ecological niche evolution. Few studies have evaluated how organismal phenotypes might mirror patterns of niche evolution if these phenotypes reflect adaptations. Doing so could contribute on the understanding of the origin and maintenance of phenotypic diversity observed in nature. Here, we show the pattern of niche evolution of the pinyon pine lineage (Pinus subsection Cembroides); then, we suggest morphological adaptations possibly related to niche divergence, and finally, we test for correlation between ecological niche and morphology. We demonstrate that niche divergence is the general pattern within the clade and that it is positively correlated with adaptation.

  4. Aegilops tauschii Accessions with Geographically Diverse Origin Show Differences in Chromosome Organization and Polymorphism of Molecular Markers Linked to Leaf Rust and Powdery Mildew Resistance Genes.

    PubMed

    Majka, Maciej; Kwiatek, Michał T; Majka, Joanna; Wiśniewska, Halina

    2017-01-01

    Aegilops tauschii (2n = 2x = 14) is a diploid wild species which is reported as a donor of the D-genome of cultivated bread wheat. The main goal of this study was to examine the differences and similarities in chromosomes organization among accessions of Ae. tauschii with geographically diversed origin, which is believed as a potential source of genes, especially determining resistance to fungal diseases (i.e., leaf rust and powdery mildew) for breeding of cereals. We established and compared the fluorescence in situ hybridization patterns of 21 accessions of Ae. tauschii using various repetitive sequences mainly from the BAC library of wheat cultivar Chinese Spring. Results obtained for Ae. tauschii chromosomes revealed many similarities between analyzed accessions, however, some hybridization patterns were specific for accessions, which become from cognate regions of the World. The most noticeable differences were observed for accessions from China which were characterized by presence of distinct signals of pTa-535 in the interstitial region of chromosome 3D, less intensity of pTa-86 signals in chromosome 2D, as well as lack of additional signals of pTa-86 in chromosomes 1D, 5D, or 6D. Ae. tauschii of Chinese origin appeared homogeneous and separate from landraces that originated in western Asia. Ae. tauschii chromosomes showed similar hybridization patterns to wheat D-genome chromosomes, but some differences were also observed among both species. What is more, we identified reciprocal translocation between short arm of chromosome 1D and long arm of chromosome 7D in accession with Iranian origin. High polymorphism between analyzed accessions and extensive allelic variation were revealed using molecular markers associated with resistance genes. Majority of the markers localized in chromosomes 1D and 2D showed the diversity of banding patterns between accessions. Obtained results imply, that there is a moderate or high level of polymorphism in the genome of Ae . tauschii determined by a geographical origin, which we proved by cytogenetic and molecular markers analysis. Therefore, selected accessions might constitute an accessible source of variation for improvement of Triticeae species like wheat and triticale.

  5. Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris.

    PubMed

    Rodriguez, Monica; Rau, Domenico; Bitocchi, Elena; Bellucci, Elisa; Biagetti, Eleonora; Carboni, Andrea; Gepts, Paul; Nanni, Laura; Papa, Roberto; Attene, Giovanna

    2016-03-01

    Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Spatiotemporal Dynamics of Genetic Variation in the Iberian Lynx along Its Path to Extinction Reconstructed with Ancient DNA

    PubMed Central

    Casas-Marce, Mireia; Marmesat, Elena; Soriano, Laura; Martínez-Cruz, Begoña; Lucena-Perez, Maria; Nocete, Francisco; Rodríguez-Hidalgo, Antonio; Canals, Antoni; Nadal, Jordi; Detry, Cleia; Bernáldez-Sánchez, Eloísa; Fernández-Rodríguez, Carlos; Pérez-Ripoll, Manuel; Stiller, Mathias; Hofreiter, Michael; Rodríguez, Alejandro; Revilla, Eloy; Delibes, Miguel; Godoy, José A.

    2017-01-01

    Abstract There is the tendency to assume that endangered species have been both genetically and demographically healthier in the past, so that any genetic erosion observed today was caused by their recent decline. The Iberian lynx (Lynx pardinus) suffered a dramatic and continuous decline during the 20th century, and now shows extremely low genome- and species-wide genetic diversity among other signs of genomic erosion. We analyze ancient (N = 10), historical (N = 245), and contemporary (N = 172) samples with microsatellite and mitogenome data to reconstruct the species' demography and investigate patterns of genetic variation across space and time. Iberian lynx populations transitioned from low but significantly higher genetic diversity than today and shallow geographical differentiation millennia ago, through a structured metapopulation with varying levels of diversity during the last centuries, to two extremely genetically depauperate and differentiated remnant populations by 2002. The historical subpopulations show varying extents of genetic drift in relation to their recent size and time in isolation, but these do not predict whether the populations persisted or went finally extinct. In conclusion, current genetic patterns were mainly shaped by genetic drift, supporting the current admixture of the two genetic pools and calling for a comprehensive genetic management of the ongoing conservation program. This study illustrates how a retrospective analysis of demographic and genetic patterns of endangered species can shed light onto their evolutionary history and this, in turn, can inform conservation actions. PMID:28962023

  7. Genetic Diversity of the Two Commercial Tetraploid Cotton Species in the Gossypium Diversity Reference Set.

    PubMed

    Hinze, Lori L; Gazave, Elodie; Gore, Michael A; Fang, David D; Scheffler, Brian E; Yu, John Z; Jones, Don C; Frelichowski, James; Percy, Richard G

    2016-05-01

    A diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G. barbadense. The reference set contained 410 G. barbadense accessions and 1523 G. hirsutum accessions. Observed numbers of polymorphic and private bands indicated a greater diversity in G. hirsutum as compared to G. barbadense as well as in wild-type accessions as compared to improved accessions in both species. The markers clearly differentiated the 2 species. Patterns of diversity within species were observed but not clearly delineated, with much overlap occurring between races and regions of origin for wild accessions and between historical and geographic breeding pools for cultivated accessions. Although the percentage of accessions showing introgression was higher among wild accessions than cultivars in both species, the average level of introgression within individual accessions, as indicated by species-specific bands, was much higher in wild accessions of G. hirsutum than in wild accessions of G. barbadense. The average level of introgression within individual accessions was higher in improved G. barbadense cultivars than in G. hirsutum cultivars. This molecular characterization reveals the levels and distributions of genetic diversity that will allow for better exploration and utilization of cotton genetic resources. Published by Oxford University Press on behalf of the American Genetic Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Non-conventional protrusions: the diversity of cell interactions at short and long distance.

    PubMed

    Caviglia, Sara; Ober, Elke A

    2018-06-08

    Cells use different means to communicate within and between tissues and thereby coordinate their behaviours. Following the initial observations of enigmatic long filopodia unrelated to cell movement, it became clear that the roles of cellular protrusions are not restricted to sensing functions or motility and are much more diverse than previously appreciated. Advances in live-imaging and genetic tools revealed several types of non-conventional cell protrusions and their functions, ranging from tissue patterning, proliferation and differentiation control, tissue matching and cell spacing to more unexpected roles such as priming of cell adhesion as well as bidirectional coordination of tissue movements. Here, we will highlight exciting new insights into highly diverse cell behaviours elicited by protrusions and contact-dependent cell communication, essential for embryonic development across species. Copyright © 2018. Published by Elsevier Ltd.

  9. Genetic Diversity of Sheep Breeds from Albania, Greece, and Italy Assessed by Mitochondrial DNA and Nuclear Polymorphisms (SNPs)

    PubMed Central

    Pariset, Lorraine; Mariotti, Marco; Gargani, Maria; Joost, Stephane; Negrini, Riccardo; Perez, Trinidad; Bruford, Michael; Ajmone Marsan, Paolo; Valentini, Alessio

    2011-01-01

    We employed mtDNA and nuclear SNPs to investigate the genetic diversity of sheep breeds of three countries of the Mediterranean basin: Albania, Greece, and Italy. In total, 154 unique mtDNA haplotypes were detected by means of D-loop sequence analysis. The major nucleotide diversity was observed in Albania. We identified haplogroups, A, B, and C in Albanian and Greek samples, while Italian individuals clustered in groups A and B. In general, the data show a pattern reflecting old migrations that occurred in postneolithic and historical times. PCA analysis on SNP data differentiated breeds with good correspondence to geographical locations. This could reflect geographical isolation, selection operated by local sheep farmers, and different flock management and breed admixture that occurred in the last centuries. PMID:22125424

  10. Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests

    PubMed Central

    Li, Hui; Wang, Xugao; Liang, Chao; Hao, Zhanqing; Zhou, Lisha; Ma, Sam; Li, Xiaobin; Yang, Shan; Yao, Fei; Jiang, Yong

    2015-01-01

    Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacterial communities in two temperate forests that represented early and late successional stages. We documented different patterns of aboveground-belowground diversity relationships in these forests. We observed no linkage between plant and bacterial α-diversity in the early successional forest, and even a negative correlation in the late successional forest, indicating that high bacterial α-diversity is not always linked to high plant α-diversity. Beta-diversity coupling was only found at the late successional stage, while in the early successional forest, the bacterial β-diversity was closely correlated with soil property distances. Additionally, we showed that the dominant competitive tree species in the late successional forest may play key roles in driving forest succession by shaping the soil bacterial community in the early successional stage. This study sheds new light on the potential aboveground-belowground linkage in natural ecosystems, which may help us understand the mechanisms that drive ecosystem succession. PMID:26184121

  11. Snail species diversity impacts the infection patterns of Echinostoma spp.: Examples from field collected data.

    PubMed

    Zimmermann, Michael R; Luth, Kyle E; Esch, Gerald W

    2017-09-26

    Rapid losses of biodiversity due to the changing landscape have spurred increased interest in the role of species diversity and disease risk. A leading hypothesis for the importance of biodiversity in disease reduction is the dilution effect, which suggests that increasing species diversity within a system decreases the risk of disease among the organisms inhabiting it. The role of species diversity in trematode infection was investigated using field studies from sites across the U.S. to examine the impact of snail diversity in the infection dynamics of both first and second intermediate larval stages of Echinostoma spp. parasites. The prevalence of Echinostoma spp. sporocysts/rediae infection was not affected by increases in snail diversity, but significant negative correlations in metacercariae prevalence and intensity with snail diversity were observed. Additionally, varying effectiveness of the diluting hosts was found, i.e., snail species that were incompatible first intermediate hosts for Echinostoma spp. were more successful at diluting the echinostome parasites in the focal species, while H. trivolvis, a snail species that can harbor the first intermediate larval stages, amplified infection. These findings have important implications not only on the role of species diversity in reducing disease risk, but the success of the parasites in completing their life cycles and maintaining their abundance within an aquatic system.

  12. Weather effects on the patterns of people's everyday activities: a study using GPS traces of mobile phone users.

    PubMed

    Horanont, Teerayut; Phithakkitnukoon, Santi; Leong, Tuck W; Sekimoto, Yoshihide; Shibasaki, Ryosuke

    2013-01-01

    This study explores the effects that the weather has on people's everyday activity patterns. Temperature, rainfall, and wind speed were used as weather parameters. People's daily activity patterns were inferred, such as place visited, the time this took place, the duration of the visit, based on the GPS location traces of their mobile phones overlaid upon Yellow Pages information. Our analysis of 31,855 mobile phone users allowed us to infer that people were more likely to stay longer at eateries or food outlets, and (to a lesser degree) at retail or shopping areas when the weather is very cold or when conditions are calm (non-windy). When compared to people's regular activity patterns, certain weather conditions affected people's movements and activities noticeably at different times of the day. On cold days, people's activities were found to be more diverse especially after 10AM, showing greatest variations between 2PM and 6PM. A similar trend is observed between 10AM and midnight on rainy days, with people's activities found to be most diverse on days with heaviest rainfalls or on days when the wind speed was stronger than 4 km/h, especially between 10AM-1AM. Finally, we observed that different geographical areas of a large metropolis were impacted differently by the weather. Using data of urban infrastructure to characterize areas, we found strong correlations between weather conditions upon people's accessibility to trains. This study sheds new light on the influence of weather conditions on human behavior, in particular the choice of daily activities and how mobile phone data can be used to investigate the influence of environmental factors on urban dynamics.

  13. Weather Effects on the Patterns of People's Everyday Activities: A Study Using GPS Traces of Mobile Phone Users

    PubMed Central

    Leong, Tuck W.; Sekimoto, Yoshihide; Shibasaki, Ryosuke

    2013-01-01

    This study explores the effects that the weather has on people's everyday activity patterns. Temperature, rainfall, and wind speed were used as weather parameters. People's daily activity patterns were inferred, such as place visited, the time this took place, the duration of the visit, based on the GPS location traces of their mobile phones overlaid upon Yellow Pages information. Our analysis of 31,855 mobile phone users allowed us to infer that people were more likely to stay longer at eateries or food outlets, and (to a lesser degree) at retail or shopping areas when the weather is very cold or when conditions are calm (non-windy). When compared to people's regular activity patterns, certain weather conditions affected people's movements and activities noticeably at different times of the day. On cold days, people's activities were found to be more diverse especially after 10AM, showing greatest variations between 2PM and 6PM. A similar trend is observed between 10AM and midnight on rainy days, with people's activities found to be most diverse on days with heaviest rainfalls or on days when the wind speed was stronger than 4 km/h, especially between 10AM–1AM. Finally, we observed that different geographical areas of a large metropolis were impacted differently by the weather. Using data of urban infrastructure to characterize areas, we found strong correlations between weather conditions upon people's accessibility to trains. This study sheds new light on the influence of weather conditions on human behavior, in particular the choice of daily activities and how mobile phone data can be used to investigate the influence of environmental factors on urban dynamics. PMID:24367481

  14. Climatic suitability, isolation by distance and river resistance explain genetic variation in a Brazilian whiptail lizard.

    PubMed

    Oliveira, Eliana Faria; Martinez, Pablo Ariel; São-Pedro, Vinícius Avelar; Gehara, Marcelo; Burbrink, Frank Thomas; Mesquita, Daniel Oliveira; Garda, Adrian Antonio; Colli, Guarino Rinaldi; Costa, Gabriel Correa

    2018-03-01

    Spatial patterns of genetic variation can help understand how environmental factors either permit or restrict gene flow and create opportunities for regional adaptations. Organisms from harsh environments such as the Brazilian semiarid Caatinga biome may reveal how severe climate conditions may affect patterns of genetic variation. Herein we combine information from mitochondrial DNA with physical and environmental features to study the association between different aspects of the Caatinga landscape and spatial genetic variation in the whiptail lizard Ameivula ocellifera. We investigated which of the climatic, environmental, geographical and/or historical components best predict: (1) the spatial distribution of genetic diversity, and (2) the genetic differentiation among populations. We found that genetic variation in A. ocellifera has been influenced mainly by temperature variability, which modulates connectivity among populations. Past climate conditions were important for shaping current genetic diversity, suggesting a time lag in genetic responses. Population structure in A. ocellifera was best explained by both isolation by distance and isolation by resistance (main rivers). Our findings indicate that both physical and climatic features are important for explaining the observed patterns of genetic variation across the xeric Caatinga biome.

  15. A Predominantly Neolithic Origin for Y-Chromosomal DNA Variation in North Africa

    PubMed Central

    Arredi, Barbara; Poloni, Estella S.; Paracchini, Silvia; Zerjal, Tatiana; Fathallah, Dahmani M.; Makrelouf, Mohamed; Pascali, Vincenzo L.; Novelletto, Andrea; Tyler-Smith, Chris

    2004-01-01

    We have typed 275 men from five populations in Algeria, Tunisia, and Egypt with a set of 119 binary markers and 15 microsatellites from the Y chromosome, and we have analyzed the results together with published data from Moroccan populations. North African Y-chromosomal diversity is geographically structured and fits the pattern expected under an isolation-by-distance model. Autocorrelation analyses reveal an east-west cline of genetic variation that extends into the Middle East and is compatible with a hypothesis of demic expansion. This expansion must have involved relatively small numbers of Y chromosomes to account for the reduction in gene diversity towards the West that accompanied the frequency increase of Y haplogroup E3b2, but gene flow must have been maintained to explain the observed pattern of isolation-by-distance. Since the estimates of the times to the most recent common ancestor (TMRCAs) of the most common haplogroups are quite recent, we suggest that the North African pattern of Y-chromosomal variation is largely of Neolithic origin. Thus, we propose that the Neolithic transition in this part of the world was accompanied by demic diffusion of Afro-Asiatic–speaking pastoralists from the Middle East. PMID:15202071

  16. Multiscale Currents Observed by MMS in the Flow Braking Region.

    PubMed

    Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A; Apatenkov, Sergey; Ergun, Robert E; Fuselier, Stephen A; Gershman, Daniel J; Giles, Barbara J; Khotyaintsev, Yuri V; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T; Stawarz, Julia; Strangeway, Robert J; Anderson, Brian; Burch, James L; Bromund, Ken R; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J; Slavin, James A; Torbert, Roy B; Turner, Drew L

    2018-02-01

    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

  17. Analysis of vegetation in an Imperata grassland of Barak valley, Assam.

    PubMed

    Astapati, Ashim Das; Das, Ashesh Kumar

    2012-09-01

    Imperata grassland at Dorgakona, Barak valley, North Eastern India was analyzed for species composition and diversity pattern in relation to traditional management practices. 19 families were in the burnt and unburnt plots of the study site with Poaceae as the most dominant one. 29 species occurred in the burnt plot and 28 in the unburnt plot. Most of the species were common in both the plots. The pattern of frequency diagrams indicated that the vegetation was homogeneous. Imperata cylindrica, a rhizomatous grass was the dominant species based on density (318.75 and 304.18 nos. m(-2)), basal cover (158.22 and 148.34 cm2 m(-2)) and Importance value index (IVI) (132.64 and 138.74) for the burnt and unburnt plots respectively. Borreria pusilla was the co-dominant species constituting Imperata-Borreria assemblage of the studied grassland. It was observed that B. pusilla (162.25 nos. m(-2) and 50.37 nos. m(-2), I. cylindrica (318.75 nos. m(-2) and 304.18 nos. m(-2)) and Setaria glauca (24.70 nos. m(-2) and 16.46 nos. m(-2) were benefited from burning as shown by the values sequentially placed for burnt and unburnt plots. Certain grasses like Chrysopogon aciculatus and Sacciolepis indica were restricted to burnt plot while Oxalis corniculata showed its presence to unburnt plot. Grasses dominated the grassland as revealed by their contribution to the mean percentage cover of 72% in burnt plot and 76% in umburnt plot. The dominance-diversity curves in the study site approaches a log normal series distribution suggesting that the resources are shared by the constituent species. Seasonal pattern in diversity index suggested definite influence of climatic seasonality on species diversity; rainy season was conducive for maximum diversity (1.40 and 1.38 in the burnt and unburnt plots, respectively). Dominance increased with concentration of fewer species (0.0021 in burnt plot and 0.0055 in unbumt plot) in summer and behaves inversely to index of diversity. This study showed that the traditional management practices benefits the farmers as it promote grassland regeneration with I. cylindrica as the dominant grass.

  18. How does pedogenesis drive plant diversity?

    USGS Publications Warehouse

    Laliberté, Etienne; Grace, James B.; Huston, Michael A.; Lambers, Hans; Teste, François P.; Turner, Benjamin L.; Wardle, David A.

    2013-01-01

    Some of the most species-rich plant communities occur on ancient, strongly weathered soils, whereas those on recently developed soils tend to be less diverse. Mechanisms underlying this well-known pattern, however, remain unresolved. Here, we present a conceptual model describing alternative mechanisms by which pedogenesis (the process of soil formation) might drive plant diversity. We suggest that long-term soil chronosequences offer great, yet largely untapped, potential as 'natural experiments' to determine edaphic controls over plant diversity. Finally, we discuss how our conceptual model can be evaluated quantitatively using structural equation modeling to advance multivariate theories about the determinants of local plant diversity. This should help us to understand broader-scale diversity patterns, such as the latitudinal gradient of plant diversity.

  19. Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought.

    PubMed

    Johnson, Daniel M; Domec, Jean-Christophe; Carter Berry, Z; Schwantes, Amanda M; McCulloh, Katherine A; Woodruff, David R; Wayne Polley, H; Wortemann, Remí; Swenson, Jennifer J; Scott Mackay, D; McDowell, Nate G; Jackson, Robert B

    2018-03-01

    From 2011 to 2013, Texas experienced its worst drought in recorded history. This event provided a unique natural experiment to assess species-specific responses to extreme drought and mortality of four co-occurring woody species: Quercus fusiformis, Diospyros texana, Prosopis glandulosa, and Juniperus ashei. We examined hypothesized mechanisms that could promote these species' diverse mortality patterns using postdrought measurements on surviving trees coupled to retrospective process modelling. The species exhibited a wide range of gas exchange responses, hydraulic strategies, and mortality rates. Multiple proposed indices of mortality mechanisms were inconsistent with the observed mortality patterns across species, including measures of the degree of iso/anisohydry, photosynthesis, carbohydrate depletion, and hydraulic safety margins. Large losses of spring and summer whole-tree conductance (driven by belowground losses of conductance) and shallower rooting depths were associated with species that exhibited greater mortality. Based on this retrospective analysis, we suggest that species more vulnerable to drought were more likely to have succumbed to hydraulic failure belowground. © 2018 John Wiley & Sons Ltd.

  20. Population structure and infectious disease risk in southern Africa.

    PubMed

    Uren, Caitlin; Möller, Marlo; van Helden, Paul D; Henn, Brenna M; Hoal, Eileen G

    2017-06-01

    The KhoeSan populations are the earliest known indigenous inhabitants of southern Africa. The relatively recent expansion of Bantu-speaking agropastoralists, as well as European colonial settlement along the south-west coast, dramatically changed patterns of genetic diversity in a region which had been largely isolated for thousands of years. Owing to this unique history, population structure in southern Africa reflects both the underlying KhoeSan genetic diversity as well as differential recent admixture. This population structure has a wide range of biomedical and sociocultural implications; such as changes in disease risk profiles. Here, we consolidate information from various population genetic studies that characterize admixture patterns in southern Africa with an aim to better understand differences in adverse disease phenotypes observed among groups. Our review confirms that ancestry has a direct impact on an individual's immune response to infectious diseases. In addition, we emphasize the importance of collaborative research, especially for populations in southern Africa that have a high incidence of potentially fatal infectious diseases such as HIV and tuberculosis.

  1. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity

    PubMed Central

    2018-01-01

    Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns – in both their selectivity and their invariance – arise from the same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. Our proposed model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions. PMID:29465399

  2. The transmission dynamics of groups A and B human respiratory syncytial virus (hRSV) in England & Wales and Finland: seasonality and cross-protection.

    PubMed

    White, L J; Waris, M; Cane, P A; Nokes, D J; Medley, G F

    2005-04-01

    Human respiratory syncytial virus (hRSV) transmission dynamics are inherently cyclical, and the observed genetic diversity (between groups A and B) also appears to have a repeating pattern. A key unknown is the extent to which genetic variants interact immunologically, and thus impact on epidemiology. We developed a novel mathematical model for hRSV transmission including seasonal forcing of incidence and temporary intra- and inter-group partial immunity. Simultaneous model fits to data from two locations (England & Wales, UK, and Turku, Finland) successfully reproduced the contrasting infection dynamics and group A/B dominance patterns. Parameter estimates are consistent with direct estimates. Differences in the magnitude and seasonal variation in contact rate between the two populations alone could account for the variation in dynamics between these populations. The A/B group dominance patterns are explained by reductions in susceptibility to and infectiousness of secondary homologous and heterologous infections. The consequences of the observed dynamic complexity are discussed.

  3. Phylogenetic turnover along local environmental gradients in tropical forest communities.

    PubMed

    Baldeck, C A; Kembel, S W; Harms, K E; Yavitt, J B; John, R; Turner, B L; Madawala, S; Gunatilleke, N; Gunatilleke, S; Bunyavejchewin, S; Kiratiprayoon, S; Yaacob, A; Supardi, M N N; Valencia, R; Navarrete, H; Davies, S J; Chuyong, G B; Kenfack, D; Thomas, D W; Dalling, J W

    2016-10-01

    While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species' habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24-50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0-10.3 % and 0.4-8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved.

  4. Urbanization-induced habitat fragmentation erodes multiple components of temporal diversity in a Southern California native bee assemblage

    PubMed Central

    Ascher, John S.; Holway, David A.

    2017-01-01

    Despite a large number of ecological studies that document diversity loss resulting from anthropogenic disturbance, surprisingly few consider how disturbance affects temporal patterns of diversity that result from seasonal turnover of species. Temporal dynamics can play an important role in the structure and function of biological assemblages. Here, we investigate the temporal diversity patterns of bee faunas in Southern California coastal sage scrub ecosystems that have been extensively fragmented by urbanization. Using a two-year dataset of 235 bee species (n = 12,036 specimens), we compared 1-ha plots in scrub fragments and scrub reserves with respect to three components of temporal diversity: overall plot-level diversity pooled over time (temporal gamma diversity), diversity at discrete points in time (temporal alpha diversity), and seasonal turnover in assemblage composition (temporal beta diversity). Compared to reserves, fragments harbored bee assemblages with lower species richness and assemblage evenness both when summed across temporal samples (i.e., lower temporal gamma diversity) and at single points in time (i.e., lower temporal alpha diversity). Bee assemblages in fragments also exhibited reduced seasonal turnover (i.e., lower temporal beta diversity). While fragments and reserves did not differ in overall bee abundance, bee abundance in fragments peaked later in the season compared to that in reserves. Our results argue for an increased awareness of temporal diversity patterns, as information about the distinct components of temporal diversity is essential both for characterizing the assemblage dynamics of seasonal organisms and for identifying potential impacts of anthropogenic disturbance on ecosystem function through its effects on assemblage dynamics. PMID:28854229

  5. Genomes of Salmonella with diverse patterns of antibiotic resistance (AR) revealed the dynamics of AR gene organization and detected resistance gene families found in Salmonella

    USDA-ARS?s Scientific Manuscript database

    We produced and assembled high quality draft genomes (~100X coverage) for 305 Salmonella from a diverse a group of over 100 serovars and diverse sources. Of these isolates, 119 were selected to capture a wide variety of different AR patterns. In our subsequent analyses we included 285 additional pub...

  6. Characterization of the papilionoid-Burkholderia interaction in the Fynbos biome: The diversity and distribution of beta-rhizobia nodulating Podalyria calyptrata (Fabaceae, Podalyrieae).

    PubMed

    Lemaire, Benny; Van Cauwenberghe, Jannick; Verstraete, Brecht; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Sprent, Janet; James, Euan K; Muasya, A Muthama

    2016-02-01

    The South African Fynbos soils are renowned for nitrogen-fixing Burkholderia associated with diverse papilionoid legumes of the tribes Crotalarieae, Hypocalypteae, Indigofereae, Phaseoleae and Podalyrieae. However, despite numerous rhizobial studies in the region, the symbiotic diversity of Burkholderia has not been investigated in relation to a specific host legume and its geographical provenance. This study analyzed the diversity of nodulating strains of Burkholderia from the legume species Podalyria calyptrata. Diverse lineages were detected that proved to be closely related to Burkholderia taxa, originating from hosts in other legume tribes. By analyzing the genetic variation of chromosomal (recA) and nodulation (nodA) sequence data in relation to the sampling sites we assessed the geographical distribution patterns of the P. calyptrata symbionts. Although we found a degree of genetically differentiated rhizobial populations, a correlation between genetic (recA and nodA) and geographic distances among populations was not observed, suggesting high rates of dispersal and rhizobial colonization within Fynbos soils. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. The distribution of cultural and biological diversity in Africa.

    PubMed Central

    Moore, Joslin L; Manne, Lisa; Brooks, Thomas; Burgess, Neil D; Davies, Robert; Rahbek, Carsten; Williams, Paul; Balmford, Andrew

    2002-01-01

    Anthropologists, biologists and linguists have all noted an apparent coincidence in species diversity and human cultural or linguistic diversity. We present, to our knowledge, one of the first quantitative descriptions of this coincidence and show that, for 2 degrees x 2 degrees grid cells across sub-Saharan Africa, cultural diversity and vertebrate species diversity exhibit marked similarities in their overall distribution. In addition, we show that 71% of the observed variation in species richness and 36% in language richness can be explained on the basis of environmental factors, suggesting that similar factors, especially those associated with rainfall and productivity, affect the distributions of both species and languages. Nevertheless, the form of the relationships between species richness and language richness and environmental factors differs, and it is unlikely that comparable mechanisms underpin the similar patterns of species and language richness. Moreover, the fact that the environmental factors considered here explain less than half of the variation in language richness indicates that other factors, many of which are likely to be historical or social, also influence the distribution of languages. PMID:12204124

  8. Different Planctomycetes diversity patterns in latitudinal surface seawater of the open sea and in sediment.

    PubMed

    Shu, Qinglong; Jiao, Nianzhi

    2008-04-01

    The 16S rRNA gene approach was applied to investigate the diversity of Planctomycetes in latitudinal surface seawater of the Western Pacific Ocean. The results revealed that the Pirellula-Rhodopirellula-Blastopirellula clade dominated the Planctomycetes community at all surface seawater sites while the minority genera Gemmata and Planctomyces were only found at sites H5 and H2 respectively. Although the clone frequency of the PRB clade seemed stable (between 83.3% and 94.1%) for all surface seawater sites, the retrieved Pirellula-Rhodopirellula-Blastopirellula clade presented unexpected diversity. Interestingly, low latitude seawater appeared to have higher diversity than mid-latitudes. integral-LIBSHUFF software analysis revealed significantly different diversity patterns between in latitudinal surface seawater and in the sediment of South China Sea station M2896. Our data suggested that different hydrological and geographic features contributed to the shift of Planctomycetes diversity in marine environments. This is, to our knowledge, the first systematic assessment of Planctomycetes in latitudinal surface seawater of the open sea and the first comparison of diversity pattern between surface seawater and sediments and has broadened our understanding of Planctomycetes diversity in marine environments.

  9. How does variation in rainfall affect simulated tropical tree mortality, functional diversity and coexistence?

    NASA Astrophysics Data System (ADS)

    Powell, T.; Kueppers, L. M.; Koven, C.; Johnson, D. J.; Faybishenko, B.; McDowell, N. G.; Chambers, J. Q.

    2016-12-01

    Land surface models that include demographic and plant hydrodynamic processes are promising tools for characterizing how different drought scenarios may affect carbon cycling of tropical forests. The Ecosystem Demography (ED2) model, now formulated with such features, was used to evaluate how different drought scenarios affect mortality patterns, functional diversity and coexistence of four plant functional types (PFTs) of tropical trees at Barro Colorado Island (BCI), Panama. The four PFTs simulated were early- versus late-successional groups subdivided into drought-tolerant versus -intolerant groups. The hydrodynamic formulation enables the four PFTs to compete mechanistically along two largely orthogonal resource gradients of water and light. The model simulations produced considerable differences in the aboveground biomass response to contrasting drying scenarios that included longer dry seasons, El Nino related droughts, and drier dry seasons. The emergent mortality dynamics reflect the physiological trade-off between water-use and carbon fixation formulated by the hydrodynamic regulation over stomatal conductance. During dry periods, the model predicts increased mortality rates of pioneer trees compared to generalists and drought-intolerant trees compared to -tolerant trees. The model also predicts that surviving cohorts in the smallest size classes of drought-intolerant trees are occasionally primed for release from competition following acute droughts. Observations at BCI showed increased mortality rates for large trees (i.e. >30 cm dbh) during the 1982 El Nino drought, but not subsequent El Nino related droughts. The causes of the elevated mortality rates are explored with the model. Coexistence of four plant functional types in the model is highly sensitive to the parameterization of stem hydraulic conductivity; but, surprisingly not very sensitive to shifts in rainfall patterns. These results demonstrate (a) that plant hydrodynamics are critical for simulating dynamic mortality patterns between drought-tolerant and -intolerant PFTs in order to increase representation of functional diversity in land surface models, and (b) that more demographic, plant hydraulic and deeper soil moisture observations are required to constrain hydrodynamic parameter selection.

  10. Chemical-biogeographic survey of secondary metabolism in soil.

    PubMed

    Charlop-Powers, Zachary; Owen, Jeremy G; Reddy, Boojala Vijay B; Ternei, Melinda A; Brady, Sean F

    2014-03-11

    In this study, we compare biosynthetic gene richness and diversity of 96 soil microbiomes from diverse environments found throughout the southwestern and northeastern regions of the United States. The 454-pyroseqencing of nonribosomal peptide adenylation (AD) and polyketide ketosynthase (KS) domain fragments amplified from these microbiomes provide a means to evaluate the variation of secondary metabolite biosynthetic diversity in different soil environments. Through soil composition and AD- and KS-amplicon richness analysis, we identify soil types with elevated biosynthetic potential. In general, arid soils show the richest observed biosynthetic diversity, whereas brackish sediments and pine forest soils show the least. By mapping individual environmental amplicon sequences to sequences derived from functionally characterized biosynthetic gene clusters, we identified conserved soil type-specific secondary metabolome enrichment patterns despite significant sample-to-sample sequence variation. These data are used to create chemical biogeographic distribution maps for biomedically valuable families of natural products in the environment that should prove useful for directing the discovery of bioactive natural products in the future.

  11. Population genomics of intrapatient HIV-1 evolution

    PubMed Central

    Zanini, Fabio; Brodin, Johanna; Thebo, Lina; Lanz, Christa; Bratt, Göran; Albert, Jan; Neher, Richard A

    2015-01-01

    Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity. DOI: http://dx.doi.org/10.7554/eLife.11282.001 PMID:26652000

  12. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity.

    PubMed

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-02-13

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of cellular diversity for genetic and phenotypic features

    PubMed Central

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    SUMMARY Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor subtype-specific and it did not change during treatment in tumors with partial or no response. However, lower pre-treatment genetic diversity was significantly associated with complete pathologic response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. PMID:24462293

  14. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    DOE PAGES

    Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; ...

    2014-02-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatialmore » distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.« less

  15. Extreme weather events and environmental contamination are associated with case-clusters of melioidosis in the Northern Territory of Australia.

    PubMed

    Cheng, Allen C; Jacups, Susan P; Gal, Daniel; Mayo, Mark; Currie, Bart J

    2006-04-01

    Melioidosis, the infection due to the environmental organism Burkholderia pseudomallei, is endemic to northern Australia and South East Asia. It is associated with exposure to mud and pooled surface water, but environmental determinants of this disease are poorly understood. We defined case-clusters in northern Australia, determined their contribution to the observed rate of melioidosis, and explored clinical features and associated environmental factors. Using geographical information systems data, we examined clustering of melioidosis cases in time and geographical space in the Top End of the Northern Territory of Australia between 1990 and 2002 using a scan statistic. DNA macrorestriction analysis, resolved by pulsed field gel electrophoresis, was performed on isolates from patients. We defined five case-clusters involving 27 patients that occurred within 7-28 days and/or a radius of 100-300 km. Clustered cases were associated with extreme weather events or environmental contamination; no difference in the clinical pattern of disease was noted from other patients not involved in clusters. Isolates from patients linked to environmental contamination were caused by isolates with similar DNA macrorestriction patterns, but isolates from patients linked to severe weather events had more diverse DNA macrorestriction patterns. Case-clusters of melioidosis where isolates exhibit diverse DNA macrorestriction patterns in our region are linked to extreme weather events and outbreaks where isolates are predominantly of the same DNA macrorestriction pattern are linked with contamination of an environmental source.

  16. Evolution of meiotic recombination genes in maize and teosinte.

    PubMed

    Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P

    2017-01-25

    Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.

  17. Bathymetric patterns in standing stock and diversity of deep-sea nematodes at the long-term ecological research observatory HAUSGARTEN (Fram Strait)

    NASA Astrophysics Data System (ADS)

    Grzelak, Katarzyna; Kotwicki, Lech; Hasemann, Christiane; Soltwedel, Thomas

    2017-08-01

    Bathymetric patterns in standing stocks and diversity are a major topic of investigation in deep-sea biology. From the literature, responses of metazoan meiofauna and nematodes to bathymetric gradients are well studied, with a general decrease in biomass and abundance with increasing water depth, while bathymetric diversity gradients often, although it is not a rule, show a unimodal pattern. Spatial distribution patterns of nematode communities along bathymetric gradients are coupled with surface-water processes and interacting physical and biological factors within the benthic system. We studied the nematode communities at the Long-Term Ecological Research (LTER) observatory HAUSGARTEN, located in the Fram Strait at the Marginal Ice Zone, with respect to their standing stocks as well as structural and functional diversity. We evaluated whether nematode density, biomass and diversity indices, such as H0, Hinf, EG(50), Θ- 1, are linked with environmental conditions along a bathymetric transect spanning from 1200 m to 5500 m water depth. Nematode abundance, biomass and diversity, as well as food availability from phytodetritus sedimentation (indicated by chloroplastic pigments in the sediments), were higher at the stations located at upper bathyal depths (1200-2000 m) and tended to decrease with increasing water depth. A faunal shift was found below 3500 m water depth, where genus composition and trophic structure changed significantly and structural diversity indices markedly decreased. A strong dominance of very few genera and its high turnover particularly at the abyssal stations (4000-5500 m) suggests that environmental conditions were rather unfavorable for most genera. Despite the high concentrations of sediment-bound chloroplastic pigments and elevated standing stocks found at the deepest station (5500 m), nematode genus diversity remained the lowest compared to all other stations. This study provides a further insight into the knowledge of deep-sea nematodes, their diversity patterns and a deeper understanding of the environmental factors shaping nematodes communities at bathyal and abyssal depths.

  18. Applying the dark diversity concept to nature conservation.

    PubMed

    Lewis, Rob J; de Bello, Francesco; Bennett, Jonathan A; Fibich, Pavel; Finerty, Genevieve E; Götzenberger, Lars; Hiiesalu, Inga; Kasari, Liis; Lepš, Jan; Májeková, Maria; Mudrák, Ondřej; Riibak, Kersti; Ronk, Argo; Rychtecká, Terezie; Vitová, Alena; Pärtel, Meelis

    2017-02-01

    Linking diversity to biological processes is central for developing informed and effective conservation decisions. Unfortunately, observable patterns provide only a proportion of the information necessary for fully understanding the mechanisms and processes acting on a particular population or community. We suggest conservation managers use the often overlooked information relative to species absences and pay particular attention to dark diversity (i.e., a set of species that are absent from a site but that could disperse to and establish there, in other words, the absent portion of a habitat-specific species pool). Together with existing ecological metrics, concepts, and conservation tools, dark diversity can be used to complement and further develop conservation prioritization and management decisions through an understanding of biodiversity relativized by its potential (i.e., its species pool). Furthermore, through a detailed understanding of the population, community, and functional dark diversity, the restoration potential of degraded habitats can be more rigorously assessed and so to the likelihood of successful species invasions. We suggest the application of the dark diversity concept is currently an underappreciated source of information that is valuable for conservation applications ranging from macroscale conservation prioritization to more locally scaled restoration ecology and the management of invasive species. © 2016 Society for Conservation Biology.

  19. Diversity patterns of microbial eukaryotes mirror those of bacteria in Antarctic cryoconite holes.

    PubMed

    Sommers, Pacifica; Darcy, John L; Gendron, Eli M S; Stanish, Lee F; Bagshaw, Elizabeth A; Porazinska, Dorota L; Schmidt, Steven K

    2018-01-01

    Ice-lidded cryoconite holes on glaciers in the Taylor Valley, Antarctica, provide a unique system of natural mesocosms for studying community structure and assembly. We used high-throughput DNA sequencing to characterize both microbial eukaryotic communities and bacterial communities within cryoconite holes across three glaciers to study similarities in their spatial patterns. We expected that the alpha (phylogenetic diversity) and beta (pairwise community dissimilarity) diversity patterns of eukaryotes in cryoconite holes would be related to those of bacteria, and that they would be related to the biogeochemical gradient within the Taylor Valley. We found that eukaryotic alpha and beta diversity were strongly related to those of bacteria across scales ranging from 140 m to 41 km apart. Alpha diversity of both was significantly related to position in the valley and surface area of the cryoconite hole, with pH also significantly correlated with the eukaryotic diversity. Beta diversity for both bacteria and eukaryotes was significantly related to position in the valley, with bacterial beta diversity also related to nitrate. These results are consistent with transport of sediments onto glaciers occurring primarily at local scales relative to the size of the valley, thus creating feedbacks in local chemistry and diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Genomic determinants of epidermal appendage patterning and structure in domestic birds.

    PubMed

    Boer, Elena F; Van Hollebeke, Hannah F; Shapiro, Michael D

    2017-09-15

    Variation in regional identity, patterning, and structure of epidermal appendages contributes to skin diversity among many vertebrate groups, and is perhaps most striking in birds. In pioneering work on epidermal appendage patterning, John Saunders and his contemporaries took advantage of epidermal appendage diversity within and among domestic chicken breeds to establish the importance of mesoderm-ectoderm signaling in determining skin patterning. Diversity in chickens and other domestic birds, including pigeons, is driving a new wave of research to dissect the molecular genetic basis of epidermal appendage patterning. Domestic birds are not only outstanding models for embryonic manipulations, as Saunders recognized, but they are also ideal genetic models for discovering the specific genes that control normal development and the mutations that contribute to skin diversity. Here, we review recent genetic and genomic approaches to uncover the basis of epidermal macropatterning, micropatterning, and structural variation. We also present new results that confirm expression changes in two limb identity genes in feather-footed pigeons, a case of variation in appendage structure and identity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Long-term trends in the structure of eastern Adriatic littoral fish assemblages: Consequences for fisheries management

    NASA Astrophysics Data System (ADS)

    Stagličić, N.; Matić-Skoko, S.; Pallaoro, A.; Grgičević, R.; Kraljević, M.; Tutman, P.; Dragičević, B.; Dulčić, J.

    2011-09-01

    Long-term interannual changes in abundance, biomass, diversity and structure of littoral fish assemblages were examined between 1993 and 2009 by experimental trammel net fishing up to six times per year, within the warm period - May to September, at multiple areas along the eastern Adriatic coast with the aim of testing for the consistency of patterns of change across a large spatial scale (˜600 km). The results revealed spatially consistent increasing trends of total fish abundance and biomass growing at an average rate of 15 and 14% per year, respectively. Of the diversity indices analysed, the same pattern of variability was observed for Shannon diversity, while Pielou evenness and average taxonomic distinctness measures Δ ∗ and Δ + showed spatial variability with no obvious temporal trends. Multivariate fish assemblage structure underwent a directional change displaying a similar pattern through time for all the areas. The structural change in fish assemblages generally involved most of the species present in trammel net catches. A large pool of fish species responsible for producing the temporal pattern of assemblage change was relatively different in each of the areas reflecting a large geographic range covered by the study. An analysis of 4 fish species ( Symphodus tinca, Pagellus erythrinus, Mullus surmuletus, Scorpaena porcus) common to each of the study areas as the ones driving the temporal change indicated that there were clear increasing trends of their mean catches across the years at all the study areas. A common pattern among time trajectories across the spatial scale studied implies that the factor affecting the littoral fish assemblages is not localised but regional in nature. As an underlying factor having the potential to induce such widespread and consistent improvements in littoral fish assemblages, a more restrictive artisanal fishery management that has progressively been put in place during the study period, is suggested and discussed.

  2. Across language families: Genome diversity mirrors linguistic variation within Europe

    PubMed Central

    Longobardi, Giuseppe; Ghirotto, Silvia; Guardiano, Cristina; Tassi, Francesca; Benazzo, Andrea; Ceolin, Andrea

    2015-01-01

    ABSTRACT Objectives: The notion that patterns of linguistic and biological variation may cast light on each other and on population histories dates back to Darwin's times; yet, turning this intuition into a proper research program has met with serious methodological difficulties, especially affecting language comparisons. This article takes advantage of two new tools of comparative linguistics: a refined list of Indo‐European cognate words, and a novel method of language comparison estimating linguistic diversity from a universal inventory of grammatical polymorphisms, and hence enabling comparison even across different families. We corroborated the method and used it to compare patterns of linguistic and genomic variation in Europe. Materials and Methods: Two sets of linguistic distances, lexical and syntactic, were inferred from these data and compared with measures of geographic and genomic distance through a series of matrix correlation tests. Linguistic and genomic trees were also estimated and compared. A method (Treemix) was used to infer migration episodes after the main population splits. Results: We observed significant correlations between genomic and linguistic diversity, the latter inferred from data on both Indo‐European and non‐Indo‐European languages. Contrary to previous observations, on the European scale, language proved a better predictor of genomic differences than geography. Inferred episodes of genetic admixture following the main population splits found convincing correlates also in the linguistic realm. Discussion: These results pave the ground for previously unfeasible cross‐disciplinary analyses at the worldwide scale, encompassing populations of distant language families. Am J Phys Anthropol 157:630–640, 2015. © 2015 Wiley Periodicals, Inc. PMID:26059462

  3. Diversity and geographical distribution of Flavobacterium psychrophilum isolates and their phages: patterns of susceptibility to phage infection and phage host range.

    PubMed

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio; Middelboe, Mathias

    2014-05-01

    Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that "enhanced infection" is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed.

  4. Analysis of EDZ Development of Columnar Jointed Rock Mass in the Baihetan Diversion Tunnel

    NASA Astrophysics Data System (ADS)

    Hao, Xian-Jie; Feng, Xia-Ting; Yang, Cheng-Xiang; Jiang, Quan; Li, Shao-Jun

    2016-04-01

    Due to the time dependency of the crack propagation, columnar jointed rock masses exhibit marked time-dependent behaviour. In this study, in situ measurements, scanning electron microscope (SEM), back-analysis method and numerical simulations are presented to study the time-dependent development of the excavation damaged zone (EDZ) around underground diversion tunnels in a columnar jointed rock mass. Through in situ measurements of crack propagation and EDZ development, their extent is seen to have increased over time, despite the fact that the advancing face has passed. Similar to creep behaviour, the time-dependent EDZ development curve also consists of three stages: a deceleration stage, a stabilization stage, and an acceleration stage. A corresponding constitutive model of columnar jointed rock mass considering time-dependent behaviour is proposed. The time-dependent degradation coefficient of the roughness coefficient and residual friction angle in the Barton-Bandis strength criterion are taken into account. An intelligent back-analysis method is adopted to obtain the unknown time-dependent degradation coefficients for the proposed constitutive model. The numerical modelling results are in good agreement with the measured EDZ. Not only that, the failure pattern simulated by this time-dependent constitutive model is consistent with that observed in the scanning electron microscope (SEM) and in situ observation, indicating that this model could accurately simulate the failure pattern and time-dependent EDZ development of columnar joints. Moreover, the effects of the support system provided and the in situ stress on the time-dependent coefficients are studied. Finally, the long-term stability analysis of diversion tunnels excavated in columnar jointed rock masses is performed.

  5. Measuring diversity of music tastes in online musical society

    NASA Astrophysics Data System (ADS)

    Li, Hao; Han, Xiao-Pu; Lü, Linyuan; Pan, Zhigeng

    The diversity of people’s musical tastes is one of the significant parts which helps people to better understand the behavior trends and cultural preferences of people. In this paper, based on Hill-type true diversity, we propose an improved diversity metric that fairly captures the diversity of musical tastes. This diversity efficiently considers all the three aspects of diversity definitions: variety, balance, and disparity, and keeps higher discriminatory power. Using this diversity metric, one can analyze users’ music tastes on Xiami.com, one of the largest social music media in China; we explore the association between the diversity and various variables which represent users’ personal traits, as well as the difference between different genre levels and map the cultural pattern of difference genres. Our findings dig out many efficient factors that deeply impact users’ music tastes, and provide the global pattern of musical cultural structure on the Chinese online music society.

  6. Genome-wide characterization of genetic diversity and population structure in Secale

    PubMed Central

    2014-01-01

    Background Numerous rye accessions are stored in ex situ genebanks worldwide. Little is known about the extent of genetic diversity contained in any of them and its relation to contemporary varieties, since to date rye genetic diversity studies had a very limited scope, analyzing few loci and/ or few accessions. Development of high throughput genotyping methods for rye opened the possibility for genome wide characterizations of large accessions sets. In this study we used 1054 Diversity Array Technology (DArT) markers with defined chromosomal location to characterize genetic diversity and population structure in a collection of 379 rye accessions including wild species, landraces, cultivated materials, historical and contemporary rye varieties. Results Average genetic similarity (GS) coefficients and average polymorphic information content (PIC) values varied among chromosomes. Comparison of chromosome specific average GS within and between germplasm sub-groups indicated regions of chromosomes 1R and 4R as being targeted by selection in current breeding programs. Bayesian clustering, principal coordinate analysis and Neighbor Joining clustering demonstrated that source and improvement status contributed significantly to the structure observed in the analyzed set of Secale germplasm. We revealed a relatively limited diversity in improved rye accessions, both historical and contemporary, as well as lack of correlation between clustering of improved accessions and geographic origin, suggesting common genetic background of rye accessions from diverse geographic regions and extensive germplasm exchange. Moreover, contemporary varieties were distinct from the remaining accessions. Conclusions Our results point to an influence of reproduction methods on the observed diversity patterns and indicate potential of ex situ collections for broadening the genetic diversity in rye breeding programs. Obtained data show that DArT markers provide a realistic picture of the genetic diversity and population structure present in the collection of 379 rye accessions and are an effective platform for rye germplasm characterization and association mapping studies. PMID:25085433

  7. Genetic diversity and population structure of African village dogs based on microsatellite and immunity-related molecular markers.

    PubMed

    Vychodilova, Leona; Necesankova, Michaela; Albrechtova, Katerina; Hlavac, Jan; Modry, David; Janova, Eva; Vyskocil, Mirko; Mihalca, Andrei D; Kennedy, Lorna J; Horin, Petr

    2018-01-01

    The village and street dogs represent a unique model of canine populations. In the absence of selective breeding and veterinary care, they are subject mostly to natural selection. Their analyses contribute to understanding general mechanisms governing the genetic diversity, evolution and adaptation. In this study, we analyzed the genetic diversity and population structure of African village dogs living in villages in three different geographical areas in Northern Kenya. Data obtained for neutral microsatellite molecular markers were compared with those computed for potentially non-neutral markers of candidate immunity-related genes. The neutral genetic diversity was similar to other comparable village dog populations studied so far. The overall genetic diversity in microsatellites was higher than the diversity of European pure breeds, but it was similar to the range of diversity observed in a group composed of many European breeds, indicating that the African population has maintained a large proportion of the genetic diversity of the canine species as a whole. Microsatellite marker diversity indicated that the entire population is subdivided into three genetically distinct, although closely related subpopulations. This genetical partitioning corresponded to their geographical separation and the observed gene flow well correlated with the communication patterns among the three localities. In contrast to neutral microsatellites, the genetic diversity in immunity-related candidate SNP markers was similar across all three subpopulations and to the European group. It seems that the genetic structure of this particular population of Kenyan village dogs is mostly determined by geographical and anthropogenic factors influencing the gene flow between various subpopulations rather than by biological factors, such as genetic contribution of original migrating populations and/or the pathogen-mediated selection. On the other hand, the study of oldest surviving dogs suggested a biological mechanism, i.e. a possible advantage of the overal heterozygosity marked by the the microsatellite loci analyzed.

  8. Spatial Co-Occurrence and Activity Patterns of Mesocarnivores in the Temperate Forests of Southwest China.

    PubMed

    Bu, Hongliang; Wang, Fang; McShea, William J; Lu, Zhi; Wang, Dajun; Li, Sheng

    2016-01-01

    Understanding the interactions between species and their coexistence mechanisms will help explain biodiversity maintenance and enable managers to make sound conservation decisions. Mesocarnivores are abundant and diverse mid-sized carnivores and can have profound impacts on the function, structure and dynamics of ecosystem after the extirpation of apex predators in many ecosystems. The moist temperate forests of Southwest China harbor a diverse community of mesocarnivores in the absence of apex predators. Sympatric species tend to partition limited resources along time, diet and space to facilitate coexistence. We determined the spatial and temporal patterns for five species of mesocarnivores. We used detection histories from a large camera-trap dataset collected from 2004-2015 with an extensive effort of 23,313 camera-days from 495 camera locations. The five mesocarnivore species included masked palm civet Paguma larvata, leopard cat Prionailurus bengalensis, hog badger Arctonyx collaris, yellow-throated marten Martes flavigula, and Siberian weasel Mustela sibirica. Only the masked palm civet and hog badger tended to avoid each other; while for other pairs of species, they occurred independently of each other, or no clear pattern observed. With regard to seasonal activity, yellow-throated marten was most active in winter, opposite the pattern observed for masked palm civet, leopard cat and hog badger. For diel activity, masked palm civet, leopard cat and hog badger were primarily nocturnal and crepuscular; yellow-throated marten was diurnal, and Siberian weasel had no clear pattern for most of the year (March to November), but was nocturnal in the winter (December to February). The seasonal shift of the Siberian weasel may be due to the high diet overlap among species in winter. Our results provided new facts and insights into this unique community of mesocarnivores of southwest China, and will facilitate future studies on the mechanism determining coexistence of animal species within complex system.

  9. Global isolation by distance despite strong regional phylogeography in a small metazoan

    PubMed Central

    Mills, Scott; Lunt, David H; Gómez, Africa

    2007-01-01

    Background Small vagile eukaryotic organisms, which comprise a large proportion of the Earth's biodiversity, have traditionally been thought to lack the extent of population structuring and geographic speciation observed in larger taxa. Here we investigate the patterns of genetic diversity, amongst populations of the salt lake microscopic metazoan Brachionus plicatilis s. s. (sensu stricto) (Rotifera: Monogononta) on a global scale. We examine the phylogenetic relationships of geographic isolates from four continents using a 603 bp fragment of the mitochondrial COI gene to investigate patterns of phylogeographic subdivision in this species. In addition we investigate the relationship between genetic and geographic distances on a global scale to try and reconcile the paradox between the high vagility of this species and the previously reported patterns of restricted gene flow, even over local spatial scales. Results Analysis of global sequence diversity of B. plicatilis s. s. reveals the presence of four allopatric genetic lineages: North American-Far East Asian, Western Mediterranean, Australian, and an Eastern Mediterranean lineage represented by a single isolate. Geographically orientated substructure is also apparent within the three best sampled lineages. Surprisingly, given this strong phylogeographic structure, B. plicatilis s. s. shows a significant correlation between geographic and genetic distance on a global scale ('isolation by distance' – IBD). Conclusion Despite its cosmopolitan distribution and potential for high gene flow, B. plicatilis s. s. is strongly structured at a global scale. IBD patterns have traditionally been interpreted to indicate migration-drift equilibrium, although in this system equilibrium conditions are incompatible with the observed genetic structure. Instead, we suggest the pattern may have arisen through persistent founder effects, acting in a similar fashion to geographic barriers for larger organisms. Our data indicates that geographic speciation, contrary to historical views, is likely to be very important in microorganisms. By presenting compelling evidence for geographic speciation in a small eukaryote we add to the growing body of evidence that is forcing us to rethink our views of global biodiversity. PMID:17999774

  10. Environmental Filtering Process Has More Important Roles than Dispersal Limitation in Shaping Large-Scale Prokaryotic Beta Diversity Patterns of Grassland Soils.

    PubMed

    Cao, Peng; Wang, Jun-Tao; Hu, Hang-Wei; Zheng, Yuan-Ming; Ge, Yuan; Shen, Ju-Pei; He, Ji-Zheng

    2016-07-01

    Despite the utmost importance of microorganisms in maintaining ecosystem functioning and their ubiquitous distribution, our knowledge of the large-scale pattern of microbial diversity is limited, particularly in grassland soils. In this study, the microbial communities of 99 soil samples spanning over 3000 km across grassland ecosystems in northern China were investigated using high-throughput sequencing to analyze the beta diversity pattern and the underlying ecological processes. The microbial communities were dominated by Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Planctomycetes across all the soil samples. Spearman's correlation analysis indicated that climatic factors and soil pH were significantly correlated with the dominant microbial taxa, while soil microbial richness was positively linked to annual precipitation. The environmental divergence-dissimilarity relationship was significantly positive, suggesting the importance of environmental filtering processes in shaping soil microbial communities. Structural equation modeling found that the deterministic process played a more important role than the stochastic process on the pattern of soil microbial beta diversity, which supported the predictions of niche theory. Partial mantel test analysis have showed that the contribution of independent environmental variables has a significant effect on beta diversity, while independent spatial distance has no such relationship, confirming that the deterministic process was dominant in structuring soil microbial communities. Overall, environmental filtering process has more important roles than dispersal limitation in shaping microbial beta diversity patterns in the grassland soils.

  11. How does pedogenesis drive plant diversity?

    PubMed

    Laliberté, Etienne; Grace, James B; Huston, Michael A; Lambers, Hans; Teste, François P; Turner, Benjamin L; Wardle, David A

    2013-06-01

    Some of the most species-rich plant communities occur on ancient, strongly weathered soils, whereas those on recently developed soils tend to be less diverse. Mechanisms underlying this well-known pattern, however, remain unresolved. Here, we present a conceptual model describing alternative mechanisms by which pedogenesis (the process of soil formation) might drive plant diversity. We suggest that long-term soil chronosequences offer great, yet largely untapped, potential as 'natural experiments' to determine edaphic controls over plant diversity. Finally, we discuss how our conceptual model can be evaluated quantitatively using structural equation modeling to advance multivariate theories about the determinants of local plant diversity. This should help us to understand broader-scale diversity patterns, such as the latitudinal gradient of plant diversity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Global patterns of the beta diversity-energy relationship in terrestrial vertebrates

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Xiao, Ming

    2012-02-01

    Patterns in beta diversity or species turnover, describing the change in species composition between places, have their wide implication for ecological and evolutionary issues. It is thought that beta diversity increases with increasing energy availability, but very few studies have directly tested this hypothesis. We examined the beta diversity-energy relationship for four classes of terrestrial vertebrates (mammals, birds, reptiles, and amphibians) in ecoregions across the world. The relationship was examined for each class in each of six biogeographic realms. We show that beta diversity is generally higher in areas with higher energy availability, measured as annual potential evapotranspiration. A higher level of beta diversity in areas with higher energy availability may have contributed to the well-known latitudinal diversity gradient (i.e., species richness increases towards the equator).

  13. Are Temperate Canopy Spiders Tree-Species Specific?

    PubMed Central

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood. PMID:24586251

  14. Are temperate canopy spiders tree-species specific?

    PubMed

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

  15. Extreme mitochondrial variation in the Atlantic gall crab Opecarcinus hypostegus (Decapoda: Cryptochiridae) reveals adaptive genetic divergence over Agaricia coral hosts

    PubMed Central

    van Tienderen, Kaj M.; van der Meij, Sancia E. T.

    2017-01-01

    The effectiveness of migration in marine species exhibiting a pelagic larval stage is determined by various factors, such as ocean currents, pelagic larval stage duration and active habitat selection. Direct measurement of larval movements is difficult and, consequently, factors determining the gene flow patterns remain poorly understood for many species. Patterns of gene flow play a key role in maintaining genetic homogeneity in a species by dampening the effects of local adaptation. Coral-dwelling gall crabs (Cryptochiridae) are obligate symbionts of stony corals (Scleractinia). Preliminary data showed high genetic diversity on the COI gene for 19 Opecarcinus hypostegus specimens collected off Curaçao. In this study, an additional 176 specimens were sequenced and used to characterize the population structure along the leeward side of Curaçao. Extremely high COI genetic variation was observed, with 146 polymorphic sites and 187 unique haplotypes. To determine the cause of this high genetic diversity, various gene flow scenarios (geographical distance along the coast, genetic partitioning over depth, and genetic differentiation by coral host) were examined. Adaptive genetic divergence across Agariciidae host species is suggested to be the main cause for the observed high intra-specific variance, hypothesised as early signs of speciation in O. hypostegus. PMID:28079106

  16. Changes in Species Diversity Patterns and Spatial Heterogeneity during the Secondary Succession of Grassland Vegetation on the Loess Plateau, China.

    PubMed

    Sun, Caili; Chai, Zongzheng; Liu, Guobin; Xue, Sha

    2017-01-01

    Analyzing the dynamic patterns of species diversity and spatial heterogeneity of vegetation in grasslands during secondary succession could help with the maintenance and management of these ecosystems. Here, we evaluated the influence of secondary succession on grassland plant diversity and spatial heterogeneity of abandoned croplands on the Loess Plateau (China) during four phases of recovery: 1-5, 5-10, 10-20, and 20-30 years. The species composition and dominance of the grassland vegetation changed markedly during secondary succession and formed a clear successional series, with the species assemblage dominated by Artemisia capillaris → Heteropappus altaicus→ A. sacrorum . The diversity pattern was one of low-high-low, with diversity peaking in the 10-20 year phase, thus corresponding to a hump-backed model in which maximum diversity occurring at the intermediate stages. A spatially aggregated pattern prevailed throughout the entire period of grassland recovery; this was likely linked to the dispersal properties of herbaceous plants and to high habitat heterogeneity. We conclude that natural succession was conducive to the successful recovery of native vegetation. From a management perspective, native pioneer tree species should be introduced about 20 years after abandoning croplands to accelerate the natural succession of grassland vegetation.

  17. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest.

    PubMed

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-18

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  18. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    PubMed Central

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198

  19. Changes in Species Diversity Patterns and Spatial Heterogeneity during the Secondary Succession of Grassland Vegetation on the Loess Plateau, China

    PubMed Central

    Sun, Caili; Chai, Zongzheng; Liu, Guobin; Xue, Sha

    2017-01-01

    Analyzing the dynamic patterns of species diversity and spatial heterogeneity of vegetation in grasslands during secondary succession could help with the maintenance and management of these ecosystems. Here, we evaluated the influence of secondary succession on grassland plant diversity and spatial heterogeneity of abandoned croplands on the Loess Plateau (China) during four phases of recovery: 1–5, 5–10, 10–20, and 20–30 years. The species composition and dominance of the grassland vegetation changed markedly during secondary succession and formed a clear successional series, with the species assemblage dominated by Artemisia capillaris→ Heteropappus altaicus→ A. sacrorum. The diversity pattern was one of low–high–low, with diversity peaking in the 10–20 year phase, thus corresponding to a hump-backed model in which maximum diversity occurring at the intermediate stages. A spatially aggregated pattern prevailed throughout the entire period of grassland recovery; this was likely linked to the dispersal properties of herbaceous plants and to high habitat heterogeneity. We conclude that natural succession was conducive to the successful recovery of native vegetation. From a management perspective, native pioneer tree species should be introduced about 20 years after abandoning croplands to accelerate the natural succession of grassland vegetation. PMID:28900433

  20. Patterns of Nitrogen Fixation and Related Genetic Diversity (nifH) in Microbial Mats and Stromatolites from Different Environments

    NASA Astrophysics Data System (ADS)

    Beltrán, Y. Y.; Centeno, C.; Falcón, L. I.

    2010-04-01

    We want to estimate the patterns of nitrogen fixation and the related genetic diversity (nifH) of microbial mats and microbialites on dial and temporal scales along a physicochemical and geographical gradient.

  1. Patterns of Post-Glacial Genetic Differentiation in Marginal Populations of a Marine Microalga

    PubMed Central

    Tahvanainen, Pia; Alpermann, Tilman J.; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F ST) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms. PMID:23300940

  2. Phylogenetic and morphological investigation of the Mochlus afer-sundevallii species complex (Squamata: Scincidae) across the arid corridor of sub-Saharan Africa.

    PubMed

    Freitas, Elyse S; Bauer, Aaron M; Siler, Cameron D; Broadley, Donald G; Jackman, Todd R

    2018-06-02

    The aridification of Africa resulted in the fragmentation of forests and the expansion of an arid corridor stretching from the northeast to southwest portion of sub-Saharan Africa, but the role this corridor has had in species-level diversification of southern African vertebrates is poorly understood. The skink species Mochlus afer and M. sundevallii inhabit wide areas of the arid corridor and are therefore an ideal species pair for studying patterns of genetic and phenotypic diversity associated with this landscape. However, species boundaries between these taxa have been controversial. Using multi-locus molecular and morphological datasets, we investigate diversification patterns of the M. afer-sundevallii Species Complex across the arid corridor. Although analyses of genetic data reveals some genetic structure among geographic populations, results of phylogenetic and morphological analyses provide little support for two distinct evolutionary lineages, suggesting that populations previously referred to as M. afer and M. sundevallii represent a single species, Mochlus sundevallii. Genetic diversity is unequally distributed across the arid corridor, with observed patterns consistent with aridification-facilitated diversification southward across southern Africa. Additional geographic and population-level sampling is necessary before more conclusive inferences can be drawn about the role historical climate transitions have played in skink diversification patterns across southern Africa. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Patterns of Symbiodinium spp. associations within the family Aiptasiidae, a monophyletic lineage of symbiotic of sea anemones (Cnidaria, Actiniaria)

    NASA Astrophysics Data System (ADS)

    Grajales, Alejandro; Rodríguez, Estefanía; Thornhill, Daniel J.

    2016-03-01

    Although the symbiotic relationships between dinoflagellates and cnidarians are well recognized, few studies have examined these associations from an evolutionary perspective. This is especially true for symbiotic sea anemones, in which many reports consist of an approximate species identification of the host, followed by the identification of the dinoflagellate symbiont using molecular genetic markers. To further explore the evolutionary history of sea anemone-dinoflagellate associations, we documented the diversity of Symbiodinium spp. in a monophyletic clade of sea anemones, the family Aiptasiidae. We combined information from several molecular genetic markers, including nuclear ITS2 and plastid cp23S-rDNA, to evaluate the patterns of evolution and diversification of Symbiodinium in the light of an existing phylogenetic framework for the sea anemone host. At the host family level, we found no evidence for coevolution or reciprocal phylogenies between host and endosymbiont. However, within some individual host species, Symbiodinium spp. exhibited patterns of host specialization and cladogenesis. This pattern suggests that coevolution between host and symbiont occurred within species and genera lineages, but that this process was regularly disrupted and symbiotic partners were recombined during the longer-term evolutionary history of the Aiptasiidae. Furthermore, we observed independent cases of phylogeographical partitioning of Symbiodinium within a single host species, suggesting that ecological speciation along an environmental gradient contributed to the diversity of associations found in nature.

  4. Patterns of post-glacial genetic differentiation in marginal populations of a marine microalga.

    PubMed

    Tahvanainen, Pia; Alpermann, Tilman J; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F(ST)) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.

  5. Global patterns of evolutionary distinct and globally endangered amphibians and mammals.

    PubMed

    Safi, Kamran; Armour-Marshall, Katrina; Baillie, Jonathan E M; Isaac, Nick J B

    2013-01-01

    Conservation of phylogenetic diversity allows maximising evolutionary information preserved within fauna and flora. The "EDGE of Existence" programme is the first institutional conservation initiative that prioritises species based on phylogenetic information. Species are ranked in two ways: one according to their evolutionary distinctiveness (ED) and second, by including IUCN extinction status, their evolutionary distinctiveness and global endangerment (EDGE). Here, we describe the global patterns in the spatial distribution of priority ED and EDGE species, in order to identify conservation areas for mammalian and amphibian communities. In addition, we investigate whether environmental conditions can predict the observed spatial pattern in ED and EDGE globally. Priority zones with high concentrations of ED and EDGE scores were defined using two different methods. The overlap between mammal and amphibian zones was very small, reflecting the different phylo-biogeographic histories. Mammal ED zones were predominantly found on the African continent and the neotropical forests, whereas in amphibians, ED zones were concentrated in North America. Mammal EDGE zones were mainly in South-East Asia, southern Africa and Madagascar; for amphibians they were in central and south America. The spatial pattern of ED and EDGE was poorly described by a suite of environmental variables. Mapping the spatial distribution of ED and EDGE provides an important step towards identifying priority areas for the conservation of mammalian and amphibian phylogenetic diversity in the EDGE of existence programme.

  6. [Applications of 2D and 3D landscape pattern indices in landscape pattern analysis of mountainous area at county level].

    PubMed

    Lu, Chao; Qi, Wei; Li, Le; Sun, Yao; Qin, Tian-Tian; Wang, Na-Na

    2012-05-01

    Landscape pattern indices are the commonly used tools for the quantitative analysis of landscape pattern. However, the traditional 2D landscape pattern indices neglect the effects of terrain on landscape, existing definite limitations in quantitatively describing the landscape patterns in mountains areas. Taking the Qixia City, a typical mountainous and hilly region in Shandong Province of East China, as a case, this paper compared the differences between 2D and 3D landscape pattern indices in quantitatively describing the landscape patterns and their dynamic changes in mountainous areas. On the basis of terrain structure analysis, a set of landscape pattern indices were selected, including area and density (class area and mean patch size), edge and shape (edge density, landscape shape index, and fractal dimension of mean patch), diversity (Shannon's diversity index and evenness index) , and gathering and spread (contagion index). There existed obvious differences between the 3D class area, mean patch area, and edge density and the corresponding 2D indices, but no significant differences between the 3D landscape shape index, fractal dimension of mean patch, and Shannon' s diversity index and evenness index and the corresponding 2D indices. The 3D contagion index and 2D contagion index had no difference. Because the 3D landscape pattern indices were calculated by using patch surface area and surface perimeter whereas the 2D landscape pattern indices were calculated by adopting patch projective area and projective perimeter, the 3D landscape pattern indices could be relative accurate and efficient in describing the landscape area, density and borderline, in mountainous areas. However, there were no distinct differences in describing landscape shape, diversity, and gathering and spread between the 3D and 2D landscape pattern indices. Generally, by introducing 3D landscape pattern indices to topographic pattern, the description of landscape pattern and its dynamic change would be relatively accurate.

  7. Microfungal oasis in an oligotrophic desert: diversity patterns and community structure in three freshwater systems of Cuatro Ciénegas, Mexico

    PubMed Central

    Gasca-Pineda, Jaime; Rosique-Gil, Edmundo; Eguiarte, Luis E.; Espinosa-Asuar, Laura

    2016-01-01

    The Cuatro Ciénegas Basin (CCB) comprises several oligotrophic aquatic ecosystems limited by phosphorus. These aquatic systems are dominated by a high prokaryotic diversity, shaped by the stress of low nutrient supplies and interspecific competition. Although fungi constitute a diverse and important component of microbial diversity, the microfungal diversity in the CCB remains to be unveiled. With the aim to explore microfungal diversity and ecological patterns in this area, we present the first investigation analyzing cultivable taxa from sediment and water, as well as lignocellulolytic taxa obtained from incubated submerged plant debris, and wood panels in three contrasting freshwater systems in the CCB: Churince, Becerra and Pozas Rojas. We chose a culture-based approach to analyze sediment and water samples in order to obtain fungal cultures, providing opportunities for a posteriori studies, and the possibility of ex situ preservation of the diversity. We evaluated sequence data from the nuclear ribosomal internal transcribed spacer including the 5.8 rDNA region for 126 isolates, revealing 37 OTUs. These OTUs were phylogenetically affiliated to several genera in the fungal phyla: Zygomycota, Basidiomycota, and Ascomycota. We recorded two OTUs with saline affinity, agreeing with previous findings on the prokaryotic communities with ancestral marine resemblances. All the studied systems showed moderate diversity levels, however discrepancies among the diversity indexes were observed, due to the occurrence of abundant taxa in the samples. Our results indicated that lignocellulolytic microfungal communities are dominated by transient fungal taxa, as resident species were not recorded perhaps as a result of the long-term strong competition with the highly adapted prokaryotic community. Moreover, the obtained microfungal taxa occurred mostly on the resident plant debris, rather than submerged wood panels, perhaps as a result of the high adaptation to specific environmental conditions. In conclusion, the CCB possess a moderate taxonomical diversity compared to other arid environments, probably as a result of high selective pressures. Nonetheless, due to high spatial and temporal heterogeneity, the functional fungal diversity was considerable as predicted by the intermediate disturbance hypothesis. Decisively, the assessment of microfungal diversity freshwater systems is relevant, since this ecological group of microorganisms represents an important indicator of trophic complexity and biotic interactions among microbial communities, having important implications for understanding eukaryotic survival at the oligotrophic limit for life. PMID:27280070

  8. Necessary Sequencing Depth and Clustering Method to Obtain Relatively Stable Diversity Patterns in Studying Fish Gut Microbiota.

    PubMed

    Xiao, Fanshu; Yu, Yuhe; Li, Jinjin; Juneau, Philippe; Yan, Qingyun

    2018-05-25

    The 16S rRNA gene is one of the most commonly used molecular markers for estimating bacterial diversity during the past decades. However, there is no consistency about the sequencing depth (from thousand to millions of sequences per sample), and the clustering methods used to generate OTUs may also be different among studies. These inconsistent premises make effective comparisons among studies difficult or unreliable. This study aims to examine the necessary sequencing depth and clustering method that would be needed to ensure a stable diversity patterns for studying fish gut microbiota. A total number of 42 samples dataset of Siniperca chuatsi (carnivorous fish) gut microbiota were used to test how the sequencing depth and clustering may affect the alpha and beta diversity patterns of fish intestinal microbiota. Interestingly, we found that the sequencing depth (resampling 1000-11,000 per sample) and the clustering methods (UPARSE and UCLUST) did not bias the estimates of the diversity patterns during the fish development from larva to adult. Although we should acknowledge that a suitable sequencing depth may differ case by case, our finding indicates that a shallow sequencing such as 1000 sequences per sample may be also enough to reflect the general diversity patterns of fish gut microbiota. However, we have shown in the present study that strict pre-processing of the original sequences is required to ensure reliable results. This study provides evidences to help making a strong scientific choice of the sequencing depth and clustering method for future studies on fish gut microbiota patterns, but at the same time reducing as much as possible the costs related to the analysis.

  9. Community level patterns in diverse systems: A case study of litter fauna in a Mexican pine-oak forest using higher taxa surrogates and re-sampling methods

    NASA Astrophysics Data System (ADS)

    Moreno, Claudia E.; Guevara, Roger; Sánchez-Rojas, Gerardo; Téllez, Dianeis; Verdú, José R.

    2008-01-01

    Environmental assessment at the community level in highly diverse ecosystems is limited by taxonomic constraints and statistical methods requiring true replicates. Our objective was to show how diverse systems can be studied at the community level using higher taxa as biodiversity surrogates, and re-sampling methods to allow comparisons. To illustrate this we compared the abundance, richness, evenness and diversity of the litter fauna in a pine-oak forest in central Mexico among seasons, sites and collecting methods. We also assessed changes in the abundance of trophic guilds and evaluated the relationships between community parameters and litter attributes. With the direct search method we observed differences in the rate of taxa accumulation between sites. Bootstrap analysis showed that abundance varied significantly between seasons and sampling methods, but not between sites. In contrast, diversity and evenness were significantly higher at the managed than at the non-managed site. Tree regression models show that abundance varied mainly between seasons, whereas taxa richness was affected by litter attributes (composition and moisture content). The abundance of trophic guilds varied among methods and seasons, but overall we found that parasitoids, predators and detrivores decreased under management. Therefore, although our results suggest that management has positive effects on the richness and diversity of litter fauna, the analysis of trophic guilds revealed a contrasting story. Our results indicate that functional groups and re-sampling methods may be used as tools for describing community patterns in highly diverse systems. Also, the higher taxa surrogacy could be seen as a preliminary approach when it is not possible to identify the specimens at a low taxonomic level in a reasonable period of time and in a context of limited financial resources, but further studies are needed to test whether the results are specific to a system or whether they are general with regards to land management.

  10. Nutrient Enrichment Effects on Benthic Biodiversity by the Mississippi River and Submarine Canyon of the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Wei, C.; Rowe, G. T.

    2008-12-01

    Biodiversity is measured by (1) α diversity: number of species in relation to a standardized number of individual within a define habitat; (2) β diversity: compositional change or turnover of species between two or more spatial units; and (3) γ diversity: total number of species in a large geographic area. The pattern of biodiversity is usually driven by various physico-chemical conditions. In the deep sea, a cross-isobath parabolic diversity pattern has been well-documented for benthic macrofauna and the cause has been attributed to a dynamic equilibrium between population growth and competition exclusion along a gradient of declining food resources with depth (Rex 1981). Both nutrient-enriched (dominated by opportunistic species) and oligotrophic conditions (slow growth rate) could depress diversity, while the highest diversity can be reached by competitive equilibrium within communities at intermediate resource conditions. In the Gulf of Mexico (GoM), the discharge of Mississippi River can enhance the organic flux to the seafloor adjacent to the mouth of Mississippi River and Mississippi Canyon. The goal of this study was to test Rex's (1981) dynamic equilibrium model between depth-transects that were exposed to different levels of organic enrichment. Four treatments contrasted along the upper slope (250m to 1500m) included (1) Mississippi Canyon (active canyon), (2) De Soto Canyon (inactive canyon), (3) central slope transect (in proximity to Mississippi Canyon), and (4) the west and east slope transects (away from the influence of the Mississippi River). SeaWifs satellite data confirmed that the head of Mississippi Canyon experience highest surface primary production and export POC flux. The lowest α diversity of benthic macrofauna (collecting between 2000 and 2002) was observed at the head of the Mississippi Canyon where γ diversity was relatively high. This suggested that the canyon head was dominated by opportunistic species due the high POC flux but were still able to maintain a large number of species due the physical complexity of the canyon. The change of β diversity was nominal within the Mississippi and De Soto Canyon transects, suggesting that the faunal composition was more homogenous within the canyon than outside of canyon.

  11. Testing deep-sea biodiversity paradigms on abyssal nematode genera and Acantholaimus species

    NASA Astrophysics Data System (ADS)

    Lins, Lidia; da Silva, Maria Cristina; Neres, Patrícia; Esteves, André Morgado; Vanreusel, Ann

    2018-02-01

    Biodiversity patterns in the deep sea have been extensively studied in the last decades. In this study, we investigated whether reputable concepts in deep-sea ecology also explain diversity and distribution patterns of nematode genera and species in the abyss. Among them, three paradigms were tackled: (1) the deep sea is a highly diverse environment at a local scale, while on a regional and even larger geographical scale, species and genus turnover is limited; (2) the biodiversity of deep-sea nematode communities changes with the nature and amount of organic matter input from the surface; and (3) patch-mosaic dynamics of the deep-sea environment drive local diversity. To test these hypotheses, diversity and density of nematode assemblages and of species of the genus Acantholaimus were studied along two abyssal E-W transects. These two transects were situated in the Southern Ocean ( 50°S) and the North Atlantic ( 10°N). Four different hierarchical scales were used to compare biodiversity: at the scale of cores, between stations from the same region, and between regions. Results revealed that the deep sea harbours a high diversity at a local scale (alpha diversity), but that turnover can be shaped by different environmental drivers. Therefore, these results question the second part of the paradigm about limited species turnover in the deep sea. Higher surface primary productivity was correlated with greater nematode densities, whereas diversity responses to the augmentation of surface productivity showed no trend. Areas subjected to a constant and low food input revealed similar nematode communities to other oligotrophic abyssal areas, while stations under high productivity were characterized by different dominant genera and Acantholaimus species, and by a generally low local diversity. Our results corroborate the species-energy hypothesis, where productivity can set a limit to the richness of an ecosystem. Finally, we observed no correlation between sediment variability and local diversity. Although differences in sediment variability were significant across stations, these had to be considered without effect on the nematode community structure in the studied abyssal areas.

  12. High-Resolution Microbial Community Succession of Microbially Induced Concrete Corrosion in Working Sanitary Manholes

    PubMed Central

    Ling, Alison L.; Robertson, Charles E.; Harris, J. Kirk; Frank, Daniel N.; Kotter, Cassandra V.; Stevens, Mark J.; Pace, Norman R.; Hernandez, Mark T.

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers. PMID:25748024

  13. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes.

    PubMed

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.

  14. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, David A.; Raab, Theodore K.; Parker, Melanie

    2015-07-21

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska, and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and weremore » most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography, but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters ( Bacteroidetes and Firmicutes).« less

  15. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils.

    PubMed

    Lipson, David A; Raab, Theodore K; Parker, Melanie; Kelley, Scott T; Brislawn, Colin J; Jansson, Janet

    2015-08-01

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters (Bacteroidetes and Firmicutes). © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Symbiodinium biogeography tracks environmental patterns rather than host genetics in a key Caribbean reef-builder, Orbicella annularis.

    PubMed

    Kennedy, Emma V; Tonk, Linda; Foster, Nicola L; Chollett, Iliana; Ortiz, Juan-Carlos; Dove, Sophie; Hoegh-Guldberg, Ove; Mumby, Peter J; Stevens, Jamie R

    2016-11-16

    The physiological performance of a reef-building coral is a combined outcome of both the coral host and its algal endosymbionts, Symbiodinium While Orbicella annularis-a dominant reef-building coral in the Wider Caribbean-is known to be a flexible host in terms of the diversity of Symbiodinium types it can associate with, it is uncertain how this diversity varies across the Caribbean, and whether spatial variability in the symbiont community is related to either O. annularis genotype or environment. Here, we target the Symbiodinium-ITS2 gene to characterize and map dominant Symbiodinium hosted by O. annularis at an unprecedented spatial scale. We reveal northwest-southeast partitioning across the Caribbean, both in terms of the dominant symbiont taxa hosted and in assemblage diversity. Multivariate regression analyses incorporating a suite of environmental and genetic factors reveal that observed spatial patterns are predominantly explained by chronic thermal stress (summer temperatures) and are unrelated to host genotype. Furthermore, we were able to associate the presence of specific Symbiodinium types with local environmental drivers (for example, Symbiodinium C7 with areas experiencing cooler summers, B1j with nutrient loading and B17 with turbidity), associations that have not previously been described. © 2016 The Authors.

  17. Symbiodinium biogeography tracks environmental patterns rather than host genetics in a key Caribbean reef-builder, Orbicella annularis

    PubMed Central

    Tonk, Linda; Chollett, Iliana; Ortiz, Juan-Carlos; Dove, Sophie; Hoegh-Guldberg, Ove; Mumby, Peter J.

    2016-01-01

    The physiological performance of a reef-building coral is a combined outcome of both the coral host and its algal endosymbionts, Symbiodinium. While Orbicella annularis—a dominant reef-building coral in the Wider Caribbean—is known to be a flexible host in terms of the diversity of Symbiodinium types it can associate with, it is uncertain how this diversity varies across the Caribbean, and whether spatial variability in the symbiont community is related to either O. annularis genotype or environment. Here, we target the Symbiodinium-ITS2 gene to characterize and map dominant Symbiodinium hosted by O. annularis at an unprecedented spatial scale. We reveal northwest–southeast partitioning across the Caribbean, both in terms of the dominant symbiont taxa hosted and in assemblage diversity. Multivariate regression analyses incorporating a suite of environmental and genetic factors reveal that observed spatial patterns are predominantly explained by chronic thermal stress (summer temperatures) and are unrelated to host genotype. Furthermore, we were able to associate the presence of specific Symbiodinium types with local environmental drivers (for example, Symbiodinium C7 with areas experiencing cooler summers, B1j with nutrient loading and B17 with turbidity), associations that have not previously been described. PMID:27807263

  18. Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates.

    PubMed

    Astorga, Anna; Death, Russell; Death, Fiona; Paavola, Riku; Chakraborty, Manas; Muotka, Timo

    2014-07-01

    To define whether the beta diversity of stream invertebrate communities in New Zealand exhibits geographical variation unexplained by variation in gamma diversity and, if so, what mechanisms (productivity, habitat heterogeneity, dispersal limitation, disturbance) best explain the observed broad-scale beta diversity patterns. We sampled 120 streams across eight regions (stream catchments), spanning a north-south gradient of 12° of latitude, and calculated beta diversity (with both species richness and abundance data) for each region. We explored through a null model if beta diversity deviates from the expectation of stochastic assembly processes and whether the magnitude of the deviation varies geographically. We then performed multimodel inference analysis on the key environmental drivers of beta diversity, using Akaike's information criterion and model and predictor weights to select the best model(s) explaining beta diversity. Beta diversity was, unexpectedly, highest in the South Island. The null model analysis revealed that beta diversity was greater than expected by chance in all eight regions, but the magnitude of beta deviation was higher in the South Island, suggesting differences in environmental filtering and/or dispersal limitation between North and South Island. Habitat heterogeneity was the predominant driver of beta diversity of stream macroinvertebrates, with productivity having a secondary, and negative, contribution. This is one of the first studies accounting for stochastic effects while examining the ecological drivers of beta diversity. Our results suggest that local environmental heterogeneity may be the strongest determinant of beta diversity of stream invertebrates, more so than regional- or landscape-scale variables.

  19. What factors shape genetic diversity in cetaceans?

    PubMed

    Vachon, Felicia; Whitehead, Hal; Frasier, Timothy R

    2018-02-01

    Understanding what factors drive patterns of genetic diversity is a central aspect of many biological questions, ranging from the inference of historical demography to assessing the evolutionary potential of a species. However, as a larger number of datasets have become available, it is becoming clear that the relationship between the characteristics of a species and its genetic diversity is more complex than previously assumed. This may be particularly true for cetaceans, due to their relatively long lifespans, long generation times, complex social structures, and extensive ranges. In this study, we used microsatellite and mitochondrial DNA data from a systematic literature review to produce estimates of diversity for both markers across 42 cetacean species. Factors relating to demography, distribution, classification, biology, and behavior were then tested using phylogenetic methods and linear models to assess their relative influence on the genetic diversity of both marker types. The results show that while relative nuclear diversity is correlated with population size, mitochondrial diversity is not. This is particularly relevant given the widespread use of mitochondrial DNA to infer historical demography. Instead, mitochondrial diversity was mostly influenced by the range and social structure of the species. In addition to population size, habitat type (neritic vs. oceanic) had a significant correlation with relative nuclear diversity. Combined, these results show that many often-unconsidered factors are likely influencing patterns of genetic diversity in cetaceans, with implications regarding how to interpret, and what can be inferred from, existing patterns of diversity.

  20. LOCAL VS. REGIONAL EFFECTS ON FISH DIVERSITY AS MEDIATED BY STREAMFLOW DISTURBANCE REGIME

    EPA Science Inventory

    abstract

    The interplay of local and regional processes on fish diversity is poorly understood, especially related to patterns of streamflow disturbance regime. Articulation of the relationship between flow disturbance patterns and river fishes across local to regional scal...

  1. Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Miranda, Felix A.; Zaman, Afroz

    2007-01-01

    A printed, folded, Hilbert-curve fractal microwave antenna has been designed and built to offer advantages of compactness and low mass, relative to other antennas designed for the same operating frequencies. The primary feature of the antenna is that it offers the advantage of radiation-pattern diversity without need for electrical or mechanical switching: it can radiate simultaneously in an end-fire pattern at a frequency of 2.3 GHz (which is in the S-band) and in a broadside pattern at a frequency of 16.8 GHz (which is in the Ku-band). This radiation-pattern diversity could be utilized, for example, in applications in which there were requirements for both S-band ground-to-ground communications and Ku-band ground-to-aircraft or ground-to-spacecraft communications. The lack of switching mechanisms or circuitry makes this antenna more reliable, easier, and less expensive to fabricate than it otherwise would be.

  2. Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers.

    PubMed

    Wangsomnuk, P P; Khampa, S; Wangsomnuk, P; Jogloy, S; Mornkham, T; Ruttawat, B; Patanothai, A; Fu, Y B

    2011-12-12

    Jerusalem artichoke (Helianthus tuberosus) is a wild relative of the cultivated sunflower (H. annuus); it is an old tuber crop that has recently received renewed interest. We used RAPD markers to characterize 147 Jerusalem artichoke accessions from nine countries. Thirty RAPD primers were screened; 13 of them detected 357 reproducible RAPD bands, of which 337 were polymorphic. Various diversity analyses revealed several different patterns of RAPD variation. More than 93% of the RAPD variation was found within accessions of a country. Weak genetic differentiation was observed between wild and cultivated accessions. Six groups were detected in this germplasm set. Four ancestral groups were found for the Canadian germplasm. The most genetically distinct accessions were identified. These findings provide useful diversity information for understanding the Jerusalem artichoke gene pool, for conserving Jerusalem artichoke germplasm, and for choosing germplasm for genetic improvement.

  3. More than a meal: integrating non-feeding interactions into food webs

    USGS Publications Warehouse

    Kéfi, Sonia; Berlow, Eric L.; Wieters, Evie A.; Navarrete, Sergio A.; Petchey, Owen L.; Wood, Spencer A.; Boit, Alice; Joppa, Lucas N.; Lafferty, Kevin D.; Williams, Richard J.; Martinez, Neo D.; Menge, Bruce A.; Blanchette, Carol A.; Iles, Alison C.; Brose, Ulrich

    2012-01-01

    Organisms eating each other are only one of many types of well documented and important interactions among species. Other such types include habitat modification, predator interference and facilitation. However, ecological network research has been typically limited to either pure food webs or to networks of only a few (<3) interaction types. The great diversity of non-trophic interactions observed in nature has been poorly addressed by ecologists and largely excluded from network theory. Herein, we propose a conceptual framework that organises this diversity into three main functional classes defined by how they modify specific parameters in a dynamic food web model. This approach provides a path forward for incorporating non-trophic interactions in traditional food web models and offers a new perspective on tackling ecological complexity that should stimulate both theoretical and empirical approaches to understanding the patterns and dynamics of diverse species interactions in nature.

  4. Population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) II: a spatial autocorrelation approach to determining mating behaviour in the presence of low S allele diversity.

    PubMed

    Brennan, A C; Harris, S A; Hiscock, S J

    2003-11-01

    We recently estimated that as few as six S alleles represent the extent of S locus diversity in a British population of the self-incompatible (SI) coloniser Senecio squalidus (Oxford Ragwort). Despite the predicted constraints to mating imposed by such a low number of S alleles, S. squalidus maintains a strong sporophytic self-incompatibility (SSI) system and there is no evidence for a breakdown of SSI or any obvious negative reproductive consequences for this highly successful coloniser. The present paper assesses mating behaviour in an Oxford S. squalidus population through observations of its effect on spatial patterns of genetic diversity and thus the extent to which it is responsible for ameliorating the potentially detrimental reproductive consequences of low S allele diversity in British S. squalidus. A spatial autocorrelation (SA) treatment of S locus and allozyme polymorphism data for four loci indicates that mating events regularly occur at all the distance classes examined from 60 to 480 m throughout the entire sample population. Less SA is observed for S locus data than for allozyme data in accordance with the hypothesis that SSI and low diversity at the S locus are driving these large-scale mating events. The limited population structure at small distances of 60 m and less observed for SA analysis of the Me-2 locus and by F-statistics for all the allozyme data, is evidence of some local relatedness due to limited seed and pollen dispersal in S. squalidus. However, the overall impression of mating dynamics in this S. squalidus population is that of ample potential mating opportunities with many individuals at large population scales, indicating that reproductive success is not seriously affected by few S alleles available for mating interactions.

  5. Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Wilson, Robert E.; Underwood, Jared G.

    2017-01-01

    The evolutionary trajectory of populations through time is influenced by the interplay of forces (biological, evolutionary, and anthropogenic) acting on the standing genetic variation. We used microsatellite and mitochondrial loci to examine the influence of population declines, of varying severity, on genetic diversity within two Hawaiian endemic waterbirds, the Hawaiian coot and Hawaiian gallinule, by comparing historical (samples collected in the late 1800s and early 1900s) and modern (collected in 2012–2013) populations. Population declines simultaneously experienced by Hawaiian coots and Hawaiian gallinules differentially shaped the evolutionary trajectory of these two populations. Within Hawaiian coot, large reductions (between −38.4% and −51.4%) in mitochondrial diversity were observed, although minimal differences were observed in the distribution of allelic and haplotypic frequencies between sampled time periods. Conversely, for Hawaiian gallinule, allelic frequencies were strongly differentiated between time periods, signatures of a genetic bottleneck were detected, and biases in means of the effective population size were observed at microsatellite loci. The strength of the decline appears to have had a greater influence on genetic diversity within Hawaiian gallinule than Hawaiian coot, coincident with the reduction in census size. These species exhibit similar life history characteristics and generation times; therefore, we hypothesize that differences in behavior and colonization history are likely playing a large role in how allelic and haplotypic frequencies are being shaped through time. Furthermore, differences in patterns of genetic diversity within Hawaiian coot and Hawaiian gallinule highlight the influence of demographic and evolutionary processes in shaping how species respond genetically to ecological stressors.

  6. Global latitudinal species diversity gradient in deep-sea benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Culver, Stephen J.; Buzas, Martin A.

    2000-02-01

    Global scale patterns of species diversity for modern deep-sea benthic foraminifera, an important component of the bathyal and abyssal meiofauna, are examined using comparable data from five studies in the Atlantic, ranging over 138° of latitude from the Norwegian Sea to the Weddell Sea. We show that a pattern of decreasing diversity with increasing latitude characterises both the North and South Atlantic. This pattern is confirmed for the northern hemisphere by independent data from the west-central North Atlantic and the Arctic basin. Species diversity in the North Atlantic northwards from the equator is variable until a sharp fall in the Norwegian Sea (ca. 65°N). In the South Atlantic species diversity drops from a maximum in latitudes less than 30°S and then decreases slightly from 40 to 70°S. For any given latitude, North Atlantic diversity is generally lower than in the South Atlantic. Both ecological and historical factors related to food supply are invoked to explain the formation and maintenance of the latitudinal gradient of deep-sea benthic foraminiferal species diversity. The gradient formed some 36 million years ago when global climatic cooling led to seasonally fluctuating food supply in higher latitudes.

  7. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain.

    PubMed

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500-2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.

  8. Landscape genomics reveals altered genome wide diversity within revegetated stands of Eucalyptus microcarpa (Grey Box).

    PubMed

    Jordan, Rebecca; Dillon, Shannon K; Prober, Suzanne M; Hoffmann, Ary A

    2016-12-01

    In order to contribute to evolutionary resilience and adaptive potential in highly modified landscapes, revegetated areas should ideally reflect levels of genetic diversity within and across natural stands. Landscape genomic analyses enable such diversity patterns to be characterized at genome and chromosomal levels. Landscape-wide patterns of genomic diversity were assessed in Eucalyptus microcarpa, a dominant tree species widely used in revegetation in Southeastern Australia. Trees from small and large patches within large remnants, small isolated remnants and revegetation sites were assessed across the now highly fragmented distribution of this species using the DArTseq genomic approach. Genomic diversity was similar within all three types of remnant patches analysed, although often significantly but only slightly lower in revegetation sites compared with natural remnants. Differences in diversity between stand types varied across chromosomes. Genomic differentiation was higher between small, isolated remnants, and among revegetated sites compared with natural stands. We conclude that small remnants and revegetated sites of our E. microcarpa samples largely but not completely capture patterns in genomic diversity across the landscape. Genomic approaches provide a powerful tool for assessing restoration efforts across the landscape. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Remote sensing of Essential Biodiversity Variables: new measurements linking ecosystem structure, function and composition

    NASA Astrophysics Data System (ADS)

    Schimel, D.; Pavlick, R.; Stavros, E. N.; Townsend, P. A.; Ustin, S.; Thompson, D. R.

    2017-12-01

    Remote sensing can inform a wide variety of essential biodiversity variables, including measurements that define primary productivity, forest structure, biome distribution, plant communities, land use-land cover change and climate drivers of change. Emerging remote sensing technologies can add significantly to remote sensing of EBVs, providing new, large scale insights on plant and habitat diversity itself, as well as causes and consequences of biodiversity change. All current biodiversity assessments identify major data gaps, with insufficient coverage in critical regions, limited observations to monitor change over time, with very limited revisit of sample locations, as well as taxon-specific biased biases. Remote sensing cannot fill many of the gaps in global biodiversity observations, but spectroscopic measurements in terrestrial and marine environments can aid in assessing plant/phytoplankton functional diversity and efficiently reveal patterns in space, as well as changes over time, and, by making use of chlorophyll fluorescence, reveal associated patterns in photosynthesis. LIDAR and RADAR measurements quantify ecosystem structure, and can precisely define changes due to growth, disturbance and land use. Current satellite-based EBVs have taken advantage of the extraordinary time series from LANDSAT and MODIS, but new measurements more directly reveal ecosystem structure, function and composition. We will present results from pre-space airborne studies showing the synergistic ability of a suite of new remote observation techniques to quantify biodiversity and ecosystem function and show how it changes during major disturbance events.

  10. Process, pattern and scale: hydrogeomorphology and plant diversity in forested wetlands across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Alexander, L.; Hupp, C. R.; Forman, R. T.

    2002-12-01

    Many geodisturbances occur across large spatial scales, spanning entire landscapes and creating ecological phenomena in their wake. Ecological study at large scales poses special problems: (1) large-scale studies require large-scale resources, and (2) sampling is not always feasible at the appropriate scale, and researchers rely on data collected at smaller scales to interpret patterns across broad regions. A criticism of landscape ecology is that findings at small spatial scales are "scaled up" and applied indiscriminately across larger spatial scales. In this research, landscape scaling is addressed through process-pattern relationships between hydrogeomorphic processes and patterns of plant diversity in forested wetlands. The research addresses: (1) whether patterns and relationships between hydrogeomorphic, vegetation, and spatial variables can transcend scale; and (2) whether data collected at small spatial scales can be used to describe patterns and relationships across larger spatial scales. Field measurements of hydrologic, geomorphic, spatial, and vegetation data were collected or calculated for 15- 1-ha sites on forested floodplains of six (6) Chesapeake Bay Coastal Plain streams over a total area of about 20,000 km2. Hydroperiod (day/yr), floodplain surface elevation range (m), discharge (m3/s), stream power (kg-m/s2), sediment deposition (mm/yr), relative position downstream and other variables were used in multivariate analyses to explain differences in species richness, tree diversity (Shannon-Wiener Diversity Index H'), and plant community composition at four spatial scales. Data collected at the plot (400-m2) and site- (c. 1-ha) scales are applied to and tested at the river watershed and regional spatial scales. Results indicate that plant species richness and tree diversity (Shannon-Wiener diversity index H') can be described by hydrogeomorphic conditions at all scales, but are best described at the site scale. Data collected at plot and site scales are tested for spatial heterogeneity across the Chesapeake Bay Coastal Plain using a geostatistical variogram, and multiple regression analysis is used to relate plant diversity, spatial, and hydrogeomorphic variables across Coastal Plain regions and hydrologic regimes. Results indicate that relationships between hydrogeomorphic processes and patterns of plant diversity at finer scales can proxy relationships at coarser scales in some, not all, cases. Findings also suggest that data collected at small scales can be used to describe trends across broader scales under limited conditions.

  11. Changes in the endopolyploidy pattern of different tissues in diploid and tetraploid Phalaenopsis aphrodite subsp. formosana (Orchidaceae).

    PubMed

    Chen, Wen-Huei; Tang, Ching-Yan; Lin, Tsai-Yun; Weng, Yuan-Chen; Kao, Yu-Lin

    2011-07-01

    Endopolyploidy is frequently observed during development in plant species. Patterns of endopolyploidy are diverse in the various organs of different plant species. However, little is known about the role of endopolyploidization and its significance in orchids. This study was undertaken to determine the extent of endopolyploidy in different tissues of the diploid and tetraploid genotypes of Phalaenopsis aphrodite subsp. formosana and to examine the factors that contribute to increased ploidy levels. Endopolyploidy occurs in various tissues of diploid and tetraploid orchids, at different developmental stages and under different culture conditions, as determined by flow cytometry. In this study, different patterns of endopolyploidy were observed in parts of the protocorms, leaves, roots and flowers. Endopolyploidy was found in all tissues studied except the pollinia and the tetraploid ovaries. A higher degree of endopolyploidy was observed in mature tissues compared to young tissues, greenhouse-grown plants compared to in vitro plants and diploid plants compared to tetraploid plants. We discuss the relationships between endopolyploidization and several factors related to plant growth, as well as some practical considerations of these findings. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Genetic diversity patterns of microeukaryotic plankton communities in Shenhu Bay, southeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Pan, Yongbo; Yu, Lingyu; Liu, Lemian

    2017-06-01

    Microeukaryotic plankton is an abundant and diverse component of marine environments and plays an important role in microbial food webs. However, few studies have been conducted on the genetic diversity of microeukaryotes in the subtropical bays of China. In the present study, we investigated the microeukaryotic plankton in the Shenhu Bay by using denaturing gradient gel electrophoresis (DGGE) and sequencing of prominent bands. Our results indicated that Copepoda and Dinophyceae were the most diverse groups, and that the microeukaryotic communities varied significantly between summer and autumn, with the autumn communities exhibited a higher diversity than summer communities. Furthermore, the community composition and diversity from both surface and bottom waters showed more significant differences in summer than in autumn. Environmental parameters also displayed obvious seasonal patterns. Redundancy analysis (RDA) showed that temperature was the most significant environmental factor shaping the seasonal patterns of the microplanktonic members in the Shenhu Bay. Community-level molecular techniques such as DGGE appear as useful tools to detect the presence of red tide causing species and to guide the management of coastal water mariculture.

  13. Patterns of Diversity and Abundance of Carrion Insect Assemblages in the Natural Park “Hoces del Río Riaza” (Central Spain)

    PubMed Central

    Baz, Arturo; Cifrián, Blanca; Martín-Vega, Daniel

    2014-01-01

    Abstract The patterns of diversity and abundance of the carrion insect species in the different habitats of the Natural Park “Hoces del Río Riaza” (central Spain) were studied with the use of carrion-baited traps. Representativeness of the inventories was assessed with the calculation of randomized species richness curves and nonparametric estimators. Coleoptera families, Silphidae and Dermestidae, and Diptera families, Calliphoridae and Muscidae, were dominant in every sampling habitat, but differences in the patterns of diversity and abundance were found. Lusitanian oakwood and riparian forest were the most diverse habitats with high abundance of saprophagous species, whereas more open (i.e., exposed to continuous sunlight during the day) habitats showed lower diversity values and a different species composition and distribution of species abundance, favoring thermophilous species and necrophagous species with high tolerance to different environmental conditions. Differences in the bioclimatical features of the sampled habitats are suggested to explain the composition and diversity of the carrion insect assemblages in different environments. PMID:25368080

  14. Landscape-scale evaluation of genetic structure among barrier-isolated populations of coastal cutthroat trout, Oncorhynchus clarkii clarkii

    USGS Publications Warehouse

    Guy, T.J.; Gresswell, R.E.; Banks, M.A.

    2008-01-01

    Relationships among landscape structure, stochastic disturbance, and genetic diversity were assessed by examining interactions between watershed-scale environmental factors and genetic diversity of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in 27 barrier-isolated watersheds from western Oregon, USA. Headwater populations of coastal cutthroat trout were genetically differentiated (mean FST = 0.33) using data from seven microsatellite loci (2232 individuals), but intrapopulation microsatellite genetic diversity (mean number of alleles per locus = 5, mean He = 0.60) was only moderate. Genetic diversity of coastal cutthroat trout was greater (P = 0.02) in the Coast Range ecoregion (mean alleles = 47) than in the Cascades ecoregion (mean alleles = 30), and differences coincided with indices of regional within-watershed complexity and connectivity. Furthermore, regional patterns of diversity evident from isolation-by-distance plots suggested that retention of within-population genetic diversity in the Coast Range ecoregion is higher than that in the Cascades, where genetic drift is the dominant factor influencing genetic patterns. Thus, it appears that physical landscape features have influenced genetic patterns in these populations isolated from short-term immigration. ?? 2008 NRC.

  15. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?

    PubMed Central

    Wallbank, Richard W. R.; Hanly, Joseph J.

    2017-01-01

    A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the ‘Nymphalid Ground Plan’, which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent ‘hotspots’ for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994126

  16. Factoring in weather variation to capture the influence of urban design and built environment on globally recommended levels of moderate to vigorous physical activity in children.

    PubMed

    Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem

    2015-11-30

    In curbing physical inactivity, as behavioural interventions directed at individuals have not produced a population-level change, an ecological perspective called active living research has gained prominence. However, active living research consistently underexplores the role played by a perennial phenomenon encompassing all other environmental exposures-variation in weather. After factoring in weather variation, this study investigated the influence of diverse environmental exposures (including urban design and built environment) on the accumulation of globally recommended moderate to vigorous physical activity levels (MVPA) in children. This cross-sectional observational study is part of an active living initiative set in the Canadian prairie city of Saskatoon. As part of this study, Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Moreover, diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive MVPA of 331 10-14-year-old children in 25 1-week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample and matched with weather data obtained from Environment Canada. Multilevel modelling using Hierarchical Linear and Non-linear Modelling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on the accumulation of recommended MVPA. Urban design, including diversity of destinations within neighbourhoods played a significant role in the accumulation of MVPA. After factoring in weather variation, it was observed that children living in neighbourhoods closer to the city centre (with higher diversity of destinations) were more likely to accumulate recommended MVPA. The findings indicate that after factoring in weather variation, certain types of urban design are more likely to be associated with MVPA accumulation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. A STATISTICAL THERMODYNAMIC MODEL OF THE ORGANIZATIONAL ORDER OF VEGETATION. (R827676)

    EPA Science Inventory

    The complex pattern of vegetation is the macroscopic manifestation of biological diversity and the ecological order in space and time. How is this overwhelmingly diverse, yet wonderfully ordered spatial pattern formed, and how does it evolve? To answer these questions, most tr...

  18. IMPLICATIONS OF MATING PATTERNS FOR CONSERVATION OF THE ENDANGERED PLANT ERIOGONUM OVALIFOLIUM VAR. VINEUM (POLYGONACEAE). (R826102)

    EPA Science Inventory

    Mating patterns have direct application to: conservation because of their influence on structuring genetic diversity within and among populations and on maintaining that diversity over time. We measured population and family outcrossing rates, biparental inbreeding correlation of...

  19. Genetic diversity and patterns of population structure in Creole goats from the Americas.

    PubMed

    Ginja, C; Gama, L T; Martínez, A; Sevane, N; Martin-Burriel, I; Lanari, M R; Revidatti, M A; Aranguren-Méndez, J A; Bedotti, D O; Ribeiro, M N; Sponenberg, P; Aguirre, E L; Alvarez-Franco, L A; Menezes, M P C; Chacón, E; Galarza, A; Gómez-Urviola, N; Martínez-López, O R; Pimenta-Filho, E C; da Rocha, L L; Stemmer, A; Landi, V; Delgado-Bermejo, J V

    2017-06-01

    Biodiversity studies are more efficient when large numbers of breeds belonging to several countries are involved, as they allow for an in-depth analysis of the within- and between-breed components of genetic diversity. A set of 21 microsatellites was used to investigate the genetic composition of 24 Creole goat breeds (910 animals) from 10 countries to estimate levels of genetic variability, infer population structure and understand genetic relationships among populations across the American continent. Three commercial transboundary breeds were included in the analyses to investigate admixture with Creole goats. Overall, the genetic diversity of Creole populations (mean number of alleles = 5.82 ± 1.14, observed heterozygosity = 0.585 ± 0.074) was moderate and slightly lower than what was detected in other studies with breeds from other regions. The Bayesian clustering analysis without prior information on source populations identified 22 breed clusters. Three groups comprised more than one population, namely from Brazil (Azul and Graúna; Moxotó and Repartida) and Argentina (Long and shorthair Chilluda, Pampeana Colorada and Angora-type goat). Substructure was found in Criolla Paraguaya. When prior information on sample origin was considered, 92% of the individuals were assigned to the source population (threshold q ≥ 0.700). Creole breeds are well-differentiated entities (mean coefficient of genetic differentiation = 0.111 ± 0.048, with the exception of isolated island populations). Dilution from admixture with commercial transboundary breeds appears to be negligible. Significant levels of inbreeding were detected (inbreeding coefficient > 0 in most Creole goat populations, P < 0.05). Our results provide a broad perspective on the extant genetic diversity of Creole goats, however further studies are needed to understand whether the observed geographical patterns of population structure may reflect the mode of goat colonization in the Americas. © 2017 Stichting International Foundation for Animal Genetics.

  20. Patterns of Genetic and Morphometric Diversity in Baobab (Adansonia digitata) Populations Across Different Climatic Zones of Benin (West Africa)

    PubMed Central

    ASSOGBADJO, A. E.; KYNDT, T.; SINSIN, B.; GHEYSEN, G.; VAN DAMME, P.

    2006-01-01

    • Background and Aims Baobab (Adansonia digitata) is a multi-purpose tree used daily by rural African communities. The present study aimed at investigating the level of morphometric and genetic variation and spatial genetic structure within and between threatened baobab populations from the three climatic zones of Benin. • Methods A total of 137 individuals from six populations were analysed using morphometric data as well as molecular marker data generated using the AFLP technique. • Key Results Five primer pairs resulted in a total of 217 scored bands with 78·34 % of them being polymorphic. A two-level AMOVA of 137 individuals from six baobab populations revealed 82·37 % of the total variation within populations and 17·63 % among populations (P < 0·001)· Analysis of population structure with allele-frequency based F-statistics revealed a global FST of 0·127 ± 0·072 (P < 0·001). The mean gene diversity within populations (HS) and the average gene diversity between populations (DST) were estimated at 0·309 ± 0·000 and 0·045 ± 0·072, respectively. Baobabs in the Sudanian and Sudan-Guinean zones of Benin were short and produced the highest yields of pulp, seeds and kernels, in contrast to the ones in the Guinean zone, which were tall and produced only a small number of fruits with a low pulp, seed and kernel productivity. A statistically significant correlation with the observed patterns of genetic diversity was observed for three morphological characteristics: height of the trees, number of branches and thickness of the capsules. • Conclusions The results indicate some degree of physical isolation of the populations collected in the different climatic zones and suggest a substantial amount of genetic structuring between the analysed populations of baobab. Sampling options of the natural populations are suggested for in or ex situ conservation. PMID:16520343

Top