Detachment experiments in new DIII-D upper divertor
NASA Astrophysics Data System (ADS)
Moser, A. L.; Leonard, A. W.; Groebner, R. J.; Guo, H.; Wang, H.; Watkins, J. G.; McLean, A. G.; Fenstermacher, M. E.; Shafer, M. W.; Briesemeister, A. R.; Hinson, E. T.
2017-10-01
Installation of the Small Angle Slot (SAS) in the upper divertor of DIII-D enables new studies of the effect of target and baffle geometry on divertor detachment. This structure provides a more-closed upper divertor as well as the SAS divertor itself. Initial SAS experiment results indicate that divertor detachment occurs at a lower line-averaged density than in the more-open, lower single null divertor configurations on DIII-D. In contrast, the increased divertor closure of the new installation did not reduce the upstream density required for detachment beyond that achieved with the previous upper divertor structure. Particle pumping in the upper divertor structure is found to produce a 10 % reduction in the pedestal density required for detachment compared to the case with no pumping. Comparisons focus on both the onset of detachment (measured by in-target Langmuir probes) as a function of upstream density, as well as the effect of the new divertor configurations on pedestal density profiles. Work supported by US DOE under DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC04-94AL85000, DE-AC52-07NA27344, and DE-SC00013911.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soukhanovskii, V. A.
2017-09-13
A successful high-performance plasma operation with a radiative divertor has been demonstrated on many tokamak devices, however, significant uncertainty remains in accurately modeling detachment thresholds, and in how detachment depends on divertor geometry. Whereas it was originally planned to perform dedicated divertor experiments on the National Spherical Tokamak Upgrade to address critical detachment and divertor geometry questions for this milestone, the experiments were deferred due to technical difficulties. Instead, existing NSTX divertor data was summarized and re-analyzed where applicable, and additional simulations were performed.
Snowflake divertor configuration studies for NSTX-Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soukhanovskii, V A
2011-11-12
Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand controlmore » of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.« less
A review of radiative detachment studies in tokamak advanced magnetic divertor configurations
Soukhanovskii, V. A.
2017-04-28
The present vision for a plasma–material interface in the tokamak is an axisymmetric poloidal magnetic X-point divertor. Four tasks are accomplished by the standard poloidal X-point divertor: plasma power exhaust; particle control (D/T and He pumping); reduction of impurity production (source); and impurity screening by the divertor scrape-off layer. A low-temperature, low heat flux divertor operating regime called radiative detachment is viewed as the main option that addresses these tasks for present and future tokamaks. Advanced magnetic divertor configuration has the capability to modify divertor parallel and cross-field transport, radiative and dissipative losses, and detachment front stability. Advanced magnetic divertormore » configurations are divided into four categories based on their salient qualitative features: (1) multiple standard X-point divertors; (2) divertors with higher order nulls; (3) divertors with multiple X-points; and (4) long poloidal leg divertors (and also with multiple X-points). As a result, this paper reviews experiments and modeling in the area of radiative detachment in the advanced magnetic divertor configurations.« less
A review of radiative detachment studies in tokamak advanced magnetic divertor configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soukhanovskii, V. A.
The present vision for a plasma–material interface in the tokamak is an axisymmetric poloidal magnetic X-point divertor. Four tasks are accomplished by the standard poloidal X-point divertor: plasma power exhaust; particle control (D/T and He pumping); reduction of impurity production (source); and impurity screening by the divertor scrape-off layer. A low-temperature, low heat flux divertor operating regime called radiative detachment is viewed as the main option that addresses these tasks for present and future tokamaks. Advanced magnetic divertor configuration has the capability to modify divertor parallel and cross-field transport, radiative and dissipative losses, and detachment front stability. Advanced magnetic divertormore » configurations are divided into four categories based on their salient qualitative features: (1) multiple standard X-point divertors; (2) divertors with higher order nulls; (3) divertors with multiple X-points; and (4) long poloidal leg divertors (and also with multiple X-points). As a result, this paper reviews experiments and modeling in the area of radiative detachment in the advanced magnetic divertor configurations.« less
Divertor heat flux mitigation in the National Spherical Torus Experimenta)
NASA Astrophysics Data System (ADS)
Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team
2009-02-01
Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.
Plasma detachment in divertor tokamaks
NASA Astrophysics Data System (ADS)
Leonard, A. W.
2018-04-01
Observations of divertor plasma detachment in tokamaks are reviewed. Plasma detachment is characterized in terms of transport and dissipation of power, momentum and particle flux along the open field lines from the midplane to the divertor. Asymmetries in detachment onset and other characteristics between the inboard and outboard divertor plasmas is found to be primarily driven by plasma E× B drifts. The effect of divertor plate geometry and magnetic configuration on divertor detachment is summarized. Control of divertor detachment has progressed with a development of a number of diagnostics to characterize the detached state in real-time. Finally the compatibility of detached divertor operation with high performance core plasmas is examined.
NASA Astrophysics Data System (ADS)
Guillemaut, C.; Lennholm, M.; Harrison, J.; Carvalho, I.; Valcarcel, D.; Felton, R.; Griph, S.; Hogben, C.; Lucock, R.; Matthews, G. F.; Perez Von Thun, C.; Pitts, R. A.; Wiesen, S.; contributors, JET
2017-04-01
Burning plasmas with 500 MW of fusion power on ITER will rely on partially detached divertor operation to keep target heat loads at manageable levels. Such divertor regimes will be maintained by a real-time control system using the seeding of radiative impurities like nitrogen (N), neon or argon as actuator and one or more diagnostic signals as sensors. Recently, real-time control of divertor detachment has been successfully achieved in Type I ELMy H-mode JET-ITER-like wall discharges by using saturation current (I sat) measurements from divertor Langmuir probes as feedback signals to control the level of N seeding. The degree of divertor detachment is calculated in real-time by comparing the outer target peak I sat measurements to the peak I sat value at the roll-over in order to control the opening of the N injection valve. Real-time control of detachment has been achieved in both fixed and swept strike point experiments. The system has been progressively improved and can now automatically drive the divertor conditions from attached through high recycling and roll-over down to a user-defined level of detachment. Such a demonstration is a successful proof of principle in the context of future operation on ITER which will be extensively equipped with divertor target probes.
Plasma detachment in divertor tokamaks
Leonard, A. W.
2018-02-07
In this study, observations of divertor plasma detachment in tokamaks are reviewed. Plasma detachment is characterized in terms of transport and dissipation of power, momentum and particle flux along the open field lines from the midplane to the divertor. Asymmetries in detachment onset and other characteristics between the inboard and outboard divertor plasmas is found to be primarily driven by plasmamore » $$\\vec{E}$$ x $$\\vec{B}$$ drifts. The effect of divertor plate geometry and magnetic configuration on divertor detachment is summarized. Control of divertor detachment has progressed with a development of a number of diagnostics to characterize the detached state in real-time. Finally the compatibility of detached divertor operation with high performance core plasmas is examined.« less
Plasma detachment in divertor tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, A. W.
In this study, observations of divertor plasma detachment in tokamaks are reviewed. Plasma detachment is characterized in terms of transport and dissipation of power, momentum and particle flux along the open field lines from the midplane to the divertor. Asymmetries in detachment onset and other characteristics between the inboard and outboard divertor plasmas is found to be primarily driven by plasmamore » $$\\vec{E}$$ x $$\\vec{B}$$ drifts. The effect of divertor plate geometry and magnetic configuration on divertor detachment is summarized. Control of divertor detachment has progressed with a development of a number of diagnostics to characterize the detached state in real-time. Finally the compatibility of detached divertor operation with high performance core plasmas is examined.« less
Modelling of Divertor Detachment in MAST Upgrade
NASA Astrophysics Data System (ADS)
Moulton, David; Carr, Matthew; Harrison, James; Meakins, Alex
2017-10-01
MAST Upgrade will have extensive capabilities to explore the benefits of alternative divertor configurations such as the conventional, Super-X, x divertor, snowflake and variants in a single device with closed divertors. Initial experiments will concentrate on exploring the Super-X and conventional configurations, in terms of power and particle loads to divertor surfaces, access to detachment and its control. Simulations have been carried out with the SOLPS5.0 code validated against MAST experiments. The simulations predict that the Super-X configuration has significant advantages over the conventional, such as lower detachment threshold (2-3x lower in terms of upstream density and 4x higher in terms of PSOL). Synthetic spectroscopy diagnostics from these simulations have been created using the Raysect ray tracing code to produce synthetic filtered camera images, spectra and foil bolometer data. Forward modelling of the current set of divertor diagnostics will be presented, together with a discussion of future diagnostics and analysis to improve estimates of the plasma conditions. Work supported by the RCUK Energy Programme [Grant Number EP/P012450/1] and EURATOM.
NASA Astrophysics Data System (ADS)
Krasheninnikov, Sergei
2015-11-01
The heat exhaust is one of the main conceptual issues of magnetic fusion reactor. In a standard operational regime the large heat flux onto divertor target reaches unacceptable level in any foreseeable reactor design. However, about two decades ago so-called ``detached divertor'' regimes were found. They are characterized by reduced power and plasma flux on divertor targets and look as a promising solution for heat exhaust in future reactors. In particular, it is envisioned that ITER will operate in a partly detached divertor regime. However, even though divertor detachment was studied extensively for two decades, still there are some issues requiring a new look. Among them is the compatibility of detached divertor regime with a good core confinement. For example, ELMy H-mode exhibits a very good core confinement, but large ELMs can ``burn through'' detached divertor and release large amounts of energy on the targets. In addition, detached divertor regimes can be subject to thermal instabilities resulting in the MARFE formation, which, potentially, can cause disruption of the discharge. Finally, often inner and outer divertors detach at different plasma conditions, which can lead to core confinement degradation. Here we discuss basic physics of divertor detachment including different mechanisms of power and momentum loss (ionization, impurity and hydrogen radiation loss, ion-neutral collisions, recombination, and their synergistic effects) and evaluate the roles of different plasma processes in the reduction of the plasma flux; detachment stability; and an impact of ELMs on detachment. We also evaluate an impact of different magnetic and divertor geometries on detachment onset, stability, in- out- asymmetry, and tolerance to the ELMs. Supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-DE-FG02-04ER54739 at UCSD.
X-Divertor Geometries for Deeper Detachment Without Degrading the DIII-D H-Mode
NASA Astrophysics Data System (ADS)
Covele, Brent; Kotschenreuther, M. T.; Valanju, P. M.; Mahajan, S. M.; Leonard, A. W.; Hyatt, A. W.; McLean, A. G.; Thomas, D. M.; Guo, H. Y.; Watkins, J. G.; Makowski, M. A.; Hill, D. N.
2015-11-01
Recent DIII-D experiments comparing the standard divertor (SD) and X-Divertor (XD) geometries show heat and particle flux reduction at the divertor target plate. The XD features large poloidal flux expansion, increased connection length, and poloidal field line flaring, quantified by the Divertor Index. Both SD and XD were pushed deep into detachment with increased gas puffing, until core energy confinement and pedestal pressure were substantially reduced. As expected, outboard target heat fluxes are significantly reduced in the XD compared to the SD under similar upstream plasma conditions, even at low Greenwald fraction. The high-triangularity (floor) XD cases show larger reduction in temperature, heat, and particle flux relative to the SD in all cases, while low-triangularity (shelf) XD cases show more modest reductions over the SD. Consequently, heat flux reduction and divertor detachment may be achieved in the XD with less gas puffing and higher pedestal pressures. Further causative analysis, as well as detailed modeling with SOLPS, is underway. These initial experiments suggest the XD as a promising candidate to achieve divertor heat flux control compatible with robust H-mode operation. Work supported by US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-04ER54754, and DE-FG02-04ER54742.
Briesemeister, A. R.; Isler, R. C.; Allen, S. L.; ...
2014-11-15
In this study, externally applied non-axisymmetric magnetic fields are shown to have little effect on the impurity ion flow velocity and temperature as measured by the multichord divertor spectrometer in the DIII-D divertor for both attached and detached conditions. These experiments were performed in H-mode plasmas with the grad-B drift toward the target plates, with and without n = 3 resonant magnetic perturbations (RMPs). The flow velocity in the divertor is shown to change by as much as 30% when deuterium gas puffing is used to create detachment of the divertor plasma. No measurable changes in the C III flowmore » were observed in response to the RMP fields for the conditions used in this work. Images of the C III emission are used along with divertor Thomson scattering to show that the local electron and C III temperatures are equilibrated for the conditions shown.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, Hang; Guo, Houyang Y.; Covele, Brent
One of the major challenges facing the design and operation of next-step high-power steady-state fusion devices is to develop a divertor solution for handling power exhaust, while ensuring acceptable divertor target plate erosion, which necessitates access to divertor detachment at relative low main plasma densities compatible with current drive and high plasma confinement. Detailed modeling with SOLPS is carried out to examine the effect of divertor closure on detachment with the normal single null divertor (SD) configuration, as well as one of the advanced divertor configurations, such as x-divertor (XD) respectively. The SOLPS modeling for a high confinement plasma in DIII-D finds that increasing divertor closure with SD reduces the upstream separatrix density at the onset of detachment frommore » $$1.18\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$ to $$0.88\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$. Furthermore, coupling the divertor closure with XD further promotes the onset of divertor detachment at a still lower upstream separatrix density, down to the value of $$0.67\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$, thus, showing that divertor closure and advanced magnetic configuration can work synergistically to facilitate divertor detachment.« less
Si, Hang; Guo, Houyang Y.; Covele, Brent; ...
2018-04-04
One of the major challenges facing the design and operation of next-step high-power steady-state fusion devices is to develop a divertor solution for handling power exhaust, while ensuring acceptable divertor target plate erosion, which necessitates access to divertor detachment at relative low main plasma densities compatible with current drive and high plasma confinement. Detailed modeling with SOLPS is carried out to examine the effect of divertor closure on detachment with the normal single null divertor (SD) configuration, as well as one of the advanced divertor configurations, such as x-divertor (XD) respectively. The SOLPS modeling for a high confinement plasma in DIII-D finds that increasing divertor closure with SD reduces the upstream separatrix density at the onset of detachment frommore » $$1.18\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$ to $$0.88\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$. Furthermore, coupling the divertor closure with XD further promotes the onset of divertor detachment at a still lower upstream separatrix density, down to the value of $$0.67\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$, thus, showing that divertor closure and advanced magnetic configuration can work synergistically to facilitate divertor detachment.« less
NASA Astrophysics Data System (ADS)
Si, H.; Guo, H. Y.; Covele, B.; Leonard, A. W.; Watkins, J. G.; Thomas, D.; Ding, R.
2018-05-01
One of the major challenges facing the design and operation of next-step high-power steady-state fusion devices is to develop a divertor solution for handling power exhaust, while ensuring acceptable divertor target plate erosion, which necessitates access to divertor detachment at relative low main plasma densities compatible with current drive and high plasma confinement. Detailed modeling with SOLPS is carried out to examine the effect of divertor closure on detachment with the normal single null divertor (SD) configuration, as well as one of the advanced divertor configurations, such as x-divertor (XD) respectively. The SOLPS modeling for a high confinement plasma in DIII-D finds that increasing divertor closure with SD reduces the upstream separatrix density at the onset of detachment from 1.18× {{10}19} {{m}-3} to 0.88× {{10}19} {{m}-3} . Moreover, coupling the divertor closure with XD further promotes the onset of divertor detachment at a still lower upstream separatrix density, down to the value of 0.67× {{10}19} {{m}-3} , thus, showing that divertor closure and advanced magnetic configuration can work synergistically to facilitate divertor detachment.
Effects of low-Z and high-Z impurities on divertor detachment and plasma confinement
Wang, H. Q.; Guo, Houyang Y.; Petrie, Thomas W.; ...
2017-03-18
The impurity-seeded detached divertor is essential for heat exhaust in ITER and other reactor-relevant devices. Dedicated experiments with injection of N 2, Ne and Ar have been performed in DIII-D to assess the impact of the different impurities on divertor detachment and confinement. Seeding with N 2, Ne and Ar all promote divertor detachment, greatly reducing heat flux near the strike point. The upstream plasma density at the onset of detachment decreases with increasing impurity-puffing flow rates. For all injected impurity species, the confinement and pedestal pressure are correlated with the impurity content and the ratio of separatrix loss powermore » to the L-H transition threshold power. As the divertor plasma approaches detachment, the high-Z impurity seeding tends to degrade the core confinement owing to the increased core radiation. In particular, Ar injection leads to an increase in core radiation, up to 50% of the injected power, and a reduction in pedestal temperature over 60%, thus significantly degrading the confinement, i.e., with H 98 reducing from 1.1 to below 0.7. As for Ne seeding, H 98 near 0.8 can be maintained during the detachment phase with the pedestal temperature being reduced by about 50%. In contrast, in the N 2 seeded plasmas, radiation is predominately confined in the boundary plasma, with up to 50% of heating power being radiated in the divertor region and less than 25% in the core at the onset of detachment. In the case of strong N 2 gas puffing, the confinement recovers during the detachment, from ~20% reduction at the onset of the detachment to greater than that before the seeding. The core and pedestal temperatures feature a reduction of 30% from the initial attached phase and remain nearly constant during the detachment phase. The improvement in confinement appears to arise from the increase in pedestal and core density despite the temperature reduction.« less
A review of direct experimental measurements of detachment
Boedo, J.; McLean, A. G.; Rudakov, D. L.; ...
2018-02-22
Detached divertor plasmas feature strong radial and parallel gradients of density, temperature, electric fields and flow over the divertor volume and therefore, sampling the divertor plasma directly provides crucial knowledge to the interpretation and modeling efforts. Here, we review the contribution of diagnostics that directly sample the plasma to the advancement of knowledge of the physics of detachment and detached divertors, such as the characteristics of the various regimes, discovery and quantification of drifts and identification of convection of heat and particles. We focus on wall probes, scanning probes, retarding field analyzers and Thomson Scattering (TS) in the divertor regionmore » and also include the contribution of measurements away from the divertor that provide insight on how divertor detachment affects core, edge or pedestal conditions. Wall probes are critical as they can be installed in closed volumes of difficult access to other diagnostics and measure plasma parameters at the divertor structures, which define the plasma boundary conditions and where detachment effects are more likely to be strongest.« less
A review of direct experimental measurements of detachment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boedo, J.; McLean, A. G.; Rudakov, D. L.
Detached divertor plasmas feature strong radial and parallel gradients of density, temperature, electric fields and flow over the divertor volume and therefore, sampling the divertor plasma directly provides crucial knowledge to the interpretation and modeling efforts. Here, we review the contribution of diagnostics that directly sample the plasma to the advancement of knowledge of the physics of detachment and detached divertors, such as the characteristics of the various regimes, discovery and quantification of drifts and identification of convection of heat and particles. We focus on wall probes, scanning probes, retarding field analyzers and Thomson Scattering (TS) in the divertor regionmore » and also include the contribution of measurements away from the divertor that provide insight on how divertor detachment affects core, edge or pedestal conditions. Wall probes are critical as they can be installed in closed volumes of difficult access to other diagnostics and measure plasma parameters at the divertor structures, which define the plasma boundary conditions and where detachment effects are more likely to be strongest.« less
A review of direct experimental measurements of detachment
NASA Astrophysics Data System (ADS)
Boedo, J.; McLean, A. G.; Rudakov, D. L.; Watkins, J. G.
2018-04-01
Detached divertor plasmas feature strong radial and parallel gradients of density, temperature, electric fields and flow over the divertor volume and therefore, sampling the divertor plasma directly provides crucial knowledge to the interpretation and modeling efforts. We review the contribution of diagnostics that directly sample the plasma to the advancement of knowledge of the physics of detachment and detached divertors, such as the characteristics of the various regimes, discovery and quantification of drifts and identification of convection of heat and particles. We focus on wall probes, scanning probes, retarding field analyzers and Thomson scattering in the divertor region and also include the contribution of measurements away from the divertor that provide insight on how divertor detachment affects core, edge or pedestal conditions. Wall probes are critical as they can be installed in closed volumes of difficult access to other diagnostics and measure plasma parameters at the divertor structures, which define the plasma boundary conditions and where detachment effects are more likely to be strongest.
Divertor Heat Flux Reduction and Detachment in the National Spherical Torus eXperiment.
NASA Astrophysics Data System (ADS)
Soukhanovskii, Vsevolod
2007-11-01
Steady-state handling of the heat flux is a critical divertor issue for both the International Thermonuclear Experimental Reactor and spherical torus (ST) devices. Because of an inherently compact divertor, it was thought that ST-based devices might not be able to fully utilize radiative and dissipative divertor techniques based on induced power and momentum loss. However, initial experiments conducted in the National Spherical Torus Experiment in an open geometry horizontal carbon plate divertor using 0.8 MA 2-6 MW NBI-heated lower single null H-mode plasmas at the lower end of elongations κ=1.8-2.4 and triangularities δ=0.45-0.75 demonstrated that high divertor peak heat fluxes, up to 6-10 MW/ m^2, could be reduced by 50-75% using a high-recycling radiative divertor regime with D2 injection. Furthermore, similar reduction was obtained with a partially detached divertor (PDD) at high D2 injection rates, however, it was accompanied by an X-point MARFE that quickly led to confinement degradation. Another approach takes advantage of the ST relation between strong shaping and high performance, and utilizes the poloidal magnetic flux expansion in the divertor region. Up to 60 % reduction in divertor peak heat flux was achieved at similar levels of scrape-off layer power by varying plasma shaping and thereby increasing the outer strike point (OSP) poloidal flux expansion from 4-6 to 18-22. In recent experiments conducted in highly-shaped 1.0-1.2 MA 6 MW NBI heated H-mode plasmas with divertor D2 injection at rates up to 10^22 s-1, a PDD regime with OSP peak heat flux 0.5-1.5 MW/m^2 was obtained without noticeable confinement degradation. Calculations based on a two point scrape-off layer model with parameterized power and momentum losses show that the short parallel connection length at the OSP sets the upper limit on the radiative exhaust channel, and both the impurity radiation and large momentum sink achievable only at high divertor neutral pressures are required for detachment.
NASA Astrophysics Data System (ADS)
Stepanenko, A. A.; Krasheninnikov, S. I.
2018-01-01
One of the possible mechanisms responsible for strong radiation fluctuations observed in recent experiments with detached plasmas at ASDEX Upgrade [Potzel et al., Nucl. Fusion 54, 013001 (2014)] can be related to the onset of the current-convective instability (CCI) driven by strong asymmetry of detachment in the inner and outer divertors of the tokamak [S. Krasheninnikov and A. Smolyakov, Phys. Plasmas 23, 092505 (2016)]. In this study, we present the physical model, used to simulate the CCI, and the first numerical results of modeling of the CCI dynamics in ASDEX Upgrade-like conditions. The simulation results provide frequency spectra of turbulent divertor plasma oscillations showing reasonably good agreement with the available experimental data.
Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; ...
2016-11-16
Experimental results from the National Spherical Torus Experiment (NSTX), a medium-size spherical tokamak with a compact divertor, and DIII-D, a large conventional aspect ratio tokamak, demonstrate that the snowflake (SF) divertor configuration may provide a promising solution for mitigating divertor heat loads and target plate erosion compatible with core H-mode confinement in the future fusion devices, where the standard radiative divertor solution may be inadequate. In NSTX, where the initial high-power SF experiment was performed, the SF divertor was compatible with H-mode confinement, and led to the destabilization of large Edge Localized Modes (ELMs). However, a stable partial detachment ofmore » the outer strike point was also achieved where inter-ELM peak heat flux was reduced by factors 3-5, and peak ELM heat flux was reduced by up to 80% (see standard divertor). The DIII-D studies show the SF divertor enables significant power spreading in attached and radiative divertor conditions. Results include: compatibility with the core and pedestal, peak inter-ELM divertor heat flux reduction due to geometry at lower ne, and ELM energy and divertor peak heat flux reduction, especially prominent in radiative D 2-seeded SF divertor, and nearly complete power detachment and broader radiated power distribution in the radiative D 2-seeded SF divertor at PSOL = 3 - 4 MW. A variety of SF configurations can be supported by the divertor coil set in NSTX Upgrade. Edge transport modeling with the multifluid edge transport code UEDGE shows that the radiative SF divertor can successfully reduce peak divertor heat flux for the projected PSOL ≃ 9 MW case. Furthermore, the radiative SF divertor with carbon impurity provides a wider ne operating window, 50% less argon is needed in the impurity-seeded SF configuration to achieve similar q peak reduction factors (see standard divertor).« less
Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator
Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.; ...
2017-06-22
Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less
Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.
Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less
Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; ...
2016-06-02
Experimental results from the National Spherical Torus Experiment (NSTX), a medium-size spherical tokamak with a compact divertor, and DIII-D, a large conventional aspect ratio tokamak, demonstrate that the snowflake (SF) divertor configuration may provide a promising solution for mitigating divertor heat loads and target plate erosion compatible with core H-mode confinement in future fusion devices, where the standard radiative divertor solution may be inadequate. In NSTX, where the initial high-power SF experiment were performed, the SF divertor was compatible with H-mode confinement, and led to the destabilization of large ELMs. However, a stable partial detachment of the outer strike pointmore » was also achieved where inter-ELM peak heat flux was reduced by factors 3-5, and peak ELM heat flux was reduced by up to 80% (cf. standard divertor). The DIII-D studies show the SF divertor enables significant power spreading in attached and radiative divertor conditions. Results include: compatibility with the core and pedestal, peak inter-ELM divertor heat flux reduction due to geometry at lower n e, and ELM energy and divertor peak heat flux reduction, especially prominent in radiative D 2-seeded SF divertor, and nearly complete power detachment and broader radiated power distribution in the radiative D 2-seeded SF divertor at P SOL = 3 - 4 MW. A variety of SF configurations can be supported by the divertor coil set in NSTX Upgrade. Edge transport modeling with the multi-fluid edge transport code UEDGE shows that the radiative SF divertor can successfully reduce peak divertor heat flux for the projected P SOL ≃9 MW case. In conclusion, the radiative SF divertor with carbon impurity provides a wider n e operating window, 50% less argon is needed in the impurity-seeded SF configuration to achieve similar q peak reduction factors (cf. standard divertor).« less
Parallel Energy Transport in Detached DIII-D Divertor Plasmas
NASA Astrophysics Data System (ADS)
Leonard, A. W.; Lore, J. D.; Canik, J. M.; McLean, A. G.; Makowski, M. A.
2017-10-01
A comparison of experiment and modeling of detached divertor plasmas is examined in the context of parallel energy transport. Experimental estimates of power carried by electron thermal conduction versus plasma convection are experimentally inferred from power balance measurements of radiated power and target plate heat flux combined with Thomson scattering measurements of the Te profile along the divertor leg. Experimental profiles of Te exhibit relatively low gradients with Te < 15 eV from the X-point to the target implying transport dominated by convection. In contrast, fluid modeling with SOLPS produces sharp Te gradients for Te > 3 eV, characteristic of transport dominated by electron conduction through the bulk of the divertor. This discrepancy with experimental transport dominated by convection and modeling by conduction has significant implications for the radiative capacity of divertor plasmas and may explain at least part of the difficulty for fluid modeling to obtain the experimentally observed radiative losses. Comparisons are also made for helium plasmas where the match between experiment and modeling is much better. Work supported by the US DOE under DE-FC02-04ER54698.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.
Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less
NASA Astrophysics Data System (ADS)
Covele, B.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Leonard, A.; Watkins, J.; Makowski, M.; Fenstermacher, M.; Si, H.
2017-08-01
The X-divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at 10-20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. However, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. The model also points to carbon radiation as the primary driver of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency for core operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.
Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework
NASA Astrophysics Data System (ADS)
Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou
2015-11-01
China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.
A New Scaling for Divertor Detachment
NASA Astrophysics Data System (ADS)
Goldston, Robert
2017-10-01
The ITER design and future fusion power plant designs depend on divertor detachment, whether partial, pronounced or complete, both to limit heat flux to plasma-facing components and to limit surface erosion due to sputtering. Generally the parallel heat flux, estimated as proportional to Psep / R or Psep B / R , is used as a proxy for the difficulty of achieving detachment. Here we argue that the impurity cooling required for detachment is strongly dependent on the upstream separatrix density, which is limited by Greenwald scaling. Taking this into account self-consistently, along with the Heuristic Drift (HD) model for the SOL width, and using a Lengyel radiation model that includes non-coronal effects, we find that the relative impurity concentration, cz ≡nz /ne , required for detachment scales dominantly as cz Psep /Bp(nsep /nGW) 2 . The absence of any explicit favorable size scaling is concerning, as Psep must increase by an order of magnitude from present experiments to an economic fusion power system, while increases in the poloidal magnetic field strength are limited by magnet technology and MHD stability. This result should not be surprising, as it follows from the simplest scaling, Psep czne2VSOL , taking into account the Greenwald density limit and the HD SOL volume scaling. Reinke has combined a similar approach with the requirement to maintain H-mode, which sets a lower limit on Psep, and also arrives at an incentive for high field and disincentive for large size. These results should be challenged by comparison with 2D divertor codes and with measurements on existing experiments. In particular measurements are required for extrinsic divertor impurity concentration over a range of power and density conditions far from the regime where detachment can be achieved with deuterium puffing and intrinsic impurities alone. Nonetheless, these results suggest that higher magnetic field, stronger shaping, double-null operation, `advanced' divertor magnetic and baffle configurations, as well as lithium vapor targets merit greater attention. This work supported by the US DOE under contract DE-AC02-09CH11466.
Divertor scenario development for NSTX Upgrade
NASA Astrophysics Data System (ADS)
Soukhanovskii, V. A.; McLean, A. G.; Meier, E. T.; Rognlien, T. D.; Ryutov, D. D.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; Kaita, R.; Kolemen, E.; Leblanc, B. P.; Menard, J. E.; Podesta, M.; Scotti, F.
2012-10-01
In the NSTX-U tokamak, initial plans for divertor plasma-facing components (PFCs) include lithium and boron coated graphite, with a staged transition to molybdenum. Steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m^2 in 2 MA, 12 MW NBI-heated discharges of up to 5 s duration, thus challenging PFC thermal limits. Based on the recent NSTX divertor experiments and modeling with edge transport code UEDGE, a favorable basis for divertor power handling in NSTX-U is developed. The snowflake divertor geometry and feedback-controlled divertor impurity seeding applied to the lower and upper divertors are presently envisioned. In the NSTX snowflake experiments with lithium-coated graphite PFCs, the peak divertor heat fluxes from Type I ELMs and between ELMs were significantly reduced due to geometry effects, increased volumetric losses and null-point convective redistribution between strike points. H-mode core confinement was maintained at H98(y,2)<=1 albeit the radiative detachment. Additional CD4 seeding demonstrated potential for a further increase of divertor radiation.
Electron pressure balance in the SOL through the transition to detachment
McLean, A. G.; Leonard, A. W.; Makowski, M. A.; ...
2015-02-07
Upgrades to core and divertor Thomson scattering (DTS) diagnostics at DIII-D have provided measurements of electron pressure profiles in the lower divertor from attached- to fully-detached divertor plasma conditions. Detailed, multistep sequences of discharges with increasing line-averaged density were run at several levels of P inj. Strike point sweeping allowed 2D divertor characterization using DTS optimized to measure T e down to 0.5 eV. The ionization front at the onset of detachment is found to move upwards in a controlled manner consistent with the indication that scrape-off layer parallel power flux is converted from conducted to convective heat transport. Measurementsmore » of n e, T e and p e in the divertor versus Lparallel demonstrate a rapid transition from Te ≥ 15 eV to ≤3 eV occurring both at the outer strike point and upstream of the X-point. Furthermore, these observations provide a strong benchmark for ongoing modeling of divertor detachment for existing and future tokamak devices.« less
Covele, Brent; Kotschenreuther, M.; Mahajan, S.; ...
2017-06-23
The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less
Electron pressure balance in the SOL through the transition to detachment
NASA Astrophysics Data System (ADS)
McLean, A. G.; Leonard, A. W.; Makowski, M. A.; Groth, M.; Allen, S. L.; Boedo, J. A.; Bray, B. D.; Briesemeister, A. R.; Carlstrom, T. N.; Eldon, D.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Liu, C.; Osborne, T. H.; Petrie, T. W.; Soukhanovskii, V. A.; Stangeby, P. C.; Tsui, C.; Unterberg, E. A.; Watkins, J. G.
2015-08-01
Upgrades to core and divertor Thomson scattering (DTS) diagnostics at DIII-D have provided measurements of electron pressure profiles in the lower divertor from attached- to fully-detached divertor plasma conditions. Detailed, multistep sequences of discharges with increasing line-averaged density were run at several levels of Pinj. Strike point sweeping allowed 2D divertor characterization using DTS optimized to measure Te down to 0.5 eV. The ionization front at the onset of detachment is found to move upwards in a controlled manner consistent with the indication that scrape-off layer parallel power flux is converted from conducted to convective heat transport. Measurements of ne, Te and pe in the divertor versus Lparallel demonstrate a rapid transition from Te ⩾ 15 eV to ⩽3 eV occurring both at the outer strike point and upstream of the X-point. These observations provide a strong benchmark for ongoing modeling of divertor detachment for existing and future tokamak devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covele, Brent; Kotschenreuther, M.; Mahajan, S.
The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less
SOLPS modeling of the effect on plasma detachment of closing the lower divertor in DIII-D
Sang, C. F.; Stangeby, P. C.; Guo, H. Y.; ...
2016-12-15
SOLPS modeling has been carried out to assess the effect of tightly closing the lower divertor in DIII-D, which at present is almost fully open, on the achievement of cold dissipative/detached divertor conditions. To isolate the impact of other factors on the divertor plasma solution and to make direct comparisons, most of the parameters including the meshes were kept as similar as possible. Only the neutral baffling was modified to compare a fully open divertor with a tightly closed one. The modeling shows that the tightly closed divertor greatly improves trapping of recycling neutrals, thereby increasing radiative and charge exchangemore » losses in the divertor and reducing the electron temperature T et and deposited power density q dep at the target plate. Furthermore, the closed structure enables the divertor plasma to enter into highly dissipative and detached divertor conditions at a significantly lower upstream density. The effects of divertor closure on the neutral density and pressure, and their correlation with the divertor plasma conditions are also demonstrated. The effect of molecular D 2- ion D + elastic collisions and neutral-neutral collisions on the divertor plasma solution are assessed.« less
Controlling marginally detached divertor plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldon, David; Kolemen, Egemen; Barton, Joseph L.
A new control system at DIII-D has stabilized the inter-ELM detached divertor plasma state for H-mode in close proximity to the threshold for reattachment, thus demonstrating the ability to maintain detachment with minimal gas puffing. When the same control system was instead ordered to hold the plasma at the threshold (here defined as T e = 5 eV near the divertor target plate), the resulting T e profiles separated into two groups with one group consistent with marginal detachment, and the other with marginal attachment. The plasma dithers between the attached and detached states when the control system attempts to hold at the threshold. The control system is upgraded from the one described in and it handles ELMing plasmas by using real time D α measurements to remove during-ELM slices from real time T e measurements derived from divertor Thomson scattering. The difference between measured and requested inter-ELM T e is passed to a PID (proportionalintegral-derivative) controller to determine gas puff commands. While some degree of detachment is essential for the health of ITER’s divertor, more deeply detached plasmas have greater radiative losses and, at the extreme, confinement degradation, making it desirable to limit detachment to the minimum level needed to protect the target plate. However, the observed bifurcation in plasma conditions at the outer strike point with the ion B ×more » $$\
Controlling marginally detached divertor plasmas
Eldon, David; Kolemen, Egemen; Barton, Joseph L.; ...
2017-05-04
A new control system at DIII-D has stabilized the inter-ELM detached divertor plasma state for H-mode in close proximity to the threshold for reattachment, thus demonstrating the ability to maintain detachment with minimal gas puffing. When the same control system was instead ordered to hold the plasma at the threshold (here defined as T e = 5 eV near the divertor target plate), the resulting T e profiles separated into two groups with one group consistent with marginal detachment, and the other with marginal attachment. The plasma dithers between the attached and detached states when the control system attempts to hold at the threshold. The control system is upgraded from the one described in and it handles ELMing plasmas by using real time D α measurements to remove during-ELM slices from real time T e measurements derived from divertor Thomson scattering. The difference between measured and requested inter-ELM T e is passed to a PID (proportionalintegral-derivative) controller to determine gas puff commands. While some degree of detachment is essential for the health of ITER’s divertor, more deeply detached plasmas have greater radiative losses and, at the extreme, confinement degradation, making it desirable to limit detachment to the minimum level needed to protect the target plate. However, the observed bifurcation in plasma conditions at the outer strike point with the ion B ×more » $$\
A new scaling for divertor detachment
NASA Astrophysics Data System (ADS)
Goldston, R. J.; Reinke, M. L.; Schwartz, J. A.
2017-05-01
The ITER design, and future reactor designs, depend on divertor ‘detachment,’ whether partial, pronounced or complete, to limit heat flux to plasma-facing components and to limit surface erosion due to sputtering. It would be valuable to have a measure of the difficulty of achieving detachment as a function of machine parameters, such as input power, magnetic field, major radius, etc. Frequently the parallel heat flux, estimated typically as proportional to P sep/R or P sep B/R, is used as a proxy for this difficulty. Here we argue that impurity cooling is dependent on the upstream density, which itself must be limited by a Greenwald-like scaling. Taking this into account self-consistently, we find the impurity fraction required for detachment scales dominantly as power divided by poloidal magnetic field. The absence of any explicit scaling with machine size is concerning, as P sep surely must increase greatly for an economic fusion system, while increases in the poloidal field strength are limited by coil technology and plasma physics. This result should be challenged by comparison with 2D divertor codes and with measurements on existing experiments. Nonetheless, it suggests that higher magnetic field, stronger shaping, double-null operation, ‘advanced’ divertor configurations, as well as alternate means to handle heat flux such as metallic liquid and/or vapor targets merit greater attention.
A new scaling for divertor detachment
Goldston, R. J.; Reinke, M. L.; Schwartz, J. A.
2017-03-29
The ITER design, and future reactor designs, depend on divertor `detachment,'whether partial, pronounced or complete, to limit heat flux to plasma-facing components and to limit surface erosion due to sputtering. It would be valuable to have a measure of the difficulty of achieving detachment as a function of machine parameters, such as input power, magnetic field, major radius, etc. Frequently the parallel heat flux, estimated typically as proportional to P-sep/R or PsepB/R, is used as a proxy for this difficulty. Here we argue that impurity cooling is dependent on the upstream density, which itself must be limited by a Greenwald-likemore » scaling. Taking this into account self-consistently, we find the impurity fraction required for detachment scales dominantly as power divided by poloidal magnetic field. The absence of any explicit scaling with machine size is concerning, as P-sep surely must increase greatly for an economic fusion system, while increases in the poloidal field strength are limited by coil technology and plasma physics. This result should be challenged by comparison with 2D divertor codes and with measurements on existing experiments. Nonetheless, it suggests that higher magnetic field, stronger shaping, double-null operation, `advanced' divertor configurations, as well as alternate means to handle heat flux such as metallic liquid and/or vapor targets merit greater attention.« less
3D nonlinear numerical simulation of the current-convective instability in detached diverter plasma
NASA Astrophysics Data System (ADS)
Stepanenko, Alexander; Krasheninnikov, Sergei
2017-10-01
One of the possible mechanisms responsible for strong radiation fluctuations observed in the recent experiments with detached plasmas at ASDEX Upgrade [Potzel et al., Nuclear Fusion, 2014] can be related to the onset of the current-convective instability (CCI) driven by strong asymmetry of detachment in the inner and outer tokamak divertors [Krasheninnikov and Smolyakov, PoP, 2016]. In this study we present the first results of 3D nonlinear numerical simulations of the CCI in divertor plasma for the conditions relevant to the AUG experiment. The general physical model used to simulate the CCI, qualitative estimates for the instability characteristic growth rate and transverse wavelengths derived for plasma, which is spatially inhomogeneous both across and along the magnetic field lines, are presented. The simulation results, demonstrating nonlinear dynamics of the CCI, provide the frequency spectra of turbulent divertor plasma fluctuations showing good agreement with the available experimental data. This material is based upon the work supported by the U.S. Department of Energy under Award No. DE-FG02-04ER54739 at UCSD and by the Russian Ministry of Education and Science Grant No. 14.Y26.31.0008 at MEPhI.
Controlling marginally detached divertor plasmas
NASA Astrophysics Data System (ADS)
Eldon, D.; Kolemen, E.; Barton, J. L.; Briesemeister, A. R.; Humphreys, D. A.; Leonard, A. W.; Maingi, R.; Makowski, M. A.; McLean, A. G.; Moser, A. L.; Stangeby, P. C.
2017-06-01
A new control system at DIII-D has stabilized the inter-ELM detached divertor plasma state for H-mode in close proximity to the threshold for reattachment, thus demonstrating the ability to maintain detachment with minimal gas puffing. When the same control system was instead ordered to hold the plasma at the threshold (here defined as T e = 5 eV near the divertor target plate), the resulting T e profiles separated into two groups with one group consistent with marginal detachment, and the other with marginal attachment. The plasma dithers between the attached and detached states when the control system attempts to hold at the threshold. The control system is upgraded from the one described in Kolemen et al (2015 J. Nucl. Mater. 463 1186) and it handles ELMing plasmas by using real time D α measurements to remove during-ELM slices from real time T e measurements derived from divertor Thomson scattering. The difference between measured and requested inter-ELM T e is passed to a PID (proportional-integral-derivative) controller to determine gas puff commands. While some degree of detachment is essential for the health of ITER’s divertor, more deeply detached plasmas have greater radiative losses and, at the extreme, confinement degradation, making it desirable to limit detachment to the minimum level needed to protect the target plate (Kolemen et al 2015 J. Nucl. Mater. 463 1186). However, the observed bifurcation in plasma conditions at the outer strike point with the ion B × \
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covele, Brent; Kotschenreuther, M.; Mahajan, S.
The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less
Upstream Density for Plasma Detachment with Conventional and Lithium Vapor-Box Divertors
NASA Astrophysics Data System (ADS)
Goldston, Rj; Schwartz, Ja
2016-10-01
Fusion power plants are likely to require detachment of the divertor plasma from material targets. The lithium vapor box divertor is designed to achieve this, while limiting the flux of lithium vapor to the main plasma. We develop a simple model of near-detachment to evaluate the required upstream plasma density, for both conventional and lithium vapor-box divertors, based on particle and dynamic pressure balance between up- and down-stream, at near-detachment conditions. A remarkable general result is found, not just for lithium-induced detachment, that the upstream density divided by the Greenwald-limit density scales as (P 5 / 8 /B 3 / 8) Tdet1 / 2 / (ɛcool + γTdet) , with no explicit size scaling. Tdet is the temperature just before strong pressure loss, 1/2 of the ionization potential of the dominant recycling species, ɛcool is the average plasma energy lost per injected hydrogenic and impurity atom, and γ is the sheath heat transmission factor. A recent 1-D calculation agrees well with this scaling. The implication is that the plasma exhaust problem cannot be solved by increasing R. Instead significant innovation, such as the lithium vapor box divertor, will be required. This work supported by DOE Contract No. DE-AC02-09CH11466.
A study of X-divertor in NSTX-U with SOLPS simulations
NASA Astrophysics Data System (ADS)
Chen, Zhong-Ping; Kotschenreuther, Mike; Mahajan, Swadesh; Gerhardt, Stefan
2018-03-01
The X-divertor (XD) geometry in NSTX-U is demonstrated, via SOLPS simulations, to perform better than the standard divertor (SD); in particular, it allows detachment at a lower upstream density and stabilizes the detachment front near the target, away from the main X-point. Consequently a stable detached operation becomes possible—the localization near the plate allows a vast reduction of heat fluxes without degrading the core plasma. Indeed, it is confirmed by our simulation that at similar states of detachment the XD outperforms the SD by reducing the heat fluxes to the target and maintaining higher upstream temperatures, resulting in scrape-off layers that are more favorable for advanced tokamak operation. These advantages are attributed to the unique geometric characteristics of XD—poloidal flaring near the target.
Developing physics basis for the snowflake divertor in the DIII-D tokamak
Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; ...
2018-02-01
Recent DIII-D results demonstrate that the snowflake (SF) divertor geometry (cf. standard divertor) enables significant manipulation of divertor heat transport for heat spreading and reduction in attached and radiative divertor regimes, between and during edge localized modes (ELMs), while maintaining good H-mode confinement. Snowflake divertor configurations have been realized in the DIII-D tokamak for several seconds in H-mode discharges with heating power PNBImore » $$\\leqslant$$ 4-5 MW and a range of plasma currents Ip = 0.8-1.2 MA. In this work, inter-ELM transport and radiative SF divertor properties are studied. Significant impact of geometric properties on SOL and divertor plasma parameters, including increased poloidal magnetic flux expansion, divertor magnetic field line length and divertor volume, is confirmed. In the SF-minus configuration, heat deposition is affected by the geometry, and peak divertor heat fluxes are significantly reduced. In the SF-plus and near-exact SF configurations, divertor peak heat flux reduction and outer strike point heat flux profile broadening are observed. Inter-ELM sharing of power and particle fluxes between the main and additional snowflake divertor strike points has been demonstrated. The additional strike points typically receive up to 10-15% of total outer divertor power. Measurements of electron pressure and poloidal beta !p support the theoretically proposed churning mode that is driven by toroidal curvature and vertical pressure gradient in the weak poloidal field region. A comparison of the 4-4.5 MW NBI-heated H-mode plasmas with radiative SF divertor and the standard radiative divertor (both induced with additional gas puffing) shows a nearly complete power detachment and broader divertor radiated power distribution in the SF, as compared to a partial detachment and peaked localized radiation in the standard divertor. However, insignificant difference in the detachment onset w.r.t. density between the SF and the standard divertor was found. The results complement the initial SF divertor studies in the NSTX and DIII-D tokamaks and contribute to the physics basis of the SF divertor as a power exhaust concept for future tokamaks.« less
Developing physics basis for the snowflake divertor in the DIII-D tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.
Recent DIII-D results demonstrate that the snowflake (SF) divertor geometry (cf. standard divertor) enables significant manipulation of divertor heat transport for heat spreading and reduction in attached and radiative divertor regimes, between and during edge localized modes (ELMs), while maintaining good H-mode confinement. Snowflake divertor configurations have been realized in the DIII-D tokamak for several seconds in H-mode discharges with heating power PNBImore » $$\\leqslant$$ 4-5 MW and a range of plasma currents Ip = 0.8-1.2 MA. In this work, inter-ELM transport and radiative SF divertor properties are studied. Significant impact of geometric properties on SOL and divertor plasma parameters, including increased poloidal magnetic flux expansion, divertor magnetic field line length and divertor volume, is confirmed. In the SF-minus configuration, heat deposition is affected by the geometry, and peak divertor heat fluxes are significantly reduced. In the SF-plus and near-exact SF configurations, divertor peak heat flux reduction and outer strike point heat flux profile broadening are observed. Inter-ELM sharing of power and particle fluxes between the main and additional snowflake divertor strike points has been demonstrated. The additional strike points typically receive up to 10-15% of total outer divertor power. Measurements of electron pressure and poloidal beta !p support the theoretically proposed churning mode that is driven by toroidal curvature and vertical pressure gradient in the weak poloidal field region. A comparison of the 4-4.5 MW NBI-heated H-mode plasmas with radiative SF divertor and the standard radiative divertor (both induced with additional gas puffing) shows a nearly complete power detachment and broader divertor radiated power distribution in the SF, as compared to a partial detachment and peaked localized radiation in the standard divertor. However, insignificant difference in the detachment onset w.r.t. density between the SF and the standard divertor was found. The results complement the initial SF divertor studies in the NSTX and DIII-D tokamaks and contribute to the physics basis of the SF divertor as a power exhaust concept for future tokamaks.« less
NASA Technical Reports Server (NTRS)
Jupen, C.; Meigs, A.; Bhatia, A. K.; Brezinsek, S.; OMullane, M.
2004-01-01
Plasma volume recombination in the divertor, a process in which charged particles recombine to neutral atoms, contributes to plasma detachment and hence cooling at the divertor target region. Detachment has been observed at JET and other tokamaks and is known to occur at low electron temperatures (T(sub e)<1 eV) and at high electron density (n(sub e)>10(exp 20)/m(exp 3)). The ability to measure such low temperatures is therefore of interest for modelling the divertor. In present work we report development of a new spectroscopic technique for investigation of local electron density (n(sub e)) and temperature (T,) in the outer divertor at JET.
SOLPS simulations of X-divertor in NSTX-U
NASA Astrophysics Data System (ADS)
Chen, Zhongping; Kotschenreuther, Mike; Mahajan, Swadesh
2017-10-01
The X-divertor (XD) geometry in NSTX-U has demonstrated, in SOLPS simulations, a better performance than the standard divertor (SD) regarding detachment: achieving detachment with a lower upstream density and stabilizing the detachment front near the target. The benefits of such a localized front is that the power exhaust requirement can be satisfied without the radiation front encroaching on the core plasma. It is also found by our simulations that at similar states of detachment the XD outperforms the SD by reducing the heat fluxes to the target and maintaining higher upstream temperatures. These advantages are attributed to the unique geometric characteristics of XD - poloidal flaring near the target. The detailed physical mechanisms behind the better XD performance that is found in the simulations will be examined. Work supported by US DOE under DE-FG02-04ER54742 and SC 0012956.
Modeling of detachment experiments at DIII-D
Canik, John M.; Briesemeister, Alexis R.; Lasnier, C. J.; ...
2014-11-26
Edge fluid–plasma/kinetic–neutral modeling of well-diagnosed DIII-D experiments is performed in order to document in detail how well certain aspects of experimental measurements are reproduced within the model as the transition to detachment is approached. Results indicate, that at high densities near detachment onset, the poloidal temperature profile produced in the simulations agrees well with that measured in experiment. However, matching the heat flux in the model requires a significant increase in the radiated power compared to what is predicted using standard chemical sputtering rates. Lastly, these results suggest that the model is adequate to predict the divertor temperature, provided thatmore » the discrepancy in radiated power level can be resolved.« less
Developing physics basis for the snowflake divertor in the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meyer, W. H.; Ryutov, D. D.; Kolemen, E.; Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.; Watkins, J.
2018-03-01
Recent DIII-D results demonstrate that the snowflake (SF) divertor geometry (see standard divertor) enables significant manipulation of divertor heat transport for heat spreading and reduction in attached and radiative divertor regimes, between and during edge localized modes (ELMs), while maintaining good H-mode confinement. Snowflake divertor configurations have been realized in the DIII-D tokamak for several seconds in H-mode discharges with heating power P_NBI ≤slant 4 -5 MW and a range of plasma currents I_p=0.8-1.2 MA. In this work, inter-ELM transport and radiative SF divertor properties are studied. Significant impact of geometric properties on SOL and divertor plasma parameters, including increased poloidal magnetic flux expansion, divertor magnetic field line length and divertor volume, is confirmed. In the SF-minus configuration, heat deposition is affected by the geometry, and peak divertor heat fluxes are significantly reduced. In the SF-plus and near-exact SF configurations, divertor peak heat flux reduction and outer strike point heat flux profile broadening are observed. Inter-ELM sharing of power and particle fluxes between the main and additional snowflake divertor strike points has been demonstrated. The additional strike points typically receive up to 10-15% of total outer divertor power. Measurements of electron pressure and poloidal beta βp support the theoretically proposed churning mode that is driven by toroidal curvature and vertical pressure gradient in the weak poloidal field region. A comparison of the 4-4.5 MW NBI-heated H-mode plasmas with radiative SF divertor and the standard radiative divertor (both induced with additional gas puffing) shows a nearly complete power detachment and broader divertor radiated power distribution in the SF, as compared to a partial detachment and peaked localized radiation in the standard divertor. However, insignificant difference in the detachment onset w.r.t. density between the SF and the standard divertor was found. The results complement the initial SF divertor studies conducted in high-power H-mode discharges in the NSTX and DIII-D tokamaks, and, along with snowflake divertor results from TCV and other tokamaks, contribute to the physics basis of the SF divertor as a power exhaust concept for future high power density tokamaks.
NASA Astrophysics Data System (ADS)
Frerichs, H.; Schmitz, O.; Covele, B.; Feng, Y.; Guo, H. Y.; Hill, D.
2018-05-01
Numerical simulations of toroidal asymmetries in a tightly baffled small angle slot (SAS) divertor on the DIII-D tokamak show that toroidal asymmetries in divertor closure result in (non-axisymmetric) local onset of detachment within a density window of 10-15% on top of the nominal threshold separatrix density. The SAS divertor is explored at DIII-D for improving access to cold, dissipative/detached divertor conditions. The narrow width of the slot divertor coupled with a small magnetic field line-to-target angle facilitates the buildup of neutral density, thereby increasing radiative and neutrals-related (atoms and molecules) losses in the divertor. Small changes in the strike point location can be expected to have a large impact on divertor conditions. The combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field configuration causes the strike point to move along the divertor target plate, possibly leaving the divertor slot at some locations. The latter extreme case essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade the performance of the slot divertor. Such a strike point dislocation is approximated by a finite gap in the divertor baffle for which 3D edge plasma and neutral gas simulations are performed with the EMC3-EIRENE code.
X-Divertors on ITER - with no hardware changes
NASA Astrophysics Data System (ADS)
Valanju, Prashant; Covele, Brent; Kotschenreuther, Mike; Mahajan, Swadesh; Kessel, Charles
2014-10-01
Using CORSICA, we have discovered that X-Divertor (XD) equilibria are possible on ITER - without any extra PF coils inside the TF coils, and with no changes to ITER's poloidal field (PF) coil set, divertor cassette, strike points, or first wall. Starting from the Standard Divertor (SD), a sequence of XD configurations (with increasing flux expansions at the divertor plate) can be made by reprogramming ITER PF coil currents while keeping them all under their design limits (Lackner and Zohm have shown this to be impossible for Snowflakes). The strike point is held fixed, so no changes in the divertor or pumping hardware will be needed. The main plasma shape is kept very close to the SD case, so no hardware changes to the main chamber will be needed. Time-dependent ITER-XD operational scenarios are being checked using TSC. This opens the possibility that many XDs could be tested and used to assist in high-power operation on ITER. Because of the toroidally segmented ITER divertor plates, strongly detached operation may be critical for making use of the largest XD flux expansion possible. The flux flaring in XDs is expected to increase the stability of detachment, so that H-mode confinement is not affected. Detachment stability is being examined with SOLPS. This work supported by US DOE Grants DE-FG02-04ER54742 and DE-FG02-04ER54754 and by TACC at UT Austin.
Implementation of a long leg X-point target divertor in the ARC fusion pilot plant
NASA Astrophysics Data System (ADS)
Kuang, A. Q.; Cao, N. M.; Creely, A. J.; Dennett, C. A.; Hecla, J.; Hoffman, H.; Major, M.; Ruiz Ruiz, J.; Tinguely, R. A.; Tolman, E. A.; Brunner, D.; Labombard, B.; Sorbom, B. N.; Whyte, D. G.; Grover, P.; Laughman, C.
2017-10-01
A long leg X-point target divertor geometry in a double null geometry has been implemented in the ARC pilot plant design, exploiting ARC's demountable toroidal field (TF) coils and FLiBe immersion blanket, which allow superconducting poloidal field coils to be located inside the TF coils, adequately shielded from neutrons. This new design maintains the original TF coil size, core plasma shape, and attains a tritium breedin ratio 1.08. The long leg divertor geometry provides significant advantages. Neutron transport computations indicate a factor of 10 reduction in divertor material neutron damage rate compared to the first wall, easing requirements for high heat flux components. Simulations have shown that long legged divertors are able to maintain a passively stable detachment front that stays in the divertor leg over a wide power window, in principle, responding immediately to fast changes in power exhaust. The ARC design exploits this new paradigm for divertor heat flux control: fewer concerns about coping with fast transients and a focus on neutron-tolerant diagnostics to measure and adjust detachment front locations in the outer divertor legs over long timescales.
Numerical analyses of baseline JT-60SA design concepts with the COREDIV code
NASA Astrophysics Data System (ADS)
Zagórski, R.; Gałązka, K.; Ivanova-Stanik, I.; Stępniewski, W.; Garzotti, L.; Giruzzi, G.; Neu, R.; Romanelli, M.
2017-06-01
JT-60SA reference design scenarios at high (#3) and low (#2) density have been analyzed with the help of the self-consistent COREDIV code. Simulations results for a standard C wall and full W wall have been compared in terms of the influence of impurities, both intrinsic (C, W) and seeded (N, Ar, Ne, Kr), on the radiation losses and plasma parameters. For scenario #3 in a C environment, the regime of detachment on divertor plates can be achieved with N or Ne seeding, whereas for the low density and high power scenario (#2), the C and seeding impurity radiation does not effectively reduce power to the targets. In this case, only an increase of either average density or edge density together with Kr seeding might help to develop conditions with strong radiation losses and semi-detached conditions in the divertor. The calculations show that, in the case of a W divertor, the power load to the plate is mitigated by seeding and the central plasma dilution is smaller compared to the C divertor. For the high density case (#3) with Ne seeding, operation in full detachment mode is predicted. Ar seems to be an optimal choice for the low-density high-power scenario #2, showing a wide operating window, whereas Ne leads to high plasma dilution at high seeding levels albeit not achieving semi-detached conditions in the divertor.
NASA Astrophysics Data System (ADS)
Nikolaeva, V.; Guimarais, L.; Manz, P.; Carralero, D.; Manso, M. E.; Stroth, U.; Silva, C.; Conway, G. D.; Seliunin, E.; Vicente, J.; Brida, D.; Aguiam, D.; Santos, J.; Silva, A.; ASDEX Upgrade team; MST1 team
2018-05-01
Transport in the scrape-off layer (SOL) depends on the state of divertor detachment. L-mode discharges were analyzed where the state of divertor detachment is varied through a density ramp-up. By means of reflectometry measurements at the low (LFS) and the high field side (HFS), midplane density fluctuations are studied for the first time in ASDEX Upgrade simultaneously at both sides of the tokamak. Radial density fluctuation profiles (δ {n}e/{n}e) increase with radius in both the HFS and the LFS. It is found that in the SOL density fluctuations at the LFS have about a factor of two larger amplitude than at the HFS in agreement with ballooned transport. Density fluctuations at the LFS show a modest variation with increasing background density resulting mainly from a rise of low frequency components. Experimental results are in good agreement with an enhanced convection of filaments at the LFS at the beginning of outer divertor detachment leading to a flatter SOL density profile. In this phase of the discharge, density fluctuations measured at the HFS far-SOL display a strong increase, which may be associated with the presence of faster filaments originated at the LFS.
Partial detachment of high power discharges in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Bernert, M.; Beurskens, M.; Casali, L.; Dunne, M.; Eich, T.; Giannone, L.; Herrmann, A.; Maraschek, M.; Potzel, S.; Reimold, F.; Rohde, V.; Schweinzer, J.; Viezzer, E.; Wischmeier, M.; the ASDEX Upgrade Team
2015-05-01
Detachment of high power discharges is obtained in ASDEX Upgrade by simultaneous feedback control of core radiation and divertor radiation or thermoelectric currents by the injection of radiating impurities. So far 2/3 of the ITER normalized heat flux Psep/R = 15 MW m-1 has been obtained in ASDEX Upgrade under partially detached conditions with a peak target heat flux well below 10 MW m-2. When the detachment is further pronounced towards lower peak heat flux at the target, substantial changes in edge localized mode (ELM) behaviour, density and radiation distribution occur. The time-averaged peak heat flux at both divertor targets can be reduced below 2 MW m-2, which offers an attractive DEMO divertor scenario with potential for simpler and cheaper technical solutions. Generally, pronounced detachment leads to a pedestal and core density rise by about 20-40%, moderate (<20%) confinement degradation and a reduction of ELM size. For AUG conditions, some operational challenges occur, like the density cut-off limit for X-2 electron cyclotron resonance heating, which is used for central tungsten control.
Frerichs, H.; Schmitz, O.; Covele, B.; ...
2018-02-28
Numerical simulations of toroidal asymmetries in a tightly baffled small angle slot (SAS) divertor on the DIII-D tokamak show that toroidal asymmetries in divertor closure result in (non-axisymmetric) local onset of detachment within a density window of 10-15% on top of the nominal threshold separatrix density. The SAS divertor is explored at DIII-D for improving access to cold, dissipative/detached divertor conditions. The narrow width of the slot divertor coupled with a small magnetic field line-to-target angle facilitates the buildup of neutral density, thereby increasing radiative and neutrals-related (atoms and molecules) losses in the divertor. Therefore, small changes in the strikemore » point location can be expected to have a large impact on diverter conditions. The combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field configuration causes the strike point to move along the divertor target plate, possibly leaving the diverter slot at some locations. The latter extreme case essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade the performance of the slot divertor. Such a strike point dislocation is approximated by a finite gap in the divertor baffle for which three dimensional edge plasma and neutral gas simulations are performed with the EMC3-EIRENE code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frerichs, H.; Schmitz, O.; Covele, B.
Numerical simulations of toroidal asymmetries in a tightly baffled small angle slot (SAS) divertor on the DIII-D tokamak show that toroidal asymmetries in divertor closure result in (non-axisymmetric) local onset of detachment within a density window of 10-15% on top of the nominal threshold separatrix density. The SAS divertor is explored at DIII-D for improving access to cold, dissipative/detached divertor conditions. The narrow width of the slot divertor coupled with a small magnetic field line-to-target angle facilitates the buildup of neutral density, thereby increasing radiative and neutrals-related (atoms and molecules) losses in the divertor. Therefore, small changes in the strikemore » point location can be expected to have a large impact on diverter conditions. The combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field configuration causes the strike point to move along the divertor target plate, possibly leaving the diverter slot at some locations. The latter extreme case essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade the performance of the slot divertor. Such a strike point dislocation is approximated by a finite gap in the divertor baffle for which three dimensional edge plasma and neutral gas simulations are performed with the EMC3-EIRENE code.« less
Theory of Advanced Magnetic Divertors
NASA Astrophysics Data System (ADS)
Kotschenreuther, Michael; Valanju, Prashant; Mahajan, Swadesh; Covele, Brent
2013-10-01
The magnetic field structure in the SOL is the most important determinant of divertor physics. A comprehensive analytical and numerical methodology is developed to investigate SOL magnetic fields in the backdrop of two advanced divertor geometries- the X-divertor (XD) proposed and discussed in 2004, and the snowflake divertor (SFD) of 2007-2010. The analysis shows that XD and SFD represent very distinct and readily distinguishable magnetic geometries, epitomized through a differentiating metric, the Divertor Index (DI). In terms of this simple metric, the XD (DI > 1) and the SFD (DI < 1) fall on opposite sides of the standard divertor SD (DI = 1). Amongst other things, DI signifies the rate of convergence (divergence) of the flux surfaces near the divertor plate; the flux surfaces of SFD are more convergent contracting) than the SD while the XD flux surfaces are less convergent, in fact, divergent (flaring). These different SOL magnetics imply different physics, particularly with respect to detachment dynamics. It is also shown that some experiments on NSTX and DIII-D match both the prescription and the predictions of the 2004 XD paper. Work supported under US-DOE projects DE-FG02-04ER54742 and DE-FG02-04ER54754.
Rognlien, Thomas D.; McLean, Adam G.; Fenstermacher, Max E.; ...
2017-01-27
A modeling study is reported using new 2D data from DIII-D tokamak divertor plasmas and improved 2D transport model that includes large cross-field drifts for the numerically difficult H-mode regime. The data set, which spans a range of plasmas densities for both forward and reverse toroidal magnetic field (B t) over a range of plasma densities, is provided by divertor Thomson scattering (DTS). Measurements utilizing X-point sweeping give corresponding 2D profiles of electron temperature (T e) and density (n e) across both divertor legs for individual discharges. The calculations show the same features of in/out plasma asymmetries as measured inmore » the experiment, with the normal B t direction (ion ∇B drift toward the X-point) having higher n e and lower T e in the inner divertor leg than outer. Corresponding emission data for total radiated power shows a strong inner-divertor/outer-divertor asymmetry that is reproduced by the simulations. Furthermore, these 2D UEDGE transport simulations are enabled for steep-gradient H-mode conditions by newly implemented algorithms to control isolated grid-scale irregularities.« less
Examining Innovative Divertor and Main Chamber Options for a National Divertor Test Tokamak
NASA Astrophysics Data System (ADS)
Labombard, B.; Umansky, M.; Brunner, D.; Kuang, A. Q.; Marmar, E.; Wallace, G.; Whyte, D.; Wukitch, S.
2016-10-01
The US fusion community has identified a compelling need for a National Divertor Test Tokamak. The 2015 Community Planning Workshop on PMI called for a national working group to develop options. Important elements of a NDTT, adopted from the ADX concept, include the ability to explore long-leg divertor `solutions for power exhaust and particle control' (Priority Research Direction B) and to employ inside-launch RF actuators combined with double-null topologies as `plasma solution for main chamber wall components, including tools for controllable sustained operation' (PRD-C). Here we examine new information on these ideas. The projected performance of super-X and X-point target long-leg divertors is looking very promising; a stable fully-detached divertor condition handling an order-of-magnitude increase in power handling over conventional divertors may be possible. New experiments on Alcator C-Mod are addressing issues of high-field side versus low-field side heat flux sharing in double-null topologies and the screening of impurities that might originate from RF actuators placed in the high-field side - both with favorable results. Supported by USDoE Awards DE-FC02-99ER54512 and DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Leonard, A. W.; McLean, A. G.; Makowski, M. A.; Stangeby, P. C.
2017-08-01
The midplane separatrix density is characterized in response to variations in upstream parallel heat flux density and central density through deuterium gas injection. The midplane density is determined from a high spatial resolution Thomson scattering diagnostic at the midplane with power balance analysis to determine the separatrix location. The heat flux density is varied by scans of three parameters, auxiliary heating, toroidal field with fixed plasma current, and plasma current with fixed safety factor, q 95. The separatrix density just before divertor detachment onset is found to scale consistent with the two-point model when radiative dissipation is taken into account. The ratio of separatrix to pedestal density, n e,sep/n e,ped varies from ⩽30% to ⩾60% over the dataset, helping to resolve the conflicting scaling of core plasma density limit and divertor detachment onset. The scaling of the separatrix density at detachment onset is combined with H-mode power threshold scaling to obtain a scaling ratio of minimum n e,sep/n e,ped expected in future devices.
NASA Astrophysics Data System (ADS)
Casali, Livia; Covele, Brent; Guo, Houyang
2017-10-01
The new Small Angle Slot (SAS) divertor in DIII-D is characterized by a shallow-angle target enclosed by a slot structure about the strike point (SP). SOLPS modelling results of SAS have demonstrated divertor closure's utility in widening the range of acceptable densities for adequate heat handling. An extensive database of runs has been built to study the detachment dependence on SP location in SAS. Density scans show that lower Te at lower upstream density occur when the SP is at the critical location in the slot. The cooling front spreads across the entire target at higher densities, in agreement with experimental Langmuir probe measurements. A localized increase of the atomic and molecular density takes place near the SP, which reduces the target incident power density and facilitates detachment at lower upstream density. Systematic scans of variables such as power, transport, and viscosity have been carried out to assess the detachment sensitivity. Therein, a positive role of the viscosity is found. This work supported by DOE Contract Number DE-FC02-04ER54698.
Basic physical processes and reduced models for plasma detachment
NASA Astrophysics Data System (ADS)
Stangeby, P. C.
2018-04-01
The divertor of a tokamak reactor will have to satisfy a number of critical constraints, the first of which is that the divertor targets not fail due to excessive heating or sputter-erosion. This paramount constraint of target survival defines the operating window for the principal plasma properties at the divertor target, the density n t and temperature, T t. In particular T et < 10 eV is shown to be required. Code and experimental studies show that the pressure–momentum loss by the plasma that occurs along flux tubes in the edge, between the divertor entrance and target, (i) correlates strongly with T et, and (ii) begins to increase as T et falls below 10 eV, becoming very strong by 1 eV. The transition between the high-recycling regime and the detached divertor regime has therefore been defined here to occur when T et < 10 eV. Simple analytic models are developed (i) to relate (T t, n t) to the controlling conditions ‘upstream’ e.g. at the divertor entrance, and (ii) in turn to relate (T t, n t) to other important divertor quantities including (a) the required level of radiative cooling in the divertor, and (b) the ion flux to the target in the presence of volumetric loss of particles, momentum and power in the divertor. The 2 Point Model, 2PM, is a widely used analytic model for relating (T t, n t) to the controlling upstream conditions. The 2PM is derived here for various levels of complexity regarding the effects included. Analytic models of divertor detachment provide valuable insight and useful approximations, but more complete modeling requires the use of edge codes such as EDGE2D, SOLPS, SONIC, UEDGE, etc. Edge codes have grown to become quite sophisticated and now constitute, in effect, ‘code-experiments’ that—just as for actual experiments—can benefit from interpretation in terms of simple conceptual frameworks. 2 Point Model Formatting, 2PMF, of edge code output can provide such a conceptual framework. Methods of applying 2PMF are illustrated here with some examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soukhanovskii, V. A., E-mail: vlad@llnl.gov; Kaita, R.; Stratton, B.
2016-11-15
A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T{sub e} estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Modelmore » 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T{sub e}-dependent signal within a characteristic divertor detachment equilibration time of ∼10–15 ms is expected.« less
Soukhanovskii, V. A.; Kaita, R.; Stratton, B.
2016-08-04
Here, a radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T e estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPhersonmore » Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T e-dependent signal within a characteristic divertor detachment equilibration time of ~10–15 ms is expected.« less
Small angle slot divertor concept for long pulse advanced tokamaks
NASA Astrophysics Data System (ADS)
Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.
2017-04-01
SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.
Advanced divertor configurations with large flux expansion
NASA Astrophysics Data System (ADS)
Soukhanovskii, V. A.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B. P.; McLean, A.; Menard, J. E.; Paul, S. F.; Podesta, M.; Raman, R.; Ryutov, D. D.; Scotti, F.; Kaita, R.; Maingi, R.; Mueller, D. M.; Roquemore, A. L.; Reimerdes, H.; Canal, G. P.; Labit, B.; Vijvers, W.; Coda, S.; Duval, B. P.; Morgan, T.; Zielinski, J.; De Temmerman, G.; Tal, B.
2013-07-01
Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effective connection length and divertor volumetric power loss to increase beyond those in the standard divertor, potentially reducing heat flux and plasma temperature at the target. It also enables higher magnetic shear inside the separatrix, potentially affecting pedestal MHD stability. Experimental results from NSTX and TCV confirm the predicted properties of the snowflake divertor. In the NSTX, a large spherical tokamak with a compact divertor and lithium-coated graphite plasma-facing components (PFCs), the snowflake divertor operation led to reduced core and pedestal impurity concentration, as well as re-appearance of Type I ELMs that were suppressed in standard divertor H-mode discharges. In the divertor, an otherwise inaccessible partial detachment of the outer strike point with an up to 50% increase in divertor radiation and a peak divertor heat flux reduction from 3-7 MW/m2 to 0.5-1 MW/m2 was achieved. Impulsive heat fluxes due to Type-I ELMs were significantly dissipated in the high magnetic flux expansion region. In the TCV, a medium-size tokamak with graphite PFCs, several advantageous snowflake divertor features (cf. the standard divertor) have been demonstrated: an unchanged L-H power threshold, enhanced stability of the peeling-ballooning modes in the pedestal region (and generally an extended second stability region), as well as an H-mode pedestal regime with reduced (×2-3) Type I ELM frequency and slightly increased (20-30%) normalized ELM energy, resulting in a favorable average energy loss comparison to the standard divertor. In the divertor, ELM power partitioning between snowflake divertor strike points was demonstrated. The NSTX and TCV experiments are providing support for the snowflake divertor as a viable solution for the outstanding tokamak plasma-material interface issues.
Conceptual design of divertor and first wall for DEMO-FNS
NASA Astrophysics Data System (ADS)
Sergeev, V. Yu.; Kuteev, B. V.; Bykov, A. S.; Gervash, A. A.; Glazunov, D. A.; Goncharov, P. R.; Dnestrovskij, A. Yu.; Khayrutdinov, R. R.; Klishchenko, A. V.; Lukash, V. E.; Mazul, I. V.; Molchanov, P. A.; Petrov, V. S.; Rozhansky, V. A.; Shpanskiy, Yu. S.; Sivak, A. B.; Skokov, V. G.; Spitsyn, A. V.
2015-11-01
Key issues of design of the divertor and the first wall of DEMO-FNS are presented. A double null closed magnetic configuration was chosen with long external legs and V-shaped corners. The divertor employs a cassette design similar to that of ITER. Water-cooled first wall of the tokamak is made of Be tiles and CuCrZr-stainless steel shells. Lithium injection and circulation technologies are foreseen for protection of plasma facing components. Simulations of thermal loads onto the first wall and divertor plates suggest a possibility to distribute heat loads making them less than 10 MW m-2. Evaluations of sputtering and evaporation of plasma-facing materials suggest that lithium may protect the first wall. To prevent Be erosion at the outer divertor plates either the full detached divertor operation or arrangement of the renewal lithium flow on targets should be implemented. Test bed experiments on the Tsefey-M facility with the first wall mockup coated by Ве tiles and cooled by water are presented. The temperature of the surface of tiles reached 280-300 °С at 5 MW m-2 and 600-650 °С at 10.5 MW m-2. The mockup successfully withstood 1000 cycles with the lower thermal loading and 100 cycles with higher thermal loading.
"Snowflake" divertor configuration in NSTX
NASA Astrophysics Data System (ADS)
Soukhanovskii, V. A.; Ahn, J.-W.; Bell, R. E.; Gates, D. A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H. W.; Leblanc, B. P.; Maingi, R.; Maqueda, R.; McLean, A.; Menard, J. E.; Mueller, D. M.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Ryutov, D. D.; Scott, H. A.
2011-08-01
Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel "snowflake" divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.
Flow reversal, convection, and modeling in the DIII-D divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boedo, J.A.; Porter, G.D.; Schaffer, M.J.
1998-12-01
Measurements of the parallel Mach number of background plasma in the DIII-D tokamak divertor [M. A. Mahdavi {ital et al.} in {ital Proceedings, 16th International Conference}, Montreal, 1996 (International Atomic Energy Agency, Vienna, 1997) Vol. I, p. 397] were performed using a fast scanning Mach probe. The parallel particle flow shows evidence of complex behavior such as reverse flow, i.e., flow away from the target plate, stagnant flow, and large scale convection. For detached discharges, measurements confirm predictions of convective flow towards the divertor target plate at near sound speed over large regions in the divertor. The resulting convected heatmore » flux is a dominant heat transport mechanism in the divertor. For attached discharges with high recycling, particle flow reversal in a thin region at or near the outer separatrix, thereby confirming the existence of a mechanism by which impurities can be transported away from the divertor target plates. Modeling results from the two-dimensional fluid code UEDGE [G. D. Porter and the DIII-D Team, {open_quotes}Divertor characterization experiments and modelling in DIII-D,{close_quotes} in {ital Proceedings of the 23rd European Conference on Controlled Fusion and Plasma Physics}, 24{endash}28 June 1996, Kiev, Ukraine (European Physical Society, Petit-Lancy, Switzerland, 1996), Vol. 20C, Part II, p. 699] can reproduce the main features of the experimental observations. {copyright} {ital 1998 American Institute of Physics.}« less
A mechanism for large divertor plasma energy loss via lithium radiation in tokamaks
NASA Astrophysics Data System (ADS)
Rognlien, T. D.; Meier, E. T.; Soukhanovskii, V. A.
2012-10-01
Lithium has been used as a wall-conditioning element in a number of tokamaks over the years, including TFTR, FTU, and NSTX, where core plasma energy confinement and particle control are often found to improve following such conditioning. Here the possible role of Li in providing substantial energy loss for divertor plasmas via line radiation is reported. A multi-charge-state 2D UEDGE fluid model is used where the hydrogenic and Li ions and neutrals are each evolved as separate species and separate equations are solved for the electron and ion temperatures. It is shown that a sufficient level of Li neutrals evolving from the divertor surface via sputtering or evaporation can induce energy detachment of the divertor plasma, yielding a strongly radiating zone near the divertor where ionization and recombination from/to neutral Li can radiate most of the power flowing into the scrape-off layer while maintaining low core contamination. A local peaking of Li emissivity for electron temperatures near 1 eV appears to play an important role in the detachment of the mixed deuterium/Li plasma. Evidence of such behavior from NSTX discharges will be discussed.
NASA Astrophysics Data System (ADS)
Polevoi, A. R.; Loarte, A.; Dux, R.; Eich, T.; Fable, E.; Coster, D.; Maruyama, S.; Medvedev, S. Yu.; Köchl, F.; Zhogolev, V. E.
2018-05-01
ELM mitigation to avoid melting of the tungsten (W) divertor is one of the main factors affecting plasma fuelling and detachment control at full current for high Q operation in ITER. Here we derive the ITER operational space, where ELM mitigation to avoid melting of the W divertor monoblocks top surface is not required and appropriate control of W sources and radiation in the main plasma can be ensured through ELM control by pellet pacing. We apply the experimental scaling that relates the maximum ELM energy density deposited at the divertor with the pedestal parameters and this eliminates the uncertainty related with the ELM wetted area for energy deposition at the divertor and enables the definition of the ITER operating space through global plasma parameters. Our evaluation is thus based on this empirical scaling for ELM power loads together with the scaling for the pedestal pressure limit based on predictions from stability codes. In particular, our analysis has revealed that for the pedestal pressure predicted by the EPED1 + SOLPS scaling, ELM mitigation to avoid melting of the W divertor monoblocks top surface may not be required for 2.65 T H-modes with normalized pedestal densities (to the Greenwald limit) larger than 0.5 to a level of current of 6.5–7.5 MA, which depends on assumptions on the divertor power flux during ELMs and between ELMs that expand the range of experimental uncertainties. The pellet and gas fuelling requirements compatible with control of plasma detachment, core plasma tungsten accumulation and H-mode operation (including post-ELM W transient radiation) have been assessed by 1.5D transport simulations for a range of assumptions regarding W re-deposition at the divertor including the most conservative assumption of zero prompt re-deposition. With such conservative assumptions, the post-ELM W transient radiation imposes a very stringent limit on ELM energy losses and the associated minimum required ELM frequency. Depending on W transport assumptions during the ELM, a maximum ELM frequency is also identified above which core tungsten accumulation takes place.
2D imaging of helium ion velocity in the DIII-D divertor
NASA Astrophysics Data System (ADS)
Samuell, C. M.; Porter, G. D.; Meyer, W. H.; Rognlien, T. D.; Allen, S. L.; Briesemeister, A.; Mclean, A. G.; Zeng, L.; Jaervinen, A. E.; Howard, J.
2018-05-01
Two-dimensional imaging of parallel ion velocities is compared to fluid modeling simulations to understand the role of ions in determining divertor conditions and benchmark the UEDGE fluid modeling code. Pure helium discharges are used so that spectroscopic He+ measurements represent the main-ion population at small electron temperatures. Electron temperatures and densities in the divertor match simulated values to within about 20%-30%, establishing the experiment/model match as being at least as good as those normally obtained in the more regularly simulated deuterium plasmas. He+ brightness (HeII) comparison indicates that the degree of detachment is captured well by UEDGE, principally due to the inclusion of E ×B drifts. Tomographically inverted Coherence Imaging Spectroscopy measurements are used to determine the He+ parallel velocities which display excellent agreement between the model and the experiment near the divertor target where He+ is predicted to be the main-ion species and where electron-dominated physics dictates the parallel momentum balance. Upstream near the X-point where He+ is a minority species and ion-dominated physics plays a more important role, there is an underestimation of the flow velocity magnitude by a factor of 2-3. These results indicate that more effort is required to be able to correctly predict ion momentum in these challenging regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Ricardo Maqueda; Dr. Fred M. Levinton
Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15:more » Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.« less
NASA Astrophysics Data System (ADS)
Romanelli, F.; JET Contributors,
2015-10-01
Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in confinement and pedestal behaviour before and after the ITER-like wall installation have been better characterized towards the development of high fusion yield scenarios in DT. Post-mortem analyses of the plasma-facing components have confirmed the previously reported low fuel retention obtained by gas balance and shown that the pattern of deposition within the divertor has changed significantly with respect to the JET carbon wall campaigns due to the absence of thermally activated chemical erosion of beryllium in contrast to carbon. Transport to remote areas is almost absent and two orders of magnitude less material is found in the divertor.
NASA Astrophysics Data System (ADS)
McLean, A. G.; Davis, J. W.; Stangeby, P. C.; Allen, S. L.; Boedo, J. A.; Bray, B. D.; Brezinsek, S.; Brooks, N. H.; Fenstermacher, M. E.; Groth, M.; Haasz, A. A.; Hollmann, E. M.; Isler, R. C.; Lasnier, C. J.; Mu, Y.; Petrie, T. W.; Rudakov, D. L.; Watkins, J. G.; West, W. P.; Whyte, D. G.; Wong, C. P. C.
2009-06-01
An improved, self-contained gas injection system for the divertor material evaluation system (DiMES) on DIII-D has been employed for in situ study of chemical erosion in the tokamak divertor environment. To minimize perturbation to local plasma, the Mark II porous plug injector (PPI) releases methane through a porous graphite surface at the outer strike point at a rate precisely controlled by a micro-orifice flow restrictor to be approximately equal as that predicted for intrinsic chemical sputtering. Effective photon efficiencies resulting from CH 4 are found to be 58 ± 12 in an attached divertor ( ne ˜ 1.5 × 10 13/cm 3, Te ˜ 25 eV, Tsurf ˜ 450 K), and 94 ± 20 in a semi-detached cold divertor ( ne ˜ 6.0 × 10 13/cm 3, Te ˜ 2-3 eV, Tsurf ˜ 350 K). These values are significantly more than previous measurements in similar plasma conditions, indicating the importance of the injection rate and local re-erosion for the integrity of this analysis. The contribution of chemical versus physical sputtering to the source of C + at the target is assessed through simultaneous measurement of CII line, and CD plus CH-band emissions during release of CH 4 from the PPI, then compared with that seen in intrinsic sputtering.
Evaluating Stellarator Divertor Designs with EMC3
NASA Astrophysics Data System (ADS)
Bader, Aaron; Anderson, D. T.; Feng, Y.; Hegna, C. C.; Talmadge, J. N.
2013-10-01
In this paper various improvements of stellarator divertor design are explored. Next step stellarator devices require innovative divertor solutions to handle heat flux loads and impurity control. One avenue is to enhance magnetic flux expansion near strike points, somewhat akin to the X-Divertor concept in Tokamaks. The effect of judiciously placed external coils on flux deposition is calculated for configurations based on the HSX stellarator. In addition, we attempt to optimize divertor plate location to facilitate the external coil placement. Alternate areas of focus involve altering edge island size to elucidate the driving physics in the edge. The 3-D nature of stellarators complicates design and necessitates analysis of new divertor structures with appropriate simulation tools. We evaluate the various configurations with the coupled codes EMC3-EIRENE, allowing us to benchmark configurations based on target heat flux, impurity behavior, radiated power, and transitions to high recycling and detached regimes. Work supported by DOE-SC0006103.
NASA Astrophysics Data System (ADS)
Frerichs, Heinke; Schmitz, Oliver; Covele, Brent; Guo, Houyang; Hill, David; Feng, Yuhe
2017-10-01
In the Small Angle Slot (SAS) divertor in DIII-D, the combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field causes the strike point to vary radially along the divertor slot and even leave it at some toroidal locations. This effect essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade performance of the slot divertor. This effect has been approximated by a finite gap in the divertor baffle. Simulations with EMC3-EIRENE show that a toroidally localized loss of divertor closure can result in non-axisymmetric divertor densities and temperatures. This introduces a density window of 10-15% on top of the nominal threshold separatrix density during which a non-axisymmetric onset of local detachment occurs, initially leaving the gap and up to 60 deg beyond that still attached. Conversely, the impact of such toroidally localized divertor perturbations on the toroidal symmetry of midplane separatrix conditions is small. This work has been funded by the U.S. Department of Energy under Early Career Award Grant DE-SC0013911, and Grant DE-FC02-04ER54698.
Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLean, A. G., E-mail: mclean@fusion.gat.com; Soukhanovskii, V. A.; Allen, S. L.
2014-11-15
A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, T{sub e}, and density, n{sub e}, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring T{sub e} to 0.5 eV. If implemented onmore » NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma.« less
Overview of experimental preparation for the ITER-Like Wall at JET
NASA Astrophysics Data System (ADS)
Jet Efda Contributors Brezinsek, S.; Fundamenski, W.; Eich, T.; Coad, J. P.; Giroud, C.; Huber, A.; Jachmich, S.; Joffrin, E.; Krieger, K.; McCormick, K.; Lehnen, M.; Loarer, T.; de La Luna, E.; Maddison, G.; Matthews, G. F.; Mertens, Ph.; Nunes, I.; Philipps, V.; Riccardo, V.; Rubel, M.; Stamp, M. F.; Tsalas, M.
2011-08-01
Experiments in JET with carbon-based plasma-facing components have been carried out in preparation of the ITER-Like Wall with beryllium main chamber and full tungsten divertor. The preparatory work was twofold: (i) development of techniques, which ensure safe operation with the new wall and (ii) provision of reference plasmas, which allow a comparison of operation with carbon and metallic wall. (i) Compatibility with the W divertor with respect to energy loads could be achieved in N2 seeded plasmas at high densities and low temperatures, finally approaching partial detachment, with only moderate confinement reduction of 10%. Strike-point sweeping increases the operational space further by re-distributing the load over several components. (ii) Be and C migration to the divertor has been documented with spectroscopy and QMBs under different plasma conditions providing a database which will allow a comparison of the material transport to remote areas with metallic walls. Fuel retention rates of 1.0-2.0 × 1021 D s-1 were obtained as references in accompanied gas balance studies.
Evaluation of heat and particle controllability on the JT-60SA divertor
NASA Astrophysics Data System (ADS)
Kawashima, H.; Hoshino, K.; Shimizu, K.; Takizuka, T.; Ide, S.; Sakurai, S.; Asakura, N.
2011-08-01
The JT-60SA divertor design has been established on the basis of engineering requirements and physics analysis. Heat and particle fluxes under the full input power of 41 MW can give severe heat loads on the divertor targets, while the allowable heat load is limited below 15 MW/m2. Dependence of the heat flux mitigation on a D2 gas-puff is evaluated by SONIC simulations for high density (ne_ave ˜ 1 × 1020 m-3) high current plasmas. It is found that the peak heat load 10 MW/m2 with dense (ned > 4 × 1020 m-3) and cold (Ted, Tid ⩽ 1 eV) divertor plasmas are obtained at a moderate gas-puff of Γpuff = 15 × 1021 s-1. Divertor plasmas are controlled from attached to detached condition using the divertor pump with pumping-speed below 100 m3/s. In full non-inductive current drive plasmas with low density (ne_ave ˜ 5 × 1019 m-3), the reduction of divertor heat load is achieved with the Ar injection.
Studies of power exhaust and divertor design for a 1.5 GW-level fusion power DEMO
NASA Astrophysics Data System (ADS)
Asakura, N.; Hoshino, K.; Suzuki, S.; Tokunaga, S.; Someya, Y.; Utoh, H.; Kudo, H.; Sakamoto, Y.; Hiwatari, R.; Tobita, K.; Shimizu, K.; Ezato, K.; Seki, Y.; Ohno, N.; Ueda, Y.; Joint Special TeamDEMO Design
2017-12-01
Power exhaust to the divertor and the conceptual design have been investigated for a steady-state DEMO in Japan with 1.5 GW-level fusion power and the major radius of 8.5 m, where the plasma parameters were revised appropriate for the impurity seeding scenario. A system code survey for the Ar impurity seeding suggested the volume-averaged density, impurity concentration and exhaust power from the main plasma of {{P}sep ~ } = 205-285 MW. The divertor plasma simulation (SONIC) was performed in the divertor leg length of 1.6 m with the fixed exhaust power to the edge of {{P}out} = 250 MW and the total radiation fraction at the edge, SOL and divertor ({{P}rad}/{{P}out} = 0.8), as a first step to investigate appropriate design of the divertor size and geometry. At the outer target, partial detachment was produced near the strike-point, and the peak heat load ({{q}target} ) at the attached region was reduced to ~5 MW m-2 with appropriate fuel and impurity puff rates. At the inner divertor target, full detachment of ion flux was produced and the peak {{q}target} was less than 10 MW m-2 mostly due to the surface-recombination. These results showed a power exhaust scenario and the divertor design concept. An integrated design of the water-cooling heat sink for the long leg divertor was proposed. Cu-ally (CuCrZr) cooling pipe was applicable as the heat sink to handle the high heat flux near the strike-point, where displacements per atom rate was estimated to be 0.5-1.5 per year by neutronics calculation. An arrangement of the coolant rooting for Cu-alloy and Reduced Activation Ferritic Martensitic (RAFM) steel (F82H) pipes in a divertor cassette was investigated, and the heat transport analysis of the W-monoblock and Cu-alloy pipe under the peak {{q}target} of 10 MWm-2 and nuclear heating was performed. The maximum temperatures on the W-surface and Cu-alloy pipe were 1021 and 331 °C. Heat flux of 16 MW m-2 was distributed in the major part of the coolant pipe. These results were acceptable for the plasma facing and structural materials.
NASA Astrophysics Data System (ADS)
Labombard, B.; Brunner, D.; Kuang, A. Q.; McCarthy, W.; Terry, J. L.
2017-10-01
The scrape-off layer (SOL) power channel width, λq, is projected to be 0.5 mm in power reactors, based on multi-machine measurements of divertor target heat fluxes in H-mode at low levels of divertor dissipation. An important question is: does λq change with the level of divertor dissipation? We report results in which feedback controlled nitrogen seeding in the divertor was used to systematically vary divertor dissipation in a series of otherwise identical L-mode plasmas at three plasma currents: 0.55, 0.8 and 1.1 MA. Outer midplane profiles were recorded with a scanning Mirror Langmuir Probe; divertor plasma conditions were monitored with `rail' Langmuir probe and surface thermocouple arrays. Despite an order of magnitude reduction in divertor target heat fluxes (q// 400 MW m-2 to 40 MW m-2) and corresponding change in divertor regime from sheath-limited through high-recycling to near-detached, the upstream electron temperature profile is found to remain unchanged or to become slightly steeper in the near SOL and to drop significantly in the far SOL. Thus heat in the SOL appears to take advantage of this impurity radiation `heat sink' in the divertor by preferentially draining via the narrow (and perhaps an increasingly narrow) λq of the near SOL. Supported by USDoE award DE-FC02-99ER54512.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevisan, Gregorio L.; Lao, Lang L.; Evans, Todd E.
The Small Angle Slot (SAS) was recently installed on DIII-D as an advanced divertor, promising easier plasma detachment and lower temperatures across the whole target. A twofold study of the SAS magnetic topology is presented in this paper. On one hand, a twodimensional uncertainty quantification analysis is carried out through a Monte Carlo approach in order to understand the level of accuracy of two-dimensional equilibrium computations in reconstructing the strike point and angle onto the divertor. Under typical experimental conditions, the uncertainties are found to be roughly 6.8 mm and 0.56 deg, respectively. On the other hand, a three-dimensional “vacuum”more » analysis is carried out to understand the effects of typical external perturbation fields on the scrape-off layer topology. When the threedimensional I-coils are switched on, poloidally-localized lobes are found to appear, grow, and hit the SAS target, although barely, even for 5 kA; at the same time, the strike point modulation is found to be roughly 1.8 mm and thus negligible for most purposes. Furthermore, such results complement previous two-dimensional analyses in characterizing typical SAS equilibria and provide useful background information for planning and interpreting SAS experiments.« less
Trevisan, Gregorio L.; Lao, Lang L.; Evans, Todd E.; ...
2018-01-04
The Small Angle Slot (SAS) was recently installed on DIII-D as an advanced divertor, promising easier plasma detachment and lower temperatures across the whole target. A twofold study of the SAS magnetic topology is presented in this paper. On one hand, a twodimensional uncertainty quantification analysis is carried out through a Monte Carlo approach in order to understand the level of accuracy of two-dimensional equilibrium computations in reconstructing the strike point and angle onto the divertor. Under typical experimental conditions, the uncertainties are found to be roughly 6.8 mm and 0.56 deg, respectively. On the other hand, a three-dimensional “vacuum”more » analysis is carried out to understand the effects of typical external perturbation fields on the scrape-off layer topology. When the threedimensional I-coils are switched on, poloidally-localized lobes are found to appear, grow, and hit the SAS target, although barely, even for 5 kA; at the same time, the strike point modulation is found to be roughly 1.8 mm and thus negligible for most purposes. Furthermore, such results complement previous two-dimensional analyses in characterizing typical SAS equilibria and provide useful background information for planning and interpreting SAS experiments.« less
Quantification of Chemical Erosion in the DIII-D Divertor
NASA Astrophysics Data System (ADS)
McLean, Adam
2009-11-01
Chemical erosion (CE) yield at the graphite divertor target in DIII-D was measured to be substantially lower in cold near-detached plasma conditions compared to well-attached ones, with major implications for ITER. Current estimates of tritium retention by co-deposition with hydrocarbons (HCs) in ITER place potentially severe restrictions on operation. However, calculations done to date have been based on excessively conservative assumptions, due to limited understanding of cold divertor plasmas (1-5eV) which bridge energy thresholds for complex atomic and molecular processes not present in attached conditions. Hydrocarbon injection through a unique porous graphite plate which realistically simulates secondary reactions of HCs with a graphite surface has been used to measure CE in-situ. For the first time in a divertor, measurements were made at extrinsic CH4 injection rates comparable to the expected intrinsic CE rate of C, with the resulting spectroscopic emissions separated from those of the intrinsic sources. Under cold plasma conditions the contribution of CE-produced C relative to total C sources in the divertor declined dramatically from ˜50% to <15%. Photon efficiencies for products from the breakup of injected CH4 were greater than previous measurements at higher puff rates, indicating the importance of minimizing perturbation to the local plasma. At 350K, the measured CE yield near the outer strike point was ˜2.6% in attachment dropping to only ˜0.5% in cold plasma; results are consistent with some theoretical predications and lab studies. Under full detachment, near total extinction of the CD band occurred, consistent with suppression of net C erosion. These findings have potentially major impact on projected target lifetime and tritium retention in future reactors, and for the PFC choice in ITER.
Time-dependent modeling of dust injection in semi-detached ITER divertor plasma
NASA Astrophysics Data System (ADS)
Smirnov, Roman; Krasheninnikov, Sergei
2017-10-01
At present, it is generally understood that dust related issues will play important role in operation of the next step fusion devices, i.e. ITER, and in the development of future fusion reactors. Recent progress in research on dust in magnetic fusion devises has outlined several topics of particular concern: a) degradation of fusion plasma performance; b) impairment of in-vessel diagnostic instruments; and c) safety issues related to dust reactivity and tritium retention. In addition, observed dust events in fusion edge plasmas are highly irregular and require consideration of temporal evolution of both the dust and the fusion plasma. In order to address the dust-related fusion performance issues, we have coupled the dust transport code DUSTT and the edge plasma transport code UEDGE in time-dependent manner, allowing modeling of transient dust-induced phenomena in fusion edge plasmas. Using the coupled codes we simulate burst-like injection of tungsten dust into ITER divertor plasma in semi-detached regime, which is considered as preferable ITER divertor operational mode based on the plasma and heat load control restrictions. Analysis of transport of the dust and the dust-produced impurities, and of dynamics of the ITER divertor and edge plasma in response to the dust injection will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-06ER54852.
Plasma-wall interactions in ITER
NASA Astrophysics Data System (ADS)
Parker, R.; Janeschitz, G.; Pacher, H. D.; Post, D.; Chiocchio, S.; Federici, G.; Ladd, P.; Iter Joint Central Team; Home Teams
1997-02-01
This paper reviews the status of the design of the divertor and first-wall/shield, the main in-vessel components for ITER. Under nominal ignited conditions, 300 MW of alpha power will be produced and must be removed from the divertor and first-wall. Additional power from auxiliary sources up to the level of 100 MW must also be removed in the case of driven burns. In the ignited case, about 100 MW will be radiated to the first wall as bremsstrahlung. Allowing the remaining power to be conducted to the divertor target plates would result in excessive heat fluxes. The power handling strategy is to radiate an additional 100-150 MW in the SOL and the divertor channel via a combination of radiation from hydrogen, and intrinsic and seeded impurities. Vertical targets have been adopted for the baseline divertor configuration. This geometry promotes partial detachment, as found in present experiments and in the results of modelling runs for ITER conditions, and power densities on the target plates can be ≤ 5 MW/ m2. Such regimes promote relatively high pressure (> 1 Pa) in the divertor and even with a low helium enrichment factor of 0.2, the required pumping speed to pump helium is ≤ 50 m3/ s. An important physics question is the quality of core confinement in these attractive divertor regimes. In addition to power and particle handling issues, the effects of disruptions play a major role in the design and performance of in-vessel components. Both centered disruptions and VDE's produce stresses in the first-wall/shield modules, backplate and the divertor wings and cassettes that are near or even somewhat in excess of allowables for normal operation. Also plasma-wall contact from disruptions, including at the divertor target, together with material properties are major factors determining component lifetime. Considering the potential for impurity contamination and minimizing tritium inventory as well as thermomechanical performance, the present material selection calls for carbon divertor targets near the strike point, tungsten on the rest of the target and on the baffle where the charge-exchange flux could be high, and beryllium elsewhere. All three materials and relevant joining techniques are being developed in the R&D program and the final selection for the first assembly will be made at the end of the EDA.
Critical need for MFE: the Alcator DX advanced divertor test facility
NASA Astrophysics Data System (ADS)
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.
2013-10-01
Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.
NASA Astrophysics Data System (ADS)
Wiesen, S.; Köchl, F.; Belo, P.; Kotov, V.; Loarte, A.; Parail, V.; Corrigan, G.; Garzotti, L.; Harting, D.
2017-07-01
The integrated model JINTRAC is employed to assess the dynamic density evolution of the ITER baseline scenario when fuelled by discrete pellets. The consequences on the core confinement properties, α-particle heating due to fusion and the effect on the ITER divertor operation, taking into account the material limitations on the target heat loads, are discussed within the integrated model. Using the model one can observe that stable but cyclical operational regimes can be achieved for a pellet-fuelled ITER ELMy H-mode scenario with Q = 10 maintaining partially detached conditions in the divertor. It is shown that the level of divertor detachment is inversely correlated with the core plasma density due to α-particle heating, and thus depends on the density evolution cycle imposed by pellet ablations. The power crossing the separatrix to be dissipated depends on the enhancement of the transport in the pedestal region being linked with the pressure gradient evolution after pellet injection. The fuelling efficacy of the deposited pellet material is strongly dependent on the E × B plasmoid drift. It is concluded that integrated models like JINTRAC, if validated and supported by realistic physics constraints, may help to establish suitable control schemes of particle and power exhaust in burning ITER DT-plasma scenarios.
On the Measurement of Electron Temperature by Single Langmuir Probes in High Recycling Divertors
NASA Astrophysics Data System (ADS)
Pitts, Richard; Horacek, Jan; Loarte, Alberto
2000-10-01
Under high recycling and detached conditions, divertor Langmuir probes often yield a significantly higher value of Te than expected. The influence of plasma turbulence and the effect of fast electrons/plasma collisionality are two reasons why this might occur. We concentrate on these two candidates, with particular reference to observations on the TCV tokamak. A systematic study of the effects of noise on simulated probe characteristics at low T_e, shows that the asymmetric, exponential nature of the characteristic favours electron collection such that fluctuations in Vf alone actually tend to reduce the derived Te from that which would otherwise be found. We have also studied the effects of correlated density and potential fluctuations, finding no effect on the fitted T_e. The sheath potential fall energetically filters electrons such that at high densities, the probe measured Te may be characteristic of hotter, more distant zones in the plasma. We use model parallel field profiles of Te and ne generated from B2-Eirene simulations of TCV discharges as input to the analytic theory of Wesson [1] to show how a divertor plate measurement of Te in TCV can exceed the expected value by factors of up to 6 as detachment is approached. [1] J. A. Wesson, Plasma Phys. and Contr. Fusion 37 (1995) 1459
Changes in divertor conditions in response to changing core density with RMPs
Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.; ...
2017-06-07
The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less
Changes in divertor conditions in response to changing core density with RMPs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.
The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less
Upgraded divertor Thomson scattering system on DIII-D
NASA Astrophysics Data System (ADS)
Glass, F.; Carlstrom, T. N.; Du, D.; McLean, A. G.; Taussig, D. A.; Boivin, R. L.
2016-11-01
A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (Te in the range of 0.5 eV-2 keV, ne in the range of 5 × 1018-1 × 1021 m3) for both low Te in detachment and high Te measurement up beyond the separatrix.
Plasma power recycling at the divertor surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Xian -Zhu; Guo, Zehua
With a divertor made of solid materials like carbon and tungsten, plasma ions are expected to be recycled at the divertor surface with a time-averaged particle recycling coefficient very close to unity in steady-state operation. This means that almost every plasma ion (hydrogen and helium) will be returned to the plasma, mostly as neutrals. The power flux deposited by the plasma on the divertor surface, on the other hand, can have varying recycling characteristics depending on the material choice of the divertor; the run-time atomic composition of the surface, which can be modified by material mix due to impurity migrationmore » in the chamber; and the surface morphology change over time. In general, a high-Z–material (such as tungsten) surface tends to reflect light ions and produce stronger power recycling, while a low-Z–material (such as carbon) surface tends to have a larger sticking coefficient for light ions and hence lower power recycling. Here, an explicit constraint on target plasma density and temperature is derived from the truncated bi-Maxwellian sheath model, in relation to the absorbed power load and power recycling coefficient at the divertor surface. Lastly, it is shown that because of the surface recombination energy flux, the attached plasma has a sharper response to power recycling in comparison to a detached plasma.« less
Plasma power recycling at the divertor surface
Tang, Xian -Zhu; Guo, Zehua
2016-12-03
With a divertor made of solid materials like carbon and tungsten, plasma ions are expected to be recycled at the divertor surface with a time-averaged particle recycling coefficient very close to unity in steady-state operation. This means that almost every plasma ion (hydrogen and helium) will be returned to the plasma, mostly as neutrals. The power flux deposited by the plasma on the divertor surface, on the other hand, can have varying recycling characteristics depending on the material choice of the divertor; the run-time atomic composition of the surface, which can be modified by material mix due to impurity migrationmore » in the chamber; and the surface morphology change over time. In general, a high-Z–material (such as tungsten) surface tends to reflect light ions and produce stronger power recycling, while a low-Z–material (such as carbon) surface tends to have a larger sticking coefficient for light ions and hence lower power recycling. Here, an explicit constraint on target plasma density and temperature is derived from the truncated bi-Maxwellian sheath model, in relation to the absorbed power load and power recycling coefficient at the divertor surface. Lastly, it is shown that because of the surface recombination energy flux, the attached plasma has a sharper response to power recycling in comparison to a detached plasma.« less
Upgraded divertor Thomson scattering system on DIII-D.
Glass, F; Carlstrom, T N; Du, D; McLean, A G; Taussig, D A; Boivin, R L
2016-11-01
A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard - beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror - and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (T e in the range of 0.5 eV-2 keV, n e in the range of 5 × 10 18 -1 × 10 21 m 3 ) for both low T e in detachment and high T e measurement up beyond the separatrix.
Conceptual design study for heat exhaust management in the ARC fusion pilot plant
NASA Astrophysics Data System (ADS)
Dennett, C. A.; Cao, N. M.; Creely, A. J.; Hecla, J.; Hoffman, H.; Kuang, A. Q.; Major, M.; Ruiz Ruiz, J.; Tinguely, R. A.; Tolman, E. A.; Brunner, D.; Labombard, B.; Sorbom, B. N.; Whyte, D. G.; Grover, P.; Laughman, C.
2017-10-01
The ARC pilot plant conceptual design study has been extended to explore solutions for managing heat exhaust resulting from 525 MW of fusion power in a compact (R 3.3 m) tokamak. Superconducting poloidal field coils are configured to produce double-null equilibria that support X-point target divertors while maintaining the original core plasma shape and toroidal field coil size. Long outer divertor legs are appended to the original vacuum vessel, providing both large surface areas for surface dissipation of radiative heat and significantly reduced neutron damage for divertor components. A molten salt FLiBe blanket adequately shields all superconductors and functions as a tritium breeder, with advanced neutronics calculations indicating a tritium breeding ratio of 1.08. In addition, FLiBe is used as the active coolant for the entire vessel. A tungsten swirl-tube cooling channel is implemented in the divertor, capable of exhausting 12 MW/m2, heat flux while keeping total FliBe pumping power below 1% of fusion power. Finally, three novel diagnostics are explored: Cherenkov radiation emitted in FLiBe to measure fusion reaction rate, microwave interferometry to measure divertor detachment front location, and IR imaging through the FLiBe blanket to monitor selected divertor ``hotspots.''
Divertor, scrape-off layer and pedestal particle dynamics in the ELM cycle on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Laggner, F. M.; Keerl, S.; Gnilsen, J.; Wolfrum, E.; Bernert, M.; Carralero, D.; Guimarais, L.; Nikolaeva, V.; Potzel, S.; Cavedon, M.; Mink, F.; Dunne, M. G.; Birkenmeier, G.; Fischer, R.; Viezzer, E.; Willensdorfer, M.; Wischmeier, M.; Aumayr, F.; the EUROfusion MST1 Team; the ASDEX Upgrade Team
2018-02-01
In addition to the relaxation of the pedestal, edge localised modes (ELMs) introduce changes to the divertor and scrape-off layer (SOL) conditions. Their impact on the inter-ELM pedestal recovery is investigated, with emphasis on the electron density (n e) evolution. The typical ELM cycle occurring in an exemplary ASDEX Upgrade discharge interval at moderate applied gas puff and heating power is characterised, utilising several divertor, SOL and pedestal diagnostics. In the studied discharge interval the inner divertor target is detached before the ELM crash, while the outer target is attached. The particles and power expelled by the ELM crash lead to a re-attachment of the inner target plasma. After the ELM crash, the outer divertor target moves into a high recycling regime with large n e in front of the plate, which is accompanied by high main chamber neutral fluxes. On similar timescales, the inner target fully detaches and the high field side high density region (HFSHD) is formed reaching up to the high field side midplane. This state evolves again to the pre-ELM state, when the main chamber neutral fluxes are reduced later in the ELM cycle. Neither the timescale of the appearance of the HFSHD nor the increase of the main chamber neutral fluxes fit the timescale of the n e pedestal, which is faster. It is found that during the n e pedestal recovery, the magnetic activity at the low field side midplane is strongly reduced indicating a lower level of fluctuations. A rough estimation of the particle flux across the pedestal suggests that the particle flux is reduced in this period. In conclusion, the evolution of the n e pedestal is determined by a combination of neutral fluxes, HFSHD and reduced particle flux across the pedestal. A reduced particle flux explains the fast, experimentally observed re-establishment of the n e pedestal best, whereas neutrals and HFSHD impact on the evolution of the SOL and separatrix conditions.
Surface heat loads on the ITER divertor vertical targets
NASA Astrophysics Data System (ADS)
Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R. A.; Corre, Y.; Dejarnac, R.; Firdaouss, M.; Kočan, M.; Komm, M.; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.
2017-04-01
The heating of tungsten monoblocks at the ITER divertor vertical targets is calculated using the heat flux predicted by three-dimensional ion orbit modelling. The monoblocks are beveled to a depth of 0.5 mm in the toroidal direction to provide magnetic shadowing of the poloidal leading edges within the range of specified assembly tolerances, but this increases the magnetic field incidence angle resulting in a reduction of toroidal wetted fraction and concentration of the local heat flux to the unshadowed surfaces. This shaping solution successfully protects the leading edges from inter-ELM heat loads, but at the expense of (1) temperatures on the main loaded surface that could exceed the tungsten recrystallization temperature in the nominal partially detached regime, and (2) melting and loss of margin against critical heat flux during transient loss of detachment control. During ELMs, the risk of monoblock edge melting is found to be greater than the risk of full surface melting on the plasma-wetted zone. Full surface and edge melting will be triggered by uncontrolled ELMs in the burning plasma phase of ITER operation if current models of the likely ELM ion impact energies at the divertor targets are correct. During uncontrolled ELMs in pre-nuclear deuterium or helium plasmas at half the nominal plasma current and magnetic field, full surface melting should be avoided, but edge melting is predicted.
A novel carbon coating technique for foil bolometers
NASA Astrophysics Data System (ADS)
Sheikh, U. A.; Duval, B. P.; Labit, B.; Nespoli, F.
2016-11-01
Naked foil bolometers can reflect a significant fraction of incident energy and therefore cannot be used for absolute measurements. This paper outlines a novel coating approach to address this problem by blackening the surface of gold foil bolometers using physical vapour deposition. An experimental bolometer was built containing four standard gold foil bolometers, of which two were coated with 100+ nm of carbon. All bolometers were collimated and observed the same relatively high temperature, ohmically heated plasma. Preliminary results showed 13%-15% more incident power was measured by the coated bolometers and this is expected to be much higher in future TCV detached divertor experiments.
Upgraded divertor Thomson scattering system on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, F., E-mail: glassf@fusion.gat.com; Carlstrom, T. N.; Du, D.
2016-11-15
A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, beforemore » being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (T{sub e} in the range of 0.5 eV–2 keV, n{sub e} in the range of 5 × 10{sup 18}–1 × 10{sup 21} m{sup 3}) for both low T{sub e} in detachment and high T{sub e} measurement up beyond the separatrix.« less
Active Control of Power Exhaust in Strongly Heated ASDEX Upgrade Plasmas
NASA Astrophysics Data System (ADS)
Dux, Ralph; Kallenbach, Arne; Bernert, Matthias; Eich, Thomas; Fuchs, Christoph; Giannone, Louis; Herrmann, Albrecht; Schweinzer, Josef; Treutterer, Wolfgang
2012-10-01
Due to the absence of carbon as an intrinsic low-Z radiator, and tight limits for the acceptable power load on the divertor target, ITER will rely on impurity seeding for radiative power dissipation and for generation of partial detachment. The injection of more than one radiating species is required to optimise the power removal in the main plasma and in the divertor region, i.e. a low-Z species for radiation in the divertor and a medium-Z species for radiation in the outer core plasma. In ASDEX Upgrade, a set of robust sensors, which is suitable to feedback control the radiated power in the main chamber and the divertor as well as the electron temperature at the target, has been developed. Different feedback schemes were applied in H-mode discharges with a maximum heating power of up to 23,W, i.e. at ITER values of P/R (power per major radius) to control all combinations of power flux into the divertor region, power flux onto the target or electron temperature at the target through injection of nitrogen as the divertor radiator and argon as the main chamber radiator. Even at the highest heating powers the peak heat flux density at the target is kept at benign values. The control schemes and the plasma behaviour in these discharges will be discussed.
Neutral pressure behavior for diverted discharges in the Wendelstein 7-AS Stellarator
NASA Astrophysics Data System (ADS)
McCormick, K.; Grigull, P.; Burhenn, R.; Ehmler, H.; Feng, Y.; Giannone, L.; Haas, G.; Sardei, F.; NBI-, ECRH-; W7-AS Teams
2005-03-01
On the W7-AS stellarator, the subdivertor neutral pressure in an up-down divertor pair as well as at two points in the vicinity of a lower divertor module in the main chamber are measured. Results are presented for ι=5/9 island divertor discharges under conditions of normal confinement (NC) and the HDH-mode for: n˜0.1-4×1020 m-3, Pecrh = 0.5-1.5 MW, Pnbi = 2 MW, and H + and D + plasmas, with both normal- and reversed- Bt for H +. Subdivertor pressures are in the range 1-2 × 10 -3 mbar for HDH conditions. For plasma detachment at the target plates a strong up-down pressure asymmetry arises, with pup/ pdown ⩽ 5. The asymmetry reverses with reversed Bt. Main vessel pressures are a factor of 5-10 lower than the average subdivertor pressure for H +, with D + plasmas exhibiting still lower values.
NASA Astrophysics Data System (ADS)
Munoz Burgos, J. M.; Brooks, N. H.; Fenstermacher, M. E.; Meyer, W. H.; Unterberg, E. A.; Schmitz, O.; Loch, S. D.; Balance, C. P.
2011-10-01
We apply new atomic modeling techniques to helium and deuterium for diagnostics in the divertor and scrape-off layer regions. Analysis of tomographically inverted images is useful for validating detachment prediction models and power balances in the divertor. We apply tomographic image inversion from fast tangential cameras of helium and Dα emission at the divertor in order to obtain 2D profiles of Te, Ne, and ND (neutral ion density profiles). The accuracy of the atomic models for He I will be cross-checked against Thomson scattering measurements of Te and Ne. This work summarizes several current developments and applications of atomic modeling into diagnostic at the DIII-D tokamak. Supported in part by the US DOE under DE-AC05-06OR23100, DE-FC02-04ER54698, DE-AC52-07NA27344, and DE-AC05-00OR22725.
Overview of the EUROfusion Medium Size Tokamak scientific program
NASA Astrophysics Data System (ADS)
Bernert, Matthias; Bolzonella, Tommaso; Coda, Stefano; Hakola, Antti; Meyer, Hendrik; Eurofusion Mst1 Team; Tcv Team; Mast-U Team; ASDEX Upgrade Team
2017-10-01
Under the EUROfusion MST1 program, coordinated experiments are conducted at three European medium sized tokamaks (ASDEX Upgrade, TCV and MAST-U). It complements the JET program for preparing a safe and efficient operation for ITER and DEMO. Work under MST1 benefits from cross-machine comparisons but also makes use of the unique capabilities of each device. For the 2017/2018 campaign 25 topic areas were defined targeting three main objectives: 1) Development towards an edge and wall compatible H-mode scenario with small or no ELMs. 2) Investigation of disruptions in order to achieve better predictions and improve avoidance or mitigation schemes. 3) Exploring conventional and alternative divertor configurations for future high P/R scenarios. This contribution will give an overview of the work done under MST1 exemplified by the highlight results for each top objective from the last campaigns, such as evaluation of natural small ELM scenarios, runaway mitigation and control, assessment of detachment in alternative divertor configurations and highly radiative scenarios. See author list of ``H. Meyer et al. 2017 Nucl. Fusion 57, 102014''.
An innovative small angle slot divertor concept for long pulse advanced tokamaks
NASA Astrophysics Data System (ADS)
Guo, Houyang
2017-10-01
A new Small Angle Slot (SAS) divertor is being developed in DIII-D to address the challenge of efficient divertor heat dispersal at the relatively low plasma density required for non-inductive current drive in future advanced tokamaks. SAS features a small incident angle near the plasma strike point on the divertor target plate with a progressively opening slot. SOLPS (B2-Eirene) edge code analysis finds that SAS can achieve strong plasma cooling when the strike point is placed near the small angle target plate in the slot, leading to low electron temperature Te across the entire divertor target. This is enabled by strong coupling between a gas tight slot and directed neutral recycling by the small angle target to enhance neutral buildup near the target. SOLPS analysis reveals a strong correlation between Te and D2 density at the target for various divertor configurations including the flat target, slanted target, and lower single null divertor. The strong correlation suggests that achievement of low Te may reduce essentially to identifying the divertor baffle geometry that achieves the highest target gas density at a given upstream condition. The SAS divertor concept has recently been tested in DIII-D for a range of plasma configurations and conditions with precise control of slot strike point location. In confirmation of SOLPS predictions, a sharp transition is observed when the strike point is moved to the critical outer corner of SAS. A set of Langmuir probes imbedded in SAS show that the Te radial profile, which is peaked at the strike point when it is located away from the SAS corner, becomes low across the target when the strike point is located near the corner. With further increase in density, deep-slot detachment occurs with Te 1 eV, measured by the unique DIII-D divertor Thomson Scattering diagnostic. Work supported by US DOE under DE-FC02-04ER54698.
Overview of ASDEX Upgrade results
NASA Astrophysics Data System (ADS)
Stroth, U.; Adamek, J.; Aho-Mantila, L.; Äkäslompolo, S.; Amdor, C.; Angioni, C.; Balden, M.; Bardin, S.; Barrera Orte, L.; Behler, K.; Belonohy, E.; Bergmann, A.; Bernert, M.; Bilato, R.; Birkenmeier, G.; Bobkov, V.; Boom, J.; Bottereau, C.; Bottino, A.; Braun, F.; Brezinsek, S.; Brochard, T.; Brüdgam, M.; Buhler, A.; Burckhart, A.; Casson, F. J.; Chankin, A.; Chapman, I.; Clairet, F.; Classen, I. G. J.; Coenen, J. W.; Conway, G. D.; Coster, D. P.; Curran, D.; da Silva, F.; de Marné, P.; D'Inca, R.; Douai, D.; Drube, R.; Dunne, M.; Dux, R.; Eich, T.; Eixenberger, H.; Endstrasser, N.; Engelhardt, K.; Esposito, B.; Fable, E.; Fischer, R.; Fünfgelder, H.; Fuchs, J. C.; Gál, K.; García Muñoz, M.; Geiger, B.; Giannone, L.; Görler, T.; da Graca, S.; Greuner, H.; Gruber, O.; Gude, A.; Guimarais, L.; Günter, S.; Haas, G.; Hakola, A. H.; Hangan, D.; Happel, T.; Härtl, T.; Hauff, T.; Heinemann, B.; Herrmann, A.; Hobirk, J.; Höhnle, H.; Hölzl, M.; Hopf, C.; Houben, A.; Igochine, V.; Ionita, C.; Janzer, A.; Jenko, F.; Kantor, M.; Käsemann, C.-P.; Kallenbach, A.; Kálvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Kasparek, W.; Kaufmann, M.; Kirk, A.; Klingshirn, H.-J.; Kocan, M.; Kocsis, G.; Konz, C.; Koslowski, R.; Krieger, K.; Kubic, M.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lauber, P.; Laux, M.; Lazaros, A.; Leipold, F.; Leuterer, F.; Lindig, S.; Lisgo, S.; Lohs, A.; Lunt, T.; Maier, H.; Makkonen, T.; Mank, K.; Manso, M.-E.; Maraschek, M.; Mayer, M.; McCarthy, P. J.; McDermott, R.; Mehlmann, F.; Meister, H.; Menchero, L.; Meo, F.; Merkel, P.; Merkel, R.; Mertens, V.; Merz, F.; Mlynek, A.; Monaco, F.; Müller, S.; Müller, H. W.; Münich, M.; Neu, G.; Neu, R.; Neuwirth, D.; Nocente, M.; Nold, B.; Noterdaeme, J.-M.; Pautasso, G.; Pereverzev, G.; Plöckl, B.; Podoba, Y.; Pompon, F.; Poli, E.; Polozhiy, K.; Potzel, S.; Püschel, M. J.; Pütterich, T.; Rathgeber, S. K.; Raupp, G.; Reich, M.; Reimold, F.; Ribeiro, T.; Riedl, R.; Rohde, V.; Rooij, G. v.; Roth, J.; Rott, M.; Ryter, F.; Salewski, M.; Santos, J.; Sauter, P.; Scarabosio, A.; Schall, G.; Schmid, K.; Schneider, P. A.; Schneider, W.; Schrittwieser, R.; Schubert, M.; Schweinzer, J.; Scott, B.; Sempf, M.; Sertoli, M.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Sommer, F.; Stäbler, A.; Stober, J.; Streibl, B.; Strumberger, E.; Sugiyama, K.; Suttrop, W.; Tala, T.; Tardini, G.; Teschke, M.; Tichmann, C.; Told, D.; Treutterer, W.; Tsalas, M.; Van Zeeland, M. A.; Varela, P.; Veres, G.; Vicente, J.; Vianello, N.; Vierle, T.; Viezzer, E.; Viola, B.; Vorpahl, C.; Wachowski, M.; Wagner, D.; Wauters, T.; Weller, A.; Wenninger, R.; Wieland, B.; Willensdorfer, M.; Wischmeier, M.; Wolfrum, E.; Würsching, E.; Yu, Q.; Zammuto, I.; Zasche, D.; Zehetbauer, T.; Zhang, Y.; Zilker, M.; Zohm, H.
2013-10-01
The medium size divertor tokamak ASDEX Upgrade (major and minor radii 1.65 m and 0.5 m, respectively, magnetic-field strength 2.5 T) possesses flexible shaping and versatile heating and current drive systems. Recently the technical capabilities were extended by increasing the electron cyclotron resonance heating (ECRH) power, by installing 2 × 8 internal magnetic perturbation coils, and by improving the ion cyclotron range of frequency compatibility with the tungsten wall. With the perturbation coils, reliable suppression of large type-I edge localized modes (ELMs) could be demonstrated in a wide operational window, which opens up above a critical plasma pedestal density. The pellet fuelling efficiency was observed to increase which gives access to H-mode discharges with peaked density profiles at line densities clearly exceeding the empirical Greenwald limit. Owing to the increased ECRH power of 4 MW, H-mode discharges could be studied in regimes with dominant electron heating and low plasma rotation velocities, i.e. under conditions particularly relevant for ITER. The ion-pressure gradient and the neoclassical radial electric field emerge as key parameters for the transition. Using the total simultaneously available heating power of 23 MW, high performance discharges have been carried out where feed-back controlled radiative cooling in the core and the divertor allowed the divertor peak power loads to be maintained below 5 MW m-2. Under attached divertor conditions, a multi-device scaling expression for the power-decay length was obtained which is independent of major radius and decreases with magnetic field resulting in a decay length of 1 mm for ITER. At higher densities and under partially detached conditions, however, a broadening of the decay length is observed. In discharges with density ramps up to the density limit, the divertor plasma shows a complex behaviour with a localized high-density region in the inner divertor before the outer divertor detaches. Turbulent transport is studied in the core and the scrape-off layer (SOL). Discharges over a wide parameter range exhibit a close link between core momentum and density transport. Consistent with gyro-kinetic calculations, the density gradient at half plasma radius determines the momentum transport through residual stress and thus the central toroidal rotation. In the SOL a close comparison of probe data with a gyro-fluid code showed excellent agreement and points to the dominance of drift waves. Intermittent structures from ELMs and from turbulence are shown to have high ion temperatures even at large distances outside the separatrix.
Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER
NASA Astrophysics Data System (ADS)
Brezinsek, S.; JET-EFDA contributors
2015-08-01
The JET ITER-Like Wall experiment (JET-ILW) provides an ideal test bed to investigate plasma-surface interaction (PSI) and plasma operation with the ITER plasma-facing material selection employing beryllium in the main chamber and tungsten in the divertor. The main PSI processes: material erosion and migration, (b) fuel recycling and retention, (c) impurity concentration and radiation have be1en studied and compared between JET-C and JET-ILW. The current physics understanding of these key processes in the JET-ILW revealed that both interpretation of previously obtained carbon results (JET-C) and predictions to ITER need to be revisited. The impact of the first-wall material on the plasma was underestimated. Main observations are: (a) low primary erosion source in H-mode plasmas and reduction of the material migration from the main chamber to the divertor (factor 7) as well as within the divertor from plasma-facing to remote areas (factor 30 - 50). The energetic threshold for beryllium sputtering minimises the primary erosion source and inhibits multi-step re-erosion in the divertor. The physical sputtering yield of tungsten is low as 10-5 and determined by beryllium ions. (b) Reduction of the long-term fuel retention (factor 10 - 20) in JET-ILW with respect to JET-C. The remaining retention is caused by implantation and co-deposition with beryllium and residual impurities. Outgassing has gained importance and impacts on the recycling properties of beryllium and tungsten. (c) The low effective plasma charge (Zeff = 1.2) and low radiation capability of beryllium reveal the bare deuterium plasma physics. Moderate nitrogen seeding, reaching Zeff = 1.6 , restores in particular the confinement and the L-H threshold behaviour. ITER-compatible divertor conditions with stable semi-detachment were obtained owing to a higher density limit with ILW. Overall JET demonstrated successful plasma operation in the Be/W material combination and confirms its advantageous PSI behaviour and gives strong support to the ITER material selection.
Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Bernert, M.; Dux, R.; Casali, L.; Eich, T.; Giannone, L.; Herrmann, A.; McDermott, R.; Mlynek, A.; Müller, H. W.; Reimold, F.; Schweinzer, J.; Sertoli, M.; Tardini, G.; Treutterer, W.; Viezzer, E.; Wenninger, R.; Wischmeier, M.; the ASDEX Upgrade Team
2013-12-01
A future fusion reactor is expected to have all-metal plasma facing materials (PFMs) to ensure low erosion rates, low tritium retention and stability against high neutron fluences. As a consequence, intrinsic radiation losses in the plasma edge and divertor are low in comparison to devices with carbon PFMs. To avoid localized overheating in the divertor, intrinsic low-Z and medium-Z impurities have to be inserted into the plasma to convert a major part of the power flux into radiation and to facilitate partial divertor detachment. For burning plasma conditions in ITER, which operates not far above the L-H threshold power, a high divertor radiation level will be mandatory to avoid thermal overload of divertor components. Moreover, in a prototype reactor, DEMO, a high main plasma radiation level will be required in addition for dissipation of the much higher alpha heating power. For divertor plasma conditions in present day tokamaks and in ITER, nitrogen appears most suitable regarding its radiative characteristics. If elevated main chamber radiation is desired as well, argon is the best candidate for the simultaneous enhancement of core and divertor radiation, provided sufficient divertor compression can be obtained. The parameter Psep/R, the power flux through the separatrix normalized by the major radius, is suggested as a suitable scaling (for a given electron density) for the extrapolation of present day divertor conditions to larger devices. The scaling for main chamber radiation from small to large devices has a higher, more favourable dependence of about Prad,main/R2. Krypton provides the smallest fuel dilution for DEMO conditions, but has a more centrally peaked radiation profile compared to argon. For investigation of the different effects of main chamber and divertor radiation and for optimization of their distribution, a double radiative feedback system has been implemented in ASDEX Upgrade (AUG). About half the ITER/DEMO values of Psep/R have been achieved so far, and close to DEMO values of Prad,main/R2, albeit at lower Psep/R. Further increase of this parameter may be achieved by increasing the neutral pressure or improving the divertor geometry.
DTT: a divertor tokamak test facility for the study of the power exhaust issues in view of DEMO
NASA Astrophysics Data System (ADS)
Albanese, R.; WPDTT2 Team; DTT Project Proposal Contributors, the
2017-01-01
In parallel with the programme to optimize the operation with a conventional divertor based on detached conditions to be tested on the ITER device, a project has been launched to investigate alternative power exhaust solutions for DEMO, aimed at the definition and the design of a divertor tokamak test facility (DTT). The DTT project proposal refers to a set of parameters selected so as to have edge conditions as close as possible to DEMO, while remaining compatible with DEMO bulk plasma performance in terms of dimensionless parameters and given constraints. The paper illustrates the DTT project proposal, referring to a 6 MA plasma with a major radius of 2.15 m, an aspect ratio of about 3, an elongation of 1.6-1.8, and a toroidal field of 6 T. This selection will guarantee sufficient flexibility to test a wide set of divertor concepts and techniques to cope with large heat loads, including conventional tungsten divertors; liquid metal divertors; both conventional and advanced magnetic configurations (including single null, snow flake, quasi snow flake, X divertor, double null); internal coils for strike point sweeping and control of the width of the scrape-off layer in the divertor region; and radiation control. The Poloidal Field system is planned to provide a total flux swing of more than 35 Vs, compatible with a pulse length of more than 100 s. This is compatible with the mission of studying the power exhaust problem and is obtained using superconducting coils. Particular attention is dedicated to diagnostics and control issues, especially those relevant for plasma control in the divertor region, designed to be as compatible as possible with a DEMO-like environment. The construction is expected to last about seven years, and the selection of an Italian site would be compatible with a budget of 500 M€.
Impact of Cross-field Drifts on Detachment in DIII-D
NASA Astrophysics Data System (ADS)
Jaervinen, A. E.; Allen, S. L.; McLean, A. G.; Rognlien, T. D.; Samuell, C. M.; Porter, G. D.; Groth, M.; Hill, D. N.; Leonard, A. W.
2017-10-01
Simulations of DIII-D plasmas have revealed the strong role of E ×B-drifts in the low field side (LFS) detachment structure. High confinement modes (H-mode) with the ∇B-drift towards the X-point (fwd BT) enter detachment at 20% higher upstream density, ne,sep, than plasmas with the ∇B-drift away from the X-point (rev BT). In contrast, low confinement modes (L-mode) enter detachment at 10% lower ne,sep in fwd BT. Despite this, both L- and H-modes detached plasmas show strong target flux, JSAT, reduction with increasing ne,sep in fwd BT, while only a modest reduction occurs in rev BT. In fwd BT H-mode, a step-wise transition from attached to strongly detached conditions is observed with increasing ne,sep. UEDGE simulations indicate that the strong poloidal E ×B-drift in the private flux region in H-mode drives the difference for the detachment onset relative to L-mode. In fwd BT, the dependence of this poloidal E ×B-drift on the divertor conditions can reinforce the plasma into either attached or strongly detached state. In rev BT, radial E ×B-drift depletes strike-line ne, limiting the degree of detachment. Work supported by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, and LLNL LDRD project 17-ERD-020.
Overview of Recent DIII-D Experimental Results
NASA Astrophysics Data System (ADS)
Fenstermacher, Max
2015-11-01
Recent DIII-D experiments have added to the ITER physics basis and to physics understanding for extrapolation to future devices. ELMs were suppressed by RMPs in He plasmas consistent with ITER non-nuclear phase conditions, and in steady state hybrid plasmas. Characteristics of the EHO during both standard high torque, and low torque enhanced pedestal QH-mode with edge broadband fluctuations were measured, including edge localized density fluctuations with a microwave imaging reflectometer. The path to Super H-mode was verified at high beta with a QH-mode edge, and in plasmas with ELMs triggered by Li granules. ITER acceptable TQ mitigation was obtained with low Ne fraction Shattered Pellet Injection. Divertor ne and Te data from Thomson Scattering confirm predicted drift-driven asymmetries in electron pressure, and X-divertor heat flux reduction and detachment were characterized. The crucial mechanisms for ExB shear control of turbulence were clarified. In collaboration with EAST, high beta-p scenarios were obtained with 80 % bootstrap fraction, high H-factor and stability limits, and large radius ITBs leading to low AE activity. Work supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344.
DIII-D research advancing the scientific basis for burning plasmas and fusion energy
NASA Astrophysics Data System (ADS)
W. M. SolomonThe DIII-D Team
2017-10-01
The DIII-D tokamak has addressed key issues to advance the physics basis for ITER and future steady-state fusion devices. In work related to transient control, magnetic probing is used to identify a decrease in ideal stability, providing a basis for active instability sensing. Improved understanding of 3D interactions is emerging, with RMP-ELM suppression correlated with exciting an edge current driven mode. Should rapid plasma termination be necessary, shattered neon pellet injection has been shown to be tunable to adjust radiation and current quench rate. For predictive simulations, reduced transport models such as TGLF have reproduced changes in confinement associated with electron heating. A new wide-pedestal variant of QH-mode has been discovered where increased edge transport is found to allow higher pedestal pressure. New dimensionless scaling experiments suggest an intrinsic torque comparable to the beam-driven torque on ITER. In steady-state-related research, complete ELM suppression has been achieved that is relatively insensitive to q 95, having a weak effect on the pedestal. Both high-q min and hybrid steady-state plasmas have avoided fast ion instabilities and achieved increased performance by control of the fast ion pressure gradient and magnetic shear, and use of external control tools such as ECH. In the boundary, experiments have demonstrated the impact of E× B drifts on divertor detachment and divertor asymmetries. Measurements in helium plasmas have found that the radiation shortfall can be eliminated provided the density near the X-point is used as a constraint in the modeling. Experiments conducted with toroidal rings of tungsten in the divertor have indicated that control of the strike-point flux is important for limiting the core contamination. Future improvements are planned to the facility to advance physics issues related to the boundary, transients and high performance steady-state operation.
DIII-D research advancing the scientific basis for burning plasmas and fusion energy
Solomon, Wayne M.
2017-07-12
The DIII-D tokamak has addressed key issues to advance the physics basis for ITER and future steady-state fusion devices. In work related to transient control, magnetic probing is used to identify a decrease in ideal stability, providing a basis for active instability sensing. Improved understanding of 3D interactions is emerging, with RMP-ELM suppression correlated with exciting an edge current driven mode. Should rapid plasma termination be necessary, shattered neon pellet injection has been shown to be tunable to adjust radiation and current quench rate. For predictive simulations, reduced transport models such as TGLF have reproduced changes in confinement associated withmore » electron heating. A new wide- pedestal variant of QH-mode has been discovered where increased edge transport is found to allow higher pedestal pressure. New dimensionless scaling experiments suggest an intrinsic torque comparable to the beam-driven torque on ITER. In steady-state-related research, complete ELM suppression has been achieved that is relatively insensitive to q 95, having a weak effect on the pedestal. Both high-q min and hybrid steady-state plasmas have avoided fast ion instabilities and achieved increased performance by control of the fast ion pressure gradient and magnetic shear, and use of external control tools such as ECH. In the boundary, experiments have demonstrated the impact of E × B drifts on divertor detachment and divertor asymmetries. Measurements in helium plasmas have found that the radiation shortfall can be eliminated provided the density near the X-point is used as a constraint in the modeling. Experiments conducted with toroidal rings of tungsten in the divertor have indicated that control of the strike-point flux is important for limiting the core contamination. In conclusion, future improvements are planned to the facility to advance physics issues related to the boundary, transients and high performance steady-state operation.« less
DIII-D research advancing the scientific basis for burning plasmas and fusion energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Wayne M.
The DIII-D tokamak has addressed key issues to advance the physics basis for ITER and future steady-state fusion devices. In work related to transient control, magnetic probing is used to identify a decrease in ideal stability, providing a basis for active instability sensing. Improved understanding of 3D interactions is emerging, with RMP-ELM suppression correlated with exciting an edge current driven mode. Should rapid plasma termination be necessary, shattered neon pellet injection has been shown to be tunable to adjust radiation and current quench rate. For predictive simulations, reduced transport models such as TGLF have reproduced changes in confinement associated withmore » electron heating. A new wide- pedestal variant of QH-mode has been discovered where increased edge transport is found to allow higher pedestal pressure. New dimensionless scaling experiments suggest an intrinsic torque comparable to the beam-driven torque on ITER. In steady-state-related research, complete ELM suppression has been achieved that is relatively insensitive to q 95, having a weak effect on the pedestal. Both high-q min and hybrid steady-state plasmas have avoided fast ion instabilities and achieved increased performance by control of the fast ion pressure gradient and magnetic shear, and use of external control tools such as ECH. In the boundary, experiments have demonstrated the impact of E × B drifts on divertor detachment and divertor asymmetries. Measurements in helium plasmas have found that the radiation shortfall can be eliminated provided the density near the X-point is used as a constraint in the modeling. Experiments conducted with toroidal rings of tungsten in the divertor have indicated that control of the strike-point flux is important for limiting the core contamination. In conclusion, future improvements are planned to the facility to advance physics issues related to the boundary, transients and high performance steady-state operation.« less
Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake
NASA Astrophysics Data System (ADS)
Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh
2013-10-01
Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical "metric," the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes.
NASA Astrophysics Data System (ADS)
Feng, W.; Wang, L.; Rack, M.; Liang, Y.; Guo, H. Y.; Xu, G. S.; Xu, J. C.; Liu, J. B.; Sun, Y. W.; Jia, M. N.; Yang, Q. Q.; Zhang, B.; Zou, X. L.; Liu, H.; Zhang, T.; Ding, F.; Chen, J. B.; Duan, Y. M.; Zheng, X. W.; Dai, S. Y.; Deng, G. Z.; Chen, R.; Hu, G. H.; Yan, N.; Si, H.; Liu, S. C.; Xu, S.; Wang, M.; Li, M. H.; Ding, B. J.; Wingen, A.; Huang, J.; Gao, X.; Luo, G. N.; Gong, X. Z.; Garofalo, A. M.; Li, J.; Wan, B. N.; the EAST Team
2017-12-01
Three dimensional (3D) divertor particle flux footprints induced by the lower hybrid wave (LHW) have been systematically investigated in the EAST superconducting tokamak during the recent experimental campaign. We find that the striated particle flux (SPF) peaks away from the strike point (SP) closely fit the pitch of the edge magnetic field line for different safety factors q 95, as predicted by a field line tracing code taking into account the helical current filaments (HCFs) in the scrape-off-layer (SOL). As LHW power increases, it requires the fuelling to be increased e.g. by super molecular beam injection (SMBI), to maintain a similar plasma density, which may be attributed to the pump-out effect due to LHW, and may thus be beneficial for EAST steady state operations. The 3D SPF structure is observed with a LHW power threshold (P LHW ~ 0.9 MW). The ratio of the particle fluxes between SPF and outer strike point (OSP), i.e. {{Γ }ion,SPF}/{{Γ }ion,OSP} , increases with the LHW power. Upon transition to divertor detachment, the particle flux at the main OSP decreases, as expected, however, the particle flux at SPF continues increasing, in contrast to the RMP-induced striations that vanish with increasing divertor density. In addition, we also find that the in-out asymmetry of the 3D particle flux footprint pattern exhibits a clear dependence on the toroidal field direction (B × ∇ B ↓ and B × ∇ B↑). Experiments using neon impurity seeding show a promising capability in 3D particle and heat flux control on EAST. LHW-induced particle and heat flux striations are also present in the H-mode plasmas, reducing the peak heat flux and erosion at the main strike point, thus facilitating long-pulse operation with a new steady-state H-mode over 60 s being recently achieved in EAST.
NASA Astrophysics Data System (ADS)
Meyer, H.; Eich, T.; Beurskens, M.; Coda, S.; Hakola, A.; Martin, P.; Adamek, J.; Agostini, M.; Aguiam, D.; Ahn, J.; Aho-Mantila, L.; Akers, R.; Albanese, R.; Aledda, R.; Alessi, E.; Allan, S.; Alves, D.; Ambrosino, R.; Amicucci, L.; Anand, H.; Anastassiou, G.; Andrèbe, Y.; Angioni, C.; Apruzzese, G.; Ariola, M.; Arnichand, H.; Arter, W.; Baciero, A.; Barnes, M.; Barrera, L.; Behn, R.; Bencze, A.; Bernardo, J.; Bernert, M.; Bettini, P.; Bilková, P.; Bin, W.; Birkenmeier, G.; Bizarro, J. P. S.; Blanchard, P.; Blanken, T.; Bluteau, M.; Bobkov, V.; Bogar, O.; Böhm, P.; Bolzonella, T.; Boncagni, L.; Botrugno, A.; Bottereau, C.; Bouquey, F.; Bourdelle, C.; Brémond, S.; Brezinsek, S.; Brida, D.; Brochard, F.; Buchanan, J.; Bufferand, H.; Buratti, P.; Cahyna, P.; Calabrò, G.; Camenen, Y.; Caniello, R.; Cannas, B.; Canton, A.; Cardinali, A.; Carnevale, D.; Carr, M.; Carralero, D.; Carvalho, P.; Casali, L.; Castaldo, C.; Castejón, F.; Castro, R.; Causa, F.; Cavazzana, R.; Cavedon, M.; Cecconello, M.; Ceccuzzi, S.; Cesario, R.; Challis, C. D.; Chapman, I. T.; Chapman, S.; Chernyshova, M.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Citrin, J.; Clairet, F.; Classen, I.; Coelho, R.; Coenen, J. W.; Colas, L.; Conway, G.; Corre, Y.; Costea, S.; Crisanti, F.; Cruz, N.; Cseh, G.; Czarnecka, A.; D'Arcangelo, O.; De Angeli, M.; De Masi, G.; De Temmerman, G.; De Tommasi, G.; Decker, J.; Delogu, R. S.; Dendy, R.; Denner, P.; Di Troia, C.; Dimitrova, M.; D'Inca, R.; Dorić, V.; Douai, D.; Drenik, A.; Dudson, B.; Dunai, D.; Dunne, M.; Duval, B. P.; Easy, L.; Elmore, S.; Erdös, B.; Esposito, B.; Fable, E.; Faitsch, M.; Fanni, A.; Fedorczak, N.; Felici, F.; Ferreira, J.; Février, O.; Ficker, O.; Fietz, S.; Figini, L.; Figueiredo, A.; Fil, A.; Fishpool, G.; Fitzgerald, M.; Fontana, M.; Ford, O.; Frassinetti, L.; Fridström, R.; Frigione, D.; Fuchert, G.; Fuchs, C.; Furno Palumbo, M.; Futatani, S.; Gabellieri, L.; Gałązka, K.; Galdon-Quiroga, J.; Galeani, S.; Gallart, D.; Gallo, A.; Galperti, C.; Gao, Y.; Garavaglia, S.; Garcia, J.; Garcia-Carrasco, A.; Garcia-Lopez, J.; Garcia-Munoz, M.; Gardarein, J.-L.; Garzotti, L.; Gaspar, J.; Gauthier, E.; Geelen, P.; Geiger, B.; Ghendrih, P.; Ghezzi, F.; Giacomelli, L.; Giannone, L.; Giovannozzi, E.; Giroud, C.; Gleason González, C.; Gobbin, M.; Goodman, T. P.; Gorini, G.; Gospodarczyk, M.; Granucci, G.; Gruber, M.; Gude, A.; Guimarais, L.; Guirlet, R.; Gunn, J.; Hacek, P.; Hacquin, S.; Hall, S.; Ham, C.; Happel, T.; Harrison, J.; Harting, D.; Hauer, V.; Havlickova, E.; Hellsten, T.; Helou, W.; Henderson, S.; Hennequin, P.; Heyn, M.; Hnat, B.; Hölzl, M.; Hogeweij, D.; Honoré, C.; Hopf, C.; Horáček, J.; Hornung, G.; Horváth, L.; Huang, Z.; Huber, A.; Igitkhanov, J.; Igochine, V.; Imrisek, M.; Innocente, P.; Ionita-Schrittwieser, C.; Isliker, H.; Ivanova-Stanik, I.; Jacobsen, A. S.; Jacquet, P.; Jakubowski, M.; Jardin, A.; Jaulmes, F.; Jenko, F.; Jensen, T.; Jeppe Miki Busk, O.; Jessen, M.; Joffrin, E.; Jones, O.; Jonsson, T.; Kallenbach, A.; Kallinikos, N.; Kálvin, S.; Kappatou, A.; Karhunen, J.; Karpushov, A.; Kasilov, S.; Kasprowicz, G.; Kendl, A.; Kernbichler, W.; Kim, D.; Kirk, A.; Kjer, S.; Klimek, I.; Kocsis, G.; Kogut, D.; Komm, M.; Korsholm, S. B.; Koslowski, H. R.; Koubiti, M.; Kovacic, J.; Kovarik, K.; Krawczyk, N.; Krbec, J.; Krieger, K.; Krivska, A.; Kube, R.; Kudlacek, O.; Kurki-Suonio, T.; Labit, B.; Laggner, F. M.; Laguardia, L.; Lahtinen, A.; Lalousis, P.; Lang, P.; Lauber, P.; Lazányi, N.; Lazaros, A.; Le, H. B.; Lebschy, A.; Leddy, J.; Lefévre, L.; Lehnen, M.; Leipold, F.; Lessig, A.; Leyland, M.; Li, L.; Liang, Y.; Lipschultz, B.; Liu, Y. Q.; Loarer, T.; Loarte, A.; Loewenhoff, T.; Lomanowski, B.; Loschiavo, V. P.; Lunt, T.; Lupelli, I.; Lux, H.; Lyssoivan, A.; Madsen, J.; Maget, P.; Maggi, C.; Maggiora, R.; Magnussen, M. L.; Mailloux, J.; Maljaars, B.; Malygin, A.; Mantica, P.; Mantsinen, M.; Maraschek, M.; Marchand, B.; Marconato, N.; Marini, C.; Marinucci, M.; Markovic, T.; Marocco, D.; Marrelli, L.; Martin, Y.; Solis, J. R. Martin; Martitsch, A.; Mastrostefano, S.; Mattei, M.; Matthews, G.; Mavridis, M.; Mayoral, M.-L.; Mazon, D.; McCarthy, P.; McAdams, R.; McArdle, G.; McCarthy, P.; McClements, K.; McDermott, R.; McMillan, B.; Meisl, G.; Merle, A.; Meyer, O.; Milanesio, D.; Militello, F.; Miron, I. G.; Mitosinkova, K.; Mlynar, J.; Mlynek, A.; Molina, D.; Molina, P.; Monakhov, I.; Morales, J.; Moreau, D.; Morel, P.; Moret, J.-M.; Moro, A.; Moulton, D.; Müller, H. W.; Nabais, F.; Nardon, E.; Naulin, V.; Nemes-Czopf, A.; Nespoli, F.; Neu, R.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nimb, S.; Nocente, M.; Nouailletas, R.; Nowak, S.; Oberkofler, M.; Oberparleiter, M.; Ochoukov, R.; Odstrčil, T.; Olsen, J.; Omotani, J.; O'Mullane, M. G.; Orain, F.; Osterman, N.; Paccagnella, R.; Pamela, S.; Pangione, L.; Panjan, M.; Papp, G.; Papřok, R.; Parail, V.; Parra, F. I.; Pau, A.; Pautasso, G.; Pehkonen, S.-P.; Pereira, A.; Perelli Cippo, E.; Pericoli Ridolfini, V.; Peterka, M.; Petersson, P.; Petrzilka, V.; Piovesan, P.; Piron, C.; Pironti, A.; Pisano, F.; Pisokas, T.; Pitts, R.; Ploumistakis, I.; Plyusnin, V.; Pokol, G.; Poljak, D.; Pölöskei, P.; Popovic, Z.; Pór, G.; Porte, L.; Potzel, S.; Predebon, I.; Preynas, M.; Primc, G.; Pucella, G.; Puiatti, M. E.; Pütterich, T.; Rack, M.; Ramogida, G.; Rapson, C.; Rasmussen, J. Juul; Rasmussen, J.; Rattá, G. A.; Ratynskaia, S.; Ravera, G.; Réfy, D.; Reich, M.; Reimerdes, H.; Reimold, F.; Reinke, M.; Reiser, D.; Resnik, M.; Reux, C.; Ripamonti, D.; Rittich, D.; Riva, G.; Rodriguez-Ramos, M.; Rohde, V.; Rosato, J.; Ryter, F.; Saarelma, S.; Sabot, R.; Saint-Laurent, F.; Salewski, M.; Salmi, A.; Samaddar, D.; Sanchis-Sanchez, L.; Santos, J.; Sauter, O.; Scannell, R.; Scheffer, M.; Schneider, M.; Schneider, B.; Schneider, P.; Schneller, M.; Schrittwieser, R.; Schubert, M.; Schweinzer, J.; Seidl, J.; Sertoli, M.; Šesnić, S.; Shabbir, A.; Shalpegin, A.; Shanahan, B.; Sharapov, S.; Sheikh, U.; Sias, G.; Sieglin, B.; Silva, C.; Silva, A.; Silva Fuglister, M.; Simpson, J.; Snicker, A.; Sommariva, C.; Sozzi, C.; Spagnolo, S.; Spizzo, G.; Spolaore, M.; Stange, T.; Stejner Pedersen, M.; Stepanov, I.; Stober, J.; Strand, P.; Šušnjara, A.; Suttrop, W.; Szepesi, T.; Tál, B.; Tala, T.; Tamain, P.; Tardini, G.; Tardocchi, M.; Teplukhina, A.; Terranova, D.; Testa, D.; Theiler, C.; Thornton, A.; Tolias, P.; Tophøj, L.; Treutterer, W.; Trevisan, G. L.; Tripsky, M.; Tsironis, C.; Tsui, C.; Tudisco, O.; Uccello, A.; Urban, J.; Valisa, M.; Vallejos, P.; Valovic, M.; Van den Brand, H.; Vanovac, B.; Varoutis, S.; Vartanian, S.; Vega, J.; Verdoolaege, G.; Verhaegh, K.; Vermare, L.; Vianello, N.; Vicente, J.; Viezzer, E.; Vignitchouk, L.; Vijvers, W. A. J.; Villone, F.; Viola, B.; Vlahos, L.; Voitsekhovitch, I.; Vondráček, P.; Vu, N. M. T.; Wagner, D.; Walkden, N.; Wang, N.; Wauters, T.; Weiland, M.; Weinzettl, V.; Westerhof, E.; Wiesenberger, M.; Willensdorfer, M.; Wischmeier, M.; Wodniak, I.; Wolfrum, E.; Yadykin, D.; Zagórski, R.; Zammuto, I.; Zanca, P.; Zaplotnik, R.; Zestanakis, P.; Zhang, W.; Zoletnik, S.; Zuin, M.; ASDEX Upgrade, the; MAST; TCV Teams
2017-10-01
Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement {{H}\\text{H≤ft(98,\\text{y}2\\right)}}≈ 0.95 . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes. In the future we will refer to the author list of the paper as the EUROfusion MST1 Team.
Study of near SOL decay lengths in ASDEX Upgrade under attached and detached divertor conditions
NASA Astrophysics Data System (ADS)
Sun, H. J.; Wolfrum, E.; Kurzan, B.; Eich, T.; Lackner, K.; Scarabosio, A.; Paradela Pérez, I.; Kardaun, O.; Faitsch, M.; Potzel, S.; Stroth, U.; the ASDEX Upgrade Team
2017-10-01
A database with attached, partially detached and completely detached divertors has been constructed in ASDEX Upgrade discharges in both H-mode and L-mode plasmas with Thomson Scattering data suitable for the analysis of the upstream SOL electron profiles. By comparing upstream temperature decay width, {λ }{Te,u}, with the scaling of the SOL power decay width, {λ }{q\\parallel e}, based on the downstream IR measurements, it is found that a simple relation based on classical electron conduction can relate {λ }{Te,u} and {λ }{q\\parallel e} well. The combined dataset can be described by both a single scaling and a separate scaling for H-modes and L-modes. For the single scaling, a strong inverse dependence of, {λ }{Te,u} on the separatrix temperature, {T}e,u, is found, suggesting the classical parallel Spitzer-Harm conductivity as dominant mechanism controlling the SOL width in both L-mode and H-mode over a large set of plasma parameters. This dependence on {T}e,u explains why, for the same global plasma parameters, {λ }{q\\parallel e} in L-mode is approximately twice that in H-mode and under detached conditions, the SOL upstream electron profile broadens when the density reaches a critical value. Comparing the derived scaling from experimental data with power balance, gives the cross-field thermal diffusivity as {χ }\\perp \\propto {T}e{1/2}/{n}e, consistent with earlier studies on Compass-D, JET and Alcator C-Mod. However, the possibility of the separate scalings for different regimes cannot be excluded, which gives results similar to those previously reported for the H-mode, but here the wider SOL width for L-mode plasmas is explained simply by the larger premultiplying coefficient. The relative merits of the two scalings in representing the data and their theoretical implications are discussed.
Canik, John M.; Briesemeister, Alexis R.; McLean, Adam G.; ...
2017-05-10
Recent experiments in DIII-D helium plasmas are examined to resolve the role of atomic and molecular physics in major discrepancies between experiment and modeling of dissipative divertor operation. Helium operation removes the complicated molecular processes of deuterium plasmas that are a prime candidate for the inability of standard fluid models to reproduce dissipative divertor operation, primarily the consistent under-prediction of radiated power. Modeling of these experiments shows that the full divertor radiation can be accounted for, but only if measures are taken to ensure that the model reproduces the measured divertor density. Relying on upstream measurements instead results in amore » lower divertor density and radiation than is measured, indicating a need for improved modeling of the connection between the diverter and the upstream scrape-off layer. Furthermore, these results show that fluid models are able to quantitatively describe the divertor-region plasma, including radiative losses, and indicate that efforts to improve the fidelity of the molecular deuterium models are likely to help resolve the discrepancy in radiation for deuterium plasmas.« less
Divertor power and particle fluxes between and during type-I ELMs in the ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Dux, R.; Eich, T.; Fischer, R.; Giannone, L.; Harhausen, J.; Herrmann, A.; Müller, H. W.; Pautasso, G.; Wischmeier, M.; ASDEX Upgrade Team
2008-08-01
Particle, electric charge and power fluxes for type-I ELMy H-modes are measured in the divertor of the ASDEX Upgrade tokamak by triple Langmuir probes, shunts, infrared (IR) thermography and spectroscopy. The discharges are in the medium to high density range, resulting in predominantly convective edge localized modes (ELMs) with moderate fractional stored energy losses of 2% or below. Time resolved data over ELM cycles are obtained by coherent averaging of typically one hundred similar ELMs, spatial profiles from the flush-mounted Langmuir probes are obtained by strike point sweeps. The application of simple physics models is used to compare different diagnostics and to make consistency checks, e.g. the standard sheath model applied to the Langmuir probes yields power fluxes which are compared with the thermographic measurements. In between ELMs, Langmuir probe and thermography power loads appear consistent in the outer divertor, taking into account additional load due to radiation and charge exchange neutrals measured by thermography. The inner divertor is completely detached and no significant power flow by charged particles is measured. During ELMs, quite similar power flux profiles are found in the outer divertor by thermography and probes, albeit larger uncertainties in Langmuir probe evaluation during ELMs have to be taken into account. In the inner divertor, ELM power fluxes from thermography are a factor 10 larger than those derived from probes using the standard sheath model. This deviation is too large to be caused by deficiencies of probe analysis. The total ELM energy deposition from IR is about a factor 2 higher in the inner divertor compared with the outer divertor. Spectroscopic measurements suggest a quite moderate contribution of radiation to the target power load. Shunt measurements reveal a significant positive charge flow into the inner target during ELMs. The net number of elementary charges correlates well with the total core particle loss obtained from highly resolved density profiles. As a consequence, the discrepancy between probe and IR measurements is attributed to the ion power channel via a high mean impact energy of the ions at the inner target. The dominant contributing mechanism is proposed to be the directed loss of ions from the pedestal region into the inner divertor.
The lithium vapor box divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldston, R. J.; Myers, R.; Schwartz, J.
It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m -2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et almore » as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.« less
The lithium vapor box divertor
NASA Astrophysics Data System (ADS)
Goldston, R. J.; Myers, R.; Schwartz, J.
2016-02-01
It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.
The lithium vapor box divertor
Goldston, R. J.; Myers, R.; Schwartz, J.
2016-01-13
It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m -2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et almore » as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.« less
SOL effects on the pedestal structure in DIII-D discharges
Sontag, Aaron C.; Chen, Xi; Canik, John; ...
2017-05-24
SOLPS analysis explains the differences in pedestal structure associated with different ion ∇B drift directions in DIII-D. Core transport models predict that fusion power scales roughly as the square of the pressure at the top of the pedestal, so understanding the effects that determine pedestal structure in steady-state operational scenarios is important to projecting scenarios developed in DIII-D to ITER and other devices. Both experiments and modeling indicate that scrape off layer (SOL) conditions are important in optimizing the pedestal structure for high-beta steady-state scenarios. The SOLPS code is used to provide interpretive analysis of the pedestal and SOL tomore » examine the nature of flows and fueling on the pedestal structure including the effects of drifts in the fluid model. This analysis shows that flows driven by the ion ∇B drift are outward when this drift is toward the x-point in a single-null divertor configuration (favorable ∇B direction for reduced H-mode power threshold), and inward when the drift is away from the x-point (unfavorable ∇B direction). It is hypothesized that these flows decrease the density gradient in the pedestal in the favorable direction, thereby stabilizing the kinetic ballooning mode (KBM) and increasing the pedestal width. Comparisons of pedestal structures in similarly shaped DIII-D steady-state plasmas confirm this change, showing increased density pedestal width and lower peak density and lower separatrix density with the favorable drift direction. The pedestal temperature is higher in the lower density case, resulting in an increased pedestal pressure, which indicates that the increased particle flux does not significantly degrade energy confinement. Modeling of cases with constant ∇B drift direction but changing between the more open lower divertor and more closed upper divertor show that there is increased fueling inside the pedestal with the more open geometry. As a result, the pedestal fueling rate for both attached and detached cases is always lower with more closed divertor geometry than in any cases with more open geometry.« less
SOL effects on the pedestal structure in DIII-D discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontag, Aaron C.; Chen, Xi; Canik, John
SOLPS analysis explains the differences in pedestal structure associated with different ion ∇B drift directions in DIII-D. Core transport models predict that fusion power scales roughly as the square of the pressure at the top of the pedestal, so understanding the effects that determine pedestal structure in steady-state operational scenarios is important to projecting scenarios developed in DIII-D to ITER and other devices. Both experiments and modeling indicate that scrape off layer (SOL) conditions are important in optimizing the pedestal structure for high-beta steady-state scenarios. The SOLPS code is used to provide interpretive analysis of the pedestal and SOL tomore » examine the nature of flows and fueling on the pedestal structure including the effects of drifts in the fluid model. This analysis shows that flows driven by the ion ∇B drift are outward when this drift is toward the x-point in a single-null divertor configuration (favorable ∇B direction for reduced H-mode power threshold), and inward when the drift is away from the x-point (unfavorable ∇B direction). It is hypothesized that these flows decrease the density gradient in the pedestal in the favorable direction, thereby stabilizing the kinetic ballooning mode (KBM) and increasing the pedestal width. Comparisons of pedestal structures in similarly shaped DIII-D steady-state plasmas confirm this change, showing increased density pedestal width and lower peak density and lower separatrix density with the favorable drift direction. The pedestal temperature is higher in the lower density case, resulting in an increased pedestal pressure, which indicates that the increased particle flux does not significantly degrade energy confinement. Modeling of cases with constant ∇B drift direction but changing between the more open lower divertor and more closed upper divertor show that there is increased fueling inside the pedestal with the more open geometry. As a result, the pedestal fueling rate for both attached and detached cases is always lower with more closed divertor geometry than in any cases with more open geometry.« less
NASA Astrophysics Data System (ADS)
Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh
2014-05-01
Relying on coil positions relative to the plasma, the "Comment on `Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake' " [Phys. Plasmas 21, 054701 (2014)], emphasizes a criterion for divertor characterization that was critiqued to be ill posed [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)]. We find that no substantive physical differences flow from this criteria. However, using these criteria, the successful NSTX experiment by Ryutov et al. [Phys. Plasmas 21, 054701 (2014)] has the coil configuration of an X-divertor (XD), rather than a snowflake (SF). On completing the divertor index (DI) versus distance graph for this NSTX shot (which had an inexplicably missing region), we find that the DI is like an XD for most of the outboard wetted divertor plate. Further, the "proximity condition," used to define an SF [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)], does not have a substantive physics basis to override metrics based on flux expansion and line length. Finally, if the criteria of the comment are important, then the results of NSTX-like experiments could have questionable applicability to reactors.
Experience on divertor fuel retention after two ITER-Like Wall campaigns
NASA Astrophysics Data System (ADS)
Heinola, K.; Widdowson, A.; Likonen, J.; Ahlgren, T.; Alves, E.; Ayres, C. F.; Baron-Wiechec, A.; Barradas, N.; Brezinsek, S.; Catarino, N.; Coad, P.; Guillemaut, C.; Jepu, I.; Krat, S.; Lahtinen, A.; Matthews, G. F.; Mayer, M.; Contributors, JET
2017-12-01
The JET ITER-Like Wall experiment, with its all-metal plasma-facing components, provides a unique environment for plasma and plasma-wall interaction studies. These studies are of great importance in understanding the underlying phenomena taking place during the operation of a future fusion reactor. Present work summarizes and reports the plasma fuel retention in the divertor resulting from the two first experimental campaigns with the ITER-Like Wall. The deposition pattern in the divertor after the second campaign shows same trend as was observed after the first campaign: highest deposition of 10-15 μm was found on the top part of the inner divertor. Due to the change in plasma magnetic configurations from the first to the second campaign, and the resulted strike point locations, an increase of deposition was observed on the base of the divertor. The deuterium retention was found to be affected by the hydrogen plasma experiments done at the end of second experimental campaign.
The Multi-Spectral Imaging Diagnostic on Alcator C-MOD and TCV
NASA Astrophysics Data System (ADS)
Linehan, B. L.; Mumgaard, R. T.; Duval, B. P.; Theiler, C. G.; TCV Team
2017-10-01
The Multi-Spectral Imaging (MSI) diagnostic is a new instrument that captures simultaneous spectrally filtered images from a common sight view while maintaining a large tendue and high spatial resolution. The system uses a polychromator layout where each image is sequentially filtered. This procedure yields a high transmission for each spectral channel with minimal vignetting and aberrations. A four-wavelength system was installed on Alcator C-Mod and then moved to TCV. The system uses industrial cameras to simultaneously image the divertor region at 95 frames per second at f/# 2.8 via a coherent fiber bundle (C-Mod) or a lens-based relay optic (TCV). The images are absolutely calibrated and spatially registered enabling accurate measurement of atomic line ratios and absolute line intensities. The images will be used to study divertor detachment by imaging impurities and Balmer series emissions. Furthermore, the large field of view and an ability to support many types of detectors opens the door for other novel approaches to optically measuring plasma with high temporal, spatial, and spectral resolution. Such measurements will allow for the study of Stark broadening and divertor turbulence. Here, we present the first measurements taken with this cavity imaging system. USDoE awards DE-FC02-99ER54512 and award DE-AC05-06OR23100, ORISE, administered by ORAU.
Tokamak power exhaust with the snowflake divertor: Present results and outstanding issues
Soukhanovskii, V. A.; Xu, X.
2015-09-15
Here, a snowflake divertor magnetic configuration (Ryutov in Phys Plasmas 14(6):064502, 2007) with the second-order poloidal field null offers a number of possible advantages for tokamak plasma heat and particle exhaust in comparison with the standard poloidal divertor with the first-order null. Results from snowflake divertor experiments are briefly reviewed and future directions for research in this area are outlined.
The Lithium Vapor Box Divertor
NASA Astrophysics Data System (ADS)
Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob
2015-11-01
Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.
Status of National Spherical Torus Experiment Liquid Lithium Divertor
NASA Astrophysics Data System (ADS)
Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.
2009-11-01
Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.
Alternative divertor target concepts for next step fusion devices
NASA Astrophysics Data System (ADS)
Mazul, I. V.
2016-12-01
The operational conditions of a divertor target in the next steps of fusion devices are more severe in comparison with ITER. The current divertor designs and technologies have a limited application concerning these conditions, and so new design concepts/technologies are required. The main reasons which practically prevent the use of the traditional motionless solid divertor target are analyzed. We describe several alternative divertor target concepts in this paper. The comparative analysis of these concepts (including the advantages and the drawbacks) is made and the prospects for their practical implementation are prioritized. The concept of the swept divertor target with a liquid metal interlayer between the moving armour and motionless heat-sink is presented in more detail. The critical issues of this design are listed and outlined, and the possible experiments are presented.
Divertor-leg instability for finite beta and radially-tilted divertor plate
NASA Astrophysics Data System (ADS)
Cohen, R. H.; Ryutov, D. D.
2004-11-01
Plasma in the divertor leg may experience a fast instability caused by sheath boundary conditions (BC). Perturbations cannot penetrate beyond the X point because of very strong shearing in its vicinity. Accordingly, this instability could increase cross-field transport in the divertor leg, and thereby reduce the heat load on the divertor plate, without having any appreciable negative effect on core plasma confinement. A way of describing the role of shearing in terms of the surface resistivity attributed to a ``control plane'' below the X point has recently been suggested (Contr. Plasma Phys., v. 44, p. 168, 2004). We use this BC, plus sheath BC at the divertor plate. We include effects of finite beta and of the radial tilt of the divertor plate. We optimize the radial tilt in order to maximize radial transport in divertor legs. We discuss experimental signatures of the instability: i) phase velocity and wave-numbers of the most unstable modes; ii) correlations between fluctuations of various parameters; and iii) the differences between fluctuations in the common and private flux regions.
Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices
NASA Astrophysics Data System (ADS)
Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; Buchenauer, D.; Bykov, I.; Canik, J. M.; Chrobak, C.; Covele, B.; Ding, R.; Doerner, R.; Donovan, D.; Du, H.; Elder, D.; Eldon, D.; Lasa, A.; Groth, M.; Guterl, J.; Jarvinen, A.; Hinson, E.; Kolemen, E.; Lasnier, C. J.; Lore, J.; Makowski, M. A.; McLean, A.; Meyer, B.; Moser, A. L.; Nygren, R.; Owen, L.; Petrie, T. W.; Porter, G. D.; Rognlien, T. D.; Rudakov, D.; Sang, C. F.; Samuell, C.; Si, H.; Schmitz, O.; Sontag, A.; Soukhanovskii, V.; Wampler, W.; Wang, H.; Watkins, J. G.
2016-12-01
A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). This paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.
Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices
Guo, H. Y.; Hill, D. N.; Leonard, A. W.; ...
2016-09-14
A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, whichmore » we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). In conclusion, this paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.« less
Divertor Coil Design and Implementation on Pegasus
NASA Astrophysics Data System (ADS)
Shriwise, P. C.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Kujak-Ford, B. A.; Lewicki, B. T.; Winz, G. R.
2012-10-01
An upgraded divertor coil system is being commissioned on the Pegasus Toroidal Experiment in conjunction with power system upgrades in order to achieve higher β plasmas, reduce impurities, and possibly achieve H-mode operation. Design points for the divertor coil locations and estimates of their necessary current ratings were found using predictive equilibrium modeling based upon a 300 kA target plasma. This modeling represented existing Pegasus coil locations and current drive limits. The resultant design calls for 125 kA-turns from the divertor system to support the creation of a double null magnetic topology in plasmas with Ip<=300 kA. Initial experiments using this system will employ 900 V IGBT power supply modules to provide IDIV<=4 kA. The resulting 20 kA-turn capability of the existing divertor coil will be augmented by a new coil providing additional A-turns in series. Induced vessel wall current modeling indicates the time response of a 28 turn augmentation coil remains fast compared to the poloidal field penetration rate through the vessel. First results operating the augmented system are shown.
The Design and Use of Tungsten Coated TZM Molybdenum Tile Inserts in the DIII-D Tokamak Divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Christopher; Nygren, R. E.; Chrobak, C P.
Future tokamak devices are envisioned to utilize a high-Z metal divertor with tungsten as theleading candidate. However, tokamak experiments with tungsten divertors have seen significantdetrimental effects on plasma performance. The DIII-D tokamak presently has carbon as theplasma facing surface but to study the effect of tungsten on the plasma and its migration aroundthe vessel, two toroidal rows of carbon tiles in the divertor region were modified with high-Zmetal inserts, composed of a molybdenum alloy (TZM) coated with tungsten. A dedicated twoweek experimental campaign was run with the high-Z metal inserts. One row was coated withtungsten containing naturally occurring levels ofmore » isotopes. The second row was coated withtungsten where the isotope 182W was enhanced from the natural level of 26% up to greater than90%. The different isotopic concentrations enabled the experiment to differentiate between thetwo different sources of metal migration from the divertor. Various coating methods wereexplored for the deposition of the tungsten coating, including chemical vapor deposition,electroplating, vacuum plasma spray, and electron beam physical vapor deposition. The coatingswere tested to see if they were robust enough to act as a divertor target for the experiment. Testsincluded cyclic thermal heating using a high power laser and high-fluence deuterium plasmabombardment. The issues associate with the design of the inserts (tile installation, thermal stress,arcing, leading edges, surface preparation, etc.), are reviewed. The results of the tests used toselect the coating method and preliminary experimental observations are presented.« less
Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Gong, X. Z.; Qian, J.; Chen, J.; Li, G.; Li, K.; Li, M. H.; Zhai, X.; Bonoli, P.; Brower, D.; Cao, L.; Cui, L.; Ding, S.; Ding, W. X.; Guo, W.; Holcomb, C.; Huang, J.; Hyatt, A.; Lanctot, M.; Lao, L. L.; Liu, H.; Lyu, B.; McClenaghan, J.; Peysson, Y.; Ren, Q.; Shiraiwa, S.; Solomon, W.; Zang, Q.; Wan, B.
2017-07-01
Recent experiments on EAST have achieved the first long pulse H-mode (61 s) with zero loop voltage and an ITER-like tungsten divertor, and have demonstrated access to broad plasma current profiles by increasing the density in fully-noninductive lower hybrid current-driven discharges. These long pulse discharges reach wall thermal and particle balance, exhibit stationary good confinement (H 98y2 ~ 1.1) with low core electron transport, and are only possible with optimal active cooling of the tungsten armors. In separate experiments, the electron density was systematically varied in order to study its effect on the deposition profile of the external lower hybrid current drive (LHCD), while keeping the plasma in fully-noninductive conditions and with divertor strike points on the tungsten divertor. A broadening of the current profile is found, as indicated by lower values of the internal inductance at higher density. A broad current profile is attractive because, among other reasons, it enables internal transport barriers at large minor radius, leading to improved confinement as shown in companion DIII-D experiments. These experiments strengthen the physics basis for achieving high performance, steady state discharges in future burning plasmas.
Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST
Garofalo, Andrea M.; Gong, X. Z.; Qian, J.; ...
2017-06-07
Recent experiments on EAST have achieved the first long pulse H-mode (61 s) with zero loop voltage and an ITER-like tungsten divertor, and have demonstrated access to broad plasma current profiles by increasing the density in fully-noninductive lower hybrid current-driven discharges. These long pulse discharges reach wall thermal and particle balance, exhibit stationary good confinement (H 98y2~1.1) with low core electron transport, and are only possible with optimal active cooling of the tungsten armors. In separate experiments, the electron density was systematically varied in order to study its effect on the deposition profile of the external lower hybrid current drivemore » (LHCD), while keeping the plasma in fully-noninductive conditions and with divertor strike points on the tungsten divertor. A broadening of the current profile is found, as indicated by lower values of the internal inductance at higher density. A broad current profile is attractive because, among other reasons, it enables internal transport barriers at large minor radius, leading to improved confinement as shown in companion DIII-D experiments. These experiments strengthen the physics basis for achieving high performance, steady state discharges in future burning plasmas.« less
Thermal Fatigue Study on the Divertor Plate Materials
NASA Astrophysics Data System (ADS)
Wu, Ji-hong; Zhang, Fu; Xu, Zeng-yu; Yan, Jian-cheng
2002-10-01
Thermal fatigue property of the divertor plate is one of the key issues that governs the lifetime of the divertor plate. Taking tungsten as surface material, a small-mock-up divertor plate was made by hot isostatic press welding (HIP). A thermal cycling experiment for divertor mock-up was carried out in the vacuum, where a high-heat-flux electronic gun was used as the thermal source. A cyclic heat flux of 9 MW/m2 was loaded onto the mock-up, a heating duration of 20 s was selected, the cooling water flow rate was 80 ml/s. After 1000 cycles, the surface and the W/Cu joint of the mock-up did not show any damage. The SEM was used to analyze the microstructure of the welding joint, where no cracks were found also.
Divertor target shape optimization in realistic edge plasma geometry
NASA Astrophysics Data System (ADS)
Dekeyser, W.; Reiter, D.; Baelmans, M.
2014-07-01
Tokamak divertor design for next-step fusion reactors heavily relies on numerical simulations of the plasma edge. Currently, the design process is mainly done in a forward approach, where the designer is strongly guided by his experience and physical intuition in proposing divertor shapes, which are then thoroughly assessed by numerical computations. On the other hand, automated design methods based on optimization have proven very successful in the related field of aerodynamic design. By recasting design objectives and constraints into the framework of a mathematical optimization problem, efficient forward-adjoint based algorithms can be used to automatically compute the divertor shape which performs the best with respect to the selected edge plasma model and design criteria. In the past years, we have extended these methods to automated divertor target shape design, using somewhat simplified edge plasma models and geometries. In this paper, we build on and extend previous work to apply these shape optimization methods for the first time in more realistic, single null edge plasma and divertor geometry, as commonly used in current divertor design studies. In a case study with JET-like parameters, we show that the so-called one-shot method is very effective is solving divertor target design problems. Furthermore, by detailed shape sensitivity analysis we demonstrate that the development of the method already at the present state provides physically plausible trends, allowing to achieve a divertor design with an almost perfectly uniform power load for our particular choice of edge plasma model and design criteria.
Initial results from divertor heat-flux instrumentation on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Labombard, B.; Brunner, D.; Payne, J.; Reinke, M.; Terry, J. L.; Hughes, J. W.; Lipschultz, B.; Whyte, D.
2009-11-01
Physics-based plasma transport models that can accurately simulate the heat-flux power widths observed in the tokamak boundary are lacking at the present time. Yet this quantity is of fundamental importance for ITER and most critically important for DEMO, a reactor similar to ITER but with ˜4 times the power exhaust. In order to improve our understanding, C-Mod, DIII-D and NSTX will aim experiments in FY10 towards characterizing the divertor ``footprint'' and its connection to conditions ``upstream'' in the boundary and core plasmas [2]. Standard IR-based heat-flux measurements are particularly difficult in C-Mod, due to its vertical-oriented divertor targets. To overcome this, a suite of embedded heat-flux sensor probes (tile thermocouples, calorimeters, surface thermocouples) combined with IR thermography was installed during the FY09 opening, along with a new divertor bolometer system. This paper will report on initial experiments aimed at unfolding the heat-flux dependencies on plasma operating conditions. [2] a proposed US DoE Joint Facilities Milestone.
NASA Astrophysics Data System (ADS)
Escourbiac, F.; Richou, M.; Guigon, R.; Constans, S.; Durocher, A.; Merola, M.; Schlosser, J.; Riccardi, B.; Grosman, A.
2009-12-01
Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.
Experiences with tungsten coatings in high heat flux tests and under plasma load in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Herrmann, A.; Greuner, H.; Fuchs, J. C.; de Marné, P.; Neu, R.; ASDEX Upgrade Team
2009-12-01
ASDEX Upgrade was operated with about 6400 s plasma discharge during the scientific program in 2007/2008 exploring tungsten as a first wall material in tokamaks. In the first phase, the heating power was restricted to 10 MW. It was increased to 15 MW in the second phase. During this operational period, a delamination of the 200 μm W-VPS coating happened at 2 out of 128 tiles of the outer divertor and an unscheduled opening was required. In the third phase, ASDEX Upgrade was operated with partly predamaged tiles and up to 15 MW heating power. The target load was actively controlled by N2-seeding. This paper presents the screening test of target tiles in the high heat flux test facility GLADIS, experiences with operation and detected damages of the outer divertor as well as the heat load to the outer divertor and the reasons for the toroidal asymmetry of the divertor load.
Overview of the TCV tokamak program: scientific progress and facility upgrades
NASA Astrophysics Data System (ADS)
Coda, S.; Ahn, J.; Albanese, R.; Alberti, S.; Alessi, E.; Allan, S.; Anand, H.; Anastassiou, G.; Andrèbe, Y.; Angioni, C.; Ariola, M.; Bernert, M.; Beurskens, M.; Bin, W.; Blanchard, P.; Blanken, T. C.; Boedo, J. A.; Bolzonella, T.; Bouquey, F.; Braunmüller, F. H.; Bufferand, H.; Buratti, P.; Calabró, G.; Camenen, Y.; Carnevale, D.; Carpanese, F.; Causa, F.; Cesario, R.; Chapman, I. T.; Chellai, O.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Citrin, J.; Costea, S.; Crisanti, F.; Cruz, N.; Czarnecka, A.; Decker, J.; De Masi, G.; De Tommasi, G.; Douai, D.; Dunne, M.; Duval, B. P.; Eich, T.; Elmore, S.; Esposito, B.; Faitsch, M.; Fasoli, A.; Fedorczak, N.; Felici, F.; Février, O.; Ficker, O.; Fietz, S.; Fontana, M.; Frassinetti, L.; Furno, I.; Galeani, S.; Gallo, A.; Galperti, C.; Garavaglia, S.; Garrido, I.; Geiger, B.; Giovannozzi, E.; Gobbin, M.; Goodman, T. P.; Gorini, G.; Gospodarczyk, M.; Granucci, G.; Graves, J. P.; Guirlet, R.; Hakola, A.; Ham, C.; Harrison, J.; Hawke, J.; Hennequin, P.; Hnat, B.; Hogeweij, D.; Hogge, J.-Ph.; Honoré, C.; Hopf, C.; Horáček, J.; Huang, Z.; Igochine, V.; Innocente, P.; Ionita Schrittwieser, C.; Isliker, H.; Jacquier, R.; Jardin, A.; Kamleitner, J.; Karpushov, A.; Keeling, D. L.; Kirneva, N.; Kong, M.; Koubiti, M.; Kovacic, J.; Krämer-Flecken, A.; Krawczyk, N.; Kudlacek, O.; Labit, B.; Lazzaro, E.; Le, H. B.; Lipschultz, B.; Llobet, X.; Lomanowski, B.; Loschiavo, V. P.; Lunt, T.; Maget, P.; Maljaars, E.; Malygin, A.; Maraschek, M.; Marini, C.; Martin, P.; Martin, Y.; Mastrostefano, S.; Maurizio, R.; Mavridis, M.; Mazon, D.; McAdams, R.; McDermott, R.; Merle, A.; Meyer, H.; Militello, F.; Miron, I. G.; Molina Cabrera, P. A.; Moret, J.-M.; Moro, A.; Moulton, D.; Naulin, V.; Nespoli, F.; Nielsen, A. H.; Nocente, M.; Nouailletas, R.; Nowak, S.; Odstrčil, T.; Papp, G.; Papřok, R.; Pau, A.; Pautasso, G.; Pericoli Ridolfini, V.; Piovesan, P.; Piron, C.; Pisokas, T.; Porte, L.; Preynas, M.; Ramogida, G.; Rapson, C.; Rasmussen, J. Juul; Reich, M.; Reimerdes, H.; Reux, C.; Ricci, P.; Rittich, D.; Riva, F.; Robinson, T.; Saarelma, S.; Saint-Laurent, F.; Sauter, O.; Scannell, R.; Schlatter, Ch.; Schneider, B.; Schneider, P.; Schrittwieser, R.; Sciortino, F.; Sertoli, M.; Sheikh, U.; Sieglin, B.; Silva, M.; Sinha, J.; Sozzi, C.; Spolaore, M.; Stange, T.; Stoltzfus-Dueck, T.; Tamain, P.; Teplukhina, A.; Testa, D.; Theiler, C.; Thornton, A.; Tophøj, L.; Tran, M. Q.; Tsironis, C.; Tsui, C.; Uccello, A.; Vartanian, S.; Verdoolaege, G.; Verhaegh, K.; Vermare, L.; Vianello, N.; Vijvers, W. A. J.; Vlahos, L.; Vu, N. M. T.; Walkden, N.; Wauters, T.; Weisen, H.; Wischmeier, M.; Zestanakis, P.; Zuin, M.; the EUROfusion MST1 Team
2017-10-01
The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas; in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions; a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from progress in individual controller design and have evolved steadily towards controller integration, mostly within an environment supervised by a tokamak profile control simulator. TCV has demonstrated effective wall conditioning with ECRH in He in support of the preparations for JT-60SA operation.
Two-point modeling of SOL losses of HHFW power in NSTX
NASA Astrophysics Data System (ADS)
Kish, Ayden; Perkins, Rory; Ahn, Joon-Wook; Diallo, Ahmed; Gray, Travis; Hosea, Joel; Jaworski, Michael; Kramer, Gerrit; Leblanc, Benoit; Sabbagh, Steve
2017-10-01
High-harmonic fast-wave (HHFW) heating is a heating and current-drive scheme on the National Spherical Torus eXperiment (NSTX) complimentary to neutral beam injection. Previous experiments suggest that a significant fraction, up to 50%, of the HHFW power is promptly lost to the scrape-off layer (SOL). Research indicates that the lost power reaches the divertor via wave propagation and is converted to a heat flux at the divertor through RF rectification rather than heating the SOL plasma at the midplane. This counter-intuitive hypothesis is investigated using a simplified two-point model, relating plasma parameters at the divertor to those at the midplane. Taking measurements at the divertor region of NSTX as input, this two-point model is used to predict midplane parameters, using the predicted heat flux as an indicator of power input to the SOL. These predictions are compared to measurements at the midplane to evaluate the extent to which they are consistent with experiment. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.
ITER in-vessel system design and performance
NASA Astrophysics Data System (ADS)
Parker, R. R.
2000-03-01
The article reviews the design and performance of the in-vessel components of ITER as developed for the Engineering Design Activities (EDA) Final Design Report. The double walled vacuum vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g. the most intense vertical displacement events (VDEs) and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature non-uniformities. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor concept is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m2 are expected on the target. These are accommodated by HHF technology developed during the EDA. Disruptions and VDEs can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowable ranges for all postulated disruption and seismic events.
First operation with the JET International Thermonuclear Experimental Reactor-like walla)
NASA Astrophysics Data System (ADS)
Neu, R.; Arnoux, G.; Beurskens, M.; Bobkov, V.; Brezinsek, S.; Bucalossi, J.; Calabro, G.; Challis, C.; Coenen, J. W.; de la Luna, E.; de Vries, P. C.; Dux, R.; Frassinetti, L.; Giroud, C.; Groth, M.; Hobirk, J.; Joffrin, E.; Lang, P.; Lehnen, M.; Lerche, E.; Loarer, T.; Lomas, P.; Maddison, G.; Maggi, C.; Matthews, G.; Marsen, S.; Mayoral, M.-L.; Meigs, A.; Mertens, Ph.; Nunes, I.; Philipps, V.; Pütterich, T.; Rimini, F.; Sertoli, M.; Sieglin, B.; Sips, A. C. C.; van Eester, D.; van Rooij, G.; JET-EFDA Contributors
2013-05-01
To consolidate International Thermonuclear Experimental Reactor (ITER) design choices and prepare for its operation, Joint European Torus (JET) has implemented ITER's plasma facing materials, namely, Be for the main wall and W in the divertor. In addition, protection systems, diagnostics, and the vertical stability control were upgraded and the heating capability of the neutral beams was increased to over 30 MW. First results confirm the expected benefits and the limitations of all metal plasma facing components (PFCs) but also yield understanding of operational issues directly relating to ITER. H-retention is lower by at least a factor of 10 in all operational scenarios compared to that with C PFCs. The lower C content (≈ factor 10) has led to much lower radiation during the plasma burn-through phase eliminating breakdown failures. Similarly, the intrinsic radiation observed during disruptions is very low, leading to high power loads and to a slow current quench. Massive gas injection using a D2/Ar mixture restores levels of radiation and vessel forces similar to those of mitigated disruptions with the C wall. Dedicated L-H transition experiments indicate a 30% power threshold reduction, a distinct minimum density, and a pronounced shape dependence. The L-mode density limit was found to be up to 30% higher than for C allowing stable detached divertor operation over a larger density range. Stable H-modes as well as the hybrid scenario could be re-established only when using gas puff levels of a few 1021 es-1. On average, the confinement is lower with the new PFCs, but nevertheless, H factors up to 1 (H-Mode) and 1.3 (at βN≈3, hybrids) have been achieved with W concentrations well below the maximum acceptable level.
First Operation with the JET ITER-Like Wall
NASA Astrophysics Data System (ADS)
Neu, Rudolf
2012-10-01
To consolidate ITER design choices and prepare for its operation, JET has implemented ITER's plasma facing materials, namely Be at the main wall and W in the divertor. In addition, protection systems, diagnostics and the vertical stability control were upgraded and the heating capability of the neutral beams was increased to over 30 MW. First results confirm the expected benefits and the limitations of all metal plasma facing components (PFCs), but also yield understanding of operational issues directly relating to ITER. H-retention is lower by at least a factor of 10 in all operational scenarios compared to that with C PFCs. The lower C content (˜ factor 10) have led to much lower radiation during the plasma burn-through phase eliminating breakdown failures. Similarly, the intrinsic radiation observed during disruptions is very low, leading to high power loads and to a slow current quench. Massive gas injection using a D2/Ar mixture restores levels of radiation and vessel forces similar to those of mitigated disruptions with the C wall. Dedicated L-H transition experiments indicate a reduced power threshold by 30%, a distinct minimum density and pronounced shape dependence. The L-mode density limit was found up to 30% higher than for C allowing stable detached divertor operation over a larger density range. Stable H-modes as well as the hybrid scenario could be only re-established when using gas puff levels of a few 10^21e/s. On average the confinement is lower with the new PFCs, but nevertheless, H factors around 1 (H-Mode) and 1.2 (at βN˜3, Hybrids) have been achieved with W concentrations well below the maximum acceptable level (<10-5).
NASA Astrophysics Data System (ADS)
Islam, M. S.; Nakashima, Y.; Hatayama, A.
2017-12-01
The linear divertor analysis with fluid model (LINDA) code has been developed in order to simulate plasma behavior in the end-cell of linear fusion device GAMMA 10/PDX. This paper presents the basic structure and simulated results of the LINDA code. The atomic processes of hydrogen and impurities have been included in the present model in order to investigate energy loss processes and mechanism of plasma detachment. A comparison among Ar, Kr and Xe shows that Xe is the most effective gas on the reduction of electron and ion temperature. Xe injection leads to strong reduction in the temperature of electron and ion. The energy loss terms for both the electron and the ion are enhanced significantly during Xe injection. It is shown that the major energy loss channels for ion and electron are charge-exchange loss and radiative power loss of the radiator gas, respectively. These outcomes indicate that Xe injection in the plasma edge region is effective for reducing plasma energy and generating detached plasma in linear device GAMMA 10/PDX.
Lore, Jeremy D.; Reinke, M. L.; Brunner, D.; ...
2015-04-28
We study experiments in Alcator C-Mod to assess the level of toroidal asymmetry in divertor conditions resulting from poloidally and toroidally localized extrinsic impurity gas seeding show a weak toroidal peaking (~1.1) in divertor electron temperatures for high-power enhanced D-alpha H-modeplasmas. This is in contrast to similar experiments in Ohmically heated L-modeplasmas, which showed a clear toroidal modulation in the divertor electron temperature. Modeling of these experiments using the 3D edge transport code EMC3-EIRENE [Y. Feng et al., J. Nucl. Mater. 241, 930 (1997)] qualitatively reproduces these trends, and indicates that the different response in the simulations is due tomore » the ionization location of the injected nitrogen. Low electron temperatures in the private flux region (PFR) in L-mode result in a PFR plasma that is nearly transparent to neutral nitrogen, while in H-mode the impurities are ionized in close proximity to the injection location, with this latter case yielding a largely axisymmetric radiation pattern in the scrape-off-layer. In conclusion, the consequences for the ITER gas injection system are discussed. Quantitative agreement with the experiment is lacking in some areas, suggesting potential areas for improving the physics model in EMC3-EIRENE.« less
Development of heat sink concept for near-term fusion power plant divertor
NASA Astrophysics Data System (ADS)
Rimza, Sandeep; Khirwadkar, Samir; Velusamy, Karupanna
2017-04-01
Development of an efficient divertor concept is an important task to meet in the scenario of the future fusion power plant. The divertor, which is a vital part of the reactor has to discharge the considerable fraction of the total fusion thermal power (∼15%). Therefore, it has to survive very high thermal fluxes (∼10 MW/m2). In the present paper, an efficient divertor heat exchanger cooled by helium is proposed for the fusion tokamak. The Plasma facing surface of divertor made-up of several modules to overcome the stresses caused by high heat flux. The thermal hydraulic performance of one such module is numerically investigated in the present work. The result shows that the proposed design is capable of handling target heat flux values of 10 MW/m2. The computational model has been validated against high-heat flux experiments and a satisfactory agreement is noticed between the present simulation and the reported results.
ADX - Advanced Divertor and RF Tokamak Experiment
NASA Astrophysics Data System (ADS)
Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl
2015-11-01
The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.
Results from core-edge experiments in high Power, high performance plasmas on DIII-D
Petrie, T. W.; Fenstermacher, M. E.; Holcomb, C. T.; ...
2016-12-24
Here, significant challenges to reducing divertor heat flux in highly powered near-double null divertor (DND) hybrid plasmas, while still maintaining both high performance metrics and low enough density for application of RF heating, are identified. For these DNDs on DIII-D, the scaling of the peak heat flux at the outer target (q ⊥ P) ∝ [P SOL x I P] 0.92 for P SOL = 8-19 MW and I P = 1.0–1.4 MA, and is consistent with standard ITPA scaling for single-null H-mode plasmas. Two divertor heat flux reduction methods were tested. First, applying the puff-and-pump radiating divertor to DIII-Dmore » plasmas may be problematical at high power and H98 (≥ 1.5) due to improvement in confinement time with deuterium gas puffing which can lead to unacceptably high core density under certain conditions. Second, q ⊥ P for these high performance DNDs was reduced by ≈35% when an open divertor is closed on the common flux side of the outer divertor target (“semi-slot”) but also that heating near the slot opening is a significant source for impurity contamination of the core.« less
NASA Astrophysics Data System (ADS)
Sun, Z.; Maingi, R.; Hu, J.; Lunsford, R.; Diallo, A.; Tritz, K.; Osborne, T.; Canik, J.; Zuo, G.; Wang, L.; Xu, G.; Gong, X.; EAST Team Team
2017-10-01
A reproducible, fully non-inductive H-mode regime devoid of large ELMs has been achieved by continuous Li injection in EAST into the upper `ITER-like' tungsten divertor, extending previous results on the graphite divertor. These discharges did not suffer from density or impurity accumulation, and maintained constant core radiated power. The new results extend the energy confinement multiplier H98(y,2) 1.2, as compared to H98(y,2) 0.75 previously on the graphite divertor. The observed ELM elimination is correlated with a decrease in particle recycling, as expected from the strong Li coating before the experiment, and real-time Li aerosol injection. In addition, core W concentration was reduced during the Li injection. ELM elimination is likely related to the reduced recycling and density /temperature profile changes. A low-n electromagnetic coherent mode (MCM) at 40kHz became stronger in amplitude and also more coherent. The MCM shows strong magnetic fluctuations as measured by fast Mirnov coils, but weak density fluctuations. As compared to the graphite divertor, Li injection into the tungsten divertor eliminated ELMs at twice the previous auxiliary heating power, and reduced pedestal collisionality.
Perkins, R. J.; Hosea, J. C.; Jaworski, M. A.; ...
2015-04-13
The National Spherical Torus eXperiment (NSTX) can exhibit a major loss of high-harmonic fast wave (HHFW) power along scrape-off layer (SOL) field lines passing in front of the antenna, resulting in bright and hot spirals on both the upper and lower divertor regions. One possible mechanism for this loss is RF sheaths forming at the divertors. We demonstrate that swept-voltage Langmuir probe characteristics for probes under the spiral are shifted relative to those not under the spiral in a manner consistent with RF rectification. We estimate both the magnitude of the RF voltage across the sheath and the sheath heatmore » flux transmission coefficient in the presence of the RF field. Though the precise comparison between computed heat flux and infrared (IR) thermography cannot yet be made, the computed heat deposition compares favorably with the projections from IR camera measurements. The RF sheath losses are significant and contribute substantially to the total SOL losses of HHFW power to the divertor for the cases studied. Our work will guide future experimentation on NSTX-U, where a wide-angle IR camera and a dedicated set of coaxial Langmuir probes for measuring the RF sheath voltage directly will quantify the contribution of RF sheath rectification to the heat deposition from the SOL to the divertor.« less
Kessel, C. E.; Poli, F. M.; Ghantous, K.; ...
2015-01-01
Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized β N ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches β N = 5.28 with B T = 6.75, while the peaked pressure case reaches β N < 5.15. Fast particle magnetohydrodynamicmore » stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×10 20/m 3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/n Gr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less
EMC3-EIRENE modelling of toroidally-localized divertor gas injection experiments on Alcator C-Mod
Lore, Jeremy D.; Reinke, M. L.; LaBombard, Brian; ...
2014-09-30
Experiments on Alcator C-Mod with toroidally and poloidally localized divertor nitrogen injection have been modeled using the three-dimensional edge transport code EMC3-EIRENE to elucidate the mechanisms driving measured toroidal asymmetries. In these experiments five toroidally distributed gas injectors in the private flux region were sequentially activated in separate discharges resulting in clear evidence of toroidal asymmetries in radiated power and nitrogen line emission as well as a ~50% toroidal modulation in electron pressure at the divertor target. The pressure modulation is qualitatively reproduced by the modelling, with the simulation yielding a toroidal asymmetry in the heat flow to the outermore » strike point. Finally, toroidal variation in impurity line emission is qualitatively matched in the scrape-off layer above the strike point, however kinetic corrections and cross-field drifts are likely required to quantitatively reproduce impurity behavior in the private flux region and electron temperatures and densities directly in front of the target.« less
On Heat Loading, Novel Divertors, and Fusion Reactors
NASA Astrophysics Data System (ADS)
Kotschenreuther, Mike
2006-10-01
A new magnetic divertor geometry has been proposed to solve reactor heat exhaust problems, which are far more severe for a reactor than for ITER. Using reactor-compatible coils to generate an extra X-point downstream from the main X-point, the new X-divertor (XD) is shown to greatly expand magnetic flux at the divertor plates. As a result, the heat is distributed over a larger area and the line length is greatly increased. The heat-flux limitations of a standard divertor (SD) force a high core radiation fraction (fRad) in most reactor designs that necessarily have a several times higher ratio of heating power to radius (P/R) than ITER. It is argued that such high values of fRad will probably have serious deleterious consequences on the core confinement and stability of a burning plasma. Operation with internal transport barriers (ITBs) does not appear to overcome this problem. By reducing the core fRad within an acceptable range, the X-divertor is shown to substantially lower the core confinement requirement for a fusion reactor. As a bonus, the XD also enables the use of liquid metals by reducing the MHD drag. A possible series of experiments for an efficient and attractive path to practical fusion power is suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Ono, M. Jaworski, R. Kaita, C. N. Skinner, J.P. Allain, R. Maingi, F. Scotti, V.A. Soukhanovskii, and the NSTX-U Team
Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTXU, the PMI research has received a strong emphasis. With ~ 15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2 . To support the PMI research, a comprehensive set of PMI diagnostic tools are being implemented. The snow-flake configuration can produce exceptionally high divertor flux expansion of up to ~ 50.more » Combined with the radiative divertor concept, the snow-flake configuration has reduced the divertor heat flux by an order of magnitude in NSTX. Another area of active PMI investigation is the effect of divertor lithium coating (both in solid and liquid phases). The overall NSTX lithium PFC coating results suggest exciting opportunities for future magnetic confinement research including significant electron energy confinement improvements, Hmode power threshold reduction, the control of Edge Localized Modes (ELMs), and high heat flux handling. To support the NSTX-U/PPPL PMI research, there are also a number of associated PMI facilities implemented at PPPL/Princeton University including the Liquid Lithium R&D facility, Lithium Tokamak Experiment, and Laboratories for Materials Characterization and Surface Chemistry.« less
NASA Astrophysics Data System (ADS)
Jia, M.; Sun, Y.; Paz-Soldan, C.; Nazikian, R.; Gu, S.; Liu, Y. Q.; Abrams, T.; Bykov, I.; Cui, L.; Evans, T.; Garofalo, A.; Guo, W.; Gong, X.; Lasnier, C.; Logan, N. C.; Makowski, M.; Orlov, D.; Wang, H. H.
2018-05-01
Experiments using Resonant Magnetic Perturbations (RMPs), with a rotating n = 2 toroidal harmonic combined with a stationary n = 3 toroidal harmonic, have validated predictions that divertor heat and particle flux can be dynamically controlled while maintaining Edge Localized Mode (ELM) suppression in the DIII-D tokamak. Here, n is the toroidal mode number. ELM suppression over one full cycle of a rotating n = 2 RMP that was mixed with a static n = 3 RMP field has been achieved. Prominent heat flux splitting on the outer divertor has been observed during ELM suppression by RMPs in low collisionality regime in DIII-D. Strong changes in the three dimensional heat and particle flux footprint in the divertor were observed during the application of the mixed toroidal harmonic magnetic perturbations. These results agree well with modeling of the edge magnetic field structure using the TOP2D code, which takes into account the plasma response from the MARS-F code. These results expand the potential effectiveness of the RMP ELM suppression technique for the simultaneous control of divertor heat and particle load required in ITER.
Low temperature tungsten spectroscopy on a Penning Ionization Discharge
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Englesbe, Alexander; Stutman, Dan; Finkenthal, Michael
2011-10-01
Complete Tungsten divertor operation is being planned on many tokamaks including Tore Supra and ITER. Thus, low temperature tungsten spectroscopy is important for aiding the divertor diagnostics on larger machines. A Penning Ionization Discharge (PID) at the Johns Hopkins University produces steady state plasmas with Te ~ 2 eV, ne ~1013 cm-3 and a fast electron fraction at ~ 10 s eV. Similar bi-Maxwellian distributions, but with slightly higher electron temperatures, are found in the divertor plasmas of tokamaks. The two significant populating mechanisms for higher charge states in the PID are: (a) collisional excitation from bulk electrons, and (b) inner shell ionization from the fast electrons. The PID is diagnosed in a wide wavelength range - XUV, VUV and visible, to differentiate the two populating mechanisms. W is introduced in the PID by the sputtering of cathodes made of CuW alloy. Spectral emission from significantly higher charge states of W (up to W IV) has been observed in the experiment. This poster will describe results indicating the populating mechanism of W ions and also describe plans on upgrading the experiment to achieve higher temperatures which are closer to the divertor conditions. Supported by USDOE.
A Fast Visible Camera Divertor-Imaging Diagnostic on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roquemore, A; Maingi, R; Lasnier, C
2007-06-19
In recent campaigns, the Photron Ultima SE fast framing camera has proven to be a powerful diagnostic when applied to imaging divertor phenomena on the National Spherical Torus Experiment (NSTX). Active areas of NSTX divertor research addressed with the fast camera include identification of types of EDGE Localized Modes (ELMs)[1], dust migration, impurity behavior and a number of phenomena related to turbulence. To compare such edge and divertor phenomena in low and high aspect ratio plasmas, a multi-institutional collaboration was developed for fast visible imaging on NSTX and DIII-D. More specifically, the collaboration was proposed to compare the NSTX smallmore » type V ELM regime [2] and the residual ELMs observed during Type I ELM suppression with external magnetic perturbations on DIII-D[3]. As part of the collaboration effort, the Photron camera was installed recently on DIII-D with a tangential view similar to the view implemented on NSTX, enabling a direct comparison between the two machines. The rapid implementation was facilitated by utilization of the existing optics that coupled the visible spectral output from the divertor vacuum ultraviolet UVTV system, which has a view similar to the view developed for the divertor tangential TV camera [4]. A remote controlled filter wheel was implemented, as was the radiation shield required for the DIII-D installation. The installation and initial operation of the camera are described in this paper, and the first images from the DIII-D divertor are presented.« less
DIII-D Upgrade to Prepare the Basis for Steady-State Burning Plasmas
NASA Astrophysics Data System (ADS)
Buttery, R. J.; Guo, H. Y.; Taylor, T. S.; Wade, M. R.; Hill, D. N.
2014-10-01
Future steady-state burning plasma facilities will access new physics regimes and modes of plasma behavior. It is vital to prepare for this both experimentally using existing facilities, and theoretically in order to develop the tools to project to and optimize these devices. An upgrade to DIII-D is proposed to address the three critical aspects where research must go beyond what we can do now: (i) torque free electron heating to address the energy, particle and momentum transport mechanisms of burning plasmas using electron cyclotron (EC) heating and full power balanced neutral beams; (ii) off-axis heating and current drive to develop the path to true fusion steady state by reorienting neutral beams and deploying EC and helicon current drive; (iii) a new divertor with hot walls and reactor relevant materials to develop the basis for benign detached divertor operation compatible with wall materials and a high performance fusion core. These elements with modest incremental cost and enacted as a user facility for the whole US program will enable the US to lead on ITER and take a decision to proceed with a Fusion Nuclear Science Facility. Work supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344.
Scotti, Filippo; Roquemore, A L; Soukhanovskii, V A
2012-10-01
A pair of two dimensional fast cameras with a wide angle view (allowing a full radial and toroidal coverage of the lower divertor) was installed in the National Spherical Torus Experiment in order to monitor non-axisymmetric effects. A custom polar remapping procedure and an absolute photometric calibration enabled the easier visualization and quantitative analysis of non-axisymmetric plasma material interaction (e.g., strike point splitting due to application of 3D fields and effects of toroidally asymmetric plasma facing components).
NASA Astrophysics Data System (ADS)
Narula, Manmeet Singh
Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the MHD interaction of fast flowing liquid metal films under various divertor relevant magnetic field configurations through numerical modeling exercises.
Dust remobilization tests in DIII-D divertor
NASA Astrophysics Data System (ADS)
Bykov, I.; Rudakov, D.; Moyer, R.; Ratynskaia, S.; Tolias, P.; Deangeli, M.; McLean, A.; Bystrov, K.
2015-11-01
Accumulation of dust on hot surfaces is a safety concern for ITER operation. We studied the life cycle of pre-deposited dust under ITER-relevant conditions by exposing W samples with W, C and Al (surrogate for Be) dust at the outer strike point (OSP) in a few ELMy H-mode discharges using DiMES. The maxima in the dust ejection rate correspond to ELM crashes under both attached and detached OSP conditions, as confirmed by a fast camera monitoring DiMES. SEM mapping of dust before and after exposures shows that >95 % of C and <5 % of metal dust gets remobilized in a few shots. In discharges with detached OSP, remaining Al particles melt and fuse together, forming larger spherical grains. At elevated heat flux with attached OSP, they melt, destruct and fuse with W substrate, which is not thermally affected. In this mode W grains partly melt and adjacent particles can weld together, forming larger asymmetric agglomerates with increased adhesion to the surface. We show that these results are consistent with recent observations from Pilot-PSI. Work supported by the US DOE under DE-FC02-04ER54698, DE-FG02-07ER54917 and DE-AC52-07NA27344.
Measurement of the deuterium Balmer series line emission on EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C. R.; Xu, Z.; Jin, Z.
Volume recombination plays an important role towards plasma detachment for magnetically confined fusion devices. High quantum number states of the Balmer series of deuterium are used to study recombination. On EAST (Experimental Advanced Superconducting Tokamak), two visible spectroscopic measurements are applied for the upper/lower divertor with 13 channels, respectively. Both systems are coupled with Princeton Instruments ProEM EMCCD 1024B camera: one is equipped on an Acton SP2750 spectrometer, which has a high spectral resolution ∼0.0049 nm with 2400 gr/mm grating to measure the D{sub α}(H{sub α}) spectral line and with 1200 gr/mm grating to measure deuterium molecular Fulcher band emissionsmore » and another is equipped on IsoPlane SCT320 using 600 gr/mm to measure high-n Balmer series emission lines, allowing us to study volume recombination on EAST and to obtain the related line averaged plasma parameters (T{sub e}, n{sub e}) during EAST detached phases. This paper will present the details of the measurements and the characteristics of deuterium Balmer series line emissions during density ramp-up L-mode USN plasma on EAST.« less
Overview of Recent DIII-D Experimental Results
NASA Astrophysics Data System (ADS)
Fenstermacher, Max; DIII-D Team
2017-10-01
Recent DIII-D experiments contributed to the ITER physics basis and to physics understanding for extrapolation to future devices. A predict-first analysis showed how shape can enhance access to RMP ELM suppression. 3D equilibrium changes from ELM control RMPs, were linked to density pumpout. Ion velocity imaging in the SOL showed 3D C2+flow perturbations near RMP induced n =1 islands. Correlation ECE reveals a 40% increase in Te turbulence during QH-mode and 70% during RMP ELM suppression vs. ELMing H-mode. A long-lived predator-prey oscillation replaces edge MHD in recent low-torque QH-mode plasmas. Spatio-temporally resolved runaway electron measurements validate the importance of synchrotron and collisional damping on RE dissipation. A new small angle slot divertor achieves strong plasma cooling and facilitates detachment access. Fast ion confinement was improved in high q_min scenarios using variable beam energy optimization. First reproducible, stable ITER baseline scenarios were established. Studies have validated a model for edge momentum transport that predicts the pedestal main-ion intrinsic velocity value and direction. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.
Actively convected liquid metal divertor
NASA Astrophysics Data System (ADS)
Shimada, Michiya; Hirooka, Yoshi
2014-12-01
The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.
Suppression of tritium retention in remote areas of ITER by nonperturbative reactive gas injection.
Tabarés, F L; Ferreira, J A; Ramos, A; van Rooij, G; Westerhout, J; Al, R; Rapp, J; Drenik, A; Mozetic, M
2010-10-22
A technique based on reactive gas injection in the afterglow region of the divertor plasma is proposed for the suppression of tritium-carbon codeposits in remote areas of ITER when operated with carbon-based divertor targets. Experiments in a divertor simulator plasma device indicate that a 4 nm/min deposition can be suppressed by addition of 1 Pa·m³ s⁻¹ ammonia flow at 10 cm from the plasma. These results bolster the concept of nonperturbative scavenger injection for tritium inventory control in carbon-based fusion plasma devices, thus paving the way for ITER operation in the active phase under a carbon-dominated, plasma facing component background.
Toroidally symmetric plasma vortex at tokamak divertor null point
Umansky, M. V.; Ryutov, D. D.
2016-03-09
Reduced MHD equations are used for studying toroidally symmetric plasma dynamics near the divertor null point. Numerical solution of these equations exhibits a plasma vortex localized at the null point with the time-evolution defined by interplay of the curvature drive, magnetic restoring force, and dissipation. Convective motion is easier to achieve for a second-order null (snowflake) divertor than for a regular x-point configuration, and the size of the convection zone in a snowflake configuration grows with plasma pressure at the null point. In conclusion, the trends in simulations are consistent with tokamak experiments which indicate the presence of enhanced transportmore » at the null point.« less
ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies
NASA Astrophysics Data System (ADS)
Whyte, Dennis; ADX Team
2015-11-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.
Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U
Jaworski, M. A.; Brooks, A.; Kaita, R.; ...
2016-08-08
Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physicsmore » and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. As a result, two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.« less
Mitigation of divertor heat loads by strike point sweeping in high power JET discharges
NASA Astrophysics Data System (ADS)
Silburn, S. A.; Matthews, G. F.; Challis, C. D.; Frigione, D.; Graves, J. P.; Mantsinen, M. J.; Belonohy, E.; Hobirk, J.; Iglesias, D.; Keeling, D. L.; King, D.; Kirov, K.; Lennholm, M.; Lomas, P. J.; Moradi, S.; Sips, A. C. C.; Tsalas, M.; Contributors, JET
2017-12-01
Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data.
Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals
NASA Technical Reports Server (NTRS)
Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.
NASA Astrophysics Data System (ADS)
Brooks, J. N.; Hassanein, A.; Sizyuk, T.
2013-07-01
Plasma interactions with mixed-material surfaces are being analyzed using advanced modeling of time-dependent surface evolution/erosion. Simulations use the REDEP/WBC erosion/redeposition code package coupled to the HEIGHTS package ITMC-DYN mixed-material formation/response code, with plasma parameter input from codes and data. We report here on analysis for a DIII-D Mo/C containing tokamak divertor. A DIII-D/DiMES probe experiment simulation predicts that sputtered molybdenum from a 1 cm diameter central spot quickly saturates (˜4 s) in the 5 cm diameter surrounding carbon probe surface, with subsequent re-sputtering and transport to off-probe divertor regions, and with high (˜50%) redeposition on the Mo spot. Predicted Mo content in the carbon agrees well with post-exposure probe data. We discuss implications and mixed-material analysis issues for Be/W mixing at the ITER outer divertor, and Li, C, Mo mixing at an NSTX divertor.
HSX as an example of a resilient non-resonant divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bader, A.; Boozer, A. H.; Hegna, C. C.
This study describes an initial description of the resilient divertor properties of quasi-symmetric (QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case. Divertors in high-performance QS stellarators will need to be resilient to changes in plasma configuration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor design. Resiliency is tested by examining the changes in strike point patterns from the field line following, which arise due to configurational changes. A low strike point variation with high configuration changes corresponds to high resiliency. The HSX edge displays resilient properties with configuration changes arisingmore » from the (1) wall position, (2) plasma current, and (3) external coils. The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature regions of magnetic flux surfaces.« less
HSX as an example of a resilient non-resonant divertor
Bader, A.; Boozer, A. H.; Hegna, C. C.; ...
2017-03-16
This study describes an initial description of the resilient divertor properties of quasi-symmetric (QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case. Divertors in high-performance QS stellarators will need to be resilient to changes in plasma configuration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor design. Resiliency is tested by examining the changes in strike point patterns from the field line following, which arise due to configurational changes. A low strike point variation with high configuration changes corresponds to high resiliency. The HSX edge displays resilient properties with configuration changes arisingmore » from the (1) wall position, (2) plasma current, and (3) external coils. The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature regions of magnetic flux surfaces.« less
NASA Astrophysics Data System (ADS)
Paju, Jana; Väli, Berit; Laas, Tõnu; Shirokova, Veroonika; Laas, Katrin; Paduch, Marian; Gribkov, Vladimir A.; Demina, Elena V.; Prusakova, Marina D.; Pimenov, Valeri N.; Makhlaj, Vadym A.; Antonov, Maksim
2017-11-01
Armour materials in fusion devices, especially in the region of divertor, are exposed to a continuous heat and particle load. In addition, several off-normal events can reach the material during a work session. Calculations show that the effects of plasma and heat during such events can lead to cracking, erosion and detachment of the armour material. On the other hand, mutual and combined influences of different kinds of heat and particle loads can lead to the amplification of defects or vice versa, to the mitigation of damages. Therefore, the purpose of the study is to investigate the plasma induced damages on samples of double forged tungsten, which is considered a potential candidate for armour material of future tokamak's divertor. The combined effect of different kinds of plasma induced damages was investigated and analysed in this research. The study was conducted by irradiating the samples in various irradiation regimes twice, to observe the accumulation of the damages. Afterwards the analysis of micro-topography, scanning electron microscopy images and electrical conductivity measurements was used. Results indicate that double-forging improved the tungsten's durability to irradiation. Nevertheless, powerful pulses lead to significant damage of the sample, which will lead to further deterioration in the bulk. Although the average micro-roughness on the sample's surface does not change, the overall height/depth ratios can change.
Thermal strain measurement of EAST tungsten divertor component with bare fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Wang, Xingli; Wang, Wanjing; Wang, Jichao; Wei, Ran; Sun, Zhaoxuan; Li, Qiang; Xie, Chunyi; Luo, Guang-Nan
2017-12-01
Fiber Bragg Gratings (FBGs) have been widely used in the sensor field to monitor temperature and strain. However, the weak mechanical property of optical fibers and insufficient heat-resistant property of general optic-fiber sensors have prevented it from being widely used, such as in some extreme engineering situations. In this work, a bare FBG sensor system had been introduced to measure thermal strain of an Experimental Advanced Superconducting Tokamak tungsten divertor component under baking condition. This strain measurement system had withstood as high temperature as 210 °C and finished the measurement experiment successfully. Meaningful measurement results had been obtained and analyzed, which showed the applicability of such a bare fiber grating sensor system and as well contributed to studying on tungsten divertor's thermal strain conditions.
Edge and divertor plasma: detachment, stability, and plasma-wall interactions
NASA Astrophysics Data System (ADS)
Krasheninnikov, S. I.; Kukushkin, A. S.; Lee, Wonjae; Phsenov, A. A.; Smirnov, R. D.; Smolyakov, A. I.; Stepanenko, A. A.; Zhang, Yanzeng
2017-10-01
The paper presents an overview of the results of studies on a wide range of the edge plasma related issues. The rollover of the plasma flux to the target during progressing detachment process is shown to be caused by the increase of the impurity radiation loss and volumetric plasma recombination, whereas the ion-neutral friction, although important for establishing the necessary edge plasma conditions, does not contribute per se to the rollover of the plasma flux to the target. The processes limiting the power loss by impurity radiation are discussed and a simple estimate of this limit is obtained. Different mechanisms of meso-scale thermal instabilities driven by impurity radiation and resulting in self-sustained oscillations in the edge plasma are identified. An impact of sheared magnetic field on the dynamics of the blobs and ELM filaments playing an important role in the edge and SOL plasma transport is discussed. Trapping of He, which is an intrinsic impurity for the fusion plasmas, in the plasma-facing tungsten material is considered. A newly developed model, accounting for the generation of additional He traps caused by He bubble growth, fits all the available experimental data on the layer of nano-bubbles observed in W under irradiation by low energy He plasma.
Using the Tritium Plasma Experiment to evaluate ITER PFC safety
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Anderl, Robert A.; Bartlit, John R.; Causey, Rion A.; Haines, John R.
The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10(exp 19) ions/((sq cm)(s)) and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment.
Progress in extrapolating divertor heat fluxes towards large fusion devices
NASA Astrophysics Data System (ADS)
Sieglin, B.; Faitsch, M.; Eich, T.; Herrmann, A.; Suttrop, W.; Collaborators, JET; the MST1 Team; the ASDEX Upgrade Team
2017-12-01
Heat load to the plasma facing components is one of the major challenges for the development and design of large fusion devices such as ITER. Nowadays fusion experiments can operate with heat load mitigation techniques, e.g. sweeping, impurity seeding, but do not generally require it. For large fusion devices however, heat load mitigation will be essential. This paper presents the current progress of the extrapolation of steady state and transient heat loads towards large fusion devices. For transient heat loads, so-called edge localized modes are considered a serious issue for the lifetime of divertor components. In this paper, the ITER operation at half field (2.65 T) and half current (7.5 MA) will be discussed considering the current material limit for the divertor peak energy fluence of 0.5 {MJ}/{{{m}}}2. Recent studies were successful in describing the observed energy fluence in the JET, MAST and ASDEX Upgrade using the pedestal pressure prior to the ELM crash. Extrapolating this towards ITER results in a more benign heat load compared to previous scalings. In the presence of magnetic perturbation, the axisymmetry is broken and a 2D heat flux pattern is induced on the divertor target, leading to local increase of the heat flux which is a concern for ITER. It is shown that for a moderate divertor broadening S/{λ }{{q}}> 0.5 the toroidal peaking of the heat flux disappears.
Non-solenoidal Startup with High-Field-Side Local Helicity Injection on the Pegasus ST
NASA Astrophysics Data System (ADS)
Perry, J. M.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.
2017-10-01
Local Helicity Injection (LHI) is a non-solenoidal startup technique utilizing electron current injectors at the plasma edge to initiate a tokamak-like plasma at high Ip . Recent experiments on Pegasus explore the inherent tradeoffs between high-field-side (HFS) injection in the lower divertor region and low-field-side (LFS) injection at the outboard midplane. Trade-offs include the relative current drive contributions of HI and poloidal induction, and the magnetic geometry required for relaxation to a tokamak-like state. HFS injection using a set of two increased-area injectors (Ainj = 4 cm2, Vinj 1.5 kV, and Iinj 8 kA) in the lower divertor is demonstrated over the full range of toroidal field available on Pegasus (BT 0 <= 0.15 T). Increased PMI on both the injectors and the lower divertor plates was observed during HFS injection, and was substantively mitigated through optimization of injector geometry and placement of local limiters to reduce scrape-off density in the divertor region. Ip up to 200 kA is achieved with LHI as the dominant current drive, consistent with expectations from helicity balance. To date, experiments support Ip increasing linearly with helicity injection rate. The high normalized current (IN >= 10) attainable with LHI and the favorable stability of the ultra-low aspect ratio, low-li LHI-driven plasmas allow access to high βt-up to 100 % , as indicated by kinetically-constrained equilibrium reconstructions. Work supported by US DOE Grant DE-FG02-96ER54375.
Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor
NASA Astrophysics Data System (ADS)
Bathke, C. G.; Krakowski, R. A.; Miller, R. L.
Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line trackings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented.
ADX: a high field, high power density, Advanced Divertor test eXperiment
NASA Astrophysics Data System (ADS)
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team
2014-10-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.
Formation of the internal transport barrier in KSTAR
NASA Astrophysics Data System (ADS)
Chung, J.; Kim, H. S.; Jeon, Y. M.; Kim, J.; Choi, M. J.; Ko, J.; Lee, K. D.; Lee, H. H.; Yi, S.; Kwon, J. M.; Hahn, S.-H.; Ko, W. H.; Lee, J. H.; Yoon, S. W.
2018-01-01
One of key objectives of tokamak experiments is the exploration of enhanced confinement regimes, and the access of the internal transport barrier (ITB) formation is dealt with an important physics issue in the most of major tokamaks. Also, the advanced tokamak scenario with ITB is expected to lead to a continuous reactor with high fusion power density. From that point of view, the formation of the ITB in KSTAR which is designed for long pulse operation capability is very important although its heating and current drive systems are not fully equipped yet. We have therefore assumed that an early injection of the full NBI power (∼5.5 MW) during the current ramp-up would give a chance to form an internal barrier if the plasma could stay in the L-mode. To avoid the H-mode transition, we have produced inboard limited plasmas with detaching from the both upper and lower divertors. Using this approach, an ITB formation during L-mode has been observed which shows improved core confinement. Ion and electron temperature profiles show the barrier clearly in the temperature, and it was sustained for about 7 s in the dedicated experiment. This is the first stationary ITB observed in a full superconducting tokamak. This operation scenario with the ITB could be an alternative way to achieve a high performance regime in KSTAR, and the length of the ITB discharge could be extended even longer. In this paper, we present the formation of the ITB using measured and simulated characteristic profiles.
Impact of target material on D and D2 recycling in DIII-D ELMy H-mode discharges
NASA Astrophysics Data System (ADS)
Bykov, Igor; Hollmann, Eric; Rudakov, Dmitry; Moyer, Richard; Boedo, Jose; Din, Rui; Wang, Huiqian; Unterberg, Ezekeal; Briesemeister, Alexis; Chrobak, Christopher; Abrams, Tyler; Watkins, Jon; Lasnier, Charles; McLean, Adam
2017-10-01
DIII-D operation with W divertor inserts shows molecular recycling flux (measured by Fulcher-a spectroscopy) is reduced between ELMs in comparison with a C divertor where the flux is dominated by D2 molecules (>=90%). This effect is partly explained by the higher reflection probability of atomic D on W. During ELMs, the molecular fraction drops by factor >2 on both C and W targets. To study the effect of higher ion impact energy (Eimp) on transient D re-emission during ELMs we have applied fast electrostatic bias to a DiMES probe equipped with a W and C sample set. A 50% increase of Eimp from 150 eV due to biasing led to transient increase of atomic D re-emission flux on both targets. Similar increase of the D2 flux was only seen on C. Thus, the ratios of atomic and molecular fluxes on C varied in a similar way to those measured during ELMs. This variation in molecular recycling fraction with material has implications for the dynamics of density pedestal recovery between ELMs, the overall global particle balance of the system, and possibly the overall detachment onset conditions transiently due to the ELM particle influx. Supported by the US DOE under DE-FG02-07ER54917, DE-FG02-04ER54758, DE-FC02-04ER54698, DE-FG03-95ER54309, and DE-FG02-04ER54762.
Lithium As Plasma Facing Component for Magnetic Fusion Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masayuki Ono
The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor ofmore » two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.« less
Influence of impurity seeding on the plasma radiation in the EAST tokamak
NASA Astrophysics Data System (ADS)
Liping, DONG; Yanmin, DUAN; Kaiyun, CHEN; Xiuda, YANG; Ling, ZHANG; Feng, XU; Jingbo, CHEN; Songtao, MAO; Zhenwei, WU; Liqun, HU
2018-04-01
Plasma radiation characteristics in EAST argon (Ar) gas and neon (Ne) gas seeding experiments are studied. The radiation profiles reconstructed from the fast bolometer measurement data by tomography method are compared with the ones got from the simulation program based on corona model. And the simulation results coincide roughly with the experimental data. For Ar seeding discharges, the substantial enhanced radiations can be generally observed in the edge areas at normalized radius ρ pol∼0.7–0.9, while the enhanced regions are more outer for Ne seeding discharges. The influence of seeded Ar gas on the core radiation is related to the injected position. In discharges with LSN divertor configuration, the Ar ions can permeate into the core region more easily when being injected from the opposite upper divertor ports. In USN divertor configuration, the W impurity sputtered from the upper divertor target plates are observed to be an important contributor to the increase of the core radiation no matter impurity seeding from any ports. The maximum radiated power fractions f rad (P rad/P heat) about 60%–70% have been achieved in the recent EAST experimental campaign in 2015–2016.
Measurements of tungsten migration in the DIII-D divertor
NASA Astrophysics Data System (ADS)
Wampler, W. R.; Rudakov, D. L.; Watkins, J. G.; McLean, A. G.; Unterberg, E. A.; Stangeby, P. C.
2017-12-01
An experimental study of migration of tungsten in the DIII-D divertor is described, in which the outer strike point of L-mode plasmas was positioned on a toroidal ring of tungsten-coated metal inserts. Net deposition of tungsten on the divertor just outside the strike point was measured on graphite samples exposed to various plasma durations using the divertor materials evaluation system. Tungsten coverage, measured by Rutherford backscattering spectroscopy (RBS), was found to be low and nearly independent of both radius and exposure time closer to the strike point, whereas farther from the strike point the W coverage was much larger and increased with exposure time. Depth profiles from RBS show this was due to accumulation of thicker mixed-material deposits farther from the strike point where the plasma temperature is lower. These results are consistent with a low near-surface steady-state coverage on graphite undergoing net erosion, and continuing accumulation in regions of net deposition. This experiment provides data needed to validate, and further improve computational simulations of erosion and deposition of material on plasma-facing components and transport of impurities in magnetic fusion devices. Such simulations are underway and will be reported later.
The near infrared imaging system for the real-time protection of the JET ITER-like wall
NASA Astrophysics Data System (ADS)
Huber, A.; Kinna, D.; Huber, V.; Arnoux, G.; Balboa, I.; Balorin, C.; Carman, P.; Carvalho, P.; Collins, S.; Conway, N.; McCullen, P.; Jachmich, S.; Jouve, M.; Linsmeier, Ch; Lomanowski, B.; Lomas, P. J.; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; May-Smith, T.; Meigs, A.; Mertens, Ph; Nunes, I.; Price, M.; Puglia, P.; Riccardo, V.; Rimini, F. G.; Sergienko, G.; Tsalas, M.; Zastrow, K.-D.; contributors, JET
2017-12-01
This paper describes the design, implementation and operation of the near infrared (NIR) imaging diagnostic system of the JET ITER-like wall (JET-ILW) plasma experiment and its integration into the existing JET protection architecture. The imaging system comprises four wide-angle views, four tangential divertor views, and two top views of the divertor covering 66% of the first wall and up to 43% of the divertor. The operation temperature ranges which must be observed by the NIR protection cameras are, for the materials used on JET: Be 700 °C-1400 °C W coating 700 °C-1370 °C W bulk 700 °C-1400 °C. The Real-Time Protection system operates routinely since 2011 and successfully demonstrated its capability to avoid the overheating of the main chamber beryllium wall as well as of the divertor W and W-coated carbon fibre composite (CFC) tiles. During this period, less than 0.5% of the terminated discharges were aborted by a malfunction of the system. About 2%-3% of the discharges were terminated due to the detection of actual hot spots.
Effect of ELMs on deuterium-loaded-tungsten plasma facing components
NASA Astrophysics Data System (ADS)
Umstadter, K. R.; Rudakov, D. L.; Wampler, W.; Watkins, J. G.; Wong, C. P. C.
2011-08-01
Prior heat pulse testing of plasma facing components (PFCs) has been completed in vacuum environments without the presence of background plasma. Edge localized modes (ELMs) will not be this kind of isolated event and one should know the effect of a plasma background during these transients. Heat-pulse experiments have been conducted in the PISCES-A device utilizing laser heating in a divertor-like plasma background. Initial results indicate that the erosion of PFCs is enhanced as compared to heat pulse or plasma only tests. To determine if the enhanced erosion effect is a phenomena only witnessed in the laboratory PISCES device, tungsten and graphite samples were exposed to plasmas in the lower divertor of the DIII-D tokamak using the Divertor Material Evaluation System (DiMES). Mass loss analysis indicates that materials that contain significant deuterium prior to experiencing a transient heating event will erode faster than those that have no or little retained deuterium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
We conducted physics experiments: record normalized {Beta} = 4.9 achieved in VH-mode, {Beta} limits of ITER-like configurations evaluated, FWCD commissioning. The tokamak vessel was opened to atmosphere for six weeks and a number of key diagnostics for understanding the divertor were installed. The DIII-D Advisory Committee met in January to review the DIII-D program and plan. They commended us for recent progress and supported the vanadium divertor design. The U.S./Japan DIII-D steering committee met and recommended extending the agreement to the year 2000. The field work proposal for FY 96/97 was presented in Washington on March 29, 1995. A reviewmore » of the DIII-D plan to install vanadium structural components as part of the new radiative divertor modification was held in Washington 31, 1995 and the panel endorsed the plans. Preliminary plans were developed with PPPL for collaborations in FY96,« less
Overview of decade-long development of plasma-facing components at ASIPP
NASA Astrophysics Data System (ADS)
Luo, G.-N.; Liu, G. H.; Li, Q.; Qin, S. G.; Wang, W. J.; Shi, Y. L.; Xie, C. Y.; Chen, Z. M.; Missirlian, M.; Guilhem, D.; Richou, M.; Hirai, T.; Escourbiac, F.; Yao, D. M.; Chen, J. L.; Wang, T. J.; Bucalossi, J.; Merola, M.; Li, J. G.; EAST Team
2017-06-01
The first EAST (Experimental Advanced Superconducting Tokamak) plasma ignited in 2006 with non-actively cooled steel plates as the plasma-facing materials and components (PFMCs) which were then upgraded into full graphite tiles bolted onto water-cooled copper heat sinks in 2008. The first wall was changed further into molybdenum alloy in 2012, while keeping the graphite for both the upper and lower divertors. With the rapid increase in heating and current driving power in EAST, the W/Cu divertor project was launched around the end of 2012, aiming at achieving actively cooled full W/Cu-PFCs for the upper divertor, with heat removal capability up to 10 MW m-2. The W/Cu upper divertor was finished in the spring of 2014, consisting of 80 cassette bodies toroidally assembled. Commissioning of the EAST upper W/Cu divertor in 2014 was unsatisfactory and then several practical measures were implemented to improve the design, welding quality and reliability, which helped us achieve successful commissioning in the 2015 Spring Campaign. In collaboration with the IO and CEA teams, we have demonstrated our technological capability to remove heat loads of 5000 cycles at 10 MW m-2 and 1000 cycles at 20 MW m-2 for the small scale monoblock mockups, and surprisingly over 300 cycles at 20 MW m-2 for the flat-tile ones. The experience and lessons we learned from batch production and commissioning are undoubtedly valuable for ITER (International Thermonuclear Experimental Reactor) engineering validation and tungsten-related plasma physics.
Lesson from Tungsten Leading Edge Heat Load Analysis in KSTAR Divertor
NASA Astrophysics Data System (ADS)
Hong, Suk-Ho; Pitts, Richard Anthony; Lee, Hyeong-Ho; Bang, Eunnam; Kang, Chan-Soo; Kim, Kyung-Min; Kim, Hong-Tack; ITER Organization Collaboration; Kstar Team Team
2016-10-01
An important design issue for the ITER tungsten (W) divertor and in fact for all such components using metallic plasma-facing elements and which are exposed to high parallel power fluxes, is the question of surface shaping to avoid melting of leading edges. We have fabricated a series of tungsten blocks with a variety of leading edge heights (0.3, 0.6, 1.0, and 2.0 mm), from the ITER worst case to heights even beyond the extreme value tested on JET. They are mounted into adjacent, inertially cooled graphite tile installed in the central divertor region of KSTAR, within the field of view of an infra-red (IR) thermography system with a spatial resolution to 0.4 mm/pixel. Adjustment of the outer divertor strike point position is used to deposit power on the different blocks in different discharges. The measured power flux density on flat regions of the surrounding graphite tiles is used to obtain the parallel power flux, q|| impinging on the various W blocks. Experiments have been performed in Type I ELMing H-mode with Ip = 600 kA, BT = 2 T, PNBI = 3.5 MW, leading to a hot attached divertor with typical pulse lengths of 10 s. Three dimensional ANSYS simulations using q|| and assuming geometric projection of the heat flux are found to be consistent with the observed edge loading. This research was partially supported by Ministry of Science, ICT, and Future Planning under KSTAR project.
Zheng, G. Y.; Xu, X. Q.; Ryutov, D. D.; ...
2014-07-09
HL-2M (Li, 2013 [1]) is a tokamak device that is under construction. Based on the magnetic coils design of HL-2M, four kinds of divertor configurations are calculated by CORSICA code (Pearlstein et al., 2001 [2]) with the same main plasma parameters, which are standard divertor, exact snowflake divertor, snowflake-plus divertor and snowflake-minus divertor configurations. The potential properties of these divertors are analyzed and presented in this paper: low poloidal field area around X-point, connection length from outside mid-plane to the primary X-point, target plate design and magnetic field shear. The results show that the snowflake configurations not only can reducemore » the heat load at divertor target plates, but also may improve the magneto-hydrodynamic stability by stronger magnetic shear at the edge. Furthermore, a new divertor configuration, named “tripod divertor”, is designed by adjusting the positions of the two X-points according to plasma parameters and magnetic coils current of HL-2M.« less
Advanced Divertor Design and Application under Modern Superconducting Tokamak Constraints
NASA Astrophysics Data System (ADS)
Covele, Brent; Kotschenreuther, Mike; Mahajan, Swadesh; Valanju, Prashant
2013-10-01
With current ITER projections already predicting divertor exhaust heat loads in the 5-10 MW/m2 range, i.e. at the maximum tolerance, it is clear that the divertor heat load problem will only be exacerbated for future superconducting tokamaks, as well as perhaps some modern tokamaks today. Thus, an advanced divertor, such as the X-Divertor (XD), Super-X Divertor (SXD), or Snowflake (SF) will become a virtual necessity to reduce incident heat flux at the target plates. Using the 2D magnetic equilibrium code CORSICA, we explore the possibilities of creating an advanced divertor for a next-generation superconducting tokamak (Ip = 15 MA, BT = 5.3 T, R = 6.2 m) under nominal engineering constraints. Advanced divertors were achieved with no in-vessel PF coils, PF current densities below 30 MA/m2, and vertical maintenance access, all of which are favorable conditions for tokamaks today. Both the XD and SF divertors are readily achievable while maintaining core plasma performance, and the advantages and disadvantages of each are discussed in turn. Some thought is given as to how the divertor cassette will need to be modified to accommodate advanced divertors. Work supported under US-DOE projects DE-FG02-04ER54742 and DE-FG02-04ER54754.
Investigations on the heat flux and impurity for the HL-2M divertor
NASA Astrophysics Data System (ADS)
Zheng, G. Y.; Cai, L. Z.; Duan, X. R.; Xu, X. Q.; Ryutov, D. D.; Cai, L. J.; Liu, X.; Li, J. X.; Pan, Y. D.
2016-12-01
The controllability of the heat load and impurity in the divertor is very important, which could be one of the critical problems to be solved in order to ensure the success for a steady state tokamak. HL-2M has the advantage of the poloidal field (PF) coils placed inside the demountable toroidal field (TF) coils and close to the main plasma. As a result, it is possible to make highly accurate configuration control of the advanced divertor for HL-2M. The divertor target geometry of HL-2M has been designed to be compatible with different divertor configurations to study the divertor physics and support the high performance plasma operations. In this paper, the heat loads and impurities with different divertor configurations, including the standard X-point divertor, the snowflake-minus divertor and two tripod divertor configurations for HL-2M, are investigated by numerical simulations with the SOLPS5.0 code under the current design of the HL-2M divertor geometry. The plasmas with different conditions, such as the low discharge parameters with {{I}\\text{p}} = 0.5 MA at the first stage of HL-2M and the high parameters with {{I}\\text{p}} = 2.0 MA during the normal operations, are simulated. The heat load profiles and the impurity distributions are obtained, and the control of the peak heat load and the effect of impurity on the core plasma are discussed. The compatibility of different divertor configurations for HL-2M is also evaluated. It is seen that the excellent compatibility of different divertor configurations with the current divertor geometry has been verified. The results show that the snowflake-minus divertor and the tripod divertor with {{d}x}=30 \\text{cm} present good performance in terms of the heat load profiles and the impurity distributions under different conditions, which may not have a big effect on the core plasma. In addition, it is possible to optimize the distance between the two X-points, {{d}x} , to achieve a better performance in terms of the parameters of discharges.
Study of ND3-enhanced MAR processes in D2-N2 plasmas to induce plasma detachment
NASA Astrophysics Data System (ADS)
Abe, Shota; Chakraborty Thakur, Saikat; Doerner, Russ; Tynan, George
2017-10-01
The Molecular Assisted Recombination (MAR) process is thought to be a main channel of volumetric recombination to induce the plasma detachment operation. Authors have focused on a new plasma recombination process supported by ammonia molecules, which will be formed by impurity seeding of N2 for controlling divertor plasma temperature and heat loads in ITER. This ammonia-enhanced MAR process would occur throughout two steps. In this study, the first step of the new MAR process is investigated in low density plasmas (Ne 1016 m-3, Te 4 eV) fueled by D2 and N2. Ion and neutral densities are measured by a calibrated Electrostatic Quadrupole Plasma (EQP) analyzer, combination of an ion energy analyzer and mass spectrometer. The EQP shows formation of ND3 during discharges. Ion densities calculated by a rate equation model are compared with experimental results. We find that the model can reproduce the observed ion densities in the plasma. The model calculation shows that the dominant neutralization channel of Dx+(x =1-3) ions in the volume is the formation of NDy+(y =3 or 4) throughout charge/D+ exchange reactions with ND3. Furthermore, high density plasmas (Ne 1016 m-3) have been achieved to investigate electron-impact dissociative recombination processes of formed NDy+,which is the second step of this MAR process.
Using the tritium plasma experiment to evaluate ITER PFC safety
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Anderl, Robert A.; Bartlit, John R.; Causey, Rion A.; Haines, John R.
1993-06-01
The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore and is being moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capabilty of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 × 1023 ions/m2.s and a plasma temperature of about 15 eV using a plasma that includes tritium. An experimental program has been initiated using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. An industrial consortium led by McDonnell Douglas will design and fabricate the test fixtures.
Power and Particle Exhaust in Tokamaks
Dr. Wojciech Fundamenski
2018-04-19
Dr. Fundamenski provides an introduction to plasma exhaust, specifically relating to the EFDA-JET and ITER projects in Europe. Divertor heat loads, impurity seeding, and disruption experiments are outlined.
Improved Crystal Quality By Detached Solidification in Microgravity
NASA Technical Reports Server (NTRS)
Regel, Liya L.; Wilcox, William R.; Wang, Yaz-Hen; Wang, Jian-Bin
2003-01-01
Many microgravity directional solidification experiments yielded ingots with portions that grew without contacting the ampoule wall, leading to greatly improved crystallographic perfection. Our long term goals have been: (1) To develop a complete understanding of all of the phenomena of detached solidification.; (2) To make it possible to achieve detached solidification reproducibly; (3) To increase crystallographic perfection through detached solidification. We have three major achievements to report here: (1) We obtained a new material balance solution for the Moving Meniscus Model of detached solidification. This solution greatly clarifies the physics as well as the roles of the parameters in the system; (2) We achieved detached solidification of InSb growing on earth in BN-coated ampoules; (3) We performed an extensive series of experiments on freezing water that showed how to form multiple gas bubbles or tubes on the ampoule wall. However, these did not propagate around the wall and lead to fully detached solidification unless the ampoule wall was extremely rough and non-wetted.
Comparative divertor-transport study for helical devices
NASA Astrophysics Data System (ADS)
Feng, Y.; Kobayashi, M.; Sardei, F.; Masuzaki, S.; Kisslinger, J.; Morisaki, T.; Grigull, P.; Yamada, H.; McCormick, K.; Ohyabu, N.; König, R.; Yamada, I.; Giannone, L.; Narihara, K.; Wenzel, U.; Morita, S.; Thomsen, H.; Miyazawa, J.; Hildebrandt, D.; Watanabe, T.; Wagner, F.; Ashikawa, N.; Ida, K.; Komori, A.; Motojima, O.; Nakamura, Y.; Peterson, B. J.; Sato, K.; Shoji, M.; Tamura, N.; Tokitani, M.; LHD experimental Group
2009-09-01
Using the island divertors (IDs) of W7-AS and W7-X and the helical divertor (HD) of LHD as examples, the paper presents a comparative divertor transport study for three typical helical devices of different machine sizes following two distinct divertor concepts, aiming at identifying common physics issues/effects for mutual validation and combined studies. Based on EMC3/EIRENE simulations supported by experimental results, the paper first reviews and compares the essential transport features of the W7-AS ID and the LHD HD in order to build a base and framework for a predictive study of W7-X. The fundamental role of low-order magnetic islands in both divertor concepts is emphasized. Preliminary EMC3/EIRENE simulation results for W7-X are presented and discussed with respect to W7-AS and LHD in order to show how the individual field and divertor topologies affect the divertor transport and performance. For instance, a high recycling regime, which is absent from W7-AS and LHD, is predicted to exist for W7-X. The paper focuses on identifying and understanding the role of divertors for high density plasma operations in helical devices. In this regard, special attention is paid to investigating the divertor function for controlling intrinsic impurities. Impurity transport behaviour and wall-sputtering processes of CX-neutrals are studied under different divertor plasma conditions. A divertor retention effect on intrinsic impurities at high SOL collisonalities is predicted for all the three devices. The required SOL plasma conditions and the underlying mechanisms are analysed in detail. Numerical results are discussed in conjunction with the experimental observations for high density divertor plasmas in W7-AS and LHD. Different SOL transport regimes are numerically identified for the standard divertor configuration of W7-X and the possible consequences on high density plasmas are assessed. All the EMC3-EIRENE simulations presented in this paper are based on vacuum fields and comparisons with local diagnostics are made for low-ß plasmas.
NASA Astrophysics Data System (ADS)
Brunner, D.; Wolfe, S. M.; LaBombard, B.; Kuang, A. Q.; Lipschultz, B.; Reinke, M. L.; Hubbard, A.; Hughes, J.; Mumgaard, R. T.; Terry, J. L.; Umansky, M. V.; The Alcator C-Mod Team
2017-08-01
The Alcator C-Mod team has recently developed a feedback system to measure and control surface heat flux in real-time. The system uses real-time measurements of surface heat flux from surface thermocouples and a pulse-width modulated piezo valve to inject low-Z impurities (typically N2) into the private flux region. It has been used in C-Mod to mitigate peak surface heat fluxes >40 MW m-2 down to <10 MW m-2 while maintaining excellent core confinement, H 98 > 1. While the system works quite well under relatively steady conditions, use of it during transients has revealed important limitations on feedback control of impurity seeding in conventional vertical target plate divertors. In some cases, the system is unable to avoid plasma reattachment to the divertor plate or the formation of a confinement-damaging x-point MARFE. This is due to the small operational window for mitigated heat flux in the parameters of incident plasma heat flux, plasma density, and impurity density as well as the relatively slow response of the impurity gas injection system compared to plasma transients. Given the severe consequences for failure of such a system to operate reliably in a reactor, there is substantial risk that the conventional vertical target plate divertor will not provide an adequately controllable system in reactor-class devices. These considerations motivate the need to develop passively stable, highly compliant divertor configurations and experimental facilities that can test such possible solutions.
Achievement of radiative feedback control for long-pulse operation on EAST
NASA Astrophysics Data System (ADS)
Wu, K.; Yuan, Q. P.; Xiao, B. J.; Wang, L.; Duan, Y. M.; Chen, J. B.; Zheng, X. W.; Liu, X. J.; Zhang, B.; Xu, J. C.; Luo, Z. P.; Zang, Q.; Li, Y. Y.; Feng, W.; Wu, J. H.; Yang, Z. S.; Zhang, L.; Luo, G.-N.; Gong, X. Z.; Hu, L. Q.; Hu, J. S.; Li, J.
2018-05-01
The active feedback control of radiated power to prevent divertor target plates overheating during long-pulse operation has been developed and implemented on EAST. The radiation control algorithm, with impurity seeding via a supersonic molecular beam injection (SMBI) system, has shown great success in both reliability and stability. By seeding a sequence of short neon (Ne) impurity pulses with the SMBI from the outer mid-plane, the radiated power of the bulk plasma can be well controlled, and the duration of radiative control (feedforward and feedback) is 4.5 s during a discharge of 10 s. Reliable control of the total radiated power of bulk plasma has been successfully achieved in long-pulse upper single null (USN) discharges with a tungsten divertor. The achieved control range of {{f}rad} is 20%–30% in L-mode regimes and 18%–36% in H-mode regimes. The temperature of the divertor target plates was maintained at a low level during the radiative control phase. The peak particle flux on the divertor target was decreased by feedforward Ne injection in the L-mode discharges, while the Ne pulses from the SMBI had no influence on the peak particle flux because of the very small injecting volume. It is shown that although the radiated power increased, no serious reduction of plasma-stored energy or confinement was observed during the control phase. The success of the radiation control algorithm and current experiments in radiated power control represents a significant advance for steady-state divertor radiation and heat flux control on EAST for near-future long-pulse operation.
Numerical study of transition to supersonic flows in the edge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, Rajiv, E-mail: rajiv@ipr.res.in; Artaud, Jean-François; Imbeaux, Frédéric
The plasma scrape-off layer (SOL) in a tokamak is characterized by ion flow down a long narrow flux tube terminating on a solid surface. The ion flow velocity along a magnetic field line can be equal to or greater than sonic at the entrance of a Debye sheath or upstream in the presheath. This paper presents a numerical study of the transition between subsonic and supersonics flows. A quasineutral one-dimensional (1D) fluid code has been used for modeling of plasma transport in the SOL along magnetic field lines, both in steady state and under transient conditions. The model uses coupledmore » equations for continuity, momentum, and energy balance with ionization, radiation, charge exchange, and recombination processes. The recycled neutrals are described in the diffusion approximation. Standard Bohm sheath criterion is used as boundary conditions at the material surface. Three conditions conducive for the generation of supersonic flows in SOL plasmas have been explored. It is found that in steady state high (attached) and low (detached) divertor temperatures cases, the role of particle, momentum, and energy loss is critical. For attached case, the appearance of shock waves in the divertor region if the incoming plasma flow is supersonic and its effect on impurity retention is presented. In the third case, plasma expansion along the magnetic field can yield time-dependent supersonic solutions in the quasineutral rarefaction wave. Such situations can arise in the parallel transport of intermittent structures such as blobs and edge localized mode filaments along field lines.« less
A super-cusp divertor configuration for tokamaks
NASA Astrophysics Data System (ADS)
Ryutov, D. D.
2015-10-01
> This study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase's cusp divertor. It turns out that the set of remote coils can indeed produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough control that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called `a super-cusp'. General geometrical features of the three-null configurations produced by remote coils are described. Issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.
Transport in a field-aligned magnetized plasma and neutral gas boundary: the end of the plasma
NASA Astrophysics Data System (ADS)
Cooper, Christopher; Gekelman, Walter
2012-10-01
A series of experiments at the Enormous Toroidal Plasma Device (ETPD) at UCLA study the Neutral Boundary Layer (NBL) between a magnetized plasma and a neutral gas in the direction of the confining field. A lanthanum hexaboride (LaB6) cathode and semi-transparent anode create a current-free, weakly ionized (ne/nn<5%), helium plasma (B˜250 G, Rplasma=10cm, ne<10^12cm^3, Te<3eV, and Ti˜Tn) that terminates on helium gas without touching any walls. Probes inserted into the plasma measure the basic plasma parameters in the NBL. The NBL begins where the plasma and neutral gas pressures equilibrate and the electrons and ions come to rest through collisions with the neutral gas. A field-aligned electric field (δφ/kTe˜1) is established self-consistently to maintain a current-free termination and dominates transport in the NBL, similar to a sheath but with a length L˜10λei˜10^2λen˜10^5λD. A two-fluid weakly-ionized transport model describes the system. A generalized Ohm's Law correctly predicts the electric field observed. The pressure balance criteria and magnitude of the termination electric field are confirmed over a scaling of parameters. The model can also be used to describe the atmospheric termination of aurora or fully detached gaseous divertors.
Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J
A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.
Advantages and Challenges of Radiative Liquid Lithium Divertor
NASA Astrophysics Data System (ADS)
Ono, Masayuki
2017-10-01
Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid Li divertor (RLLD) concept and its variant, the active liquid Li divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest Li-loop could provide a possible solution for the outstanding fusion reactor technology issues such as divertor heat flux mitigation and real time dust removal, while potentially improving the reactor plasma performance. Laboratory tests are also planned to investigate the Li-T recover efficiency and other relevant research topics of the RLLD. This work supported by DoE Contract No. DE-AC02-09CH11466.
Operational limits on WEST inertial divertor sector during the early phase experiment
NASA Astrophysics Data System (ADS)
Firdaouss, M.; Corre, Y.; Languille, P.; Greuner, H.; Autissier, E.; Desgranges, C.; Guilhem, D.; Gunn, J. P.; Lipa, M.; Missirlian, M.; Pascal, J.-Y.; Pocheau, C.; Richou, M.; Tsitrone, E.
2016-02-01
The primary goal of the WEST project is to be a test bed to characterize the fatigue and lifetime of ITER-like W divertor components subjected to relevant thermal loads. During the first phase of exploitation (S2 2016), these components (W monoblock plasma facing unit—W-PFU) will be installed in conjunction with graphite components (G-PFU). Since the G-PFU will not be actively cooled, it is necessary to ensure the expected pulse duration allows the W-PFU to reach its steady state without overheating the G-PFU assembly structure or the embedded stainless-steel diagnostics. High heat flux tests were performed at the GLADIS facility to assess the thermal behavior of the G-PFU. Some operational limits based on plasma parameters were determined. It was found that it is possible to operate at an injected power such that the maximal incident heat flux on the lower divertor is 10 MW m-2 for the required pulse length.
Measurements of plasma sheath heat flux in the Alcator C-Mod divertor
NASA Astrophysics Data System (ADS)
Brunner, Dan; Labombard, Brian; Terry, Jim; Reinke, Matt
2010-11-01
Heat flux is one of the most important parameters controlling the lifetime of first-wall components in fusion experiments and reactors. The sheath heat flux coefficient (γ) is a parameter relating heat flux (from a plasma to a material surface) to the electron temperature and ion saturation current. Being such a simple expression for a kinetic process, it is of great interest to plasma edge fluid modelers. Under the assumptions of equal ion and electron temperatures, no secondary electron emission, and no net current to the surface the value of γ is approximately 7 [1]. Alcator C-Mod provides a unique opportunity among today's experiments to measure reactor-relevant heat fluxes (100's of MW/m^2 parallel to the magnetic field) in reactor-like divertor geometry. Motivated by the DoE 2010 joint milestone to measure heat flux footprints, the lower outer divertor of Alcator has been instrumented with a suite of Langmuir probes, novel surface thermocouples, and calorimeters in tiles purposefully ramped to eliminate shadowing; all within view of an IR camera. Initial results indicate that the experimentally inferred values of γ are found to agree with simple theory in the sheath limited regime and diverges to lower values as the density increases.
Effects of 2D and 3D Error Fields on the SAS Divertor Magnetic Topology
NASA Astrophysics Data System (ADS)
Trevisan, G. L.; Lao, L. L.; Strait, E. J.; Guo, H. Y.; Wu, W.; Evans, T. E.
2016-10-01
The successful design of plasma-facing components in fusion experiments is of paramount importance in both the operation of future reactors and in the modification of operating machines. Indeed, the Small Angle Slot (SAS) divertor concept, proposed for application on the DIII-D experiment, combines a small incident angle at the plasma strike point with a progressively opening slot, so as to better control heat flux and erosion in high-performance tokamak plasmas. Uncertainty quantification of the error fields expected around the striking point provides additional useful information in both the design and the modeling phases of the new divertor, in part due to the particular geometric requirement of the striking flux surfaces. The presented work involves both 2D and 3D magnetic error field analysis on the SAS strike point carried out using the EFIT code for 2D equilibrium reconstruction, V3POST for vacuum 3D computations and the OMFIT integrated modeling framework for data analysis. An uncertainty in the magnetic probes' signals is found to propagate non-linearly as an uncertainty in the striking point and angle, which can be quantified through statistical analysis to yield robust estimates. Work supported by contracts DE-FG02-95ER54309 and DE-FC02-04ER54698.
Overview of recent results and future plans on the Compact Toroidal Hybrid experiment
NASA Astrophysics Data System (ADS)
Maurer, D. A.; Archmiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.
2015-11-01
Goals of the Compact Toroidal Hybrid (CTH) experiment are to: (1) investigate the dependence of plasma disruptive behavior on the level of applied 3D magnetic shaping, (2) test and advance 3D computational modeling tools in strongly shaped plasmas, and (3) study the implementation of a new island divertor. Progress towards these goals and other developments are summarized. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased, but a threshold for disruption avoidance is not observed. Low q operation is routine, with low q disruptions avoided when the vacuum transform is raised to the value of 0.07 or above. Application of vacuum transform has been demonstrated to reduce and eliminate the vertical drift of elongated discharges that would otherwise be vertically unstable. Current efforts at improved equilibrium reconstruction and diagnostic development will beoverviewed. NIMROD is used to model the current ramp phase of CTH and 3D shaped sawtooth behavior. An island divertor design has begun with connection length studies and initial EMC3-Eirene results to model energy deposition on divertor plates located in an edge 1/3 island. This work is supported by U.S. Department of Energy Grant No. DE- FG02-00ER54610.
Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals
NASA Technical Reports Server (NTRS)
Szofran, F. R.; Volz, M. P.; Schweizer, M.; Kaiser, N.; Cobb, S. D.; Motakef, S.; Vujisic, L. J.; Croell, A.; Dold, P.; Rose, M. Franklin (Technical Monitor)
2001-01-01
Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS) to differentiate among proposed mechanisms contributing to detachment. Sessile drop measurements were first carried out for a large number of substrates made of potential ampoule materials to determine the contact angles and the surface tension as a function of temperature and composition. The process atmosphere and duration of the experiment (for some cases) were also found to have significant influence on the wetting angle. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases to an equilibrium value with duration of measurement ranging from 150 to 117 deg (Ge), 129 to 100 deg (GeSi). Forming gas (Ar + 2% H2) and vacuum have been used in the growth ampoules. With gas in the ampoule, a variation of the temperature profile during growth has been used to control the pressure difference between the top of the melt and the volume below the melt caused by detachment of the growing crystal. The stability of detachment has been modeled and substantial insight has been gained into the reasons that detachment has most often been observed in reduced gravity but nonetheless has occurred randomly even there. An empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed and will be presented. Methods for determining the nature and extent of detachment include profilometry and optical and electron microscopy. This surface study is the subject of another presentation at this Congress. Results in this presentation will show that we have established the effects of different ampoule materials, temperature profiles, pressure differences, and silicon concentrations and that samples that are nearly completely detached can be grown repeatedly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Theron D.; McDonald, Jimmie M.; Cadwallader, Lee C.
2000-01-15
This paper discusses the thermal response of two prototypical International Thermonuclear Experimental Reactor (ITER) divertor channels during simulated loss-of-flow-accident (LOFA) experiments. The thermal response was characterized by the time-to-burnout (TBO), which is a figure of merit on the mockups' survivability. Data from the LOFA experiments illustrate that (a) the pre-LOFA inlet velocity does not significantly influence the TBO, (b) the incident heat flux (IHF) does influence the TBO, and (c) a swirl tape insert significantly improves the TBO and promotes the initiation of natural circulation. This natural circulation enabled the mockup to absorb steady-state IHFs after the coolant circulation pumpmore » was disabled. Several methodologies for thermal-hydraulic modeling of the LOFA were attempted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, T.D.; McDonald, J.M.; Cadwallader, L.C.
2000-01-01
This paper discusses the thermal response of two prototypical International Thermonuclear Experimental Reactor (ITER) divertor channels during simulated loss-of-flow-accident (LOFA) experiments. The thermal response was characterized by the time-to-burnout (TBO), which is a figure of merit on the mockups' survivability. Data from the LOFA experiments illustrate that (a) the pre-LOFA inlet velocity does not significantly influence the TBO, (b) the incident heat flux (IHF) does influence the TBO, and (c) a swirl tape insert significantly improves the TBO and promotes the initiation of natural circulation. This natural circulation enabled the mockup to absorb steady-state IHFs after the coolant circulation pumpmore » was disabled. Several methodologies for thermal-hydraulic modeling of the LOFA were attempted.« less
NASA Astrophysics Data System (ADS)
Chen, B.; Xu, X. Q.; Xia, T. Y.; Li, N. M.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Ye, M. Y.; Wan, Y. X.
2018-05-01
The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.
NASA Astrophysics Data System (ADS)
Pengfei, ZHANG; Ling, ZHANG; Zhenwei, WU; Zong, XU; Wei, GAO; Liang, WANG; Qingquan, YANG; Jichan, XU; Jianbin, LIU; Hao, QU; Yong, LIU; Juan, HUANG; Chengrui, WU; Yumei, HOU; Zhao, JIN; J, D. ELDER; Houyang, GUO
2018-04-01
Modeling with OEDGE was carried out to assess the initial and long-term plasma contamination efficiency of Ar puffing from different divertor locations, i.e. the inner divertor, the outer divertor and the dome, in the EAST superconducting tokamak for typical ohmic plasma conditions. It was found that the initial Ar contamination efficiency is dependent on the local plasma conditions at the different gas puff locations. However, it quickly approaches a similar steady state value for Ar recycling efficiency >0.9. OEDGE modeling shows that the final equilibrium Ar contamination efficiency is significantly lower for the more closed lower divertor than that for the upper divertor.
Characteristics of the Secondary Divertor on DIII-D
NASA Astrophysics Data System (ADS)
Watkins, J. G.; Lasnier, C. J.; Leonard, A. W.; Evans, T. E.; Pitts, R.; Stangeby, P. C.; Boedo, J. A.; Moyer, R. A.; Rudakov, D. L.
2009-11-01
In order to address a concern that the ITER secondary divertor strike plates may be insufficiently robust to handle the incident pulses of particles and energy from ELMs, we performed dedicated studies of the secondary divertor plasma and scrape-off layer (SOL). Detailed measurements of the ELM energy and particle deposition footprint on the secondary divertor target plates were made with a fast IR camera and Langmuir probes and SOL profile and transport measurements were made with reciprocating probes. The secondary divertor and SOL conditions depended on changes in the magnetic balance and the core plasma density. Larger density resulted in smaller ELMs and the magnetic balance affected how many ELM particles coupled to the secondary SOL and divertor. Particularly striking are the images from a new fast IR camera that resolve ELM heat pulses and show spiral patterns with multiple peaks during ELMs in the secondary divertor.
NASA Astrophysics Data System (ADS)
Olsen, Christopher; Squire, Jared; Longmier, Benjamin; Ballenger, Maxwell; Cassady, Leonard; Carter, Mark; Ilin, Andrew; Cloutier, Paul; Bering, Edgar; Giambusso, Matthew; Ad Astra Rocket Company Team; Rice University Collaboration; University of Houston Collaboration
2011-10-01
Theories of magnetized plasma detachment in an expanding magnetic field have been lacking detailed experimental evidence. Recent experiments using a 200 kW class electric rocket (VX-200), run at 100 kW using argon and a peak magnetic field of 2 T, produced ion energies greater than 100 eV with a flux of 2x1022 ions/s in a 150 m3 vacuum facility. Ion-neutral charge exchange effects were reduced and the resultant data show evidence of plasma detachment in a diverging magnetic field on a scale length of 2 m. The detachment is confirmed using multiple plasma diagnostics and magnetic nozzle topologies. Spatial maps of the data are compared to simulations from a particle detachment model, ParTraj, as well as MHD detachment theory. ParTraj, when compared to experiment, is shown to be more consistent in describing the data. Unless the MHD models are modified to incorporation two-fluid effects, single fluid MHD theory is inconsistent with the observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umansky, M. V.; Ryutov, D. D.
Reduced MHD equations are used for studying toroidally symmetric plasma dynamics near the divertor null point. Numerical solution of these equations exhibits a plasma vortex localized at the null point with the time-evolution defined by interplay of the curvature drive, magnetic restoring force, and dissipation. Convective motion is easier to achieve for a second-order null (snowflake) divertor than for a regular x-point configuration, and the size of the convection zone in a snowflake configuration grows with plasma pressure at the null point. In conclusion, the trends in simulations are consistent with tokamak experiments which indicate the presence of enhanced transportmore » at the null point.« less
A super-cusp divertor configuration for tokamaks
Ryutov, D. D.
2015-08-26
Our study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that the set of remote coils can produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough controlmore » that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called ‘a super-cusp’. General geometrical features of the three-null configurations produced by remote coils are described. Furthermore, issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.« less
On heat loading, novel divertors, and fusion reactors
NASA Astrophysics Data System (ADS)
Kotschenreuther, M.; Valanju, P. M.; Mahajan, S. M.; Wiley, J. C.
2007-07-01
The limited thermal power handling capacity of the standard divertors (used in current as well as projected tokamaks) is likely to force extremely high (˜90%) radiation fractions frad in tokamak fusion reactors that have heating powers considerably larger than ITER [D. J. Campbell, Phys. Plasmas 8, 2041 (2001)]. Such enormous values of necessary frad could have serious and debilitating consequences on the core confinement, stability, and dependability for a fusion power reactor, especially in reactors with Internal Transport Barriers. A new class of divertors, called X-divertors (XD), which considerably enhance the divertor thermal capacity through a flaring of the field lines only near the divertor plates, may be necessary and sufficient to overcome these problems and lead to a dependable fusion power reactor with acceptable economics. X-divertors will lower the bar on the necessary confinement to bring it in the range of the present experimental results. Its ability to reduce the radiative burden imparts the X-divertor with a key advantage. Lower radiation demands allow sharply peaked density profiles that enhance the bootstrap fraction creating the possibility for a highly increased beta for the same beta normal discharges. The X-divertor emerges as a beta-enhancer capable of raising it by up to roughly a factor of 2.
Reduction of Defects in Germanium-Silicon
NASA Technical Reports Server (NTRS)
2003-01-01
Crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached- Bridgman growth is a promising tool to improve crystal quality, without the limitations of float zoning or the defects introduced by normal Bridgman growth. Goals of this project include the development of the detached Bridgman process to be reproducible and well understood and to quantitatively compare the defect and impurity levels in crystals grown by these three methods. Germanium (Ge) and germanium-silicon (Ge-Si) alloys are being used. At MSFC, we are responsible for the detached Bridgman experiments intended to differentiate among proposed mechanisms of detachment, and to confirm or refine our understanding of detachment. Because the contact angle is critical to determining the conditions for detachment, the sessile drop method was used to measure the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. Etch pit density (EPD) measurements of normal and detached Bridgman-grown Ge samples show a two order of magnitude improvement in the detached-grown samples. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. We have investigated the effects on detachment of ampoule material, pressure difference above and below the melt, and Si concentration; samples that are nearly completely detached can be grown repeatedly in pBN. Current work is concentrated on developing a method to make in situ pressure measurements in the growth ampoules.
Experimental and analytical studies of high heat flux components for fusion experimental reactor
NASA Astrophysics Data System (ADS)
Araki, Masanori
1993-03-01
In this report, the experimental and analytical results concerning the development of plasma facing components of ITER are described. With respect to developing high heat removal structures for the divertor plates, an externally-finned swirl tube was developed based on the results of critical heat flux (CHF) experiments on various tube structures. As the result, the burnout heat flux, which also indicates incident CHF, of 41 (+/-) 1 MW/sq m was achieved in the externally-finned swirl tube. The applicability of existing CHF correlations based on uniform heating conditions was evaluated by comparing the CHF experimental data with the smooth and the externally-finned tubes under one-sided heating condition. As the results, experimentally determined CHF data for straight tube show good agreement, for the externally-finned tube, no existing correlations are available for prediction of the CHF. With respect to the evaluation of the bonds between carbon-based material and heat sink metal, results of brazing tests were compared with the analytical results by three dimensional model with temperature-dependent thermal and mechanical properties. Analytical results showed that residual stresses from brazing can be estimated by the analytical three directional stress values instead of the equivalent stress value applied. In the analytical study on the separatrix sweeping for effectively reducing surface heat fluxes on the divertor plate, thermal response of the divertor plate was analyzed under ITER relevant heat flux conditions and has been tested. As the result, it has been demonstrated that application of the sweeping technique is very effective for improvement in the power handling capability of the divertor plate and that the divertor mock-up has withstood a large number of additional cyclic heat loads.
Exploring the engineering limit of heat flux of a W/RAFM divertor target for fusion reactors
NASA Astrophysics Data System (ADS)
Mao, X.; Fursdon, M.; Chang, X. B.; Zhang, J. W.; Liu, P.; Ellwood, G.; Qian, X. Y.; Qin, S. J.; Peng, X. B.; Barrett, T. R.; Liu, P.
2018-06-01
The design and development of a fusion reactor divertor plasma facing component (PFC) is one of the many challenging issues on the road to commercial use of fusion energy. The divertor PFC is expected to exhaust steady state heat loads in the region of 10 MW m‑2 while keeping temperatures and thermo-mechanical stresses in its structure within the allowable limits. For ITER (International Thermo-Nuclear Experimental Reactor) a water cooled W/CuCrZr divertor PFC concept has been developed. However, this concept is not necessarily assured for use in future fusion reactors mainly because the neutron radiation dose would be at least an order magnitude higher, resulting in limited thermo-mechanical performance and considerably more activated waste products. In the present study, a water cooled divertor PFC using reduced activation ferritic-martensitic (RAFM) steel as the heat sink pipe has been designed with pressurised water reactor-like cooling conditions (pressure of 15.5 MPa, velocity of 10–20 m s‑1 and temperature of 300 °C). The PFC is made up of a number of rectangular tungsten tiles, each with an inner circular hole (so-called monoblocks), joined onto a RAFM steel pipe with copper interlayers. The thermo-mechanical performance of the PFC has been studied in detail. The heat transfer coefficient between the RAFM pipe inner surface and the water was calculated using published correlations. Geometric parameters and water velocity were optimized with finite element (FE) thermal analysis, to achieve acceptable temperatures in the structure given the target exhaust heat load of 10 MW m‑2. Under this heat load and the optimised thermal design parameters, the structure of the PFC was further assessed by mechanical analysis. We find that under these conditions the RAFM steel pipe experiences cyclic plasticity, and fails the common linear elastic ratchetting (3 Sm) rule. Nevertheless, the designed W/RAFM divertor PFU can withstand 10 MW m‑2 heat load, albeit with a fatigue life of approximately 0.55 years based on the expected operation scenario of a prototype or test reactor. This study extends the state of knowledge of the technological limit of a divertor based on a RAFM steel pipe structure.
Adhesion Upon Solidification and Detachment in the Melt Spinning of Metals
NASA Astrophysics Data System (ADS)
Altieri, Anthony L.; Steen, Paul H.
2014-12-01
In planar-flow melt spinning, liquid metal is rapidly solidified, against a heat-sink wheel, into thin ribbons which adhere to the substrate wheel. In the absence of a blade to mechanically scrape the ribbon off the wheel, it may wrap fully around and re-enter the solidification region, called `catastrophic' adhesion. Otherwise, detachment occurs part way around the wheel, called `natural' detachment. Natural detachment occurs through a release of thermo-elastic stress after sufficient cooling of the ribbon, according to prior studies. This note extends prior work by invoking a crack propagation view of natural detachment which, when combined with a simple model of the thermo-elastic stress build-up and ribbon cooling, yields an adhesion/detachment criterion characterized by an interfacial adhesion/fracture energy . For aluminum-silicon alloys frozen against a copper substrate, we report 60 N/m. The criterion can be used to predict detachment once a heat-transfer coefficient is known. We obtain this parameter from natural detachment experiments and then use it to predict catastrophic adhesion in a semi-empirical way. Our note puts a quantitative foundation underneath prior qualitative discussions in the literature. Alternatively, it demonstrates how the interfacial strength of adhesion, a property only of the pair of adhering materials, might be measured based on sticking distance experiments.
Interaction of plasmas with lithium and tungsten fusion plasma facing components
NASA Astrophysics Data System (ADS)
Fiflis, Peter Robert
One of the largest outstanding issues in magnetic confinement fusion is the interaction of the fusion plasma with the first wall of the device; an interaction which is strongest in the divertor region. Erosion, melting, sputtering, and deformation are all concerns which inform choices of divertor material. Of the many materials proposed for use in the divertor, only a few remain as promising choices. Tungsten has been chosen as the material for the ITER divertor, and liquid lithium stands poised as its replacement in higher heat flux devices. As a refractory metal, tungsten's large melting point and thermal conductivity as well as its low sputtering yield have led to its selection as the material of choice of the ITER divertor. Experiments have reinforced this choice demonstrating tungsten's ability to withstand large heat fluxes when adequately cooled. However, tungsten has shown a propensity to nanostructure under exposure within a certain temperature range to large fluxes of helium ions. These nanostructures if disrupted into the plasma as dust by an off-normal event would cause quenching of the plasma from the generated dust. Liquid lithium, meanwhile, has gathered growing interest within the fusion community in recent years as a divertor, limiter, and alternative first wall material. Liquid lithium is attractive as a low-Z material replacement for refractory metals due to its ability to getter impurities, while also being self-healing in nature. However, concerns exist about the stability of a liquid metal surface at the edge of a fusion device. Liquid metal pools, such as the Li-DiMes probe, have shown evidence of macroscopic lithium displacement as well as droplet formation and ejection into the plasma. These issues must be mitigated in future implementations of liquid lithium divertor concepts. Rayleigh-Taylor-like (RT) and Kelvin-Helmholtz-like (KH) instabilities have been claimed as the initiators of droplet ejection, yet not enough data exists to delineate a stability boundary. The influences of plasma pressure and current driven instabilities on lithium surfaces that lead to droplet ejection are investigated to determine which of the two effects is dominant for a given set of plasma conditions. This work studies the influence of large plasma fluxes on these two materials to better inform the selection and design of plasma facing components (PFCs). The nanostructuring of tungsten was investigated to determine the mechanisms by which tungsten nanostructures so that its formation may be mitigated. Experiments investigated the dependence of nanostructuring on temperature, looked at the morphological evolution, and grew nanostructures on a variety of metals to examine their similarity to tungsten. Additionally, a computational model is presented for the initial stages of fuzz formation showing good quantitative and qualitative agreement with experimental observations. The influences of RT and KH instabilities on the surface of liquid lithium were experimentally observed and quantified on the ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) chamber at the University of Illinois at Urbana-Champaign and the stabilizing effect of surface tension, an effect employed by the LiMIT concept as well as other liquid lithium concepts, was studied, and the stability boundary afforded by surface tension was compared between experiment, computational simulation, and theory.
Upgrades of edge, divertor and scrape-off layer diagnostics of W7-X for OP1.2
Hathiramani, D.; Ali, A.; Anda, G.; ...
2018-02-07
In this work, Wendelstein 7-X (W7-X) is the world’s largest superconducting nuclear fusion experiment of the optimized stellarator type. In the first Operation Phase (OP1.1) helium and hydrogen plasmas were studied in limiter configuration. The heating energy was limited to 4 MJ and the main purpose of that campaign was the integral commissioning of the machine and diagnostics, which was achieved very successfully. Already from the beginning a comprehensive set of diagnostics was available to study the plasma. On the path towards high-power, high-performance plasmas, W7-X will be stepwise upgraded from an inertially cooled (OP1.2, limited to 80 MJ) tomore » an actively cooled island divertor (OP2, 10 MW steady-state plasma operation). The machine is prepared for OP1.2 with 10 inertially cooled divertor units, and the experimental campaign has started recently.The paper describes a subset of diagnostics which will be available for OP1.2 to study the plasma edge, divertor and scrape-off layer physics including those already available for OP1.1, plus modifications, upgrades and new systems. In conclusion, the focus of this summary will be on technical and engineering aspects, like feasibility and assembly but also on reliability, thermal loads and shielding against magnetic fields.« less
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes
NASA Astrophysics Data System (ADS)
Sadeghi, Gholamreza; Schijven, Jack F.; Behrends, Thilo; Hassanizadeh, S. Majid; van Genuchten, Martinus Th.
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments.
Divertor impurity monitor for the International Thermonuclear Experimental Reactor
NASA Astrophysics Data System (ADS)
Sugie, T.; Ogawa, H.; Nishitani, T.; Kasai, S.; Katsunuma, J.; Maruo, M.; Ebisawa, K.; Ando, T.; Kita, Y.
1999-01-01
The divertor impurity monitoring system of the International Thermonuclear Experimental Reactor has been designed. The main functions of this system are to identify impurity species and to measure the two-dimensional distributions of the particle influxes in the divertor plasmas. The wavelength range is 200-1000 nm. The viewing fans are realized by molybdenum mirrors located in the divertor cassette. With additional viewing fans seeing through the gap between the divertor cassettes, the region approximately from the divertor leg to the x point will be observed. The light from the divertor region passes through the quartz windows on the divertor port plug and the cryostat, and goes through the dog-leg optics in the biological shield. Three different type of spectrometers: (i) survey spectrometers for impurity species monitoring, (ii) filter spectrometers for the particle influx measurement with the spatial resolution of 10 mm and the time resolution of 1 ms, and (iii) high dispersion spectrometers for high resolution wavelength measurements are designed. These spectrometers are installed just behind the biological shield (for λ<450 nm) to prevent the transmission loss in fiber and in the diagnostic room (for λ⩾450 nm) from the point of view of accessibility and flexibility. The optics have been optimized by a ray trace analysis. As a result, 10-15 mm spatial resolution will be achieved in all regions of the divertor.
Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2008-01-01
At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.
Calculations of Helium Bubble Evolution in the PISCES Experiments with Cluster Dynamics
NASA Astrophysics Data System (ADS)
Blondel, Sophie; Younkin, Timothy; Wirth, Brian; Lasa, Ane; Green, David; Canik, John; Drobny, Jon; Curreli, Davide
2017-10-01
Plasma surface interactions in fusion tokamak reactors involve an inherently multiscale, highly non-equilibrium set of phenomena, for which current models are inadequate to predict the divertor response to and feedback on the plasma. In this presentation, we describe the latest code developments of Xolotl, a spatially-dependent reaction diffusion cluster dynamics code to simulate the divertor surface response to fusion-relevant plasma exposure. Xolotl is part of a code-coupling effort to model both plasma and material simultaneously; the first benchmark for this effort is the series of PISCES linear device experiments. We will discuss the processes leading to surface morphology changes, which further affect erosion, as well as how Xolotl has been updated in order to communicate with other codes. Furthermore, we will show results of the sub-surface evolution of helium bubbles in tungsten as well as the material surface displacement under these conditions.
Progress in magnet design activities for the material plasma exposure experiment
Duckworth, Robert; Lumsdaine, Arnold; Rapp, Juergen; ...
2017-07-01
One of the critical challenges for the development of next generation fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or DEMO, is the understanding of plasma material interactions (PMI). Making progress in PMI research will require integrated facilities that can provide the types of conditions that will be seen in the first wall and divertor regions of future fusion facilities. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX), is proposed. In order to generate high ion fluence to simulate fusion divertor conditions, a steady-state plasma will be generated andmore » confined with superconducting magnets. Finally, the on-axis fields will range from 1 to 2.5 T in order to meet the requirements of the various plasma source and heating systems. Details on the pre-conceptual design of the magnets and cryogenic system are presented.« less
Frerichs, H.; Schmitz, Oliver; Reiter, D.; ...
2014-02-04
The application of resonant magnetic perturbations (RMPs) results in a non-axisymmetric striation pattern of magnetic field lines from the plasma interior which intersect the divertor targets. The impact on related particle and heat fluxes is investigated by three dimensional computer simulations for two different recycling conditions (controlled via neutral gas pumping). It is demonstrated that a mismatch between the particle and heat flux striation pattern, as is repeatedly observed in ITER similar shape H-mode plasmas at DIII-D, can be reproduced by the simulations for high recycling conditions at the onset of partial detachment. Finally, these results indicate that a detailedmore » knowledge of the particle and energy balance is at least as important for realistic simulations as the consideration of a change in the magnetic field structure by plasma response effects.« less
ADX: a high field, high power density, advanced divertor and RF tokamak
NASA Astrophysics Data System (ADS)
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.
Interpretations of the impact of cross-field drifts on divertor flows in DIII-D with UEDGE
Jaervinen, Aaro E.; Allen, Steve L.; Groth, Mathias; ...
2017-01-27
Simulations using the multi-fluid code UEDGE indicates that, in low confinement (Lmode) plasmas in DIII-D, recycling driven flows dominate poloidal particle flows in the divertor, whereas E×B drift flows dominate the radial particle flows. In contrast, in high confinement (H-mode) conditions E×B drift flows dominate both poloidal and radial particle flows in the divertor. UEDGE indicates that the toroidal C 2+ flow velocities in the divertor plasma are entrained within 30% to the background deuterium flow in both Land H-mode plasmas in the plasma region where the CIII 465 nm emission is measured. Therefore, UEDGE indicates that the Carbon Dopplermore » Coherence Imaging System (CIS), measuring the toroidal velocity of the C 2+ ions, can provide insight to the deuterium flows in the divertor. Parallel-to-B velocity dominates the toroidal divertor flow; direct drift impact being less than 1%. Toroidal divertor flow is predicted to reverse when the magnetic field is reversed. This is explained by the parallel-B flow towards the nearest divertor plate corresponding to opposite toroidal directions in opposite toroidal field configurations. Due to strong poloidal E×B flows in H-mode, net poloidal particle transport can be in opposite direction than the poloidal component of the parallel-B plasma flow.« less
Exploration of magnetic perturbation effects on advanced divertor configurations in NSTX-U
Frerichs, H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Waters, I. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Schmitz, O. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Canal, G. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Evans, T. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Feng, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Soukhanovskii, V. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2016-06-01
The control of divertor heat loads - both steady state and transient - remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads are so called 'advanced divertors' which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts - magnetic perturbations and advanced divertors - will have to work together, and we explore their interaction based on the NSTX-U setup. An overview of different divertor configurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which is related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.
Optimized tokamak power exhaust with double radiative feedback in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Bernert, M.; Eich, T.; Fuchs, J. C.; Giannone, L.; Herrmann, A.; Schweinzer, J.; Treutterer, W.; the ASDEX Upgrade Team
2012-12-01
A double radiative feedback technique has been developed on the ASDEX Upgrade tokamak for optimization of power exhaust with a standard vertical target divertor. The main chamber radiation is measured in real time by a subset of three foil bolometer channels and controlled by argon injection in the outer midplane. The target heat flux is in addition controlled by nitrogen injection in the divertor private flux region using either a thermoelectric sensor or the scaled divertor radiation obtained by a bolometer channel in the outer divertor. No negative interference of the two radiation controllers has been observed so far. The combination of main chamber and divertor radiative cooling extends the operational space of a standard divertor configuration towards high values of P/R. Pheat/R = 14 MW m-1 has been achieved so far with nitrogen seeding alone as well as with combined N + Ar injection, with the time-averaged divertor peak heat flux below 5 MW m-2. Good plasma performance can be maintained under these conditions, namely H98(y,2) = 1 and βN = 3.
Meier, Laurenz L; Cho, Eunae
2018-05-14
With the mounting evidence that employees' work experiences spill over into the family domain and cross over to family members, it is important to understand the underlying mechanism through which work experiences affect the family domain and what factors may alleviate the adverse impact of work stress. Expanding previous research that mainly focused on the affect-based mechanism (negative affect), the present research investigated a resource-based mechanism (psychological detachment from work) in the relationship linking two work stressors (high workload and workplace incivility) with social undermining toward the partner at home. We also explored the relative strength of the mediating effects of the two mechanisms. In addition, we tested whether relationship satisfaction moderates the proposed effect of detachment on partner undermining. We tested these research questions using two studies with differing designs: a five-wave longitudinal study (N = 470) and a multisource study (N = 131). The results suggest that stressful work experiences affect the family domain via lack of detachment as well as negative affect, that the two pathways have comparable strength, and that high relationship satisfaction mitigates the negative effect of lack of detachment on partner undermining. In sum, this research extends the spillover-crossover model by establishing that poor psychological detachment from work during leisure time is an additional mechanism that links work and family. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
A Meta-Analysis on Antecedents and Outcomes of Detachment from Work.
Wendsche, Johannes; Lohmann-Haislah, Andrea
2016-01-01
Detachment from work has been proposed as an important non-work experience helping employees to recover from work demands. This meta-analysis (86 publications, k = 91 independent study samples, N = 38,124 employees) examined core antecedents and outcomes of detachment in employee samples. With regard to outcomes, results indicated average positive correlations between detachment and self-reported mental (i.e., less exhaustion, higher life satisfaction, more well-being, better sleep) and physical (i.e., lower physical discomfort) health, state well-being (i.e., less fatigue, higher positive affect, more intensive state of recovery), and task performance (small to medium sized effects). However, average relationships between detachment and physiological stress indicators and work motivation were not significant while associations with contextual performance and creativity were significant, but negative. Concerning work characteristics, as expected, job demands were negatively related and job resources were positively related to detachment (small sized effects). Further, analyses revealed that person characteristics such as negative affectivity/neuroticism (small sized effect) and heavy work investment (medium sized effect) were negatively related to detachment whereas detachment and demographic variables (i.e., age and gender) were not related. Moreover, we found a medium sized average negative relationship between engagement in work-related activities during non-work time and detachment. For most of the examined relationships heterogeneity of effect sizes was moderate to high. We identified study design, samples' gender distribution, and affective valence of work-related thoughts as moderators for some of these aforementioned relationships. The results of this meta-analysis point to detachment as a non-work (recovery) experience that is influenced by work-related and personal characteristics which in turn is relevant for a range of employee outcomes.
A Meta-Analysis on Antecedents and Outcomes of Detachment from Work
Wendsche, Johannes; Lohmann-Haislah, Andrea
2017-01-01
Detachment from work has been proposed as an important non-work experience helping employees to recover from work demands. This meta-analysis (86 publications, k = 91 independent study samples, N = 38,124 employees) examined core antecedents and outcomes of detachment in employee samples. With regard to outcomes, results indicated average positive correlations between detachment and self-reported mental (i.e., less exhaustion, higher life satisfaction, more well-being, better sleep) and physical (i.e., lower physical discomfort) health, state well-being (i.e., less fatigue, higher positive affect, more intensive state of recovery), and task performance (small to medium sized effects). However, average relationships between detachment and physiological stress indicators and work motivation were not significant while associations with contextual performance and creativity were significant, but negative. Concerning work characteristics, as expected, job demands were negatively related and job resources were positively related to detachment (small sized effects). Further, analyses revealed that person characteristics such as negative affectivity/neuroticism (small sized effect) and heavy work investment (medium sized effect) were negatively related to detachment whereas detachment and demographic variables (i.e., age and gender) were not related. Moreover, we found a medium sized average negative relationship between engagement in work-related activities during non-work time and detachment. For most of the examined relationships heterogeneity of effect sizes was moderate to high. We identified study design, samples' gender distribution, and affective valence of work-related thoughts as moderators for some of these aforementioned relationships. The results of this meta-analysis point to detachment as a non-work (recovery) experience that is influenced by work-related and personal characteristics which in turn is relevant for a range of employee outcomes. PMID:28133454
Reactor application of an improved bundle divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, T.F.; Ruck, G.W.; Lee, A.Y.
1978-11-01
A Bundle Divertor was chosen as the impurity control and plasma exhaust system for the beam driven Demonstration Tokamak Hybrid Reactor - DTHR. In the context of a preconceptual design study of the reactor and associated facility a bundle divertor concept was developed and integrated into the reactor system. The overall system was found feasible and scalable for reactors with intermediate torodial field strengths on axis. The important design characteristics are: the overall average current density of the divertor coils is 0.73 kA for each tesla of toroidal field on axis; the divertor windings are made from super-conducting cables supportedmore » by steel structures and are designed to be maintainable; the particle collection assembly and auxiliary cryosorption vacuum pump are dual systems designed such that they can be reactivated alterntively to allow for continuous reactor operation; and the power requirement for energizing and operating the divertor is about 5 MW.« less
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes.
Sadeghi, Gholamreza; Schijven, Jack F; Behrends, Thilo; Hassanizadeh, S Majid; van Genuchten, Martinus Th
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
Time-to-burnout data for a prototypical ITER divertor tube during a simulated loss of flow accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, T.D.; Watson, R.D.; McDonald, J.M.
The Loss of Flow Accident (LOFA) is a serious safety concern for the International Thermonuclear Experimental Reactor (ITER) as it has been suggested that greater than 100 seconds are necessary to safely shutdown the plasma when ITER is operating at full power. In this experiment, the thermal response of a prototypical ITER divertor tube during a simulated LOFA was studied. The divertor tube was fabricated from oxygen-free high-conductivity copper to have a square geometry with a circular coolant channel. The coolant channel inner diameter was 0.77 cm, the heated length was 4.0 cm, and the heated width was 1.6 cm.more » The mockup did not feature any flow enhancement techniques, i.e., swirl tape, helical coils, or internal fins. One-sided surface heating of the mockup was accomplished through the use of the 30 kW Sandia Electron Beam Test System. After reaching steady state temperatures in the mockup, as determined by two Type-K thermocouples installed 0.5 mm beneath the heated surface, the coolant pump was manually tripped off and the coolant flow allowed to naturally coast down. Electron beam heating continued after the pump trip until the divertor tube`s heated surface exhibited the high temperature transient normally indicative of rapidly approaching burnout. Experimental data showed that time-to-burnout increases proportionally with increasing inlet velocity and decreases proportionally with increasing incident heat flux.« less
Mazzotti, Eva; Farina, Benedetto; Imperatori, Claudio; Mansutti, Federica; Prunetti, Elena; Speranza, Anna Maria; Barbaranelli, Claudio
2016-01-01
Background In this study, we explored the ability of the Dissociative Experiences Scale (DES) to catch detachment and compartmentalization symptoms. Participants and methods The DES factor structure was evaluated in 768 psychiatric patients (546 women and 222 men) and in 2,403 subjects enrolled in nonpsychiatric settings (1,857 women and 546 men). All participants were administered the Italian version of DES. Twenty senior psychiatric experts in the treatment of dissociative symptoms independently assessed the DES items and categorized each of them as follows: “C” for compartmentalization, “D” for detachment, and “NC” for noncongruence with either C or D. Results Confirmatory factor analysis supported the three-factor structure of DES in both clinical and nonclinical samples and its invariance across the two groups. Moreover, factor analyses results overlapped with those from the expert classification procedure. Conclusion Our results showed that DES can be used as a valid instrument for clinicians to assess the frequency of different types of dissociative experiences including detachment and compartmentalization. PMID:27350746
Mazzotti, Eva; Farina, Benedetto; Imperatori, Claudio; Mansutti, Federica; Prunetti, Elena; Speranza, Anna Maria; Barbaranelli, Claudio
2016-01-01
In this study, we explored the ability of the Dissociative Experiences Scale (DES) to catch detachment and compartmentalization symptoms. The DES factor structure was evaluated in 768 psychiatric patients (546 women and 222 men) and in 2,403 subjects enrolled in nonpsychiatric settings (1,857 women and 546 men). All participants were administered the Italian version of DES. Twenty senior psychiatric experts in the treatment of dissociative symptoms independently assessed the DES items and categorized each of them as follows: "C" for compartmentalization, "D" for detachment, and "NC" for noncongruence with either C or D. Confirmatory factor analysis supported the three-factor structure of DES in both clinical and nonclinical samples and its invariance across the two groups. Moreover, factor analyses results overlapped with those from the expert classification procedure. Our results showed that DES can be used as a valid instrument for clinicians to assess the frequency of different types of dissociative experiences including detachment and compartmentalization.
NASA Astrophysics Data System (ADS)
Ali, A.; Jakubowski, M.; Greuner, H.; Böswirth, B.; Moncada, V.; Sitjes, A. Puig; Neu, R.; Pedersen, T. S.; the W7-X Team
2017-12-01
One of the aims of stellarator Wendelstein 7-X (W7-X), is to investigate steady state operation, for which power exhaust is an important issue. The predominant fraction of the energy lost from the confined plasma region will be absorbed by an island divertors, which is designed for 10 {{MWm}}-2 steady state operation. In order to protect the divertor targets from overheating, 10 state-of-the-art infrared endoscopes will be installed at W7-X. In this work, we present the experimental results obtained at the high heat flux test facility GLADIS (Garching LArge DIvertor Sample test facility in IPP Garching) [1] during tests of a new plasma facing components (PFCs) protection algorithm designed for W7-X. The GLADIS device is equipped with two ion beams that can generate a heat load in the range from 3 MWm-2 to 55 MWm-2. The algorithms developed at W7-X to detect defects and hot spots are based on the analysis of surface temperature evolution and are adapted to work in near real-time. The aim of this work was to test the near real-time algorithms in conditions close to those expected in W7-X. The experiments were performed on W7-X pre-series tiles to detect CFC/Cu delaminations. For detection of surface layers, carbon fiber composite (CFC) blocks from the divertor of the Wendelstein 7-AS stellarator were used to observe temporal behavior of fully developed surface layers. These layers of re-deposited materials, like carbon, boron, oxygen and iron, were formed during the W7-AS operation. A detailed analysis of the composition and their thermal response to high heat fluxes (HHF) are described in [2]. The experiments indicate that the automatic detection of critical events works according to W7-X PFC protection requirements.
Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y
2016-08-01
In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.
NASA Astrophysics Data System (ADS)
Deng, G. Z.; Xu, J. C.; Liu, X.; Liu, X. J.; Liu, J. B.; Zhang, H.; Liu, S. C.; Chen, L.; Yan, N.; Feng, W.; Liu, H.; Xia, T. Y.; Zhang, B.; Shao, L. M.; Ming, T. F.; Xu, G. S.; Guo, H. Y.; Xu, X. Q.; Gao, X.; Wang, L.
2018-04-01
A comprehensive work of the effects of plasma current and heating schemes on divertor power footprint widths is carried out in the experimental advanced superconducting tokamak (EAST). The divertor power footprint widths, i.e., the scrape-off layer heat flux decay length λ q and the heat spreading S, are crucial physical and engineering parameters for fusion reactors. Strong inverse scaling of λ q and S with plasma current have been demonstrated for both neutral beam (NB) and lower hybrid wave (LHW) heated L-mode and H-mode plasmas at the inner divertor target. For plasmas heated by the combination of the two kinds of auxiliary heating schemes (NB and LHW), the divertor power widths tend to be larger in plasmas with higher ratio of LHW power. Comparison between experimental heat flux profiles at outer mid-plane (OMP) and divertor target for NB heated and LHW heated L-mode plasmas reveals that the magnetic topology changes induced by LHW may be the main reason to the wider divertor power widths in LHW heated discharges. The effect of heating schemes on divertor peak heat flux has also been investigated, and it is found that LHW heated discharges tend to have a lower divertor peak heat flux compared with NB heated discharges under similar input power. All these findings seem to suggest that plasmas with LHW auxiliary heating scheme are better heat exhaust scenarios for fusion reactors and should be the priorities for the design of next-step fusion reactors like China Fusion Engineering Test Reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, J. C.; Jia, M. N.; Feng, W.
2016-08-15
In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triplemore » probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.« less
Factors Influencing Biofilm Formation in Streams: Bacterial Colonization, Detachment and Transport
NASA Astrophysics Data System (ADS)
Leff, L.
2005-05-01
Surfaces in aquatic systems develop biofilms containing microorganisms embedded in complex extracellular matrices. Properties of the surface, water, and colonizing organisms impact biofilm formation. Biofilm features, physical disturbance, and interactions between macro- and microscopic organisms, in turn, influence detachment. In spite of the importance of biofilms, much remains unknown about factors controlling biofilms in streams and other natural environments. Experiments were conducted in the laboratory and field to examine factors influencing surface colonization, and subsequent biofilm formation, and detachment. Microscopy methods, fluorescent in situ hybridization and confocal laser microscopy, were used to examine responses, including abundance of different taxa and biofilm depth. From these experiments, we determined that different taxa differ in their colonization ability based on properties like extracellular polysaccharide production and surface features, like hydrophobicity and that water chemistry, such as magnesium concentration, plays an important role. Moreover, detachment varies among taxa and with environmental conditions and may be enhanced by activities of macrofauna. Variation in detachment, in turn, influences bacterial transport and subsequent re-attachment. Overall, examination of attachment, detachment, and interactions in biofilms allows us to begin to understand how environmental conditions may impact the function of these communities in aquatic systems.
The influence of Filaments in the Private Flux Region on Divertor Power and Particle Deposition
NASA Astrophysics Data System (ADS)
Harrison, James
2014-10-01
Recent advances in imaging of the MAST divertor have revealed, for the first time, evidence for filaments in the private flux region (PFR). Detailed analysis of the image data shows 3 distinct types of fluctuations occurring within the divertor volume: highly sheared filaments in the SOL originating from the outer midplane, high frequency (>50 kHz) filaments near the separatrix of the outer divertor leg and filaments in the private flux region originating from inner divertor leg. With the need to extrapolate divertor performance from existing machines to future devices, these observations can contribute to our quantitative understanding of transport in the PFR. In particular, they suggest that transport in the PFR is, at least in part, driven by turbulence, which may not be well captured by the Eich/Wagner description of the divertor footprint, expressed in terms of exponential decay in space above the X-point and Gaussian spreading below the X-point. The PFR filaments are observed to move largely parallel with the flux surfaces in a way equivalent to a toroidal angular velocity of order 2 ×104 rad/s in H-mode, and slower by a factor of order 2 in L-mode. During their transit parallel to the flux surfaces across the PFR, the filaments eject plasma in bursts, away from the separatrix, deeper into the private flux region. Correlation analysis suggests that they are generated by processes local to the inner divertor leg, as there is a weak correlation between fluctuations in the SOL and PFR above what is expected from line integration effects. Scaling of filament properties with machine operating parameters, such as plasma current, density and auxiliary heating power will be presented, together with a comparison with data from divertor Langmuir probes and IR thermography to estimate the role PFR filaments play in determining the width of the divertor footprint.
Scotti, F.; Soukhanovskii, V. A.
2015-12-09
A two-channel spectral imaging system based on a charge injection device radiation-hardened intensified camera was built for studies of plasma-surface interactions on divertor plasma facing components in the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak. By means of commercially available mechanically referenced optical components, the two-wavelength setup images the light from the plasma, relayed by a fiber optic bundle, at two different wavelengths side-by-side on the same detector. Remotely controlled filter wheels are used for narrow band pass and neutral density filters on each optical path allowing for simultaneous imaging of emission at wavelengths differing in brightness up to 3more » orders of magnitude. Applications on NSTX-U will include the measurement of impurity influxes in the lower divertor strike point region and the imaging of plasma-material interaction on the head of the surface analysis probe MAPP (Material Analysis and Particle Probe). Furthermore, the diagnostic setup and initial results from its application on the lithium tokamak experiment are presented.« less
Exploration of magnetic perturbation effects on advanced divertor configurations in NSTX-U
Frerichs, H.; Schmitz, O.; Waters, I.; ...
2016-06-01
The control of divertor heat loads - both steady state and transient - remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads are so called 'advanced divertors' which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts - magnetic perturbations and advanced divertors - will have to work together, and we explore their inter- action based onmore » the NSTX-U setup. An overview of different divertor con gurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which is related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.« less
Favorable effects of turbulent plasma mixing on the performance of innovative tokamak divertors
NASA Astrophysics Data System (ADS)
Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.
2013-10-01
The problem of reducing the heat load on plasma-facing components is one of the most demanding issues for MFE devices. The general approach to the solution of this problem is the use of a specially configured poloidal magnetic field, so called magnetic divertors. In recent years, novel divertors possessing the 2-nd and 3-rd order nulls of the poloidal field (PF) have been proposed. They are called a ``snowflake'' (SF) and a ``cloverleaf'' (CL) divertor, respectively, due to characteristic shape of the magnetic separatrix. Among several beneficial features of such divertors is an effect of strong turbulent plasma mixing that is intrinsic to the zone of weak PF near the null-point. The turbulence spreads the heat flux between multiple divertor exhaust channels and increases the heat flux width within each channel. Among physical processes affecting the onset of convection the curvature-driven mode of axisymmetric rolls is most prominent. The effect is quite significant for the SF and is even stronger for the CL divertor. Projections to future ITER-scale facilities are discussed. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Sun, Youwen
2017-10-01
A rotating n = 2 Resonant Magnetic Perturbation (RMP) field combined with a stationary n = 3 RMP field has validated predictions that access to ELM suppression can be improved, while divertor heat and particle flux can also be dynamically controlled in DIII-D. Recent observations in the EAST tokamak indicate that edge magnetic topology changes, due to nonlinear plasma response to magnetic perturbations, play a critical role in accessing ELM suppression. MARS-F code MHD simulations, which include the plasma response to the RMP, indicate the nonlinear transition to ELM suppression is optimized by configuring the RMP coils to drive maximal edge stochasticity. Consequently, mixed toroidal multi-mode RMP fields, which produce more densely packed islands over a range of additional rational surfaces, improve access to ELM suppression, and further spread heat loading on the divertor. Beneficial effects of this multi-harmonic spectrum on ELM suppression have been validated in DIII-D. Here, the threshold current required for ELM suppression with a mixed n spectrum, where part of the n = 3 RMP field is replaced by an n = 2 field, is smaller than the case with pure n = 3 field. An important further benefit of this multi-mode approach is that significant changes of 3D particle flux footprint profiles on the divertor are found in the experiment during the application of a rotating n = 2 RMP field superimposed on a static n = 3 RMP field. This result was predicted by modeling studies of the edge magnetic field structure using the TOP2D code which takes into account plasma response from MARS-F code. These results expand physics understanding and potential effectiveness of the technique for reliably controlling ELMs and divertor power/particle loading distributions in future burning plasma devices such as ITER. Work supported by USDOE under DE-FC02-04ER54698 and NNSF of China under 11475224.
Plasma production and preliminary results from the ADITYA Upgrade tokamak
NASA Astrophysics Data System (ADS)
R, L. TANNA; J, GHOSH; Harshita, RAJ; Rohit, KUMAR; Suman, AICH; Vaibhav, RANJAN; K, A. JADEJA; K, M. PATEL; S, B. BHATT; K, SATHYANARAYANA; P, K. CHATTOPADHYAY; M, N. MAKWANA; K, S. SHAH; C, N. GUPTA; V, K. PANCHAL; Praveenlal, EDAPPALA; Bharat, ARAMBHADIYA; Minsha, SHAH; Vismay, RAULJI; M, B. CHOWDHURI; S, BANERJEE; R, MANCHANDA; D, RAJU; P, K. ATREY; Umesh, NAGORA; J, RAVAL; Y, S. JOISA; K, TAHILIANI; S, K. JHA; M, V. GOPALKRISHANA
2018-07-01
The Ohmically heated circular limiter tokamak ADITYA (R 0 = 75 cm, a = 25 cm) has been upgraded to a tokamak named the ADITYA Upgrade (ADITYA-U) with an open divertor configuration with divertor plates. The main goal of ADITYA-U is to carry out dedicated experiments relevant for bigger fusion machines including ITER, such as the generation and control of runaway electrons, disruption prediction, and mitigation studies, along with an improvement in confinement with shaped plasma. The ADITYA tokamak was dismantled and the assembly of ADITYA-U was completed in March 2016. Integration of subsystems like data acquisition and remote operation along with plasma production and preliminary plasma characterization of ADITYA-U plasmas are presented in this paper.
Design of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak
NASA Astrophysics Data System (ADS)
Seon, Changrae; Hong, Joohwan; Song, Inwoo; Jang, Juhyeok; Lee, Hyeonyong; An, Younghwa; Kim, Bosung; Jeon, Taemin; Park, Jaesun; Choe, Wonho; Lee, Hyeongon; Pak, Sunil; Cheon, MunSeong; Choi, Jihyeon; Kim, Hyeonseok; Biel, Wolfgang; Bernascolle, Philippe; Barnsley, Robin; O'Mullane, Martin
2017-12-01
Design and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6-32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5-25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughput. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.
Clayton, D J; Jaworski, M A; Kumar, D; Stutman, D; Finkenthal, M; Tritz, K
2012-10-01
A divertor imaging radiometer (DIR) diagnostic is being studied to measure spatially and spectrally resolved radiated power P(rad)(λ) in the tokamak divertor. A dual transmission grating design, with extreme ultraviolet (~20-200 Å) and vacuum ultraviolet (~200-2000 Å) gratings placed side-by-side, can produce coarse spectral resolution over a broad wavelength range covering emission from impurities over a wide temperature range. The DIR can thus be used to evaluate the separate P(rad) contributions from different ion species and charge states. Additionally, synthetic spectra from divertor simulations can be fit to P(rad)(λ) measurements, providing a powerful code validation tool that can also be used to estimate electron divertor temperature and impurity transport.
NASA Astrophysics Data System (ADS)
Masuzaki, S.; Tokitani, M.; Otsuka, T.; Oya, Y.; Hatano, Y.; Miyamoto, M.; Sakamoto, R.; Ashikawa, N.; Sakurada, S.; Uemura, Y.; Azuma, K.; Yumizuru, K.; Oyaizu, M.; Suzuki, T.; Kurotaki, H.; Hamaguchi, D.; Isobe, K.; Asakura, N.; Widdowson, A.; Heinola, K.; Jachmich, S.; Rubel, M.; contributors, JET
2017-12-01
Results of the comprehensive surface analyses of divertor tiles and dusts retrieved from JET after the first ITER-like wall campaign (2011-2012) are presented. The samples cored from the divertor tiles were analyzed. Numerous nano-size bubble-like structures were observed in the deposition layer on the apron of the inner divertor tile, and a beryllium dust with the same structures were found in the matter collected from the inner divertor after the campaign. This suggests that the nano-size bubble-like structures can make the deposition layer to become brittle and may lead to cracking followed by dust generation. X-ray photoelectron spectroscopy analyses of chemical states of species in the deposition layers identified the formation of beryllium-tungsten intermetallic compounds on an inner vertical tile. Different tritium retention profiles along the divertor tiles were observed at the top surfaces and at deeper regions of the tiles by using the imaging plate technique.
Non-Solenoidal Tokamak Startup via Inboard Local Helicity Injection on the Pegasus ST
NASA Astrophysics Data System (ADS)
Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Pachicano, J. L.; Reusch, J. A.; Rodriguez Sanchez, C.; Richner, N. J.; Schlossberg, D. J.
2016-10-01
Local helicity injection (LHI) is a non-solenoidal startup technique utilizing small injectors at the plasma edge to source current along helical magnetic field lines. Unstable injected current streams relax to a tokamak-like configuration with high toroidal current multiplication. Flexible placement of injectors permits tradeoffs between helicity injection rate, poloidal field induction, and magnetic geometry requirements for initial relaxation. Experiments using a new set of large-area injectors in the lower divertor explore the efficacy of high-field-side (HFS) injection. The increased area (4 cm2) current source is functional up to full Pegasus toroidal field (BT , inj = 0.23 T). However, relaxation to a tokamak state is increasingly frustrated for BT , inj > 0.15 T with uniform vacuum vertical field. Paths to relaxation at increased field include: manipulation of vacuum poloidal field geometry; increased injector current; and plasma initiation with outboard injectors, subsequently transitioning to divertor injector drive. During initial tests of HFS injectors, achieved Vinj was limited to 600 V by plasma-material interactions on the divertor plate, which may be mitigated by increasing injector elevation. In experiments with helicity injection as the dominant current drive Ip 0.13 MA has been attained, with T̲e > 100 eV and ne 1019 m-3. Extrapolation to full BT, longer pulse length, and Vinj 1 kV suggest Ip > 0.25 MA should be attainable in a plasma dominated by helicity drive. Work supported by US DOE Grant DE-FG02-96ER54375.
Application of Townsend avalanche theory to tokamak startup by coaxial helicity injection
NASA Astrophysics Data System (ADS)
Hammond, K. C.; Raman, R.; Volpe, F. A.
2018-01-01
The Townsend avalanche theory is employed to model and interpret plasma initiation in NSTX by Ohmic heating and coaxial helicity injection (CHI). The model is informed by spatially resolved vacuum calculations of electric field and magnetic field line connection length in the poloidal cross-section. The model is shown to explain observations of Ohmic startup including the duration and location of breakdown. Adapting the model to discharges initiated by CHI offers insight into the causes of upper divertor (absorber) arcs in cases where the discharge fails to start in the lower divertor gap. Finally, upper and lower limits are established for vessel gas fill based on requirements for breakdown and radiation. It is predicted that CHI experiments on NSTX-U should be able to use as much as four times the amount of prefill gas employed in CHI experiments in NSTX. This should provide greater flexibility for plasma start-up, as the injector flux is projected to be increased in NSTX-U.
Development and applications of 3D-DIVIMP(HC) Monte Carlo impurity modeling code
NASA Astrophysics Data System (ADS)
Mu, Yarong
A self-contained gas injection system for the Divertor Material Evaluation System (DiMES) on DIII-D, the Porous Plug Injector (PPI), has been employed by A. McLean for in-situ study of chemical erosion in the tokamak divertor environment by injection of CH4. The principal contribution of the present thesis is a new interpretive code, 3D-DIVIMP(HC), which has been developed and successfully applied to the interpretation of the CH, C I, and C II emissions measured during the PPI experiments. The two principal types of experimental data which are compared here with 3D-DIVIMP(HC) code modeling are (a) absolute emissivities measured with a high resolution spectrometer, and (b) 2D filtered camera (TV) pictures taken from a view essentially straight down on the PPI. Incorporating the Janev-Reiter database for the breakup reactions of methane molecules in a plasma, 3D-DIVIMP(HC) is able to replicate these measurements to within the combined experimental and database uncertainties. It is therefore concluded that the basic elements of the physics and chemistry controlling the breakup of methane entering an attached divertor plasma have been identified and are incorporated in 3D-DIVIMP(HC).
Spectroscopic measurements and modeling of tungsten erosion in the DIII-D divertor
NASA Astrophysics Data System (ADS)
Abrams, T. D.; Ding, R.; Guo, H. Y.; Leonard, A. W.; Thomas, D. M.; Allen, S. L.; McLean, A. G.; Briesemeister, A. R.; Unterberg, E. A.; Chrobak, C.; Doerner, R. P.; Rudakov, D. L.; Elder, J. D.; Stangeby, P. C.; Wampler, W. R.; Watkins, J. G.
2015-11-01
In situ time-resolved measurements of the gross W erosion rate have been performed in DIII-D by monitoring W/I (400.9 nm) emission in the divertor via a filtered camera and high-resolution spectrometer. The erosion rate of a thin W coating on DiMES, inferred via the S/XB method, was found to be ~ 0.7 nm/s during deuterim L-mode exposure, in fair agreement with post-mortem IBA analysis but lower than REDEP/WBC modeling. During H-mode He bombardment of W disks, average erosion rates of ~ 2.9 nm/s and ~ 9.0 nm/s were estimated during the inter-ELM and intra-ELM phases, using ne and Te from divertor Thomson scattering and Langmuir probes. Results will also be presented from additional W erosion experiments in preparation for the DIII-D mini-campaign to measure high-Z transport in the edge plasma. Comparisons will be made with ERO modeling Supported by US DOE DE-AC05-06OR23100, DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-00OR22725, DE-SC0001961, DE-AC04-94AL85000.
DiMES PMI research at DIII-D in support of ITER and beyond
Rudakov, Dimitry L.; Abrams, Tyler; Ding, Rui; ...
2017-03-27
An overview of recent Plasma-Material Interactions (PMI) research at the DIII-D tokamak using the Divertor Material Evaluation System (DiMES) is presented. The DiMES manipulator allows for exposure of material samples in the lower divertor of DIII-D under well-diagnosed ITER-relevant plasma conditions. Plasma parameters during the exposures are characterized by an extensive diagnostic suite including a number of spectroscopic diagnostics, Langmuir probes, IR imaging, and Divertor Thomson Scattering. Post-mortem measurements of net erosion/deposition on the samples are done by Ion Beam Analysis, and results are modelled by the ERO and REDEP/WBC codes with plasma background reproduced by OEDGE/DIVIMP modelling based onmore » experimental inputs. This article highlights experiments studying sputtering erosion, re-deposition and migration of high-Z elements, mostly tungsten and molybdenum, as well as some alternative materials. Results are generally encouraging for use of high-Z PFCs in ITER and beyond, showing high redeposition and reduced net sputter erosion. Two methods of high-Z PFC surface erosion control, with (i) external electrical biasing and (ii) local gas injection, are also discussed. Furthermore, these techniques may find applications in the future devices.« less
Long-term fuel retention and release in JET ITER-Like Wall at ITER-relevant baking temperatures
NASA Astrophysics Data System (ADS)
Heinola, K.; Likonen, J.; Ahlgren, T.; Brezinsek, S.; De Temmerman, G.; Jepu, I.; Matthews, G. F.; Pitts, R. A.; Widdowson, A.; Contributors, JET
2017-08-01
The fuel outgassing efficiency from plasma-facing components exposed in JET-ILW has been studied at ITER-relevant baking temperatures. Samples retrieved from the W divertor and Be main chamber were annealed at 350 and 240 °C, respectively. Annealing was performed with thermal desoprtion spectrometry (TDS) for 0, 5 and 15 h to study the deuterium removal effectiveness at the nominal baking temperatures. The remained fraction was determined by emptying the samples fully of deuterium by heating W and Be samples up to 1000 and 775 °C,respectively. Results showed the deposits in the divertor having an increasing effect to the remaining retention at temperatures above baking. Highest remaining fractions 54 and 87 % were observed with deposit thicknesses of 10 and 40 μm, respectively. Substantially high fractions were obtained in the main chamber samples from the deposit-free erosion zone of the limiter midplane, in which the dominant fuel retention mechanism is via implantation: 15 h annealing resulted in retained deuterium higher than 90 % . TDS results from the divertor were simulated with TMAP7 calculations. The spectra were modelled with three deuterium activation energies resulting in good agreement with the experiments.
NASA Astrophysics Data System (ADS)
Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.
2018-07-01
Management of power exhaust will be a crucial task for tokamak fusion reactors. Reactor concepts are often proposed with double-null divertors, i.e. having two magnetic separatrices in an up-down symmetric configuration. This arrangement is potentially advantageous since the majority of the tokamak exhaust power tends to flow to the outer pair of divertor legs at large major radius, where the geometry is favorable for spreading the heat over a large surface area and there is more room for advanced divertor configurations. Despite the importance, there have been relatively few studies of divertor power sharing in near double null configurations and no studies at the poloidal magnetic fields and scrape-off layer power widths anticipated for a reactor. Motivated by this need we have undertaken a systematic study on Alcator C-Mod, examining the effect of magnetic flux balance on the power sharing among the four divertor legs in near double-null plasmas. Ohmic L-modes at three values of plasma current and ICRF-heated enhanced D-alpha (EDA) H-modes and I-modes at a single value of plasma current are explored, producing poloidal magnetic fields of 0.42, 0.62 and 0.85 Tesla. For Ohmic L-modes and ICRF-heated EDA H-modes, we find that the point of equal power sharing between upper and lower divertors occurs remarkably close to a balanced double null. Power sharing amongst the outer (upper versus lower) and inner (upper versus lower) pairs of divertors can be described in terms of a logistic function of magnetic flux balance, consistent with heat flux mapping along magnetic field lines to the outer midplane. Power sharing between inner and outer legs is found to follow a Gaussian-like function of magnetic flux balance with non-zero power to the inner divertors at double null. The overall behavior of H-modes operated near double null and for I-modes operating to within one heat flux e-folding of double null are found similar to Ohmic L-modes, with a significant reduction of power on the inner divertor legs. The results are encapsulated in terms of empirically-informed analytic functions of magnetic flux balance. When combined with magnetic equilibrium control system specifications, these relationships can be used to specify the power flux handling requirements for each of the four divertor target plates.
Modeling of Detached Solidification
NASA Technical Reports Server (NTRS)
Regel, Liya L.; Wilcox, William R.; Popov, Dmitri
1997-01-01
Our long term goal is to develop techniques to achieve detached solidification reliably and reproducibly, in order to produce crystals with fewer defects. To achieve this goal it is necessary to understand thoroughly the physics of detached solidification. It was the primary objective of the current project to make progress toward this complete understanding. 'Me products of this grant are attached. These include 4 papers and a preliminary survey of the observations of detached solidification in space. We have successfully modeled steady state detached solidification, examined the stability of detachment, and determined the influence of buoyancy-driven convection under different conditions. Directional solidification in microgravity has often led to ingots that grew with little or no contact with the ampoule wall. When this occurred, crystallographic perfection was usually greatly improved -- often by several orders of magnitude. Indeed, under the Soviet microgravity program the major objective was to achieve detached solidification with its resulting improvement in perfection and properties. Unfortunately, until recently the true mechanisms underlying detached solidification were unknown. As a consequence, flight experiments yielded erratic results. Within the past three years, we have developed a new theoretical model that explains many of the flight results. This model gives rise to predictions of the conditions required to yield detached solidification.
Design, R&D and commissioning of EAST tungsten divertor
NASA Astrophysics Data System (ADS)
Yao, D. M.; Luo, G. N.; Zhou, Z. B.; Cao, L.; Li, Q.; Wang, W. J.; Li, L.; Qin, S. G.; Shi, Y. L.; Liu, G. H.; Li, J. G.
2016-02-01
After commissioning in 2005, the EAST superconducting tokamak had been operated with its water cooled divertors for eight campaigns up to 2012, employing graphite as plasma facing material. With increase in heating power over 20 MW in recent years, the heat flux going to the divertors rises rapidly over 10 MW m-2 for steady state operation. To accommodate the rapid increasing heat load in EAST, the bolting graphite tile divertor must be upgraded. An ITER-like tungsten (W) divertor has been designed and developed; and firstly used for the upper divertor of EAST. The EAST upper W divertor is modular structure with 80 modules in total. Eighty sets of W/Cu plasma-facing components (PFC) with each set consisting of an outer vertical target (OVT), an inner vertical target (IVT) and a DOME, are attached to 80 stainless steel cassette bodies (CB) by pins. The monoblock W/Cu-PFCs have been developed for the strike points of both OVT and IVT, and the flat type W/Cu-PFCs for the DOME and the baffle parts of both OVT and IVT, employing so-called hot isostatic pressing (HIP) technology for tungsten to CuCrZr heat sink bonding, and electron beam welding for CuCrZr to CuCrZr and CuCrZr to other material bonding. Both monoblock and flat type PFC mockups passed high heat flux (HHF) testing by means of electron beam facilities. The 80 divertor modules were installed in EAST in 2014 and results of the first commissioning are presented in this paper.
Optimization of a bundle divertor for FED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hively, L.M.; Rothe, K.E.; Minkoff, M.
1982-01-01
Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations.
Impurity-induced divertor plasma oscillations
Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; ...
2016-01-07
Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less
NASA Astrophysics Data System (ADS)
Chang, Mingyu; Sang, Chaofeng; Sun, Zhenyue; Hu, Wanpeng; Wang, Dezhen
2018-05-01
A Particle-In-Cell (PIC) with Monte Carlo Collision (MCC) model is applied to study the effects of particle recycling on divertor plasma in the present work. The simulation domain is the scrape-off layer of the tokamak in one-dimension along the magnetic field line. At the divertor plate, the reflected deuterium atoms (D) and thermally released deuterium molecules (D2) are considered. The collisions between the plasma particles (e and D+) and recycled neutral particles (D and D2) are described by the MCC method. It is found that the recycled neutral particles have a great impact on divertor plasma. The effects of different collisions on the plasma are simulated and discussed. Moreover, the impacts of target materials on the plasma are simulated by comparing the divertor with Carbon (C) and Tungsten (W) targets. The simulation results show that the energy and momentum losses of the C target are larger than those of the W target in the divertor region even without considering the impurity particles, whereas the W target has a more remarkable influence on the core plasma.
Modelling of 13CH4 injection and local carbon deposition at the outer divertor of ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Aho-Mantila, L.; Airila, M. I.; Wischmeier, M.; Krieger, K.; Pugno, R.; Coster, D. P.; Chankin, A. V.; Neu, R.; Rohde, V.
2009-12-01
Numerical modelling of 13CH4 injection into the outer divertor plasma of the full tungsten, vertical target of ASDEX Upgrade is presented. The SOLPS5.0 code package is used to calculate a realistic scrape-off layer plasma background corresponding to L-mode discharges in the attached divertor plasma regime. The ERO code is then used for detailed modelling of the hydrocarbon break-up, re-deposition and re-erosion processes. The deposition patterns observed at two different poloidal locations are shown to strongly reflect the cross-field gradients in divertor plasma density and temperature, as well as the local plasma collisionality. Experimental results with forward and reversed BT, accompanied by numerical modelling, also point towards a significant poloidal hydrocarbon E×B drift in the divertor region.
NASA Astrophysics Data System (ADS)
Hatano, Y.; Yumizuru, K.; Koivuranta, S.; Likonen, J.; Hara, M.; Matsuyama, M.; Masuzaki, S.; Tokitani, M.; Asakura, N.; Isobe, K.; Hayashi, T.; Baron-Wiechec, A.; Widdowson, A.; contributors, JET
2017-12-01
Energy spectra of β-ray induced x-rays from divertor tiles used in ITER-like wall campaigns of the Joint European Torus were measured to examine tritium (T) penetration into tungsten (W) layers. The penetration depth of T evaluated from the intensity ratio of W(Lα) x-rays to W(Mα) x-rays showed clear correlation with poloidal position; the penetration depth at the upper divertor region reached several micrometers, while that at the lower divertor region was less than 500 nm. The deep penetration at the upper part was ascribed to the implantation of high energy T produced by DD fusion reactions. The poloidal distribution of total x-ray intensity indicated higher T retention in the inboard side than the outboard side of the divertor region.
NASA Astrophysics Data System (ADS)
Yang, Yuehua; Jiang, Hongyuan
2018-03-01
Quantitative characterizations of cell detachment are vital for understanding the fundamental mechanisms of cell adhesion. Experiments have found that cell detachment shows strong rate dependence, which is mostly attributed to the binding-unbinding kinetics of receptor-ligand bond. However, our recent study showed that the cellular volume regulation can significantly regulate the dynamics of adherent cell and cell detachment. How this cellular volume regulation contributes to the rate dependence of cell detachment remains elusive. Here, we systematically study the role of cellular volume regulation in the rate dependence of cell detachment by investigating the cell detachments of nonspecific adhesion and specific adhesion. We find that the cellular volume regulation and the bond kinetics dominate the rate dependence of cell detachment at different time scales. We further test the validity of the traditional Johnson-Kendall-Roberts (JKR) contact model and the detachment model developed by Wyart and Gennes et al (W-G model). When the cell volume is changeable, the JKR model is not appropriate for both the detachments of convex cells and concave cells. The W-G model is valid for the detachment of convex cells but is no longer applicable for the detachment of concave cells. Finally, we show that the rupture force of adherent cells is also highly sensitive to substrate stiffness, since an increase in substrate stiffness will lead to more associated bonds. These findings can provide insight into the critical role of cell volume in cell detachment and might have profound implications for other adhesion-related physiological processes.
NASA Astrophysics Data System (ADS)
Gallo, A.; Fedorczak, N.; Elmore, S.; Maurizio, R.; Reimerdes, H.; Theiler, C.; Tsui, C. K.; Boedo, J. A.; Faitsch, M.; Bufferand, H.; Ciraolo, G.; Galassi, D.; Ghendrih, P.; Valentinuzzi, M.; Tamain, P.; the EUROfusion MST1 Team; the TCV Team
2018-01-01
A deep understanding of plasma transport at the edge of magnetically confined fusion plasmas is needed for the handling and control of heat loads on the machine first wall. Experimental observations collected on a number of tokamaks over the last three decades taught us that heat flux profiles at the divertor targets of X-point configurations can be parametrized by using two scale lengths for the scrape-off layer (SOL) transport, separately characterizing the main SOL ({λ }q) and the divertor SOL (S q ). In this work we challenge the current interpretation of these two scale lengths as well as their dependence on plasma parameters by studying the effect of divertor geometry modifications on heat exhaust in the Tokamak à Configuration Variable. In particular, a significant broadening of the heat flux profiles at the outer divertor target is diagnosed while increasing the length of the outer divertor leg in lower single null, Ohmic, L-mode discharges. Efforts to reproduce this experimental finding with both diffusive (SolEdge2D-EIRENE) and turbulent (TOKAM3X) modelling tools confirm the validity of a diffusive approach for simulating heat flux profiles in more traditional, short leg, configurations while highlighting the need of a turbulent description for modified, long leg, ones in which strongly asymmetric divertor perpendicular transport develops.
Dissociative detachment and memory impairment: reversible amnesia or encoding failure?
Allen, J G; Console, D A; Lewis, L
1999-01-01
The authors propose that clinicians endeavor to differentiate between reversible and irreversible memory failures in patients with dissociative symptoms who report "memory gaps" and "lost time." The classic dissociative disorders, such as dissociative amnesia and dissociative identity disorder, entail reversible memory failures associated with encoding experience in altered states. The authors propose another realm of memory failures associated with severe dissociative detachment that may preclude the level of encoding of ongoing experience needed to support durable autobiographical memories. They describe how dissociative detachment may be intertwined with neurobiological factors that impair memory, and they spell out the significance of distinguishing reversible and irreversible memory impairment for diagnosis, patient education, psychotherapy, and research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, M.; Jaworski, M. A.; Kaita, R.
Steady-state fusion reactor operation presents major divertor technology challenges, including high divertor heat flux both steady-state and transients. In addition to those issues, there are unresolved issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiative liquid lithium divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues while potentially improving the reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-freemore » core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept and its variant, the active liquid lithium divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It was estimated that only a few moles/sec of lithium injection would be needed to significantly reduce the divertor heat flux in a tokamak fusion power plant. By operating at lower temperatures ≤ 500°C than the first wall ~ 600 – 700°C, the LL-covered divertor chamber wall surfaces can serve as an effective particle pump, as impurities generally migrate toward lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity of ~ 1 liter/second (l/sec) is envisioned to sustain the steady-state operation of a 1 GW-electric class fusion power plant. By running the Li loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to outside where the dust / impurities are removed by relatively simple filter and cold/hot trap systems. Using a cold trap system, it can recover in tritium (T) in real time from LL at a rate of ~ 0.5 g / sec needed to sustain the fusion reaction while minimizing the T inventory issue. With an expected T fraction of ≤ 0.7 %, an acceptable level of T inventory can be achieved. In NSTX-U, preparations are now underway to elucidate the physics of Li plasma interactions with a number of Li application tools and Li radiation spectroscopic instruments. The NSTX-U Li evaporator which provides Li coating over the lower divertor plate, can offer important information on the RLLD concept, and the Li granule injector will test some of the key physics issue on the ARLLD concept. A LL-loop is also being prepared off line for prototyping future use on NSTX-U.« less
Developing DIII-D To Prepare For ITER And The Path To Fusion Energy
NASA Astrophysics Data System (ADS)
Buttery, Richard; Hill, David; Solomon, Wayne; Guo, Houyang; DIII-D Team
2017-10-01
DIII-D pursues the advancement of fusion energy through scientific understanding and discovery of solutions. Research targets two key goals. First, to prepare for ITER we must resolve how to use its flexible control tools to rapidly reach Q =10, and develop the scientific basis to interpret results from ITER for fusion projection. Second, we must determine how to sustain a high performance fusion core in steady state conditions, with minimal actuators and a plasma exhaust solution. DIII-D will target these missions with: (i) increased electron heating and balanced torque neutral beams to simulate burning plasma conditions (ii) new 3D coil arrays to resolve control of transients (iii) off axis current drive to study physics in steady state regimes (iv) divertors configurations to promote detachment with low upstream density (v) a reactor relevant wall to qualify materials and resolve physics in reactor-like conditions. With new diagnostics and leading edge simulation, this will position the US for success in ITER and a unique knowledge to accelerate the approach to fusion energy. Supported by the US DOE under DE-FC02-04ER54698.
Vacuum System and Modeling for the Materials Plasma Exposure Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumsdaine, Arnold; Meitner, Steve; Graves, Van
Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less
Vacuum System and Modeling for the Materials Plasma Exposure Experiment
Lumsdaine, Arnold; Meitner, Steve; Graves, Van; ...
2017-08-07
Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less
Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Krieger, K.; Sieglin, B.; Balden, M.; Coenen, J. W.; Göths, B.; Laggner, F.; de Marne, P.; Matthews, G. F.; Nille, D.; Rohde, V.; Dejarnac, R.; Faitsch, M.; Giannone, L.; Herrmann, A.; Horacek, J.; Komm, M.; Pitts, R. A.; Ratynskaia, S.; Thoren, E.; Tolias, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team
2017-12-01
Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in the tokamak experiment ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the Divertor Manipulator II system. The exposed sample was designed with an elevated sloped surface inclined against the incident magnetic field to increase the projected parallel power flux to a level were transient melting by ELMs would occur. Sample exposure was controlled by moving the outer strike point to the sample location. As extension to previous melt studies in the new experiment both the current flow from the sample to vessel potential and the local surface temperature were measured with sufficient time resolution to resolve individual ELMs. The experiment provided for the first time a direct link of current flow and surface temperature during transient ELM events. This allows to further constrain the MEMOS melt motion code predictions and to improve the validation of its underlying model assumptions. Post exposure ex situ analysis of the retrieved samples confirms the decreased melt motion observed at shallower magnetic field line to surface angles compared to that at leading edges exposed to the parallel power flux.
Gyrokinetic projection of the divertor heat-flux width from present tokamaks to ITER
Chang, Choong Seock; Ku, Seung -Hoe; Loarte, Alberto; ...
2017-07-11
Here, the XGC1 edge gyrokinetic code is used to study the width of the heat-flux to divertor plates in attached plasma condition. The flux-driven simulation is performed until an approximate power balance is achieved between the heat-flux across the steep pedestal pressure gradient and the heat-flux on the divertor plates.
Innovative divertor concept development on DIII-D and EAST
Guo, H. Y.; Allen, S.; Canik, J.; ...
2016-06-02
A critical issue facing the design and operation of next-step high-power steady-state fusion devices is the control of heat fluxes and erosion at the plasma-facing components, in particular, the divertor target plates. A new initiative has been launched on DIII-D to develop and demonstrate innovative boundary plasma-materials interface solutions. The central purposes of this new initiative are to advance scientific understanding in this critical area and develop an advanced divertor concept for application to next-step fusion devices. Finally, DIII-D will leverage strong collaborative efforts on the EAST superconducting tokamak for extending integrated high performance advanced divertor solutions to true steady-state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomanowski, B. A., E-mail: b.a.lomanowski@durham.ac.uk; Sharples, R. M.; Meigs, A. G.
2014-11-15
The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.
Tungsten migration in Alcator C-Mod: sputtering and melting
NASA Astrophysics Data System (ADS)
Wright, G. M.; Barnard, H.; Lipschultz, B.; Whyte, D. G.
2010-11-01
A row of bulk tungsten (W) tiles were installed near the typical outer strike-point location in the Alcator C-Mod divertor in 2007. In the 2009/2010 campaign, one of the W tiles mechanically failed resulting in significant W melting at that location. Post-campaign PIXE surface analysis has been used to observe tungsten (W) deposition and migration patterns in the divertor for the typical operations (sputtering only) and operation with melted components. For sputtering conditions, W deposition of up to 20 nm equivalent thickness is observed at various divertor surfaces indicating prompt re-deposition at the outer divertor, neutral and ion transport through the private-flux region and ion transport in the scrape off layer. For melting conditions, W deposition of up to 400 nm equivalent thickness is observed at some locations at the outer divertor. However, the toroidal distribution of W on the outer divertor is strongly non-uniform. There is no W deposition measured on the inner wall limiter. These results indicate that impurity migration is affected by the erosion mechanism and source, with the migration from melting being less predictable and uniform than from the sputtering case. Supported by USDoE award DE-SC00-02060.
Scrape off layer modelling studies for SST-I
NASA Astrophysics Data System (ADS)
Warrier, M.; Jaishankar, S.; Deshpande, S.; Coster, D.; Schneider, R.; Chaturvedi, S.; Srinivasan, R.; Braams, B. J.; SST Team
SOL modelling results for SST-1 (SST Team, Proceedings of the 16th IEEE/NPSS Symposium on Fusion Engineering, Champaign, IL, vol. II, 1995, p. 481) show a sheath limited flow regime. This is due to the low edge densities required by lower hybrid current drive (LHCD), coupled with high power input per unit volume. Coupled plasma-neutral transport studies using B2-Eirene [R. Schneider et al., J. Nucl. Mater. 196-198 (1992) 810] show significantly high charge exchange losses and radiated power from the core. It also shows that the heat flux to the inner divertor is higher than that to the outer divertor due to thinner inner SOL widths. The Monte-Carlo neutral transport code DEGAS [D. Heifitz et al., J. Comput. Phys. 46 (1982) 309] was used to optimise the baffle plate geometry and it was seen that a configuration where the baffle plate shields the main plasma from the divertor strike point results in reduced backflow of neutrals. The divertor erosion code DIVER (M. Warrier et al., SST Divertor Modelling Report, 1996-1997) was used to predict a steady state operating temperature for the SST divertor plate lying in the range 750-1000°C for which the erosion will be minimum.
Electric field divertor plasma pump
Schaffer, Michael J.
1994-01-01
An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.
Electric field divertor plasma pump
Schaffer, M.J.
1994-10-04
An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.
Changes in the reflectance of ex situ leaves: A methodological approach
NASA Astrophysics Data System (ADS)
Ponzoni, Flavio Jorge; Inoe, Mario Takao
1992-04-01
The main aspects of the interaction between electromagnetic radiation and detached leaves are presented. An experiment with Eucalipto and Araucaria detached leaves is described, including the description of the methodologies utilized in the collection and storage of the reflectance.
Onyx embolization with the Apollo detachable tip microcatheter: A single-center experience.
Miller, Timothy R; Giacon, Luciano; Kole, Matthew J; Chen, Rong; Jindal, Gaurav; Gandhi, Dheeraj
2018-06-01
Purpose The Apollo Onyx Delivery Microcatheter (Ev3, Irvine, CA) is a detachable-tip microcatheter that was developed to reduce the risk of microcatheter entrapment during ethylene-vinyl alcohol copolymer (Onyx) embolizations. We report our experience with the microcatheter in a variety of neurointerventional procedures. Methods We retrospectively reviewed all Onyx embolizations performed in the head, neck, and spine using the Apollo Onyx Delivery Microcatheter from its introduction at our institution in July 2014 to August 2016. Information regarding patient diagnoses, procedural details, as well as clinical outcomes were obtained from the electronic medical record, procedure reports, and relevant angiographic imaging. Results A total of 58 arterial pedicle Onyx embolizations were performed in 37 patients. There were no cases of microcatheter entrapment, early/inadvertent tip detachment, or vessel injury upon removal of the device. There were two instances (3.5%) of leakage of Onyx from the microcatheter detachment site during embolization, which did not result in adverse sequelae. Clinical outcomes were excellent, with nearly all embolizations achieving the intended goal. In multivariate analysis, length of Onyx reflux along the microcatheter tip and utilization of a higher viscosity agent, Onyx 34, were significantly associated with tip detachment. Conclusion The use of the Apollo Microcatheter is both safe and effective during neurointerventional embolizations using Onyx. Leakage of liquid embolic agent from the detachment site is an infrequent technical complication that may be encountered with the device.
Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field
NASA Technical Reports Server (NTRS)
Chang, Shinan; Herman, Cila; Iacona, Estelle
2002-01-01
The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.
Applicability of Different Hydraulic Parameters to Describe Soil Detachment in Eroding Rills
Wirtz, Stefan; Seeger, Manuel; Zell, Andreas; Wagner, Christian; Wagner, Jean-Frank; Ries, Johannes B.
2013-01-01
This study presents the comparison of experimental results with assumptions used in numerical models. The aim of the field experiments is to test the linear relationship between different hydraulic parameters and soil detachment. For example correlations between shear stress, unit length shear force, stream power, unit stream power and effective stream power and the detachment rate does not reveal a single parameter which consistently displays the best correlation. More importantly, the best fit does not only vary from one experiment to another, but even between distinct measurement points. Different processes in rill erosion are responsible for the changing correlations. However, not all these procedures are considered in soil erosion models. Hence, hydraulic parameters alone are not sufficient to predict detachment rates. They predict the fluvial incising in the rill's bottom, but the main sediment sources are not considered sufficiently in its equations. The results of this study show that there is still a lack of understanding of the physical processes underlying soil erosion. Exerted forces, soil stability and its expression, the abstraction of the detachment and transport processes in shallow flowing water remain still subject of unclear description and dependence. PMID:23717669
Access to edge scenarios for testing a scraper element in early operation phases of Wendelstein 7-X
Holbe, H.; Pedersen, T. Sunn; Geiger, J.; ...
2016-01-29
The edge topology of magnetic fusion devices is decisive for the control of the plasma exhaust. In Wendelstein 7-X, the island divertor concept will be used, for which the edge topology can change significantly as the internal currents in a plasma discharge evolve towards steady-state. Consequently, the device has been optimized to minimize such internal currents, in particular the bootstrap current [1]. Nonetheless, there are predicted pulse scenarios where effects of the remaining internal currents could potentially lead to overload of plasma-facing components. These internal currents are predicted to evolve on long time scales (tens of seconds) so their effectsmore » on the edge topology and the divertor heat loads may not be experimentally accessible in the first years of W7-X operation, where only relatively short pulses are possible. However, we show here that for at least one important long-pulse divertor operation issue, relevant physics experiments can be performed already in short-pulse operation, through judicious adjustment of the edge topology by the use of the existing coil sets. The specific issue studied here is a potential overload of the divertor element edges. This overload might be mitigated by the installation of an extra set of plasma-facing components, so-called scraper elements, as suggested in earlier publications. It is shown here that by a targeted control of edge topology, the effectiveness of such scraper elements can be tested already with uncooled test-scraper elements in short-pulse operation. Furthermore, this will allow an early and well-informed decision on whether long-pulse-capable (actively cooled) scraper elements should be built and installed.« less
Brodowska, Katarzyna; Stryjewski, Tomasz P; Papavasileiou, Evangelia; Chee, Yewlin E; Eliott, Dean
2017-05-01
The Retinal Detachment after Open Globe Injury (RD-OGI) Score is a clinical prediction model that was developed at the Massachusetts Eye and Ear Infirmary to predict the risk of retinal detachment (RD) after open globe injury (OGI). This study sought to validate the RD-OGI Score in an independent cohort of patients. Retrospective cohort study. The predictive value of the RD-OGI Score was evaluated by comparing the original RD-OGI Scores of 893 eyes with OGI that presented between 1999 and 2011 (the derivation cohort) with 184 eyes with OGI that presented from January 1, 2012, to January 31, 2014 (the validation cohort). Three risk classes (low, moderate, and high) were created and logistic regression was undertaken to evaluate the optimal predictive value of the RD-OGI Score. A Kaplan-Meier survival analysis evaluated survival experience between the risk classes. Time to RD. At 1 year after OGI, 255 eyes (29%) in the derivation cohort and 66 eyes (36%) in the validation cohort were diagnosed with an RD. At 1 year, the low risk class (RD-OGI Scores 0-2) had a 3% detachment rate in the derivation cohort and a 0% detachment rate in the validation cohort, the moderate risk class (RD-OGI Scores 2.5-4.5) had a 29% detachment rate in the derivation cohort and a 35% detachment rate in the validation cohort, and the high risk class (RD-OGI scores 5-7.5) had a 73% detachment rate in the derivation cohort and an 86% detachment rate in the validation cohort. Regression modeling revealed the RD-OGI to be highly discriminative, especially 30 days after injury, with an area under the receiver operating characteristic curve of 0.939 in the validation cohort. Survival experience was significantly different depending upon the risk class (P < 0.0001, log-rank chi-square). The RD-OGI Score can reliably predict the future risk of developing an RD based on clinical variables that are present at the time of the initial evaluation after OGI. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
RF Rectification on LAPD and NSTX: the relationship between rectified currents and potentials
NASA Astrophysics Data System (ADS)
Perkins, R. J.; Carter, T.; Caughman, J. B.; van Compernolle, B.; Gekelman, W.; Hosea, J. C.; Jaworski, M. A.; Kramer, G. J.; Lau, C.; Martin, E. H.; Pribyl, P.; Tripathi, S. K. P.; Vincena, S.
2017-10-01
RF rectification is a sheath phenomenon important in the fusion community for impurity injection, hot spot formation on plasma-facing components, modifications of the scrape-off layer, and as a far-field sink of wave power. The latter is of particular concern for the National Spherical Torus eXperiment (NSTX), where a substantial fraction of the fast-wave power is lost to the divertor along scrape-off layer field lines. To assess the relationship between rectified currents and rectified voltages, detailed experiments have been performed on the Large Plasma Device (LAPD). An electron current is measured flowing out of the antenna and into the limiters, consistent with RF rectification with a higher RF potential at the antenna. The scaling of this current with RF power will be presented. The limiters are also floated to inhibit this DC current; the impact of this change on plasma-potential and wave-field measurements will be shown. Comparison to data from divertor probes in NSTX will be made. These experiments on a flexible mid-sized experiment will provide insight and guidance into the effects of ICRF on the edge plasma in larger fusion experiments. Funded by the DOE OFES (DE-FC02-07ER54918 and DE-AC02-09CH11466), NSF (NSF- PHY 1036140), and the Univ. of California (12-LR- 237124).
Modifications of W and Mo leading edges under plasma loads in DIII-D divertor
NASA Astrophysics Data System (ADS)
Rudakov, D. L.; Bykov, I.; Moyer, R. A.; Abrams, T.; Chrobak, C. P.; Guo, H. Y.; Stahl, B.; Thomas, D. M.; Barton, J. L.; Nygren, R. E.; Watkins, J. G.; Lasnier, C. J.; Litnovsky, Andrey; Stangeby, P. C.; Unterberg, E. A.
2017-10-01
Cracking and melting of W and Mo leading edges were observed in the lower divertor of DIII-D during experiments with intentionally misaligned W monoblocks (MBs) and in the course of the Metal Rings Campaign involving W-coated Mo tile inserts (TIs). MBs were exposed near the attached outer strike point during deuterium and helium L- and H-mode discharges using DiMES. Two of the MBs were misaligned by 0.3 mm and 1 mm, forming leading edges. Particulate ejection from a 1 mm leading edge was observed during the exposure, and evidence of melting and cracking was found post mortem. Two toroidal rings of TIs were installed in the lower outer divertor, the inner one at the floor and the outer one at the shelf. The floor TIs bowed during plasma exposure forming leading edges up to 1.2 mm high; about 40% of these edges experienced melting. Re-solidified melt layers up to 1 mm thick were observed, their shape being consistent with motion in the jx B direction with j driven by electron emission. Work supported by US DOE under DE-FC02-04ER54698, DE-FG02-07ER54917, DE-AC04-94AL85000, DE-AC52-07NA27344, and DE-AC05-00OR22725.
NASA Astrophysics Data System (ADS)
Brunner, D.; LaBombard, B.
2012-03-01
A novel set of thermocouple sensors has been developed to measure heat fluxes arriving at divertor surfaces in the Alcator C-Mod tokamak, a magnetic confinement fusion experiment. These sensors operate in direct contact with the divertor plasma, which deposits heat fluxes in excess of ˜10 MW/m2 over an ˜1 s pulse. Thermoelectric EMF signals are produced across a non-standard bimetallic junction: a 50 μm thick 74% tungsten-26% rhenium ribbon embedded in a 6.35 mm diameter molybdenum cylinder. The unique coaxial geometry of the sensor combined with its single-point electrical ground contact minimizes interference from the plasma/magnetic environment. Incident heat fluxes are inferred from surface temperature evolution via a 1D thermal heat transport model. For an incident heat flux of 10 MW/m2, surface temperatures rise ˜1000 °C/s, corresponding to a heat flux flowing along the local magnetic field of ˜200 MW/m2. Separate calorimeter sensors are used to independently confirm the derived heat fluxes by comparing total energies deposited during a plasma pulse. Langmuir probes in close proximity to the surface thermocouples are used to test plasma-sheath heat transmission theory and to identify potential sources of discrepancies among physical models.
Review on the EFDA programme on tungsten materials technology and science
NASA Astrophysics Data System (ADS)
Rieth, M.; Boutard, J. L.; Dudarev, S. L.; Ahlgren, T.; Antusch, S.; Baluc, N.; Barthe, M.-F.; Becquart, C. S.; Ciupinski, L.; Correia, J. B.; Domain, C.; Fikar, J.; Fortuna, E.; Fu, C.-C.; Gaganidze, E.; Galán, T. L.; García-Rosales, C.; Gludovatz, B.; Greuner, H.; Heinola, K.; Holstein, N.; Juslin, N.; Koch, F.; Krauss, W.; Kurzydlowski, K. J.; Linke, J.; Linsmeier, Ch.; Luzginova, N.; Maier, H.; Martínez, M. S.; Missiaen, J. M.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Norajitra, P.; Opschoor, J.; Pintsuk, G.; Pippan, R.; Ritz, G.; Romaner, L.; Rupp, D.; Schäublin, R.; Schlosser, J.; Uytdenhouwen, I.; van der Laan, J. G.; Veleva, L.; Ventelon, L.; Wahlberg, S.; Willaime, F.; Wurster, S.; Yar, M. A.
2011-10-01
All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on "Materials Science and Modeling". This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.
ICRF-Induced Changes in Floating Potential and Ion Saturation Current in the EAST Divertor
NASA Astrophysics Data System (ADS)
Perkins, Rory; Hosea, Joel; Taylor, Gary; Bertelli, Nicola; Kramer, Gerrit; Qin, Chengming; Wang, Liang; Yang, Jichan; Zhang, Xinjun
2017-10-01
Injection of waves in the ion cyclotron range of frequencies (ICRF) into a tokamak can potentially raise the plasma potential via RF rectification. Probes are affected both by changes in plasma potential and also by RF-averaging of the probe characteristic, with the latter tending to drop the floating potential. We present the effect of ICRF heating on divertor Langmuir probes in the EAST experiment. Over a scan of the outer gap, probes connected to the antennas have increases in floating potential with ICRF, but probes in between the outer-vessel strike point and flux surface tangent to the antenna have decreased floating potential. This behaviour is investigated using field-line mapping. Preliminary results show that mdiplane gas puffing can suppress the strong influence of ICRF on the probes' floating potential.
Liquid lithium applications for solving challenging fusion reactor issues and NSTX-U contributions
Ono, M.; Jaworski, M. A.; Kaita, R.; ...
2016-08-05
Steady-state fusion reactor operation presents major divertor technology challenges, including high divertor heat flux both steady-state and transients. In addition to those issues, there are unresolved issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiative liquid lithium divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues while potentially improving the reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-freemore » core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept and its variant, the active liquid lithium divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It was estimated that only a few moles/sec of lithium injection would be needed to significantly reduce the divertor heat flux in a tokamak fusion power plant. By operating at lower temperatures ≤ 500°C than the first wall ~ 600 – 700°C, the LL-covered divertor chamber wall surfaces can serve as an effective particle pump, as impurities generally migrate toward lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity of ~ 1 liter/second (l/sec) is envisioned to sustain the steady-state operation of a 1 GW-electric class fusion power plant. By running the Li loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to outside where the dust / impurities are removed by relatively simple filter and cold/hot trap systems. Using a cold trap system, it can recover in tritium (T) in real time from LL at a rate of ~ 0.5 g / sec needed to sustain the fusion reaction while minimizing the T inventory issue. With an expected T fraction of ≤ 0.7 %, an acceptable level of T inventory can be achieved. In NSTX-U, preparations are now underway to elucidate the physics of Li plasma interactions with a number of Li application tools and Li radiation spectroscopic instruments. The NSTX-U Li evaporator which provides Li coating over the lower divertor plate, can offer important information on the RLLD concept, and the Li granule injector will test some of the key physics issue on the ARLLD concept. A LL-loop is also being prepared off line for prototyping future use on NSTX-U.« less
Transport simulations of linear plasma generators with the B2.5-Eirene and EMC3-Eirene codes
Rapp, Juergen; Owen, Larry W.; Bonnin, X.; ...
2014-12-20
Linear plasma generators are cost effective facilities to simulate divertor plasma conditions of present and future fusion reactors. For this research, the codes B2.5-Eirene and EMC3-Eirene were extensively used for design studies of the planned Material Plasma Exposure eXperiment (MPEX). Effects on the target plasma of the gas fueling and pumping locations, heating power, device length, magnetic configuration and transport model were studied with B2.5-Eirene. Effects of tilted or vertical targets were calculated with EMC3-Eirene and showed that spreading the incident flux over a larger area leads to lower density, higher temperature and off-axis profile peaking in front of themore » target. In conclusion, the simulations indicate that with sufficient heating power MPEX can reach target plasma conditions that are similar to those expected in the ITER divertor. B2.5-Eirene simulations of the MAGPIE experiment have been carried out in order to establish an additional benchmark with experimental data from a linear device with helicon wave heating.« less
Measurements of W Erosion using UV Emission from DIII-D and CTH
NASA Astrophysics Data System (ADS)
Johnson, Curtis; Ennis, David; Loch, Stuart; Balance, Connor; Victor, Brian; Allen, Steve; Samuell, Cameron; Abrams, Tyler; Unterberg, Ezekial
2017-10-01
of Plasma Facing Components (PFCs) will play a critical role in establishing the performance of reactor-relevant fusion devices, particularly for tungsten (W) divertor targets. Erosion can be diagnosed from spectral line emission together with atomic coefficients representing the `ionizations per photon' (S/XB). Emission from W I is most intense in the UV region. Thus, UV survey spectrometers (200-400 nm) are used to diagnose W PFCs erosion in the DIII-D divertor and from a W tipped probe in the CTH experiment. Nineteen W emission lines in the UV region are identified between the two experiments, allowing for multiple S/XB erosion measurements. Initial W erosion measurements are compared to erosion using the 400.9 nm W I line. Complete UV spectra will be presented and compared to synthetic spectra for varying plasma conditions. Analysis of the metastable states impact on the S/XB will be presented as well as possible electron temperature and density diagnosis from W I line ratios. Work supported by USDOE Grants DE-SC0015877 & DE-FC02-04ER54698.
Tungsten coating by ATC plasma spraying on CFC for WEST tokamak
NASA Astrophysics Data System (ADS)
Firdaouss, M.; Desgranges, C.; Hernandez, C.; Mateus, C.; Maier, H.; Böswirth, B.; Greuner, H.; Samaille, F.; Bucalossi, J.; Missirlian, M.
2017-12-01
In the field of fusion experiments using a tokamak, the plasma facing components (PFC) are the closest object to the hot plasma. Due to the plasma-wall interaction, the material composing the PFC may enter the plasma and disturb the experiments. In the past, the main material for PFC was carbon (CFC, graphite), while the future reactors like ITER will be fully metallic, in particular tungsten. The Tore Supra tokamak has been transformed in an x-point divertor fusion device within the frame of the WEST (W (tungsten) Environment in Steady-state Tokamak) project in order to have plasma conditions close to those expected in ITER. The PFC other than the divertor has been coated with W to transform Tore Supra into a fully metallic environment. Different coating techniques have been selected for different kind of PFC. This paper gives an overview on the coating process used for the antennae protection limiter, the associated validation programme and concludes on the adequacy of the W coating with the WEST experimental programme requirements and gives perspectives on the development to be pursued.
Ryutov, D. D.; Soukhanovskii, V. A.
2015-11-17
The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. One of the most interesting effects of the snowflake geometry is the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation tomore » the existing theoretical models is described. Divertor concepts utilizing the properties of a snowflake configuration are briefly discussed.« less
SHIMAZU, Akihito; DE JONGE, Jan; KUBOTA, Kazumi; KAWAKAMI, Norito
2014-01-01
Psychological detachment from work, an off-job experience of “switching off” mentally, seems to be crucial for promoting employee’s well-being. Previous studies on predictors of psychological detachment mainly focused on job-related factors, and only a few studies focused on family-related and personal factors. This study focuses not only on job-related factors (job demands, job control, workplace support) but also on family-related (family/friend support) and personal factors (workaholism), and examines the relation of these three factors with psychological detachment. Data of 2,520 Japanese employees was randomly split into two groups and then analyzed using cross-validation. Hierarchical multiple regression analyses revealed that family/friend support had a positive association with psychological detachment, whereas a subscale of workaholism (i.e. working compulsively) had negative associations with it across the two groups. Results suggest that family/friend support would facilitate psychological detachment whereas workaholism would inhibit it. PMID:24492761
Hydraulic parameters in eroding rills and their influence on detachment processes
NASA Astrophysics Data System (ADS)
Wirtz, Stefan; Seeger, Manuel; Zell, Andreas; Wagner, Christian; Wengel, René; Ries, Johannes B.
2010-05-01
In many experiments as well in laboratory as in field experiments the correlations between the detachment rate and different hydraulic parameters are calculated. The used parameters are water depth, runoff, shear stress, unit length shear force, stream power, Reynolds- and Froude number. The investigations show even contradictory results. In most soil erosion models like the WEPP model, the shear stress is used to predict soil detachment rates. But in none of the WEPP datasets, the shear stress showed the best correlation to the detachment rate. In this poster we present the results of several rill experiments in Andalusia from 2008 and 2009. With the used method, it is possible to measure the needed factors to calculate the mentioned parameters. Water depth is measured by an ultrasonic sensor, the runoff values are calculated by combining flow velocity and flow diameter. The parameters wetted perimeter, flow diameter and hydraulic radius can be calculated from the measured rill cross sections and the measured water levels. In the sample density values, needed for calculation of shear stress, unit length shear force and stream power, the sediment concentration and the grain density are are considered. The viscosity of the samples was measured with a rheometer. The result of this measurements shows, that there is a very high linear correlation (R² = 0.92) between sediment concentration and the dynamic viscosity. The viscosity seems to be an important factor but it is only used in the Reynolds-number-equation, in other equations it is neglected. But the viscosity value increases with increasing sediment concentration and hence the influence also increases and the in multiclications negiligible viscosity value of 1 only counts for clear water. The correlations between shear stress, unit length shear force and stream power at the x-axis and the detachment rate at the ordinate show, that there is not one fixed parameter that always displays the best correlation to the detachment rate. The best hit does not change from one experiment to another, it changes from one measuring point to another. Different processes in rill erosion are responsible for the changing correlations. In some cases no one of the parameters shows an acceptable correlation to the soil detachment, because these factors describe fluvial processes. Our experiments show, that not the fluvial processes cause the main sediment procduction in the rills, but bank failure or knickpoint and headcut retreat and these processes are more gravitative than fluvial. Another sediment producing process is the abrupt spill over of plunge pools, a process not realy fluvial and not realy gravitativ. In some experiments, the highest sediment concentrations were measured at the slowly flowing waterfront that only transports the loose material. But all these processes are not considered in soil erosion models. Hence, hydraulic parameters alone are not sufficient to predict detachment rates. They cover the fluvial incising in the rill's bottom, but the main sediment sources are not considered satisying in its equations.
Divertor target for magnetic containment device
Luzzi, Jr., Theodore E.
1982-01-01
In a plasma containment device of a type having superconducting field coils for magnetically shaping the plasma into approximately the form of a torus, an improved divertor target for removing impurities from a "scrape off" region of the plasma comprises an array of water cooled swirl tubes onto which the scrape off flux is impinged. Impurities reflected from the divertor target are removed from the target region by a conventional vacuum getter system. The swirl tubes are oriented and spaced apart within the divertor region relative to the incident angle of the scrape off flux to cause only one side of each tube to be exposed to the flux to increase the burnout rating of the target. The divertor target plane is oriented relative to the plane of the path of the scrape off flux such that the maximum heat flux onto a swirl tube is less than the tube design flux. The containment device is used to contain the plasma of a tokamak fusion reactor and is applicable to other long pulse plasma containment systems.
ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor
Maingi, R.; Hu, J. S.; Sun, Z.; ...
2018-01-05
Here, we report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3–5 s in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D α baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previousmore » ELM elimination results via Li injection into the lower carbon divertor in EAST. These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs, highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.« less
Minimum magnetic curvature for resilient divertors using Compact Toroidal Hybrid geometry
NASA Astrophysics Data System (ADS)
Bader, A.; Hegna, C. C.; Cianciosa, M.; Hartwell, G. J.
2018-05-01
The properties of resilient divertors are explored using equilibria derived from Compact Toroidal Hybrid (CTH) geometries. Resilience is defined here as the robustness of the strike point patterns as the plasma geometry and/or plasma profiles are changed. The addition of plasma current in the CTH configurations significantly alters the shape of the last closed flux surface and the rotational transform profile, however, it does not alter the strike point pattern on the target plates, and hence has resilient divertor features. The limits of when a configuration transforms to a resilient configuration is then explored. New CTH-like configurations are generated that vary from a perfectly circular cross section to configurations with increasing amounts of toroidal shaping. It is found that even small amounts of toroidal shaping lead to strike point localization that is similar to the standard CTH configuration. These results show that only a small degree of three-dimensional shaping is necessary to produce a resilient divertor, implying that any highly shaped optimized stellarator will possess the resilient divertor property.
ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor
NASA Astrophysics Data System (ADS)
Maingi, R.; Hu, J. S.; Sun, Z.; Tritz, K.; Zuo, G. Z.; Xu, W.; Huang, M.; Meng, X. C.; Canik, J. M.; Diallo, A.; Lunsford, R.; Mansfield, D. K.; Osborne, T. H.; Gong, X. Z.; Wang, Y. F.; Li, Y. Y.; EAST Team
2018-02-01
We report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3-5 s in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D α baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previous ELM elimination results via Li injection into the lower carbon divertor in EAST (Hu et al 2015 Phys. Rev. Lett. 114 055001). These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs (Lang et al 2017 Nucl. Fusion 57 016030), highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.
ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maingi, R.; Hu, J. S.; Sun, Z.
Here, we report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3–5 s in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D α baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previousmore » ELM elimination results via Li injection into the lower carbon divertor in EAST. These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs, highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.« less
Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST
NASA Astrophysics Data System (ADS)
Bo, SHI; Jinhong, YANG; Cheng, YANG; Desheng, CHENG; Hui, WANG; Hui, ZHANG; Haifei, DENG; Junli, QI; Xianzu, GONG; Weihua, WANG
2018-07-01
The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak. The multiplication factor of the anomalous transport coefficient was adjusted to model the major disruptive discharge with double-null divertor configuration based on shot 61 916. The real-time feed-back control system for the plasma displacement was employed. Modeling results of the evolution of the poloidal field coil currents, the plasma current, the major radius, the plasma configuration all show agreement with experimental measurements. Results from the simulation show that during disruption, heat flux about 8 MW m‑2 flows to the upper divertor target plate and about 6 MW m‑2 flows to the lower divertor target plate. Computations predict that different amounts of heat fluxes on the divertor target plate could result by adjusting the multiplication factor of the anomalous transport coefficient. This shows that TSC has high flexibility and predictability.
NASA Astrophysics Data System (ADS)
Verma, Arun; Smith, Terry; Punjabi, Alkesh; Boozer, Allen
1996-11-01
In this work, we investigate the effects of low MN perturbations in a single-null divertor tokamak with stochastic scrape-off layer. The unperturbed magnetic topology of a single-null divertor tokamak is represented by Simple Map (Punjabi A, Verma A and Boozer A, Phys Rev Lett), 69, 3322 (1992) and J Plasma Phys, 52, 91 (1994). We choose the combinations of the map parameter k, and the strength of the low MN perturbation such that the width of stochastic layer remains unchanged. We give detailed results on the effects of low MN perturbation on the magnetic topology of the stochastic layer and on the footprint of field lines on the divertor plate given the constraint of constant width of the stochastic layer. The low MN perturbations occur naturally and therefore their effects are of considerable importance in tokamak divertor physics. This work is supported by US DOE OFES. Use of CRAY at HU and at NERSC is gratefully acknowledged.
DIII-D research to address key challenges for ITER and fusion energy
NASA Astrophysics Data System (ADS)
Buttery, R. J.; the DIII-D Team
2015-10-01
DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modelling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelength turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully noninductively with βN = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a βN = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behaviour. Scenarios are shown to be compatible with radiative and snowflake divertor techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. Future facility development targets burning plasma physics with torque free electron heating, the path to steady state with increased off axis currents, and a new divertor solution for fusion reactors.
Shape Evolution of Detached Bridgman Crystals Grown in Microgravity
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
2015-01-01
A theory describing the shape evolution of detached Bridgman crystals in microgravity has been developed. A starting crystal of initial radius r0 will evolve to one of the following states: Stable detached gap; Attachment to the crucible wall; Meniscus collapse. Only crystals where alpha plus omega is great than 180 degrees will achieve stable detached growth in microgravity. Results of the crystal shape evolution theory are consistent with predictions of the dynamic stability of crystallization (Tatarchenko, Shaped Crystal Growth, Kluwer, 1993). Tests of transient crystal evolution are planned for ICESAGE, a series of Ge and GeSi crystal growth experiments planned to be conducted on the International Space Station (ISS).
Improved Crystal Quality by Detached Solidification in Microgravity
NASA Technical Reports Server (NTRS)
Regel, Liya L.; Wilcox, William R.
1999-01-01
Directional solidification in microgravity has often led to ingots that grew with little or no contact with the ampoule wall. When this occurred, crystallographic perfection was usually greatly improved -- often by several orders of magnitude. Unfortunately, until recently the true mechanisms underlying detached solidification were unknown. As a consequence, flight experiments yielded erratic results. Within the past four years, we have developed a new theoretical model that explains many of the flight results. This model gives rise to predictions of the conditions required to yield detached solidification, both in microgravity and on earth. A discussion of models of detachment, the meniscus models and results of theoretical modeling, and future plans are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudini, N.; Sirse, N.; Ellingboe, A. R.
2015-07-15
This paper presents a critical assessment of the theory of photo-detachment diagnostic method used to probe the negative ion density and electronegativity α = n{sub -}/n{sub e}. In this method, a laser pulse is used to photo-detach all negative ions located within the electropositive channel (laser spot region). The negative ion density is estimated based on the assumption that the increase of the current collected by an electrostatic probe biased positively to the plasma is a result of only the creation of photo-detached electrons. In parallel, the background electron density and temperature are considered as constants during this diagnostics. While the numericalmore » experiments performed here show that the background electron density and temperature increase due to the formation of an electrostatic potential barrier around the electropositive channel. The time scale of potential barrier rise is about 2 ns, which is comparable to the time required to completely photo-detach the negative ions in the electropositive channel (∼3 ns). We find that neglecting the effect of the potential barrier on the background plasma leads to an erroneous determination of the negative ion density. Moreover, the background electron velocity distribution function within the electropositive channel is not Maxwellian. This is due to the acceleration of these electrons through the electrostatic potential barrier. In this work, the validity of the photo-detachment diagnostic assumptions is questioned and our results illustrate the weakness of these assumptions.« less
On Favorable Thermal Fields for Detached Bridgman Growth
NASA Technical Reports Server (NTRS)
Stelian, Carmen; Volz, Martin P.; Derby, Jeffrey J.
2009-01-01
The thermal fields of two Bridgman-like configurations, representative of real systems used in prior experiments for the detached growth of CdTe and Ge crystals, are studied. These detailed heat transfer computations are performed using the CrysMAS code and expand upon our previous analyses [14] that posited a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. Computational results indicate that heat transfer conditions that led to successful detached growth in both of these systems are in accordance with our prior assertion, namely that the prevention of crystal reattachment to the crucible wall requires the avoidance of any undercooling of the melt meniscus during the growth run. Significantly, relatively simple process modifications that promote favorable thermal conditions for detached growth may overcome detrimental factors associated with meniscus shape and crucible wetting. Thus, these ideas may be important to advance the practice of detached growth for many materials.
NASA Astrophysics Data System (ADS)
Kohagura, J.; Yoshikawa, M.; Wang, X.; Kuwahara, D.; Ito, N.; Nagayama, Y.; Shima, Y.; Nojiri, K.; Sakamoto, M.; Nakashima, Y.; Mase, A.
2016-11-01
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.
Macroscopic erosion of divertor and first wall armour in future tokamaks
NASA Astrophysics Data System (ADS)
Würz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.
2002-12-01
Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohagura, J., E-mail: kohagura@prc.tsukuba.ac.jp; Yoshikawa, M.; Shima, Y.
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensivemore » 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.« less
The liquid nitrogen and supercritical helium cooling loop for the jet pumped divertor cryopump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obert, W.; Mayaux, C.; Perinic, G.
1994-12-31
A key element for the new experimental phase of the European fusion experiment JET is a new cryopump which will be installed inside the torus in order to pump the new divertor configuration. A forced flow of liquid nitrogen and supercritical helium has been chosen for the cooling of the cryoshields and cryocondensation panels for this cryopump. The reasons for this selection are to minimize the inventory of cryogens (to minimize nuclear heating) good heat transfer conditions and minimum time for transient conditions such as cool-down, regeneration and warm-up. The flow of supercritical helium will be driven by the mainmore » compressor of the refrigerator and enhanced by a dedicated cold ejector. The peak load during the plasma pulse will be absorbed by the high thermal capacity of the bulk supercritical helium inside the cryocondensation panel.« less
Kohagura, J; Yoshikawa, M; Wang, X; Kuwahara, D; Ito, N; Nagayama, Y; Shima, Y; Nojiri, K; Sakamoto, M; Nakashima, Y; Mase, A
2016-11-01
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.
NASA Astrophysics Data System (ADS)
Li, C.; Greuner, H.; Zhao, S. X.; Böswirth, B.; Luo, G. N.; Zhou, X.; Jia, Y. Z.; Liu, X.; Liu, W.
2015-11-01
Micro- and nano-scale surface damage on a W divertor component sample exposed to high heat flux loads generated with He atoms has been investigated through SEM, EBSD, AFM and FIB-SEM. The component sample was supplied by the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) and AT&M company, China, and the loading experiment was performed in the GLADIS facility at IPP Garching, Germany. Two typical damage structures were observed on the surface: the first one is characterized by obvious blisters and some grooves formed from ruptured blisters, and the other one is a kind of porous structure accompanying with at least ∼25 nm surface material loss. As the grain orientation is further away from <111>, the damage morphology gradually changes from the former structure to the latter. The possible damage mechanism is discussed.
GITR Simulation of Helium Exposed Tungsten Erosion and Redistribution in PISCES-A
NASA Astrophysics Data System (ADS)
Younkin, T. R.; Green, D. L.; Doerner, R. P.; Nishijima, D.; Drobny, J.; Canik, J. M.; Wirth, B. D.
2017-10-01
The extreme heat, charged particle, and neutron flux / fluence to plasma facing materials in magnetically confined fusion devices has motivated research to understand, predict, and mitigate the associated detrimental effects. Of relevance to the ITER divertor is the helium interaction with the tungsten divertor, the resulting erosion and migration of impurities. The linear plasma device PISCES A has performed dedicated experiments for high (4x10-22 m-2s-1) and low (4x10-21 m-2s-1) flux, 250 eV He exposed tungsten targets to assess the net and gross erosion of tungsten and volumetric transport. The temperature of the target was held between 400 and 600 degrees C. We present results of the erosion / migration / re-deposition of W during the experiment from the GITR (Global Impurity Transport) code coupled to materials response models. In particular, the modeled and experimental W I emission spectroscopy data for the 429.4 nm wavelength and net erosion through target and collector mass difference measurements are compared. Overall, the predictions are in good agreement with experiments. This material is supported by the US DOE, Office of Science, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research through the SciDAC program on Plasma-Surface Interactions.
A multichannel visible spectroscopy system for the ITER-like W divertor on EAST.
Mao, Hongmin; Ding, Fang; Luo, Guang-Nan; Hu, Zhenhua; Chen, Xiahua; Xu, Feng; Yang, Zhongshi; Chen, Jingbo; Wang, Liang; Ding, Rui; Zhang, Ling; Gao, Wei; Xu, Jichan; Wu, Chengrui
2017-04-01
To facilitate long-pulse high power operation, an ITER-like actively cooled tungsten (W) divertor was installed in Experimental Advanced Superconducting Tokamak (EAST) to replace the original upper graphite divertor in 2014. A dedicated multichannel visible spectroscopic diagnostic system has been accordingly developed for the characterization of the plasma and impurities in the W divertor. An array of 22 lines-of-sight (LOSs) provides a profile measurement of the light emitted from the plasma along upper outer divertor, and the other 17 vertical LOSs view the upper inner divertor, achieving a 13 mm poloidal resolution in both regions. The light emitted from the plasma is collected by a specially designed optical lens assembly and then transferred to a Czerny-Turner spectrometer via 40 m quartz fibers. At the end, the spectra dispersed by the spectrometer are recorded with an Electron-Multiplying Charge Coupled Device (EMCCD). The optical throughput and quantum efficiency of the system are optimized in the wavelength range 350-700 nm. The spectral resolution/coverage can be adjusted from 0.01 nm/3 nm to 0.41 nm/140 nm by switching the grating with suitable groove density. The frame rate depends on the setting of LOS number in EMCCD and can reach nearly 2 kHz for single LOS detection. The light collected by the front optical lens can also be divided and partly transferred to a photomultiplier tube array with specified bandpass filter, which can provide faster sampling rates by up to 200 kHz. The spectroscopic diagnostic is routinely operated in EAST discharges with absolute optical calibrations applied before and after each campaign, monitoring photon fluxes from impurities and H recycling in the upper divertor. This paper presents the technical details of the diagnostic and typical measurements during EAST discharges.
The appearance and propagation of filaments in the private flux region in Mega Amp Spherical Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, J. R.; Fishpool, G. M.; Thornton, A. J.
2015-09-15
The transport of particles via intermittent filamentary structures in the private flux region (PFR) of plasmas in the MAST tokamak has been investigated using a fast framing camera recording visible light emission from the volume of the lower divertor, as well as Langmuir probes and IR thermography monitoring particle and power fluxes to plasma-facing surfaces in the divertor. The visible camera data suggest that, in the divertor volume, fluctuations in light emission above the X-point are strongest in the scrape-off layer (SOL). Conversely, in the region below the X-point, it is found that these fluctuations are strongest in the PFRmore » of the inner divertor leg. Detailed analysis of the appearance of these filaments in the camera data suggests that they are approximately circular, around 1–2 cm in diameter, but appear more elongated near the divertor target. The most probable toroidal quasi-mode number is between 2 and 3. These filaments eject plasma deeper into the private flux region, sometimes by the production of secondary filaments, moving at a speed of 0.5–1.0 km/s. Probe measurements at the inner divertor target suggest that the fluctuations in the particle flux to the inner target are strongest in the private flux region, and that the amplitude and distribution of these fluctuations are insensitive to the electron density of the core plasma, auxiliary heating and whether the plasma is single-null or double-null. It is found that the e-folding width of the time-average particle flux in the PFR decreases with increasing plasma current, but the fluctuations appear to be unaffected. At the outer divertor target, the fluctuations in particle and power fluxes are strongest in the SOL.« less
A multichannel visible spectroscopy system for the ITER-like W divertor on EAST
NASA Astrophysics Data System (ADS)
Mao, Hongmin; Ding, Fang; Luo, Guang-Nan; Hu, Zhenhua; Chen, Xiahua; Xu, Feng; Yang, Zhongshi; Chen, Jingbo; Wang, Liang; Ding, Rui; Zhang, Ling; Gao, Wei; Xu, Jichan; Wu, Chengrui
2017-04-01
To facilitate long-pulse high power operation, an ITER-like actively cooled tungsten (W) divertor was installed in Experimental Advanced Superconducting Tokamak (EAST) to replace the original upper graphite divertor in 2014. A dedicated multichannel visible spectroscopic diagnostic system has been accordingly developed for the characterization of the plasma and impurities in the W divertor. An array of 22 lines-of-sight (LOSs) provides a profile measurement of the light emitted from the plasma along upper outer divertor, and the other 17 vertical LOSs view the upper inner divertor, achieving a 13 mm poloidal resolution in both regions. The light emitted from the plasma is collected by a specially designed optical lens assembly and then transferred to a Czerny-Turner spectrometer via 40 m quartz fibers. At the end, the spectra dispersed by the spectrometer are recorded with an Electron-Multiplying Charge Coupled Device (EMCCD). The optical throughput and quantum efficiency of the system are optimized in the wavelength range 350-700 nm. The spectral resolution/coverage can be adjusted from 0.01 nm/3 nm to 0.41 nm/140 nm by switching the grating with suitable groove density. The frame rate depends on the setting of LOS number in EMCCD and can reach nearly 2 kHz for single LOS detection. The light collected by the front optical lens can also be divided and partly transferred to a photomultiplier tube array with specified bandpass filter, which can provide faster sampling rates by up to 200 kHz. The spectroscopic diagnostic is routinely operated in EAST discharges with absolute optical calibrations applied before and after each campaign, monitoring photon fluxes from impurities and H recycling in the upper divertor. This paper presents the technical details of the diagnostic and typical measurements during EAST discharges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decoste, R.; Lachambre, J.; Abel, G.
1994-05-01
Electrically insulated divertor plates are used on TdeV (Tokamak de Varennes) [18[ital th] [ital EPS] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Physics] Berlin (European Physical Society, Petit-Lancy, 1991), Vol. 15C, Part I, pp. 1--141] to produce various biasing configurations, which can be decomposed into two basic modes. Plasma biasing, with a radial electric field [ital E][sub [ital r
Erosion and deposition in the JET divertor during the second ITER-like wall campaign
NASA Astrophysics Data System (ADS)
Mayer, M.; Krat, S.; Baron-Wiechec, A.; Gasparyan, Yu; Heinola, K.; Koivuranta, S.; Likonen, J.; Ruset, C.; de Saint-Aubin, G.; Widdowson, A.; Contributors, JET
2017-12-01
Erosion of plasma-facing materials and successive transport and redeposition of eroded material are crucial processes determining the lifetime of plasma-facing components and the trapped tritium inventory in redeposited material layers. Erosion and deposition in the JET divertor were studied during the second JET ITER-like wall campaign ILW-2 in 2013-2014 by using a poloidal row of specially prepared divertor marker tiles including the tungsten bulk tile 5. The marker tiles were analyzed using elastic backscattering with 3-4.5 MeV incident protons and nuclear reaction analysis using 0.8-4.5 MeV 3He ions before and after the campaign. The erosion/deposition pattern observed during ILW-2 is qualitatively comparable to the first campaign ILW-1 in 2011-2012: deposits consist mainly of beryllium with 5-20 at.% of carbon and oxygen and small amounts of Ni and W. The highest deposition with deposited layer thicknesses up to 30 μm per campaign is still observed on the upper and horizontal parts of the inner divertor. Outer divertor tiles 5, 6, 7 and 8 are net W erosion areas. The observed D inventory is roughly comparable to the inventory observed during ILW-1. The results obtained during ILW-2 therefore confirm the positive results observed in ILW-1 with respect to reduced material deposition and hydrogen isotopes retention in the divertor.
Minimum magnetic curvature for resilient divertors using Compact Toroidal Hybrid geometry
Bader, Aaron; Hegna, C. C.; Cianciosa, Mark R.; ...
2018-03-16
The properties of resilient divertors are explored using equilibria derived from Compact Toroidal Hybrid (CTH) geometries. Resilience is defined here as the robustness of the strike point patterns as the plasma geometry and/or plasma profiles are changed. The addition of plasma current in the CTH configurations significantly alters the shape of the last closed flux surface and the rotational transform profile, however, it does not alter the strike point pattern on the target plates, and hence has resilient divertor features. The limits of when a configuration transforms to a resilient configuration is then explored. New CTH-like configurations are generated thatmore » vary from a perfectly circular cross section to configurations with increasing amounts of toroidal shaping. It is found that even small amounts of toroidal shaping lead to strike point localization that is similar to the standard CTH configuration. Lastly, these results show that only a small degree of three-dimensional shaping is necessary to produce a resilient divertor, implying that any highly shaped optimized stellarator will possess the resilient divertor property.« less
[Analysis of hydrodynamics parameters of runoff erosion and sediment-yielding on unpaved road].
Huang, Peng-Fei; Wang, Wen-Long; Luo, Ting; Wang, Zhen; Wang, Zheng-Li; Li, Ren
2013-02-01
By the method of field runoff washout experiment, a simulation study was conducted on the relationships between the soil detachment rate and the hydrodynamic parameters on unpaved road, and the related quantitative formulas were established. Under the conditions of different flow discharges and road gradients, the averaged soil detachment rate increased with increasing flow discharge and road gradient, and the relationships between them could be described by a power function. As compared with road gradient, flow discharge had greater effects on the soil detachment rate. The soil detachment rate had a power relation with water flow velocity and runoff kinetic energy, and the runoff kinetic energy was of importance to the soil detachment rate. The soil detachment rate was linearly correlated with the unit runoff kinetic energy. The averaged soil erodibility was 0.120 g m-1.J-F-1, and the averaged critical unit runoff kinetic energy was 2.875 g.m-1.J-1. Flow discharge, road gradient, and unit runoff kinetic energy could be used to accurately describe the soil erosion process and calculate the soil erosion rate on unpaved road.
Designing divertor targets for uniform power load
NASA Astrophysics Data System (ADS)
Dekeyser, W.; Reiter, D.; Baelmans, M.
2015-08-01
Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.; Croll, A.
2014-01-01
A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processinginduced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction. The plans for the flight experiments will be described.
Influence of Containment on the Growth of Silicon-Germanium: A Materials Science Flight Project
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.; Croell, A.
2012-01-01
A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction. The plans for the flight experiments will be described.
Flow-induced detachment of red blood cells adhering to surfaces by specific antigen-antibody bonds.
Xia, Z; Goldsmith, H L; van de Ven, T G
1994-04-01
Fixed spherical swollen human red blood cells of blood type B adhering on a glass surface through antigen-antibody bonds to monoclonal mouse antihuman IgM, adsorbed or covalently linked on the surface, were detached by known hydrodynamic forces created in an impinging jet. The dynamic process of detachment of the specifically bound cells was recorded and analyzed. The fraction of adherent cells remaining on the surface decreased with increasing hydrodynamic force. For an IgM coverage of 0.26%, a tangential force on the order of 100 pN was able to detach almost all of the cells from the surface within 20 min. After a given time of exposure to hydrodynamic force, the fraction of adherent cells remaining increased with time, reflecting an increase in adhesion strength. The characteristic time for effective aging was approximately 4 h. Results from experiments in which the adsorbed antibody molecules were immobilized through covalent coupling and from evanescent wave light scattering of adherent cells, imply that deformation of red cells at the contact area was the principal cause for aging, rather than local clustering of the antibody through surface diffusion. Experiments with latex beads specifically bound to red blood cells suggest that, instead of breaking the antigen-antibody bonds, antigen molecules were extracted from the cell membrane during detachment.
Novel Approach to Measuring the Droplet Detachment Force from Fibers.
Amrei, M M; Venkateshan, D G; D'Souza, N; Atulasimha, J; Tafreshi, H Vahedi
2016-12-20
Determining the force required to detach a droplet from a fiber or from an assembly of fibers is of great importance to many applications. A novel technique is developed in this work to measure this force experimentally by using ferrofluid droplets in a magnetic field. Unlike previous methods reported in the literature, our technique does not require air flow or a mechanical object to detach the droplet from the fiber(s); therefore, it simplifies the experiment and also allows one to study the capillarity of the droplet-fiber system in a more isolated environment. In this article, we investigated the effects of the relative angle between intersecting fibers on the force required to detach a droplet from the fibers in the in-plane or out-of-plane direction. The in-plane and through-plane detachment forces were also predicted via numerical simulation and compared with the experimental results. Good agreement was observed between the numerical and experimental results. It was found that the relative angle between intersecting fibers has no significant effect on the detachment force in the out-of-plane direction. However, the detachment force in the in-plane direction depends strongly on the relative angle between the fibers, and it increases as this angle increases.
Dai, Chenkai; Cheng, Tao; Wood, Mark W.; Gan, Rong Z.
2007-01-01
The aim of this study is to investigate the function of the superior malleolar ligament (SML) and the anterior malleolar ligament (AML) in human middle ear for sound transmission through simulations of fixation and detachment of these ligaments in human temporal bones and a finite element (FE) ear model. Two laser vibrometers were used to measure the vibrations of the tympanic membrane (TM) and stapes footplate. A 3-D FE ear model was used to predict the transfer function of the middle ear with ligament fixation and detachment. The results demonstrate that fixations and detachments of the SML and AML had different effects on TM and stapes footplate movements. Fixation of the SML resulted in a reduction of displacement of the TM (umbo) and the footplate at low frequencies (f < 1000 Hz), but also caused a shift of displacement peak to higher frequencies. Fixation of both SML and AML caused a reduction of 15 dB at umbo or stapes at low frequencies. Detachment of the SML had almost no effect on TM and footplate mobility, but AML detachment had a minor effect on TM and footplate movement. The FE model was able to predict the effects of SML and AML fixation and detachment. PMID:17517484
ERIC Educational Resources Information Center
Bril, Blandine; Rein, Robert; Nonaka, Tetsushi; Wenban-Smith, Francis; Dietrich, Gilles
2010-01-01
Tool use can be considered a particularly useful model to understand the nature of functional actions. In 3 experiments, tool-use actions typified by stone knapping were investigated. Participants had to detach stone flakes from a flint core through a conchoidal fracture. Successful flake detachment requires controlling various functional…
Density control in ITER: an iterative learning control and robust control approach
NASA Astrophysics Data System (ADS)
Ravensbergen, T.; de Vries, P. C.; Felici, F.; Blanken, T. C.; Nouailletas, R.; Zabeo, L.
2018-01-01
Plasma density control for next generation tokamaks, such as ITER, is challenging because of multiple reasons. The response of the usual gas valve actuators in future, larger fusion devices, might be too slow for feedback control. Both pellet fuelling and the use of feedforward-based control may help to solve this problem. Also, tight density limits arise during ramp-up, due to operational limits related to divertor detachment and radiative collapses. As the number of shots available for controller tuning will be limited in ITER, in this paper, iterative learning control (ILC) is proposed to determine optimal feedforward actuator inputs based on tracking errors, obtained in previous shots. This control method can take the actuator and density limits into account and can deal with large actuator delays. However, a purely feedforward-based density control may not be sufficient due to the presence of disturbances and shot-to-shot differences. Therefore, robust control synthesis is used to construct a robustly stabilizing feedback controller. In simulations, it is shown that this combined controller strategy is able to achieve good tracking performance in the presence of shot-to-shot differences, tight constraints, and model mismatches.
High-Z material erosion and its control in DIII-D carbon divertor
Ding, Rui; Rudakov, Dimitry L.; Stangeby, Peter C.; ...
2017-03-16
It is expected that high-Z materials will be used as plasma-facing components (PFCs) in future fusion devices, making the erosion of high-Z material a key issue for high-power, long pulse operation. High-Z material erosion and redeposition have been studied using tungsten and molybdenum coated samples exposed in well-diagnosed DIII-D divertor plasma discharges. By coupling dedicated experiments and modelling using the 3D Monte Carlo code ERO, the roles of sheath potential and background carbon impurities in determining high-Z material erosion are identified. Different methods suggested by modelling have been investigated to control high-Z material erosion in DIII-D experiments. The erosion ofmore » Mo and W are found to be strongly suppressed by local injection of methane and deuterium gases. The 13C deposition resulting from local 13CH 4 injection also provides information on radial transport due to E×B drifts and cross field diffusion. Finally, D 2 gas puffing is found to cause 2 local plasma perturbation, suppressing W erosion because of the lower effective sputtering yield of W at lower plasma temperature and for higher carbon concentration in the mixed surface layer.« less
Effect of heating scheme on SOL width in DIII-D and EAST
Wang, L.; Makowski, M. A.; Guo, H. Y.; ...
2017-03-10
Joint DIII-D/EAST experiments in the radio-frequency (RF) heated H-mode scheme with comparison to that of neutral beam (NB) heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL) width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broadermore » SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. Finally, the joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH) H-mode plasmas.« less
Effect of heating scheme on SOL width in DIII-D and EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.; Makowski, M. A.; Guo, H. Y.
Joint DIII-D/EAST experiments in the radio-frequency (RF) heated H-mode scheme with comparison to that of neutral beam (NB) heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL) width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broadermore » SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. Finally, the joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH) H-mode plasmas.« less
Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX
NASA Astrophysics Data System (ADS)
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
2017-07-01
Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.
Simulation of turbulence in the divertor region of tokamak edge plasma
NASA Astrophysics Data System (ADS)
Umansky, M. V.; Rognlien, T. D.; Xu, X. Q.
2005-03-01
Results are presented for turbulence simulations with the fluid edge turbulence code BOUT [X.Q. Xu, R.H. Cohen, Contr. Plas. Phys. 36 (1998) 158]. The present study is focussed on turbulence in the divertor leg region and on the role of the X-point in the structure of turbulence. Results of the present calculations indicate that the ballooning effects are important for the divertor fluctuations. The X-point shear leads to weak correlation of turbulence across the X-point regions, in particular for large toroidal wavenumber. For the saturated amplitudes of the divertor region turbulence it is found that amplitudes of density fluctuations are roughly proportional to the local density of the background plasma. The amplitudes of electron temperature and electric potential fluctuations are roughly proportional to the local electron temperature of the background plasma.
Divertor with a third-order null of the poloidal field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov, D. D.; Umansky, M. V.
2013-09-15
A concept and preliminary feasibility analysis of a divertor with the third-order poloidal field null is presented. The third-order null is the point where not only the field itself but also its first and second spatial derivatives are zero. In this case, the separatrix near the null-point has eight branches, and the number of strike-points increases from 2 (as in the standard divertor) to six. It is shown that this magnetic configuration can be created by a proper adjustment of the currents in a set of three divertor coils. If the currents are somewhat different from the required values, themore » configuration becomes that of three closely spaced first-order nulls. Analytic approach, suitable for a quick orientation in the problem, is used. Potential advantages and disadvantages of this configuration are briefly discussed.« less
Initial development of the DIII–D snowflake divertor control
NASA Astrophysics Data System (ADS)
Kolemen, E.; Vail, P. J.; Makowski, M. A.; Allen, S. L.; Bray, B. D.; Fenstermacher, M. E.; Humphreys, D. A.; Hyatt, A. W.; Lasnier, C. J.; Leonard, A. W.; McLean, A. G.; Maingi, R.; Nazikian, R.; Petrie, T. W.; Soukhanovskii, V. A.; Unterberg, E. A.
2018-06-01
Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasma and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. The SFD resulted in a 2.5× reduction in the peak heat flux for many energy confinement times (2–3 s) without any adverse effects on core plasma performance.
Reduction of Defects in Germanium-Silicon
NASA Technical Reports Server (NTRS)
Szofran, F. R.; Benz, K. W.; Cobb, S. D.; Croell, A.; Dold, P.; Kaiser, N.; Motakel, S.; Walker, J. S.
2000-01-01
Crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached-Bridgman growth is a promising tool to improve crystal quality, without the limitations of float zoning. Detached growth has been found to occur frequently during microg experiments and considerable improvements of crystal quality have been reported for those cases. However, no thorough understanding of the process or quantitative assessment of the quality improvements exists so far. This project is determining the means to reproducibly grow Ge-Si alloys in the detached mode.
A Role for MEK-Interacting Protein 1 In Hormone Responsiveness of ER Positive Breast Cancer Cells
2011-10-01
48 hours, ER- positiv e cell lines tran sfected with MP1siRNA (but not control siR NA) rounded up and detached fr om the plate, and trypan blue...phenotype to MCF-7. To quantitate the effect of MP1 knockdown, attached and detached cells were collected at 48 h following siRNA transfection, stained...Immunoblot from a representative experiment. Lower panel: Quantitation of MP1/Actin ratios in three independent experiments (mean ± SD, *pɘ.05). Figure
Nuclear analysis of structural damage and nuclear heating on enhanced K-DEMO divertor model
NASA Astrophysics Data System (ADS)
Park, J.; Im, K.; Kwon, S.; Kim, J.; Kim, D.; Woo, M.; Shin, C.
2017-12-01
This paper addresses nuclear analysis on the Korean fusion demonstration reactor (K-DEMO) divertor to estimate the overall trend of nuclear heating values and displacement damages. The K-DEMO divertor model was created and converted by the CAD (Pro-Engineer™) and Monte Carlo automatic modeling programs as a 22.5° sector of the tokamak. The Monte Carlo neutron photon transport and ADVANTG codes were used in this calculation with the FENDL-2.1 nuclear data library. The calculation results indicate that the highest values appeared on the upper outboard target (OT) area, which means the OT is exposed to the highest radiation conditions among the three plasma-facing parts (inboard, central and outboard) in the divertor. Especially, much lower nuclear heating values and displacement damages are indicated on the lower part of the OT area than others. These are important results contributing to thermal-hydraulic and thermo-mechanical analyses on the divertor and also it is expected that the copper alloy materials may be partially used as a heat sink only at the lower part of the OT instead of the reduced activation ferritic-martensitic steel due to copper alloy’s high thermal conductivity.
Power exhaust scenarios and control for projected high-power NSTX-U operation
NASA Astrophysics Data System (ADS)
Menard, Jonathan; Gerhardt, S. P.; Myers, C. E.; Reinke, M. L.; Brooks, A.; Mardenfeld, M.; NSTX Upgrade Team
2017-10-01
An important goal of the NSTX Upgrade (NSTX-U) research program is to characterize energy confinement in the low-aspect-ratio spherical tokamak configuration over a significantly expanded range of plasma current, toroidal field, and heating power, while increasing flattop durations up to 5 seconds. However, the narrowing of the scrape-off layer at higher current combined with an improved understanding of expected halo-current loads has motivated a significant re-design of NSTX-U plasma facing components in the high-heat-flux regions of the divertor. In order to reduce the expected divertor heat flux to acceptable levels, a combination of mitigation techniques will be used: increased divertor poloidal flux expansion, increased divertor radiation, and controlled strike-point sweeping. The machine requirements for these various mitigation techniques are studied here using a newly implemented reduced heat-flux model. Systematic equilibrium scans are used to quantify the required divertor coil currents and to verify vertical stability for a range of plasma shapes. Free-boundary control schemes to constrain the strike-point location and field-line angle-of-incidence will also be discussed. Work supported by DOE contract DE-AC02- 09CH11466.
Nakagaki, Susumu; Yasuda, Yoshitaka; Handa, Keisuke; Koike, Toshiyuki; Saito, Takashi; Mizoguchi, Itaru
2016-01-01
Abstract Orthodontic implants may fracture at the cortical bone level upon rotational torque. The impacted fragment can be detached by a range of methods, which are all more or less time‐consuming and injurious to the cortical bone. The aim of this study was to compare three different methods for detaching an orthodontic implant impacted in cortical bone. Health Sciences University of Hokkaido animal ethics committee approved the study protocol. Orthodontic titanium‐alloy (Ti‐6Al‐4 V) implants were placed bilaterally on the buccal side of the mandible of beagle dogs. Subsequently, the implants were detached using either a low‐speed handpiece with a round bur, alternatively by use of a low‐power or a high‐power ultrasonic instrument. In the first experiment, 56 orthodontic implants were placed into the dissected mandible from 7 animals. The methods for detachment were compared with respect to time interval, as well as associated undesirable bone loss as appraised by use of cone‐beam computed tomography. In experiment two, 2x2 implants were placed bilaterally in the mandible of 8 animals and subsequently detached by manual rotational torque, and the described three methods for detachment. The implant socket was investigated histologically as a function of removal method immediately after removal, and after 1, 3 and 8 weeks and contrasted with the healing of the socket of the implant that was detached by manual rotational torque. Statistical significance was appraised by the use of non‐parametric Kruskal‐Wallis one‐way analysis of variance. The method using the low‐power ultrasonic required significantly longer removal time versus the two other methods, i.e. high‐power ultrasonic and low‐speed handpiece with a round bur (p < 0.02). The amount of undesirable bone loss was substantially larger with low‐speed handpiece with a round bur compared to the two ultrasonic methods (p < 0.05). Bone formation after 3 weeks of healing was more complete following the use of low or high‐power ultrasonic instrument in comparison with a low‐speed handpiece rotary instrument method. Orthodontic implants likely to fracture upon rotational torque or impacted fractured fragments should be detached preferably with an ultrasonic instrument, because of less associated bone loss and more rapid bone healing compared to the use of a low‐speed handpiece rotary instrument. PMID:29744149
Coupled factors influencing detachment of nano- and micro-sized particles from primary minima.
Shen, Chongyang; Lazouskaya, Volha; Jin, Yan; Li, Baoguo; Ma, Zhiqiang; Zheng, Wenjuan; Huang, Yuanfang
2012-06-01
This study examined the detachments of nano- and micro-sized colloids from primary minima in the presence of cation exchange by laboratory column experiments. Colloids were initially deposited in columns packed with glass beads at 0.2 M CaCl(2) in the primary minima of Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Then, the columns were flushed with NaCl solutions with different ionic strengths (i.e., 0.001, 0.01, 0.1 and 0.2 M). Detachments were observed at all ionic strengths and were particularly significant for the nanoparticle. The detachments increased with increasing electrolyte concentration for the nanoparticle whereas increased from 0.001 M to 0.01 M and decreased with further increasing electrolyte concentration for the micro-sized colloid. The observations were attributed to coupled influence of cation exchange, short-range repulsion, surface roughness, surface charge heterogeneity, and deposition in the secondary minima. The detachments of colloids from primary minima challenge the common belief that colloid interaction in primary minimum is irreversible and resistant to disturbance in solution ionic strength and composition. Although the significance of surface roughness, surface charge heterogeneity, and secondary minima on colloid deposition has been widely recognized, our study implies that they also play important roles in colloid detachment. Whereas colloid detachment is frequently associated with decrease of ionic strength, our results show that increase of ionic strength can also cause detachment due to influence of cation exchange. Copyright © 2012 Elsevier B.V. All rights reserved.
Defect, Kinetics and Heat Transfer of CDTE Bridgman Growth without Wall Contact
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.; Zhang, H.
2003-01-01
A detached growth mechanism has been proposed, which is similar to that proposed by Duffar et al. and used to study the current detached growth system. From numerical results, we can conclude that detached growth will more likely appear if the growth and wetting angles are large and meniscus is flat. Detached thickness is dependent on growth angle, wetting angle, and gap width and shape of the fins. The model can also explain why the detached growth will not happen for metals in which the growth angle is almost zero. Since the growth angle of CdZnTe cannot be changed, to promote detached growth, the number density of the fins should be low and the wetting angle should be high. Also, a much smaller gap width of the fins should be used in the ground experiment and the detached gap width is much smaller. The shape of the fins has minor influence on detached growth. An integrated numerical model for detached solidification has been developed combining a global heat transfer sub-model and a wall contact sub-model. The global heat transfer sub-model accounts for heat and mass transfer in the multiphase system, convection in the melt, macro-segregation, and interface dynamics. The location and dynamics of the solidification interface are accurately tracked by a multizone adaptive grid generation scheme. The wall contact sub-model accounts for the meniscus dynamics at the three-phase boundary. Simulations have been performed for crystal growth in a conventional ampoule and a designed ampoule to understand the benefits of detached solidification and its impacts on crystalline structural quality, e.g., stoichiometry, macro-segregation, and stress. From simulation results, both the Grashof and Marangoni numbers will have significant effects on the shape of growth front, Zn concentration distribution, and radial segregation. The integrated model can be used in designing apparatus and determining the optimal geometry for detached solidification in space and on the ground.
The Science of Detached Bridgman Growth and Solutocapillary Convection in Solid Solution Crystals
NASA Technical Reports Server (NTRS)
Szofran, F. R.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.
2001-01-01
Bridgman and Float-zone crystal growth experiments are planned for NASA's First Materials Science Research Rack using the European Space Agency's Materials Science Laboratory with the Low Gradient Furnace (LGF) and Float Zone Furnace with Rotating Magnetic Field (FMF) inserts, respectively. Samples will include germanium and germanium-silicon alloys with up to 10 atomic percent silicon. The Bridgman part of the investigation includes detached growth samples and so there will be a solid-liquid-gas tri-junction in those experiments just as there will be in all float-zone experiments. There are other similarities as well as significant differences between the types of growth that will be discussed. The presentation will call attention to the reasons that experiments in microgravity will provide information unattainable from Earth-based experiments.
ELM-induced transient tungsten melting in the JET divertor
NASA Astrophysics Data System (ADS)
Coenen, J. W.; Arnoux, G.; Bazylev, B.; Matthews, G. F.; Autricque, A.; Balboa, I.; Clever, M.; Dejarnac, R.; Coffey, I.; Corre, Y.; Devaux, S.; Frassinetti, L.; Gauthier, E.; Horacek, J.; Jachmich, S.; Komm, M.; Knaup, M.; Krieger, K.; Marsen, S.; Meigs, A.; Mertens, Ph.; Pitts, R. A.; Puetterich, T.; Rack, M.; Stamp, M.; Sergienko, G.; Tamain, P.; Thompson, V.; Contributors, JET-EFDA
2015-02-01
The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER. Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of IP = 3.0 MA/BT = 2.9 T H-mode pulses with an input power of PIN = 23 MW, a stored energy of ˜6 MJ and regular type I ELMs at ΔWELM = 0.3 MJ and fELM ˜ 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within ˜1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (δW ˜ 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957-64). Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (˜80 µm) were released. Almost 1 mm (˜6 mm3) of W was moved by ˜150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j × B forces. The evaporation rate determined from spectroscopy is 100 times less than expected from steady state melting and is thus consistent only with transient melting during the individual ELMs. Analysis of IR data and spectroscopy together with modelling using the MEMOS code Bazylev et al 2009 J. Nucl. Mater. 390-391 810-13 point to transient melting as the main process. 3D MEMOS simulations on the consequences of multiple ELMs on damage of tungsten castellated armour have been performed. These experiments provide the first experimental evidence for the absence of significant melt splashing at transient events resembling mitigated ELMs on ITER and establish a key experimental benchmark for the MEMOS code.
Influence of cell detachment on the respiration rate of tumor and endothelial cells.
Danhier, Pierre; Copetti, Tamara; De Preter, Géraldine; Leveque, Philippe; Feron, Olivier; Jordan, Bénédicte F; Sonveaux, Pierre; Gallez, Bernard
2013-01-01
Cell detachment is a procedure routinely performed in cell culture and a necessary step in many biochemical assays including the determination of oxygen consumption rates (OCR) in vitro. In vivo, cell detachment has been shown to exert profound metabolic influences notably in cancer but also in other pathologies, such as retinal detachment for example. In the present study, we developed and validated a new technique combining electron paramagnetic resonance (EPR) oximetry and the use of cytodex 1 and collagen-coated cytodex 3 dextran microbeads, which allowed the unprecedented comparison of the OCR of adherent and detached cells with high sensitivity. Hence, we demonstrated that both B16F10 melanoma cells and human umbilical vein endothelial cells (HUVEC) experience strong OCR decrease upon trypsin or collagenase treatments. The reduction of cell oxygen consumption was more pronounced with a trypsin compared to a collagenase treatment. Cells remaining in suspension also encounter a marked intracellular ATP depletion and an increase in the lactate production/glucose uptake ratio. These findings highlight the important influence exerted by cell adhesion/detachment on cell respiration, which can be probed with the unprecedented experimental assay that was developed and validated in this study.
Influence of Cell Detachment on the Respiration Rate of Tumor and Endothelial Cells
Danhier, Pierre; Copetti, Tamara; De Preter, Géraldine; Leveque, Philippe; Feron, Olivier; Jordan, Bénédicte F.; Sonveaux, Pierre; Gallez, Bernard
2013-01-01
Cell detachment is a procedure routinely performed in cell culture and a necessary step in many biochemical assays including the determination of oxygen consumption rates (OCR) in vitro. In vivo, cell detachment has been shown to exert profound metabolic influences notably in cancer but also in other pathologies, such as retinal detachment for example. In the present study, we developed and validated a new technique combining electron paramagnetic resonance (EPR) oximetry and the use of cytodex 1 and collagen-coated cytodex 3 dextran microbeads, which allowed the unprecedented comparison of the OCR of adherent and detached cells with high sensitivity. Hence, we demonstrated that both B16F10 melanoma cells and human umbilical vein endothelial cells (HUVEC) experience strong OCR decrease upon trypsin or collagenase treatments. The reduction of cell oxygen consumption was more pronounced with a trypsin compared to a collagenase treatment. Cells remaining in suspension also encounter a marked intracellular ATP depletion and an increase in the lactate production/glucose uptake ratio. These findings highlight the important influence exerted by cell adhesion/detachment on cell respiration, which can be probed with the unprecedented experimental assay that was developed and validated in this study. PMID:23382841
Elucidating the role of recovery experiences in the job demands-resources model.
Moreno-Jiménez, Bernardo; Rodríguez-Muñoz, Alfredo; Sanz-Vergel, Ana Isabel; Garrosa, Eva
2012-07-01
Based on the Job Demands-Resources (JD-R) model, the current study examined the moderating role of recovery experiences (i.e., psychological detachment from work, relaxation, mastery experiences, and control over leisure time) on the relationship between one job demand (i.e., role conflict) and work- and health-related outcomes. Results from our sample of 990 employees from Spain showed that psychological detachment from work and relaxation buffered the negative impact of role conflict on some of the proposed outcomes. Contrary to our expectations, we did not find significant results for mastery and control regarding moderating effects. Overall, findings suggest a differential pattern of the recovery experiences in the health impairment process proposed by the JD-R model.
Exposures of tungsten nanostructures to divertor plasmas in DIII-D
Rudakov, D. L.; Wong, C. P. C.; Doerner, R. P.; ...
2016-01-22
Tungsten nanostructures (W-fuzz) prepared in the PISCES-A linear device have been found to survive direct exposure to divertor plasmas in DIII-D. W-fuzz was exposed in the lower divertor of DIII-D using the divertor material evaluation system. Two samples were exposed in lower single null (LSN) deuterium H-mode plasmas. The first sample was exposed in three discharges terminated by vertical displacement event disruptions, and the second in two discharges near the lowered X-point. More recently, three samples were exposed near the lower outer strike point in predominantly helium H-mode LSN plasmas. In all cases, the W-fuzz survived plasma exposure with littlemore » obvious damage except in the areas where unipolar arcing occurred. In conclusion, arcing is effective in W-fuzz removal, and it appears that surfaces covered with W-fuzz can be more prone to arcing than smooth W surfaces.« less
Plasma transport in a simulated magnetic-divertor configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strawitch, C. M.
1981-03-01
The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult tomore » eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.« less
Structural investigation of re-deposited layers in JET
NASA Astrophysics Data System (ADS)
Likonen, J.; Vainonen-Ahlgren, E.; Khriachtchev, L.; Coad, J. P.; Rubel, M.; Renvall, T.; Arstila, K.; Hole, D. E.; Contributors to the EFDA-JET Work-programme
2008-07-01
JET Mk-II Gas Box divertor tiles exposed in 1998-2001 have been analysed with various ion beam techniques, secondary ion mass spectrometry (SIMS) and Raman spectroscopy. Inner divertor wall tiles removed in 2001 were covered with a duplex film. The inner layer was very rich in metallic impurities, with Be/C ˜ 1 and H-isotopes only present at low concentrations. The outer layer contained higher concentrations of D than normal for plasma-facing surfaces in JET (D/C ˜ 0.4), and Be/C ˜ 0.14. Raman and SIMS analyses show that the deposited films on inner divertor tiles are hydrogenated amorphous carbon with low sp 3 fractions. The deposits have polymeric structure and low density. Both Raman scattering and SIMS indicate that films on inner divertor wall Tiles 1 and 3, and on floor Tile 4 have some differences in the chemical structure of the deposited films
"Notice how you feel": an alternative to detached concern among hospice volunteers.
Fox, John
2006-09-01
Medical schools teach physicians to practice "detached concern," a simultaneous emotional distance from and sensitivity toward their patients. Medical students learn detachment to protect themselves from emotion-laden experiences, including death and dying, by employing mechanisms of defense and adjustment, such as suppression and repression of emotions. In this study, the author inquires whether hospice volunteers are trained for and practice detached concern and finds that hospice volunteers are trained for concern. They are concerned for the well-being of patients and their families. The author argues that concern is a social product that can be trained; hospice volunteers are not trained to suppress and repress their emotions, and the hospice as an institution produces and transmits cultural norms, values, and practices surrounding death and dying, thus maintaining a pool of concerned volunteers.
Weigelt, Oliver; Syrek, Christine J
2017-12-20
Unfinished tasks have been identified as a significant job stressor that impairs employee recovery after work. Classic experimental research by Ovsiankina has shown that people tend to resume yet unfinished tasks to satisfy their need for closure. We apply this notion to current working life and examine supplemental work after hours as a means to achieve peace of mind. We investigate how progress towards goal accomplishment through supplemental work may facilitate recovery in terms of psychological detachment, relaxation, autonomy, and mastery experiences. We conducted a week-level diary study among 83 employees over a period of 14 consecutive weeks, which yielded 575 observations in total and 214 matched observations of unfinished tasks, supplemental work during the weekend, progress, and recovery experiences. Unfinished tasks were assessed on Friday. Supplemental work and recovery experiences were assessed on Monday. Multilevel modeling analyses provide evidence that unfinished tasks at the end of the work week are associated with lower levels of detachment at the intraindividual level, tend to relate to lower relaxation, but are unrelated to autonomy and mastery. Progress towards finishing tasks during the weekend alleviates the detrimental effects of unfinished tasks on both kinds of recovery experiences. Supplemental work is negatively linked to detachment, but largely unrelated to the other recovery experiences.
Initial development of the DIII–D snowflake divertor control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolemen, Egemen; Vail, P. J.; Makowski, M. A.
Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasmamore » and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. In conclusion, the SFD resulted in a 2.5×reduction in the peak heat flux for many energy confinement times (2–3s) without any adverse effects on core plasma performance.« less
Initial development of the DIII–D snowflake divertor control
Kolemen, Egemen; Vail, P. J.; Makowski, M. A.; ...
2018-04-11
Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasmamore » and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. In conclusion, the SFD resulted in a 2.5×reduction in the peak heat flux for many energy confinement times (2–3s) without any adverse effects on core plasma performance.« less
Bombardment of Thin Lithium Films with Energetic Plasma Flows
ERIC Educational Resources Information Center
Gray, Travis Kelly
2009-01-01
The Divertor Erosion and Vapor Shielding Experiment (DEVEX) has been constructed in the Center for Plasma-Material Interactions at the University of Illinois at Urbana-Champaign. It consists of a conical theta-pinch connected to a 60 kV, 36 [mu]F capacitor bank which is switched with a rise time of 3.5 [mu]s. This results in a peak current of 300…
NASA Astrophysics Data System (ADS)
Schmitz, O.; Becoulet, M.; Cahyna, P.; Evans, T. E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R. A.; Reiser, D.; Fenstermacher, M. E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.
2016-06-01
Results from three-dimensional modeling of plasma edge transport and plasma-wall interactions during application of resonant magnetic perturbation (RMP) fields for control of edge-localized modes in the ITER standard 15 MA Q = 10 H-mode are presented. The full 3D plasma fluid and kinetic neutral transport code EMC3-EIRENE is used for the modeling. Four characteristic perturbed magnetic topologies are considered and discussed with reference to the axisymmetric case without RMP fields. Two perturbation field amplitudes at full and half of the ITER ELM control coil current capability using the vacuum approximation are compared to a case including a strongly screening plasma response. In addition, a vacuum field case at high q 95 = 4.2 featuring increased magnetic shear has been modeled. Formation of a three-dimensional plasma boundary is seen for all four perturbed magnetic topologies. The resonant field amplitudes and the effective radial magnetic field at the separatrix define the shape and extension of the 3D plasma boundary. Opening of the magnetic field lines from inside the separatrix establishes scrape-off layer-like channels of direct parallel particle and heat flux towards the divertor yielding a reduction of the main plasma thermal and particle confinement. This impact on confinement is most accentuated at full RMP current and is strongly reduced when screened RMP fields are considered, as well as for the reduced coil current cases. The divertor fluxes are redirected into a three-dimensional pattern of helical magnetic footprints on the divertor target tiles. At maximum perturbation strength, these fingers stretch out as far as 60 cm across the divertor targets, yielding heat flux spreading and the reduction of peak heat fluxes by 30%. However, at the same time substantial and highly localized heat fluxes reach divertor areas well outside of the axisymmetric heat flux decay profile. Reduced RMP amplitudes due to screening or reduced RMP coil current yield a reduction of the width of the divertor flux spreading to about 20-25 cm and cause increased peak heat fluxes back to values similar to those in the axisymmetric case. The dependencies of these features on the divertor recycling regime and the perpendicular transport assumptions, as well as toroidal averaged effects mimicking rotation of the RMP field, are discussed in the paper.
Rat supraspinatus muscle atrophy after tendon detachment.
Barton, Elisabeth R; Gimbel, Jonathan A; Williams, Gerald R; Soslowsky, Louis J
2005-03-01
Rotator cuff tears are one of the most common tendon disorders found in the healthy population. Tendon tears not only affect the biomechanical properties of the tendon, but can also lead to debilitation of the muscles attached to the damaged tendons. The changes that occur in the muscle after tendon detachment are not well understood. A rat rotator cuff model was utilized to determine the time course of changes that occur in the supraspinatus muscle after tendon detachment. It was hypothesized that the lack of load on the supraspinatus muscle would cause a significant decrease in muscle mass and a conversion of muscle fiber properties toward those of fast fiber types. Tendons were detached at the insertion on the humerus without repair. Muscle mass, morphology and fiber properties were measured at one, two, four, eight, and 16 weeks after detachment. Tendon detachment resulted in a rapid loss of muscle mass, an increase in the proportion of fast muscle fibers, and an increase in the fibrotic content of the muscle bed, concomitant with the appearance of adhesions of the tendon to surrounding surfaces. At 16 weeks post-detachment, muscle mass and the fiber properties in the deep muscle layers returned to normal levels. However, the fiber shifts observed in the superficial layers persisted throughout the experiment. These results suggest that load returned to the muscle via adhesions to surrounding surfaces, which may be sufficient to reverse changes in muscle mass.
Studies of short-range tungsten migration in DIII-D divertor
NASA Astrophysics Data System (ADS)
Rudakov, D. L.; Stangeby, P. C.; Elder, J. D.; Ding, R.; Abrams, T.; Unterberg, E. A.; Briesemeister, A.; Donovan, D.; McLean, A. G.; Guo, H. Y.; Thomas, D. M.; Hinson, E.; Wampler, W. R.; Watkins, J. G.
2016-10-01
Two toroidal rings of 5 cm wide W-coated TZM inserts were installed in the lower divertor of DIII-D. Migration of W on the graphite tile surfaces 1-6 cm radially outwards from the outermost ring was studied in a series of 23 reproducible lower single null L-mode discharges with the Outer Strike Point (OSP) placed on the ring. The discharges used 3.2 MW of NBI heating power; plasma density and electron temperature at the OSP were about 1x1020m-3 and 30 eV. W gross erosion rates were measured via monitoring 400.9 nm WI line and applying S/XB coefficient. W deposition was measured on a graphite DiMES sample used as a divertor collector probe. The sample featured two 1 mm wide radial inserts; one was exposed for the whole experiment, the other was exchanged every 4-8 plasma discharges. Measurements of the areal density of W on the inserts by post-mortem RBS analysis show that W deposition is largest in the area of net carbon deposition, possibly due to W re-erosion suppression by C deposits. Measured W coverage in the area of net C erosion is comparable to ERO modeling predictions. Supported by US DOE under DE-FG02-07ER54917, DE-AC04-94AL85000, DE-AC05-00OR22725, DE-AC52-07NA27344, DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Chen, B.; Xu, X. Q.; Xia, T. Y.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Mao, S. F.; Ye, M. Y.; Wan, Y. X.
2017-11-01
The BOUT++ code has been exploited in order to improve the understanding of the role of turbulent modes in controlling edge transport and resulting scaling of the scrape-off layer (SOL) heat flux width. For the C-Mod enhanced D_α (EDA) H-mode discharges, BOUT++ six-field two-fluid nonlinear simulations show a reasonable agreement of upstream turbulence and divertor target heat flux behavior: (a) the simulated quasi-coherent modes show consistent characteristics of the frequency versus poloidal wave number spectra of the electromagnetic fluctuations when compared with experimental measurements: frequencies are around 60-120 kHz (experiment: about 70-110 kHz), k_θ are around 2.0 cm-1 which is similar to the phase contrast imaging data; (b) linear spectrum analysis is consistent with the nonlinear phase relationship calculation which indicates the dominance of resistive-ballooning modes and drift-Alfven wave instabilities; (c) the SOL heat flux width λq versus current I p scaling is reproduced by turbulent transport: the simulations yield similar λq to experimental measurements within a factor of 2. However the magnitudes of divertor heat fluxes can be varied, depending on the physics models, sources and sinks, sheath boundary conditions, or flux limiting coefficient; (d) Simple estimate by the ‘2-point model’ for λq is consistent with simulation. Moreover, blobby turbulent spreading is confirmed for these relatively high B p shots.
3D-DIVIMP(HC) code modeling of DIII-D DiMES porous plug injector experiments
NASA Astrophysics Data System (ADS)
Mu, Y.; Elder, J. D.; Stangeby, P. C.; McLean, A. G.
2011-08-01
A Porous Plug Injector (PPI) system for the Divertor Material Evaluation System (DiMES) on DIII-D has been employed for in situ study of chemical erosion in the tokamak divertor environment. The 3D-DIVIMP(HC) code has been applied to the interpretation of the CI, CII and other spectroscopic measurements made at the PPI location, for (a) the synthetic source due to injection of CH4 through the PPI, and (b) the natural emission from the PPI head itself, which was inserted above surrounding graphite tiles by ˜0.3 mm.The code successfully replicated the MDS (spectrometer)-measured absolute emissions of CH, CI, CII 427 nm, 514 nm, and 658 nm [1] and the DiMES TV-measured spatial shapes of the CH, CI, and CII 514 nm [1] emission "clouds" to within the combined uncertainties. It is thus concluded that the most important physics and chemistry of chemical sputtering have most likely been included in the model.
NASA Astrophysics Data System (ADS)
Guillemaut, C.; Metzger, C.; Moulton, D.; Heinola, K.; O’Mullane, M.; Balboa, I.; Boom, J.; Matthews, G. F.; Silburn, S.; Solano, E. R.; contributors, JET
2018-06-01
The design and operation of future fusion devices relying on H-mode plasmas requires reliable modelling of edge-localized modes (ELMs) for precise prediction of divertor target conditions. An extensive experimental validation of simple analytical predictions of the time evolution of target plasma loads during ELMs has been carried out here in more than 70 JET-ITER-like wall H-mode experiments with a wide range of conditions. Comparisons of these analytical predictions with diagnostic measurements of target ion flux density, power density, impact energy and electron temperature during ELMs are presented in this paper and show excellent agreement. The analytical predictions tested here are made with the ‘free-streaming’ kinetic model (FSM) which describes ELMs as a quasi-neutral plasma bunch expanding along the magnetic field lines into the Scrape-Off Layer without collisions. Consequences of the FSM on energy reflection and deposition on divertor targets during ELMs are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortolon, A.; Maingi, R.; Mansfield, D. K.
Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less
Bortolon, A.; Maingi, R.; Mansfield, D. K.; ...
2017-03-23
Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less
Effects of ELMs on ITER divertor armour materials
NASA Astrophysics Data System (ADS)
Zhitlukhin, A.; Klimov, N.; Landman, I.; Linke, J.; Loarte, A.; Merola, M.; Podkovyrov, V.; Federici, G.; Bazylev, B.; Pestchanyi, S.; Safronov, V.; Hirai, T.; Maynashev, V.; Levashov, V.; Muzichenko, A.
2007-06-01
This paper is concerned with investigation of an erosion of the ITER-like divertor plasma facing components under plasma heat loads expected during the Type I ELMs in ITER. These experiments were carried out on plasma accelerator QSPA at the SRC RF TRINITI under EU/RF collaboration. Targets were exposed by series repeated plasma pulses with heat loads in a range of 0.5-1.5 MJ/m2 and pulse duration 0.5 ms. Erosion of CFC macrobrushes was determined mainly by sublimation of PAN-fibres that was less than 2.5 μm per pulse. The CFC erosion was negligible at the energy density less than 0.5 MJ/m2 and was increased to the average value 0.3 μm per pulse at 1.5 MJ/m2. The pure tungsten macrobrushes erosion was small in the energy range of 0.5-1.3 MJ/m2. The sharp growth of tungsten erosion and the intense droplet ejection were observed at the energy density of 1.5 MJ/m2.
Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor
NASA Astrophysics Data System (ADS)
McLean, A. G.; Gan, K. F.; Ahn, J.-W.; Gray, T. K.; Maingi, R.; Abrams, T.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Nygren, R. E.; Skinner, C. H.; Soukhanovskii, V. A.
2013-07-01
Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of Tsurface near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q⊥,peak = 5 MW/m2 inter-ELM and up to 10 MW/m2 during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.
Plasma-Facing Component and Materials Testing for the NSTX-U
NASA Astrophysics Data System (ADS)
Jaworski, Michael; Brooks, A.; Gerhardt, S.; Loesser, D.; Mardenfeld, M.; Menard, J.; Gray, T.; Reinke, M.
2017-10-01
The NSTX-U Recovery Project is developing plasma-facing components for use in the divertor of NSTX-U. The extreme conditions of the NSTX-U divertor make it possible to stress even graphite surfaces to the material limits leading to the possibility of component failures. In addition, the complex, mixed-material environment of the NSTX-U due to the use of boron and lithium wall conditioning techniques creates significant uncertainties in the monitoring of the PFCs. A testing program has been developed to inform on the material and design limitations of the NSTX-U high-heat flux components. These tests include high-heat flux testing in electron beam facilities as well as plasma-based testing. The NSTX-U components could experience perpendicular heat fluxes as high as 45 MW/m2. Parallel heat fluxes onto leading edges could reach 475 MW/m2. The testing program and material survey plan will be presented. Work supported by DOE contract DE-AC02-09CH11466 and DE-AC05-00OR22725.
NASA Astrophysics Data System (ADS)
Hogan, J.; Demichelis, C.; Monier-Garbet, P.; Guirlet, R.; Hess, W.; Schunke, B.
2000-10-01
A model combining the MIST (core symmetric) and BBQ (SOL asymmetric) codes is used to study the relation between impurity density and radiated power for representative cases from Tore Supra experiments on strong radiation regimes using the ergodic divertor. Transport predictions of external radiation are compared with observation to estimate the absolute impurity density. BBQ provides the incoming distribution of recycling impurity charge states for the radial transport calculation. The shots studied use the ergodic divertor and high ICRH power. Power is first applied and then the extrinsic impurity (Ne, N or Ar) is injected. Separate time dependent intrinsic (C and O) impurity transport calculations match radiation levels before and during the high power and impurity injection phases. Empirical diffusivities are sought to reproduce the UV (CV R, I lines), CVI Lya, OVIII Lya, Zeff, and horizontal bolometer data. The model has been used to calculate the relative radiative efficiency (radiated power / extrinsically contributed electron) for the sample database.
Safety characteristics of the monolithic CFC divertor
NASA Astrophysics Data System (ADS)
Zucchetti, M.; Merola, M.; Matera, R.
1994-09-01
The main distinguishing feature of the monolithic CFC divertor is the use of a single material, a carbon fibre reinforced carbon, for the protective armour, the heat sink and the cooling channels. This removes joint interface problems which are one of the most important concerns related to the reference solutions of the ITER CDA divertor. An activation analysis of the different coolant options for this concept is presented. It turns out that neither short-term nor long-term activation are a concern for any coolants investigated. Therefore the proposed concept proves to be attractive from a safety stand-point also.
NASA Astrophysics Data System (ADS)
Chen, Lei; Liu, Xiang; Lian, Youyun; Cai, Laizhong
2015-09-01
The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB110001 and 2011GB110004)
NASA Astrophysics Data System (ADS)
Brunner, D.; Burke, W.; Kuang, A. Q.; LaBombard, B.; Lipschultz, B.; Wolfe, S.
2016-02-01
Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.
Brunner, D; Burke, W; Kuang, A Q; LaBombard, B; Lipschultz, B; Wolfe, S
2016-02-01
Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.
Fast imaging of filaments in the X-point region of Alcator C-Mod
Terry, J. L.; Ballinger, S.; Brunner, D.; ...
2017-01-27
A rich variety of field-aligned fluctuations has been revealed using fast imaging of D α emission from Alcator C-Mod's lower X-point region. Field-aligned filamentary fluctuations are observed along the inner divertor leg, within the Private-Flux-Zone (PFZ), in the Scrape-Off Layer (SOL) outside the outer divertor leg, and, under some conditions, at or above the X-point. The locations and dynamics of the filaments in these regions are strikingly complex in C-Mod. Changes in the filaments’ generation appear to be ordered by plasma density and magnetic configuration. Filaments are not observed for plasmas with n/nGreenwald ≲ 0.12 nor are they observed inmore » Upper Single Null configurations. In a Lower Single Null with 0.12 ≲ n/nGreenwald ≲ 0.45 and Bx∇B directed down, filaments typically move up the inner divertor leg toward the X-point. Reversing the field direction results in the appearance of filaments outside of the outer divertor leg. With the divertor targets “detached”, filaments inside the LCFS are seen. Lastly, these studies were motivated by observations of filaments in the X-point and PFZ regions in MAST, and comparisons with those observations are made.« less
[Retinal detachment in HIV-infected patients with cytomegalovirus retinitis].
Onishchenko, A L; Kolbasko, A V; Tatarnikova, G N; Grebenchuk, O S
2014-01-01
The authors present their own clinical experience in three HIV-infected patients with cytomegalovirus retinitis aged from 8 to 36 years. Detailed analysis of the results of physical and laboratory examinations is provided. Given short life expectancy for these patients, the authors pose a deontological question as to whether or not active treatment of retinal detachment in patients with AIDS and CMV retinitis is reasonable.
NASA Astrophysics Data System (ADS)
Mortazavi, Mehdi; Tajiri, Kazuya
2014-01-01
The dynamic behavior of a liquid water droplet emerging and detaching from the surface of the gas diffusion layer (GDL) is investigated. The droplet growth and detachment are studied for different polytetrafluoroethylene (PTFE) contents within the GDL and for different superficial gas velocities flowing in the gas channel. To simulate the droplet behavior in the cathode and anode of an operating polymer electrolyte fuel cell, separate experiments are conducted with air and hydrogen being supplied in the gas channel, respectively. Both the superficial gas velocity and the PTFE content within the GDL are found to impact the droplet detachment diameter. Increasing the superficial gas velocity increases the drag force applied on the droplet sitting on the GDL surface. It is observed that the droplet detaches at a smaller diameter for higher superficial gas velocities. The droplets also detach at smaller diameters from GDLs with a higher amount of PTFE. Such observation is justified according to two different points of view: (1) heterogeneous through-plane PTFE distribution through the GDL and (2) reduced GDL surface roughness caused by PTFE loading.
Demsky, Caitlin A; Ellis, Allison M; Fritz, Charlotte
2014-04-01
The current study investigates workplace aggression and psychological detachment from work as possible antecedents of work-family conflict. We draw upon Conservation of Resources theory and the Effort-Recovery Model to argue that employees who fail to psychologically detach from stressful events in the workplace experience a relative lack of resources that is negatively associated with functioning in the nonwork domain. Further, we extend prior research on antecedents of work-family conflict by examining workplace aggression, a prevalent workplace stressor. Utilizing multisource data (i.e., employee, significant other, and coworker reports), our findings indicate that self-reported psychological detachment mediates the relationship between coworker-reported workplace aggression and both self- and significant other-reported work-family conflict. Findings from the current study speak to the value of combining perspectives from research on recovery from work stress and the work-family interface, and point toward implications for research and practice.
[Surgical managment of retinal detachment].
Haritoglou, C; Wolf, A
2015-05-01
The detachment of the neurosensory retina from the underlying retinal pigment epithelium can be related to breaks of the retina allowing vitreous fluid to gain access to the subretinal space, to exudative changes of the choroid such as tumours or inflammatory diseases or to excessive tractional forces exerted by interactions of the collagenous vitreous and the retina. Tractional retinal detachment is usually treated by vitrectomy and exudative detachment can be addressed by treatment of the underlying condition in many cases. In rhegmatogenous retinal detachment two different surgical procedures, vitrectomy and scleral buckling, can be applied for functional and anatomic rehabilitation of our patients. The choice of the surgical procedure is not really standardised and often depends on the experience of the surgeon and other more ocular factors including lens status, the number of retinal breaks, the extent of the detachment and the amount of preexisting PVR. Using both techniques, anatomic success rates of over 90 % can be achieved. Especially in young phakic patients scleral buckling offers the true advantage to prevent the progression of cataract formation requiring cataract extraction and intraocular lens implantation. Therefore, scleral buckling should be considered in selected cases as an alternative surgical option in spite of the very important technical refinements in modern vitrectomy techniques. Georg Thieme Verlag KG Stuttgart · New York.
Yomo, H; Srinivasan, K
1973-12-01
In contrast to earlier reported results of similar experiments in peas, in which almost no increase in protease activity occurred in incubated detached cotyledons, we report here an increase in protease activity in both attached and detached bean cotyledons. Detached bean cotyledons showed continually increasing protease activity up to the 12th day, while that in attached cotyledons declined after 6 days. The free amino acid level in detached cotyledons reached a maximum at the 11th day; protease formation leveled off after 50% of the original seed protein was digested. These data suggest that high free amino acid levels may inhibit protease formation.The activity of partially purified protease in aqueous extracts was enhanced by 10 mm 2-mercaptoethanol or cysteine, indicating a sulfhydryl requirement for activation. Protease formation in detached cotyledons was inhibited 30% by 10 mug/ml cycloheximide and 50% by 100 mum abscisic acid. In contrast, alpha-amylase formation was inhibited 90% by 10 mug/ml cycloheximide and 95% by 20 mum abscisic acid. The cycloheximide data suggest that only a part of the protease, but all of the alpha-amylase, is synthesized de novo; the similar pattern of inhibition by abscisic acid emphasizes the concept that protease may exist in two forms.
Yomo, Harugoro; Srinivasan, Komala
1973-01-01
In contrast to earlier reported results of similar experiments in peas, in which almost no increase in protease activity occurred in incubated detached cotyledons, we report here an increase in protease activity in both attached and detached bean cotyledons. Detached bean cotyledons showed continually increasing protease activity up to the 12th day, while that in attached cotyledons declined after 6 days. The free amino acid level in detached cotyledons reached a maximum at the 11th day; protease formation leveled off after 50% of the original seed protein was digested. These data suggest that high free amino acid levels may inhibit protease formation. The activity of partially purified protease in aqueous extracts was enhanced by 10 mm 2-mercaptoethanol or cysteine, indicating a sulfhydryl requirement for activation. Protease formation in detached cotyledons was inhibited 30% by 10 μg/ml cycloheximide and 50% by 100 μm abscisic acid. In contrast, α-amylase formation was inhibited 90% by 10 μg/ml cycloheximide and 95% by 20 μm abscisic acid. The cycloheximide data suggest that only a part of the protease, but all of the α-amylase, is synthesized de novo; the similar pattern of inhibition by abscisic acid emphasizes the concept that protease may exist in two forms. PMID:16658628
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi; Peterson, Byron J.
An Infrared imaging Video Bolometer (IRVB) diagnostic is currently being used in the Large Helical Device (LHD) for studying the localization of radiation structures near the magnetic island and helical divertor X-points during plasma detachment and for 3D tomography. This research demands high signal to noise ratio (SNR) and sensitivity to improve the temporal resolution for studying the evolution of radiation structures during plasma detachment and a wide IRVB field of view (FoV) for tomography. Introduction of an infrared periscope allows achievement of a higher SNR and higher sensitivity, which in turn, permits a twofold improvement in the temporal resolutionmore » of the diagnostic. Higher SNR along with wide FoV is achieved simultaneously by reducing the separation of the IRVB detector (metal foil) from the bolometer's aperture and the LHD plasma. Altering the distances to meet the aforesaid requirements results in an increased separation between the foil and the IR camera. This leads to a degradation of the diagnostic performance in terms of its sensitivity by 1.5-fold. Using an infrared periscope to image the IRVB foil results in a 7.5-fold increase in the number of IR camera pixels imaging the foil. This improves the IRVB sensitivity which depends on the square root of the number of IR camera pixels being averaged per bolometer channel. Despite the slower f-number (f/# = 1.35) and reduced transmission (τ{sub 0} = 89%, due to an increased number of lens elements) for the periscope, the diagnostic with an infrared periscope operational on LHD has improved in terms of sensitivity and SNR by a factor of 1.4 and 4.5, respectively, as compared to the original diagnostic without a periscope (i.e., IRVB foil being directly imaged by the IR camera through conventional optics). The bolometer's field of view has also increased by two times. The paper discusses these improvements in apt details.« less
Transitions of Turbulence in Plasma Density Limits
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2002-11-01
Density limits have been observed in nearly all toroidal devices. In most cases exceeding this limit is manifested by a catastrophic growth of edge MHD instabilities [1]. In tokamaks, several other density limiting processes have been identified which limit performance but do not necessarily result in disruption. One such process is degradation of the edge transport barrier and H- to L-mode transition at high density. Further density increase, however can result in a disruption. The 3D nonlocal electromagnetic turbulence code BOUT [2], which models the boundary plasma turbulence in a realistic x-point geometry using two-fluids modified Braginski equations, is used in two numerical experiments. (1) Increasing the density while holding pressure constant (therefore keeping magnetic geometry the same). The pressure remains below the ELM threshold in these numerical experiments. (2) Increasing density while holding temperature constant. Small changes of equilibrium magnetic geometry resulting from the change in the edge pressure gradient are ignored in these simulations. These simulations extend previous work [3] by including the effect of Er well on turbulence, real magnetic geometry, the separatrix and SOL physics. Our simulations show the turbulent fluctuation levels and transport increase with increasing collisionality. Ultimately perpendicular turbulent transport dominates the parallel classical transport, leading to collapse of the sheath; the Er-well is lost and the region of high transport propagates inside the last closed flux surface. As the density increases these simulations show: Drift-wave turbulence--> Resistive MHD-->Detachment from divertor -->Disruption(?) and transport switches from diffusive to bursty processes. The onset of disruption will be calculated by MHD codes Corsica and Elite. The role of radiation on the transition will also be assessed. The scaling of the density limit with plasma current will be studied by conducting an additional series of numerical experiments to examine changes in the turbulent transport due to changes in the plasma current and associated changes in the equilibrium magnetic field and parallel connection length in the plasma scrape-off layer. Changes in the characteristics of the turbulence near density limit will be explored and compared with experiments. REFERENCES [1] M.Greenwald, to be published in plasma physics and controlled fusion. [2] X.Q. Xu, R.H. Cohen, T.D. Rognlien, and J.R. Myra, Phys. Plasmas 7, 1951(2000). [3] B.N. Rogers, J.F. Drake, and A. Zeiler, PRL 81, 4396 (1998).
Constrained ripple optimization of Tokamak bundle divertors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hively, L.M.; Rome, J.A.; Lynch, V.E.
1983-02-01
Magnetic field ripple from a tokamak bundle divertor is localized to a small toroidal sector and must be treated differently from the usual (distributed) toroidal field (TF) coil ripple. Generally, in a tokamak with an unoptimized divertor design, all of the banana-trapped fast ions are quickly lost due to banana drift diffusion or to trapping between the 1/R variation in absolute value vector B ..xi.. B and local field maxima due to the divertor. A computer code has been written to optimize automatically on-axis ripple subject to these constraints, while varying up to nine design parameters. Optimum configurations have lowmore » on-axis ripple (<0.2%) so that, now, most banana-trapped fast ions are confined. Only those ions with banana tips near the outside region (absolute value theta < or equal to 45/sup 0/) are lost. However, because finite-sized TF coils have not been used in this study, the flux bundle is not expanded.« less
Design of snowflake-diverted equilibria of CFETR
NASA Astrophysics Data System (ADS)
Hang, LI; Xiang, GAO; Guoqiang, LI; Zhengping, LUO; Damao, YAO; Yong, GUO
2018-03-01
The Chinese Fusion Engineering Test Reactor (CFETR) represents the next generation of full superconducting fusion reactors in China. Recently, CFETR was redesigned with a larger size and will be operated in two phases. To reduce the heat flux on the target plate, a snowflake (SF) divertor configuration is proposed. In this paper we show that by adding two dedicated poloidal field (PF) coils, the SF configuration can be achieved in both phases. The equilibria were calculated by TEQ code for a range of self-inductances l i3. The coil currents were calculated at some fiducial points in the flattop phase. The results indicate that the PF coil system has the ability to maintain a long flattop phase in 7.5 and 10 MA inductive scenarios for the single null divertor (SND) and SF divertor configurations. The properties of the SF configuration were also analyzed. The connection length and flux expansion of the SF divertor were both increased significantly over the SND.
Divertor extreme ultraviolet (EUV) survey spectroscopy in DIII-D
NASA Astrophysics Data System (ADS)
McLean, Adam; Allen, Steve; Ellis, Ron; Jarvinen, Aaro; Soukhanovskii, Vlad; Boivin, Rejean; Gonzales, Eduardo; Holmes, Ian; Kulchar, James; Leonard, Anthony; Williams, Bob; Taussig, Doug; Thomas, Dan; Marcy, Grant
2017-10-01
An extreme ultraviolet spectrograph measuring resonant emissions of D and C in the lower divertor has been added to DIII-D to help resolve an 2X discrepancy between bolometrically measured radiated power and that predicted by boundary codes for DIII-D, JET and ASDEX-U. With 290 and 450 gr/mm gratings, the DivSPRED spectrometer, an 0.3 m flat-field McPherson model 251, measures ground state transitions for D (the Lyman series) and C (e.g., C IV, 155 nm) which account for >75% of radiated power in the divertor. Combined with Thomson scattering and imaging in the DIII-D divertor, measurements of position, temperature and fractional power emission from plasma components are made and compared to UEDGE/SOLPS-ITER. Mechanical, optical, electrical, vacuum, and shielding aspects of DivSPRED are presented. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-AC52-07NA27344, and by the LLNL Laboratory Directed R&D Program, project #17-ERD-020.
DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept
NASA Astrophysics Data System (ADS)
Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert
2016-10-01
The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.
Erosion of newly developed CFCs and Be under disruption heat loads
NASA Astrophysics Data System (ADS)
Nakamura, K.; Akiba, M.; Araki, M.; Dairaku, M.; Sato, K.; Suzuki, S.; Yokoyama, K.; Linke, J.; Duwe, R.; Bolt, H.; Roedig, M.
1996-10-01
An evaluation of the erosion under disruption heat loads is very important to the lifetime prediction of divertor armour tiles of next fusion devices such as ITER. In particular, erosion data on CFCs (carbon fiber reinforced composites) and beryllium (Be) as the armour materials is urgently required in the ITER design. For CFCs, high heat flux experiments on the newly developed CFCs with high thermal conductivity have been performed under the heat flux of around 800-2000 MW/m 2 and the pulse length of 2-5 ms in JAERI electron beam irradiation systems (JEBIS). As a result, the weight losses of B 4C doped CFCs after heating were almost same to those of the non doped CFC up to 5 wt% boron content. For Be, we have carried out our first disruption experiments on S65/C grade Be specimens in the Juelich divertor test facility in hot cells (JUDITH) facility as a frame work of the J—EU collaboration. The heating conditions were heat loads of 1250-5000 MW/m 2 for 2-8 ms, and the heated area was 3 × 3 mm 2. As a result, the protuberances of the heated area of Be were observed under the lower heat flux.
Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less
Control of three dimensional particle flux to divertor using rotating RMP in the EAST tokamak
NASA Astrophysics Data System (ADS)
Jia, M.; Sun, Y.; Liang, Y.; Wang, L.; Xu, J.; Gu, S.; Lyu, B.; Wang, H. H.; Yang, X.; Zhong, F.; Chu, N.; Feng, W.; He, K.; Liu, Y. Q.; Qian, J.; Shi, T.; Shen, B.
2018-04-01
Controlling the steady state particle and heat flux impinging on the plasma facing components, as one of the main concerns of future fusion reactors, is still necessary when the transient power loads induced by edge localized modes (ELMs) have been eliminated by resonant magnetic perturbations (RMPs) in high confinement tokamak experiments. This is especially true for long pulse operation. One promising solution is to use the rotating perturbed field. Recently rotating and differential phase scans of n = 1 and 2 RMP fields have been operated for the first time in EAST discharges. The particle flux patterns on the divertor targets change synchronously with both rotating and phasing RMP fields as predicted by the modeled magnetic footprint patterns. The modeling with plasma response, which is calculated by MARS-F, is also carried out. The plasma response shows amplifying or screening effect to n = 2 perturbations with different spectra. This changes the field line penetration depth rather than the general footprint shape. This has been verified by experimental observations on EAST. These experiments motivate further study of reducing both transient and steady state local power load and particle flux with the help of rotating RMPs in long pulse operation.
Liquid-metal plasma-facing component research on the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Jaworski, M. A.; Khodak, A.; Kaita, R.
2013-12-01
Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m-2, no macroscopic ejection events were observed. The stability can be understood from a Rayleigh-Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments.
Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
2017-05-12
Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less
Design of an advanced bundle divertor for the Demonstration Tokamak Hybrid Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, T.F.; Lee, A.Y.; Ruck, G.W.
1979-01-25
The conclusion of this work is that a bundle divertor, using an improved method of designing the magnetic field configuration, is feasible for the Demonstration Tokamak Hybrid Reactor (DTHR) investigated by Westinghouse. The most significant achievement of this design is the reduction in current density (1 kA/cm/sup 2/) in the divertor coils in comparison to the overall averaged current densities per tesla of field to be nulled for DITE (25 kA/cm/sup 2/) and for ISX-B/sup 2/ (11 kA/cm/sup 2/). Therefore, superconducting magnets can be built into the tight space available with a sound mechanical structure.
Clinical experience of external -route retinal detachment surgery under a surgical microscope.
Xu, Hui
2014-03-01
To evaluate the efficacy of external-route retinal reattachment surgery under a surgical microscope. A total of 86 patients (86 eyes) with rhegmatogenous retinal detachment underwent external-route retinal detachment surgery under a surgical microscope. Drainage of subretinal fluid, transscleral cryotherapy, scleral buckling, and intravitreal injection of gas were performed intraoperatively. Among 85 patients, 81 achieved postoperative retinal re-attachment after the first surgery and 5 after two surgeries. The visual acuity was elevated in 67 patients, unchanged in 15, and decreased in 4. External-route retinal reattachment surgery under a surgical microscope is a convenient procedure for physicians to master and worthy of widespread application in clinical settings.
Syrek, Christine J.
2017-01-01
Unfinished tasks have been identified as a significant job stressor that impairs employee recovery after work. Classic experimental research by Ovsiankina has shown that people tend to resume yet unfinished tasks to satisfy their need for closure. We apply this notion to current working life and examine supplemental work after hours as a means to achieve peace of mind. We investigate how progress towards goal accomplishment through supplemental work may facilitate recovery in terms of psychological detachment, relaxation, autonomy, and mastery experiences. We conducted a week-level diary study among 83 employees over a period of 14 consecutive weeks, which yielded 575 observations in total and 214 matched observations of unfinished tasks, supplemental work during the weekend, progress, and recovery experiences. Unfinished tasks were assessed on Friday. Supplemental work and recovery experiences were assessed on Monday. Multilevel modeling analyses provide evidence that unfinished tasks at the end of the work week are associated with lower levels of detachment at the intraindividual level, tend to relate to lower relaxation, but are unrelated to autonomy and mastery. Progress towards finishing tasks during the weekend alleviates the detrimental effects of unfinished tasks on both kinds of recovery experiences. Supplemental work is negatively linked to detachment, but largely unrelated to the other recovery experiences. PMID:29261139
NASA Astrophysics Data System (ADS)
Miranda, Leonardo; Thiel, Martin
2008-10-01
Many boring isopods inhabit positively buoyant substrata (wood and algae), which float after detachment, permitting passive migration of inhabitants. Based on observations from previous studies, it was hypothesized that juvenile, subadult and male isopods migrate actively, and will rapidly abandon substrata after detachment. In contrast, reproductive females and small offspring were predicted to remain in floating substrata and thus have a high probability to disperse passively via rafting. In order to test this hypothesis, a colonization and an emigration experiment were conducted with giant kelp ( Macrocystis integrifolia), the holdfasts of which are inhabited by boring isopods from the genus Limnoria. A survey of benthic substrata in the kelp forest confirmed that limnoriids inhabited the holdfasts and did not occur in holdfast-free samples. Results of the colonization experiment showed that all life history stages of the boring isopods immigrated into young, largely uncolonized holdfasts, and after 16 weeks all holdfasts were densely colonized. In the emigration experiment, all life history stages of the isopods rapidly abandoned the detached holdfasts — already 5 min after detachment only few individuals remained in the floating holdfasts. After this initial rapid emigration of isopods, little changes in isopod abundance occurred during the following 24 h, and at the end of the experiment some individuals of all life history stages still remained in the holdfasts. These results indicate that all life history stages of Limnoria participate in both active migration and passive dispersal. It is discussed that storm-related dynamics within kelp forests may contribute to intense mixing of local populations of these burrow-dwelling isopods, and that most immigrants to young holdfasts probably are individuals emigrating from old holdfasts detached during storm events. The fact that some individuals of all life history stages and both sexes remain in floating holdfasts suggests that limnoriids could successfully reproduce during rafting journeys in floating kelp, facilitating long-distance dispersal. We propose that the coexistence of different modes of dispersal (short distance local migrations and long-distance regional dispersal) within these kelp-dwelling isopods might be advantageous in an environment where unpredictable El Niño events can cause extinction of local kelp forests.
Development of Numerical Tools for the Investigation of Plasma Detachment from Magnetic Nozzles
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2007-01-01
A multidimensional numerical simulation framework aimed at investigating the process of plasma detachment from a magnetic nozzle is introduced. An existing numerical code based on a magnetohydrodynamic formulation of the plasma flow equations that accounts for various dispersive and dissipative processes in plasmas was significantly enhanced to allow for the modeling of axisymmetric domains containing three.dimensiunai momentum and magnetic flux vectors. A separate magnetostatic solver was used to simulate the applied magnetic field topologies found in various nozzle experiments. Numerical results from a magnetic diffusion test problem in which all three components of the magnetic field were present exhibit excellent quantitative agreement with the analytical solution, and the lack of numerical instabilities due to fluctuations in the value of del(raised dot)B indicate that the conservative MHD framework with dissipative effects is well-suited for multi-dimensional analysis of magnetic nozzles. Further studies will focus on modeling literature experiments both for the purpose of code validation and to extract physical insight regarding the mechanisms driving detachment.
Fujikake, Kazuma; Sawada, Masato; Hikita, Takao; Seto, Yayoi; Kaneko, Naoko; Herranz-Pérez, Vicente; Dohi, Natsuki; Homma, Natsumi; Osaga, Satoshi; Yanagawa, Yuchio; Akaike, Toshihiro; García-Verdugo, Jose Manuel; Hattori, Mitsuharu; Sobue, Kazuya; Sawamoto, Kazunobu
2018-05-09
In the rodent olfactory system, neuroblasts produced in the ventricular-subventricular zone of the postnatal brain migrate tangentially in chain-like cell aggregates toward the olfactory bulb (OB) through the rostral migratory stream (RMS). After reaching the OB, the chains are dissociated and the neuroblasts migrate individually and radially toward their final destination. The cellular and molecular mechanisms controlling cell-cell adhesion during this detachment remain unclear. Here we report that Fyn, a nonreceptor tyrosine kinase, regulates the detachment of neuroblasts from chains in the male and female mouse OB. By performing chemical screening and in vivo loss-of-function and gain-of-function experiments, we found that Fyn promotes somal disengagement from the chains and is involved in neuronal migration from the RMS into the granule cell layer of the OB. Fyn knockdown or Dab1 (disabled-1) deficiency caused p120-catenin to accumulate and adherens junction-like structures to be sustained at the contact sites between neuroblasts. Moreover, a Fyn and N-cadherin double-knockdown experiment indicated that Fyn regulates the N-cadherin-mediated cell adhesion between neuroblasts. These results suggest that the Fyn-mediated control of cell-cell adhesion is critical for the detachment of chain-forming neuroblasts in the postnatal OB. SIGNIFICANCE STATEMENT In the postnatal brain, newly born neurons (neuroblasts) migrate in chain-like cell aggregates toward their destination, where they are dissociated into individual cells and mature. The cellular and molecular mechanisms controlling the detachment of neuroblasts from chains are not understood. Here we show that Fyn, a nonreceptor tyrosine kinase, promotes the somal detachment of neuroblasts from chains, and that this regulation is critical for the efficient migration of neuroblasts to their destination. We further show that Fyn and Dab1 (disabled-1) decrease the cell-cell adhesion between chain-forming neuroblasts, which involves adherens junction-like structures. Our results suggest that Fyn-mediated regulation of the cell-cell adhesion of neuroblasts is critical for their detachment from chains in the postnatal brain. Copyright © 2018 the authors 0270-6474/18/384599-12$15.00/0.
OEDGE Modeling of Collector Probe measurements in L-mode from the DIII-D tungsten ring campaign
NASA Astrophysics Data System (ADS)
Elder, J. D.; Stangeby, P. C.; Unterberg, Z.; Donovan, D.; Wampler, W. R.; Watkins, J.; Abrams, T.; McLean, A. G.
2017-10-01
During the tungsten ring campaign on DIII-D, a collector probe system with multiple diameter, dual-facing collector rods was inserted into the far scrape off layer (SOL) near the outer midplane to measure the plasma tungsten content. For most probes more tungsten was observed on the side connected along field lines to the inner divertor, with the larger probes showing largest divertor-facing asymmetries The OEDGE code is used to model the tungsten erosion, transport and deposition. It has been enhanced with (i) a peripheral particle transport and deposition model to record the impurity content in the peripheral region outside the regular mesh, and (ii) a collector probe model. The OEDGE results approximately reproduce both the divertor-facing asymmetries and the radial decay of each collector probe profile. The effect of changing impurity transport assumptions and wall location are examined. The measured divertor-facing asymmetries imply a higher tungsten density in the plasma upstream of the probe; this was expected theoretically from the effect of the parallel ion temperature gradient force driving upstream transport of tungsten from the outer divertor and was also found in the code analysis. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-NA0003525, DE-AC05-00OR22725, and DE-AC52-07NA27344.
Characterizing Tungsten Sourcing and SOL Transport during the Metal Rings Campaign
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Abrams, T.; Unterberg, E. A.; Donovan, D.; Elder, J. D.; Wampler, W. R.; DIII-D Team
2017-10-01
The Metal Rings Campaign on DIII-D utilized two isotopically and poloidally distinct toroidal arrays of tungsten coated inserts in the lower divertor to study W divertor erosion near the outer strike point (OSP) and divertor entrance and subsequent migration in a mixed-material (C-W) environment. In AT hybrid discharges (PAUX = 14 MW, H98 = 1.6, βN = 3.7) with rapid ELMs (fELM 200 Hz, δW/W 0.7%) W impurities are seen to reach the midplane predominantly from the OSP region rather than the divertor entrance (far-SOL). Conversely, in scenarios with less frequent larger ELMs (fELM 60 Hz, δW/W 3.6%), the W impurities are found to transport equally from the OSP and entrance region. ELM-resolved spectroscopic measurements of W sourcing indicate that large ELMs can source W at many times the inter ELM rate. The peak W erosion rate can shift radially outwards consistent with the ELM energy flux, thereby shifting the balance between strikepoint and far-SOL sources. Changes in the peak erosion locations between forward and reversed Bt discharges are consistent with ExB ion drift effects. Evidence for a near-SOL impurity buildup between the divertors driven by the parallel grad-Ti force is also seen. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698.
Quiescence near the X-point of MAST measured by high speed visible imaging
NASA Astrophysics Data System (ADS)
Walkden, N. R.; Harrison, J.; Silburn, S. A.; Farley, T.; Henderson, S. S.; Kirk, A.; Militello, F.; Thornton, A.; The MAST Team
2017-12-01
Using high speed imaging of the divertor volume, the region close to the X-point in MAST is shown to be quiescent. This is confirmed by three different analysis techniques and the quiescent X-point region (QXR) spans from the separatrix to the \\psiN = 1.02 flux surface. Local reductions to the atomic density and effects associated with the camera viewing geometry are ruled out as causes of the QXR, leaving quiescence in the local plasma conditions as being the most likely cause. The QXR is found to be ubiquitous across a significant operational space in MAST including L-mode and H-mode discharges across maximal ranges of 9.8×1019~m-2 in line integrated density, 0.36 MA in plasma current, 0.11 T in toroidal magnetic field and 3.2 MW in NBI power. When mapped to the divertor target the QXR occupies approximately an e-folding length of the heat-flux profile, containing ∼60% of the total heat flux to the target, and also shows a tendency towards higher frequency shorter lived fluctuations in the ion-saturation current. This is consistent with short-lived divertor localised filamentary structures observed further down the outer divertor leg in the camera images, and suggests a complex multi-region picture of filamentary transport in the divertor.
Parametric analyses of DEMO Divertor using two dimensional transient thermal hydraulic modelling
NASA Astrophysics Data System (ADS)
Domalapally, Phani; Di Caro, Marco
2018-05-01
Among the options considered for cooling of the Plasma facing components of the DEMO reactor, water cooling is a conservative option because of its high heat removal capability. In this work a two-dimensional transient thermal hydraulic code is developed to support the design of the divertor for the projected DEMO reactor with water as a coolant. The mathematical model accounts for transient 2D heat conduction in the divertor section. Temperature-dependent properties are used for more accurate analysis. Correlations for single phase flow forced convection, partially developed subcooled nucleate boiling, fully developed subcooled nucleate boiling and film boiling are used to calculate the heat transfer coefficients on the channel side considering the swirl flow, wherein different correlations found in the literature are compared against each other. Correlation for the Critical Heat Flux is used to estimate its limit for a given flow conditions. This paper then investigates the results of the parametric analysis performed, whereby flow velocity, diameter of the coolant channel, thickness of the coolant pipe, thickness of the armor material, inlet temperature and operating pressure affect the behavior of the divertor under steady or transient heat fluxes. This code will help in understanding the basic parameterś effect on the behavior of the divertor, to achieve a better design from a thermal hydraulic point of view.
Weighing Evidence: The Design and Comparison of Probability Thought Experiments.
1983-06-01
ics and Other Logical Essays, R. G. Braithwaite (ed.), Routledge and Kegan Paul. Richardson, H. R., and Stone, L. D.: 1971, ’Operations analysis...Systems Department ONR Detachment Code 35 1030 East Green Street Naval Underwater Systems Center Pasadena, CA 91106 Newport, RI 02840 CDR James Offutt...Officer-in-Charge Human Factors Department ONR Detachment Code N-71 1030 East Green Street Naval Training Equipment Center Pasadena, CA 91106 Orlando
Development of a prototype infrared imaging bolometer for NSTX-U
NASA Astrophysics Data System (ADS)
van Eden, G. G.; Delgado-Aparicio, L. F.; Gray, T. K.; Jaworski, M. A.; Morgan, T. W.; Peterson, B. J.; Reinke, M. L.; Sano, R.; Mukai, K.; Differ/Pppl Collaboration; Nifs/Pppl Collaboration
2015-11-01
Measurements of the radiated power in fusion reactors are of high importance for studying detachment and the overall power balance. A prototype Infrared Video Bolometer (IRVB) is being developed for NSTX-U complementing resistive bolometer and AXUV diode diagnostics. The IRVB has proven to be a powerful tool on LHD and JT-60U for its 2D imaging quality and reactor environment compatibility. For NSTX-U, a poloidal view of the lower center stack and lower divertor are envisaged for the 2016 run campaign. The IRVB concept images radiation from the plasma onto a 2.5 μm thick 9 x 7 cm2 calibrated Pt foil and monitors its temperature evolution using an IR camera (SB focal plane, 2-12 μm, 128x128 pixels, 1.6 kHz). The power incident on the foil is calculated by solving the 2D +time heat diffusion equation. Benchtop characterization is presented, demonstrating a sensitivity of approximately 20 mK and a noise equivalent power density of 71.5 μW cm-2 for 4x20 bolometer super-pixels and a 50 Hz time response. The hardware design, optimization of camera and detector settings as well as first results of both synthetic and experimental origin are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, G. Z.; Hu, J. S.; Maingi, R.
Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 10 20 atom s –1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. Themore » Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less
Zuo, G. Z.; Hu, J. S.; Maingi, R.; ...
2017-03-02
Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 10 20 atom s –1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. Themore » Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less
Recovery experience and burnout in cancer workers in Queensland.
Poulsen, Michael G; Poulsen, Anne A; Khan, Asaduzzaman; Poulsen, Emma E; Khan, Shanchita R
2015-02-01
Two key recovery experiences mediating the relationship between work demands and well-being are psychological detachment and relaxation over leisure time. The process of recovery from work-related stress plays an important role in maintaining well-being, but is poorly understood in cancer workers. The aim of this exploratory study was to examine the relationships of burnout, psychological well-being and work engagement with the recovery experiences of psychological detachment and relaxation in oncology staff. A cross sectional survey of 573 cancer workers in Queensland was conducted (response rate 56%). Oncology nurses (n = 211) represented the largest professional group. Staff completed surveys containing demographics and psychosocial questionnaires measuring burnout, psychological distress, work engagement and recovery experience. Multiple regression analyses were performed to identify explanatory variables which were independently associated with Recovery Experience Score (RES). There was a negative association between the RES and burnout (p = 0.002) as well as psychological distress (p < 0.0001), but not work engagement. Age >25 years was negatively correlated with RES as was having a post graduate qualification, being married or divorced, having carer commitments. Participating in strenuous exercise was associated with high recovery (p = 0.015). The two recovery experiences of psychological detachment and relaxation had a strong negative association to burnout and psychological well-being, but not work engagement. Further research needs to be undertaken to better understand if improving recovery experience reduces burnout and improves the well-being of cancer workers. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Malaria survey and malaria control detachments in the South-West Pacific Area in World War 2.
Crocker, Denton W
2009-01-01
Malaria among troops in the South-West Pacific Area (SWPA) in World War 2 affected the military effort to the degree that special units were formed to combat it. These malaria survey detachments (MSDs) and malaria control detachments (MCDs) were self-contained and so could move quickly to wherever their services were needed. In SWPA by 25 September 1944 there were 32 MSDs and 65 MCDs. Tables of organization called for 11 enlisted men in MSDs and MCDs, two officers in MSDs and one in MCDs. Detachments served throughout the SWPA. Detailed records of the 31st MSD show that in addition to antimalarial efforts it worked at control of scrub typhus, dengue and venereal disease, at reduction of rat populations and in experimental work involving DDT and schistosomiasis. Specific locations of the 31st MSD were New Guinea (3 sites), Morotai, Leyte, Mindoro, Okinawa and Japan. The detachment served overseas for 21 months. Experience in combating malaria in SWPA in World War 2 points to the need for better and continuous training of both medical and line officers in malaria prevention and control.
NASA Astrophysics Data System (ADS)
Ryutov, D. D.; Soukhanovskii, V. A.
2015-11-01
The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. Among potential beneficial effects of this geometry are: increased volume of a low poloidal field around the null, increased connection length, and the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described.
ICRF-edge and surface interactions
NASA Astrophysics Data System (ADS)
D'Ippolito, D. A.; Myra, J. R.
2011-08-01
This paper describes a number of deleterious interactions between radio-frequency (rf) waves and the boundary plasma in fusion experiments. These effects can lead to parasitic power dissipation, reduced heating efficiency, formation of hot spots at material boundaries, sputtering and self-sputtering, and arcing in the antenna structure. Minimizing these interactions is important to the success of rf heating, especially in future experiments with long-pulse or steady-state operation, higher power density, and high-Z divertor and walls. These interactions will be discussed with experimental examples. Finally, the present state of modeling and future plans will be summarized.
Mierswa, Tobias; Kellmann, Michael
2017-03-30
Recovery processes in leisure time influence the effect of psychosocial work factors on health issues. However, this function of recovery has been neglected in research regarding the influence of work-related risk factors on low back pain (LBP) development. The aim of this prospective study was to examine the function of psychological detachment - a relevant recovery experience - concerning the influence of psychosocial work factors on LBP development. A moderating function of detachment for the interplay of work factors and LBP was assumed. Sixty pain-free administrative employees of German universities completed an online survey 3 times during a 6-month period. Generalized estimating equations were used to estimate risk-factors of LBP. Analyses revealed an increased chance of LBP development for smokers and a decreasing chance when work resources were high. Detachment had no direct influence on LBP development, although it moderated the influence of work stressors and work resources on LBP. On the one hand, high detachment values seem to protect against an increased chance of LBP development when employees were confronted with high work stressors, while on the other hand high detachment values enhance the protective effect of high work resources. The results indicated a moderating role of detachment concerning the influence of psychosocial work factors on LBP development. Therefore, it is necessary to include recovery processes in future research regarding LBP development and consequently in LBP prevention concepts. Int J Occup Med Environ Health 2017;30(2):313-327. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
NASA Astrophysics Data System (ADS)
Donovan, D.; Nygren, R.; Buchenauer, D.; Watkins, J.; Rudakov, D.; Leonard, A.; Wong, C. P. C.; Makowski, M.
2014-04-01
Experimental results are presented from the three-Langmuir probe (LP) diagnostic head of the divertor material evaluation system (DiMES) on DIII-D that confirm the size of the projected current collection area of the LPs, which is essential for properly measuring ion saturation current density (Jsat) and the sheath power transmission factor (SPTF). Also using the 3-LP DiMES head, the hypothesis that collisional effects on plasma density occurring in the magnetic sheath of the tile are responsible for a lower than expected SPTF is tested and deemed not to have a significant impact on the SPTF. Three-dimensional thermal modeling of wall tiles is presented that accounts for lateral heat conduction, temperature dependence of tile material properties and radiative heat loss from the tile surface. This modeling was developed to be used in the analysis of temperature profiles of the divertor embedded thermocouple (TC) array to obtain more accurate interpretations of TC temperature profiles to infer divertor surface heat flux than have previously been accomplished using more basic one-dimensional methods.
NASA Astrophysics Data System (ADS)
Yoshino, R.; Kondoh, T.; Neyatani, Y.; Itami, K.; Kawano, Y.; Isei, N.
1997-02-01
A killer pellet is an impurity pellet that is injected into a tokamak plasma in order to terminate a discharge without causing serious damage to the tokamak machine. In JT-60U neon ice pellets have been injected into OH and NB heated plasmas and fast plasma shutdowns have been demonstrated without large vertical displacement. The heat pulse on the divertor plate has been greatly reduced by killer pellet injection (KPI), but a low-power heat flux tail with a long time duration is observed. The total energy on the divertor plate increases with longer heat flux tail, so it has been reduced by shortening the tail. Runaway electron (RE) generation has been observed just after KPI and/or in the later phase of the plasma current quench. However, RE generation has been avoided when large magnetic perturbations are excited. These experimental results clearly show that KPI is a credible fast shutdown method avoiding large vertical displacement, reducing heat flux on the divertor plate, and avoiding (or minimizing) RE generation.
FLIT: Flowing LIquid metal Torus
NASA Astrophysics Data System (ADS)
Kolemen, Egemen; Majeski, Richard; Maingi, Rajesh; Hvasta, Michael
2017-10-01
The design and construction of FLIT, Flowing LIquid Torus, at PPPL is presented. FLIT focuses on a liquid metal divertor system suitable for implementation and testing in present-day fusion systems, such as NSTX-U. It is designed as a proof-of-concept fast-flowing liquid metal divertor that can handle heat flux of 10 MW/m2 without an additional cooling system. The 72 cm wide by 107 cm tall torus system consisting of 12 rectangular coils that give 1 Tesla magnetic field in the center and it can operate for greater than 10 seconds at this field. Initially, 30 gallons Galinstan (Ga-In-Sn) will be recirculated using 6 jxB pumps and flow velocities of up to 10 m/s will be achieved on the fully annular divertor plate. FLIT is designed as a flexible machine that will allow experimental testing of various liquid metal injection techniques, study of flow instabilities, and their control in order to prove the feasibility of liquid metal divertor concept for fusion reactors. FLIT: Flowing LIquid metal Torus. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.
Coupled Kinetic-MHD Simulations of Divertor Heat Load with ELM Perturbations
NASA Astrophysics Data System (ADS)
Cummings, Julian; Chang, C. S.; Park, Gunyoung; Sugiyama, Linda; Pankin, Alexei; Klasky, Scott; Podhorszki, Norbert; Docan, Ciprian; Parashar, Manish
2010-11-01
The effect of Type-I ELM activity on divertor plate heat load is a key component of the DOE OFES Joint Research Target milestones for this year. In this talk, we present simulations of kinetic edge physics, ELM activity, and the associated divertor heat loads in which we couple the discrete guiding-center neoclassical transport code XGC0 with the nonlinear extended MHD code M3D using the End-to-end Framework for Fusion Integrated Simulations, or EFFIS. In these coupled simulations, the kinetic code and the MHD code run concurrently on the same massively parallel platform and periodic data exchanges are performed using a memory-to-memory coupling technology provided by EFFIS. The M3D code models the fast ELM event and sends frequent updates of the magnetic field perturbations and electrostatic potential to XGC0, which in turn tracks particle dynamics under the influence of these perturbations and collects divertor particle and energy flux statistics. We describe here how EFFIS technologies facilitate these coupled simulations and discuss results for DIII-D, NSTX and Alcator C-Mod tokamak discharges.
NASA Astrophysics Data System (ADS)
Teklu, Abraham; Orlov, D. M.; Moyer, R. A.; Bykov, I.; Evans, T. E.; Wu, W.; Trevisan, G. L.; Lyons, B. C.; Abrams, T.; Makowski, M. A.; Lasnier, C. S.; Fenstermacher, M. E.
2017-10-01
Resonant magnetic perturbations (RMPs) from 3D coils have been varied to modify the splitting of the divertor strike points in DIII-D. This splitting is imaged in filtered visible and infrared emission from the divertor to determine the particle and heat flux patterns on the target plates. The observed splitting is compared to vacuum and plasma response modeling in discharges where a subset of the RMP coils were ramped to shift the divertor footprints from dominantly n = 3 to n = 2 pattern. These results will be used to determine if the plasma response model can be validated with the measured splitting. We will also study the sensitivity of the modeled splitting to details of the 2D equilibrium. This RMP ramp technique could be used in ITER to spread out the heat flux while avoiding excessive forces on the RMP coils. Work supported by U.S. DOE under the Science Undergraduate Laboratory Internship (SULI) program and DE-FC02-04ER54698, DE-FG02-07ER54917, DE-FG02-05ER54809 and DE-AC52-07NA27344.
NASA Technical Reports Server (NTRS)
Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.
1999-01-01
During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.
Reduction of Defects in Germanium-Silicon
NASA Technical Reports Server (NTRS)
Szofran, Frank R.; Benz, K. W.; Cobb, Sharon D.; Croell, Arne; Dold, Peter; Kaiser, Natalie; Motakef, Shariar; Schweizer, Marcus; Volz, Martin P.; Vujisic, Ljubomir
2001-01-01
Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in the crystals. In addition to float-zone processing, detached Bridgman growth, although not a completely crucible-free method, is a promising tool to improve crystal quality. It does not suffer from the size limitations of float zoning and the impact of thermocapillary convection on heat and mass transport is expected to be negligible. Detached growth has been observed frequently during (micro)g experiments. Considerable improvements in crystalline quality have been reported for these cases. However, neither a thorough understanding of the process nor a quantitative assessment of the quality of these improvements exists. This project will determine the means to reproducibly grow Pepsi alloys in a detached mode and seeks to compare processing-induced defects in Bridgman, detached-Bridgman, and floating-zone growth configurations in Pepsi crystals (Si less or = 10 at%) up to 20mm in diameter.
Modeling of divertor power footprint widths on EAST by SOLPS5.0/B2.5-Eirene
NASA Astrophysics Data System (ADS)
Deng, Guozhong; Liu, Xiaoju; Wang, Liang; Liu, Shaocheng; Xu, Jichan; Feng, Wei; Liu, Jianbin; Liu, Huan; Gao, Xiang
2017-04-01
The edge plasma code package SOLPS5.0 is employed to simulate the divertor power footprint widths of the experimental advanced superconducting tokamak (EAST) L-mode and ELM-free H-mode plasmas. The divertor power footprint widths, which consist of the scrape-off layer (SOL) width λ q and heat spreading S, are important physical parameters for edge plasmas. In this work, a plasma current scan is implemented in the simulation to obtain the dependence of the divertor power footprint width on the plasma current I p. Strong inverse scaling of the SOL width with I p has been achieved for both L-mode and H-mode plasmas in the forms of {λ }q,{{L}\\text-\\text{mode}}=4.98× {I}{{p}}-0.68 and {λ }q,{{H}\\text-\\text{mode}}=1.86× {I}{{p}}-1.08. Similar trends have also been demonstrated in the study of heat spreading with {S}{{L}\\text-\\text{mode}}=1.95× {I}{{p}}-0.542 and {S}{{H}\\text-\\text{mode}}=0.756× {I}{{p}}-0.872. In addition, studies on divertor peak heat load and the magnetic flux expansion factor show that both of them are proportional to plasma current. The simulation work here can act as a way to explore the power footprint widths of future tokamak fusion devices such as ITER and the China Fusion Engineering Test Reactor (CFETR).
Divertor-localized fluctuations in NSTX-U L-mode discharges
NASA Astrophysics Data System (ADS)
Scotti, Filippo; Soukhanovskii, V. A.; Zweben, S.; Myra, J.; Baver, D.; Sabbagh, S. A.
2017-10-01
The 3-D structure of divertor turbulence is characterized in NSTX-U by means of fast camera imaging. Edge and divertor turbulence can be important in determining the heat flux width in fusion devices. Field-aligned filaments are found on the divertor legs via imaging of C III and D- α emission in NBI-heated diverted L-mode discharges, similar to observations in Alcator C-Mod and MAST. These flute-like fluctuations of up to 10-20% in RMS/mean are radially localized around the separatrix and limited to the region below the X-point. Poloidal and parallel correlation lengths are a few cm (10-50ρi) and several meters, respectively. For the outer leg filaments, poloidal correlation lengths decrease along the leg away from the strike point and typical effective toroidal mode numbers are in the range of 10-20. Opposite toroidal rotation is observed for inner (co-current rotation) and outer leg (counter-current rotation) filaments with apparent poloidal propagation of 1 km/s. The poloidal motion of outer leg filaments is opposite to the one typically observed for NSTX upstream blobs in the scrape-off layer. The shape, dynamics and absence of correlation with upstream turbulence suggest that these fluctuations are generated and localized in the divertor region. Supported by US DOE DE-AC52-07NA27344, DE-AC02-09CH11466, DE-FG02- 02ER54678, DE-FG02-99ER54524.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumsdaine, A.; Bjorholm, T.; Harris, J.
The Wendelstein 7-X stellarator is in final stages of commissioning, and will begin operation in late 2015. In the first phase, the machine will operate with a limiter, and will be restricted to low power and short pulse. But in 2019, plans are for an actively cooled divertor to be installed, and the machine will operate in steady state at full power. Recently, plasma simulations have indicated that, in this final operational phase, a bootstrap current will evolve in certain scenarios. This will cause the sensitive ends of the divertor target to be overloaded beyond their qualified limit. A highmore » heat flux scraper element (HHF-SE) has been proposed in order to take up some of the convective flux and reduce the load on the divertor. In order to examine whether the HHF-SE will be able to effectively reduce the plasma flux in the divertor region of concern, and to determine how the pumping effectiveness will be affected by such a component, it is planned to include a test divertor unit scraper element (TDU-SE) in 2017 during an earlier operational phase. Several U.S. fusion energy science laboratories have been involved in the design, analysis (structural and thermal finite element, as well as computational fluid dynamics), plasma simulation, planning, prototyping, and diagnostic development around the scraper element program (both TDU-SE and HHF-SE). As a result, this paper presents an overview of all of these activities and their current status.« less
Overview of design and analysis activities for the W7-X scraper element
Lumsdaine, A.; Bjorholm, T.; Harris, J.; ...
2016-08-18
The Wendelstein 7-X stellarator is in final stages of commissioning, and will begin operation in late 2015. In the first phase, the machine will operate with a limiter, and will be restricted to low power and short pulse. But in 2019, plans are for an actively cooled divertor to be installed, and the machine will operate in steady state at full power. Recently, plasma simulations have indicated that, in this final operational phase, a bootstrap current will evolve in certain scenarios. This will cause the sensitive ends of the divertor target to be overloaded beyond their qualified limit. A highmore » heat flux scraper element (HHF-SE) has been proposed in order to take up some of the convective flux and reduce the load on the divertor. In order to examine whether the HHF-SE will be able to effectively reduce the plasma flux in the divertor region of concern, and to determine how the pumping effectiveness will be affected by such a component, it is planned to include a test divertor unit scraper element (TDU-SE) in 2017 during an earlier operational phase. Several U.S. fusion energy science laboratories have been involved in the design, analysis (structural and thermal finite element, as well as computational fluid dynamics), plasma simulation, planning, prototyping, and diagnostic development around the scraper element program (both TDU-SE and HHF-SE). As a result, this paper presents an overview of all of these activities and their current status.« less
Fabrication of divertor mock-up with ODS-Cu and W by the improved brazing technique
NASA Astrophysics Data System (ADS)
Tokitani, M.; Hamaji, Y.; Hiraoka, Y.; Masuzaki, S.; Tamura, H.; Noto, H.; Tanaka, T.; Muroga, T.; Sagara, A.; FFHR Design Group
2017-07-01
Copper alloy has been considered as a divertor cooling tube or heat sink not only in the helical reactor FFHR-d1 but also in the tokamak DEMO reactor, because it has a high thermal conductivity. This work focused on applying an oxide dispersion strengthened copper alloy (ODS-Cu), GlidCop® (Cu-0.3 wt%Al2O3) as the divertor heat sink material of FFHR-d1. This alloy has superior high temperature yield strength exceeding 300 MPa at room temperature even after annealing up to ~1000 °C. The change in material properties of Pure-Cu, GlidCop® and CuCrZr by neutron irradiation are summarized in this paper. A primary dose limit is the radiation-induced hardening/softening (~0.2 dpa/1-2 dpa) which has a temperature dependence. According to such an evaluation, the GlidCop® can be selected as the current best candidate material in the commercial base of the divertor heat sink, and its temperature should be maintained as close as possible to 300 °C during operation. Bonding between the W armour and the GlidCop® heat sink was successfully performed by using an improved brazing technique with BNi-6 (Ni-11%P) filler material. The bonding strength was measured by a three-point bending test and reached up to approximately 200 MPa. Surprisingly, several specimens showed an obvious yield point. This means that the BNi-6 brazing (bonding) layer caused relaxation of the applied stress. The small-scale divertor mock-up of the W/BNi-6/GlidCop® was successfully fabricated by using the improved brazing technique. The heat loading test was carried out by the electron beam device ACT2 in NIFS. The mock-up showed an excellent heat removal capability for use in the FFHR-d1 divertor.
Herial, Nabeel A; Khan, Asif A; Sherr, Gregory T; Qureshi, Mushtaq H; Suri, M Fareed K; Qureshi, Adnan I
2015-09-01
The US Food and Drug Administration recently approved a detachable-tip microcatheter, the Apollo microcatheter (eV3, Inc, Irvine, California), to prevent catheter entrapment during embolization of brain arteriovenous malformations (AVMs) using liquid embolic systems. To report technical aspects and clinical results of cerebral embolizations with the Apollo microcatheter in 7 embolizations in 3 adult patients. A 62-year-old man presented with an AVM in the parieto-occipital region measuring 3.6 × 1.6 cm with major cortical feeders from the right middle cerebral artery (MCA) and minor contribution from the distal right anterior cerebral artery. Two pedicles originating from the MCA were embolized. A 48-year-old woman presented with a left frontal AVM measuring 3.3 × 1.8 cm with arterial feeders from the left MCA, left middle meningeal artery, and contralateral anterior cerebral artery. Three pedicles originating from the left MCA were embolized. A 76-year-old man presented with an arteriovenous fistula with multiple fistulous connections and feeders from both vertebral and occipital arteries and the left posterior cerebral artery draining into the left transverse, torcula, and left sigmoid sinus. Two major occipital artery feeders were embolized. Seven Apollo microcatheters were used with the Onyx 18 liquid embolic system. The length of the detachable tip was 15 mm in 2 and 30 mm in 5 embolizations. The mean microcatheter in-position time within the pedicle was 20 minutes. Detachment of tip occurred in 3 instances. No limitations in accessing target arterial feeders and safe tip disengagement were noted despite prolonged injection times. Our initial experience supports the feasibility, safety, and effectiveness of detachable-tip microcatheters in treating brain AVMs and arteriovenous fistulas.
Liquid lithium loop system to solve challenging technology issues for fusion power plant
Ono, Masayuki; Majeski, Richard P.; Jaworski, Michael A.; ...
2017-07-12
Here, steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peakmore » heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept and its variant, the active liquid lithium divertor concept (ARLLD), taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~ 1 liter/second (l/sec) is envisioned. We examined two key technology issues: 1) dust or solid particle removal and 2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust / impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~ 1 l/sec LL flow, even a small 0.1% dust content by weight (or 0.5 g per sec) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~ 3 GW fusion power) fusion power plant, about 0.5 g / sec of tritium is needed to maintain the fusion fuel cycle assuming ~ 1 % fusion burn efficiency. It appears feasible to recover tritium (T) in real time from LL while maintaining an acceptable T inventory level. Laboratory tests are being conducted to investigate T recovery feasibility with the surface cold trap (SCT) concept.« less
Liquid lithium loop system to solve challenging technology issues for fusion power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Masayuki; Majeski, Richard P.; Jaworski, Michael A.
Here, steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peakmore » heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept and its variant, the active liquid lithium divertor concept (ARLLD), taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~ 1 liter/second (l/sec) is envisioned. We examined two key technology issues: 1) dust or solid particle removal and 2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust / impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~ 1 l/sec LL flow, even a small 0.1% dust content by weight (or 0.5 g per sec) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~ 3 GW fusion power) fusion power plant, about 0.5 g / sec of tritium is needed to maintain the fusion fuel cycle assuming ~ 1 % fusion burn efficiency. It appears feasible to recover tritium (T) in real time from LL while maintaining an acceptable T inventory level. Laboratory tests are being conducted to investigate T recovery feasibility with the surface cold trap (SCT) concept.« less
Liquid lithium loop system to solve challenging technology issues for fusion power plant
NASA Astrophysics Data System (ADS)
Ono, M.; Majeski, R.; Jaworski, M. A.; Hirooka, Y.; Kaita, R.; Gray, T. K.; Maingi, R.; Skinner, C. H.; Christenson, M.; Ruzic, D. N.
2017-11-01
Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor concept and its variant, the active liquid lithium divertor concept, taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~1 l s-1 is envisioned. We examined two key technology issues: (1) dust or solid particle removal and (2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust/impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~1 l s-1 LL flow, even a small 0.1% dust content by weight (or 0.5 g s-1) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~3 GW fusion power) fusion power plant, about 0.5 g s-1 of tritium is needed to maintain the fusion fuel cycle assuming ~1% fusion burn efficiency. It appears feasible to recover tritium (T) in real time from LL while maintaining an acceptable T inventory level. Laboratory tests are being conducted to investigate T recovery feasibility with the surface cold trap concept.
Tokamak Operation with Safety Factor q 95 < 2 via Control of MHD Stability
Piovesan, Paolo; Hanson, Jeremy M.; Martin, Piero; ...
2014-07-24
Magnetic feedback control of the resistive-wall mode has enabled DIII-D to access stable operation at safety factor q95 = 1:9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at given toroidal magnetic eld. In tokamaks with a divertor, the limit occurs at q95 = 2, as con rmed in DIII-D. Since the energy con cement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a wholemore » new high-current regime not accessible before. This result brings signi cant possible bene ts in terms of fusion performance, but it also extends resistive wall mode physics and its control to conditions never explored before. In present experiments, q95 < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.« less
Effective Thermal Conductivity of Graphite Materials with Cracks
NASA Astrophysics Data System (ADS)
Pestchaanyi, S. E.; Landman, I. S.
The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.
Lithium-Metal Infused Trenches: Progress toward a Divertor Solution
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Fiflis, P.; Christenson, M.; Szott, M.; Xu, W.; Jung, S.; Morgan, T. W.; Kalathiparambil, K.
2014-10-01
The application of liquid metal, especially liquid lithium, as a plasma facing component (PFC) has the capacity to offer a strong alternative to solid PFCs by reducing damage concerns and enhancing plasma performance. The Liquid-Metal Infused Trenches (LiMIT) concept is a liquid metal divertor alternative which employs thermoelectric current from either plasma or external heating in tandem with the toroidal field to self-propel liquid lithium through a series of trenches. LiMIT has been tested in several devices, namely HT-7, the UIUC SLiDE and TELS facilities and Magnum PSI at heat fluxes of up to 3 MW/m-2. Results of these experiments, including velocity and temperature measurements, power handling considerations, and preliminary vapor shielding results will be discussed, focusing on the 117 shots performed at Magnum scanning magnetic fields and heat fluxes up to ~ 0.3 T and 3 MW/m-2. Concerns over tritium retention and MHD droplet ejection will additionally be addressed. LiMIT has also been proposed to function as a limiter on the EAST moveable limiter arm and tests have been performed with a prototype module inclined at various angles.
Calculation of the radial electric field with RF sheath boundary conditions in divertor geometry
NASA Astrophysics Data System (ADS)
Gui, B.; Xia, T. Y.; Xu, X. Q.; Myra, J. R.; Xiao, X. T.
2018-02-01
The equilibrium electric field that results from an imposed DC bias potential, such as that driven by a radio frequency (RF) sheath, is calculated using a new minimal two-field model in the BOUT++ framework. Biasing, using an RF-modified sheath boundary condition, is applied to an axisymmetric limiter, and a thermal sheath boundary is applied to the divertor plates. The penetration of the bias potential into the plasma is studied with a minimal self-consistent model that includes the physics of vorticity (charge balance), ion polarization currents, force balance with E× B , ion diamagnetic flow (ion pressure gradient) and parallel electron charge loss to the thermal and biased sheaths. It is found that a positive radial electric field forms in the scrape-off layer and it smoothly connects across the separatrix to the force-balanced radial electric field in the closed flux surface region. The results are in qualitative agreement with the experiments. Plasma convection related to the E× B net flow in front of the limiter is also obtained from the calculation.
Modelling of edge localised modes and edge localised mode control [Modelling of ELMs and ELM control
Huijsmans, G. T. A.; Chang, C. S.; Ferraro, N.; ...
2015-02-07
Edge Localised Modes (ELMs) in ITER Q = 10 H-mode plasmas are likely to lead to large transient heat loads to the divertor. In order to avoid an ELM induced reduction of the divertor lifetime, the large ELM energy losses need to be controlled. In ITER, ELM control is foreseen using magnetic field perturbations created by in-vessel coils and the injection of small D2 pellets. ITER plasmas are characterised by low collisionality at a high density (high fraction of the Greenwald density limit). These parameters cannot simultaneously be achieved in current experiments. Thus, the extrapolation of the ELM properties andmore » the requirements for ELM control in ITER relies on the development of validated physics models and numerical simulations. Here, we describe the modelling of ELMs and ELM control methods in ITER. The aim of this paper is not a complete review on the subject of ELM and ELM control modelling but rather to describe the current status and discuss open issues.« less
Mixed plasma species effects on Tungsten
NASA Astrophysics Data System (ADS)
Baldwin, Matt; Doerner, Russ; Nishijima, Daisuke; Ueda, Yoshio
2007-11-01
The diverted reactor exhaust in confinement machines like ITER and DEMO will be intense-mixed plasmas of fusion (D, T, He) and wall species (Be, C, W, in ITER and W in DEMO), characterized by tremendous heat and particle fluxes. In both devices, the divertor walls are to be exposed to such plasma and must operate at high temperature for long durations. Tungsten, with its high-melting point and low-sputtering yield is currently viewed as the leading choice for divertor-wall material in this next generation class of fusion devices, and is supported by an enormous amount of work that has been done to examine its performance in hydrogen isotope plasmas. However, studies of the more realistic scenario, involving mixed species interactions, are considerably less. Current experiments on the PISCES-B device are focused on these issues. The formation of Be-W alloys, He induced nanoscopic morphology, and blistering, as well as mitigation influences on these effects caused by Be and C layer formation have all been observed. These results and the corresponding implications for ITER and DEMO will be presented.
Fagioli, F; Telesforo, L; Dell'Erba, A; Consolazione, M; Migliorini, V; Patanè, M; Boldrini, T; Graziani, R; Nicoletti, F; Fiori-Nastro, P
2015-07-01
"Depersonalization" (DP) is a common symptom in the general population and psychiatric patients (Michal et al., 2011 [1]). DP is characterized by an alteration in the experience of the self, so that one feels detached from his or her own mental processes or body (or from the world), feeling as being an outside observer of his or her own self, and loosing the experience of unity and identity (American Psychiatric Association, 2013 [2]). We performed an exploratory factor analysis of the Cambridge Depersonalization Scale Italian version (CDS-IV). We enrolled 149 inpatients and outpatients of psychiatric services located in two Italian regions, Lazio and Campania. Patients were aged between 15 and 65 and diagnosed with schizophrenic, depressive or anxiety disorders. Four factors accounted for 97.4% of the variance. Factor 1 (10, 24, 26, 1, 13, 23, 9, 2, 5, and 11), called "Detachment from the Self", captures experiences of detachment from actions and thoughts. Factor 2 (19, 20, 27, 3, 12, 23, 22, and 11), called "Anomalous bodily experiences", refers to unusual bodily experiences. Factor 3 (7, 28, 25, 6, 9, and 2), named "Numbing", describes the dampening of affects. Factor 4 (14, 17, and 16), named "Temporal blunting", refers to the subjective experience of time. We did not find any specific factor that refers to derealization; this suggests that the constructs of depersonalization/derealization (DP/DR) were strongly related to each other. Our results show that the constructs of DP/DR subsume several psychopathological dimensions; moreover, the above mentioned factors were broadly consistent with prior literature. Copyright © 2015. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Morgan, T. W.; van den Berg, M. A.; De Temmerman, G.; Bardin, S.; Aussems, D. U. B.; Pitts, R. A.
2017-12-01
For the final design of the ITER divertor it is important to determine whether shaping of each tungsten monoblock to eliminate leading edges is required or not. In order to aid this decision, two experiments were performed in DIFFER’s linear plasma devices to study heat loads on misaligned water cooled blocks at glancing incidence. First, a series of tungsten blocks were exposed to a high parallel heat flux (26 MW \
Overview of Recent Alcator C-Mod Highlights
NASA Astrophysics Data System (ADS)
Marmar, Earl; C-Mod Team
2013-10-01
Analysis and modeling of recent C-Mod experiments has yielded significant results across multiple research topics. I-mode provides routine access to high confinement plasma (H98 up to 1.2) in quasi-steady state, without large ELMs; pedestal pressure and impurity transport are regulated by short-wavelength EM waves, and core turbulence is reduced. Multi-channel transport is being investigated in Ohmic and RF-heated plasmas, using advanced diagnostics to validate non-linear gyrokinetic simulations. Results from the new field-aligned ICRF antenna, including significantly reduced high-Z metal impurity contamination, and greatly improved load-tolerance, are being understood through antenna-plasma modeling. Reduced LHCD efficiency at high density correlates with parametric decay and enhanced edge absorption. Strong flow drive and edge turbulence suppression are seen from LHRF, providing new approaches for plasma control. Plasma density profiles directly in front of the LH coupler show non-linear modifications, with important consequences for wave coupling. Disruption-mitigation experiments using massive gas injection at multiple toroidal locations show unexpected results, with potentially significant implications for ITER. First results from a novel accelerator-based PMI diagnostic are presented. What would be the world's first actively-heated high-temperature advanced tungsten divertor is designed and ready for construction. Conceptual designs are being developed for an ultra-advanced divertor facility, Alcator DX, to attack key FNSF and DEMO heat-flux challenges integrated with a high-performance core. Supported by USDOE.
The Role of Partners for Employees' Recovery during the Weekend
ERIC Educational Resources Information Center
Hahn, Verena C.; Binnewies, Carmen; Haun, Sascha
2012-01-01
We examined the effects of positive and negative experiences with the partner (absorption in joint activities and conflict with the partner) during the weekend on affective states at the beginning of the following work week and tested whether recovery experiences (psychological detachment, relaxation, and mastery experiences) mediated these…
Photoelectron spectroscopy of nitromethane anion clusters
NASA Astrophysics Data System (ADS)
Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.
2016-08-01
Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.
Observation of Thermal Electron Detachment from Cyclo-C4F8 in FALP experiments
1994-01-01
Maxwell- Boltzmann distri- electron affinity of C6 F6 was thought to be in bution of internal energy among the cyclo- the neighborhood of 1 eV, but...is not known but may be unimolecular rate for thermal electron detach- estimated as 0.63 eV from the results of the ment from C 6 F6 in the...delivery via SAL (Surface Air Lift) mail is ensured: Argentina, Australia, Brazil, Canada, Horg Kong, India, Israel, Japan, Malaysia , Mexico, New
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.; Croll, A.
2014-01-01
A series of Ge Si crystal growth experiments are planned to be conducted in the Low 1-x x Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction.
Reduction of Defects in Germanium-Silicon
NASA Technical Reports Server (NTRS)
Szofran, Frank R.; Benz, K. W.; Croell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar; Walker, John S.
1999-01-01
It is well established that crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached-Bridgman growth is often cited as a promising tool to improve crystal quality, without the limitations of float zoning. Detached growth has been found to occur quite often during microgravity experiments and considerable improvements of crystal quality have been reported for those cases. However, no thorough understanding of the process or quantitative assessment of the quality improvements exists so far. This project will determine the means to reproducibly grow Ge-Si alloys in the detached mode. Specific objectives include: (1) measurement of the relevant material parameters such as contact angle, growth angle, surface tension, and wetting behavior of the GeSi-melt on potential crucible materials; (2) determination of the mechanism of detached growth including the role of convection; (3) quantitative determination of the differences of defects and impurities among normal Bridgman, detached Bridgman, and floating zone (FZ) growth; (4) investigation of the influence of defined azimuthal or meridional flow due to rotating magnetic fields on the characteristics of detached growth; (5) control time-dependent Marangoni convection in the case of FZ-growth by the use of a rotating magnetic field to examine the influence on the curvature of the solid-liquid interface and the heat and mass transport; and (6) grow high quality GeSi-single crystals with Si-concentration up to 10 at% and diameters up to 20 mm.
Sar, Vedat; Alioğlu, Firdevs; Akyuz, Gamze
2017-01-01
Depersonalization (DEP) and derealization (DER) were examined among college students with and without borderline personality disorder (BPD) and/or dissociative disorders (DDs) by self-report and clinician assessment. The Steinberg Depersonalization Questionnaire (SDEPQ), the Steinberg Derealization Questionnaire (SDERQ), the Childhood Trauma Questionnaire, and the screening tool of the BPD section of the Structured Clinical Interview for DSM-IV (SCID-BPD) were administered to 1,301 students. Those with BPD (n = 80) according to the SCID-BPD and 111 non-BPD controls were evaluated using the Structured Clinical Interview for DSM-IV Dissociative Disorders by a psychiatrist blind to the diagnosis. Of the participants, 19.7% reported SDEPQ (17.8%) and/or SDERQ (11.0%) scores above cutoff levels and impairment from these experiences. Principal component analysis of 26 items of both scales yielded 4 factors: cognitive-emotional self-detachment, perceptual detachment, bodily self-detachment, and detachment from reality. Participants with concurrent DD and BPD had the highest scores for DEP and DER in the clinical interview and self-report. The total number of BPD criteria was associated with the severity of childhood trauma and dissociation. Both BPD and DD were associated with clinician-assessed and self-reported DER, self-reported DEP, and the cognitive-emotional self-detachment factor. Unlike BPD, DD was associated with clinician-assessed DEP, and BPD was related to the self-reported detachment from reality factor. Although the latter was correlated with the total childhood trauma score, possibly because of dissociative amnesia, clinician-assessed DER was not. Being the closest factor to BPD, the factor of detachment from reality warrants further study.
NASA Astrophysics Data System (ADS)
Jezek, L.; Law, R. D.; Jessup, M. J.; Searle, M. P.; Kronenberg, A. K.
2017-12-01
OH absorption bands due to water in deformed quartz and feldspar grains of mylonites from the low-angle Lhotse Detachment (of the South Tibetan Detachment System, Rongbuk Valley north of Mount Everest) have been measured by Fourier Transform Infrared (FTIR) Spectroscopy. Previous microstructural studies have shown that these rocks deformed by dislocation creep at high temperature conditions in the middle crust (lower - middle amphibolite facies), and oxygen isotope studies suggest significant influx of meteoric water. OH absorption bands at 3400 cm-1 of quartz mylonites from the footwall of the Lhotse Detachment Fault are large, with the character of the molecular water band due to fluid inclusions in milky quartz. Mean water contents depend on structural position relative to the core of the Lhotse Detachment, from 1000 ppm (OH/106 Si) at 420 m below the fault to 11,350 (+/-1095) ppm near its center. The gradient in OH content shown by quartz grains implies influx of meteoric water along the Lhotse Detachment from the Tibetan Plateau ground surface to middle crustal depths, and significant fluid penetration into the extruding Himalayan slab by intergranular, permeable fluid flow processes. Feldspars of individual samples have comparable water contents to those of quartz and some are wetter. Large water contents of quartz and feldspar may have contributed to continued deformation and strain localization on the South Tibetan Detachment System. Dislocation creep in quartz is facilitated by water in laboratory experiments, and the water contents of the Lhotse fault rocks are similar to (and even larger than) water contents of quartz experimentally deformed during water weakening. Water contents of feldspars are comparable to those of plagioclase aggregates deformed experimentally by dislocation and diffusion creep under wet conditions.
Sequential double photodetachment of He- in elliptically polarized laser fields
NASA Astrophysics Data System (ADS)
Génévriez, Matthieu; Dunseath, Kevin M.; Terao-Dunseath, Mariko; Urbain, Xavier
2018-02-01
Four-photon double detachment of the helium negative ion is investigated experimentally and theoretically for photon energies where the transient helium atom is in the 1 s 2 s 3S or 1 s 2 p P3o states, which subsequently ionize by absorption of three photons. Ionization is enhanced by intermediate resonances, giving rise to series of peaks in the He+ spectrum, which we study in detail. The He+ yield is measured in the wavelength ranges from 530 to 560 nm and from 685 to 730 nm and for various polarizations of the laser light. Double detachment is treated theoretically as a sequential process, within the framework of R -matrix theory for the first step and effective Hamiltonian theory for the second step. Experimental conditions are accurately modeled, and the measured and simulated yields are in good qualitative and, in some cases, quantitative agreement. Resonances in the double detachment spectra can be attributed to well-defined Rydberg states of the transient atom. The double detachment yield exhibits a strong dependence on the laser polarization which can be related to the magnetic quantum number of the intermediate atomic state. We also investigate the possibility of nonsequential double detachment with a two-color experiment but observe no evidence for it.
First results from the US-PRC PMI collaboration on EAST
NASA Astrophysics Data System (ADS)
Maingi, R.; Lunsford, R.; Mansfield, D.; Diallo, A.; Hu, J.; Sun, Z.; Zuo, G.; Gong, X.; Tritz, K.; Canik, J.; Osborne, T.; EAST Team
2017-10-01
A US-PRC collaboration was formed to understand the plasma-material interface for improved long pulse discharge performance in EAST, with an emphasis on Li conditioning techniques. The US multi-institutional team consists of participants from PPPL, UI-UC, UT-K, ORNL, MIT, LANL, and JHU. In Dec. 2016, this team co-led experiments on the use of Li aerosol injection to mitigate ELMs, Li granule injection to pace ELMs, and a flowing liquid Li limiter to serve as a primary plasma-facing component. Li aerosol injection was shown to eliminate ELMs using the upper ITER-like W divertor, extending previous results of ELM suppression in the lower cabon divertor (J.S. Hu, PRL 2015). In addition Li granule injection was shown to trigger and even pace ELMs, although the paced ELM frequency was slower than the natural ELM frequency in this set of experiments; previously paced ELM frequency was comparable to natural ELMs frequency (D.K. Mansfield, NF 2013). Finally a second generation flowing liquid Li limiter was shown to be compatible with ELMy H-mode plasmas, pushed within 1 cm of the separatrix. The surface showed no damage to PMI and improved wetting as compared to the first generation limiter experiments (J.S. Hu, NF 2016 and G.Z. Zuo, NF 2017). US scientists supported in part by US DoE contracts DE-AC02-09CH11466, DE-FG02-09ER55012, DE-AC05-00OR22725, and DE-FC02-04ER54698, and ASIPP scientists by Contract No. 11625524, No. 11075185, No. 11021565, and No. 2013GB114004.
NASA Astrophysics Data System (ADS)
Hoprich, M.; Decker, K.; Grasemann, B.; Sokoutis, D.; Willingshofer, E.
2009-04-01
Former analog modeling on pull-apart basins dealt with different sidestep geometries, the symmetry and ratio between velocities of moving blocks, the ratio between ductile base and model thickness, the ratio between fault stepover and model thickness and their influence on basin evolution. In all these models the pull-apart basin is deformed over an even detachment. The Vienna basin, however, is considered a classical thin-skinned pull-apart with a rather peculiar basement structure. Deformation and basin evolution are believed to be limited to the brittle upper crust above the Alpine-Carpathian floor thrust. The latter is not a planar detachment surface, but has a ramp-shaped topography draping the underlying former passive continental margin. In order to estimate the effects of this special geometry, nine experiments were accomplished and the resulting structures were compared with the Vienna basin. The key parameters for the models (fault and basin geometry, detachment depth and topography) were inferred from a 3D GoCad model of the natural Vienna basin, which was compiled from seismic, wells and geological cross sections. The experiments were scaled 1:100.000 ("Ramberg-scaling" for brittle rheology) and built of quartz sand (300 µm grain size). An average depth of 6 km (6 cm) was calculated for the basal detachment, distances between the bounding strike-slip faults of 40 km (40 cm) and a finite length of the natural basin of 200 km were estimated (initial model length: 100 cm). The following parameters were changed through the experimental process: (1) syntectonic sedimentation; (2) the stepover angle between bounding strike slip faults and basal velocity discontinuity; (3) moving of one or both fault blocks (producing an asymmetrical or symmetrical basin); (4) inclination of the basal detachment surface by 5°; (6) installation of 2 and 3 ramp systems at the detachment; (7) simulation of a ductile detachment through a 0.4 cm thick PDMS layer at the basin floor. The surface of the model was photographed after each deformation increment through the experiment. Pictures of serial cross sections cut through the models in their final state every 4 cm were also taken and interpreted. The formation of en-echelon normal faults with relay ramps is observed in all models. These faults are arranged in an acute angle to the basin borders, according to a Riedel-geometry. In the case of an asymmetric basin they emerge within the non-moving fault block. Substantial differences between the models are the number, the distance and the angle of these Riedel faults, the length of the bounding strike-slip faults and the cross basin symmetry. A flat detachment produces straight fault traces, whereas inclined detachments (or inclined ramps) lead to "bending" of the normal faults, rollover and growth strata thickening towards the faults. Positions and the sizes of depocenters also vary, with depocenters preferably developing above ramp-flat-transitions. Depocenter thicknesses increase with ramp heights. A similar relation apparently exists in the natural Vienna basin, which shows ramp-like structures in the detachment just underneath large faults like the Steinberg normal fault and the associated depocenters. The 3-ramp-model also reveals segmentation of the basin above the lowermost ramp. The evolving structure is comparable to the Wiener Neustadt sub-basin in the southern part of the Vienna basin, which is underlain by a topographical high of the detachment. Cross sections through the ductile model show a strong disintergration into a horst-and-graben basin. The thin silicon putty base influences the overlying strata in a way that the basin - unlike the "dry" sand models - becomes very flat and shallow. The top view shows an irregular basin shape and no rhombohedral geometry, which characterises the Vienna basin. The ductile base also leads to a symmetrical distribution of deformation on both fault blocks, even though only one fault block is moved. The stepover angle, the influence of gravitation in a ramp or inclined system and the strain accomodation by a viscous silicone layer can be summarized as factors controlling the characteristics of the models.
High-resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Tinguely, R. A.; Granetz, R. S.; Berg, A.; Kuang, A. Q.; Brunner, D.; LaBombard, B.
2018-01-01
Halo currents generated during disruptions on Alcator C-Mod have been measured with Langmuir ‘rail’ probes. These rail probes are embedded in a lower outboard divertor module in a closely-spaced vertical (poloidal) array. The dense array provides detailed resolution of the spatial dependence (~1 cm spacing) of the halo current distribution in the plasma scrape-off region with high time resolution (400 kHz digitization rate). As the plasma limits on the outboard divertor plate, the contact point is clearly discernible in the halo current data (as an inversion of current) and moves vertically down the divertor plate on many disruptions. These data are consistent with filament reconstructions of the plasma boundary, from which the edge safety factor of the disrupting plasma can be calculated. Additionally, the halo current ‘footprint’ on the divertor plate is obtained and related to the halo flux width. The voltage driving halo current and the effective resistance of the plasma region through which the halo current flows to reach the probes are also investigated. Estimations of the sheath resistance and halo region resistivity and temperature are given. This information could prove useful for modeling halo current dynamics.
Carbon Deposition in the Inner JET Divertor Measured by Means of Quartz Microbalance
NASA Astrophysics Data System (ADS)
Esser, H. G.; Philipps, V.; Freisinger, M.; Coad, P.; Matthews, G. F.; Neill, G.; JET EFDA Contributors
A Quartz Microbalance (QMB) system was implemented in the inner divertor region of JET in order to measure in situ and time resolved (minimum exposure time ≥0.1 s) material fluxes (mainly carbon) and layer deposition. The system has been developed to operate at temperatures up to 200°C. The aim is to investigate carbon transport to the remote areas, and hence the tritium retention in dependence on plasma conditions. This question is still a major concern for the ITER operation. The mass sensitivity of the system is Sm = 1.5 A~— 10-8 [g/Hz cm2]. First reliable measurements were made during the C5 campaign (March–May 2002; â‰e1000 plasma discharges). The results presented are based on 74 selected exposures (694 s) under various conditions (strike point position, input power, neutral pressure, ELM frequency). Most influencing on the carbon deposition in the remote area seems to be the geometry i.e. the strike point position on the divertor tiles. In average 1.9 A~— 10-4 C-atom are deposited per deuterium ion flowing into the inner divertor.
Heat removal capability of divertor coaxial tube assembly
NASA Astrophysics Data System (ADS)
Shibui, Masanao; Nakahira, Masataka; Tada, Eisuke; Takatsu, Hideyuki
1994-05-01
To deal with high power flowing in the divertor region, an advanced divertor concept with gas target has been proposed for use in ITER/EDA. The concept uses a divertor channel to remove the radiated power while allowing neutrals to recirculate. Candidate channel wall designs include a tube array design where many coaxial tubes are arranged in the toroidal direction to make louver. The coaxial tube consists of a Be protection tube encases many supply tubes wound helically around a return tube. V-alloy and hardened Cu-alloy have been proposed for use in the supply and return tubes. Some coolants have also been proposed for the design including pressurized He and liquid metals, because these coolants are consistent with the selection of coolants for the blanket and also meet the requirement of high temperature operation. In the coaxial tube design, the coolant area is restricted and brittle Be material is used under severe thermal cyclings. Thus, to obtain the coaxial tube with sufficient safety margin for the expected fusion power excursion, it is essential to understand its applicability limit. The paper discusses heat removal capability of the coaxial tube and recommends some design modifications.
Rapid change of blob structure in the outer scrape-off layer (SOL)
NASA Astrophysics Data System (ADS)
Cohen, R. H.
2005-10-01
Nonlinear structures (``blobs'') driven by the magnetic field curvature and highly elongated along the field lines may exist in the tokamak SOL.footnotetextS.I. Krasheninnikov. Phys. Lett. A 283, 368 (2001) The contact of the blob end with the divertor plate significantly affects the blob structure and velocity. However, the strong shearing of the flux-tube near the X-point makes impossible direct electrical contact of the blob in the upper SOL and the divertor, so that the sheath boundary condition (BC) has to be replaced by a BC imposed near the X point.footnotetextD. Ryutov, R.H. Cohen. Contr. Pl. Phys 44, 168 (2004) We show that, at larger distances from the separatrix, in the far SOL, the connection between the upper SOL and the divertor plate is re-established, and the sheath BC becomes again relevant. During the blob's outward radial motion, this event is reflected in a sudden change of its length, from the blob extending only to the X point to the blob extending down to the plate. Likewise, a blob initially existing only in the divertor leg becomes suddenly longer, and extends to the whole SOL.
Automated divertor target design by adjoint shape sensitivity analysis and a one-shot method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dekeyser, W., E-mail: Wouter.Dekeyser@kuleuven.be; Reiter, D.; Baelmans, M.
As magnetic confinement fusion progresses towards the development of first reactor-scale devices, computational tokamak divertor design is a topic of high priority. Presently, edge plasma codes are used in a forward approach, where magnetic field and divertor geometry are manually adjusted to meet design requirements. Due to the complex edge plasma flows and large number of design variables, this method is computationally very demanding. On the other hand, efficient optimization-based design strategies have been developed in computational aerodynamics and fluid mechanics. Such an optimization approach to divertor target shape design is elaborated in the present paper. A general formulation ofmore » the design problems is given, and conditions characterizing the optimal designs are formulated. Using a continuous adjoint framework, design sensitivities can be computed at a cost of only two edge plasma simulations, independent of the number of design variables. Furthermore, by using a one-shot method the entire optimization problem can be solved at an equivalent cost of only a few forward simulations. The methodology is applied to target shape design for uniform power load, in simplified edge plasma geometry.« less
Impact of the impurity seeding for divertor protection on the performance of fusion reactors
NASA Astrophysics Data System (ADS)
Siccinio, Mattia; Fable, Emiliano; Angioni, Clemente; Saarelma, Samuli; Scarabosio, Andrea; Zohm, Hartmut
2017-10-01
A 0D divertor and scrape-off layer (SOL) model has been coupled to the 1.5D core transport code ASTRA. The resulting numerical tool has been employed for various parameter scans in order to identify the most convenient choices for the operation of electricity producing fusion devices with seeded impurities for the divertor protection. In particular, the repercussions of such radiative species on the main plasma through the fuel dilution have been taken into account. The main result we found is that, when the limits on the maximum tolerable divertor heat flux are enforced, the curves at constant electrical power output are closed on themselves in the R-BT plane, i.e. no improvement would descend from a further increase of R or BT once the maximum has been reached. This occurrence appears as an intrinsic physical limit for all devices where a radiative SOL is needed to deal with the power exhaust. Furthermore, the relative importance of the different power loss channels (e.g. hydrogen radiation, charge exchange, perpendicular transport and impurity radiation), through which the power entering the SOL is dissipated before reaching the target plate, is investigated with our model.
Analysis of a multi-machine database on divertor heat fluxesa)
NASA Astrophysics Data System (ADS)
Makowski, M. A.; Elder, D.; Gray, T. K.; LaBombard, B.; Lasnier, C. J.; Leonard, A. W.; Maingi, R.; Osborne, T. H.; Stangeby, P. C.; Terry, J. L.; Watkins, J.
2012-05-01
A coordinated effort to measure divertor heat flux characteristics in fully attached, similarly shaped H-mode plasmas on C-Mod, DIII-D, and NSTX was carried out in 2010 in order to construct a predictive scaling relation applicable to next step devices including ITER, FNSF, and DEMO. Few published scaling laws are available and those that have been published were obtained under widely varying conditions and divertor geometries, leading to conflicting predictions for this critically important quantity. This study was designed to overcome these deficiencies. Analysis of the combined data set reveals that the primary dependence of the parallel heat flux width is robustly inverse with Ip, which all three tokamaks independently demonstrate. An improved Thomson scattering system on DIII-D has yielded very accurate scrape off layer (SOL) profile measurements from which tests of parallel transport models have been made. It is found that a flux-limited model agrees best with the data at all collisionalities, while a Spitzer resistivity model agrees at higher collisionality where it is more valid. The SOL profile measurements and divertor heat flux scaling are consistent with a heuristic drift based model as well as a critical gradient model.
Effects of low and high mode number tearing modes in divertor tokamaks
NASA Astrophysics Data System (ADS)
Punjabi, Alkesh; Ali, Halima; Boozer, Allen; Evans, Todd
2007-08-01
The topological effects of magnetic perturbations on a divertor tokamak, such as DIII-D, are studied using field-line maps that were developed by Punjabi et al. [A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. 69, 3322 (1992)]. The studies consider both long-wavelength perturbations, such as those of m =1, n =1 tearing modes, and localized perturbations, which are represented as a magnetic dipole. The parameters of the dipole map are set using DIII-D data from shot 115467 in which the C-coils were activated [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The long-wavelength perturbations alter the structure of the interception of magnetic field lines with the divertor plates, but the interception is in sharp lines. The dipole perturbations cause a spreading of the interception of the field lines with the divertor plates, which alleviates problems associated with heat deposition. Magnetic field lines are the trajectories of a one-and-a-half degree of freedom Hamiltonian, which strongly constrains the topological features of the lines. Although the field line maps that we use do not accurately represent the trajectories through ordinary space of individual field lines, they do represent their topological structure.
Preliminary Results on the Heat Deposition on Divertor Plate using Low MN Map
NASA Astrophysics Data System (ADS)
Ali, Halima; Punjabi, Alkesh; Boozer, Allen
2003-10-01
The study of magnetic field line behavior and the closely related plasma behavior are important not only for their tokamak application but also for their application to other Hamiltonian, or near-Hamiltonian, systems. The behavior of field lines near a tokamak separatrix has been studied extensively using various approaches. Our approach is called method of maps. In this paper, we introduce an area-preserving map called Low MN map. We first derive the map from the general theory of maps /1/, and then use it to calculate the effects of m = 1, n = 1 perturbations on the stochastic layer and magnetic footprint in single-null divertor tokamaks. We show that there are self-similarities, singularities, and topological equivalences in the pattern of physical parameters that characterize the stochastic layer and the magnetic footprint. Preliminary results in the investigation on the heat distribution on the divertor plate indicate multiple peaked in heat flux profile distributed radially across the divertor target when the amplitude is 10-3. This, and other features, are in good agreement with experimental observations. This work is done under the DOE grant number DE-FG02-01ER54624. 1. A. Punjabi et al, J. Plasma Phys. 52, 91 (1994).
Predictive modelling of JT-60SA high-beta steady-state plasma with impurity accumulation
NASA Astrophysics Data System (ADS)
Hayashi, N.; Hoshino, K.; Honda, M.; Ide, S.
2018-06-01
The integrated modelling code TOPICS has been extended to include core impurity transport, and applied to predictive modelling of JT-60SA high-beta steady-state plasma with the accumulation of impurity seeded to reduce the divertor heat load. In the modelling, models and conditions are selected for a conservative prediction, which considers a lower bound of plasma performance with the maximum accumulation of impurity. The conservative prediction shows the compatibility of impurity seeding with core plasma with high-beta (β N > 3.5) and full current drive conditions, i.e. when Ar seeding reduces the divertor heat load below 10 MW m‑2, its accumulation in the core is so moderate that the core plasma performance can be recovered by additional heating within the machine capability to compensate for Ar radiation. Due to the strong dependence of accumulation on the pedestal density gradient, high separatrix density is important for the low accumulation as well as the low divertor heat load. The conservative prediction also shows that JT-60SA has enough capability to explore the divertor heat load control by impurity seeding in high-beta steady-state plasmas.
Extreme Ultraviolet Spectra of Few-Times Ionized Tungsten for Divertor Plasma Diagnostics
Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter
2015-09-09
The extreme ultraviolet (EUV) emission from few-times ionized tungsten atoms has been experimentally studied at the Livermore electron beam ion trap facility. The ions were produced and confined during low-energy operations of the EBIT-I electron beam ion trap. By varying the electron-beam energy from around 30–300 eV, tungsten ions in charge states expected to be abundant in tokamak divertor plasmas were excited, and the resulting EUV emission was studied using a survey spectrometer covering 120–320 Å. It is found that the emission strongly depends on the excitation energy; below 150 eV, it is relatively simple, consisting of strong isolated linesmore » from a few charge states, whereas at higher energies, it becomes very complex. For divertor plasmas with tungsten impurity ions, this emission should prove useful for diagnostics of tungsten flux rates and charge balance, as well as for radiative cooling of the divertor volume. Several lines in the 194–223 Å interval belonging to the spectra of five- and seven-times ionized tungsten (Tm-like W VI and Ho-like W VIII) were also measured using a high-resolution spectrometer.« less
Predictions of VRF on a Langmuir Probe under the RF Heating Spiral on the Divertor Floor on NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosea, J C; Perkins, R J; Jaworski, M A
RF heating deposition spirals are observed on the divertor plates on NSTX as shown in for a NB plus RF heating case. It has been shown that the RF spiral is tracked quite well by the spiral mapping of the strike points on the divertor plate of magnetic field lines passing in front of the high harmonic fast wave (HHFW) antenna on NSTX. Indeed, both current instrumented tiles and Langmuir probes respond to the spiral when it is positioned over them. In particular, a positive increment in tile current (collection of electrons) is obtained when the spiral is over themore » tile. This current can be due to RF rectification and/or RF heating of the scrape off layer (SOL) plasma along the magnetic field lines passing in front of the the HHFW antenna. It is important to determine quantitatively the relative contributions of these processes. Here we explore the properties of the characteristics of probes on the lower divertor plate to determine the likelyhood that the primary cause of the RF heat deposition is RF rectification.« less
Parameter dependences of the separatrix density in nitrogen seeded ASDEX Upgrade H-mode discharges
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Sun, H. J.; Eich, T.; Carralero, D.; Hobirk, J.; Scarabosio, A.; Siccinio, M.; ASDEX Upgrade Team; EUROfusion MST1 Team
2018-04-01
The upstream separatrix electron density is an important interface parameter for core performance and divertor power exhaust. It has been measured in ASDEX Upgrade H-mode discharges by means of Thomson scattering using a self-consistent estimate of the upstream electron temperature under the assumption of Spitzer-Härm electron conduction. Its dependence on various plasma parameters has been tested for different plasma conditions in H-mode. The leading parameter determining n e,sep was found to be the neutral divertor pressure, which can be considered as an engineering parameter since it is determined mainly by the gas puff rate and the pumping speed. The experimentally found parameter dependence of n e,sep, which is dominated by the divertor neutral pressure, could be approximately reconciled by 2-point modelling.
NASA Astrophysics Data System (ADS)
Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.
2009-12-01
Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.
Thermal management of tungsten leading edges in DIII-D
Nygren, Richard E.; Rudakov, Dmitry L.; Murphy, Christopher; ...
2017-04-29
The DiMES materials probe exposed tungsten blocks with 0.3 and 1 mm high leading edges to DIII-D He plasmas in 2015 and 2016 viewed with high resolution IRTV. The 1-mm edge may have reached >2400° C in a 3-s shot with a (parallel) heat load of ~50 MW/m 2 and ~10 MW/m 2 on the surface based on modeling. The experiments support ITER. Leading edges were also a concern in the DIII-D Metal Tile Experiment in 2016. Two toroidal rings of divertor tiles had W-coated molybdenum inserts 50 mm wide radially. This study presents data and thermal analyses.
Thermal management of tungsten leading edges in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygren, Richard E.; Rudakov, Dmitry L.; Murphy, Christopher
The DiMES materials probe exposed tungsten blocks with 0.3 and 1 mm high leading edges to DIII-D He plasmas in 2015 and 2016 viewed with high resolution IRTV. The 1-mm edge may have reached >2400° C in a 3-s shot with a (parallel) heat load of ~50 MW/m 2 and ~10 MW/m 2 on the surface based on modeling. The experiments support ITER. Leading edges were also a concern in the DIII-D Metal Tile Experiment in 2016. Two toroidal rings of divertor tiles had W-coated molybdenum inserts 50 mm wide radially. This study presents data and thermal analyses.
An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space
NASA Technical Reports Server (NTRS)
Fragomeni, James M.; Nunes, Arthur C., Jr.
1998-01-01
The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface tension of the liquid metal. For a detachment the initial kinetic energy of the weld pool with respect to the plate has to exceed the energy to form the extra surface required for the detachment of the pool. The difficulty is in transferring the energy from the point of impact through the plate and sample to the cut edge. It is likely that not all of the kinetic energy is available for detaching the pool; some may be sequestered in weld pool oscillations. The coefficient of restitution for the collision will be lower than one if irreversible deformation, for example plastic flow deformation, takes place during the collision. Thus determining the amount of energy from an impact that actually reaches the molten metal droplet is critical. Various molten metal detachment scenarios were tested experimentally in an enclosed vacuum chamber using the Ukrainian Universal Hand Tool, an electron beam welder designed for space welding. The experimental testing was performed in a 4 ft. X 4 ft. vacuum chamber at Marshall Space Flight Center, evacuated to vacuum levels of at least 50 microTorr, and also some welding garment material was utilized to observe the effect of the molten metal detachments on the material. A "carillon" apparatus consisting of four pendulum hammer strikers, each weighing approximately 3.65 lbs, raised to predetermined specific heights was used to apply an impact force to the weld sample/plate during electron beam welding and cutting exercises. The strikers were released by switching on an electric motor to rotate a pin holding wires retaining the strikers at desired heights. The specimens were suspended so as to be free to respond to the blows with a sudden velocity increment. The specimens were mounted on a hinged plate for minimizing effective mass with the option to fasten it down so as to raise its effective mass closer to that anticipated for an actual space welding scenario. Measurements were made of the impact energy and the horizontal fling distances of the detached metal drops. It was not particularly easy to generate the detachments for this experiment. This document presents the details of the theoretical modeling effort and a summary of the experimental effort to measure molten metal drop detachments from terrestrial electron beam welding in the enclosed vacuum chamber. The results of the experimental effort have shown that molten metal detachments can occur from the sample/weld plate only if a sufficiently large impact force is applied to the weld plate. A "weld pool detachment parameter" was determined to indicate whether detachment would occur. Detachment can be either full or partial (dripping), Partial detachment means that the weld pool detached from one side of the liquid-solid boundary so as to leave a hole at the puddle site but remained attached over part of the liquid-solid boundary and dripped down the plate with no fully detached material detected. Full detachment, however, does not necessarily mean that the whole pool fully detached; in some cases only a smaller portion of the pool detached, the remainder dripping down the plate. The weld pool detachment parameter according to theory and according to the empirical data allows a determination of whether full detachments might occur. Theoretical calculations indicated titanium alloy would be the most difficult from which to detach molten metal droplets followed by stainless steel and then by aluminum. The experimental results were for the most part consistent with the theoretical analysis and predictions. The above theory is applicable to other situations as desired for assessing the potential for molten metal detachments.
Overview of the recent DiMES and MiMES experiments in DIII-D
NASA Astrophysics Data System (ADS)
Rudakov, D. L.; Wong, C. P. C.; Litnovsky, A.; Wampler, W. R.; Boedo, J. A.; Brooks, N. H.; Fenstermacher, M. E.; Groth, M.; Hollmann, E. M.; Jacob, W.; Krasheninnikov, S. I.; Krieger, K.; Lasnier, C. J.; Leonard, A. W.; McLean, A. G.; Marot, M.; Moyer, R. A.; Petrie, T. W.; Philipps, V.; Smirnov, R. D.; Stangeby, P. C.; Watkins, J. G.; West, W. P.; Yu, J. H.
2009-12-01
Divertor and midplane material evaluation systems (DiMES and MiMES) in the DIII-D tokamak are used to address a variety of plasma-material interaction (PMI) issues relevant to ITER. Among the topics studied are carbon erosion and re-deposition, hydrogenic retention in the gaps between plasma-facing components (PFCs), deterioration of diagnostic mirrors from carbon deposition and techniques to mitigate that deposition, and dynamics and transport of dust. An overview of the recent experimental results is presented.
Particle simulations on transport control in divertors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashiwagi, Mieko; Ido, Shunji
1995-04-01
Particle orbit simulations are carried out to study the reflection of He ions recycled from a tokamak divertor by RF electric fields, which have the frequency close to ion cyclotron resonance frequency (ICRF). The performance of particle reflection and the requirement to the intensity of RF fields are studied. The control of He recycling by ICRF fields is found to be available. 4 refs., 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Ono; Jaworski, M.; Kaita, R.
Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTX-U, the PMI research has received a strong emphasis. Moreover, with ˜15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m 2.
NASA Astrophysics Data System (ADS)
Leach, Franklin E.; Ly, Mellisa; Laremore, Tatiana N.; Wolff, Jeremy J.; Perlow, Jacob; Linhardt, Robert J.; Amster, I. Jonathan
2012-09-01
Electron detachment dissociation (EDD) has previously provided stereo-specific product ions that allow for the assignment of the acidic C-5stereochemistry in heparan sulfate glycosaminoglycans (GAGs), but application of the same methodology to an epimer pair in the chondroitin sulfate glycoform class does not provide the same result. A series of experiments have been conducted in which glycosaminoglycan precursor ions are independently activated by electron detachment dissociation (EDD), electron induced dissociation (EID), and negative electron transfer dissociation (NETD) to assign the stereochemistry in chondroitin sulfate (CS) epimers and investigate the mechanisms for product ion formation during EDD in CS glycoforms. This approach allows for the assignment of electronic excitation products formed by EID and detachment products to radical pathways in NETD, both of which occur simultaneously during EDD. The uronic acid stereochemistry in electron detachment spectra produces intensity differences when assigned glycosidic and cross-ring cleavages are compared. The variations in the intensities of the doubly deprotonated 0,2X3 and Y3 ions have been shown to be indicative of CS-A/DS composition during the CID of binary mixtures. These ions can provide insight into the uronic acid composition of binary mixtures in EDD, but the relative abundances, although reproducible, are low compared with those in a CID spectrum acquired on an ion trap. The application of principal component analysis (PCA) presents a multivariate approach to determining the uronic acid stereochemistry spectra of these GAGs by taking advantage of the reproducible peak distributions produced by electron detachment.
Development and application of W/Cu flat-type plasma facing components at ASIPP
NASA Astrophysics Data System (ADS)
Li, Q.; Zhao, S. X.; Sun, Z. X.; Xu, Y.; Li, B.; Wei, R.; Wang, W. J.; Qin, S. G.; Shi, Y. L.; Xie, C. Y.; Wang, J. C.; Wang, X. L.; Missirlian, M.; Guilhem, D.; Liu, G. H.; Yang, Z. S.; Luo, G.-N.
2017-12-01
W/Cu flat-type plasma facing components (PFCs) were widely used in divertor of fusion device because of its advantages, such as low cost, light in weight and good machinability. However, it is very difficult to manufacture them due to the large mismatch between the thermo-mechanical properties of W and Cu. Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) has successfully developed W/Cu flat-type PFCs for EAST W/Cu divertor project by hot isostatic pressing (HIP) technology. This paper presents the development and application of W/Cu flat-type PFCs at ASIPP. The optimized manufacturing process is to cast pure copper onto the rear side of W tiles at temperature of 1200 °C firstly, and then to HIP the W/Cu tiles onto CuCrZr heat sink at temperature of 600 °C, pressure of 150 MPa and duration of 3 h. W/Cu flat-type testing mock-up for EAST survived 1000 cycles at heat load of 5 MW m-2 in high heat flux tests. And then ASIPP prepared two mock-ups for CEA’s tungsten environment in steady-state tokamak (WEST) project. One mock-up withstood successfully 302 cycles of 20 MW m-2, which are far beyond the design requirement. Since 2014, W/Cu flat-type PFCs were wildly used in EAST upper divertor as baffle and dome components which showed excellent performance in 2015 and 2016 campaigns. Given the success in EAST upper divertor, W/Cu flat-type concept is as well applied in the design of actively cooled Langmuir probes which will be mounted onto EAST divertor targets soon.
Integration of uncooled scraper elements and its diagnostics into Wendelstein 7-X
Fellinger, Joris; Loesser, Doug; Neilson, Hutch; ...
2017-08-08
The modular stellarator Wendelstein 7-X in Greifswald (Germany) successfully started operation in 2015 with short pulse limiter plasmas. In 2017, the next operation phase (OP) OP1.2 will start once 10 uncooled test divertor units (TDU) with graphite armor will be installed. The TDUs allow for plasma pulses of 10 s with 8 MW heating. OP2, allowing for steady state operation, is planned for 2020 after the TDUs will be replaced by 10 water cooled CFC armored divertors. Due to the development of plasma currents like bootstrap currents in long pulse plasmas in OP2, the plasma could hit the edge ofmore » the divertor targets which has a reduced cooling capacity compared to the central part of the target tiles. To prevent overloading of these edges, a so-called scraper element can be positioned in front of the divertor, intersecting those strike lines that would otherwise hit the divertor edges. As a result, these edges are protected but as a drawback the pumping efficiency of neutrals is also reduced. As a test an uncooled scraper element with graphite tiles will be placed in two out of ten half modules in OP1.2. A decision to install ten water cooled scraper elements for OP2 is pending on the results of this test in OP1.2. To monitor the impact of the scraper element on the plasma, Langmuir probes are integrated in the plasma facing surface, and a neutral gas manometer measures the neutral density directly behind the plasma facing surface. Moreover, IR and VIS cameras observe the plasma facing surface and thermocouples monitor the temperatures of the graphite tiles and underlying support structure. This paper describes the integration of the scraper element and its diagnostics in Wendelstein 7-X.« less
The Simple Map for a Single-null Divertor Tokamak: How to Find the Footprint of Field lines
NASA Astrophysics Data System (ADS)
Figgins, Montoya; Ali, Halima; Punjabi, Alkesh
2000-10-01
We are working with the Simple Map^1 to find the footprint of field lines on the diverter plate in a single-null tokamak. Footprint of a field line is the position of the line when it escapes across the divertor plate. The Simple Map represents the magnetic field in a single-null divertor tokamak. The path of a field line is given by the equations: X_n+1=X_n-kY_n(1-Y_n) and Y_n+1=Y_n+kX_n+1. In order to find the footprint, we must first find the last good surface which is Y=0.997135768 and X=0. The value of k is fixed at 0.6. The starting values X0 are fixed at X_0=0. We use 10,000 points between the last good surface and the X-point. The X-point is located at (0,1). We also use the Continuous Analog of the Simple Map given by the equations: X(φ)=X_0-kY0 (1-Y_0)φ and Y(φ)=Y_0+kX(φ)φ. This will tell us what the (φ,X) is which represents the field lines crossing the divertor plate. The divertor plate is located at Y=1. When graphed, the footprint of field lines looks like the rings of Saturn. This work is supported by US DOES OFES. Ms. Montoya Figgins is HU CFRT Summer Fusion High School Scholar from E. E. Smith High School in North Carolina. She is supported by NASA under its NASA SHARP Plus Program. 1. Punjabi A, Verma A, and Boozer A, Phys Rev Lett, 69, 3322 (1992) and J Plasma Phys, 52, 91 (1994)
Recent sheath physics studies on DIII-D
NASA Astrophysics Data System (ADS)
Watkins, J. G.; Labombard, B.; Stangeby, P. C.; Lasnier, C. J.; McLean, A. G.; Nygren, R. E.; Boedo, J. A.; Leonard, A. W.; Rudakov, D. L.
2015-08-01
A study to examine some current issues in the physics of the plasma sheath has been recently carried out in DIII-D low power Ohmic plasmas using both flush and domed Langmuir probes, divertor Thomson scattering (DTS), an infrared camera (IRTV), and a new calorimeter triple probe assembly mounted on the Divertor Materials Evaluation System (DIMES). The sheath power transmission factor was found to be consistent with the theoretically predicted value of 7 (±2) for low power plasmas. Using this factor, the three heat flux profiles derived from the LP, DTS, and calorimeter diagnostic measurements agree. Comparison of flush and domed Langmuir probes and divertor Thomson scattering indicates that proper interpretation of flush probe data to get target plate density and temperature is feasible and could potentially yield accurate measurements of target plate conditions where the probes are located.
Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertor.
Balboa, I; Arnoux, G; Eich, T; Sieglin, B; Devaux, S; Zeidner, W; Morlock, C; Kruezi, U; Sergienko, G; Kinna, D; Thomas, P D; Rack, M
2012-10-01
For the new ITER-like wall at JET, two new infrared diagnostics (KL9B, KL3B) have been installed. These diagnostics can operate between 3.5 and 5 μm and up to sampling frequencies of ∼20 kHz. KL9B and KL3B image the horizontal and vertical tiles of the divertor. The divertor tiles are tungsten coated carbon fiber composite except the central tile which is bulk tungsten and consists of lamella segments. The thermal emission between lamellae affects the surface temperature measurement and therefore KL9A has been upgraded to achieve a higher spatial resolution (by a factor of 2). A technical description of KL9A, KL9B, and KL3B and cross correlation with a near infrared camera and a two-color pyrometer is presented.
Analysis of the plasma-wall interaction in the Heliotron E device
NASA Astrophysics Data System (ADS)
Motojima, O.; Mizuuchi, T.; Besshou, S.; Iiyoshi, A.; Uo, K.; Yamashina, T.; Mohri, M.; Satake, T.; Hashiba, M.; Amemiya, S.; Miwa, H.
1984-12-01
The plasma-wall interaction (PWI) of the currentless plasmas with temperature To, Tio ≤ 1.1 keV, density N¯e = (2-10)× 1013/cm3, and volume-averaged beta value of β$¯≤ 2% was investigated. We have observed that PWI took place mainly where the divertor field line intersected the chamber wall (called divertor traces). Boundary plasmas were measured with electrostatic probes, which showed the presence of the divertor region with the parameters in the range of Ned = 1010-1011/cm3 and Ted = 10-50 eV. Surface analysis techniques (ESCA, AES, and RBS) were applied to analyze the surface probes (Si, graphite and stainless steel) and the test pieces (SiC, TiC, and stainless steel), which were irradiated by plasmas for short and long times respectively.
Influence of Containment on the Growth of Germanium-Silicon in Microgravity
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.; Croll, A.; Sorgenfrei, T.
2017-01-01
A series of Ge(sub 1-x)Si(sub x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and 'detached' Bridgman methods and the ground-based float zone technique. 'Detached' or 'dewetted' Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. A meniscus bridges this gap between the top of the crystal and the crucible wall. Theoretical models indicate that an important parameter governing detachment is the pressure differential across this meniscus. An experimental method has been developed to control this pressure differential in microgravity that does not require connection of the ampoule volume to external gases or changes in the temperature profile during growth. Experiments will be conducted with positive, negative or zero pressure differential across the meniscus. Characterization results of ground-based experiments, including etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction will also be described.
NASA Astrophysics Data System (ADS)
Ghosh, Subhajit; Bose, Santanu; Mandal, Nibir; Das, Animesh
2018-03-01
This study integrates field evidence with laboratory experiments to show the mechanical effects of a lithologically contrasting stratigraphic sequence on the development of frontal thrusts: Main Boundary Thrust (MBT) and Daling Thrust (DT) in the Darjeeling-Sikkim Himalaya (DSH). We carried out field investigations mainly along two river sections in the DSH: Tista-Kalijhora and Mahanadi, covering an orogen-parallel stretch of 20 km. Our field observations suggest that the coal-shale dominated Gondwana sequence (sandwiched between the Daling Group in the north and Siwaliks in the south) has acted as a mechanically weak horizon to localize the MBT and DT. We simulated a similar mechanical setting in scaled model experiments to validate our field interpretation. In experiments, such a weak horizon at a shallow depth perturbs the sequential thrust progression, and causes a thrust to localize in the vicinity of the weak zone, splaying from the basal detachment. We correlate this weak-zone-controlled thrust with the DT, which accommodates a large shortening prior to activation of the weak zone as a new detachment with ongoing horizontal shortening. The entire shortening in the model is then transferred to this shallow detachment to produce a new sequence of thrust splays. Extrapolating this model result to the natural prototype, we show that the mechanically weak Gondwana Sequence has caused localization of the DT and MBT in the mountain front of DSH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horsten, N., E-mail: niels.horsten@kuleuven.be; Baelmans, M.; Dekeyser, W.
2016-01-15
We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assumingmore » equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.« less
Bubble Formation from Wall Orifice in Liquid Cross-Flow Under Low Gravity
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Kamotani, Y.
2000-01-01
Two-phase flows present a wide variety of applications for spacecraft thermal control systems design. Bubble formation and detachment is an integral part of the two phase flow science. The objective of the present work is to experimentally investigate the effects of liquid cross-flow velocity, gas flow rate, and orifice diameter on bubble formation in a wall-bubble injection configuration. Data were taken mainly under reduced gravity conditions but some data were taken in normal gravity for comparison. The reduced gravity experiment was conducted aboard the NASA DC-9 Reduced Gravity Aircraft. The results show that the process of bubble formation and detachment depends on gravity, the orifice diameter, the gas flow rate, and the liquid cross-flow velocity. The data are analyzed based on a force balance, and two different detachment mechanisms are identified. When the gas momentum is large, the bubble detaches from the injection orifice as the gas momentum overcomes the attaching effects of liquid drag and inertia. The surface tension force is much reduced because a large part of the bubble pinning edge at the orifice is lost as the bubble axis is tilted by the liquid flow. When the gas momentum is small, the force balance in the liquid flow direction is important, and the bubble detaches when the bubble axis inclination exceeds a certain angle.
Cohesiveness and hydrodynamic properties of young drinking water biofilms.
Abe, Yumiko; Skali-Lami, Salaheddine; Block, Jean-Claude; Francius, Grégory
2012-03-15
Drinking water biofilms are complex microbial systems mainly composed of clusters of different size and age. Atomic force microscopy (AFM) measurements were performed on 4, 8 and 12 weeks old biofilms in order to quantify the mechanical detachment shear stress of the clusters, to estimate the biofilm entanglement rate ξ. This AFM approach showed that the removal of the clusters occurred generally for mechanical shear stress of about 100 kPa only for clusters volumes greater than 200 μm3. This value appears 1000 times higher than hydrodynamic shear stress technically available meaning that the cleaning of pipe surfaces by water flushing remains always incomplete. To predict hydrodynamic detachment of biofilm clusters, a theoretical model has been developed regarding the averaging of elastic and viscous stresses in the cluster and by including the entanglement rate ξ. The results highlighted a slight increase of the detachment shear stress with age and also the dependence between the posting of clusters and their volume. Indeed, the experimental values of ξ allow predicting biofilm hydrodynamic detachment with same order of magnitude than was what reported in the literature. The apparent discrepancy between the mechanical and the hydrodynamic detachment is mainly due to the fact that AFM mechanical experiments are related to the clusters local properties whereas hydrodynamic measurements reflected the global properties of the whole biofilm. Copyright © 2011 Elsevier Ltd. All rights reserved.
Studies of Be migration in the JET tokamak using AMS with 10Be marker
NASA Astrophysics Data System (ADS)
Bykov, I.; Bergsåker, H.; Possnert, G.; Zhou, Y.; Heinola, K.; Pettersson, J.; Conroy, S.; Likonen, J.; Petersson, P.; Widdowson, A.
2016-03-01
The JET tokamak is operated with beryllium limiter tiles in the main chamber and tungsten coated carbon fiber composite tiles and solid W tiles in the divertor. One important issue is how wall materials are migrating during plasma operation. To study beryllium redistribution in the main chamber and in the divertor, a 10Be enriched limiter tile was installed prior to plasma operations in 2011-2012. Methods to take surface samples have been developed, an abrasive method for bulk Be tiles in the main chamber, which permits reuse of the tiles, and leaching with hot HCl to remove all Be deposited at W coated surfaces in the divertor. Quantitative analysis of the total amount of Be in cm2 sized samples was made with inductively coupled plasma atomic emission spectroscopy (ICP-AES). The 10Be/9Be ratio in the samples was measured with accelerator mass spectrometry (AMS). The experimental setup and methods are described in detail, including sample preparation, measures to eliminate contributions in AMS from the 10B isobar, possible activation due to plasma generated neutrons and effects of diffusive isotope mixing. For the first time marker concentrations are measured in the divertor deposits. They are in the range 0.4-1.2% of the source concentration, with moderate poloidal variation.
In-Vessel Tritium Retention and Removal in ITER-FEAT
NASA Astrophysics Data System (ADS)
Federici, G.; Brooks, J. N.; Iseli, M.; Wu, C. H.
Erosion of the divertor and first-wall plasma-facing components, tritium uptake in the re-deposited films, and direct implantation in the armour material surfaces surrounding the plasma, represent crucial physical issues that affect the design of future fusion devices. In this paper we present the derivation, and discuss the results, of current predictions of tritium inventory in ITER-FEAT due to co-deposition and implantation and their attendant uncertainties. The current armour materials proposed for ITER-FEAT are beryllium on the first-wall, carbon-fibre-composites on the divertor plate near the separatrix strike points, to withstand the high thermal loads expected during off-normal events, e.g., disruptions, and tungsten elsewhere in the divertor. Tritium co-deposition with chemically eroded carbon in the divertor, and possibly with some Be eroded from the first-wall, is expected to represent the dominant mechanism of in-vessel tritium retention in ITER-FEAT. This demands efficient in-situ methods of mitigation and retrieval to avoid frequent outages due to the reaching of precautionary operating limits set by safety considerations (e.g., ˜350 g of in-vessel co-deposited tritium) and for fuel economy reasons. Priority areas where further R&D work is required to narrow the remaining uncertainties are also briefly discussed.