Science.gov

Sample records for divertor pump cryogenic

  1. Design of the advanced divertor pump cryogenic system for DIII-D

    SciTech Connect

    Schaubel, K.M.; Baxi, C.B.; Campbell, G.L.; Gootgeld, A.M.; Langhorn, A.R.; Laughon, G.J.; Smith, J.P.; Anderson, P.M. ); Menon, M.M. )

    1991-11-01

    The design of the cryogenic system for the D3-D advanced divertor cryocondensation pump is presented. The advanced divertor incorporates a baffle chamber and bias ring located near the bottom of the D3-D vacuum vessel. A 50,000 l/s cryocondensation pump will be installed underneath the baffle for plasma particle exhaust. The pump consists of a liquid helium cooled tube operating at 4.3{degrees}K and a liquid nitrogen cooled radiation shield. Liquid helium is fed by forced flow through the cryopump. Compressed helium gas flowing through the high pressure side of a heat exchanger is regeneratively cooled by the two-phase helium leaving the pump. The cooled high pressure gaseous helium is than liquefied by a Joule-Thomson expansion valve. The liquid is returned to a storage dewar. The liquid nitrogen for the radiation shield is supplied by forced flow from a bulk storage system. Control of the cryogenic system is accomplished by a programmable logic controller.

  2. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  3. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  4. A compact cryogenic pump

    SciTech Connect

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  5. A compact cryogenic pump

    NASA Astrophysics Data System (ADS)

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  6. Divertor Configurations which Optimize Helium Pumping

    NASA Astrophysics Data System (ADS)

    Strachan, James

    2008-11-01

    Helium accumulation in DT plasmas is often presumed to be one limitation to the fusion power production. The core helium density has an unavoidable central source and a confinement time which tends to be long as is consistent with the required energy confinement times. Any pumping of the helium can only act to reduce the helium recycling. Within that constraint, however, it is still valuable to efficiently pump helium. Helium pumping can be aided by optimal placement of the helium pump in the divertor. The pump should be on the SOL side of the separatrix displaced into the region where the current of impurity particles enters into the divertor and initially strike the target. A numerical example will be given of helium pumping by the ITER divertor. A factor-of-two reduction in core helium densities is possible by optimal pump placement. One difficulty is the need for low temperatures along the targets to prevent their erosion. On ITER, recycled DT near the strike points is hoped to cool this region. The angle between the separatrix and the target is such that recycled neutrals cause ionization, excitation, and dissociation power losses along the target. The ITER solution constrains the choice of pump locations. Alternatively, the strike point cooling can be achieved by local DT (or low Z impurity) injection at the strike point.

  7. A Magnetically Coupled Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  8. High efficiency, variable geometry, centrifugal cryogenic pump

    SciTech Connect

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-12-31

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions.

  9. Using Composite Materials in a Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Batton, William D.; Dillard, James E.; Rottmund, Matthew E.; Tupper, Michael L.; Mallick, Kaushik; Francis, William H.

    2008-01-01

    Several modifications have been made to the design and operation of an extended-shaft cryogenic pump to increase the efficiency of pumping. In general, the efficiency of pumping a cryogenic fluid is limited by thermal losses which is itself caused by pump inefficiency and leakage of heat through the pump structure. A typical cryogenic pump includes a drive shaft and two main concentric static components (an outer pressure containment tube and an intermediate static support tube) made from stainless steel. The modifications made include replacement of the stainless-steel drive shaft and the concentric static stainless-steel components with components made of a glass/epoxy composite. The leakage of heat is thus reduced because the thermal conductivity of the composite is an order of magnitude below that of stainless steel. Taking advantage of the margin afforded by the decrease in thermal conductivity, the drive shaft could be shortened to increase its effective stiffness, thereby increasing the rotordynamic critical speeds, thereby further making it possible to operate the pump at a higher speed to increase pumping efficiency. During the modification effort, an analysis revealed that substitution of the shorter glass/epoxy shaft for the longer stainless-steel shaft was not, by itself, sufficient to satisfy the rotordynamic requirements at the desired increased speed. Hence, it became necessary to increase the stiffness of the composite shaft. This stiffening was accomplished by means of a carbon-fiber-composite overwrap along most of the length of the shaft. Concomitantly with the modifications described thus far, it was necessary to provide for joining the composite-material components with metallic components required by different aspects of the pump design. An adhesive material formulated specially to bond the composite and metal components was chosen as a means to satisfy these requirements.

  10. Miniature thermo-electric cooled cryogenic pump

    DOEpatents

    Keville, R.F.

    1997-11-18

    A miniature thermo-electric cooled cryogenic pump is described for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a {Delta}T=100 C characteristic. The pump operates under vacuum pressures of 5{times}10{sup {minus}4} Torr to ultra high vacuum (UHV) conditions in the range of 1{times}10{sup {minus}7} to 3{times}10{sup {minus}9} Torr and will typically remove partial pressure, 2{times}10{sup {minus}7} Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5{degree}, and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof. 2 figs.

  11. Miniature thermo-electric cooled cryogenic pump

    DOEpatents

    Keville, Robert F.

    1997-01-01

    A miniature thermo-electric cooled cryogenic pump for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a .DELTA.T=100.degree. C. characteristic. The pump operates under vacuum pressures of 5.times.10.sup.-4 Torr to ultra high vacuum (UHV) conditions in the range of 1.times.10.sup.-7 to 3.times.10.sup.-9 Torr and will typically remove partial pressure, 2.times.10.sup.-7 Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5.degree., and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof.

  12. Engineering design of cryocondensation pumps for the DIII-D Radiative Divertor Program

    SciTech Connect

    Bozek, A.S.; Baxi, C.B.; Del Bene, J.V.; Laughon, G.J.; Reis, E.E.; Shatoff, H.D.; Smith, J.P.

    1995-10-01

    A new double-null, slotted divertor configuration will be installed for the DIII-D Radiative Divertor Program at General Atomics in late 1996. Four cryocondensation pumps, three new and one existing, will be part of this new divertor. The purpose of the pumps is to provide plasma density control and to limit the impurities entering the plasma core by providing pumping at each divertor strike point. The three new pumps are based on the design of the existing pump, installed in 1992 as part of the Advanced Divertor Program. The new pumps require geometry modifications to the original design. Therefore, extensive modal and dynamic analyses were performed to determine the behavior of these pumps and their helium and nitrogen feed lines during disruption events. Thermal and fluid analyses were also performed to characterize the helium two-phase flow regime in the pumps and their feedlines. A flow testing program was completed to test the change in geometry of the pump feed lines with respect to helium flow stability. The results were compared to the helium thermal and fluid analyses to verify predicted flow regimes and flow stability.

  13. Engineering design of a radiative divertor for DIII-D

    SciTech Connect

    Smith, J.P.; Baxi, C.B.; Bozek, A.S.

    1995-10-01

    A new divertor configuration is being developed for the DIII-D tokamak. This divertor will operate in the radiative mode. Experiments and modeling form the basis for the new design. The Radiative Divertor reduces the heat flux on the divertor plates by dispersing the power with radiation in the divertor region. In addition, the Radiative Divertor structure will allow density control in plasma shapes required for advanced tokamak operation. The divertor structure allows for operation in either double-null or single-null plasma configurations. Four independently controlled divertor cryopumps will enable pumping at either the inboard (upper and lower) or the outboard (upper and lower) divertor plates. An upgrade to the DIII-D cryogenic system is part of this project. The increased capabilities of the cryogenic system will allow delivery of liquid helium and nitrogen to the three new cryopumps. The Radiative Divertor design is very flexible, and will allow physics studies of the effects of slot width and length. Radiative Divertor diagnostics are being designed in parallel to provide comprehensive measurements for diagnosing the divertor. The Radiative divertor installation is scheduled for late 1996. Engineering experience gained in the DIII-D Advanced Divertor program form a foundation for the design work on the Radiative Divertor.

  14. Development of a cryogenic capillary pumped loop

    SciTech Connect

    Kroliczek, E.J.; Cullimore, B.

    1996-03-01

    This paper describes the initial development of a promising new cryogenic technology. Room temperature capillary pumped loops (CPLs), a derivative of heat pipe technology, have been under development for almost two decades and are emerging as a design solution for many spacecraft thermal control problems. While cryogenic capillary pumped loops have application to passive spacecraft radiators and to long term storage of cryogenic propellants and open-cycle coolants, their application to the integration of spacecraft cryocoolers has generated the most excitement. Without moving parts or complex controls, they are able to thermally connect redundant cryocoolers to a single remote load, eliminating thermal switches and providing mechanical isolation at the same time. Development of a cryogenic CPL (CCPL) presented some unique challenges including start-up from a super-critical state, the management of parasitic heat leaks and pressure containment at ambient temperatures. These challenges have been overcome with a novel design that requires no additional devices or preconditioning for start-up. This paper describes the design concept and development and results conducted under SBIR Phase I and Phase II. {copyright} {ital 1996 American Institute of Physics.}

  15. Magnetocaloric pump. [for cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Brown, G. V. (Inventor)

    1974-01-01

    A vessel having inlet and outlet valves is disposed in a container with a fluid to be pumped which may be evolved from a liquid in the container below the vessel. A magnetocaloric substance is disposed in the vessel and causes fluid vapor in the vessel to expand and be expelled through the outlet valve. Vapor is drawn in through the inlet valve as the substance cools. The inlet valves may be one-way check valves or may be solenoid valves energized at appropriate times by timing circutis. A timer controlled heating element may also be disposed in the vessel to operate in conjunction with the magnetic field.

  16. Cryogenic storage tank with a retrofitted in-tank cryogenic pump

    SciTech Connect

    Zwick, E.B.; Brigham, W.D.

    1989-08-29

    This patent describes a low boiloff submersible pump assembly for use in a conventional cryogenic tank having an open access port. It comprises: a pump; a removable pump mounting tube extending through the access port of the cryogenic tank. The pump mounting tube having an inner surface thermally insulated from an outer surface of the tube and thermally insulated from the access port of the cryogenic tank. The tube having an open lower end, the upper end of the tube including means adapted to make a gas-tight seal with the pump mounted thereto. The tube extending through the tank and into the cryogen stored in the tank; and block means for thermally insulating the removable pump mounting tube from the cryogenic tank at the access port of the cryogenic tank. The mounting tube connecting the tank only at the access port through the block means.

  17. Model for particle balance in pumped divertors (pre-VORTEX)

    SciTech Connect

    Hogan, J.T.

    1990-08-01

    An internally consistent model for particle transport in an open divertor geometry has been developed. Embodied in a new code, pre-VORTEX, the model couples the particle balance in the plasma core, the scrape-off layer, the open divertor channels, and the vacuum'' regions. This mutual coupling is particularly important in determining the conditions required for high recycling in the divertor. The plasma core is considered to have a relatively quiescent core region and a less well confined edge-localized mode''(ELM) region. The scrape-off layer is modeled with one-dimensional parallel and perpendicular transport. A two-point divertor channel model is used; it is similar to previous models, but with the addition of new physical processes: hydrogen charge exchange, impurity thermal charge exchange, and flux-limited parallel transport. Wall recycling data are required to describe the differing recycling properties of the wall regions and the divertor plates. Given local plasma diffusivities and wall recycling properties, the model predicts the volume-averaged density and global particle confinement time. The input data are uncertain, and a major use for the model is to permit comparison with data. The final model, VORTEX, is intended for application to the analysis of divertor confinement experiments; it is coupled to a one-and-one-half--dimensional transport code and uses detailed geometric input from equilibrium fitting codes, experimentally measured core profiles, and such parameters as can be measured in the scrape-off layer. The pre-VORTEX model is compared as a stand-alone code with typical data from the DIII-D experiment and applied to the proposed DIII-D Advanced Divertor Project.

  18. Analysis of pumping requirement for exhausting duct in close vicinity of divertor in Tokamak Reactor

    SciTech Connect

    Saito, S.; Abe, T.; Fujisawa, N.; Sugihara, M.; Veda, K.

    1983-11-01

    An improved method for Monte Carlo simulation is described to calculate the neutral-particle transport in a divertor throat and to evaluate the helium removal efficiency from a burning plasma. The required pumping speed for the helium removal is discussed with special emphasis placed on the effects of long exhausting duct and of scrape-off plasma variables. The analysis for International Tokamak Reactor (INTOR) single null divertor suggests a possibility that the pumping requirement for INTOR could be drastically eased--e.g., <10/sup 4/ l/s, for the high scrape-off plasma density of the order of 10/sup 13/ cm/sup -3/.

  19. Modeling of neutral pressure and pumping in the Tore Supra ergodic divertor and outboard pump limiter

    NASA Astrophysics Data System (ADS)

    Owen, L. W.; Loarer, T.; Grosman, A.; Meslin, B.; Klepper, C. C.; Mioduszewski, P. K.; Uckan, T.

    1997-02-01

    Active control of the core plasma density and partial depletion of the wall particle content have been achieved in experiments on Tore Supra with the plasma leaning on either the ergodic divertor (ED) or the pump limiters. Measurements of neutral pressures in the ED and outboard pump limiter (OPL) are modeled with 1D parallel transport equations (continuity and momentum balance) for the SOL plasma coupled to 2D neutral particle transport simulations. SOL density and temperature profiles from reciprocating Langmuir probe measurements for a range of volume-averaged densities are renormalized, where necessary, to agree with Langmuir probe measurements in the OPL throat and constitute the upstream boundary conditions for the 1D calculations. Good agreement with measured pressures and exhaust rates are obtained for both the ED and OPL in scans that span a factor of 2-3 in volume-averaged density. The importance of a self-consistent treatment of the plasma and neutral particle transport in the neighborhood of the neutralizer plate is demonstrated, particularly in the stronger recycling regimes characteristic of densities at the high end of the scans. Plasma flow reversal near the plasma/plenum interface is predicted to occur at the higher densities due to the large local ionization source. Predictions of pressure buildup in the plenum behind the prototype vented neutralizer plate agree with experiment if it is assumed that both the tops and partially the sides of the needles comprising the plate are wetted by the plasma. A discharge in which the ED pumps are active is analyzed; the calculated pressure and exhaust rate agree with experiment. The core fueling rate is the same as without pumping, suggesting, as is seen in the experiment, a small density decay rate and significant wall particle depletion.

  20. A Pump for Liquid Cryogen with HTS Electrical Drive

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; Larionoff, A. E.; Poltavets, V. N.; Koneev, S. M.-A.; Larionoff, S. A.; Modestov, K. A.; Akimov, I. I.; Verzhbitsky, L. G.; Trifonov, Ye. Ye.; Logviniouk, V. P.; Dew-Hughes, D.

    2004-06-01

    This work describes the research and development of a cryogenic pump that is intended for the fuel supply of aircraft engines using advanced low temperature fuel. The basic design is that of 4-pole reluctance motor. The rotor is constructed from soft iron and BSCCO/Ag laminated material; the latter developed by the All-Russian Scientific Research Institute of Inorganic Materials. The motor was integrated with a centrifugal cryogenic pump for the cryogenic fuel supply system, developed by the TUPOLEV Company. The results of theoretical modelling and experimental investigations are presented.

  1. Cavitation instabilities of an inducer in a cryogenic pump

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Jin; Sung, Hyung Jin; Choi, Chang-Ho; Kim, Jin-Sun

    2017-03-01

    Inducers assist cryogenic pumps to operate safely under cavitation conditions by increasing the pressure of the impeller inlet, but create cavitation instabilities. The use of cryogenic fluids requires special attention because of safety and handling concerns. To examine the cavitation instabilities of a cryogenic pump, two kinds of working fluids, water and liquid oxygen, were employed. The cavitation instabilities were measured with an accelerometer installed on the pump casing. The flow coefficient and the head slightly decrease with decreases in the cavitation number before the cavitation breakdown. These trends are true of both fluids. Several cavitation instabilities were identified with the accelerometer. At lower flow coefficients, super-synchronous rotating cavitation was found in a similar cavitation number range for both fluids. At higher flow coefficients, the cavitation numbers of the cavitation instabilities in the liquid oxygen test are smaller than those of the water test.

  2. A cryocondensation pump for the DIII-D Advanced Divertor Program

    SciTech Connect

    Smith, J.P.; Baxi, C.; Reis, E.; Sevier, L.

    1992-03-01

    A cryocondensation pump was designed for the baffle chamber of General Atomics DIII-D tokamak and will be installed in the fall of 1992. The purpose of the pump is to study plasma density control by pumping the divertor. The pump is toroidally continuous, approximately 10 m long and located in the lower outer corner of the vacuum chamber of the machine. It consists of a 1 m{sup 2} liquid helium-cooled surface surrounded by a liquid nitrogen-cooled shield to limit the heat load on the helium-cooled surface. The liquid nitrogen-cooled surface is surrounded by a radiation/particle shield to prevent energetic particles from impacting and releasing condensed water molecules. A thermal enhancement coating was applied to the nitrogen shell to lower the maximum temperature of the shell. The coating is non-continuous to keep the toroidal electrical resistance high. The whole pump is supported off the water-cooled vacuum vessel wall. Supports for the pump were designed to accommodate the thermal differences between the 4 K helium surface, the 77 K nitrogen shells, and the 300 K vacuum vessel supporting the pump and to provide a low heat leak structural support. Disruption loading on the pump was analyzed and a finite element structural analysis of the pump was completed. A testing program was completed to evaluate coating techniques to enhance heat transfer and emissivity of the various surfaces. Fabrication tests were performed to determine the best method of attaching the liquid nitrogen flow tubes to their shield surfaces and to determine the best alternative to fabricating the different shells of the pump. A prototype sector of the pump was built to verify fabrication and assembly techniques.

  3. Studies of high- δ (baffled) and low- δ (open) pumped divertor operation on DIII-D

    NASA Astrophysics Data System (ADS)

    Allen, S. L.; Fenstermacher, M. E.; Greenfield, C. M.; Hyatt, A. W.; Maingi, R.; Porter, G. D.; Wade, M. R.; Bozek, A. S.; Ellis, R.; Hill, D. N.; Hollerbach, M. A.; Lasnier, C. J.; Leonard, A. W.; Mahdavi, M. A.; Nilson, D. G.; Petrie, T. W.; Schaffer, M. J.; Smith, J. P.; Stambaugh, R. D.; Thomas, D. M.; Watkins, J. G.; West, W. P.; Whyte, D. G.; Wood, R. D.

    We report new experimental results with the Radiative Divertor Project-outer baffle (RDP-OB) and cryopump in both upper single-null (USN) and double-null (DN) ELMing H-mode discharges. The baffled divertor reduced the core ionization (˜2-2.5×), in reasonable agreement with predictions from UEDGE/DEGAS modeling (˜3.75×). The upper cryopump achieved density control of ne/ ngw ˜ 0.22 (line density/Greenwald density) with Zeff ˜ 2 in high- δ plasmas. The measured exhaust is comparable to the lower pump, except at lower core electron densities ( ne < 5 × 10 19 m -3). Efficient impurity exhaust was obtained with deuterium SOL flow. Preliminary experiments with DN operation has shown that the particle exhaust to the upper pump depends on the up/down magnetic balance. Preliminary experiments indicate that the DN exhaust is roughly 40-50% of the USN exhaust at ne ˜ 4 × 10 19 m -3.

  4. Transmission of electrons inside the cryogenic pumps of ITER injector

    SciTech Connect

    Veltri, P. Sartori, E.

    2016-02-15

    Large cryogenic pumps are installed in the vessel of large neutral beam injectors (NBIs) used to heat the plasma in nuclear fusion experiments. The operation of such pumps can be compromised by the presence of stray secondary electrons that are generated along the beam path. In this paper, we present a numerical model to analyze the propagation of the electrons inside the pump. The aim of the study is to quantify the power load on the active pump elements, via evaluation of the transmission probabilities across the domain of the pump. These are obtained starting from large datasets of particle trajectories, obtained by numerical means. The transmission probability of the electrons across the domain is calculated for the NBI of the ITER and for its prototype Megavolt ITer Injector and Concept Advancement (MITICA) and the results are discussed.

  5. Modeling Results for the ITER Cryogenic Fore Pump

    NASA Astrophysics Data System (ADS)

    Zhang, Dongsheng

    The work presented here is the analysis and modeling of the ITER-Cryogenic Fore Pump (CFP), also called Cryogenic Viscous Compressor (CVC). Unlike common cryopumps that are usually used to create and maintain vacuum, the cryogenic fore pump is designed for ITER to collect and compress hydrogen isotopes during the regeneration process of the torus cryopumps. Different from common cryopumps, the ITER-CFP works in the viscous flow regime. As a result, both adsorption boundary conditions and transport phenomena contribute unique features to the pump performance. In this report, the physical mechanisms of cryopumping are studied, especially the diffusion-adsorption process and these are coupled with the standard equations of species, momentum and energy balance, as well as the equation of state. Numerical models are developed, which include highly coupled non-linear conservation equations of species, momentum, and energy and equation of state. Thermal and kinetic properties are treated as functions of temperature, pressure, and composition of the gas fluid mixture. To solve such a set of equations, a novel numerical technique, identified as the Group-Member numerical technique is proposed. This document presents three numerical models: a transient model, a steady state model, and a hemisphere (or molecular flow) model. The first two models are developed based on analysis of the raw experimental data while the third model is developed as a preliminary study. The modeling results are compared with available experiment data for verification. The models can be used for cryopump design, and can also benefit problems, such as loss of vacuum in a cryomodule or cryogenic desublimation. The scientific and engineering investigation being done here builds connections between Mechanical Engineering and other disciplines, such as Chemical Engineering, Physics, and Chemistry.

  6. Flight Testing of a Cryogenic Capillary Pumped Loop

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Kobel, Mark; Bugby, David; Kroliczek, Edward; Baumann, Jane; Cullimore, Brent

    1999-01-01

    This paper describes the flight test results of the fifth generation cryogenic capillary pumped loop (CCPL-5) which flew on the Space Shuttle STS-95 in October of 1998 as part of the CRYOTSU Flight Experiment. This flight was the first in-space demonstration of the CCPL, a lightweight heat transport and thermal switching device for future integrated cryogenic bus systems. The CCPL-5 utilized nitrogen as the working fluid and operated between 80K and 110K. Flight results indicated excellent performance of the CCPL-5 under zero-G environment. The CCPL could start from a supercritical condition in all tests, and the loop operating temperature could be tightly controlled regardless of changes in the heat load and/or the sink temperature. In addition, the loop demonstrated successful operation with a heat load of 0.5 W as well as with parasitic heat loads alone.

  7. Comprehensive Testing of a Neon Cryogenic Capillary Pumped Loop

    NASA Technical Reports Server (NTRS)

    Kobel, Mark C.; Ku, Jentung; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This paper describes a comprehensive test program of a cryogenic capillary pumped loop (CCPL) using neon as the working fluid in the temperature range between 30 K and 40 K. The test article was originally designed to be used with nitrogen in the 70 K to 100 K temperature range, and was refurbished for testing with neon. Tests performed included start up from a supercritical state, power cycle, sink temperature cycle, heat transport limit, low power limit, reservoir set point change and long duration operation. The neon CCPL has demonstrated excellent performance under various conditions.

  8. Thermal Analysis of Magnetically-Coupled Pump for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Senocak, Inanc; Udaykumar, H. S.; Ndri, Narcisse; Francois, Marianne; Shyy, Wei

    1999-01-01

    Magnetically-coupled pump is under evaluation at Kennedy Space Center for possible cryogenic applications. A major concern is the impact of low temperature fluid flows on the pump performance. As a first step toward addressing this and related issues, a computational fluid dynamics and heat transfer tool has been adopted in a pump geometry. The computational tool includes (i) a commercial grid generator to handle multiple grid blocks and complicated geometric definitions, and (ii) an in-house computational fluid dynamics and heat transfer software developed in the Principal Investigator's group at the University of Florida. Both pure-conduction and combined convection-conduction computations have been conducted. A pure-conduction analysis gives insufficient information about the overall thermal distribution. Combined convection-conduction analysis indicates the significant influence of the coolant over the entire flow path. Since 2-D simulation is of limited help, future work on full 3-D modeling of the pump using multi-materials is needed. A comprehensive and accurate model can be developed to take into account the effect of multi-phase flow in the cooling flow loop, and the magnetic interactions.

  9. Flight Testing of a Cryogenic Capillary Pumped Loop

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Kobel, Mark; Bugby, David; Kroliczek, Edward; Baumann, Jane; Cullimore, Brent

    1999-01-01

    Future space-based cryogenic systems will require enhanced integration flexibility, lower weight reduced parasitic penalties, better vibration isolation, and a variety of other improvements to meet performance goals. Additionally, there is an increasing need to locate cooling sources remotely from cooled components. In the past flexible conductive links were used and worked well in most cases. However, as the transport lengths increase, conductive couplings become heavier and less effective, and must be replaced by higher performance systems. One available option, which can meet many of these future requirements, is the cryogenic capillary pumped loop (CCPL). The development of the CCPL technology started in 1992, following the success of the room temperature CPLS. The extrapolation of CCPL technology to cryogenic temperatures offers many performance benefits, which are not currently within the reach of traditional heat pipes or conductive links. Specific advantages of the CCPL technology pertaining to cryocooler integration include: (1) greater capillary pumping pressure for improved ground testability; (2) improved mechanical isolation; (3) faster diode shutdown and lower reverse heat leaks; (4) tighter control of detector temperature; (5) variable or fixed conductance operation; and (6) ease of integration due to their flexibility. The applications of CCPL technology are numerous. Military and commercial applications include surveillance satellites, earth observing satellites, deep space observation systems, medical devices, and many other cryogenic systems. Over the past few years, several breadboard and prototype CCPLs have been built and ground tested. A prototype CCPL has demonstrated successful operation between 80K and 110K with heat loads between O.5W and 12W using nitrogen as the working fluid, and 35K and 40K with head loads of 0.25W to 3.5W using neon. In order to verify CCPL performance in a microgravity environment, a flight unit, CCPL-5, was tested

  10. Modeling Results For the ITER Cryogenic Fore Pump. Final Report

    SciTech Connect

    Pfotenhauer, John M.; Zhang, Dongsheng

    2014-03-31

    A numerical model characterizing the operation of a cryogenic fore-pump (CFP) for ITER has been developed at the University of Wisconsin – Madison during the period from March 15, 2011 through June 30, 2014. The purpose of the ITER-CFP is to separate hydrogen isotopes from helium gas, both making up the exhaust components from the ITER reactor. The model explicitly determines the amount of hydrogen that is captured by the supercritical-helium-cooled pump as a function of the inlet temperature of the supercritical helium, its flow rate, and the inlet conditions of the hydrogen gas flow. Furthermore the model computes the location and amount of hydrogen captured in the pump as a function of time. Throughout the model’s development, and as a calibration check for its results, it has been extensively compared with the measurements of a CFP prototype tested at Oak Ridge National Lab. The results of the model demonstrate that the quantity of captured hydrogen is very sensitive to the inlet temperature of the helium coolant on the outside of the cryopump. Furthermore, the model can be utilized to refine those tests, and suggests methods that could be incorporated in the testing to enhance the usefulness of the measured data.

  11. Traction drive for cryogenic boost pump. [hydrogen oxygen rocket engines

    NASA Technical Reports Server (NTRS)

    Meyer, S.; Connelly, R. E.

    1981-01-01

    Two versions of a Nasvytis multiroller traction drive were tested in liquid oxygen for possible application as cryogenic boost pump speed reduction drives for advanced hydrogen-oxygen rocket engines. The roller drive, with a 10.8:1 reduction ratio, was successfully run at up to 70,000 rpm input speed and up to 14.9 kW (20 hp) input power level. Three drive assemblies were tested for a total of about three hours of which approximately one hour was at nominal full speed and full power conditions. Peak efficiency of 60 percent was determined. There was no evidence of slippage between rollers for any of the conditions tested. The ball drive, a version using balls instead of one row of rollers, and having a 3.25:1 reduction ratio, failed to perform satisfactorily.

  12. Modeling results for the ITER cryogenic fore pump

    NASA Astrophysics Data System (ADS)

    Zhang, D. S.; Miller, F. K.; Pfotenhauer, J. M.

    2014-01-01

    The cryogenic fore pump (CFP) is designed for ITER to collect and compress hydrogen isotopes during the regeneration process of torus cryopumps. Different from common cryopumps, the ITER-CFP works in the viscous flow regime. As a result, both adsorption boundary conditions and transport phenomena contribute unique features to the pump performance. In this report, the physical mechanisms of cryopumping are studied, especially the diffusion-adsorption process and these are coupled with standard equations of species, momentum and energy balance, as well as the equation of state. Numerical models are developed, which include highly coupled non-linear conservation equations of species, momentum and energy and equation of state. Thermal and kinetic properties are treated as functions of temperature, pressure, and composition. To solve such a set of equations, a novel numerical technique, identified as the Group-Member numerical technique is proposed. It is presented here a 1D numerical model. The results include comparison with the experimental data of pure hydrogen flow and a prediction for hydrogen flow with trace helium. An advanced 2D model and detailed explanation of the Group-Member technique are to be presented in following papers.

  13. The development of a cryogenic over-pressure pump

    NASA Astrophysics Data System (ADS)

    Alvarez, M.; Cease, H.; Flaugher, B.; Flores, R.; Garcia, J.; Lathrop, A.; Ruiz, F.

    2014-01-01

    A cryogenic over-pressure pump (OPP) was tested in the prototype telescope liquid nitrogen (LN2) cooling system for the Dark Energy Survey (DES) Project. This OPP consists of a process cylinder (PC), gas generator, and solenoid operated valves (SOVs). It is a positive displacement pump that provided intermittent liquid nitrogen (LN2) flow to an array of charge couple devices (CCDs) for the prototype Dark Energy Camera (DECam). In theory, a heater submerged in liquid would generate the drive gas in a closed loop cooling system. The drive gas would be injected into the PC to displace that liquid volume. However, due to limitations of the prototype closed loop nitrogen system (CCD cooling system) for DECam, a quasiclosed-loop nitrogen system was created. During the test of the OPP, the CCD array was cooled to its designed set point temperature of 173K. It was maintained at that temperature via electrical heaters. The performance of the OPP was captured in pressure, temperature, and flow rate in the CCD LN2 cooling system at Fermi National Accelerator Laboratory (FNAL).

  14. Studies of high-{delta} (baffled) and low-{delta} (open) pumped divertor operation on DIII-D

    SciTech Connect

    Allen, S.L.; Fenstermacher, M.E.; Greenfield, C.M.

    1998-08-01

    The authors report new experimental results with the RDP-OB (Radiative Divertor Project-outer baffle) and cryopump in both upper single-null (USN) and double-null (DN) ELMing H-mode discharges. The baffled divertor reduced the core ionization ({approximately}2--2.5{times}), in reasonable agreement with predictions from UEDGE/DEGAS modeling ({approximately}3.75{times}). The upper cryopump achieved density control of n{sub e}/n{sub gw} {approximately} 0.22 (line density/Greenwald density) with Z{sub eff} {approximately} 2 in high-{delta} plasmas. The measured exhaust is comparable to the lower pump, except at lower core electron densities (n{sub e} < 5 {times} 10{sup 19} m{sup {minus}3}). Efficient impurity exhaust was obtained with deuterium SOL flow. Preliminary experiments with DN operation has shown that the particle exhaust to the upper pump depends on the up/down magnetic balance. Preliminary experiments indicate that the DN exhaust is roughly 40--50% of the USN exhaust at n{sub e} {approximately} 4 {times} 10{sup 19} m{sup {minus}3}.

  15. The development of a pump for a liquid cryogen with a high temperature superconductor electrical drive

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; Larionoff, A. E.; Poltavets, V. N.; M-A Koneev, S.; Larionoff, S. A.; Modestov, K. A.; Akimov, I. I.; Verzhbitsky, L. G.; Trifonov, Ye Ye; Logviniouk, V. P.; Dew-Hughes, D.

    2004-05-01

    This work describes the research and development of a cryogenic pump that is intended for the fuel supply of aircraft engines using advanced low temperature fuel. The basic design is that of a 4-pole reluctance motor. The rotor is constructed from soft iron and BSCCO/Ag laminated material; the latter was developed by the All-Russian Scientific Research Institute of Inorganic Materials. The motor was integrated with a centrifugal cryogenic pump for the cryogenic fuel supply system, developed by the TUPOLEV Company. The results of theoretical modelling and experimental investigations are presented.

  16. The Joint European Torus (JET) pumped divertor results and their significance for the International Thermonuclear Experimental Reactor (ITER)

    NASA Astrophysics Data System (ADS)

    Watkins, M. L.; JET Team

    1996-05-01

    The effectiveness of the pumped divertor during the 1994/95 experimental campaign of the Joint European Torus (JET) [P.-H. Rebut, R. J. Bickerton, and B. E. Keen, Nucl. Fusion 25, 1011 (1985)] has allowed the pursuit of a broad-based research program that is highly relevant to the International Thermonuclear Experimental Reactor (ITER) [K. Tomabechi and the ITER Team, Nucl. Fusion 31, 1135 (1991)]. High-performance hot-ion discharges with high confinement (H-modes) free of edge localized modes (ELMs) have set a JET record neutron rate in deuterium, but are limited by various magnetohydrodynamic (MHD) phenomena to βN<1.8, where βN=β/(I/aB), β is the ratio of the plasma pressure to the toroidal field pressure, I is the plasma current, B is the toroidal field, and a is the horizontal minor radius of the plasma. Quasi-steady-state ELMy H-modes have also been studied at high power, high current, and high β. The underlying energy transport exhibits a gyro-Bohm dependence that is lost close to the H-mode threshold and at high β. ELMy H-modes with detached divertor plasmas and radiative power exhaust (the operating regime foreseen for ITER) reduce the power loading to the targets, but at the expense of main plasma confinement and purity. Beryllium has been compared with carbon fiber composite as a divertor target material and melting has been induced at ITER reference off-normal heat loads, but only a moderate degree of self-protection of the beryllium target was found.

  17. Overview of the experimental setup for the visualization of a cryogenic pump

    NASA Astrophysics Data System (ADS)

    Tanaka, Teiichi

    2016-11-01

    An experimental setup for the visualization of a cryogenic pump, which is to investigate the relationship between the flowfield in a pump and the thermodynamic effect of a cavitation, was constructed. The experimental setup with the cryogenic pump is a closed loop and is consisted of a tank, a suction pipe, a visualization section, a test pump and a flow mater. There are two visualization sections in this system. One is the visualization section for the pump impeller cavitation using liquid nitrogen and this section is established on the pump casing. Another is the visualization section for the blade cavitation using liquid nitrogen and this section is inserted in the pump suction side. These sections are set up individually for the object of the visualization. From pilot study using this visualization system with the cryogenic pump, it was shown that the subcooled liquid nitrogen could be generated by this system and this liquid nitrogen could be circulated in this pump system with the visualization section. And it was indicated that various visualization experiments of the cavitating pump and blade using the subcooled liquid nitrogen can be conducted by using the developed setup.

  18. Experimental and CFD analyses of a thermal radiation shield dimple plate for cryogenic pump application

    NASA Astrophysics Data System (ADS)

    Scannapiego, M.; Day, C.

    2015-12-01

    Large customized cryogenic pumps are used in fusion reactors to evacuate the plasma exhaust from the torus. Cryopumps usually consist of an active pumping surface area cooled below 5 K and shielded from direct outer thermal radiation by plates cooled at 80K. In nuclear fusion applications, cryopumps are exposed to excessively high heat fluxes during pumping operation, and follow-up regeneration cycles with rapid warm-up and cool-down phases. Therefore, high cryogenic operational mass flows are required and thus pressure drop and heat transfer characteristics become key issues for the design of the pump cryogenic circuits. Actively cooled dimple plates are a preferred design solution for the thermal radiation shield. A test plate with a rhomb pattern of dimples has been manufactured and tested in terms of pressure drop with a dedicated test facility using water. In the present work, computational fluid dynamics (CFD) models of the test dimple plate have been performed, and computed pressure drops have been compared to experimental results. Despite the complexity of the geometry, a good agreement with the experimental results was found. Then, the validated CFD approach has been further extended to relevant operation conditions, using gaseous helium at cryogenic temperature as working fluid. The resulting pressure drop and heat transfer characteristics are finally presented.

  19. Preliminary Study of a Piston Pump for Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold E.; Kohl, Robert C.

    1959-01-01

    Preliminary data are presented covering the performance of a low-speed, five-cylinder piston pump designed for handling boiling hydrogen. This pump was designed for a flow of 55 gallons per minute at 240 rpm with a discharge pressure of 135 pounds per square inch. Tests were made using JP-4 fuel, liquid nitrogen, and liquid hydrogen. Pump delivery and endurance characteristics were satisfactory for the range of operation covered. In connection with the foregoing pump development, the cavitation characteristics of a preliminary visual model, glass-cylinder pump and of a simple reciprocating disk were studied. Subcooling of approximately 0.60 F was obtained from the cavitation produced by reciprocating a disk in boiling nitrogen and in boiling water. The subcooling obtained in a similar manner with liquid hydrogen was somewhat less.

  20. A generic pump/compressor design for circulation of cryogenic fluids

    NASA Astrophysics Data System (ADS)

    Jasinski, T.; Stacy, W. Dodd; Honkonen, S. C.; Sixsmith, H.

    This paper describes the development of a second-generation centrifugal circulator for cryogenic fluids. The circulator is designed to operate over a wide range of flow rate and pressure rise and can be used for the pumping of liquid and compression of vapor at temperatures down to liquid helium (4 K). The machine incorporates self-acting gas journal bearings, a permanent magnet axial thrust bearing, and a variable speed induction motor drive to provide for reliable, maintenance-free operation. Design details of the pump are described. Calculated performance characteristics for a liquid helium pumping application are presented along with a general discussion regarding limitations of the present system.

  1. Diode laser pumping sources for cryogenically cooled solid-state lasers

    NASA Astrophysics Data System (ADS)

    Maiorov, M. A.; Trofimov, I. E.

    2008-04-01

    One of the recent advances in solid-state laser (SSL) defense technology is the 100W level Er-doped "eye-safe" laser with low quantum defect pumping at 1.53μm. Major technical challenges in achieving high-wattage devices include increasing the system power conversion efficiency and arranging the removal of heat from both the crystal and the pumps. It is known that performance of the crystal can be improved dramatically by cryogenic cooling. Hence, it is desirable to have cryo-cooled pumps to realize ergonomic and efficient diode-pumped SSL with unified cryogenic cooling. In this paper we report on the development of LN2-cooled InP-based λ~1.5-1.6 μm diode pumps. The broad area lasers demonstrated 11W in continuous-wave (CW) regime at an operating current of 20A. Despite the highest CW power measured to date from an InP-based emitter, we did not observe catastrophic optical mirror damage. The spectral width of the radiation from a cooled device decreased 1.5-2 from its room-temperature value, which will significantly improve pumping efficiency. We show that laser diode design has to be optimized for performance at cryogenic temperatures. Reviewing the data on LN2 cooled lasers emitting in the wavelength range of 1.13 - 1.8 μm, we discuss the route to increase the power conversion of the LN2 cooled InP-based pumps to greater than 60% and further narrow and stabilize the laser emission spectrum.

  2. Design and Testing of a Cryogenic Capillary Pumped Loop Flight Experiment

    NASA Technical Reports Server (NTRS)

    Bugby, David C.; Kroliczek, Edward J.; Ku, Jentung; Swanson, Ted; Tomlinson, B. J.; Davis, Thomas M.; Baumann, Jane; Cullimore, Brent

    1998-01-01

    This paper details the flight configuration and pre-flight performance test results of the fifth generation cryogenic capillary pumped loop (CCPL-5). This device will fly on STS-95 in October 1998 as part of the CRYOTSU Flight Experiment. This flight represents the first in-space demonstration of a CCPL, a miniaturized two-phase fluid circulator for thermally linking cryogenic cooling sources to remote cryogenic components. CCPL-5 utilizes N2 as the working fluid and has a practical operating range of 75-110 K. Test results indicate that CCPL-5, which weighs about 200 grams, can transport over 10 W of cooling a distance of 0.25 m (or more) with less than a 5 K temperature drop.

  3. Investigation of the Unique Cryogenic Pumping System of the CHAFF-IV spacecraft-Thruster Interaction Facility

    NASA Astrophysics Data System (ADS)

    Ketsdever, Andrew D.; Young, Marcus P.; Jamison, Andrew; Eccles, Brian; Muntz, E. P.

    2000-07-01

    Chamber -IV of the Collaborative High Altitude Flow Facility was designed to obtain high fidelity spacecraft- thruster interaction data. CHAFF-IV uses a total chamber pumping concept by lining the entire chamber with an array of cryogenically cooled, radial fins. Details of Monte Carlo numerical simulation and experimental investigation of the radial fin target array pumping efficiency are presented.

  4. TIMO-2-A cryogenic test bed for the ITER cryosorption pumps

    NASA Astrophysics Data System (ADS)

    Haas, Horst; Day, Christian; Herzog, Friedhelm

    2012-06-01

    The Karlsruhe Institute of Technology (KIT) has been carrying out research and development in the field of vacuum cryopumps for nuclear fusion devices over the last decade. Together with the development activities also experience in the operation of the needed cryogenic systems necessary for such type of large scale cryopumps was collected. Due to the specific requirements of a large fusion device, such as ITER, the cryogenic distribution is based on gaseous helium at the needed temperature levels rather than liquid nitrogen or liquid helium. KIT has set up a large scale research facility, called TIMO-2, fully equipped with supercritical helium supply at large flow rates to be able to perform cryogenic tests of components under ITER-relevant conditions. During first test campaigns at TIMO-2 with a large scale model cryopump the ITER cryosorption vacuum pumping concept was successfully validated. After major refurbishments and upgrades, the TIMO-2 facility is now ready for the acceptance tests of the ITER torus cryopump. This paper describes the modified test facility TIMO-2 with particular attention to the available cryogenic supply at different temperature levels. The new 100 K helium supply facility will be described in detail.

  5. Divertor detachment

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, Sergei

    2015-11-01

    The heat exhaust is one of the main conceptual issues of magnetic fusion reactor. In a standard operational regime the large heat flux onto divertor target reaches unacceptable level in any foreseeable reactor design. However, about two decades ago so-called ``detached divertor'' regimes were found. They are characterized by reduced power and plasma flux on divertor targets and look as a promising solution for heat exhaust in future reactors. In particular, it is envisioned that ITER will operate in a partly detached divertor regime. However, even though divertor detachment was studied extensively for two decades, still there are some issues requiring a new look. Among them is the compatibility of detached divertor regime with a good core confinement. For example, ELMy H-mode exhibits a very good core confinement, but large ELMs can ``burn through'' detached divertor and release large amounts of energy on the targets. In addition, detached divertor regimes can be subject to thermal instabilities resulting in the MARFE formation, which, potentially, can cause disruption of the discharge. Finally, often inner and outer divertors detach at different plasma conditions, which can lead to core confinement degradation. Here we discuss basic physics of divertor detachment including different mechanisms of power and momentum loss (ionization, impurity and hydrogen radiation loss, ion-neutral collisions, recombination, and their synergistic effects) and evaluate the roles of different plasma processes in the reduction of the plasma flux; detachment stability; and an impact of ELMs on detachment. We also evaluate an impact of different magnetic and divertor geometries on detachment onset, stability, in- out- asymmetry, and tolerance to the ELMs. Supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-DE-FG02-04ER54739 at UCSD.

  6. Design and Testing of a Cryogenic Capillary Pumped Loop Flight Experiment

    NASA Technical Reports Server (NTRS)

    Bugby, David C.; Kroliczek, Edward J.; Ku, Jentung; Swanson, Ted; Tomlinson, B. J.; Davis, Thomas M.; Baumann, Jane; Cullimore, Brent

    1998-01-01

    This paper details the flight configuration and pre-flight performance test results of the fifth generation cryogenic capillary pumped loop (CCPL-5). This device will fly on STS-95 in October 1998 as part of the CRYOTSU Flight Experiment. This flight represents the first in-space demonstration of a CCPL; a miniaturized two-phase fluid circulator for thermally linking cryogenic components. CCPL-5 utilizes N2 as the working fluid and has a practical operating range of 75-110 K. Test results indicate that CCPL-5, which weighs about 200 grams, can transport over 10 W of cooling a distance of 0.25 m (or more) with less than a 5 K temperature drop.

  7. High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier.

    PubMed

    Banerjee, Saumyabrata; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; Siebold, Mathias; Loeser, Markus; Hernandez-Gomez, Cristina; Collier, John L

    2012-06-15

    We report on the first demonstration of a diode-pumped, gas cooled, cryogenic multislab Yb:YAG amplifier. The performance was characterized over a temperature range from 88 to 175 K. A maximum small-signal single-pass longitudinal gain of 11.0 was measured at 88 K. When amplifying nanosecond pulses, recorded output energies were 10.1 J at 1 Hz in a four-pass extraction geometry and 6.4 J at 10 Hz in a three-pass setup, corresponding to optical to optical conversion efficiencies of 21% and 16%, respectively. To our knowledge, this represents the highest pulse energy so far obtained from a cryo-cooled Yb-laser and the highest efficiency from a multijoule diode pumped solid-state laser system.

  8. FINAL REPORT FOR THE DIII-D RADIATIVE DIVERTOR PROJECT

    SciTech Connect

    O'NEIL, RC; STAMBAUGH, RD

    2002-06-01

    OAK A271 FINAL REPORT FOR THE DIII-D RADIATIVE DIVERTOR PROJECT. The Radiative Divertor Project originated in 1993 when the DIII-D Five Year Plan for the period 1994--1998 was prepared. The Project Information Sheet described the objective of the project as ''to demonstrate dispersal of divertor power by a factor of then with sufficient diagnostics and modeling to extend the results to ITER and TPX''. Key divertor components identified were: (1) Carbon-carbon and graphite armor tiles; (2) The divertor structure providing a gas baffle and cooling; and (3) The divertor cryopumps to pump fuel and impurities.

  9. Plasma Fueling, Pumping, and Tritium Handling Considerations for FIRE

    SciTech Connect

    Fisher, P.W.; Foster, C.A.; Gentile, C.A.; Gouge, M.J.; Nelson, B.E.

    1999-11-13

    Tritium pellet injection will be utilized on the Fusion Ignition Research Experiment (FIRE) for efficient tritium fueling and to optimize the density profile for high fusion power. Conventional pneumatic pellet injectors, coupled with a guidetube system to launch pellets into the plasma from the high, field side, low field side, and vertically, will be provided for fueling along with gas puffing for plasma edge density control. About 0.1 g of tritium must be injected during each 10-s pulse. The tritium and deuterium will be exhausted into the divertor. The double null divertor will have 16 cryogenic pumps located near the divertor chamber to provide the required high pumping speed of 200 torr-L/s.

  10. Snowflake divertor configuration studies for NSTX-Upgrade

    SciTech Connect

    Soukhanovskii, V A

    2011-11-12

    Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.

  11. Effect of boundary conditions on the neutral gas temperatures and densities in the ITER divertor and pump duct

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Juliano, D. R.

    1992-12-01

    The DEGAS neutral atom transport code was used to simulate helium pumping and D/T throughput in ITER. The sensitivity of the simulation to two different reflection models, four transmission probabilities from the exit of the simulation to the pump (0.0625, 0.125, 0.1875 and 0.250), and a 2-D model versus a 3-D model were analyzed. The variation in reflection model changes the densities in the duct and the recycling of D/T by a factor of 1.6. The variation in the transmission probabilities affects these same quantities by a factor of 2.5. The dimensionality of the simulation affects the density profile in the duct. A transmission probability from the exit of the DEGAS simulation to the pump of 0.110 to 0.125 was calculated from the ITER reference drawings. Using this quantity and the DEGAS results, an exhaust rate of 112 to 127 moles/h is predicted, implying that the reference pumping systems may be larger than necessary by a factor of 2.

  12. Tokamak Physics Experiment divertor design

    SciTech Connect

    Anderson, P.M.

    1995-12-31

    The Tokamak Physics Experiment (TPX) tokamak requires a symmetric up/down double-null divertor capable of operation with steady-state heat flux as high as 7.5 MW/m{sup 2}. The divertor is designed to operate in the radiative mode and employs a deep slot configuration with gas puffing lines to enhance radiative divertor operation. Pumping is provided by cryopumps that pump through eight vertical ports in the floor and ceiling of the vessel. The plasma facing surface is made of carbon-carbon composite blocks (macroblocks) bonded to multiple parallel copper tubes oriented vertically. Water flowing at 6 m/s is used, with the critical heat flux (CHF) margin improved by the use of enhanced heat transfer surfaces. In order to extend the operating period where hands on maintenance is allowed and to also reduce dismantling and disposal costs, the TPX design emphasizes the use of low activation materials. The primary materials used in the divertor are titanium, copper, and carbon-carbon composite. The low activation material selection and the planned physics operation will allow personnel access into the vacuum vessel for the first 2 years of operation. The remote handling system requires that all plasma facing components (PFCs) are configured as modular components of restricted dimensions with special provisions for lifting, alignment, mounting, attachment, and connection of cooling lines, and instrumentation and diagnostics services.

  13. Neutral recirculation—the key to control of divertor operation

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. S.; Pacher, H. D.

    2016-12-01

    Interaction of the plasma with neutral gas in the divertor affects virtually all aspects of divertor functionality (power loading of the targets, pumping and fuelling, sustaining the operational conditions of the core plasma). In the course of ITER design development, this interaction has been the subject of intense modelling analysis, supported by experiments on various tokamaks. Neutral gas puffing is found to be the most effective means of divertor control. The results of those studies are summarized and assessed in the paper.

  14. Engineering design of a radiative divertor for DIII-D

    NASA Astrophysics Data System (ADS)

    Smith, J. P.; Anderson, P. M.; Baxi, C. B.; Chin, E.; Hollerbach, M. A.; Hyatt, A. W.; Junge, R.; Mahdavi, M. A.; Redler, K.; Reis, E. E.

    1994-10-01

    A new divertor called the Radiative Divertor is presently being designed for the DIII-D tokamak. Input from tokamak experiments and modeling form the basis for the new design. The Radiative Divertor is intended to reduce the heat flux on the divertor plates by dispersing the power with radiation. Gas puffing experiments in the current open divertor have shown a reduction of the divertor heat flux with either deuterium or impurity puffing. However, either the plasma density (D(sub 2)) or the core Z(sub eff) (impurities) increases in these experiments. The radiative divertor uses a slot structure to isolate the divertor plasma region from the area surrounding the core plasma. Modeling has shown that the Radiative Divertor hardware will provide better baffling and particle control and thereby minimize the effect of the gas puffing in the divertor region on the plasma core. In addition, the Radiative Divertor structure will allow density control in plasma shapes with high triangularity (greater than 0.8) required for advanced tokamak operation. The divertor structure allows for operation in either double or single-null plasma configurations. Four independently controlled divertor cryopumps will enable pumping at either the inboard (upper and lower) or the outboard (upper and lower) divertor plates. Biasing is an integral part of the design and is based on experience at the Tokamak de Varennes (TdeV) and DIII-D. Boron nitride tiles electrically insulate the inner and outer strike points and a low current electrode is used to apply a radial electric field to the scrape-off layer. TdeV has shown that biasing can provide particle and impurity control. The design is extremely flexible, and will allow physics studies of the effect of slot width and height. This is extremely important as the amount of chamber volume needed for the divertor in future machines such as International Thermonuclear Experiment Reactor (ITER) and Tokamak Physics Experiment (TPX) must be determined.

  15. Solid tungsten Divertor-III for ASDEX Upgrade and contributions to ITER

    NASA Astrophysics Data System (ADS)

    Herrmann, A.; Greuner, H.; Jaksic, N.; Balden, M.; Kallenbach, A.; Krieger, K.; de Marné, P.; Rohde, V.; Scarabosio, A.; Schall, G.; the ASDEX Upgrade Team

    2015-06-01

    ASDEX Upgrade became a full tungsten experiment in 2007 by coating its graphite plasma facing components with tungsten. In 2013 a redesigned solid tungsten divertor, Div-III, was installed and came into operation in 2014. The redesign of the outer divertor geometry provided the opportunity to increase the pumping efficiency in the lower divertor by increasing the gap between divertor and vessel. In parallel, a by-pass was installed into the cryo-pump in the divertor region allowing adapting of the pumping speed to the required edge density. Safe divertor operation and heat removal becomes more and more significant for future fusion devices. This requires developing ‘tools’ for divertor heat load control and to optimize the divertor design. The new divertor manipulator, DIM-II, allows retracting a relevant part of the outer divertor into a target exchange box without venting ASDEX Upgrade. Different front-ends can be installed and exposed to the plasma. At present, front-ends for probe exposition, gas puffing, electrical probes and actively cooled prototype targets are under construction. The installation of solid tungsten, the control of the pumping speed and the flexibility for testing divertor modifications on a weekly base is a unique feature of ASDEX Upgrade and offers together with the extended set of diagnostics the possibility to investigate dedicated questions for a future divertor design.

  16. TPX divertor modeling studies

    SciTech Connect

    Rensink, M.E.; Braams, B.J.; Brooks, J.N.

    1995-06-20

    The Tokamak Physics Experiment (TPX) is designed to demonstrate features of an economically attractive steady state tokamak reactor. In this paper we present recent results from numerical studies of the proposed TPX divertor design (1), focusing on particle control and on radiative divertor scenarios for reducing the peak divertor heat flux. The configuration is an up/down symmetric double-null with a deep re-entrant slot geometry for the outer divertor legs.

  17. Divertor research on the DIII-D tokamak

    SciTech Connect

    Hill, D.N.; Allen, S.L.; Brooks, N.H.

    1994-10-01

    In this paper the authors summarize recent progress on DIII-D in developing techniques for divertor power and particle control relevant to next generation tokamaks such as the proposed ITER and TPX devices. Density control and helium removal by divertor pumping have been demonstrated for the first time in high confinement ELMing H-mode discharges ({tau} {approximately} 2 {times} {tau}{sub ITER-89P}) following installation of a divertor cryopumping system. The peak divertor heat flux in similar H-mode discharges has been reduced through production of a radiating mantle with neon or argon puffing (reductions of 3--5). A number of diagnostics have been added to improve the understanding of the physical processes involved. They are now designing modified double-null divertor structures for DIII-D that will provide improved particle control for high-triangularity VH-mode plasmas while at the same time allowing for gas puffing to reduce the divertor heat flux.

  18. Modeling detachment physics in the NSTX snowflake divertor

    NASA Astrophysics Data System (ADS)

    Meier, E. T.; Soukhanovskii, V. A.; Bell, R. E.; Diallo, A.; Kaita, R.; LeBlanc, B. P.; McLean, A. G.; Podestà, M.; Rognlien, T. D.; Scotti, F.

    2015-08-01

    The snowflake divertor is a proposed technique for coping with the tokamak power exhaust problem in next-step experiments and eventually reactors, where extreme power fluxes to material surfaces represent a leading technological and physics challenge. In lithium-conditioned National Spherical Torus Experiment (NSTX) discharges, application of the snowflake divertor typically induced partial outer divertor detachment and severalfold heat flux reduction. UEDGE is used to analyze and compare conventional and snowflake divertor configurations in NSTX. Matching experimental upstream profiles and divertor measurements in the snowflake requires target recycling of 0.97 vs. 0.91 in the conventional case, implying partial saturation of the lithium-based pumping mechanism. Density scans are performed to analyze the mechanisms that facilitate detachment in the snowflake, revealing that increased divertor volume provides most of the parallel heat flux reduction. Also, neutral gas power loss is magnified by the increased wetted area in the snowflake, and plays a key role in generating volumetric recombination.

  19. Optimization and testing of the Beck Engineering free-piston cryogenic pump for LNG systems on heavy vehicles. Final technical report

    SciTech Connect

    Beck, Douglas S.

    2003-01-10

    Task 7 was completed by reaching Milestone 7: Test free piston cryogenic pump (FPCP) in Integrated LNG System. Task 4: Alternative Pump Design was also completed. The type of performance of the prototype LNG system is consistent with requirements of fuel systems for heavy vehicles; however, the maximum flow capacity of the prototype LNG system is significantly less than the total flow requirement. The flow capacity of the prototype LNG system is determined by a cavitation limit for the FPCP.

  20. Temperature dependence of a diode-pumped cryogenic Er:YAG laser.

    PubMed

    Ter-Gabrielyan, Nikolay; Dubinskii, Mark; Newburgh, G Alex; Michael, Arockiasamy; Merkle, Larry D

    2009-04-27

    We report the laser performance of resonantly diode-pumped Er:YAG from liquid nitrogen temperature to above room temperature. Relative to incident pump power, the best performance was observed at approximately 160 K. Spectroscopy and modeling show that this is due primarily to the changing efficiency of diode pump absorption as the absorption lines broaden with temperature. However, the physics of the Er:YAG system indicates that even with arbitrarily narrow pump linewidth the most efficient laser performance should occur at a temperature somewhat above 77 K. The causes of the temperature dependence are at least qualitatively understood.

  1. Divertors for Helical Devices: Concepts, Plans, Results, and Problems

    SciTech Connect

    Koenig, R.; Grigull, P.; McCormick, K.

    2004-07-15

    With Large Helical Device (LHD) and Wendelstein 7-X (W7-X), the development of helical devices is now taking a large step forward on the path to a steady-state fusion reactor. Important issues that need to be settled in these machines are particle flux and heat control and the impact of divertors on plasma performance in future continuously burning fusion plasmas. The divertor concepts that will initially be explored in these large machines were prepared in smaller-scale devices like Heliotron E, Compact Helical System (CHS), and Wendelstein 7-AS (W7-AS). While advanced divertor scenarios relevant for W7-X were already studied in W7-AS, other smaller-scale experiments like Heliotron-J, CHS, and National Compact Stellarator Experiment will be used for the further development of divertor concepts. The two divertor configurations that are being investigated are the helical and the island divertor, as well as the local island divertor, which was successfully demonstrated on CHS and just went into operation on LHD. At present, on its route to a fully closed helical divertor, LHD operates in an open helical divertor configuration. W7-X will be equipped right from the start with an actively cooled discrete island divertor that will allow quasi-continuous operation. The divertor design is very similar to the one explored on W7-AS. For sufficiently large island sizes and not too long field line connection lengths, this divertor gives access to a partially detached quasi-steady-state operating scenario in a newly found high-density H-mode operating regime, which benefits from high energy and low impurity confinement times, with edge radiation levels of up to 90% and sufficient neutral compression in the subdivertor region (>10) for active pumping. The basic physics of the different divertor concepts and associated implementation problems, like asymmetries due to drifts, accessibility of essential operating scenarios, toroidal asymmetries due to symmetry breaking error fields

  2. The Resonantly Diode Pumped, Cryogenic Ho3+:YVO4 2.05-Micrometers Laser

    DTIC Science & Technology

    2011-10-01

    code) (301) 394-2007 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 iii Contents List of Figures iv 1. The Diode-pumped Holmium ...The Diode-pumped Holmium -doped Solid-state Laser Holmium (Ho) as a rare earth laser ion continues to gain the interest of the laser community as it...emits at eye-safe wavelengths around 2 µm and is useful for atmospheric sensing and medical applications. Diode-pumped holmium co-doped thulium (Tm

  3. Cavitation in liquid cryogens. 4: Combined correlations for venturi, hydrofoil, ogives, and pumps

    NASA Technical Reports Server (NTRS)

    Hord, J.

    1974-01-01

    The results of a series of experimental and analytical cavitation studies are presented. Cross-correlation is performed of the developed cavity data for a venturi, a hydrofoil and three scaled ogives. The new correlating parameter, MTWO, improves data correlation for these stationary bodies and for pumping equipment. Existing techniques for predicting the cavitating performance of pumping machinery were extended to include variations in flow coefficient, cavitation parameter, and equipment geometry. The new predictive formulations hold promise as a design tool and universal method for correlating pumping machinery performance. Application of these predictive formulas requires prescribed cavitation test data or an independent method of estimating the cavitation parameter for each pump. The latter would permit prediction of performance without testing; potential methods for evaluating the cavitation parameter prior to testing are suggested.

  4. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  5. Small, high-speed bearing technology for cryogenic turbo-pumps

    NASA Technical Reports Server (NTRS)

    Winn, L. W.; Eusepi, M. W.; Smalley, A. J.

    1974-01-01

    The design of 20-mm bore ball bearings is described for cryogenic turbo-machinery applications, operating up to speeds of 120,000 rpm. A special section is included on the design of hybrid bearings. Each hybrid bearing is composed of a ball bearing in series with a conventional pressurized fluid-film journal bearing. Full details are presented on the design of a test vehicle which possesses the capability of testing the above named bearings within the given speed range under externally applied radial and axial loads.

  6. Experimental investigation of the natural divertor configuration in Heliotron-E

    SciTech Connect

    Hillis, D.L.; Mioduszewski, P.K.; Fowler, R.H.; Rome, J.A.; Motojima, O.; Mizuuchi, T.; Noda, N.; Mutoh, T.; Zushi, H.; Takahashi, R.; Obiki, T.; Iiyoshi, A.; Uo, K.

    1988-01-01

    Particle control with pump limiters and divertors has been successfully demonstrated in a number of present-day tokamaks. In a heliotron/stellarator configuration, plasma flows to the wall in distinct flux bundles, often called ''divertor stripes''. This complicated three-dimensional characteristic of the plasma edge presents a new challenge for active particle control systems such as pump limiters and divertors. The experiment described here has obtained data with an instrumented pump particle collector that is located in the ''natural'' magnetic divertor stripe of Heliotron-E. The particle collector consists of a moveable graphite assembly with single-sided particle collection and active pumping. By scanning the particle collector assembly through the plasma edge of Heliotron-E, the divertor stripe is observed to be about 2-3 cm (FWHM) in width, and pressure rises of 0.01-0.01 mTorr are observed in the particle collector pumping chamber. These measurements have demonstrated that particles leaving the bulk plasma via the divertor stripes can be collected and provide a basis for developing a divertor scheme for particle control in helical systems. Modelling of the Heliotron-E magnetic configuration at the plasma edge is used to determine the collection efficiency of the particle collector in the divertor stripes. The modeling is further extended to describe a helical divertor concept. 18 refs., 6 figs.

  7. Design Integration of Liquid Surface Divertors

    SciTech Connect

    Nygren, R E; Cowgill, D F; Ulrickson, M A; Nelson, B E; Fogarty, P J; Rognlien, T D; Rensink, M E; Hassanein, A; Smolentsev, S S; Kotschenreuther, M

    2003-11-13

    The US Enabling Technology Program in fusion is investigating the use of free flowing liquid surfaces facing the plasma. We have been studying the issues in integrating a liquid surface divertor into a configuration based upon an advanced tokamak, specifically the ARIES-RS configuration. The simplest form of such a divertor is to extend the flow of the liquid first wall into the divertor and thereby avoid introducing additional fluid streams. In this case, one can modify the flow above the divertor to enhance thermal mixing. For divertors with flowing liquid metals (or other electrically conductive fluids) MHD (magneto-hydrodynamics) effects are a major concern and can produce forces that redirect flow and suppress turbulence. An evaluation of Flibe (a molten salt) as a working fluid was done to assess a case in which the MHD forces could be largely neglected. Initial studies indicate that, for a tokamak with high power density, an integrated Flibe first wall and divertor does not seem workable. We have continued work with molten salts and replaced Flibe with Flinabe, a mixture of lithium and sodium fluorides, that has some potential because of its lower melting temperature. Sn and Sn-Li have also been considered, and the initial evaluations on heat removal with minimal plasma contamination show promise, although the complicated 3-D MHD flows cannot yet be fully modeled. Particle pumping in these design concepts is accomplished by conventional means (ports and pumps). However, trapping of hydrogen in these flowing liquids seems plausible and novel concepts for entrapping helium are also being studied.

  8. Divertor design for the tokamak physics experiment

    NASA Astrophysics Data System (ADS)

    Hill, D. N.; Braams, B.; Brooks, J. N.; Ruzic, D. N.; Ulrickson, M.; Werley, K. A.; Campbell, R.; Goldston, R.; Kaiser, T.; Neilson, G. H.; Mioduszewski, P.; Rensink, M. E.; Rognlien, T. D.

    1995-04-01

    In this paper we discuss the divertor design for the planned TPX tokamak, which will explore the physics and technology of steady state (1000 s pulses) heat and particle removal in high confinement (up to 4 × L-mode), high beta (up to βN = 5) divertor plasmas sustained by non-inductive current drive. TPX will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.57 m) slot at the outer strike point. The peak heat flux on the highly tilted (74° from normal) re-entrant divertor plate (tilted to recycle ions back toward the separatrix) will be in the range of 4-6 MW/m 2 with 17.5 MW of auxiliary heating power. The combination of pumping and gas puffing (D 2 plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities.

  9. A review of radiative detachment studies in tokamak advanced magnetic divertor configurations

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.

    2017-06-01

    The present vision for a plasma-material interface in the tokamak is an axisymmetric poloidal magnetic X-point divertor. Four tasks are accomplished by the standard poloidal X-point divertor: plasma power exhaust; particle control (D/T and He pumping); reduction of impurity production (source); and impurity screening by the divertor scrape-off layer. A low-temperature, low heat flux divertor operating regime called radiative detachment is viewed as the main option that addresses these tasks for present and future tokamaks. Advanced magnetic divertor configuration has the capability to modify divertor parallel and cross-field transport, radiative and dissipative losses, and detachment front stability. Advanced magnetic divertor configurations are divided into four categories based on their salient qualitative features: (1) multiple standard X-point divertors; (2) divertors with higher order nulls; (3) divertors with multiple X-points; and (4) long poloidal leg divertors (and also with multiple X-points). This paper reviews experiments and modeling in the area of radiative detachment in the advanced magnetic divertor configurations.

  10. Two-chamber model for divertors with plasma recycling

    SciTech Connect

    Langer, W.D.; Singer, C.E.

    1984-11-01

    To model particle and heat loss terms at the edge of a tokamak with a divertor or pumped limiter, a simple two-chamber formulation of the scrapeoff has been constructed by integrating the fluid equations, including sources, along open field lines. The model is then solved for a wide range of density and temperature conditions in the scrapeoff, using geometrical parameters typical of the PDX poloidal divertor. The solutions characterize four divertor operating conditions for beam-heated plasmas: plugged, unplugged, blowthrough, and blowback.

  11. Pulsation dampening device for super critical fluid expansion engine, hydraulic engine or pump in cryogenic service

    SciTech Connect

    Ness, L.A.

    1989-11-07

    This patent describes a surge bottle or pressure pulsation dampening device for cryogenic services. It comprises: a liquid sump section, wherein the liquid sump section is comprised of an enclosed area containing a volume of an incompressible fluid; a warm gas volume section, wherein the warm gas volume section is comprised of an enclosed area containing a volume of a compressible warm gas; and a laminar flow section which connects and allows for communication between the liquid sump section and the warm gas volume section. The laminar flow section is comprised of a number of small bore, thin walled tubes which contain the incompressible fluid in the end connected to the liquid sump section and the compressible warm gas in the end connected to the warm gas volume section wherein the bore of the tubes are such that any movement of the either the compressible warm gas or the incompressible fluid would be laminar flow. During operation, the incompressible fluid and the warm compressible gas within the small bore, thin walled tubes move or oscillate a short distance in each of the tubes with minimal intermixing of the incompressible fluid and the warm compressible gas thereby minimizing heat leak from the warm gas volume section to the liquid sump section into the liquid in the sump.

  12. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 - 75 km altitude

    NASA Astrophysics Data System (ADS)

    Dickson, S.; Gausa, M. A.; Robertson, S. H.; Sternovsky, Z.

    2012-12-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 75 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on the two sounding rockets of the CHAMPS (CHarge And mass of Meteoritic smoke ParticleS) rocket campaign which were launched into the mesosphere in October 2011 from Andøya Rocket Range, Norway. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void beneath an aft-facing surface. An enclosure containing the CEM was placed above an aft-facing deck and a valve was opened on the downleg to expose the CEM to the aerodynamically evacuated region below. The CEM operated successfully from apogee down to ~75 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  13. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 to 80 km altitude

    NASA Astrophysics Data System (ADS)

    Dickson, Shannon; Gausa, Michael; Robertson, Scott; Sternovsky, Zoltan

    2013-04-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 80 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on two sounding rockets to the mesosphere. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void behind (relative to the direction of motion) an aft-facing surface. An enclosure containing the CEM was placed forward of an aft-facing deck and a valve was opened during flight to expose the CEM to the aerodynamically evacuated region behind it. The CEM operated successfully from apogee down to ∼80 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  14. Cryogenic Ho:CaF2 laser pumped by Tm:fiber laser

    NASA Astrophysics Data System (ADS)

    Jelínek, Michal; Kubeček, Václav; Ma, Weiwei; Zhao, Beibei; Jiang, Dapeng; Su, Liangbi

    2016-06-01

    The laser operation in the pulsed as well as continuous-wave regime of a modified-Bridgeman-grown 0.5 at.% Ho:CaF2 crystal at 83 K pumped by a Tm:fiber laser is reported. The maximum output power was 2.37 W at 2060 nm or 1.3 W at 2110 and 2130 nm. Continuous tuning range over 90 nm from 2030 to 2120 nm was achieved using a birefringent filter. The Ho:CaF2 fundamental spectroscopic properties as absorption and fluorescence spectra at 83 and 293 K are also presented.

  15. The lithium vapor box divertor

    SciTech Connect

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-01-13

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  16. The lithium vapor box divertor

    DOE PAGES

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-01-13

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al asmore » well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.« less

  17. Spectroscopy of divertor plasmas

    SciTech Connect

    Isler, R.C.

    1995-12-31

    The requirements for divertor spectroscopy are treated with respect to instrumentation and observations on present machines. Emphasis is placed on quantitative measurements.of impurity concentrations from the interpretation of spectral line intensities. The possible influence of non-Maxwellian electron distributions on spectral line excitation in the divertor is discussed. Finally the use of spectroscopy for determining plasma temperature, density, and flows is examined.

  18. A review of radiative detachment studies in tokamak advanced magnetic divertor configurations

    DOE PAGES

    Soukhanovskii, V. A.

    2017-04-28

    The present vision for a plasma–material interface in the tokamak is an axisymmetric poloidal magnetic X-point divertor. Four tasks are accomplished by the standard poloidal X-point divertor: plasma power exhaust; particle control (D/T and He pumping); reduction of impurity production (source); and impurity screening by the divertor scrape-off layer. A low-temperature, low heat flux divertor operating regime called radiative detachment is viewed as the main option that addresses these tasks for present and future tokamaks. Advanced magnetic divertor configuration has the capability to modify divertor parallel and cross-field transport, radiative and dissipative losses, and detachment front stability. Advanced magnetic divertormore » configurations are divided into four categories based on their salient qualitative features: (1) multiple standard X-point divertors; (2) divertors with higher order nulls; (3) divertors with multiple X-points; and (4) long poloidal leg divertors (and also with multiple X-points). As a result, this paper reviews experiments and modeling in the area of radiative detachment in the advanced magnetic divertor configurations.« less

  19. Divertor design for the Tokamak Physics Experiment

    SciTech Connect

    Hill, D.N.; Braams, B.; Brooks, J.N.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4{times} L-mode), high beta ({beta}{sub N} {ge} 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74{degrees} from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m{sup 2} with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities.

  20. Divertor design for the Tokamak Physics Experiment

    NASA Astrophysics Data System (ADS)

    Hill, D. N.; Braams, B.; Brooks, J. N.; Ruzic, D. N.; Ulrickson, M.; Werley, K. A.; Campbell, R.; Goldston, R.; Kaiser, T.; Nellson, G. H.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2-4 x L-mode), high beta (beta(sub N) greater than or equal to 3) divertor plasmas sustained by non-induct ive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74 deg) from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4-6 MW/sq m with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities.

  1. The Effect of Magnetic Balance and Particle Drifts on Radiating Divertor Behavior in DIII-D

    SciTech Connect

    Petrie, T; Porter, G; Brooks, N; Fenstermacher, M; Ferron, J; Groth, M; Hyatt, A; La Haye, R; Lasnier, C; Leonard, A; Politzer, P; Rensink, M; Schaffer, M; Wade, M; Watkins, J; West, W

    2008-10-14

    Success of the puff-and-pump radiating divertor approach depends sensitively on both the divertor magnetic geometry and the ion B x {del}B drift direction. In the puff-and-pump scenario used in this study, argon impurities were injected into the private flux region, while plasma flows into both the inner and outer divertors were enhanced by a combination of particle pumping near both divertor targets and deuterium gas puffing upstream of the divertor targets. For single-null (SN) configurations, argon accumulation was 2-3 times lower in the main plasma when the ion B x {del}B drift was directed away from the divertor. The puff-and-pump approach was much less effective in screening argon from the main plasma of double-null (DN) discharges than of SN discharges, such that argon impurities accumulated in the main plasma of DNs at a rate {approx}2-3 times higher than in corresponding SNs. Regardless of which divertor in DN had argon injection, argon accumulated in the divertor that was opposite the B x {del}B drift direction. The argon density in the main plasma during puff-and-pump operation fell by a factor of three for dRsep {ge} +0.4 cm when the ion B x {del}B drift was directed away from the dominant divertor, and this represents the transition from DN to SN behavior during puff-and-pump application. Comparison of identically-prepared SN H-mode plasmas showed that core density control of deuterium and the argon was far more sensitive to the ion B x {del}B drift direction than to divertor closure in DIII-D.

  2. The snowflake divertor

    SciTech Connect

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-17

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. One of the most interesting effects of the snowflake geometry is the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described. Divertor concepts utilizing the properties of a snowflake configuration are briefly discussed.

  3. The snowflake divertor

    DOE PAGES

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-17

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. One of the most interesting effects of the snowflake geometry is the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation tomore » the existing theoretical models is described. Divertor concepts utilizing the properties of a snowflake configuration are briefly discussed.« less

  4. Divertor research on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Hill, D. N.; Allen, S. L.; Brooks, N. H.; Buchenauer, D.; Cuthbertson, J. W.; Evans, T. E.; Fenstermacher, M. E.; Ghendrih, Ph.; Hillis, D. L.; Hogan, J. T.

    1994-10-01

    In this paper the authors summarize recent progress on DIII-D in developing techniques for divertor power and particle control relevant to next generation tokamaks such as the proposed ITER and TPX devices. Density control and helium removal by divertor pumping have been demonstrated for the first time in high confinement ELMing H-mode discharges (tau is approximately 2 times tau(sub ITER-89P)) following installation of a divertor cryopumping system. The peak divertor heat flux in similar H-mode discharges has been reduced through production of a radiating mantle with neon or argon puffing (reductions of 3-5). A number of diagnostics have been added to improve the understanding of the physical processes involved. They are now designing modified double-null divertor structures for DIII-D that will provide improved particle control for high-triangularity VH-mode plasmas while at the same time allowing for gas puffing to reduce the divertor heat flux.

  5. Vacuum pumping system for TPX

    SciTech Connect

    St. Onge, K.D.

    1995-12-31

    The design of the vacuum pumping system for is discussed, and progress in the research and development effort is summarized. The TPX vacuum system will use cryocondensation pumps for hydrogenic divertor pumping and turbomolecular pumps for torus evacuation, glow discharge cleaning, and deuterium-helium divertor pumping. A set of poloidally and toroidally symmetric vacuum ducts will connect the torus to the vacuum pumps; this symmetry will permit simultaneous equal pumping speed at the upper and lower divertors, and it will minimize toroidal variations in divertor pumping speed. At the divertor plena the total cryocondensation pumping speed for D{sub 2} at 65 C and 1 mTorr will be 80 m{sup 3}/s and the total turbomolecular pumping speed for D{sub 2} or He at 65 C and 1 mTorr will be 18 m{sup 3}/s; the system will be compatible with upgrades to improve pumping speed, to operate continuously, or to operate with D-T fuel. The cryocondensation pumps will be custom units capable of completing a low temperature regeneration cycle in 1 hour.

  6. Initial Study Comparing the Radiating Divertor Behavior in Single-Null and Double-Null Plasmas in DIII-D

    SciTech Connect

    Petrie, T; Brooks, N; Fenstermacher, M; Groth, M; Hyatt, A; Isler, R; Lasnier, C; Leonard, A; Porter, G; Schaffer, M; Watkins, J; Wade, M; West, W

    2007-06-27

    'Puff and pump' radiating divertor scenarios [1,2] were applied to upper SN and DN H-mode plasmas. Under similar operating conditions, argon (Ar) accumulated in the main plasma of single-null (SN) plasmas more rapidly and reached a higher steady-state concentration when the B x {del}B ion drift direction was toward the divertor than when the B x {del}B ion drift direction was out of the divertor. The initial rate that Ar accumulated inside double-null (DN) plasmas was more than twice that of comparably-prepared SNs with the same B x {del}B direction. One way to reduce power loading at the divertor targets is to 'seed' the divertor plasma with impurities that radiatively reduce the conducted power. Studies have shown that the concentration of impurities in the divertor are increased by raising the flow of deuterium ions (D{sup +}) into the divertor by a combination of upstream deuterium gas puffing and active particle exhaust at the divertor targets, i.e., puff-and-pump. An enhanced D{sup +} particle flow toward the divertor targets exerts a frictional drag on impurities, and inhibits their escape from the divertor. A puff-and-pump approach using Ar as the impurity was successfully applied in recent DIII-D experiments to SN plasmas [3] while maintaining good H-mode performance. Studies on DIII-D and other tokamaks have shown that both the direction of the toroidal magnetic field B{sub T} and the degree of magnetic balance between divertors [i.e., the degree to which the plasma shape is considered SN or DN] are important factors in determining recycling and particle pumping [4,5]. It is unclear whether the favorable results of Ref. [3] can be extended to cases with different magnetic balance and/or B{sub T} direction. We show in this paper that reversing the direction of B{sub T} or altering the divertor magnetic balance does have an impact on how plasmas behave under puff-and-pump conditions. Our study takes advantage of DIII-D's capabilities to actively pump SN and

  7. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  8. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  9. Island divertor studies on W7-AS

    NASA Astrophysics Data System (ADS)

    Sardei, F.; Feng, Y.; Grigull, P.; Herre, G.; Hildebrandt, D.; Hofmann, J. V.; Kisslinger, J.; Brakel, R.; Das, J.; Geiger, J.; Heinrich, O.; Kühner, G.; Niedermeyer, H.; Reiter, D.; Richter-Glötzl, M.; Runov, A.; Schneider, R.; Stroth, U.; Verbeek, H.; Wagner, F.; Wolf, R.; W7-AS Team; NBI Group

    1997-02-01

    Basic topological features of the island divertor concept for low shear stellarators are discussed with emphasis on the differences to tokamak divertors. Extensive measurements of the edge structures by two-dimensional plasma spectroscopy and by target calorimetry are in excellent agreement with predicted vacuum and equilibrium configurations, which are available up to central β values of ˜ 1%. For this β value the calculated field-line pitch inside the islands is twice that of the corresponding vacuum case. Video observations of the strike points indicate stability of the island structures for central β values up to ˜ 3.7%. The interpretation of the complex island divertor physics of W7-AS has become possible by the development of the three-dimensional plasma transport code EMC3 (Edge Monte Carlo 3D), which has been coupled self-consistently to the EIRENE neutral gas code. Analysis of high density NBI discharges gives strong indications of stable high recycling conditions for overlinene ≥ 10 20 m -3. The observations are reproduced by the EMC3/EIRENE code and supported by calculations with the B2/EIRENE code adapted to W7-AS. Improvement of recycling, pumping and target load distribution is expected from the new optimized target plates and baffles to be installed in W7-AS.

  10. The snowflake divertor

    SciTech Connect

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-15

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. Among potential beneficial effects of this geometry are: increased volume of a low poloidal field around the null, increased connection length, and the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described.

  11. Divertor plasma detachment

    SciTech Connect

    Krasheninnikov, S. I.; Kukushkin, A. S.; Pshenov, A. A.

    2016-05-15

    Regime with the plasma detached from the divertor targets (detached divertor regime) is a natural continuation of the high recycling conditions to higher density and stronger impurity radiation loss. Both the theoretical considerations and experimental data show clearly that the increase of the impurity radiation loss and volumetric plasma recombination causes the rollover of the plasma flux to the target when the density increases, which is the manifestation of detachment. Plasma-neutral friction (neutral viscosity effects), although important for the sustainment of high density/pressure plasma upstream and providing the conditions for efficient recombination and power loss, is not directly involved in the reduction of the plasma flux to the targets. The stability of detachment is also discussed.

  12. Divertor plasma detachment

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Kukushkin, A. S.; Pshenov, A. A.

    2016-05-01

    Regime with the plasma detached from the divertor targets (detached divertor regime) is a natural continuation of the high recycling conditions to higher density and stronger impurity radiation loss. Both the theoretical considerations and experimental data show clearly that the increase of the impurity radiation loss and volumetric plasma recombination causes the rollover of the plasma flux to the target when the density increases, which is the manifestation of detachment. Plasma-neutral friction (neutral viscosity effects), although important for the sustainment of high density/pressure plasma upstream and providing the conditions for efficient recombination and power loss, is not directly involved in the reduction of the plasma flux to the targets. The stability of detachment is also discussed.

  13. Pump

    SciTech Connect

    Johnson, J.W.; Abdul.Hye, A.B.M.

    1983-10-25

    A pump for injecting chemicals into a well employs a pivot arm for synchronous movement with a well pump. The pivot arm causes reciprocation of a plunger within the body of the chemical pump. The plunger, during its upward stroke causes the entry of chemicals from an outside source into the pump body and, during its downward stroke, causes the exiting of the chemicals into the well. (2 claims.

  14. Performance characteristics of the DIII-D advanced divertor cryopump

    SciTech Connect

    Menon, M.M.; Maingi, R.; Wade, M.R.; Baxi, C.B.; Campbell, G.L.; Holtrop, K.L.; Hyatt, A.W.; Laughon, G.J.; Makariou, C.C.; Mahdavi, M.A.; Reis, E.E.; Schaffer, M.J.; Schaubel, K.M.; Scoville, J.T.; Smith, J.P.; Stambaugh, R.D.

    1993-10-01

    A cryocondensation pump, cooled by forced flow of two-phase helium, has been installed for particle exhaust from the divertor region of the DIII-D tokamak. The Inconel pumping surface is of coaxial geometry, 25.4 mm in outer diameter and 11.65 m in length. Because of the tokamak environment, the pump is designed to perform under relatively high pulsed heat loads (300 Wm{sup {minus}2}). Results of measurements made on the pumping characteristics for D{sub 2}, H{sub 2}, and Ar are discussed.

  15. Deuterium and tritium separation in a tokamak reactor divertor layer

    NASA Astrophysics Data System (ADS)

    Tokar', M. Z.

    1989-04-01

    It's shown that the plasma isotope composition in a tokamak reactor divertor layer changes along the magnetic field and can notable differ from the gas composition in a pumping chamber. Heavier tritium must concentrate in the hot plasma far from the divertor plate due to thermal force stipulated by mutial collisions of deuterium and tritium ions. This circumstance is favourable from the point of view of tritium cycle optimization and must facilitate solution of the problem of tritium accumulation in the reactor construction elements.

  16. Direct measurement of divertor exhaust neo enrichment in DIII-D

    SciTech Connect

    Schaffer, M.J.; Wade, M.R.; Maingi, R.; Monier-Garbet, P.; West, W.P.; Whyte, D.G.; Wood, R.D.; Mahdavi, M.A.

    1996-06-01

    We report first direct measurements of divertor exhaust gas impurity enrichment, {eta}{sub exh}=(exhaust impurity concentration){divided_by}(core impurity concentration), for both unpumped and D{sub 2} puff-with-divertor-pump conditions. The experiment was performed with neutral beam heated, ELMing H-mode, single-null diverted deuterium plasmas with matched core and exhaust parameters in the DIII-D tokamak. Neon gas impurity was puffed into the divertor. Neon density was measured in the exhaust by a specially modified Penning gauge and in the core by absolute charge exchange recombination spectroscopy. Neon particle accounting indicates that much of the puffed neon entered a temporary unmeasured reservoir, inferred to be the graphite divertor target, which makes direct measurements necessary to calculate divertor enrichments. D{sub 2} puff into the SOL (scrape-off layer) with pumping increased {eta}{sub exh} threefold over either unpumped conditions or D{sub 2} puff directly into the divertor with pumping. These results show that SOL flow plays an important role in divertor exhaust impurity enrichment.

  17. Features and Initial Results of the DIII-D Advanced Tokamak Radiative Divertor

    SciTech Connect

    R.C. O'Neill; A.S. Bozek; M.E. Friend; C.B. Baxi; E.E. Reis; M.A. Mahdavi; D.G. Nilson; S.L. Allen; W.P. West

    1999-11-01

    The Radiative Divertor Program of DIII-D is in its final phase with the installation of the cryopump and baffle structure (Phase 1B Divertor) in the upper inner radius of the DIII-D vacuum vessel at the end of this calendar year. This divertor, in conjunction with the Advanced Divertor and the Phase 1A Divertor, located in the lower and upper outer radius of the DIII-D vacuum vessel respectively, provides pumping for density control of the plasma while minimizing the effects on the core confinement. Each divertor consists of a cryobelium cooling ring and a shielded protective structure. The cryo/helium-cooled pumps of all three diverters exhaust helium from the plasma. The protective shielded structure or baffle structure, in the case of the diverters located at the top of the vacuum vessel, provides baffling of neutral charged particles and minimize the flow of impurities back into the core of the plasma. The baffles, which consist of water-cooled panels that allow for the attachment of tiles of various sizes and shapes, house gas puff systems. The intent of the puffing systems is to inject gas in and around the divertor to minimize the heat flux on specific areas on the divertor and its components. The reduction of the heat flux on the divertor minimizes the impurities that are generated from excess heat on divertor components, specifically tiles. Experiments involving the gas puff systems and the divertor structures have shown the heat flux can be spread over a large area of the divertor, reducing the peak heat flux in specific areas. The three diverters also incorporate a variety of diagnostic tools such as halo current monitors, magnetic probes and thermocouples to monitor certain plasma characteristics as well as determine the effectiveness of the cryopumps and baffle configurations. The diverters were designed to optimize pumping performance and to withstand the electromagnetic loads from both halo currents and toroidal induced currents. Incorporated also

  18. HL-2M Divertor Geometry Exploration with SOLPS5.0

    NASA Astrophysics Data System (ADS)

    Cui, Xuewu; Pan, Yudong; Cui, Zhengying; Li, Jiaxian; Zhang, Jinhua; Mao, Rui

    2013-12-01

    One of the critical issues to be solved for HL-2M is the power and particle exhaust. Divertor target plate geometry strongly influences the plasma profiles by controlling the neutral recycling pattern, which has in turn a strong effect on the symmetry and stability of the divertor plasma and finally on the whole edge region. The numerical simulation software SOLPS5.0 Package is used to design and explore the divertor target plates for HL-2M. We choose two divertor geometries, and assess the heat flux on the target plates and first wall, then further discuss the divertor plasma parameters, and how private flux baffling affects both neutral recirculation pattern and pumping efficiency.

  19. A superconducting linear motor drive for a positive displacement bellows pump for use in the g-2 cryogenics system

    SciTech Connect

    Green, M.A.

    1994-10-01

    Forced two-phase cooling of indirectly cooled magnets requires circulation of liquid helium through the magnet cooling channel. A bellows helium pump is one possible way of providing helium flow to a magnet cooling system. Since the bellows type of helium pump is immersed in liquid helium, a superconducting linear motor drive appears to be an attractive option. This report describes a linear motor drive that employs oriented permanent magnet materials such as samarium-cobalt as the stator magnet system and a superconducting loud speaker voice coil type of drive as the armature of the linear motor. This report examines drive motor requirements for a helium pump.

  20. Measurement of pump-induced transient lensing in a cryogenically-cooled high average power Ti:sapphire amplifier.

    PubMed

    Planchon, Thomas A; Amir, Wafa; Childress, Colby; Squier, Jeff A; Durfee, Charles G

    2008-11-10

    The transient thermal lensing in a liquid-nitrogren cooled kilohertz multipass amplifier is quantitatively measured with spatially-resolved Fourier transform spectral interferometry. A pump-probe arrangement allows the observation of a polarization-dependent non-thermal component following the fluorescence timescale: additional cooling would not suppress this residual lensing. We also observe a time-dependent thermal component that has a timescale sufficiently fast to indicate that there is cooling between shots even at a repetition rate of 1 kHz. The value of pump-induced lensing would be underestimated when performing time-averaged measurements of pump-induced phase shifts.

  1. Variation of Particle Control with Changes in Divertor Geometry

    SciTech Connect

    Petrie, T W; Allen, S L; Brooks, N H; Fenstermacher, M E; Ferron, J R; Greenfield, C M; Groth, M; Hyatt, A W; Leonard, A W; Luce, T C; Mahdavi, M A; Murakami, M; Porter, G D; Rensink, M E; Schaffer, M J; Wade, M R; Watkins, J G; West, W P; Wolf, N S

    2004-10-18

    Recent experiments on DIII-D point to the importance of two factors in determining how effectively the deuterium particle inventory in a tokamak plasma can be controlled through pumping at the divertor target(s): (1) the divertor magnetic balance, i.e., the degree to which the divertor topology is single-null (SN) or double-null (DN), and (2) the direction of the of Bx{divergent}B ion drift with respect to the X-point(s). Changes in divertor magnetic balance near the DN shape have a much stronger effect on the particle exhaust rate at the inner divertor target(s) than on the particle exhaust rate at the outer divertor target(s). The particle exhaust rate for the DN shape is strongest at the outer strike point opposite the Bx{divergent}B ion particle drift direction. Our data suggests that the presence of Bx{divergent}B and ExB ion particle drifts in the scrapeoff layer (SOL) and divertors play an important role in the particle exhaust rates of DN and near-DN plasmas. Particle exhaust rates are shown to depend strongly on the edge (pedestal) density n{sub e,PED}. In the lower range of densities considered in this study, i.e., n{sub e,PED}/ n{sub GREENWALD}<0.4, particle exhaust rates are also found to be approximately proportional to the deuterium recycling intensity in front of the respective plenum entrance. Our results are shown to have implications for particle control in ITER and other future tokamaks.

  2. Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data.

    PubMed

    Kim, Hyun-Chul; Yoo, Seung-Schik; Lee, Jong-Hwan

    2015-01-01

    Electroencephalography (EEG) data simultaneously acquired with functional magnetic resonance imaging (fMRI) data are preprocessed to remove gradient artifacts (GAs) and ballistocardiographic artifacts (BCAs). Nonetheless, these data, especially in the gamma frequency range, can be contaminated by residual artifacts produced by mechanical vibrations in the MRI system, in particular the cryogenic pump that compresses and transports the helium that chills the magnet (the helium-pump). However, few options are available for the removal of helium-pump artifacts. In this study, we propose a recursive approach of EEG-segment-based principal component analysis (rsPCA) that enables the removal of these helium-pump artifacts. Using the rsPCA method, feature vectors representing helium-pump artifacts were successfully extracted as eigenvectors, and the reconstructed signals of the feature vectors were subsequently removed. A test using simultaneous EEG-fMRI data acquired from left-hand (LH) and right-hand (RH) clenching tasks performed by volunteers found that the proposed rsPCA method substantially reduced helium-pump artifacts in the EEG data and significantly enhanced task-related gamma band activity levels (p=0.0038 and 0.0363 for LH and RH tasks, respectively) in EEG data that have had GAs and BCAs removed. The spatial patterns of the fMRI data were estimated using a hemodynamic response function (HRF) modeled from the estimated gamma band activity in a general linear model (GLM) framework. Active voxel clusters were identified in the post-/pre-central gyri of motor area, only from the rsPCA method (uncorrected p<0.001 for both LH/RH tasks). In addition, the superior temporal pole areas were consistently observed (uncorrected p<0.001 for the LH task and uncorrected p<0.05 for the RH task) in the spatial patterns of the HRF model for gamma band activity when the task paradigm and movement were also included in the GLM. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Neutral pumping rates for a next step tokamak ignition device

    SciTech Connect

    Galambos, J.D.; Peng, Y.K.M.; Heifetz, D.

    1985-01-01

    Neutral pumping rates are calculated for pump-limiter and divertor options of a next step tokamak ignition device using a method that accounts for the coupled effects of neutral transport and plasma transport. For both pump limiters and divertors the plasma flow into the channel surrounding the neutralizer plate is greatly reduced by the neutral recycling. The fraction of this flow that is pumped can be large (>50%) but in general is dependent on the particular geometry and plasma conditions. It is estimated that pumping speeds greater than or approximately 10/sup 5/ L/s are adequate for the exhaust requirements in the pump-limiter and the divertor cases.

  4. Comparison of radiating divertor behaviour in single-null and double-null plasmas in DIII-D

    SciTech Connect

    Petrie, T W; Brooks, N. H.; Fenstermacher, M. E.; Groth, M.; Hyatt, A. W.; Isler, R.C.; Lasnier, C. J.; Leonard, A. W.; Porter, G. D.; Schaffer, M. J.; Watkins, J. G.; Wade, M R; West, W.P.

    2008-01-01

    Puff-and-pump' radiating divertor scenarios, applied to both upper single-null (SN) and double-null (DN) H-mode plasmas, result in a 30-60% increase in radiated power with little or no decrease in tau(E). Argon was injected into the private flux region of the upper divertor, and plasma flow into the upper divertor was enhanced by a combination of deuterium gas puffing upstream of the divertor targets and particle pumping at the targets. For the same constant deuterium injection rate, argon penetrated the main plasma of SNs more rapidly and reached a higher steady-state concentration when the B x del B-ion drift direction was towards the divertor (V-del B up arrow) rather than away from the divertor (V-del B down arrow). We also found that the initial rate at which argon accumulated inside DN plasmas was more than twice that of comparable SN plasmas having the same B x del B-ion drift direction. In DNs, the radiated power was not shared equally between divertors during argon injection. Only when the B x del B ion drift direction was away from the divertor were both significant increases in divertor radiated power and an accumulation of argon in the divertor observed, based on spectroscopic measurements of Ar II. Our data suggest that an unbalanced DN shape where the B x del B-ion drift is directed away from the dominant divertor may provide the best chance of successfully coupling a radiating divertor approach with a higher performance H-mode plasma.

  5. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  6. Exploring the self-mode-locked dynamics of cryogenic diode-pumped Nd:YLF lasers: switching of orthogonal polarizations

    NASA Astrophysics Data System (ADS)

    Huang, T. L.; Y Cho, C.; Liang, H. C.; Huang, K. F.; Chen, Y. F.

    2017-08-01

    The self-mode-locked output for cryogenic Nd:YLF laser at the temperature range of 90 K to 290 K is thoroughly investigated. Linearly polarized self-mode-locked lasing at 1047 nm (1053 nm) with a repetition rate up to 1.59 GHz and a pulse width as short as 52 ps can be realized at temperatures above 155 K (below 135 K). Orthogonally polarized self-mode-locked operation can be observed at temperatures near 145 K. During dual-polarization operation, it is found that the polarized component with higher output power is the fundamental transverse mode, whereas the other component with lower output power becomes the high-order transverse mode. The dominant polarized component can be either π- or σ-polarization, depending on the fine adjustment of the cavity.

  7. Asymmetric divertor biasing in MAST

    NASA Astrophysics Data System (ADS)

    Helander, P.; Cohen, R.; Counsell, G. C.; Ryutov, D. D.

    2002-11-01

    Experiments are being carried out on the Mega-Ampere Spherical Tokamak (MAST) where the divertor tiles are electrically biased in a toroidally alternating way. The aim is to induce convective cells in the divertor plasma, broaden the SOL and reduce the divertor heat load. This paper describes the underlying theory and experimental results. Criteria are presented for achieving strong broadening and exciting shear-flow turbulence in the SOL, and properties of the expected turbulence are derived. It is also shown that magnetic shear near the X-point is likely to confine the potential perturbations to the divertor region, leaving the part of the SOL that is in direct contact with the core plasma intact. Preliminary comparison of the theory with MAST data is encouraging: the distortion of the heat deposition pattern, its broadening, and the incremental heat load are qualitatively in agreement; quantitative comparisons are underway.

  8. Evaluation of helium cooling for fusion divertors

    SciTech Connect

    Baxi, C.B.

    1993-09-01

    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m{sup 2} at an average heat flux of 2 MW/m{sup 2}. The divertors have a requirement of both minimum temperature (100{degrees}C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m{sup 2}. This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m{sup 2}. The pumping power required was less than 1% of the power removed. These results verified the design prediction.

  9. L-H power threshold studies with tungsten/carbon divertor on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Chen, L.; Xu, G. S.; Gao, W.; Zhang, L.; Nielsen, A. H.; Luo, Z. P.; Si, H.; Wang, Y. M.; Qu, H.; Sun, Z.; Duan, Y. M.; Liu, H. Q.; Wang, S. X.; Li, M. H.; Zhang, X. J.; Wu, B.; Chen, R.; Wang, L.; Wang, H. Q.; Ding, S. Y.; Yan, N.; Liu, S. C.; Shao, L. M.; Zhang, W.; Hu, G. H.; Li, J.; Li, Y. L.; Wu, X. Q.; Zhao, N.; Jia, M. N.

    2016-05-01

    The power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency heating and molybdenum first wall with lithium coating has been experimentally investigated on the EAST tokamak for two sets of divertor geometries and materials: tungsten/carbon divertor and full carbon divertor. For both sets of divertors, the power threshold was found to decrease with gradual accumulation of the lithium wall coating, suggesting the important role played by the low Z impurities and/or the edge neutral density on the L-H power threshold. When operating in the upper single null configuration, with the ion grad-B drift direction away from the primary X-point, a lower normalized power threshold is observed in EAST with the tungsten/carbon divertor, compared to the carbon divertor after intensive lithium wall coating. A newly installed cryopump increasing the pumping efficiency also plays an important part in the observed lower threshold. In addition, the H-mode in the Quasi-Snowflake divertor configuration has been obtained on EAST, exhibiting higher L-H power threshold compared to the lower single null configuration with similar IP/BT pairs.

  10. Turbopumps for cryogenic upper stage engines. [fabrication and evaluation of turbine pumps for liquid hydrogen and liquid oxygen

    NASA Technical Reports Server (NTRS)

    Zachary, A. T.; Csomor, A.; Tignac, L. L.

    1973-01-01

    Small, high-performance LO2 and LH2 turbopump assembly configurations were selected, detail designs were prepared and two of each unit were fabricated with each unit consisting of pump, turbine gas generator, and appropriate controls. Following fabrication, development testing was conducted on each type to demonstrate performance, durability, transient characteristics, and heat transfer under simulated altitude conditions. Following successful completion of development effort, the two LO2 turbopump units and one LH2 turbopump unit were acceptance tested as specified. Inspection of the units following development testing revealed no deleterious effects of testing. The test results of LO2 turbopump assembly testing correlated well with predicted performance while the LH2 turbopump test results, though generally consistent with predicted values, did show lower than anticipated developed head at the design point and in the high flow range of operation.

  11. Design of a diagnostic residual gas analyzer for the ITER divertor

    SciTech Connect

    Klepper, C Christopher; Biewer, T. M.; Graves, Van B; Andrew, P.; Marcus, Chris; Shimada, M.; Hughes, S.; Boussier, B.; Johnson, D. W.; Gardner, W. L.; Hillis, D. L.; Vayakis, G.; Vayakis, G.; Walsh, M.

    2015-01-01

    One of the ITER diagnostics having reached an advanced design stage is a diagnostic RGA for the divertor, i.e. residual gas analysis system for the ITER divertor, which is intended to sample the divertor pumping duct region during the plasma pulse and to have a response time compatible with plasma particle and impurity lifetimes in the divertor region. Main emphasis is placed on helium (He) concentration in the ducts, as well as the relative concentration between the hydrogen isotopes (H2, D2, T2). Measurement of the concentration of radiative gases, such as neon (Ne) and nitrogen (N2), is also intended. Numerical modeling of the gas flow from the sampled region to the cluster of analysis sensors, through a long (~8m long, ~110mm diameter) sampling pipe terminating in a pressure reducing orifice, confirm that the desired response time (~1s for He or D2) is achieved with the present design.

  12. A Comparison of Radiating Divertor Behavior in Single- and Double-Null Plasmas in DIII-D

    SciTech Connect

    Petrie, T W; Brooks, N H; Fenstermacher, M E; Groth, M; Hyatt, A W; Isler, R C; Lasnier, C J; Leonard, A W; Porter, G D; Schaffer, M J; Watkins, J G; Wade, M R; West, W P

    2008-03-25

    'Puff and pump' radiating divertor scenarios, applied to both upper single-null (SN) and double-null (DN) H-mode plasmas, result in a 30-60% increase in radiated power with little or no decrease in {tau}{sub E}. Argon was injected into the private flux region of the upper divertor, and plasma flow into the upper divertor was enhanced by a combination of deuterium gas puffing upstream of the divertor targets and particle pumping at the targets. For the same constant deuterium injection rate, argon penetrated the main plasma of SNs more rapidly and reached a higher steady-state concentration when the Bx{del}B-ion drift direction was toward the divertor (V{sub {del}B{up_arrow}}) rather than away from the divertor (V{sub {del}B{down_arrow}}). We also found that the initial rate at which argon accumulated inside DN plasmas was more than twice that of comparable SN plasmas having the same Bx{del}B-ion drift direction. In DNs, the radiated power was not shared equally between divertors during argon injection. Only in the divertor opposite Bx{del}B ion drift direction were both significant increases in divertor radiated power and an accumulation of argon, based on spectroscopic measurements of ArII, observed. Our data suggests that a DN shape that is biased in the direction away from the Bx{del}B-ion drift direction may provide the best prospect of successfully coupling a radiating divertor approach with a higher performance H-mode plasma.

  13. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  14. Advances in cryogenic engineering. Volume 33 - Proceedings of the Cryogenic Engineering Conference, Saint Charles, IL, June 14-18, 1987

    NASA Technical Reports Server (NTRS)

    Fast, R. W. (Editor)

    1988-01-01

    Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.

  15. VUV Spectroscopy in DIII-D Divertor

    SciTech Connect

    Alkesh Punjabi; Nelson Jalufka

    2004-11-04

    The research carried out on this grant was motivated by the high power emission from the CIV doublet at 155 nm in the DIII-D divertor and to study the characteristics of the radiative divertor. The radiative divertor is designed to reduce the heat load to the target plates of the divertor by reducing the energy in the divertor plasma using upstream scrape-off-layer (SOL) radiation. In some cases, particularly in Partially Detached Divertor (PDD) operations, this emission accounts for more than 50% of the total radiation from the divertor. In PDD operation, produced by neutral gas injection, the particle flow to the target plate and the divertor temperature are significantly reduced. A father motivation was to study the CIV emission distribution in the lower, open divertor and the upper baffled divertor. Two Vacuum Ultra Violet Tangential viewing Television cameras (VUV TTV) were constructed and installed in the upper, baffled and the lower, open divertor. The images recorded by these cameras were then inverted to produce two-dimensional distributions of CIV in the poloidal plane. Results obtained in the project are summarized in this report.

  16. Compatibility of the Radiating Divertor with High Performance Plasmas in DIII-D

    SciTech Connect

    Petrie, T; Wade, M; Allen, S; Brooks, N; Fenstermacher, M; Ferron, J; Greenfield, C; Groth, M; Hyatt, A; Lasnier, C; Leonard, A; Luce, T; Mahdavi, M; Schaffer, M; Watkins, J; West, W

    2005-06-24

    Excessive thermal power loading on the divertor structures presents a design difficulty for future-generation, high powered tokamaks. This difficulty may be mitigated by ''seeding'' the divertor with impurities which radiate a significant fraction of the power upstream of the divertor targets. For this ''radiating divertor'' concept to be practical, however, the confinement and stability of the plasma cannot be compromised by excessive leakage of the seeded impurities into the core plasma. One proposed way of reducing impurity influx is to enhance the directed scrape-off layer (SOL) flow of deuterium ions toward the divertor [1-5]. We report here on the successful application of the radiating divertor scenario to high performance plasma operation in a DIII-D ''hybrid'' H-mode regime. The ''hybrid'' regime [6,7] has many features in common with conventional ELMing H-mode regimes, such as high confinement, e.g., H{sub ITER89P} > 2, where H{sub ITER89P} is the energy confinement normalized to the 1989 ITER L-mode scaling [8]. The main difference is the absence of sawtooth activity in the hybrid. Argon was selected as the seeded impurity for this experiment because argon radiates effectively at both the divertor and pedestal temperatures found in DIII-D hybrid H-mode operation and has a relatively short ionization mean free path. Carbon is also present as the dominant intrinsic impurity in DIII-D discharges. The geometry of this experiment is shown in Fig. 1. A double-null cross-sectional shape was biased upward (dRsep = +1.0 cm). To increase the deuterium ion flow toward the divertor at the top of the vessel, deuterium gas was introduced near the bottom. Argon was injected directly into the private flux region (PFR) of the upper divertor. In-vessel pumping of deuterium and argon was done by cryopumps located in the two upper divertor plenums, shown in cross-hatching [9]. The upper divertor, which we hereafter will simply refer to as the ''divertor'', is the region

  17. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  18. Divertor plasma conditions and neutral dynamics in horizontal and vertical divertor configurations in JET-ILW low confinement mode plasmas

    NASA Astrophysics Data System (ADS)

    Groth, M.; Brezinsek, S.; Belo, P.; Brix, M.; Calabro, G.; Chankin, A.; Clever, M.; Coenen, J. W.; Corrigan, G.; Drewelow, P.; Guillemaut, C.; Harting, D.; Huber, A.; Jachmich, S.; Järvinen, A.; Kruezi, U.; Lawson, K. D.; Lehnen, M.; Maggi, C. F.; Marchetto, C.; Marsen, S.; Maviglia, F.; Meigs, A. G.; Moulton, D.; Silva, C.; Stamp, M. F.; Wiesen, S.

    2015-08-01

    Measurements of the plasma conditions at the low field side target plate in JET ITER-like wall ohmic and low confinement mode plasmas show minor differences in divertor plasma configurations with horizontally and vertically inclined targets. Both the reduction of the electron temperature in the vicinity of the strike points and the rollover of the ion current to the plates follow the same functional dependence on the density at the low field side midplane. Configurations with vertically inclined target plates, however, produce twice as high sub-divertor pressures for the same upstream density. Simulations with the EDGE2D-EIRENE code package predict significantly lower plasma temperatures at the low field side target in vertical than in horizontal target configurations. Including cross-field drifts and imposing a pumping by-pass leak at the low-field side plate can still not recover the experimental observations.

  19. Controlling marginally detached divertor plasmas

    DOE PAGES

    Eldon, David; Kolemen, Egemen; Barton, Joseph L.; ...

    2017-05-04

    A new control system at DIII-D has stabilized the inter-ELM detached divertor plasma state for H-mode in close proximity to the threshold for reattachment, thus demonstrating the ability to maintain detachment with minimal gas puffing. When the same control system was instead ordered to hold the plasma at the threshold (here defined as Te = 5 eV near the divertor target plate), the resulting Te profiles separated into two groups with one group consistent with marginal detachment, and the other with marginal attachment. The plasma dithers between the attached and detached states when the control system attempts to hold at the threshold. The control system is upgraded from the one described in and it handles ELMing plasmas by using real time Dα measurements to remove during-ELM slices from real time Te measurements derived from divertor Thomson scattering. The difference between measured and requested inter-ELM Te is passed to a PID (proportionalintegral-derivative) controller to determine gas puff commands. While some degree of detachment is essential for the health of ITER’s divertor, more deeply detached plasmas have greater radiative losses and, at the extreme, confinement degradation, making it desirable to limit detachment to the minimum level needed to protect the target plate. However, the observed bifurcation in plasma conditions at the outer strike point with the ion B ×more » $$\

  20. Recent Progress in the NSTX/NSTX-U Lithium Program and Prospects for Reactor-Relevant Liquid-Lithium Based Divertor Development

    SciTech Connect

    M. Ono, et al.

    2012-10-27

    Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. While tungsten has been identified as the most attractive solid divertor material, the NSTX/NSTX-U lithium (Li) program is investigating the viability of liquid lithium (LL) as a potential reactor compatible divertor plasma facing component (PFC) . In the near term, operation in NSTX-U is projected to provide reactor-like divertor heat loads < 40 MW/m^2 for 5 s. During the most recent NSTX campaign, ~ 0.85 kg of Li was evaporated onto the NSTX PFCs where a ~50% reduction in heat load on the Liquid Lithium Divertor (LLD) was observed, attributable to enhanced divertor bolometric radiation. This reduced divertor heat flux through radiation observed in the NSTX LLD experiment is consistent with the results from other lithium experiments and calculations. These results motivate an LL-based closed radiative divertor concept proposed here for NSTX-U and fusion reactors. With an LL coating, the Li is evaporated from the divertor strike point surface due to the intense heat. The evaporated Li is readily ionized by the plasma due to its low ionization energies, and the ionized Li ions can radiate strongly, resulting in a significant reduction in the divertor heat flux. Due to the rapid plasma transport in divertor plasma, the radiation values can be significantly enhanced up to ~ 11 MJ/cc of LL. This radiative process has the desired function of spreading the focused divertor heat load to the entire divertor chamber facilitating the divertor heat removal. The LL divertor surface can also provide a "sacrificial" surface to protect the substrate solid material from transient high heat flux such as the ones caused by the ELMs. The closed radiative LLD concept has the advantages of providing some degree of partition in terms of plasma disruption forces on the LL, Li particle divertor retention, and strong divertor pumping action from the

  1. Compatibility of the Radiating Divertor with High Performance Plasmas in DIII-D

    SciTech Connect

    Petrie, T W; Wade, M R; Brooks, N H; Fenstermacher, M E; Groth, M; Hyatt, A W; Isler, R C; Lasnier, C J; Leonard, A W; Mahdavi, M A; Porter, G D; Schaffer, M J; Watkins, J G; West, W P

    2006-05-18

    A radiating divertor approach was successfully applied to high performance 'hybrid' plasmas [M.R. Wade, et al., Proc. 20th IAEA Fusion Energy Conf., Vilamoura, (2004)]. Our technique included: (1) injecting argon near the outer divertor target, (2) enhancing the plasma flow into the inner and outer divertors by a combination of particle pumping and deuterium gas puffing upstream of the divertor targets, and (3) isolating the inner divertor from the outer by a structure in the private flux region. Good hybrid conditions were maintained, as the peak heat flux at the outer divertor target was reduced by a factor of 2.5; the peak heat flux at the inner target decreased by 20%. This difference was caused by a higher concentration of argon at the outer target than at the inner target. Argon accumulation in the main plasma was modest (n{sub AR}/n{sub e} {le}0.004 on axis), although the argon profile was more peaked than the electron profile.

  2. Deposition of 13C tracer in the JET MkII-HD divertor

    NASA Astrophysics Data System (ADS)

    Likonen, J.; Airila, M.; Alves, E.; Barradas, N.; Brezinsek, S.; Coad, J. P.; Devaux, S.; Groth, M.; Grünhagen, S.; Hakola, A.; Jachmich, S.; Koivuranta, S.; Makkonen, T.; Rubel, M.; Strachan, J.; Stamp, M.; Widdowson, A.; EFDA contributors, JET-

    2011-12-01

    Migration of 13C has been investigated at JET by injecting 13C-labelled methane at the outer divertor base at the end of the 2009 campaign. The 13C deposition profiles on carbon fibre composite divertor tiles were measured by secondary ion mass spectrometry and Rutherford backscattering techniques. 13C was mainly deposited near the puffing location on the outer divertor base tiles. High amounts of 13C were also found at the outer vertical target: at the bottom of the lower and at the top of the upper plates. Thirty-three percent of puffed 13CH4 was instantly pumped out by the divertor cryopump, which is close to the pump duct entrance. Global 13C transport in the torus was modelled by the EDGE2D/EIRENE and DIVIMP codes, and local 13C migration in the vicinity of the injection location by the ERO code. The DIVIMP and EDGE2D simulations show strong prompt deposition of 13C directly adjacent to the injection point as well as in the far scrape-off layer (SOL) along both the inner and outer divertor targets. In addition, the measured 13C deposition along the outer divertor wall tiles is qualitatively reproduced. However, EDGE2D and DIVIMP do not predict any deposition along the divertor surfaces facing the private plasma on the inner floor tile and inboard of the outer strike point on tile 5. The ERO calculations also indicate that most of the deposition occurs close to the injection location on the vertical face of the LBSRP tile and the horizontal part of tile 6.

  3. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution

    SciTech Connect

    Henn, T.; Kiessling, T. Ossau, W.; Molenkamp, L. W.; Biermann, K.; Santos, P. V.

    2013-12-15

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  4. Divertor Plasma Parameters During Radiative Divertor Operation on DIII--D

    NASA Astrophysics Data System (ADS)

    Allen, S. L.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Meyer, W. H.; Porter, G. D.; Wood, R. D.; Leonard, A. W.; Mahdavi, M. A.; Petrie, T. W.; West, W. P.; Maingi, R.; Wade, M. R.; Whyte, D. G.

    1996-11-01

    A large array of divertor diagnostics has been used to characterize the DIII--D divertor conditions during radiative divertor operation. We have used both D2 and impurities to reduce the divertor heat flux. Several discharge conditions have been obtained, including attached and detached ELMing H-modes. The multi-chord Divertor Thomson Scattering (DTS) system has been used with divertor sweeping to obtain 2-D measurements of ne and Te in the divertor. The Te drops to <= 2 eV with D2 puffing, ne increases, and the electron pressure Pe decreases. The radiation zone, measured by multi-chord bolometry, moves from the inside leg of the divertor to the outside. Comparisons of the 2-D distribution of ne and Te and the radiation distribution will be presented.

  5. Cryogenic exciter

    DOEpatents

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  6. Kinetic Modeling of Divertor Plasma

    NASA Astrophysics Data System (ADS)

    Ishiguro, Seiji; Hasegawa, Hiroki; Pianpanit, Theerasarn

    2015-11-01

    Particle-in-Cell (PIC) simulation with the Monte Carlo collisions and the cumulative scattering angle coulomb collision can present kinetic dynamics of divertor plasmas. We are developing two types of PIC codes. The first one is the three dimensional bounded PIC code where three dimensional kinetic dynamics of blob is studied and current flow structures related to sheath formation are unveiled. The second one is the one spatial three velocity space dimensional (1D3V) PIC code with the Monte Carlo collisions where formation of detach plasma is studied. First target of our research is to construct self-consistent full kinetic simulation modeling of the linear divertor simulation experiments. This work is performed with the support and under the auspices of NIFS Collaboration Research program (NIFS15KNSS059, NIFS14KNXN279, and NIFS13KNSS038) and the Research Cooperation Program on Hierarchy and Holism in Natural Science at NINS.

  7. Controlling marginally detached divertor plasmas

    NASA Astrophysics Data System (ADS)

    Eldon, D.; Kolemen, E.; Barton, J. L.; Briesemeister, A. R.; Humphreys, D. A.; Leonard, A. W.; Maingi, R.; Makowski, M. A.; McLean, A. G.; Moser, A. L.; Stangeby, P. C.

    2017-06-01

    A new control system at DIII-D has stabilized the inter-ELM detached divertor plasma state for H-mode in close proximity to the threshold for reattachment, thus demonstrating the ability to maintain detachment with minimal gas puffing. When the same control system was instead ordered to hold the plasma at the threshold (here defined as T e  =  5 eV near the divertor target plate), the resulting T e profiles separated into two groups with one group consistent with marginal detachment, and the other with marginal attachment. The plasma dithers between the attached and detached states when the control system attempts to hold at the threshold. The control system is upgraded from the one described in Kolemen et al (2015 J. Nucl. Mater. 463 1186) and it handles ELMing plasmas by using real time D α measurements to remove during-ELM slices from real time T e measurements derived from divertor Thomson scattering. The difference between measured and requested inter-ELM T e is passed to a PID (proportional-integral-derivative) controller to determine gas puff commands. While some degree of detachment is essential for the health of ITER’s divertor, more deeply detached plasmas have greater radiative losses and, at the extreme, confinement degradation, making it desirable to limit detachment to the minimum level needed to protect the target plate (Kolemen et al 2015 J. Nucl. Mater. 463 1186). However, the observed bifurcation in plasma conditions at the outer strike point with the ion B   ×  \

  8. Crossed-field divertor for a plasma device

    DOEpatents

    Kerst, Donald W.; Strait, Edward J.

    1981-01-01

    A divertor for removal of unwanted materials from the interior of a magnetic plasma confinement device includes the division of the wall of the device into segments insulated from each other in order to apply an electric field having a component perpendicular to the confining magnetic field. The resulting crossed-field drift causes electrically charged particles to be removed from the outer part of the confinement chamber to a pumping chamber. This method moves the particles quickly past the saddle point in the poloidal magnetic field where they would otherwise tend to stall, and provides external control over the rate of removal by controlling the magnitude of the electric field.

  9. Bolometry for divertor characterization and control

    SciTech Connect

    Leonard, A.W.; Goetz, J.; Fuchs, C.; Marashek, M.; Mast, F.; Reichle, R.

    1995-10-01

    Operation of the divertor will provide one of the greatest challenges for ITER. Up to 400 MW of power is expected to be produced in the core plasma which must then be handled by plasma facing components. Power flowing across the separatrix and into the scrape-off-layer (SOL) can lead to a heat flux in the divertor of 30 MW/m{sup 2} if nothing is done to dissipate the power. This peak heat flux must be reduced to 5 MW/m{sup 2} for an acceptable engineering design. The current plan is to use impurity radiation and other atomic processes from intrinsic or injected impurities to spread out the power onto the first wall and divertor chamber walls. It is estimated that 300 MW of radiation in the divertor and SOL will be necessary to achieve this solution. Measurement of the magnitude and distribution of this radiated power with bolometry will be important for understanding and controlling the nER divertor. Present experiments have shown intense regions of radiation both in the divertor near the separatrix and in the X-point region. The task of a divertor bolometer system will be to measure the distribution and magnitude of this radiation. First, radiation measurements can be used for machine protection. Intense divertor radiation will heat plasma facing surfaces that are not in direct view of temperature monitors. Measurement of the radiation distribution will provide information about the power flux to these components. Secondly, a bolometer diagnostic is a basic tool for divertor characterization and understanding. Radiation measurements are important for power accounting, as a cross check for other power diagnostics, and gross characterisation of the plasma behavior. A divertor bolometer system can provide a 2-D measurement of the radiation profile for comparison with theory and modeling. Finally a bolometer system can provide realtime signals for control of the divertor operation.

  10. SOLPS modeling of an innovative small-angle slot divertor concept for low-density detachment

    NASA Astrophysics Data System (ADS)

    Covele, B.; Sang, C.; Guo, H.; Lao, L.; Stangeby, P.; Thomas, D.

    2016-10-01

    SOLPS modeling offers insight into how a new Small-Angle Slot (SAS) divertor concept exploits the role of neutral trapping to exhaust power and particles at lower core densities than even highly slanted divertors. The special SAS baffling structure enhances volumetric power and momentum losses across the entire target profile, flattening temperatures even in the far SOL. SOLPS characterizes SAS heat and temperature handling for a spectrum of plasma and neutral source conditions, varying ne,sep, PSOL, heat flux width, gas puffing rates and locations, and pumping rates. Certain aspects of the baffling structure were also systematically varied to observe the effect on the neutral dynamics, particularly pressure gradients in D2 near the target. Radial transport coefficients were controlled to match midplane profiles to experimental H-mode profiles. The SAS divertor is an excellent testbed for probing the interplay between plasma and neutrals at the onset of detachment. The SAS concept is developed under General Atomics corporate funding.

  11. Moving Divertor Plates in a Tokamak

    SciTech Connect

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  12. Cryogenic coolers and refrigerators. (Latest citations from the Patent Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  13. Cryogenic coolers and refrigerators. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  14. Cryogenic processes and equipment - 1984; Proceedings of the Fifth Intersociety Cryogenics Symposium, New Orleans, LA, December 9-14, 1984

    NASA Astrophysics Data System (ADS)

    Kerney, P. J.; Chatterjee, N.; Crawford, D. B.; El-Masri, M.

    The topics of cryogenic processes for LNG and EOR, cryogenic refrigerators, components for cryogenic systems, liquid hydrogen as a fuel, cryogenic processes and equipment for large systems, and cryogenic thermodynamics and heat transfer are discussed. The papers include analysis of process efficiency for baseload LNG production, process efficiency considerations for nitrogen rejection units, design and performance analysis of gas sorption compressors, cryogenic vacuum pump design, and the hydrogen-fueled hydrogen transport rail system (a NASA proposal). In addition, refueling considerations for liquid hydrogen-fueled vehicles, variable oxygen supply systems, and orientation dependence to liquid helium heat transfer from a cable-in-channel configuration are considered.

  15. Initial Results of Local Island Divertor Experiments in the Large Helical Device

    SciTech Connect

    Komori, Akio; Morisaki, Tomohiro; Masuzaki, Suguru

    2004-07-15

    A local island divertor (LID) experiment has begun in the Large Helical Device (LHD) to demonstrate improved plasma confinement, and fundamental LID functions were demonstrated in the sixth experimental campaign in 2002-2003. It was clearly shown that when an m/n = 1/1 island is generated by adding a resonant perturbation field to the LHD magnetic configuration, the particle flow is guided along the island separatrix to the backside of the island, where carbon plates are located on a divertor head. The particles recycled there are pumped out efficiently so that the line-averaged core plasma density is reduced by a factor of {approx}2 at the same gas puff rate, compared with non-LID discharges. Obvious improvement of the global plasma confinement was, however, not observed yet, because the discharge could not be optimized, due to a large amount of outgas from the divertor head to the core plasma. The size of the divertor head was found to be larger than the optimum one; hence, the core plasma impacted slightly on the core plasma-facing portion of the divertor head with which the core plasma was not expected to collide.

  16. Ames Research Center cryogenics program

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1987-01-01

    Viewgraphs describe the Ames Research Center's cryogenics program. Diagrams are given of a fluid management system, a centrifugal pump, a flow meter, a liquid helium test facility, an extra-vehicular activity coupler concept, a dewar support with passive orbital disconnect, a pulse tube refrigerator, a dilution refrigerator, and an adiabatic demagnetization cooler.

  17. Rapidly Moving Divertor Plates In A Tokamak

    SciTech Connect

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  18. DIII-D divertor reflectometer system

    SciTech Connect

    Rhodes, T.L.; Doyle, E.J.; Nguyen, X.V.; Kim, K.W.; Peebles, W.A.; Doane, J.L.

    1997-01-01

    Divertor density profiles, asymmetries, turbulence, and MARFE diagnosis are extremely important and affect the divertor design process for ITER and other future devices. In addition, a functioning divertor density profile system will be essential for the operation of these machines. It is thus critical to prototype and demonstrate diagnostics capable of operating in a divertor environment. To meet these needs a divertor reflectometer system has been designed and installed on DIII-D. The design stresses flexibility, modularity, and simplicity. It consists of a circular, smoothwall, overmoded waveguide followed by a TE{sub 11}{R_arrow}HE{sub 11} mode converter (the HE{sub 11} mode is a low loss Gaussian mode with a very symmetric radiation pattern, optimal for this use) thus allowing use of an arbitrary polarization (f{sub pe},f{sub LH},f{sub RH}). The design provides for testing of a variety of antennas/probing directions including: upward to probe the X-point region, including MARFEs, sideways to probe outboard/inboard divertor legs, and oppositely directed to probe both divertor legs simultaneously. System design, operational considerations, and experimental data are presented. {copyright} {ital 1997 American Institute of Physics.}

  19. Advanced Divertor Developments at DIII-D

    NASA Astrophysics Data System (ADS)

    Kolemen, E.; Allen, S. L.; Makowski, M. A.; Soukhanovskii, V. A.; Bray, B. D.; Eldon, D.; Humphreys, D. A.; Johnson, R.; Leonard, A. W.; Liu, C.; Penaflor, B. G.; Petrie, T. W.; McLean, A. G.; Unterberg, E. A.

    2013-10-01

    Novel divertor configurations and control schemes have been implemented at DIII-D to test and optimize heat and particle handling capabilities for advanced tokamaks. The snowflake configuration is stabilized by first calculating the position of the two null-points using real-time equilibrium reconstruction and then regulating the shaping coil currents. Experiments in which the snowflake divertor is stabilized for many confinement times show that it is compatible with high-performance operation and results in greatly reduced divertor heat flux. An advanced divertor control system regulates the gas injection to achieve partial or full detachment by using the divertor temperature measurements from real-time Thomson diagnostics and a line ratio measurement, and adjusts the core and divertor radiation via measurement of the real-time bolometer diagnostics. Prospects of achieving acceptable divertor target heat fluxes for future fusion reactors are analyzed and challenges are presented. Work supported by the US DOE under DE-AC02-09CH11466, DE-AC52-07NA27344, DE-FC02-04ER54698 and DE-AC05-00OR22725.

  20. Dust divertor for a tokamak fusion reactor

    SciTech Connect

    Tang, X Z; Delzanno, G L

    2009-01-01

    Micron-size tungsten particulates find equilibrium position in the magnetized plasma sheath in the normal direction of the divertor surface, but are convected poloidally and toroidally by the sonic-ion-flow drag parallel to the divertor surface. The natural circulation of dust particles in the magnetized plasma sheath can be used to set up a flowing dust shield that absorbs and exhausts most of the tokamak heat flux to the divertor. The size of the particulates and the choice of materials offer substantial room for optimization.

  1. Design of divertor plate and measurements of double-null open divertor plasma in the JFT-2M tokamak

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Ichiro; Shoji, Teruaki; Mori, Masahiro; Odajima, Kazuo; Ohtsuka, Hideo; Suzuki, Norio; Hasegawa, Mitsuru; Ohta, Kanji; Sugihara, Masayoshi; Uesugi, Yoshihiko

    1987-10-01

    The Design of the divertor plate, the results of the computational simulation and the experimental results on the compact diverter of the JFT-2 tokamak are described. Graphite divertor plates have showed a good performance as divertor target materials through divertor discharges. The H-mode plasma and low temperature, high density divertor plasma are obtained. From computational results, this is in the intermediate region between low and high recycling region.

  2. Cryogenic Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Louie, B.; Kemp, N. J.; Daney, D. E.

    1985-01-01

    A detailed description of a computer model that has been developed for assessing the feasibility of low g cryogen propellant scavenging from the space shuttle External Tank (ET) is given. Either pump-assisted or pressure-induced propellant transfer may be selected. The program will accept a wide range of input variables, including the fuel to be transferred (LOX or LH2), heat leaks, tank temperatures, and piping and equipment specifications. The model has been parametrically analyzed to determine initial design specification for the system.

  3. Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2002-02-01

    In this lecture we discuss the principle of method of cooling to a very low temperature, i.e. cryogenic. The "gas molecular model" will be introduced to explain the mechanism cooling by the expansion engine and the Joule-Thomson expansion valve. These two expansion processes are normally used in helium refrigeration systems to cool the process gas to cryogenic temperature. The reverse Carnot cycle will be discussed in detail as an ideal refrigeration cycle. First the fundamental process of liquefaction and refrigeration cycles will be discussed, and then the practical helium refrigeration system. The process flow of the system and the key components; -compressor, expander, and heat exchanger- will be discussed. As an example of an actual refrigeration system, we will use the cryogenic system for the KEKB superconducting RF cavity. We will also discuss the liquid helium distribution system, which is very important, especially for the cryogenic systems used in accelerator applications. 1 Principles of Cooling and Fundamental Cooling Cycle 2 Expansion engine, Joule-Thomson expansion, kinetic molecular theory, and enthalpy 3 Liquefaction Systems 4 Refrigeration Systems 5 Practical helium liquefier/refrigeration system 6 Cryogenic System for TRISTAN Superconducting RF Cavity

  4. Fabrication and installation of the DIII-D radiative divertor structures

    SciTech Connect

    Hollerbach, M.A.; Smith, J.P.

    1997-11-01

    Phase 1A of the Radiative Divertor Program (RDP) is now installed in the DIII-D tokamak located at General Atomics. This hardware was added to enhance both the Divertor and Advanced Tokamak research elements of the DIII-D program. This installation consists of a divertor baffle enveloping a cryocondensation pump at the upper outer divertor target of DIII-D. The divertor baffle consists of two toroidally continuous Inconel 625 water-cooled rings and a toroidal array of discontinuous radiatively-cooled plates. The water-cooled rings are each comprised of four quadrants, mechanically formed, chem.-milled, and resistance and TIG welded Inconel 625 panels. The supports attaching the panels to the vessel wall are designed to accommodate the differential thermal expansion between the rings and vessel during bake and to react the electromagnetic loads induced during disruptions. They are made from either Inconel 625 or Inconel 718 depending on the stress levels predicted in Finite Element Analysis. Gas seals are designed to limit the leakage from the baffle chamber back to the core plasma to 2,500 {ell}/s and incorporate plasma sprayed alumina to minimize currents flowing through them. The bulk of the water-cooled ring fabrication was performed by a vendor, however, the final machining of penetrations in the conical ring for diagnostic access was performed in-house using a unique machining configuration. This configuration, and the machining of the diagnostic cutouts is described. Graphite tiles were machined from ATJ graphite to form a smooth plasma-facing surface. The installation of all divertor components required only four weeks.

  5. Edge plasma control by a local island divertor in the Compact Helical System

    SciTech Connect

    Komori, A.; Ohyabu, N.; Masuzaki, S.

    1997-12-31

    A local island divertor (LID) experiment was performed on the Compact Helical System (CHS) to demonstrate the principle of the LID. It was clearly demonstrated that the particle flow is controlled by adding a resonant perturbation field to the CHS magnetic configuration, and is guided to the back of an m/n = 1/1 island which is created by the perturbation field. The particles recycled there were pumped out with a pumping rate in the range from a few percent to about 10%. As a result, the line averaged core density was reduced by a factor of about 2 in comparison with non-LID discharges at the same gas puffing rate. In addition to the demonstration of these fundamental divertor functions, a modest improvement of energy confinement was observed, which could be attributed to the edge plasma control by the LID.

  6. Divertor interferometer diagnostic for ITER

    SciTech Connect

    Brower, D. L.; Deng, B. H.; Ding, W. X.

    2006-10-15

    In the harsh environment of the divertor region in ITER, plasmas spanning a huge density range from 10{sup 19} to 10{sup 22} m{sup -3} are anticipated making measurement of the electron density particularly challenging. For any reasonable wavelength choice, the total phase measured by a conventional two-color interferometer system is always >>2{pi} and therefore subject to fringe counting errors. This problem can be remedied by adding a polarimeter capability whereby the Cotton-Mouton effect is measured or by employing differential interferometry. Using either approach, the total phase is always <<2{pi}. The conceptual design of an interferometer system along with possible wavelength choices will be explored.

  7. Effect of Divertors in NCSX

    NASA Astrophysics Data System (ADS)

    Kaiser, Thomas B.; Hill, David N.

    2004-11-01

    We have used magnetic field data generated by the PIES 3D MHD equilibrium code (M50 coil set) and a new vacuum field code [1] together with the latest numerical model of the first wall [2] to compute wall heat-loading in the National Compact Stellarator Experiment (NCSX). Heat flow is traced by following field lines, with field-line diffusion used to mimic the effect of particle scattering, and the local heat flux estimated from the strike-point density of escaping field lines. This extends our earlier work [3] by including the effect of divertors, whose size, location and configuration are varied to minimize estimated wall damage. Error scaling of the field-line integrator is also presented. 1. Michael Drevlak, MPIPP, Greifswald, Germany, private communication 2. Art Brooks, PPPL, private communication. 3. T. B. Kaiser, et al, BAPPS 48, 304 (2003).

  8. High flux expansion divertor studies in NSTX

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Maqueda, R; Menard, J E; Mueller, D; Paul, S F; Raman, R; Roquemore, A L

    2009-06-29

    Projections for high-performance H-mode scenarios in spherical torus (ST)-based devices assume low electron collisionality for increased efficiency of the neutral beam current drive. At lower collisionality (lower density), the mitigation techniques based on induced divertor volumetric power and momentum losses may not be capable of reducing heat and material erosion to acceptable levels in a compact ST divertor. Divertor geometry can also be used to reduce high peak heat and particle fluxes by flaring a scrape-off layer (SOL) flux tube at the divertor plate, and by optimizing the angle at which the flux tube intersects the divertor plate, or reduce heat flow to the divertor by increasing the length of the flux tube. The recently proposed advanced divertor concepts [1, 2] take advantage of these geometry effects. In a high triangularity ST plasma configuration, the magnetic flux expansion at the divertor strike point (SP) is inherently high, leading to a reduction of heat and particle fluxes and a facilitated access to the outer SP detachment, as has been demonstrated recently in NSTX [3]. The natural synergy of the highly-shaped high-performance ST plasmas with beneficial divertor properties motivated a further systematic study of the high flux expansion divertor. The National Spherical Torus Experiment (NSTX) is a mid-sized device with the aspect ratio A = 1.3-1.5 [4]. In NSTX, the graphite tile divertor has an open horizontal plate geometry. The divertor magnetic configuration geometry was systematically changed in an experiment by either (1) changing the distance between the lower divertor X-point and the divertor plate (X-point height h{sub X}), or by (2) keeping the X-point height constant and increasing the outer SP radius. An initial analysis of the former experiment is presented below. Since in the divertor the poloidal field B{sub {theta}} strength is proportional to h{sub X}, the X-point height variation changed the divertor plasma wetted area due to

  9. Fusion plasma theory. Task 3: ECRH and transport modeling in tandem mirrors and divertor physics

    NASA Astrophysics Data System (ADS)

    Emmert, G. A.

    1984-06-01

    The research performed under Tank II of this contact has focused on: (1) the coupling of an ECRH ray tracing and absorption code to a tandem mirror transport code in order to self-consistently model the temporal and spatial evolution of the plasma, and (2) the further development of semi-analytical models for plasma flow in divertors and pumped limiters. Work on these topics is briefly summarized.

  10. ARIES-III divertor engineering design

    SciTech Connect

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.; Grotz, S.; Hasan, M.A.; Najmabadi, F.; Sharafat, S.; Brooks, J.N.; Ehst, D.A.; Sze, D.K.; Herring, J.S.; Valenti, M.; Steiner, D.

    1992-01-01

    This paper reports the engineering design of the ARIES-III double- null divertor. The divertor coolant tubes are made from W-3Re alloy and cooled by subcooled flow boiling of organic coolant. A coating of 4 mm thick tungsten is plasma sprayed onto the divertor surface. This W layer can withstand the thermal deposition of a few disruptions. At a maximum surface heat flux of 5.4 MW/m{sup 2}, a conventional divertor design can be used. The divertor surface is contoured to have a constant heat flux of 5.4 MW/m{sup 2}. The net erosion of the W-surface was found to be negligible at about 0.1 mm/year. After 3 years of operation, the W-3Re alloy ARIES-III divertor can be disposed of as Class A waste. In order to control the prompt dose release at site boundary to less than 200 Rem, isotopic tailoring of the W-alloy will be needed.

  11. Divertor experiment in large helical device

    NASA Astrophysics Data System (ADS)

    Motojima, O.; Ohyabu, N.; Komori, A.; Noda, N.; Yamazaki, K.; Yamada, H.; Sagara, A.; Kubota, Y.; Suzuki, H.; Inoue, N.; Morisaki, T.; Masuzaki, S.; Sakamoto, R.; Matsuoka, K.; Fujiwara, M.; Iiyoshi, A.

    1996-12-01

    This paper describes the major objectives of the LHD divertor experiment which is proposed to produce currentless-steady-state plasmas with high performance and without any current disruption. Since further improvement in confinement is a common and general requirement for fusion research including the LHD project, it is also necessary to develop the edge plasma control techniques and to understand the physical behaviour in the LHD divertor, i.e. the newly developed continuous helical divertor and a local island divertor (LID) concepts. In order to achieve these objectives, there were several key issues in physics and technology, which had to be resolved through careful investigation before the LHD experiment could start. In this paper, we summarize the recent progress of the physics understanding of divertor functions, divertor plasma operation scenarios, and properties of the LHD magnetic field structure in addition to the experimental planning. We also describe the recent result of an LID experiment in the CHS device, which demonstrated the possibility of edge particle and heat control by the LID.

  12. Recent DIII-D divertor research

    SciTech Connect

    Allen, S.L.; Bozek, A.S.; Brooks, N.H.

    1995-07-01

    DIII-D currently operates with a single- or double-null open divertor and graphite walls. Active particle control with a divertor cryopump has demonstrated density control, efficient helium exhaust, and reduction of the inventory of particles in the wall. Gas puffing of D{sub 2} and impurities has demonstrated reduction of the peak divertor beat flux by factors of 3--5 by radiation. A combination of active cryopumping and feedback-controlled D{sub 2} gas puffing has produced similar divertor heat flux reduction with density control. Experiments with neon puffing have shown that the radiation is equally-divided between a localized zone near the X-point and a mantle around the plasma core. The density in these experiments has also been controlled with cryopumping. These experimental results combined with modeling were used to develop the new Radiative Divertor for DIII-D. This is a double-null slot divertor with four cryopumps to provide particle control and neutral shielding for high-triangularity advanced tokamak discharges. UEDGE and DEGAS simulations, benchmarked to experimental data, have been used to optimize the design.

  13. Pumping Characteristics of the DIII-D Cryopump

    SciTech Connect

    A.S. Bozek; C.B. Baxi; R.W. Callis; M.A. Mahdavi; R.C. O'Neill; E.E. Reis

    1999-11-01

    Beginning in 1992, the first of the DIII-D divertor baffles and cryocondensation pumps was installed. This open divertor configuration, located on the outermost floor of the DIII-D vessel, includes a cryopump with a predicted pumping speed of 50,000 {ell}/s excluding obstructions such as support hardware. Taking the pump structural and support characteristics into consideration, the corrected pumping speed for D{sub 2} is 30,000 {ell}/s [1]. In 1996, the second divertor baffle and cryopump were installed. This closed divertor structure, located on the outermost ceiling of the DIII-D vessel, has a cryopump with a predicted pumping speed of 32,000 {ell}/s. In the fall of 1999, the third divertor baffle and cryopump will be installed. This divertor structure will be located on the 45{sup o} angled corner on the innermost ceiling of the DIII-D vessel, known as the private flux region of the plasma configuration. With hardware supports factored into the pumping speed calculation, the private flux cryopump is expected to have a pumping speed of 15,000 {ell}/s. There was question regarding the effectiveness of the private flux cryopump due to the close proximity of the private flux baffle. This led to a conductance calculation study of the impact of rotating the cryopump aperture by 180{sup o} to allow for greater particle and gas exhaust into the cryopump's helium panel. This study concluded that the cost and schedule impact of changing the private flux cryopump orientation and design did not warrant the possible 20% (3,000 {ell}/s) increase in pumping ability gained by rotating the cryopump aperture 180{sup o}. The comparison of pumping speed of the first two cryocondensation pumps with the measured results will be presented as well as the calculation of the pumping speed for the private flux cryopump now being installed.

  14. Cryogenic shutter

    NASA Technical Reports Server (NTRS)

    Barney, Richard D. (Inventor); Magner, Thomas J. (Inventor)

    1991-01-01

    A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also termally connected to a reservoir containing the cryogen to further reduce the internal temperature.

  15. Cryogenic shutter

    NASA Technical Reports Server (NTRS)

    Barney, Richard D. (Inventor); Magner, Thomas J. (Inventor)

    1992-01-01

    A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also thermally connected to a reservoir containing cryogen to further reduce the internal temperature.

  16. Cryogenic coolers and refrigerators. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Cryogenic coolers and refrigerators. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1997-04-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Cryogenic coolers and refrigerators. (Latest citations from the US Patent bibliographic file with exemplary claims). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  19. Cryogenic needs for future tokamaks

    NASA Astrophysics Data System (ADS)

    Katheder, H.

    The ITER tokamak is a machine using superconducting magnets. The windings of these magnets will be subjected to high heat loads resulting from a combination of nuclear energy absorption and AC-losses. It is estimated that about 100 kW at 4.5 K are needed. The total cooling mass flow rate will be around 10 - 15 kg/s. In addition to the large cryogenic power required for the superconducting magnets cryogenic power is also needed for refrigerated radiation shield, various cryopumps, fuel processing and test beds. A general description of the overall layout and the envisaged refrigerator cycle, necessary cold pumps and ancillary equipment is given. The basic cryogenic layout for the ITER tokakmak design, as developed during the conceptual design phase and a short overview about existing tokamak designs using superconducting magnets is given.

  20. Predictive modelling for EAST divertor operation

    NASA Astrophysics Data System (ADS)

    Chen, YiPing

    2011-06-01

    The predictive modelling study of the divertor operation in EAST tokamak [B. Wan et al., Nucl. Fusion 49, 104011 (2009)] with double null (DN) configuration is carried out by using the two-dimensional edge plasma code B2.5-SOLPS5.0 [D. P. Coster, X. Bonnin et al., J. Nucl. Mater. 337-339, 366 (2005)]. The modelling study includes the particle and power balance in the scrape-off-layer (SOL), the operation parameters of plasma density, temperature and plasma heat fluxes at the separatrix, the target plates and the wall, and the effect of the gas puffing, drifts, and vertical target plate on the divertor operation. The fluid model for the edge plasma is applied using the real magnetohydrodynamic (MHD) equilibrium from the MHD equilibrium code EFIT [L. L. Lao et al., Nucl. Fusion 25, 1611 (1985)] and the real divertor geometry in the device. Before EAST tokamak starts its experimental programme of divertor operation, the modelling plays an important role in the design of its experimental programme and the optimization of the divertor operation parameters. Based on the modelling results, EAST divertor can operate over a large wide of plasma parameters with different regimes. For a heating power of 8 MW and an edge density at core-SOL interface Nedge = 0.8 × 10191/m3 and Nedge = 1.3 × 10191/m3, the EAST divertor begins access to the high recycling operation regime at the outer and inner target plates, respectively, where the plasma temperature and the heat fluxes at the target plates decrease. The gas puffing can increase the plasma density at the separatrix and trigger the transition from the high recycling operation into detachment at the target plates. When E × B and B × ▿B drifts are taken into account, the asymmetry of plasma parameters and heat fluxes between up-down SOLs can be found. The vertical target plate in EAST divertor can reduce the peak values of heat fluxes at the target plate and enables detachment at lower plasma density. The divertor with the

  1. Predictive modelling for EAST divertor operation

    SciTech Connect

    Chen Yiping

    2011-06-15

    The predictive modelling study of the divertor operation in EAST tokamak [B. Wan et al., Nucl. Fusion 49, 104011 (2009)] with double null (DN) configuration is carried out by using the two-dimensional edge plasma code B2.5-SOLPS5.0 [D. P. Coster, X. Bonnin et al., J. Nucl. Mater. 337-339, 366 (2005)]. The modelling study includes the particle and power balance in the scrape-off-layer (SOL), the operation parameters of plasma density, temperature and plasma heat fluxes at the separatrix, the target plates and the wall, and the effect of the gas puffing, drifts, and vertical target plate on the divertor operation. The fluid model for the edge plasma is applied using the real magnetohydrodynamic (MHD) equilibrium from the MHD equilibrium code EFIT [L. L. Lao et al., Nucl. Fusion 25, 1611 (1985)] and the real divertor geometry in the device. Before EAST tokamak starts its experimental programme of divertor operation, the modelling plays an important role in the design of its experimental programme and the optimization of the divertor operation parameters. Based on the modelling results, EAST divertor can operate over a large wide of plasma parameters with different regimes. For a heating power of 8 MW and an edge density at core-SOL interface N{sub edge} = 0.8 x 10{sup 19}1/m{sup 3} and N{sub edge} = 1.3 x 10{sup 19}1/m{sup 3}, the EAST divertor begins access to the high recycling operation regime at the outer and inner target plates, respectively, where the plasma temperature and the heat fluxes at the target plates decrease. The gas puffing can increase the plasma density at the separatrix and trigger the transition from the high recycling operation into detachment at the target plates. When E x B and B x {nabla}B drifts are taken into account, the asymmetry of plasma parameters and heat fluxes between up-down SOLs can be found. The vertical target plate in EAST divertor can reduce the peak values of heat fluxes at the target plate and enables detachment at lower

  2. Snowflake divertor configuration studies in National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V. A.; McLean, A. G.; Rognlien, T. D.; Ryutov, D. D.; Umansky, M. V.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B. P.; Menard, J. E.; Paul, S. F.; Podesta, M.; Roquemore, A. L.; Scotti, F.; Battaglia, D.; Bell, M. G.; Gates, D. A.; Kaita, R.; and others

    2012-08-15

    Experimental results from NSTX indicate that the snowflake divertor (D. Ryutov, Phys. Plasmas 14, 064502 (2007)) may be a viable solution for outstanding tokamak plasma-material interface issues. Steady-state handling of divertor heat flux and divertor plate erosion remains to be critical issues for ITER and future concept devices based on conventional and spherical tokamak geometry with high power density divertors. Experiments conducted in 4-6 MW NBI-heated H-mode plasmas in NSTX demonstrated that the snowflake divertor is compatible with high-confinement core plasma operation, while being very effective in steady-state divertor heat flux mitigation and impurity reduction. A steady-state snowflake divertor was obtained in recent NSTX experiments for up to 600 ms using three divertor magnetic coils. The high magnetic flux expansion region of the scrape-off layer (SOL) spanning up to 50% of the SOL width {lambda}{sub q} was partially detached in the snowflake divertor. In the detached zone, the heat flux profile flattened and decreased to 0.5-1 MW/m{sup 2} (from 4-7 MW/m{sup 2} in the standard divertor) indicative of radiative heating. An up to 50% increase in divertor, P{sub rad} in the snowflake divertor was accompanied by broadening of the intrinsic C III and C IV radiation zones, and a nearly order of magnitude increase in divertor high-n Balmer line emission indicative of volumetric recombination onset. Magnetic reconstructions showed that the x-point connection length, divertor plasma-wetted area and divertor volume, all critical parameters for geometric reduction of deposited heat flux, and increased volumetric divertor losses were significantly increased in the snowflake divertor, as expected from theory.

  3. Particle exhaust schemes in the DIII-D advanced divertor configuration

    SciTech Connect

    Menon, M.M.; Mioduszewski, P.K.

    1989-01-01

    For density control in long-pulse operation, the open divertor on the DIII-D tokamak will be equipped with a baffled chamber and a pumping system. The throat of the baffle chamber is sized to provide optimal pumping for the typical plasma equilibrium configuration. Severe limitations on the toroidal conductance of this baffle chamber require the use of in-vessel pumping to achieve the desired particle exhaust of about 25 Torr{center dot}l/s. Two separate pumping schemes are considered: an array of titanium getter modules based on the design developed by the Tore Supra team and a cryocondensation pump. The merits and demerits of each scheme are analyzed, and the design considerations introduced by the tokamak environment are brought out. 3 refs., 5 figs.

  4. Poloidal divertor experiment with applied E vector x B vector/B/sup 2/ drift

    SciTech Connect

    Strait, E J

    1980-05-01

    It has been proposed that the E vector x B vector/B/sup 2/ drift arising from an externally applied electric field could be used in a tokamak or other toroidal device to remove plasma and impurities from the region near the wall and to reduce the amount of plasma striking the wall, either assisting or replacing a conventional magnetic field divertor. A poloidal magnetic divertor (without pumping chamber) was added to the Wisconsin Levitated Toroidal Octupole, and the octupole was operated with a tokamak-like magnetic field configuration (q = 0.7). A radial electric field was applied in the scrape-off zone, causing an E vector x B vector/B/sup 2/ drift with a large poloidal component. This reduced plasma flux reaching the wall of the toroid by up to a factor of 5 beyond the effect of the magnetic divertor, for divertor configurations with both high and low magnetic mirror ratios, in good agreement with a simple theoretical model. Plasma density and density scale length were also reduced in the scrape-off zone, in qualitative agreement with the model. This was not accompanied by any new instabilities in the scrape-off zone, nor by any appreciable degradation of confinement of the central plasma.

  5. Divertor heat loads in RMP ELM controlled H-mode plasmas on DIII-D*

    SciTech Connect

    Jakubowski, M; Lasnier, C; Schmitz, O; Evans, T; Fenstermacher, M; Groth, M; Watkins, J; Eich, T; Moyer, R; Wolf, R; Baylor, L; Boedo, J; Burrell, K; Frerichs, H; deGrassie, J; Gohil, P; Joseph, I; Lehnen, M; Leonard, A; Petty, C; Pinsker, R; Reiter, D; Rhodes, T; Samm, U; Snyder, P; Stoschus, H; Osborne, T; Unterberg, B; West, W

    2008-10-13

    In this paper the manipulation of power deposition on divertor targets at DIII-D by application of resonant magnetic perturbations (RMPs) is analyzed. It has been found that heat transport shows a different reaction to the applied RMP depending on the plasma pedestal collisionality. At pedestal electron collisionality above 0.5 the heat flux during the ELM suppressed phase is of the same order as the inter-ELM in the non-RMP phase. Below this collisionality value we observe a slight increase of the total power flux to the divertor. This can be caused by much more negative potential at the divertor surface due to hot electrons reaching the divertor surface from the pedestal area and/or so called pump out effect. In the second part we discuss modification of ELM behavior due to the RMP. It is shown, that the width of the deposition pattern in ELMy H-mode depends linearly on the ELM deposited energy, whereas in the RMP phase of the discharge those patterns seem to be controlled by the externally induced magnetic perturbation. D{sub 2} pellets injected into the plasma bulk during ELM-free RMP H-mode lead in some cases to a short term small transients, which have very similar properties to ELMs in the initial RMP-on phase.

  6. ELM heat flux in the ITER divertor

    SciTech Connect

    Leonard, A.W.; Osborne, T.H.; Hermann, A.; Suttrop, W.; Itami, K.; Lingertat, J.; Loarte, A.

    1998-07-01

    Edge-Localized-Modes (ELMs) have the potential to produce unacceptable levels of erosion of the ITER divertor. Ablation of the carbon divertor target will occur if the surface temperature rises above about 2,500 C. Because a large number of ELMs, {ge}1000, are expected in each discharge it is important that the surface temperature rise due to an individual ELM remain below this threshold. Calculations that have been carried out for the ITER carbon divertor target indicate ablation will occur for ELM energy {ge}0.5MJ/m{sup 2} if it is deposited in 0.1 ms, or 1.2 MJ/m{sup 2} if the deposition time is 1.0 ms. Since {Delta}T{proportional_to}Q{Delta}t{sup {minus}1/2}, an ablation threshold can be estimated at Q{Delta}t{sup {minus}1/2}{approx}45 MJm{sup {minus}2} s{sup {minus}1/2} where Q is the divertor ELM energy density in J-m{sup {minus}2} and {Delta}t is the time in seconds for that deposition. If a significant fraction of ELMs exceed this threshold then an unacceptable level of erosion may take place. The ablation parameter in ITER can be determined by scaling four factors from present experiments: the ELM energy loss from the core plasma, the fraction of ELM energy deposited on the divertor target, the area of the ELM profile onto the target, and the time for the ELM deposition. ELM data from JET, ASDEX-Upgrade, JT-60U, DIII-D and Compass-D have been assembled by the ITER Divertor Modeling and Database expert group into a database for the purpose of predicting these factors for ELMs in the ITER divertor.

  7. A "Snowflake" Divertor and its Properties

    SciTech Connect

    Ryutov, D

    2007-06-21

    Handling the power and particle exhaust in fusion reactors based on tokamaks is a challenging problem [1,2]. To bring the energy flux to the divertor plates to an acceptable level (< 10 MW/m2), it is desirable to significantly increase poloidal flux expansion in the divertor area. Some recent ideas include that of a so-called X divertor [3] and a 'snowflake' divertor [4]. We use an acronym SF to designate the latter. In this paper we concentrate on the SF divertor. The general idea behind this configuration is that, by a proper selection of divertor (poloidal field) coils, one can make the null point of the second, not of the first order as in the standard divertor. The separatrix in the vicinity of the X point then acquires a characteristic hexapole structure (Fig. 1), reminiscent of a snowflake, whence the name. The fact that the field has a second-order null, leads to a significant increase of the flux expansion. It was noted in Ref. [4] that the SF configuration is topologically unstable: if the current in the divertor coils is somewhat higher than the one that provides the SF configuration, it becomes a single-null X-point configuration. Conversely, if the coil current becomes somewhat lower, there appear two separate X-points. To solve this problem, one can operate the divertor at the current by roughly 5% higher than the value needed to create the second-order null. Then, configuration becomes robust enough and the shape of the separatrix does not change significantly if the coil current varies by 2-3%. At the same time, the flux expansion still remained by a factor of {approx}3 larger compared to a 'canonical' divertor. Following Ref. [4], we call this configuration a 'SF-plus' configuration. Specific examples in Ref. [4] were given for simple magnetic geometries The aim of this paper is to demonstrate that the SF concept will also work for a strongly shaped plasma. The other set of issues considered in the present paper relates to the possible presence of

  8. CRYOGENIC MAGNETS

    DOEpatents

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  9. Impurity-induced divertor plasma oscillations

    SciTech Connect

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  10. Impurity-induced divertor plasma oscillations

    SciTech Connect

    Smirnov, R. D. Krasheninnikov, S. I.; Pigarov, A. Yu.; Kukushkin, A. S.; Rognlien, T. D.

    2016-01-15

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  11. Plasma power recycling at the divertor surface

    SciTech Connect

    Tang, Xian -Zhu; Guo, Zehua

    2016-12-03

    With a divertor made of solid materials like carbon and tungsten, plasma ions are expected to be recycled at the divertor surface with a time-averaged particle recycling coefficient very close to unity in steady-state operation. This means that almost every plasma ion (hydrogen and helium) will be returned to the plasma, mostly as neutrals. The power flux deposited by the plasma on the divertor surface, on the other hand, can have varying recycling characteristics depending on the material choice of the divertor; the run-time atomic composition of the surface, which can be modified by material mix due to impurity migration in the chamber; and the surface morphology change over time. In general, a high-Z–material (such as tungsten) surface tends to reflect light ions and produce stronger power recycling, while a low-Z–material (such as carbon) surface tends to have a larger sticking coefficient for light ions and hence lower power recycling. Here, an explicit constraint on target plasma density and temperature is derived from the truncated bi-Maxwellian sheath model, in relation to the absorbed power load and power recycling coefficient at the divertor surface. Lastly, it is shown that because of the surface recombination energy flux, the attached plasma has a sharper response to power recycling in comparison to a detached plasma.

  12. Impurity-induced divertor plasma oscillations

    DOE PAGES

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; ...

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  13. Plasma power recycling at the divertor surface

    DOE PAGES

    Tang, Xian -Zhu; Guo, Zehua

    2016-12-03

    With a divertor made of solid materials like carbon and tungsten, plasma ions are expected to be recycled at the divertor surface with a time-averaged particle recycling coefficient very close to unity in steady-state operation. This means that almost every plasma ion (hydrogen and helium) will be returned to the plasma, mostly as neutrals. The power flux deposited by the plasma on the divertor surface, on the other hand, can have varying recycling characteristics depending on the material choice of the divertor; the run-time atomic composition of the surface, which can be modified by material mix due to impurity migrationmore » in the chamber; and the surface morphology change over time. In general, a high-Z–material (such as tungsten) surface tends to reflect light ions and produce stronger power recycling, while a low-Z–material (such as carbon) surface tends to have a larger sticking coefficient for light ions and hence lower power recycling. Here, an explicit constraint on target plasma density and temperature is derived from the truncated bi-Maxwellian sheath model, in relation to the absorbed power load and power recycling coefficient at the divertor surface. Lastly, it is shown that because of the surface recombination energy flux, the attached plasma has a sharper response to power recycling in comparison to a detached plasma.« less

  14. Impurity-induced divertor plasma oscillations

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-01

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  15. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  16. A design method of divertor in tokamak reactors

    NASA Astrophysics Data System (ADS)

    Ueda, N.; Itoh, S.-I.; Tanaka, M.; Itoh, K.

    1990-08-01

    Computational method to design the efficient divertor configuration in tokamak reactor is presented. The two dimensional code was developed to analyze the distributions of the plasma and neutral particles for realistic configurations. Using this code, a method to design the efficient divertor configuration is developed. An example of new divertor, which consists of the baffle and fin plates, is analyzed.

  17. Advances in cryogenic engineering. Vols. 37A & 37B - Proceedings of the 1991 Cryogenic Engineering Conference, Univ. of Alabama, Huntsville, June 11-14, 1991

    NASA Technical Reports Server (NTRS)

    Fast, Ronald W. (Editor)

    1991-01-01

    The present volume on advances in cryogenic engineering discusses heat and mass transfer in helium, heat transfer in cryogenic fluids, thermoacoustic oscillations, and insulation. Attention is given to applications of superconductivity with reference to magnetic stability and coil protection, cryogenic techniques, and refrigeration for electronics and superconducting systems. Topics addressed include compressors, expanders, and pumps for liquid helium, magnetic refrigerators, pulse tube refrigerators, and cryocoolers. Also examined are properties of cryogenic fluids, cryogenic applications in transportion and space science and technology, and cryogenic instrumentation.

  18. Designing divertor targets for uniform power load

    NASA Astrophysics Data System (ADS)

    Dekeyser, W.; Reiter, D.; Baelmans, M.

    2015-08-01

    Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.

  19. Liquid metal cooled divertor for ARIES

    SciTech Connect

    Muraviev, E.

    1995-01-01

    A liquid metal, Ga-cooled divertor design was completed for the double null ARIES-II divertor design. The design analysis indicated a surface heat flux removal capability of up to 15 MW/m{sup 2}, and its relative easy maintenance. Design issues of configuration, thermal hydraulics, thermal stresses, liquid metal loop and safety effects were evaluated. For coolant flow control, it was found that it is necessary to use some part of the blanket cooling ducts for the draining of liquid metal from the top divertor. In order to minimize the inventory of Ga, it was recommended that the liquid metal loop equipment should be located as close to the torus as possible. More detailed analysis of transient conditions especially under accident conditions was identified as an issue that will need to be addressed.

  20. Liquid Surface Divertor Designs for Fusion Reactors

    SciTech Connect

    Nygren, R; Rognlien, T; Rensink, M

    2003-11-11

    As part of work in the US on free flowing liquid surfaces facing the plasma, we are studying issues of integrating a liquid surface divertor into a configuration based upon an advanced tokamak (ARIES-RS). The simplest form of such a divertor is to extend the flow of the liquid first wall and avoid introducing any separate fluid streams. A design and some of the issues in design integration are presented for a divertor (and first wall) with the molten salt Flinabe, a mixture of lithium and sodium fluorides. Thermal performance and the interactions with the plasma edge are treated. Sn and Sn-Li have also been considered, although the complicated 3-D MHD flows cannot yet be fully modeled.

  1. Cryogenic seal concept for static and dynamic conditions

    NASA Technical Reports Server (NTRS)

    De Gaetano, E. A.

    1968-01-01

    Seal rings reduce cryogenic pump seal leakage under static and dynamic conditions. The rings are fitted into annular diaphragms, which are affected by cryogenic pressure and temperature, to move against a mating ring, to increase seal-bearing loads under static conditions.

  2. Fast pressure measurements of the local island divertor on the compact helical system

    SciTech Connect

    Lyon, J.F.; Klepper, C.C.; England, A.C.

    1997-08-01

    Development of an effective divertor is critical for the viability of the stellarator (helical system) concept. In the local island divertor (LID) concept particle and heat fluxes are channeled to the back of the LID head by the magnetic field structure of an externally produced m = 1, n = I island that is outside the last closed flux surface. The leading edge of the LID head is protected from the outward heat flux from the plasma because it is located inside the 1/1 island and the particles that strike the target plates on the back of the LID head in the throat of the LID pump module are then pumped efficiently. A set of 16 coils was used to create a 1/1 island in the Compact Helical System (CHS). The current (I{sub LID}) in the LID coils was chosen to position either the 0-point or the X-point of the external 1/1 magnetic island at the location of the LID head. The principal diagnostic in this study was an ASDEX-style ionization gauge that allowed fast ({approx}1-ms) measurements of the neutral pressure buildup behind the divertor head in the LID module.

  3. Utilization of vanadium alloys in the DIII-D Radiative Divertor Program

    SciTech Connect

    Smith, J.P.; Johnson, W.R.; Stambaugh, R.D.; Trester, P.W.; Smith, D.; Bloom, E.

    1995-10-01

    Vanadium alloys are attractive candidate structural materials for fusion power plants because of their potential for minimum environmental impact due to low neutron activation and rapid activation decay. They also possess favorable material properties for operation in a fusion environment. General Atomics (GA), in conjunction with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL), has developed a plan for the utilization of vanadium alloys as part of the Radiative Divertor (RD) upgrade for the DIII-D tokamak. The plan will be carried out in conjunction with General Atomics and the Materials Program of the US Department of Energy (DOE). This application of a vanadium alloy will provide a meaningful step in the development of advanced materials for fusion power devices by: (1) developing necessary materials processing technology for the fabrication of large vanadium alloy components, and (2) demonstrating the in-service behavior of a vanadium alloy (V-4Cr-4Ti) in a tokamak environment. The program consists of three phases: first, small vanadium alloy coupon samples will be exposed in DIII-D at positions in the vessel floor and within the pumping plenum region of the existing divertor structure; second, a small vanadium alloy component will be installed in the existing divertor, and third, during the forthcoming Radiative Divertor modification, scheduled for completion in mid-1997, the upper section of the new double-null, slotted divertor will be fabricated from vanadium alloy product forms. This program also includes research and development (R and D) efforts to support fabrication development and to resolve key issues related to environmental effects.

  4. Experimental comparison of carbon and beryllium as divertor target materials in JET

    NASA Astrophysics Data System (ADS)

    Campbell, D. J.; JET Team

    1997-02-01

    The performance of carbon (CFC) and beryllium as divertor target materials has been investigated in the JET pumped divertor under a wide range of experimental conditions. In general, the characteristics of L- and H-mode plasmas on the two targets were very similar. The impurity content in the two cases was also similar and it is believed that carbon sputtered from plasma-facing components in the main chamber played a significant role in beryllium target experiments. The success of the target design was confirmed by the absence of carbon blooms and beryllium melting on tile edges. However, in a specific melt experiment designed to assess the behaviour of plasmas on molten and melted beryllium, little evidence of vapour shielding of the target was found and melt damage to a depth of 3 mm was observed.

  5. Small angle slot divertor concept for long pulse advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  6. Divertor-leg instability for finite beta and radially-tilted divertor plate

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Ryutov, D. D.

    2004-11-01

    Plasma in the divertor leg may experience a fast instability caused by sheath boundary conditions (BC). Perturbations cannot penetrate beyond the X point because of very strong shearing in its vicinity. Accordingly, this instability could increase cross-field transport in the divertor leg, and thereby reduce the heat load on the divertor plate, without having any appreciable negative effect on core plasma confinement. A way of describing the role of shearing in terms of the surface resistivity attributed to a ``control plane'' below the X point has recently been suggested (Contr. Plasma Phys., v. 44, p. 168, 2004). We use this BC, plus sheath BC at the divertor plate. We include effects of finite beta and of the radial tilt of the divertor plate. We optimize the radial tilt in order to maximize radial transport in divertor legs. We discuss experimental signatures of the instability: i) phase velocity and wave-numbers of the most unstable modes; ii) correlations between fluctuations of various parameters; and iii) the differences between fluctuations in the common and private flux regions.

  7. The tungsten divertor experiment at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Neu, R.; Asmussen, K.; Krieger, K.; Thoma, A.; Bosch, H.-S.; Deschka, S.; Dux, R.; Engelhardt, W.; García-Rosales, C.; Gruber, O.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Mertens, V.; Ryter, F.; Rohde, V.; Roth, J.; Sokoll, M.; Stäbler, A.; Suttrop, W.; Weinlich, M.; Zohm, H.; Alexander, M.; Becker, G.; Behler, K.; Behringer, K.; Behrisch, R.; Bergmann, A.; Bessenrodt-Weberpals, M.; Brambilla, M.; Brinkschulte, H.; Büchl, K.; Carlson, A.; Chodura, R.; Coster, D.; Cupido, L.; de Blank, H. J.; de Peña Hempel, S.; Drube, R.; Fahrbach, H.-U.; Feist, J.-H.; Feneberg, W.; Fiedler, S.; Franzen, P.; Fuchs, J. C.; Fußmann, G.; Gafert, J.; Gehre, O.; Gernhardt, J.; Haas, G.; Herppich, G.; Herrmann, W.; Hirsch, S.; Hoek, M.; Hoenen, F.; Hofmeister, F.; Hohenöcker, H.; Jacobi, D.; Junker, W.; Kardaun, O.; Kass, T.; Kollotzek, H.; Köppendörfer, W.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L. L.; Leuterer, F.; Manso, M. E.; Maraschek, M.; Mast, K.-F.; McCarthy, P.; Meisel, D.; Merkel, R.; Müller, H. W.; Münich, M.; Murmann, H.; Napiontek, B.; Neu, G.; Neuhauser, J.; Niethammer, M.; Noterdaeme, J.-M.; Pasch, E.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pitcher, C. S.; Poschenrieder, W.; Raupp, G.; Reinmüller, K.; Riedl, R.; Röhr, H.; Salzmann, H.; Sandmann, W.; Schilling, H.-B.; Schlögl, D.; Schneider, H.; Schneider, R.; Schneider, W.; Schramm, G.; Schweinzer, J.; Scott, B. D.; Seidel, U.; Serra, F.; Speth, E.; Silva, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ulrich, M.; Varela, P.; Verbeek, H.; Verplancke, Ph; Vollmer, O.; Wedler, H.; Wenzel, U.; Wesner, F.; Wolf, R.; Wunderlich, R.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.

    1996-12-01

    Tungsten-coated tiles, manufactured by plasma spray on graphite, were mounted in the divertor of the ASDEX Upgrade tokamak and cover almost 90% of the surface facing the plasma in the strike zone. Over 600 plasma discharges have been performed to date, around 300 of which were auxiliary heated with heating powers up to 10 MW. The production of tungsten in the divertor was monitored by a W I line at 400.8 nm. In the plasma centre an array of spectral lines at 5 nm emitted by ionization states around W XXX was measured. From the intensity of these lines the W content was derived. Under normal discharge conditions W-concentrations around 0741-3335/38/12A/013/img12 or even lower were found. The influence on the main plasma parameters was found to be negligible. The maximum concentrations observed decrease with increasing heating power. In several low power discharges accumulation of tungsten occurred and the temperature profile was flattened. The concentrations of the intrinsic impurities carbon and oxygen were comparable to the discharges with the graphite divertor. Furthermore, the density and the 0741-3335/38/12A/013/img13 limits remained unchanged and no negative influence on the energy confinement or on the H-mode threshold was found. Discharges with neon radiative cooling showed the same behaviour as in the graphite divertor case.

  8. Heat Load on Divertors in NCSX

    NASA Astrophysics Data System (ADS)

    Kaiser, T. B.; Hill, D. N.; Maingi, R.; Monticello, D.; Zarnstorff, M.; Grossman, A.

    2006-10-01

    We have continued our study[1-3] of the effect of divertors in NCSX, using magnetic field data generated by both the PIES and VMEC/MFBE equilibrium codes. Results for comparable equilibria from the two codes agree to within statistical uncertainty. We follow field lines from a surface just outside and conformal with the LCMS until they strike a divertor plate or the first wall, or exceed 1000m in length, with effects of particle scattering mimicked by field-line diffusion. Current candidate divertor designs efficiently collect field lines, allowing fewer than 0.1% to reach the wall. The sensitivity of localized power deposition, assumed to be proportional to the density of field- line strike-points, to adjustments in the divertor configuration is under investigation.1. T.B. Kaiser, et al, Bull. Am. Phys. Soc., 48, paper RP1-20, 2003.2. T.B. Kaiser, et al, Bull. Am. Phys. Soc., 49, paper PP1-73, 2004.3. R. Maingi, et al, EPS Conf. Rome, Italy, paper P5.116, 2006.

  9. Divertor target for magnetic containment device

    DOEpatents

    Luzzi, Jr., Theodore E.

    1982-01-01

    In a plasma containment device of a type having superconducting field coils for magnetically shaping the plasma into approximately the form of a torus, an improved divertor target for removing impurities from a "scrape off" region of the plasma comprises an array of water cooled swirl tubes onto which the scrape off flux is impinged. Impurities reflected from the divertor target are removed from the target region by a conventional vacuum getter system. The swirl tubes are oriented and spaced apart within the divertor region relative to the incident angle of the scrape off flux to cause only one side of each tube to be exposed to the flux to increase the burnout rating of the target. The divertor target plane is oriented relative to the plane of the path of the scrape off flux such that the maximum heat flux onto a swirl tube is less than the tube design flux. The containment device is used to contain the plasma of a tokamak fusion reactor and is applicable to other long pulse plasma containment systems.

  10. Solid beryllium tiles for the JET pumped divertor

    NASA Astrophysics Data System (ADS)

    Deksnis, Edward; Falter, Hans D.; Martin, D.; Massmann, P.; Pick, M.

    1993-02-01

    JET is the largest magnetically confined fusion experiment in operation today. Plasma facing components of JET made of solid beryllium have sustained for periods of up to 1 second localized fluxes of up to 25 W/mm2. In the new phase of operations foreseen for 1993 onwards peak heat fluxes of this magnitude will be swept across surfaces in contact with the plasma in order to reduce erosion and to increase the pulse length. Both low cycle (approximately 10 cycles) and high cycle (approximately 3 X 103 cycles) fatigue response of prototypes have been studied in a test-bed for heat loads in the range 13 - 25 W/mm2 and with peak strain rates of up to 1.5 mm/mm/sec.

  11. SCRF Cryogenic Operating Experience at FNPL

    NASA Astrophysics Data System (ADS)

    DeGraff, B.; Soyars, W.; Martinez, A.

    2006-04-01

    The Fermilab-NICADD Photoinjector Laboratory (FNPL), a photoelectron research and development beam line, has been operational since 1998. A single TESLA 9-cell superconducting RF cavity is operated in support of this accelerator system. The superfluid cryogenic system consists of a dewar-fed liquid helium supply with up to 2 g/s vacuum pumping capacity. Helium gas is recovered to the Tevatron cryogenic system. The photoinjector static load is about 2.5 W to 1.8 K, with a typical dynamic component of about 0.5 W. The capabilities, performance, operating experience, and reliability of this superfluid cryogenic system will be discussed. An auxiliary cryogenic system for testing bare superconducting RF cavities in a vertical dewar is also available, providing a steady state capacity of about 12 W at 1.8 K for testing.

  12. Divertor erosion in DIII-D

    SciTech Connect

    Whyte, D.G.; Bastasz, R.; Wampler, W.R.; Brooks, J.N.; West, W.P.; Wong, C.P.C.; Buzhinskij, O.I.; Opimach, I.V.

    1998-08-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point (OSP) of two divertor plasma conditions: attached (T{sub e} > 40 eV) ELMing plasmas, and detached (T{sub e} < 2 eV) ELMing plasmas. For the attached cases, the erosion rates exceed 10 cm/exposure-year, even with incident heat flux < 1 MW/m{sup 2}. In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood. In the attached cases, physical sputtering (with enhancement from self-sputtering and oblique incidence) is dominant, and the effective sputtering yield, Y, is greater than 10%. In ELM-free discharges, the total OSP net erosion rate is equal to the rate of carbon accumulation in the core plasma. For the detached divertor cases, the cold incident plasma eliminates physical sputtering. Attempts to measure chemically eroded hydrocarbon molecules spectroscopically indicate an upper limit of Y {le} 0.1% for the chemical sputtering yield. Net erosion is suppressed at the outer strike-point, which becomes a region of net redeposition ({approximately} 4 cm/exposure-year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux ({approximately} 50 MW/m{sup 2}) have very high net erosion rates at the OSP of an attached plasma ({approximately} 10 {micro}m/s > 1,000x erosion rate of aligned surfaces). Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor.

  13. Divertor Materials Evaluation System (DiMES)

    SciTech Connect

    Wong, C.P.; West, W.P.; Whyte, D.G.; Bastasz, R.J.; Brooks, J.; Wampler, W.R.

    1997-11-01

    The mission of the Divertor Materials Evaluation System (DiMES) in DIII-D is to establish an integrated data base from measurements in the divertor of a tokamak in order to address some of the ITER and fusion power reactor plasma material interaction issues. Carbon and metal coatings of Be, W, V, and Mo were exposed to the steady-state outer strike point on DIII-D for 4-18 s. These short exposure times ensure controlled exposure conditions, and the extensive arrays of DIII-D divertor diagnostics provide a well-characterized plasma for modeling efforts. Postexposure analysis provides a direct measure of surface material erosion rates and the amount of retained deuterium. For carbon, these results match closely with the results of accumulated carbon deposition and erosion, and the corresponding deuterium retention of long term exposure tiles in DIII-D. Deuterium retention of different materials was measured using the {sup 3}He(d,p) {sup 4}He nuclear reaction. For carbon, these measurements showed peak deuterium areal density of about 8 {times} 10 {sup 18} D/cm{sup 2} in a co-deposited layer about 6 {micro}m deep, mainly at the usually detached inboard divertor leg. That layer of carbon near the inner divertor strike point has an atomic saturation concentration of D/C {approx} 0.25, which is not significantly lower than the laboratory-measured saturation retention of 0.4. Under the carbon contaminated background plasma of DIII-D, metal coatings of Be, V, Mo, and W were exposed to the steady state outer strike point under ELMing and ELM-free H-mode discharges. The rate of material erosion and tritium retention were measured. As expected, W shows the lowest erosion rate at 0.1 nm/s and the lowest deuterium uptake.

  14. Cryogenic Wind Tunnels.

    DTIC Science & Technology

    1980-07-01

    CRYOGENIC WIND TUNNEL by J.D.CadweD 18 A CRYOGENIC TRANSONIC INTERMITTENT TUNNEL PROJECT: THE INDUCED -FLOW CRYOGENIC WIND-TUNNEL T2 AT ONERA/CERT by...CRYOGENIC TUNNELS The types of tunnel drive and test gas currently exploited in cryogenic wind tunnels include: Drive Test Gas fan nitrogen induced flow...reduce other heat fluxes. Other sources can arise from thermally induced oscillations under both storage and transfer con- ditions. 1.3 (c) Reduction

  15. CRYOGENIC DEWAR

    DOEpatents

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  16. Novel limiter pump topologies

    SciTech Connect

    Schultz, J.H.

    1981-01-01

    The use of limiter pumps as the principle plasma exhaust system of a magnetic confinement fusion device promises significant simplification, when compared to previously investigating divertor based systems. Further simplifications, such as the integration of the exhaust system with a radio frequency heating system and with the main reactor shield and structure are investigated below. The integrity of limiters in a reactor environment is threatened by many mechanisms, the most severe of which may be erosion by sputtering. Two novel topolgies are suggested which allow high erosion without limiter failure.

  17. The Lithium Vapor Box Divertor

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  18. Flute mode fluctuations in the divertor mirror cell

    SciTech Connect

    Katanuma, I.; Yagi, K.; Nakashima, Y.; Ichimura, M.; Imai, T.

    2010-03-15

    The computer code by reduced magnetohydrodynamic equations were made which can simulate the flute interchange modes (similar to the Rayleigh-Taylor instability) and the instability associated with the presence of nonuniform plasma flows (similar to the Kelvin-Helmholtz instability). This code is applied to a model divertor and the GAMMA10 [M. Inutake et al., Phys. Rev. Lett. 55, 939 (1985)] with divertor in order to investigate the flute modes in these divertor cells. The linear growth rate of the flute instability determined by the nonlocal linear analysis agrees with that in the linear phase of the simulations. There is a stable nonlinear steady state in both divertor cells, but the nonlinear steady state is different between the model divertor and the GAMMA10 with divertor.

  19. Examining Innovative Divertor and Main Chamber Options for a National Divertor Test Tokamak

    NASA Astrophysics Data System (ADS)

    Labombard, B.; Umansky, M.; Brunner, D.; Kuang, A. Q.; Marmar, E.; Wallace, G.; Whyte, D.; Wukitch, S.

    2016-10-01

    The US fusion community has identified a compelling need for a National Divertor Test Tokamak. The 2015 Community Planning Workshop on PMI called for a national working group to develop options. Important elements of a NDTT, adopted from the ADX concept, include the ability to explore long-leg divertor `solutions for power exhaust and particle control' (Priority Research Direction B) and to employ inside-launch RF actuators combined with double-null topologies as `plasma solution for main chamber wall components, including tools for controllable sustained operation' (PRD-C). Here we examine new information on these ideas. The projected performance of super-X and X-point target long-leg divertors is looking very promising; a stable fully-detached divertor condition handling an order-of-magnitude increase in power handling over conventional divertors may be possible. New experiments on Alcator C-Mod are addressing issues of high-field side versus low-field side heat flux sharing in double-null topologies and the screening of impurities that might originate from RF actuators placed in the high-field side - both with favorable results. Supported by USDoE Awards DE-FC02-99ER54512 and DE-AC52-07NA27344.

  20. Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor

    SciTech Connect

    Kugel, W.; Bell, M.; Berzak,L.; Brooks, A.; Ellis, R.; Gerhardt, S.; Harjes, H.; Kaita, R.; Kallman, J.; Maingi, R.; Majeski, R.; Mansfield, D.; Menard, J.; Nygren,R. E.; Soukhanovskii, V.; Stotler, D.; Wakeland, P.; Zakharov L. E.

    2008-09-26

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on PFC's to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15-25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW~1), to enable ne scan capability (x2) in the H-mode, to test the ability to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with longpulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  1. High heat flux Langmuir probe array for the DIII-D divertor plates

    SciTech Connect

    Watkins, J. G.; Nygren, R. E.; Taussig, D.; Boivin, R. L.; Mahdavi, M. A.

    2008-10-15

    Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m{sup 2} for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5 deg. surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric 'rooftop' design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of J{sub sat}, T{sub e}, and V{sub f} with 4 mm spatial resolution are shown.

  2. High heat flux Langmuir probe array for the DIII-D divertor platesa)

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Taussig, D.; Boivin, R. L.; Mahdavi, M. A.; Nygren, R. E.

    2008-10-01

    Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m2 for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5° surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric "rooftop" design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of Jsat, Te, and Vf with 4 mm spatial resolution are shown.

  3. NSTX Plasma Response to Lithium Coated Divertor

    SciTech Connect

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  4. Two-point model for divertor transport

    SciTech Connect

    Galambos, J.D.; Peng, Y.K.M.

    1984-04-01

    Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime.

  5. Divertor E X B Plasma Convection in DIII-D

    SciTech Connect

    Boedo, J.A.; Schaffer, M.J.; Maingi, M.; Lasnier, C.J.; Watkins, J.G.

    1999-07-01

    Extensive two-dimensional measurements of plasma potential in the DIII-D tokamak divertor region are reported for standard (ion VB{sub T} drift toward divertor X-point) and reversed B{sub T} directions; for low (L) and high (H) confinement modes; and for partially detached divertor mode. The data are consistent with recent computational modeling identifying E x B{sub T} circulation, due to potentials sustained by plasma gradients, as the main cause of divertor plasma sensitivity to B{sub T} direction.

  6. Divertor bypass in the Alcator C-Mod tokamak

    SciTech Connect

    Pitcher, C. S.; LaBombard, B.; Danforth, R.; Pina, W.; Silveira, M.; Parkin, B.

    2001-01-01

    The Alcator C-Mod divertor bypass has for the first time allowed in situ variations to the mechanical baffle design in a tokamak. The design utilizes small coils which interact with the ambient magnetic field inside the vessel to provide the torque required to control small flaps of a Venetian blind geometry. Plasma physics experiments with the bypass have revealed the importance of the divertor baffling to maintain high divertor gas pressures. These experiments have also indicated that the divertor baffling has only a limited effect on the main chamber pressure in C-Mod.

  7. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  8. Magnetic geometry and particle source drive of supersonic divertor regimes

    NASA Astrophysics Data System (ADS)

    Bufferand, H.; Ciraolo, G.; Dif-Pradalier, G.; Ghendrih, P.; Tamain, Ph; Marandet, Y.; Serre, E.

    2014-12-01

    We present a comprehensive picture of the mechanisms driving the transition from subsonic to supersonic flows in tokamak plasmas. We demonstrate that supersonic parallel flows into the divertor volume are ubiquitous at low density and governed by the divertor magnetic geometry. As the density is increased, subsonic divertor plasmas are recovered. On detachment, we show the change in particle source can also drive the transition to a supersonic regime. The comprehensive theoretical analysis is completed by simulations in ITER geometry. Such results are essential in assessing the divertor performance and when interpreting measurements and experimental evidence.

  9. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  10. THERMAL HYDRAULIC ANALYSIS OF FIRE DIVERTOR

    SciTech Connect

    C.B. bAXI; M.A. ULRICKSON; D.E. DRIMEYER; P. HEITZENROEDER

    2000-10-01

    The Fusion Ignition Research Experiment (FIRE) is being designed as a next step in the US magnetic fusion program. The FIRE tokamak has a major radius of 2 m, a minor radius of 0.525 m, and liquid nitrogen cooled copper coils. The aim is to produce a pulse length of 20 s with a plasma current of 6.6 MA and with alpha dominated heating. The outer divertor and baffle of FIRE are water cooled. The worst thermal condition for the outer divertor and baffle is the baseline D-T operating mode (10 T, 6.6 MA, 20 s) with a plasma exhaust power of 67 MW and a peak heat flux of 20 MW/m{sup 2}. A swirl tape (ST) heat transfer enhancement method is used in the outer divertor cooling channels to increase the heat transfer coefficient and the critical heat flux (CHF). The plasma-facing surface consists of tungsten brush. The finite element (FE) analysis shows that for an inlet water temperature of 30 C, inlet pressure of 1.5 MPa and a flow velocity of 10 m/s, the incident critical heat flux is greater than 30 MW/m{sup 2}. The peak copper temperature is 490 C, peak tungsten temperature is 1560 C, and the pressure drop is less than 0.5 MPa. All these results fulfill the design requirements.

  11. A new scaling for divertor detachment

    DOE PAGES

    Goldston, R. J.; Reinke, M. L.; Schwartz, J. A.

    2017-03-29

    The ITER design, and future reactor designs, depend on divertor `detachment,'whether partial, pronounced or complete, to limit heat flux to plasma-facing components and to limit surface erosion due to sputtering. It would be valuable to have a measure of the difficulty of achieving detachment as a function of machine parameters, such as input power, magnetic field, major radius, etc. Frequently the parallel heat flux, estimated typically as proportional to P-sep/R or PsepB/R, is used as a proxy for this difficulty. Here we argue that impurity cooling is dependent on the upstream density, which itself must be limited by a Greenwald-likemore » scaling. Taking this into account self-consistently, we find the impurity fraction required for detachment scales dominantly as power divided by poloidal magnetic field. The absence of any explicit scaling with machine size is concerning, as P-sep surely must increase greatly for an economic fusion system, while increases in the poloidal field strength are limited by coil technology and plasma physics. This result should be challenged by comparison with 2D divertor codes and with measurements on existing experiments. Nonetheless, it suggests that higher magnetic field, stronger shaping, double-null operation, `advanced' divertor configurations, as well as alternate means to handle heat flux such as metallic liquid and/or vapor targets merit greater attention.« less

  12. Constrained ripple optimization of Tokamak bundle divertors

    SciTech Connect

    Hively, L.M.; Rome, J.A.; Lynch, V.E.; Lyon, J.F.; Fowler, R.H.; Peng, Y-K.M.; Dory, R.A.

    1983-02-01

    Magnetic field ripple from a tokamak bundle divertor is localized to a small toroidal sector and must be treated differently from the usual (distributed) toroidal field (TF) coil ripple. Generally, in a tokamak with an unoptimized divertor design, all of the banana-trapped fast ions are quickly lost due to banana drift diffusion or to trapping between the 1/R variation in absolute value vector B ..xi.. B and local field maxima due to the divertor. A computer code has been written to optimize automatically on-axis ripple subject to these constraints, while varying up to nine design parameters. Optimum configurations have low on-axis ripple (<0.2%) so that, now, most banana-trapped fast ions are confined. Only those ions with banana tips near the outside region (absolute value theta < or equal to 45/sup 0/) are lost. However, because finite-sized TF coils have not been used in this study, the flux bundle is not expanded.

  13. Divertor materials evaluation system (DiMES)

    SciTech Connect

    Wong, C.P.C.; West, W.P.; Whyte, D.G.; Bastasz, R.J.; Brooks, J.; Wampler, W.R.

    1997-12-31

    The mission of the Divertor Materials Evaluation System (DiMES) in DIII-D is to establish an integrated data base from measurements in the divertor of a tokamak in order to address some of the ITER and fusion power reactor plasma material interaction issues. Carbon and metal coatings of Be, W, V, and Mo were exposed to the steady-state outer strike point on DIII-D for 4--18 s. These short exposure times ensure controlled exposure conditions, and the extensive arrays of DIII-D divertor diagnostics provide a well-characterized plasma for modeling efforts. Post-exposure analysis provides a direct measure of surface material erosion rates and the amount of retained deuterium. For carbon, these results match closely with the results of accumulated carbon deposition and erosion, and the corresponding deuterium retention of long term exposure tiles in DIII-D. Under the carbon-contaminated background plasma of DIII-D, metal coatings of Be, V, Mo, and W were exposed to the steady-state outer strike point under ELMing and ELM-free H-mode discharges. The rate of material erosion and deuterium retention were measured. As expected, W shows the lowest erosion rate at 0.1 mm/s and the lowest deuterium uptake of 2 {times} 10{sup 20}/m{sup 2}.

  14. Heat flux management via advanced magnetic divertor configurations and divertor detachment

    NASA Astrophysics Data System (ADS)

    Kolemen, E.; Allen, S. L.; Bray, B. D.; Fenstermacher, M. E.; Humphreys, D. A.; Hyatt, A. W.; Lasnier, C. J.; Leonard, A. W.; Makowski, M. A.; McLean, A. G.; Maingi, R.; Nazikian, R.; Petrie, T. W.; Soukhanovskii, V. A.; Unterberg, E. A.

    2015-08-01

    The snowflake divertor (SFD) control and detachment control to manage the heat flux at the divertor are successfully demonstrated at DIII-D. Results of the development and implementation of these two heat flux reduction control methods are presented. The SFD control algorithm calculates the position of the two null-points in real-time and controls shaping coil currents to achieve and stabilize various snowflake configurations. Detachment control stabilizes the detachment front fixed at specified distance between the strike point and the X-point throughout the shot.

  15. Refrigeration for Cryogenic Sensors

    SciTech Connect

    Gasser, M.G.

    1983-12-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  16. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  17. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  18. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  19. Divertor plasma studies on DIII-D: Experiment and modeling

    SciTech Connect

    West, W.P.; Brooks, N.H.; Allen, S.L.

    1996-09-01

    In a magnetically diverted tokamak, the scrape-off layer (SOL) and divertor plasma provides separation between the first wall and the core plasma, intercepting impurities generated at the wall before they reach the core plasma. The divertor plasma can also serve to spread the heat and particle flux over a large area of divertor structure wall using impurity radiation and neutral charge exchange, thus reducing peak heat and particle fluxes at the divertor strike plate. Such a reduction will be required in the next generation of tokamaks, for without it, the divertor engineering requirements are very demanding. To successfully demonstrate a radiative divertor, a highly radiative condition with significant volume recombination must be achieved in the divertor, while maintaining a low impurity content in the core plasma. Divertor plasma properties are determined by a complex interaction of classical parallel transport, anomalous perpendicular transport, impurity transport and radiation, and plasma wall interaction. In this paper the authors describe a set of experiments on DIII-D designed to provide detailed two dimensional documentation of the divertor and SOL plasma. Measurements have been made in operating modes where the plasma is attached to the divertor strike plate and in highly radiating cases where the plasma is detached from the divertor strike plate. They also discuss the results of experiments designed to influence the distribution of impurities in the plasma using enhanced SOL plasma flow. Extensive modeling efforts will be described which are successfully reproducing attached plasma conditions and are helping to elucidate the important plasma and atomic physics involved in the detachment process.

  20. Plasma flow in the DIII-D divertor

    SciTech Connect

    Boedo, J.A.; Porter, G.D.; Schaffer, M.J.

    1998-07-01

    Indications that flows in the divertor can exhibit complex behavior have been obtained from 2-D modeling but so far remain mostly unconfirmed by experiment. An important feature of flow physics is that of flow reversal. Flow reversal has been predicted analytically and it is expected when the ionization source arising from neutral or impurity ionization in the divertor region is large, creating a high pressure zone. Plasma flows arise to equilibrate the pressure. A radiative divertor regime has been proposed in order to reduce the heat and particle fluxes to the divertor target plates. In this regime, the energy and momentum of the plasma are dissipated into neutral gas introduced in the divertor region, cooling the plasma by collisional, radiative and other atomic processes so that the plasma becomes detached from the target plates. These regimes have been the subject of extensive studies in DIII-D to evaluate their energy and particle transport properties, but only recently it has been proposed that the energy transport over large regions of the divertor must be dominated by convection instead of conduction. It is therefore important to understand the role of the plasma conditions and geometry on determining the region of convection-dominated plasma in order to properly control the heat and particle fluxes to the target plates and hence, divertor performance. The authors have observed complex structures in the deuterium ion flows in the DIII-D divertor. Features observed include reverse flow, convective flow over a large volume of the divertor and stagnant flow. They have measured large gradients in the plasma potential across the separatrix in the divertor and determined that these gradients induce poloidal flows that can potentially affect the particle balance in the divertor.

  1. Divertor impurity monitor for the International Thermonuclear Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Sugie, T.; Ogawa, H.; Nishitani, T.; Kasai, S.; Katsunuma, J.; Maruo, M.; Ebisawa, K.; Ando, T.; Kita, Y.

    1999-01-01

    The divertor impurity monitoring system of the International Thermonuclear Experimental Reactor has been designed. The main functions of this system are to identify impurity species and to measure the two-dimensional distributions of the particle influxes in the divertor plasmas. The wavelength range is 200-1000 nm. The viewing fans are realized by molybdenum mirrors located in the divertor cassette. With additional viewing fans seeing through the gap between the divertor cassettes, the region approximately from the divertor leg to the x point will be observed. The light from the divertor region passes through the quartz windows on the divertor port plug and the cryostat, and goes through the dog-leg optics in the biological shield. Three different type of spectrometers: (i) survey spectrometers for impurity species monitoring, (ii) filter spectrometers for the particle influx measurement with the spatial resolution of 10 mm and the time resolution of 1 ms, and (iii) high dispersion spectrometers for high resolution wavelength measurements are designed. These spectrometers are installed just behind the biological shield (for λ<450 nm) to prevent the transmission loss in fiber and in the diagnostic room (for λ⩾450 nm) from the point of view of accessibility and flexibility. The optics have been optimized by a ray trace analysis. As a result, 10-15 mm spatial resolution will be achieved in all regions of the divertor.

  2. OEDGE Modeling of Divertor Fueling at DIII-D

    NASA Astrophysics Data System (ADS)

    Bray, B. D.; Leonard, A. W.; Elder, J. D.; Stangeby, P. C.

    2015-11-01

    Onion-skin-modeling (OSM) is used to assess the affect of divertor closure on pedestal fueling sources. The OSM includes information from a wide range of diagnostic measurements at DIII-D to constrain the model background plasma for better simulation of neutrals and impurity ions and spectroscopy to compare to the results of the simulation. DIII-D has open lower divertor and closed upper divertor configurations which can be run with similar discharges. Progress toward modeling the pedestal fueling in low density plasmas for these cases will be presented as well as initial comparisons of recent lower single null discharges with the outer leg on the divertor shelf (fully open) and divertor floor (partially open). Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  3. Super-X divertors and high power density fusion devices

    SciTech Connect

    Valanju, P. M.; Kotschenreuther, M.; Mahajan, S. M.; Canik, J.

    2009-05-15

    The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source 'battery' small enough to fit inside a conventional fission blanket.

  4. RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM

    SciTech Connect

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-08-01

    This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

  5. Comparison of ELM heat loads in snowflake and standard divertors

    SciTech Connect

    Rognlien, T D; Cohen, R H; Ryutov, D D; Umansky, M V

    2012-05-08

    An analysis is given of the impact of the tokamak divertor magnetic structure on the temporal and spatial divertor heat flux from edge localized modes (ELMs). Two configurations are studied: the standard divertor where the poloidal magnetic field (B{sub p}) varies linearly with distance (r) from the magnetic null and the snowflake where B{sub p} varies quadratrically with r. Both one and two-dimensional models are used to analyze the effect of the longer magnetic field length between the midplane and the divertor plate for the snowflake that causes a temporal dilation of the ELM divertor heat flux. A second effect discussed is the appearance of a broad region near the null point where the poloidal plasma beta can substantially exceed unity, especially for the snowflake configuration during the ELM; such a condition is likely to drive additional radial ELM transport.

  6. High heat flux experiments of saddle type divertor module

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoshi; Akiba, Masato; Araki, Masanori; Satoh, Kazuyoshi; Yokoyama, Kenji; Dairaku, Masayuki

    1994-09-01

    JAERI has been extensively developing plasma facing components for next tokomak devices. The authors have developed a saddle type divertor module which consists of saddle-shaped armor tiles brazed on metal heat sink. This paper presents the experimental and analytical results of thermal cycling experiments of the saddle type divertor module. The divertor module has unidirectional CFC armor tiles brazed on OFHC copper heat sink. A twisted tape was inserted in the cooling tube to enhance the heat transfer. In the experiments, thermal response of the divertor module was monitored by an infrared camera and thermocouples. The maximum incident heat flux was 24.5 MW/m 2 for a duration of 30 s. No degradation of thermal response was observed during the experiment. As a result, the saddle type divertor module successfully endured at an incident heat flux of over 20 MW/m 2 under steady state conditions for 1000 cycles.

  7. Alternative divertor target concepts for next step fusion devices

    NASA Astrophysics Data System (ADS)

    Mazul, I. V.

    2016-12-01

    The operational conditions of a divertor target in the next steps of fusion devices are more severe in comparison with ITER. The current divertor designs and technologies have a limited application concerning these conditions, and so new design concepts/technologies are required. The main reasons which practically prevent the use of the traditional motionless solid divertor target are analyzed. We describe several alternative divertor target concepts in this paper. The comparative analysis of these concepts (including the advantages and the drawbacks) is made and the prospects for their practical implementation are prioritized. The concept of the swept divertor target with a liquid metal interlayer between the moving armour and motionless heat-sink is presented in more detail. The critical issues of this design are listed and outlined, and the possible experiments are presented.

  8. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  9. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  10. Magnetic configuration flexibility of snowflake divertor for HL-2M [Analysis of snowflake divertor configurations for HL-2M

    SciTech Connect

    Zheng, G. Y.; Xu, X. Q.; Ryutov, D. D.; Pan, Y. D.; Xia, T. Y.

    2014-07-09

    HL-2M (Li, 2013 [1]) is a tokamak device that is under construction. Based on the magnetic coils design of HL-2M, four kinds of divertor configurations are calculated by CORSICA code (Pearlstein et al., 2001 [2]) with the same main plasma parameters, which are standard divertor, exact snowflake divertor, snowflake-plus divertor and snowflake-minus divertor configurations. The potential properties of these divertors are analyzed and presented in this paper: low poloidal field area around X-point, connection length from outside mid-plane to the primary X-point, target plate design and magnetic field shear. The results show that the snowflake configurations not only can reduce the heat load at divertor target plates, but also may improve the magneto-hydrodynamic stability by stronger magnetic shear at the edge. Furthermore, a new divertor configuration, named “tripod divertor”, is designed by adjusting the positions of the two X-points according to plasma parameters and magnetic coils current of HL-2M.

  11. Magnetic configuration flexibility of snowflake divertor for HL-2M [Analysis of snowflake divertor configurations for HL-2M

    DOE PAGES

    Zheng, G. Y.; Xu, X. Q.; Ryutov, D. D.; ...

    2014-07-09

    HL-2M (Li, 2013 [1]) is a tokamak device that is under construction. Based on the magnetic coils design of HL-2M, four kinds of divertor configurations are calculated by CORSICA code (Pearlstein et al., 2001 [2]) with the same main plasma parameters, which are standard divertor, exact snowflake divertor, snowflake-plus divertor and snowflake-minus divertor configurations. The potential properties of these divertors are analyzed and presented in this paper: low poloidal field area around X-point, connection length from outside mid-plane to the primary X-point, target plate design and magnetic field shear. The results show that the snowflake configurations not only can reducemore » the heat load at divertor target plates, but also may improve the magneto-hydrodynamic stability by stronger magnetic shear at the edge. Furthermore, a new divertor configuration, named “tripod divertor”, is designed by adjusting the positions of the two X-points according to plasma parameters and magnetic coils current of HL-2M.« less

  12. Divertor for use in fusion reactors

    DOEpatents

    Christensen, Uffe R.

    1979-01-01

    A poloidal divertor for a toroidal plasma column ring having a set of poloidal coils co-axial with the plasma ring for providing a space for a thick shielding blanket close to the plasma along the entire length of the plasma ring cross section and all the way around the axis of rotation of the plasma ring. The poloidal coils of this invention also provide a stagnation point on the inside of the toroidal plasma column ring, gently curving field lines for vertical stability, an initial plasma current, and the shaping of the field lines of a separatrix up and around the shielding blanket.

  13. High specific surface area aerogel cryoadsorber for vacuum pumping applications

    DOEpatents

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    2000-01-01

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  14. High Specific Surface area Aerogel Cryoadsorber for Vacuum Pumping Applications

    SciTech Connect

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    1998-12-22

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  15. Double-Null Divertor Design for JT-60SU, A 10-MA Class Long-Pulse Tokamak

    SciTech Connect

    West, W.P.; Friend, M.E.; Baxi, C.B.; Humphreys, D.A.; Leuer, J.A.; Petrie, T.W.; Reis, E.E.; Ishida, S.; Kurita, G.; Neyatani, Y.; Sakasai, A.

    2001-01-15

    The design of a double-null divertor for use in JT-60SU is presented. The free-boundary equilibrium code EFIT is used to establish a symmetric highly triangular double-null plasma shape. The baffle shapes are highly contoured to match the equilibrium, with the plasma-facing surfaces intersecting the flux surfaces at steep angles in the regions of high heat flux. These contoured surfaces also provide a tightly baffled design with small-aperture pumping gaps near both the inner and outer divertor strike points. The gaps provide adequate throughput of D{sub 2} gas for active control of impurity entrainment at reasonable pressures. The structural design is shown to be consistent with both forces from disruptions and thermal stress during vacuum vessel bakeout.

  16. Options for Cryogenic Load Cooling with Forced Flow Helium Circulation

    SciTech Connect

    Peter Knudsen, Venkatarao Ganni, Roberto Than

    2012-06-01

    Cryogenic pumps designed to circulate super-critical helium are commonly deemed necessary in many super-conducting magnet and other cooling applications. Acknowledging that these pumps are often located at the coldest temperature levels, their use introduces risks associated with the reliability of additional rotating machinery and an additional load on the refrigeration system. However, as it has been successfully demonstrated, this objective can be accomplished without using these pumps by the refrigeration system, resulting in lower system input power and improved reliability to the overall cryogenic system operations. In this paper we examine some trade-offs between using these pumps vs. using the refrigeration system directly with examples of processes that have used these concepts successfully and eliminated using such pumps

  17. Extinguishing ELMs in detached radiative divertor plasmas

    NASA Astrophysics Data System (ADS)

    Pigarov, Alexander; Krasheninnikov, Sergei; Rognlien, Thomas

    2016-10-01

    In order to avoid deleterious effects of ELMs on PFCs in next-step fusion devices it has been suggested to operate with small-sized ELMs naturally extinguishing in the divertor. Our modeling effort is focusing at extinguishing type-I ELMs: conditions for expelled plasma dissipation; efficiency of ELM power handling by detached radiative divertors; and the ELM impact on detachment state. Here time-dependent modeling of a sequence of many ELMs was performed with 2-D edge plasma transport code UEDGE-MB-W which incorporates the Macro-Blob (MB) approach to simulate non-diffusive filamentary transport and various ``Wall'' (W) models for time-dependent hydrogen wall inventory and recycling. Three cases were modeled, in which extinguishing ELMs are achieved due to: (i) intrinsic impurities via graphite sputtering, (ii) extrinsic impurity gas puff (Ne), and (iii) =(i) +(ii). For each case, we performed a series of UEDGE-MB-W runs scanning the deuterium and impurity inventories, pedestal losses and ELM frequency. Temporal variations of the degree of detachment, ionization front shape, recombination sink strength, radiated fraction, peak power loads, OSP, impurity charge states, and in/out asymmetries were analyzed. We discuss the onset of extinguishing ELMs, conditions for not burning through and enhanced plasma recombination as functions of scanned parameters. Efficiencies of intrinsic and extrinsic impurities in ELM extinguishing are compared.

  18. Guidance of the divertor channel outside the main coil system for heliotron/torsatron devices

    NASA Astrophysics Data System (ADS)

    Takase, H.; Ohyabu, N.

    1995-02-01

    A divertor magnetic configuration is proposed that significantly reduces heat load on the divertor plates in heliotron/torsatron devices. The proposed configuration utilizes an octupole field for guiding the divertor channels to a remote area outside the main coil system, where the magnetic field is weak. This allows a significant reduction of the heat load due to expansion of the divertor channels as well as substantially easier access to the divertor plates for maintenance, the key requirements for toroidal fusion reactor designs

  19. Snowflake divertor experiments in the DIII-D, NSTX, and NSTX-U tokamaks aimed at the development of the divertor power exhaust solution

    DOE PAGES

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; ...

    2016-11-16

    Experimental results from the National Spherical Torus Experiment (NSTX), a medium-size spherical tokamak with a compact divertor, and DIII-D, a large conventional aspect ratio tokamak, demonstrate that the snowflake (SF) divertor configuration may provide a promising solution for mitigating divertor heat loads and target plate erosion compatible with core H-mode confinement in the future fusion devices, where the standard radiative divertor solution may be inadequate. In NSTX, where the initial high-power SF experiment was performed, the SF divertor was compatible with H-mode confinement, and led to the destabilization of large Edge Localized Modes (ELMs). However, a stable partial detachment ofmore » the outer strike point was also achieved where inter-ELM peak heat flux was reduced by factors 3-5, and peak ELM heat flux was reduced by up to 80% (see standard divertor). The DIII-D studies show the SF divertor enables significant power spreading in attached and radiative divertor conditions. Results include: compatibility with the core and pedestal, peak inter-ELM divertor heat flux reduction due to geometry at lower ne, and ELM energy and divertor peak heat flux reduction, especially prominent in radiative D2-seeded SF divertor, and nearly complete power detachment and broader radiated power distribution in the radiative D2-seeded SF divertor at PSOL = 3 - 4 MW. A variety of SF configurations can be supported by the divertor coil set in NSTX Upgrade. Edge transport modeling with the multifluid edge transport code UEDGE shows that the radiative SF divertor can successfully reduce peak divertor heat flux for the projected PSOL ≃ 9 MW case. Furthermore, the radiative SF divertor with carbon impurity provides a wider ne operating window, 50% less argon is needed in the impurity-seeded SF configuration to achieve similar qpeak reduction factors (see standard divertor).« less

  20. Snowflake divertor experiments in the DIII-D, NSTX, and NSTX-U tokamaks aimed at the development of the divertor power exhaust solution

    SciTech Connect

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meier, E. T.; Meyer, W. H.; Rognlien, T. D.; Ryutov, D. D.; Scotti, F.; Kolemen, E.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaita, R.; Kaye, S.; LeBlanc, B. P.; Maingi, R.; Menard, J. E.; Podesta, M.; Roquemore, A. L.; Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.; Ahn, J. -W.; Raman, R.; Watkins, J. G.

    2016-11-16

    Experimental results from the National Spherical Torus Experiment (NSTX), a medium-size spherical tokamak with a compact divertor, and DIII-D, a large conventional aspect ratio tokamak, demonstrate that the snowflake (SF) divertor configuration may provide a promising solution for mitigating divertor heat loads and target plate erosion compatible with core H-mode confinement in the future fusion devices, where the standard radiative divertor solution may be inadequate. In NSTX, where the initial high-power SF experiment was performed, the SF divertor was compatible with H-mode confinement, and led to the destabilization of large Edge Localized Modes (ELMs). However, a stable partial detachment of the outer strike point was also achieved where inter-ELM peak heat flux was reduced by factors 3-5, and peak ELM heat flux was reduced by up to 80% (see standard divertor). The DIII-D studies show the SF divertor enables significant power spreading in attached and radiative divertor conditions. Results include: compatibility with the core and pedestal, peak inter-ELM divertor heat flux reduction due to geometry at lower ne, and ELM energy and divertor peak heat flux reduction, especially prominent in radiative D2-seeded SF divertor, and nearly complete power detachment and broader radiated power distribution in the radiative D2-seeded SF divertor at PSOL = 3 - 4 MW. A variety of SF configurations can be supported by the divertor coil set in NSTX Upgrade. Edge transport modeling with the multifluid edge transport code UEDGE shows that the radiative SF divertor can successfully reduce peak divertor heat flux for the projected PSOL ≃ 9 MW case. Furthermore, the radiative SF divertor with carbon impurity provides a wider ne operating window, 50% less argon is needed in the impurity-seeded SF configuration to achieve similar qpeak reduction factors (see standard divertor).

  1. Device applications of cryogenic optical refrigeration

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Epstein, Richard I.; Alden, Jay V.; Sheik-Bahae, Mansoor

    2014-02-01

    With the coldest solid-state temperatures (ΔT <185K from 300K) achievable by optical refrigeration, it is now timely to apply this technology to cryogenic devices. Along with thermal management and pump absorption, this work addresses the most key engineering challenge of transferring cooling power to the payload while efficiently rejecting optical waste-heat fluorescence. We discuss our optimized design of such a thermal link, which shows excellent performance in optical rejection and thermal properties.

  2. A super-cusp divertor configuration for tokamaks

    SciTech Connect

    Ryutov, D. D.

    2015-08-26

    Our study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that the set of remote coils can produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough control that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called ‘a super-cusp’. General geometrical features of the three-null configurations produced by remote coils are described. Furthermore, issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.

  3. A super-cusp divertor configuration for tokamaks

    DOE PAGES

    Ryutov, D. D.

    2015-08-26

    Our study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that the set of remote coils can produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough controlmore » that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called ‘a super-cusp’. General geometrical features of the three-null configurations produced by remote coils are described. Furthermore, issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.« less

  4. SOLPS Modeling of Slot Divertor Configuration on DIII-D

    NASA Astrophysics Data System (ADS)

    Sang, C. F.; Stangeby, P. C.; Guo, H. Y.; Lao, L. L.

    2015-11-01

    A major thrust of the DIII-D boundary/PMI initiative is to develop an advanced divertor configuration for next-step devices, such as FNSF and DEMO. We are adopting an integrated approach by optimizing both divertor structure and magnetic shape. Initial SOLPS modeling was carried out to optimize divertor structure shape to enhance divertor power dissipation, focusing on slot configurations. In particular, four different slot divertor structures, i.e., orthogonal-target slot, slanted-target slot, very narrow slot and v-shaped slot have been analyzed and comparisons made with an open divertor structure. It is found that the slot helps to trap recycling neutrals and impurities thus increasing radiative power dissipation in the divertor, reducing the electron temperature Te and the perpendicular heat flux q⊥ at the target plate. As expected, a narrower slot leads to lower Te and q⊥ than a less narrow one. The v-shaped slot appears to be especially effective at redirecting and concentrating recycling neutrals and impurities near the separatrix, thus promoting detachment at a lower upstream density than the other configurations. Work supported by US DOE under DE-FC02-04ER54698.

  5. Modeling of extinguishing ELMs in detached divertor plasmas

    NASA Astrophysics Data System (ADS)

    Pigarov, A.; Krasheninnikov, S.; Hollmann, E.; Rognlien, T.

    2015-11-01

    Detached plasmas, the primary operational regime for divertors in next-step fusion devices, should be compatible with both good H-mode confinement and relatively small ELMs providing tolerable heat power loads on divertor targets. Here, dynamics of boundary plasma, impurities and material walls over a sequence of many type-I ELM events under detached divertor plasma conditions is studied with UEGDE-MB-W, the newest version of 2D edge plasma transport code, which incorporates Macro-Blob (MB) approach to simulate non-diffusive filamentary transport and various ``Wall'' (W) models for time-dependent hydrogen wall inventory and recycling. We present the results of multi-parametric analysis on the impact of the size and frequency of ELMs on the divertor plasma parameters where we vary the MB characteristics under different pedestals and divertor configurations. We discuss the conditions, under which small but frequent type-I ELMs (typical for high-power H-mode discharges on current tokamaks with hard deuterium gas puff) are not ``burning through'' the formed detached divertor plasma. In this case, the inner and outer divertors are filled by sub-eV, recombining, highly-impure plasma. Variations of impurity plasma content, radiation pattern, and deuterium wall inventory over the ELM cycle are analyzed. UEDGE-MB-W modeling results are compared to available experimental data.

  6. Divertor Optimization via Control at DIII-D

    NASA Astrophysics Data System (ADS)

    Kolemen, E.; Allen, S. L.; Makowski, M. A.; Soukhanovskii, V. A.; Bray, B. D.; Humphreys, D. A.; Johnson, R.; Leonard, A. W.; Liu, C.; Penaflor, B. G.; Petrie, T. W.; Eldon, D.; McLean, A. G.; Unterberg, E. A.

    2014-10-01

    DIII-D divertor performance and heat-handling capabilities are optimized using advanced control techniques. The world's first real-time snowflake divertor detection and control system was implemented on DIII-D in order to stabilize and optimize this configuration. A new control system was implemented to regulate and study detachment and radiation, since future fusion reactors will require detached or partially detached plasmas to achieve acceptable divertor target heat fluxes. The algorithm regulates the D2 and impurity gas injection level by using the divertor temperature measurements from real-time Thomson diagnostics to compute the detachment level, and the real-time bolometer diagnostics to determine core and divertor radiation. This control allows the optimization of the detachment and radiation from the core and the divertor to achieve high core performance compatible with reduced heat-flux to the divertor. Work supported by the US DOE under DE-AC02-09CH11466, DE-AC52-07NA27344, DE-FC02-04ER54698 and DE-AC05-00OR22725.

  7. A super-cusp divertor configuration for tokamaks

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.

    2015-10-01

    > This study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase's cusp divertor. It turns out that the set of remote coils can indeed produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough control that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called `a super-cusp'. General geometrical features of the three-null configurations produced by remote coils are described. Issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.

  8. A cryogenic test facility

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  9. Possible human endogenous cryogens.

    PubMed

    Shido, Osamu; Sugimoto, Naotoshi

    2011-06-01

    Anapyrexia, which is a regulated fall in core temperature, is beneficial for animals and humans when the oxygen supply is limited, e.g., hypoxic, ischemic, or histotoxic hypoxia, since at low body temperature the tissues require less oxygen due to Q(10). Besides hypoxia, anapyrexia can be induced various exogenous and endogenous substances, named cryogens. However, there are only a few reports investigating endogenous cryogens in mammals. We have experienced one patient who suffered from severe hypothermia. The patient seemed to be excessively producing endogenous peptidergic cryogenic substances the molecular weight of which may be greater than 30 kDa. In animal studies, the patient's cryogen appeared to affect metabolic functions, including thermogenic threshold temperatures, and then to produce hypothermia. Since endogenous cryogenic substances may be regarded as useful tool in human activities, e.g., during brain hypothermia therapy or staying in a space station or spaceship, further studies may be needed to identify human endogenous cryogens.

  10. Simulations of NSTX with a Liquid Lithium Divertor Module

    SciTech Connect

    D. P. Stotler, R. Maingi, H.W. Kugel, A. Yu. Pigarov, T.D. Rognlien, V.A. Soukhanovskii

    2008-07-08

    The UEDGE edge plasma transport code is used to model the effect of the reduced recycling provided by the Liquid Lithium Divertor (LLD) module that will be installed in NSTX. UEDGE's transport coefficients are calibrated against an existing NSTX shot using midplane and divertor diagnostic data. The LLD is then incorporated into the simulations as a reduction in the recycling coefficient over the outer divertor. Heat transfer calculations performed using the resulting heat flux profiles indicate that lithium evaporation will be negligible for pulse lengths < 2 s at low (~ 2 MW) input power. At high input power (~ 7 MW), the pulse length may have to be restricted.

  11. Simulations of NSTX with a Liquid Lithium Divertor Module

    SciTech Connect

    Stotler, D. P.; Maingi, R.; Zakharov, L. E.; Kugel, H. W.; Pigarov, A. Yu.; Rognlien, T. D.; Soukhanovskii, V. A.

    2010-02-18

    A strategy to develop self-consistent simulations of the behavior of lithium in the Liquid Lithium Divertor (LLD) module to be installed in NSTX is described. In this initial stage of the plan, the UEDGE edge plasma transport code is used to simulate an existing NSTX shot, with UEDGE's transport coefficients set using midplane and divertor diagnostic data. The LLD is incorporated into the simulations as a reduction in the recycling coefficient over the outer divertor. Heat transfer calculations performed using the resulting heat flux profiles provide preliminary estimates on operating limits for the LLD as well as input data for subsequent steps in the LLD modeling effort.

  12. Disruption characteristics in PDX with limiter and divertor discharges

    SciTech Connect

    Couture, P.; McGuire, K.

    1986-09-01

    A comparison has been made between the characteristics of disruptions with limiter and divertor configurations in PDX. A large data base on disruptions has been collected over four years of machine operation, and a total of 15,000 discharges are contained in the data file. It was found that divertor discharges have less disruptions during ramp up and flattop of the plasma current. However, for divertor discharges a large number of fast, low current disruptions take place during the current ramp down. These disruptions are probably caused by the deformation of the plasma shape.

  13. Fundamentals of Cryogenics

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

    2014-01-01

    Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

  14. Divertor IR thermography on Alcator C-Mod

    SciTech Connect

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-15

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6 deg. toroidal sector has been given a 2 deg. toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  15. Divertor IR thermography on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  16. Divertor IR thermography on Alcator C-Mod.

    PubMed

    Terry, J L; LaBombard, B; Brunner, D; Payne, J; Wurden, G A

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  17. Beryllium accumulation at the inner divertor of JET

    NASA Astrophysics Data System (ADS)

    Likonen, J.; Vainonen-Ahlgren, E.; Coad, J. P.; Zilliacus, R.; Renvall, T.; Hole, D. E.; Rubel, M.; Arstila, K.; Matthews, G. F.; Stamp, M.; JET-EFDA Contributors

    2005-03-01

    MkIIGB divertor tiles exposed in JET for the 1998-2001 and 1999-2001 campaigns have been used to assess the amount of beryllium and carbon deposited at the inner divertor wall. Total amount of Be at the inner divertor tiles was determined and integrated toroidally. Results were compared with data obtained with optical spectroscopy and good agreement was obtained. The amount of deposited C was computed from the amount of deposited Be assuming that the Be/C ratio arriving in the divertor is the same as the Be/C ratio in the main chamber. On the basis of this analysis we would expect there to be ˜0.4 kg of C deposited. This gives an average C deposition rate lower than during the MkIIA phase.

  18. Compatibility of detached divertor operation with robust edge pedestal performance

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.; Makowski, M. A.; McLean, A. G.; Osborne, T. H.; Snyder, P. B.

    2015-08-01

    The compatibility of detached radiative divertor operation with a robust H-mode pedestal is examined in DIII-D. A density scan produced low temperature plasmas at the divertor target, Te ⩽ 2 eV, with high radiation leading to a factor of ⩾4 drop in peak divertor heat flux. The cold radiative plasma was confined to the divertor and did not extend across the separatrix in X-point region. A robust H-mode pedestal was maintained with a small degradation in pedestal pressure at the highest densities. The response of the pedestal pressure to increasing density is reproduced by the EPED pedestal model. However, agreement of the EPED model with experiment at high density requires an assumption of reduced diamagnetic stabilization of edge Peeling-Ballooning modes.

  19. Diagnostics for the DIII-D radiative divertor

    SciTech Connect

    Nilson, D.G.; Brooks, N.H.; Smith, J.P.; Snider, R.T.

    1995-10-01

    This paper reviews the design of new diagnostics and the modifications to existing diagnostics needed to carry out radiative divertor experiments in DIII-D following installation in late 1996 of a set of baffle structures that will restrict the backflow to the core plasma of neutral deuterium atoms and impurity gases. The divertor slots formed by the new baffle structures will inhibit the easy view of the divertor legs and target plates that the open divertor geometry in DIII-D currently affords. We review a basic set of diagnostics that are needed to demonstrate the reduction of divertor heat loading and radiative dissipation of energy within the divertor. This will include IR cameras, bolometry, foil bolometers, and Langmuir probes. Within the limits of available funding, we will implement a supplemental set of instruments which provide a more detailed understanding of the underlying physical processes. Many existing diagnostics require only re-aiming to provide proper coverage of the initial 23 cm long divertor plasma configuration (X- point to floor distance). Other diagnostics need extensive reconfiguration using in-vessel fiber-optic bundles or high power laser mirrors. The new divertor baffle panels provide a protective shelf for diagnostic hardware mounted underneath them, but the water cooling channels in the panels limit the permissible size of through holes and, thereby, restrict the available views of under-the- baffle diagnostics. The successful resolution of the design and implementation of these diagnostic modifications is dependent on a strong coordination between GA and its many diagnostic collaborators.

  20. Beryllium flux distribution and layer deposition in the ITER divertor

    NASA Astrophysics Data System (ADS)

    Schmid, K.

    2008-10-01

    The deposition of Be eroded from the main chamber wall on the W surfaces in the ITER divertor could result in the formation of Be rich Be/W mixed layers with a low melting temperature compared with pure W. To predict whether or not these layers form the Be flux distribution in the ITER divertor is required. This paper presents the results of a combination of plasma transport with erosion/deposition simulations that allow one to calculate both the Be flux distribution and the Be layer deposition in the ITER divertor. This model includes the Be source due to Be erosion in the main chamber and the deposition, re-erosion and re-deposition of Be in the ITER divertor. The calculations show that the fraction of Be in the incident particle flux in the divertor ranges from ≈10-3 to ≈5% with a pronounced inner-outer divertor asymmetry. The flux fractions in the inner divertor are on average ten times higher than in the outer divertor. Thick Be layers only form at the inner strike point and the dome baffles. The highest Be layer growth rate is found to be 1.0 nm s-1. Despite the Be deposition the formation of Be rich Be/W mixed layers is not to be expected in ITER. The expected surface temperature at these locations during steady-state operation is too low as to result in Be diffusion into W and thus Be/W mixed layers cannot form. The paper also discusses the influence of off normal events such as ELMs or VDEs on the formation of Be/W mixed layers.

  1. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  2. Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou

    2015-11-01

    China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.

  3. Multi-Fluid Modeling of Low-Recycling Divertor Regimes

    SciTech Connect

    Smirnov, R. D.; Pigarov, A. Y.; Krasheninnikov, S. I.; Rognlien, T. D.; Soukhanovskii, V. A.; Rensink, M. E.; Maingi, Rajesh; Skinner, C. H.; Stotler, D. P.; Bell, R. E.; Kugel, H. W.

    2010-01-01

    The low-recycling regimes of divertor operation in a single-null NSTX magnetic configuration are studied using computer simulations with the edge plasma transport code UEDGE. The edge plasma transport properties pertinent to the low-recycling regimes are demonstrated. These include the flux-limited character of the parallel heat transport and the high plasma temperatures with the flattened profiles in the scrape-off-layer. It is shown that to maintain the balance of particle fluxes at the core interface the deuterium gas puffing rate should increase as the divertor recycling coefficient decreases. The radial profiles of the heat load to the outer divertor plate, the upstream radial plasma profiles, and the effects of the cross-field plasma transport in the low-recycling regimes are discussed. It is also shown that recycling of lithium impurities evaporating from the divertor plate at high surface temperatures can reverse the low-recycling divertor operational regime to the high-recycling one and may cause thermal instability of the divertor plate. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  4. Divertor conditions near double null in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Brunner, Dan; Labombard, Brian; Kuang, Adam; Terry, Jim; Mumgaard, Bob; Wolfe, Steve

    2016-10-01

    Many tokamak reactor designs utilize a double-null equilibrium for the boundary plasma because of the expected benefits of heat flux sharing between the two outer divertor leg as well as the attractiveness of the high-field side scrape-off layer plasma in double-null for RF actuators. However, there has been very little reported on boundary plasma conditions near double null, especially at the divertor plate. And, due to the narrow boundary plasma width, there is concern of the precision to which a double-null equilibrium must be controlled to maintain divertor heat flux sharing. To this end, a series of experiments were performed varying the magnetic balance around double null. The magnetic balance between the two nulls was scanned shot-to-shot in L-, I-, and H-mode plasmas. In addition, current and density scans were performed in L-mode plasmas. Results will be presented for relative balances of divertor particle and energy fluxes to the four divertors (inboard/outboard, upper/lower) as well as the sensitivity of changes in divertor conditions to the magnetic balance. Supported by USDoE Award DE-FC02-99ER54512.

  5. The Magnetic Field Structure of a Snowflake Divertor

    SciTech Connect

    Ryutov, D D; Cohen, R H; Rognlien, T D; Umansky, M V

    2008-05-30

    The snowflake divertor exploits a tokamak geometry in which the poloidal magnetic field null approaches second order; the name stems from the characteristic hexagonal, snowflake-like, shape of the separatrix for an exact second-order null. The proximity of the poloidal field structure to that of a second-order null substantially modifies edge magnetic properties compared to the standard X-point geometry; this, in turn, affects the edge plasma behavior. Modifications include: (1) The flux expansion near the null-point becomes 2-3 times larger; (2) The connection length between the equatorial plane and divertor plate significantly increases; (3) Magnetic shear just inside the separatrix becomes much larger; and (4) In the open-field-line region, the squeezing of the flux-tubes near the null-point increases, thereby causing stronger decoupling of the plasma turbulence in the divertor legs and in the main SOL. These effects can be used to reduce the power load on the divertor plates and/or to suppress the 'bursty' component of the heat flux. It is emphasized that the snowflake divertor can be created by a relatively simple set of poloidal field coils situated beyond the toroidal field coils. Analysis of the robustness of the proposed divertor configuration with respect to changes of the plasma current distribution is presented and it is concluded that, even if the null is close to the second order, the configuration is quite robust.

  6. Snowflake Divertor Configuration Studies in DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meyer, W. H.; Kolemen, E.; Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.

    2014-10-01

    Recent DIII-D studies show that the snowflake (SF) divertor enables significant manipulation of divertor heat transport for power exhaust in attached and radiative divertor conditions, between and during edge localized modes (ELMs), while maintaining good H-mode confinement. Results include: 1) Increased scrape-off layer (SOL) width suggesting enhanced divertor heat transport; 2) Direct measurements of divertor null-region poloidal beta βp >> 1 in support of the theoretically proposed instability mechanism leading to fast convective plasma redistribution, especially efficient during ELMs, and contribution to 1); 3) Weak effect on pedestal profile and stability resulting in essentially unchanged ELM regime; 4) Reduction of Type-I ELM energy loss; 5) In radiative SF divertor regimes with D2 seeding, a significant reduction of peak heat fluxes between and during ELMs, as in standard H-modes. Work supported by the US Department of Energy under DE-AC52-07NA27344, DE-AC02-09CH11466, DE-FC02-04ER54698, and DE-AC04-94AL85000.

  7. Development of a radiative divertor for DIII-D

    SciTech Connect

    Allen, S.L.; Brooks, N.H.; Campbell, R.B.

    1994-07-01

    We have used experiments and modeling to develop a new radiative divertor configuration for DIII-D. Gas puffing experiments with the existing open divertor have shown the creation of a localized ({approximately}10 cm diameter) radiation zone which results in substantial reduction (3--10) in the divertor heat flux while {delta}{sub E} remains {approximately}2 times ITER-89P scaling. However, ne increases with D{sub 2} puffing, and Z{sub eff} increases with neon puffing. Divertor structures are required to minimize the effects on the core plasma. The UEDGE fluid code, benchmarked with DIII-D data, and the DEGAS neutrals transport code are used to estimate the effectiveness of divertor configurations; slots reduce the core ionization more than baffles. The overall divertor shape is set by confinement studies which indicate that high triangularity ({delta} {approximately}0.8) is important for high {tau}{sub E} VH-modes. Results from engineering feasibility studies, including diagnostic access, will be presented.

  8. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  9. Challenges for Cryogenics at Iter

    NASA Astrophysics Data System (ADS)

    Serio, L.

    2010-04-01

    Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.

  10. Advances in cryogenic engineering. Vols. 35A & 35B - Proceedings of the 1989 Cryogenic Engineering Conference, University of California, Los Angeles, July 24-28, 1989

    NASA Astrophysics Data System (ADS)

    Fast, R. W.

    The book presents a review of literature on superfluid helium, together with papers under the topics on heat and mass transfer in He II; applications of He II for cooling superconducting devices in space; heat transfer to liquid helium and liquid nitrogen; multilayer insulation; applications of superconductivity, including topics on magnets and other devices, magnet stability and coil protection, and cryogenic techniques; and refrigeration for electronics. Other topics discussed include refrigeration of superconducting systems; the expanders, cold compressors, and pumps for liquid helium; dilution refrigerators; magnetic refrigerators; pulse tube refrigerators; cryocoolers for space applications; properties of cryogenic fluids; cryogenic instrumentation; hyperconducting devices (cryogenic magnets); cryogenic applications in space science and technology and in transportation; and miscellaneous cryogenic techniques and applications.

  11. Modeling Detached Divertor Plasma Characteristics in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Rognlien, T. D.; Joseph, I.; McLean, A. G.; Porter, G. D.; Rensink, M. E.; Umansky, M.; Groth, M.; Pigarov, A. Y.

    2015-11-01

    Detached divertor-plasma operation, where a large fraction of the core exhaust power is radiated before striking the target plates, is attractive for limiting the peak target heat flux. Such plasmas have electron temperature ~ 1 eV near the target. Changing the position of the separatrix strike points on the geometrically varied DIII-D target plates is allowing a systematic study of how plate shape impacts accessibility to detached operation. Reported here are 2D plasma/neutral transport simulations of these configurations using the UEDGE code including cross-field drifts and impurities. Results are given on how the onset of detachment scales with strike-point location, wall pumping of neutrals, separatrix density, and core power. Different initial conditions sometimes yield different steady-state solutions for identical input parameters, one being an attached plasma and the other detached. Comparisons are made of simulation results and experimental measurements, especially divertor Thomson scattering data. Work supported by US DOE, DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG02-07ER54917.

  12. 165-W cryogenically cooled Yb:YAG laser.

    PubMed

    Ripin, Daniel J; Ochoa, Juan R; Aggarwal, R L; Fan, Tso Yee

    2004-09-15

    Thermo-optic distortions often limit the beam quality and power scaling of high-average-power lasers. Cryogenically cooled Yb:YAG is used to efficiently generate 165 W of near-diffraction-limited beam from a power oscillator with negligible thermo-optic effects. End pumped with 215 W of incident pump power from two diode modules, the laser has an optical-optical efficiency of 76%, a slope efficiency of 85%, and an M2 value of 1.02.

  13. Fluid management system for a zero gravity cryogenic storage system

    NASA Technical Reports Server (NTRS)

    Lak, Tibor I. (Inventor)

    1995-01-01

    The fluid management system comprises a mixing/recirculation system including an external recirculation pump for receiving fluid from a zero gravity storage system and returning an output flow of the fluid to the storage system. An internal axial spray injection system is provided for receiving a portion of the output flow from the recirculation pump. The spray injection system thermally de-stratifies liquid and gaseous cryogenic fluid stored in the storage system.

  14. Comparison of 2D simulations of detached divertor plasmas with divertor Thomson measurements in the DIII-D tokamak

    DOE PAGES

    Rognlien, Thomas D.; McLean, Adam G.; Fenstermacher, Max E.; ...

    2017-01-27

    A modeling study is reported using new 2D data from DIII-D tokamak divertor plasmas and improved 2D transport model that includes large cross-field drifts for the numerically difficult H-mode regime. The data set, which spans a range of plasmas densities for both forward and reverse toroidal magnetic field (Bt) over a range of plasma densities, is provided by divertor Thomson scattering (DTS). Measurements utilizing X-point sweeping give corresponding 2D profiles of electron temperature (Te) and density (ne) across both divertor legs for individual discharges. The calculations show the same features of in/out plasma asymmetries as measured in the experiment, withmore » the normal Bt direction (ion ∇B drift toward the X-point) having higher ne and lower Te in the inner divertor leg than outer. Corresponding emission data for total radiated power shows a strong inner-divertor/outer-divertor asymmetry that is reproduced by the simulations. Furthermore, these 2D UEDGE transport simulations are enabled for steep-gradient H-mode conditions by newly implemented algorithms to control isolated grid-scale irregularities.« less

  15. Developing snowflake divertor physics basis in the DIII-D, NSTX and NSTX-U tokamaks aimed at the divertor power exhaust solution [Snowflake divertor experiments in the DIII-D, NSTX and NSTX-U tokamaks aimed at the development of the divertor power exhaust solution

    DOE PAGES

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; ...

    2016-06-02

    Experimental results from the National Spherical Torus Experiment (NSTX), a medium-size spherical tokamak with a compact divertor, and DIII-D, a large conventional aspect ratio tokamak, demonstrate that the snowflake (SF) divertor configuration may provide a promising solution for mitigating divertor heat loads and target plate erosion compatible with core H-mode confinement in future fusion devices, where the standard radiative divertor solution may be inadequate. In NSTX, where the initial high-power SF experiment were performed, the SF divertor was compatible with H-mode confinement, and led to the destabilization of large ELMs. However, a stable partial detachment of the outer strike pointmore » was also achieved where inter-ELM peak heat flux was reduced by factors 3-5, and peak ELM heat flux was reduced by up to 80% (cf. standard divertor). The DIII-D studies show the SF divertor enables significant power spreading in attached and radiative divertor conditions. Results include: compatibility with the core and pedestal, peak inter-ELM divertor heat flux reduction due to geometry at lower ne, and ELM energy and divertor peak heat flux reduction, especially prominent in radiative D2-seeded SF divertor, and nearly complete power detachment and broader radiated power distribution in the radiative D2-seeded SF divertor at PSOL = 3 - 4 MW. A variety of SF configurations can be supported by the divertor coil set in NSTX Upgrade. Edge transport modeling with the multi-fluid edge transport code UEDGE shows that the radiative SF divertor can successfully reduce peak divertor heat flux for the projected PSOL ≃9 MW case. In conclusion, the radiative SF divertor with carbon impurity provides a wider ne operating window, 50% less argon is needed in the impurity-seeded SF configuration to achieve similar qpeak reduction factors (cf. standard divertor).« less

  16. Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi

    2006-01-01

    Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.

  17. 49 CFR 178.338-17 - Pumps and compressors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... come in contact with oxygen (cryogenic liquid) may not be installed on any cargo tank used to transport oxygen (cryogenic liquid) unless the parts are anodized in accordance with ASTM B 580 (IBR, see § 171.7... Specifications for Containers for Motor Vehicle Transportation § 178.338-17 Pumps and compressors. (a)...

  18. FRIB Cryogenic Plant Status

    SciTech Connect

    Dixon, Kelly D.; Ganni, Venkatarao; Knudsen, Peter N.; Casagranda, Fabio

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  19. SNS Cryogenic Systems Commissioning

    NASA Astrophysics Data System (ADS)

    Hatfield, D.; Casagrande, F.; Campisi, I.; Gurd, P.; Howell, M.; Stout, D.; Strong, H.; Arenius, D.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2006-04-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  20. SNS Cryogenic Systems Commissioning

    SciTech Connect

    D. Hatfield; F. Casagrande; I. Campisi; P. Gurd; M. Howell; D. Stout; H. Strong; D. Arenius; J. Creel; K. Dixon; V. Ganni; and P. Knudsen

    2005-08-29

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  1. Design, R&D and commissioning of EAST tungsten divertor

    NASA Astrophysics Data System (ADS)

    Yao, D. M.; Luo, G. N.; Zhou, Z. B.; Cao, L.; Li, Q.; Wang, W. J.; Li, L.; Qin, S. G.; Shi, Y. L.; Liu, G. H.; Li, J. G.

    2016-02-01

    After commissioning in 2005, the EAST superconducting tokamak had been operated with its water cooled divertors for eight campaigns up to 2012, employing graphite as plasma facing material. With increase in heating power over 20 MW in recent years, the heat flux going to the divertors rises rapidly over 10 MW m-2 for steady state operation. To accommodate the rapid increasing heat load in EAST, the bolting graphite tile divertor must be upgraded. An ITER-like tungsten (W) divertor has been designed and developed; and firstly used for the upper divertor of EAST. The EAST upper W divertor is modular structure with 80 modules in total. Eighty sets of W/Cu plasma-facing components (PFC) with each set consisting of an outer vertical target (OVT), an inner vertical target (IVT) and a DOME, are attached to 80 stainless steel cassette bodies (CB) by pins. The monoblock W/Cu-PFCs have been developed for the strike points of both OVT and IVT, and the flat type W/Cu-PFCs for the DOME and the baffle parts of both OVT and IVT, employing so-called hot isostatic pressing (HIP) technology for tungsten to CuCrZr heat sink bonding, and electron beam welding for CuCrZr to CuCrZr and CuCrZr to other material bonding. Both monoblock and flat type PFC mockups passed high heat flux (HHF) testing by means of electron beam facilities. The 80 divertor modules were installed in EAST in 2014 and results of the first commissioning are presented in this paper.

  2. BBQ Modeling of Recycling from the Tore Supra Ergodic Divertor Neutraliser

    NASA Astrophysics Data System (ADS)

    Giannella, R.; Guirlet, R.; Demichelis, C.; Hogan, J.; Cherigier, L.

    1998-11-01

    Generation and recycling of carbon and hydrocarbon impurities, and recycling of neon at the Tore Supra pumped ergodic divertor have been analyzed using the BBQ 3-D scrape-off layer transport code. Code results are compared with spectroscopic observations from fibres located on the neutralizer plates, and background plasma conditions used in the code are constrained with data from langmuir probes embedded in the plates. The sensitivity of neon recycling to assumed reflection coefficients has been studied. A detailed 3-D geometry model for the neutralizer, including all 4 plates, and recycling from the notches between plates, has been prepared. A version of the code describing deuterium processes is being developed to study conditions during the onset of detachment at high density

  3. Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor

    SciTech Connect

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.

    1985-01-01

    Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line tracings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented.

  4. Cryogenic helium 2 systems for space applications

    NASA Technical Reports Server (NTRS)

    Urban, E.; Katz, L.; Hendricks, J.; Karr, G.

    1978-01-01

    Two cryogenic systems are described which will provide cooling for experiments to be flown on Spacelab 2 in the early 1980's. The first system cools a scanning infrared telescope by the transfer of cold helium gas from a separate superfluid helium storage dewar. The flexible design permits the helium storage dewar and transfer assembly to be designed independent of the infrared experiment. Where possible, modified commerical apparatus is used. The second cryogenic system utilizes a specially designed superfluid dewar in which a superfluid helium experiment chamber is immersed. Each dewar system employs a porous plug as a phase separator to hold the liquid helium within the dewar and provide cold gas to a vent line. To maintain the low vapor pressure of the superfluid, each system requires nearly continuous prelaunch vacuum pump service, and each will vent to space during the Spacelab 2 flight.

  5. Design concepts for the ASTROMAG cryogenic system

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Castles, S.

    1988-01-01

    Described is a proposed cryogenic system used to cool the superconducting magnet for the Space Station based ASTROMAG Particle Astrophysics Facility. This 2-meter diameter superconducting magnet will be cooled using stored helium II. The paper presents a liquid helium storage concept which would permit cryogenic lifetimes of up to 3 years between refills. It is proposed that the superconducting coil be cooled using superfluid helium pumped by the thermomechanical effect. It is also proposed that the storage tank be resupplied with helium in orbit. A method for charging and discharging the magnet with minimum helium loss using split gas-cooled leads is discussed. A proposal to use a Stirling cycle cryocooler to extend the storage life of the cryostat will also be presented.

  6. Design concepts for the ASTROMAG cryogenic system

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Castles, S.

    1987-01-01

    Described is a proposed cryogenic system used to cool the superconducting magnet for the Space Station based ASTROMAG Particle Astrophysics Facility. This 2-meter diameter superconducting magnet will be cooled using stored helium II. The paper presents a liquid helium storage concept which would permit cryogenic lifetimes of up to 3 years between refills. It is proposed that the superconducting coil be cooled using superfluid helium pumped by the thermomechanical effect. It is also proposed that the storage tank be resupplied with helium in orbit. A method for charging and discharging the magnet with minimum helium loss using split gas-cooled leads is discussed. A proposal to use a Stirling cycle cryocooler to extend the storage life of the cryostat will also be presented.

  7. Cryogenic helium 2 systems for space applications

    NASA Technical Reports Server (NTRS)

    Urban, E.; Katz, L.; Hendricks, J.; Karr, G.

    1978-01-01

    Two cryogenic systems are described which will provide cooling for experiments to be flown on Spacelab 2 in the early 1980's. The first system cools a scanning infrared telescope by the transfer of cold helium gas from a separate superfluid helium storage dewar. The flexible design permits the helium storage dewar and transfer assembly to be designed independent of the infrared experiment. Where possible, modified commerical apparatus is used. The second cryogenic system utilizes a specially designed superfluid dewar in which a superfluid helium experiment chamber is immersed. Each dewar system employs a porous plug as a phase separator to hold the liquid helium within the dewar and provide cold gas to a vent line. To maintain the low vapor pressure of the superfluid, each system requires nearly continuous prelaunch vacuum pump service, and each will vent to space during the Spacelab 2 flight.

  8. Advances in Cryogenic Principles

    NASA Astrophysics Data System (ADS)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  9. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  10. Liquid cryogenic lubricant

    NASA Technical Reports Server (NTRS)

    Dietrich, M. W.; Townsend, D. P.; Zaretsky, E. V.

    1970-01-01

    Fluorinated polyethers are suitable lubricants for rolling-element bearings in cryogenic systems. Lubrication effectiveness is comparable to that of super-refined mineral oil lubricants operating at room temperature.

  11. Vuilleumier Cycle Cryogenic Refrigeration

    DTIC Science & Technology

    1976-04-01

    WORDS (Continue on reverse side if necessary and identify by block number) Cryogenic Refrigerator Vuilleumier Cycle 20. ABSTRACT (Continue on reverse ...The energy added to the gas was stored in the regenerator packing, or matrix, by gas flow in the reverse direction during a previous part of the cycle ...AFFDL-TR-76-17 VUILLEUMIER CYCLE CRYOGENIC REFRIGERATION ENVIRONMENTAL CONTROL BRANCH 4 VEHICLE EQUIPMENT DIVISION APRIL 1976 TECHNICAL REPORT AFFDL

  12. Cryogenic Feedthrough Test Rig

    NASA Technical Reports Server (NTRS)

    Skaff, Antony

    2009-01-01

    The cryogenic feedthrough test rig (CFTR) allows testing of instrumentation feedthroughs at liquid oxygen and liquid hydrogen temperature and pressure extremes (dangerous process fluid) without actually exposing the feedthrough to a combustible or explosive process fluid. In addition, the helium used (inert gas), with cryogenic heat exchangers, exposes the feedthrough to that environment that allows definitive leak rates of feedthrough by typical industry-standard helium mass spectrometers.

  13. Cryogenic Shutter Mechanism

    NASA Technical Reports Server (NTRS)

    Barney, Richard D.; Magner, Thomas J.

    1989-01-01

    Electromagnetic shutter mechanism operates at ambient and cryogenic temperatures to shield optical element, such as mirror, filter, polarizer, beam splitter, or detector, from external light and radiation in cryogenic Dewar equipped with window for optical evaluation. Shutter mechanism in Dewar container alternately shields and exposes optical element as paddle rotates between mechanical stops. Mounted on cold plate of liquid-helium reservoir. Paddle, shaft, and magnet constitutes assembly rotated by electromagnetic field on coil.

  14. Overview of the DIII-D Divertor Tungsten Rings Campaign

    NASA Astrophysics Data System (ADS)

    Unterberg, E. A.; Thomas, D. M.; Petrie, T. W.; Abrams, T.; Garofalo, A. M.; Stangeby, P. C.; Rudakov, D. L.; Schmitz, O.; Grierson, B. A.; Victor, B.

    2016-10-01

    Experiments have recently been carried out with toroidal arrays of W-coated metal inserts at two distinct locations in the lower divertor region. The purpose of the experiments is to determine the high-Z divertor erosion and migration, and its effect on core contamination in high performance, ELM-y H-mode, tokamak discharges in a mixed-material, i.e. C and W, environment. The experiments focused on characterizing the sputtering source from each location, the SOL transport of W, and the subsequent impact on core performance. A wide range of ELM-y conditions was studied, including ELM controlled and ELM-free regimes, to determine the importance of the divertor strike point position relative to W sources in these various regimes. The W penetration efficiency was characterized by using a far-SOL collector probe related to core W density. Correlations between source strength (as measured by W-I spectroscopy) relative to the distance of the strikepoint to each W array, the divertor target magnetic flux expansion, and ELM frequency was seen. These experiments aid in understanding the impact of high-Z divertor source location on core performance in future mixed-material fusion devices, e.g. ITER. Supported by US DOE under DE- AC05-00OR22725, DE-FC02-04ER54698, DE-FG02-07ER54917, DE-SC0013911, DE-AC02-09CH11466, DE-AC52-07NA27344.

  15. Radiative snowflake divertor studies in DIII-D

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meyer, W. H.; Kolemen, E.; Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.

    2015-08-01

    Recent DIII-D experiments assessed the snowflake divertor (SF) configuration in a radiative regime in H-mode discharges with D2 seeding. The SF configuration was maintained for many energy confinement times (2-3 s) in H-mode discharges (Ip = 1.2 MA, PNBI = 4- 5 MW, and B × ∇B down (favorable direction toward the divertor)), and found to be compatible with high performance operation (H98y2 ⩾ 1). The two studied SF configurations, the SF-plus and the SF-minus, have a small finite distance between the primary X-point and the secondary Bp null located in the private flux region or the common flux region, respectively. In H-mode discharges with the SF configurations (cf. H-mode discharges with the standard divertor with similar conditions) the stored energy lost per the edge localized mode (ELM) was reduced, and significant divertor heat flux reduction between and during ELMs was observed over a range of collisionalities, from lower density conditions toward a higher density H-modes with the radiative SF divertor.

  16. Compatibility of Detached Divertor Operation with Robust Edge Pedestal Performance

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.; Osborne, T. H.; Snyder, P. B.; Makowski, M. A.; McLean, A. G.

    2014-10-01

    The compatibility of radiative detached divertor operation with the maintenance of a robust H-mode pedestal is examined in DIII-D. A density scan with deuterium injection into H-mode spanned a range of divertor conditions from fully attached, ~30 eV at the target, with little divertor radiation to a fully detached with Te < 5 eV throughout the divertor up to the X-point. Over this scan of pedestal density from n /nGW = 30% to 60% the pedestal Te was reduced from 800 eV to 350 eV, representing a ~20% reduction in pedestal pressure with a similar reduction in normalized energy confinement. The reduction in pedestal pressure at high density was found to be consistent with a reduced pedestal ELM MHD stability limit at high collisionality. The scaling of the pedestal top pressure with density was also consistent with the EPED model, which assumes an additional constraint on the local pressure gradient. The MHD stability limit at the highest collisionality depends on details of the ELM instability growth rate normalization. This result is encouraging for future burning plasmas where a low collisionality pedestal is expected to be maintained even for high density detached divertor operation. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  17. Upgraded divertor Thomson scattering system on DIII-D

    SciTech Connect

    Glass, F. Carlstrom, T. N.; Du, D.; Taussig, D. A.; Boivin, R. L.; McLean, A. G.

    2016-11-15

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (T{sub e} in the range of 0.5 eV–2 keV, n{sub e} in the range of 5 × 10{sup 18}–1 × 10{sup 21} m{sup 3}) for both low T{sub e} in detachment and high T{sub e} measurement up beyond the separatrix.

  18. Analysis of sweeping heat loads on divertor plate materials

    SciTech Connect

    Hassanein, A.

    1991-12-31

    The heat flux on the divertor plate of a fusion reactor is probably one of the most limiting constraints on its lifetime. The current heat flux profile on the outer divertor plate of a device like ITER is highly peaked with narrow profile. The peak heat flux can be as high as 30--40 MW/m{sup 2} with full width at half maximum (FWHM) is in the order of a few centimeters. Sweeping the separatrix along the divertor plate is one of the options proposed to reduce the thermomechanical effects of this highly peaked narrow profile distribution. The effectiveness of the sweeping process is investigated parametrically for various design values. The optimum sweeping parameters of a particular heat load will depend on the design of the divertor plate as well as on the profile of such a heat load. In general, moving a highly peaked heat load results in substantial reduction of the thermomechanical effects on the divertor plate. 3 refs., 8 figs.

  19. Analysis of sweeping heat loads on divertor plate materials

    SciTech Connect

    Hassanein, A.

    1991-01-01

    The heat flux on the divertor plate of a fusion reactor is probably one of the most limiting constraints on its lifetime. The current heat flux profile on the outer divertor plate of a device like ITER is highly peaked with narrow profile. The peak heat flux can be as high as 30--40 MW/m{sup 2} with full width at half maximum (FWHM) is in the order of a few centimeters. Sweeping the separatrix along the divertor plate is one of the options proposed to reduce the thermomechanical effects of this highly peaked narrow profile distribution. The effectiveness of the sweeping process is investigated parametrically for various design values. The optimum sweeping parameters of a particular heat load will depend on the design of the divertor plate as well as on the profile of such a heat load. In general, moving a highly peaked heat load results in substantial reduction of the thermomechanical effects on the divertor plate. 3 refs., 8 figs.

  20. Upgraded divertor Thomson scattering system on DIII-D

    NASA Astrophysics Data System (ADS)

    Glass, F.; Carlstrom, T. N.; Du, D.; McLean, A. G.; Taussig, D. A.; Boivin, R. L.

    2016-11-01

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (Te in the range of 0.5 eV-2 keV, ne in the range of 5 × 1018-1 × 1021 m3) for both low Te in detachment and high Te measurement up beyond the separatrix.

  1. Space Cryogenics Workshop, 10th, Cleveland, OH, June 18-20, 1991, Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The present workshop on cryogenics discusses the anomalous on-orbit behavior of the Cosmic Background Explorer Dewar, the SHOOT orbital operations, cooling options for Astromag, and space IR telescope facility mission and cryogenic design. Attention is given to the design of a spaceworthy adiabatic demagnetization refrigerator, the evaluation of metal hydride compressors for applications in Joule-Thomson cryocoolers, diaphragm Stirling cryocooler developments, and a computer simulation model for Stirling refrigerators. Topics addressed include low-gravity thermal stratification of liquid helium on SHOOT, a screening program to select a resin for gravity probe-B composites, a simplified generic cryostat thermal model for predicting cryogen mass and lifetime, and the effect of gas mass flux on cryogenic liquid jet breakup. Also discussed are damping criteria for thermal acoustic oscillations in slush and liquid hydrogen systems, an STS-based cryogenic fluid management experiment, and the design and testing of a cryogenic mixer pump.

  2. Settled Cryogenic Propellant Transfer

    NASA Technical Reports Server (NTRS)

    Kutter, Bernard F.; Zegler, Frank; Sakla, Steve; Wall, John; Hopkins, Josh; Saks, Greg; Duffey, Jack; Chato, David J.

    2006-01-01

    Cryogenic propellant transfer can significantly benefit NASA s space exploration initiative. LMSSC parametric studies indicate that "Topping off" the Earth Departure Stage (EDS) in LEO with approx.20 mT of additional propellant using cryogenic propellant transfer increases the lunar delivered payload by 5 mT. Filling the EDS to capacity in LEO with 78 mT of propellants increases the delivered payload by 20 mT. Cryogenic propellant transfer is directly extensible to Mars exploration in that it provides propellant for the Mars Earth Departure stage and in-situ propellant utilization at Mars. To enable the significant performance increase provided by cryogenic propellant transfer, the reliability and robustness of the transfer process must be guaranteed. By utilizing low vehicle acceleration during the cryogenic transfer the operation is significantly simplified and enables the maximum use of existing, reliable, mature upper stage cryogenic-fluid-management (CFM) techniques. Due to settling, large-scale propellant transfer becomes an engineering effort, and not the technology development endeavor required with zero-gravity propellant transfer. The following key CFM technologies are all currently implemented by settling on both the Centaur and Delta IV upper stages: propellant acquisition, hardware chilldown, pressure control, and mass gauging. The key remaining technology, autonomous rendezvous and docking, is already in use by the Russians, and must be perfected for NASA whether the use of propellant transfer is utilized or not.

  3. Cryogenic systems for the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Mason, Peter V.

    1988-01-01

    There are five technologies which may have application for Large Deployable Reflector (LDR), one passive and four active. In order of maturity, they are passive stored cryogen systems, and mechanical, sorption, magnetic, and pulse-tube refrigerators. In addition, deep space radiators will be required to reject the heat of the active systems, and may be useful as auxiliary coolers for the stored cryogen systems. Hybrid combinations of these technologies may well be more efficient than any one alone, and extensive system studies will be required to determine the best trade-offs. Stored cryogen systems were flown on a number of missions. The systems are capable of meeting the temperature requirements of LDR. The size and weight of stored cryogen systems are proportional to heat load and, as a result, are applicable only if the low-temperature heat load can be kept small. Systems using chemisorption and physical adsorption for compressors and pumps have received considerable attention in the past few years. Systems based on adiabatic demagnetization of paramagnetic salts were used for refrigeration for many years. Pulse-tube refrigerators were recently proposed which show relatively high efficiency for temperatures in the 60 to 80 K range. The instrument heat loads and operating temperatures are critical to the selection and design of the cryogenic system. Every effort should be made to minimize heat loads, raise operating temperatures, and to define these precisely. No one technology is now ready for application to LDR. Substantial development efforts are underway in all of the technologies and should be monitored and advocated. Magnetic and pulse-tube refrigerators have high potential.

  4. A survey of problems in divertor and edge plasma theory

    SciTech Connect

    Boozer, A. ); Braams, B.; Weitzner, H. . Courant Inst. of Mathematical Sciences); Cohen, R. ); Hazeltine, R. . Inst. for Fusion Studies); Hinton, F. ); Houlberg, W. (Oak

    1992-12-22

    Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician's point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings.

  5. A survey of problems in divertor and edge plasma theory

    SciTech Connect

    Boozer, A.; Braams, B.; Weitzner, H.; Cohen, R.; Hazeltine, R.; Hinton, F.; Houlberg, W.; Oktay, E.; Sadowski, W.; Post, D.; Sigmar, D.; Wootton, A.

    1992-12-22

    Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician`s point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings.

  6. Innovative divertor concept development on DIII-D and EAST

    SciTech Connect

    Guo, H. Y.; Allen, S.; Canik, J.; Hill, D. N.; Leonard, T.; Sang, C. F.; Stangeby, P. C.; Thomas, D. M.; Unterberg, Z.; Luo, G. N.; Wang, L.; Wan, B. N.; Xu, G. S.

    2016-06-02

    A critical issue facing the design and operation of next-step high-power steady-state fusion devices is the control of heat fluxes and erosion at the plasma-facing components, in particular, the divertor target plates. A new initiative has been launched on DIII-D to develop and demonstrate innovative boundary plasma-materials interface solutions. The central purposes of this new initiative are to advance scientific understanding in this critical area and develop an advanced divertor concept for application to next-step fusion devices. Finally, DIII-D will leverage strong collaborative efforts on the EAST superconducting tokamak for extending integrated high performance advanced divertor solutions to true steady-state.

  7. Radiative divertor plasmas with convection in DIII-D

    SciTech Connect

    Leornard, A.W.; Porter, G.D.; Wood, R.D.

    1998-01-01

    The radiation of divertor heat flux on DIII-D is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE has reproduced many of the observed experimental features.

  8. Plasma transport in a simulated magnetic-divertor configuration

    SciTech Connect

    Strawitch, C. M.

    1981-03-01

    The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.

  9. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  10. Ricor's anniversary of 50 innovative years in cryogenic technology

    NASA Astrophysics Data System (ADS)

    Filis, Avishai; Segal, Victor; Pundak, Nachman; Bar Haim, Zvi; Danziger, Menachem

    2017-05-01

    Ricor cryogenics was founded in 1967 and since then it has focused on innovative technologies in the cryogenic field. The paper reviews the initial research and development efforts invested in various technologies that have yielded products such as Cryostats for Mossbauer Effect measurement, Liquid gas Dewar containers, Liquid helium vacuum transfer tubes, Cryosurgery and other innovative products. The major registered patents that matured to products such as a magnetic vacuum valve operator, pumped out safety valve and other innovations are reviewed here. As a result of continuous R and D investment, over the years a new generation of innovative Stirling cryogenic products has developed. This development began with massive split slip-on coolers and has progressed as far as miniature IDDCA coolers mainly for IR applications. The accumulated experience in Stirling technology is used also as a platform for developing self-contained water vapor pumps known as MicroStar and NanoStar. These products are also used in collaboration with a research institute in the field of High Temperature Superconductors. The continuous growth in the cryogenic products range and the need to meet market demands have motivated the expansion, of Ricor's manufacturing facility enabling it to become a world leader in the cryocooler field. To date Ricor has manufactured more than 120,000 cryocoolers. The actual cryogenic development efforts and challenges are also reviewed, mainly in the field of long life cryocoolers, ruggedized products, miniaturization and products for space applications.

  11. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    SciTech Connect

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  12. Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry

    SciTech Connect

    Xu, X.Q.

    1998-10-14

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

  13. Taming the heat flux problem: Advanced divertors towards fusion power

    SciTech Connect

    Kotschenreuther, M.; Mahajan, S.; Valanju, P. M.; Covele, B.; Waelbroeck, F. L.; Canik, John M.; LaBombard, Brian

    2015-09-11

    The next generation fusion machines are likely to face enormous heat exhaust problems. In addition to summarizing major issues and physical processes connected with these problems, we discuss how advanced divertors, obtained by modifying the local geometry, may yield workable solutions. We also point out that: (1) the initial interpretation of recent experiments show that the advantages, predicted, for instance, for the X-divertor (in particular, being able to run a detached operation at high pedestal pressure) correlate very well with observations, and (2) the X-D geometry could be implemented on ITER (and DEMOS) respecting all the relevant constraints. As a result, a roadmap for future research efforts is proposed.

  14. Innovative high-power CW Yb:YAG cryogenic laser

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Singley, J. M.; Yager, E.; Kuper, J. W.; Lotito, B. J.; Bennett, L. L.

    2007-04-01

    In this paper we discuss a CW Yb:YAG cryogenic laser program that has resulted in the design and demonstration of a novel high power laser. Cryogenically-cooled crystalline solid-state lasers, and Yb:YAG lasers in particular, are attractive sources of scalable CW output power with very high wallplug efficiency and excellent beam-quality that is independent of the output power. This laser consists of a distributed array of seven highly-doped thin Yb:YAG-sapphire disks in a folded multiple-Z resonator. Individual disks are pumped from opposite sides using fiber-coupled ~ 30W 940nm pump diodes. The laser system we have constructed produces a near-diffraction-limited TEM 00 output beam with the aid of an active conduction-cooling design. In addition, the device can be scaled to very high average power in a MOPA configuration, by increasing the number and diameter of the thin disks, and by increasing the power of the pump diodes with only minor modifications to the current design. The thermal and optical benefits of cryogenically-cooled solid-state lasers will be reviewed, scalability of our Yb:YAG cryogenic laser design will be discussed, and we will present experimental results including output power, slope and optical-optical efficiencies, and beam-quality.

  15. Innovative high-power CW Yb:YAG cryogenic laser

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Singley, J. M.; Yager, E.; Kuper, J. W.; Lotito, B. J.; Bennett, L. L.

    2007-02-01

    In this paper we discuss a CW Yb:YAG cryogenic laser program that has resulted in the design and demonstration of a novel high power laser. Cryogenically-cooled crystalline solid-state lasers, and Yb:YAG lasers in particular, are attractive sources of scalable CW output power with very high wallplug efficiency and excellent beam-quality that is independent of the output power. This laser consists of a distributed array of seven highly-doped thin Yb:YAG-sapphire disks in a folded multiple-Z resonator. Individual disks are pumped from opposite sides using fiber-coupled ~ 30W 940nm pump diodes. The laser system we have constructed produces a near-diffraction-limited TEM 00 output beam with the aid of an active conduction-cooling design. In addition, the device can be scaled to very high average power in a MOPA configuration, by increasing the number and diameter of the thin disks, and by increasing the power of the pump diodes with only minor modifications to the current design. The thermal and optical benefits of cryogenically-cooled solid-state lasers will be reviewed, scalability of our Yb:YAG cryogenic laser design will be discussed, and we will present experimental results including output power, slope and optical-optical efficiencies, and beam-quality.

  16. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    SciTech Connect

    Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  17. TPC magnet cryogenic system

    SciTech Connect

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system.

  18. Process of making cryogenically cooled high thermal performance crystal optics

    DOEpatents

    Kuzay, T.M.

    1992-06-23

    A method is disclosed for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N[sub 2] is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation. 7 figs.

  19. Cryogenic storage technology readiness for First Lunar Outpost

    NASA Astrophysics Data System (ADS)

    Schuster, John R.

    The topics are presented in viewgraph form and include the following: an assessment of cryogenic storage technology; cryogenic boiloff predictions; Space Shuttle/Centaur thermodynamic vent system; zero-g thermodynamic vent system; heat exchanger/mixer pump module; the thick multilayer insulation (MLI) development program; blanket geometry concept evaluations; four-inch thick MLI system on 1/4-scale test tank; combined environments of vibration, acceleration, and temperature testing (CEVAT); Centaur fixed foam insulation; insulation system design; and fixed foam on operational Atlas 2.

  20. Power scaling of cryogenic Yb:LiYF(4) lasers.

    PubMed

    Zapata, Luis E; Ripin, Daniel J; Fan, Tso Yee

    2010-06-01

    We demonstrate a cryogenically cooled Yb:LiYF(4) (Yb:YLF) laser with 224W linearly polarized output power (pump-power limited) and a slope efficiency of 68%. The beam quality is characterized by an M(2) approximately 1.1 at 60W output and M(2) approximately 2.6 at 180W output. This level of average laser power is approximately 2 orders of magnitude higher than demonstrated previously in cryogenic Yb:YLF. Yb:YLF is attractive for femtosecond pulse generation because of its wide gain bandwidth, and this demonstration shows the potential for high-average-power subpicosecond pulse lasers.

  1. Process of making cryogenically cooled high thermal performance crystal optics

    SciTech Connect

    Kuzay, T.M.

    1990-06-29

    A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N{sub 2} is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

  2. Process of making cryogenically cooled high thermal performance crystal optics

    DOEpatents

    Kuzay, Tuncer M.

    1992-01-01

    A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N.sub.2 is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

  3. Cryogenic storage technology readiness for First Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Schuster, John R.

    1992-01-01

    The topics are presented in viewgraph form and include the following: an assessment of cryogenic storage technology; cryogenic boiloff predictions; Space Shuttle/Centaur thermodynamic vent system; zero-g thermodynamic vent system; heat exchanger/mixer pump module; the thick multilayer insulation (MLI) development program; blanket geometry concept evaluations; four-inch thick MLI system on 1/4-scale test tank; combined environments of vibration, acceleration, and temperature testing (CEVAT); Centaur fixed foam insulation; insulation system design; and fixed foam on operational Atlas 2.

  4. Attainment of a stable, fully detached plasma state in innovative divertor configurations

    NASA Astrophysics Data System (ADS)

    Umansky, M. V.; LaBombard, B.; Brunner, D.; Rensink, M. E.; Rognlien, T. D.; Terry, J. L.; Whyte, D. G.

    2017-05-01

    A computational study of long-legged tokamak divertor configurations is performed with the edge transport code UEDGE. Several divertor configurations are considered, with radially or vertically extended, tightly baffled, outer divertor legs and with or without a secondary X-point in the divertor leg volume. For otherwise identical conditions, a scan of the input power from the core plasma is performed. As the power is reduced to a threshold value, the plasma in the outer leg transitions to a fully detached state, which defines the upper limit on the power for detached divertor operation. Reducing the power further results in the detachment front shifting upstream but remains stable. At low power, the detachment front eventually moves all the way to the primary X-point, which is usually associated with degradation of the core plasma, and this defines the lower limit on the power for the detached divertor operation. For the studied parameters, for long-legged divertors, the detached operation window is quite large, in particular, for the X-point target configuration using a secondary X-point in the divertor leg volume, allowing a factor of 5-10 variations in the input power. For the same parameters, for the standard divertor configuration, the detached operation window is very small or even non-existent. The present modeling results suggest the possibility of stable fully detached divertor operation for a tokamak with tightly baffled extended divertor legs.

  5. Progress in snowflake divertor research in DIII-D, NSTX and NSTX-U

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Allen, S.; Fenstermacher, M.; Izacard, O.; Lasnier, C.; Makowski, M.; McLean, A.; Myer, W.; Ryutov, D.; Scotti, F.; Eldon, D.; Kolemen, E.; Vail, P.; Canal, G.; Groebner, R.; Hyatt, A.; Leonard, A.; Osborne, T.; Bell, R.; Diallo, A.; Gerhardt, S.; Kaye, S.; Leblanc, B.; Menard, J.; Podesta, M.

    2016-10-01

    Recent snowflake (SF) divertor DIII-D experiments focused on divertor heat transport under attached and radiative divertor conditions, incl 1-understanding of increased scrape-off layer width in SF-plus configuration at lower densities; 2-particle, heat and radiation distribution in the SF divertor with CD4 seeding. NSTX data was analyzed to understand the link between SF divertor and ELM (de)stabilization with and without CD4 seeding and lithium conditioning. Prep for SF divertor experiments in NSTX-U include 1-equilibria modeling with ISOLVER code using various sets of divertor coils and L- and H-mode plasma scenarios; 2-transport and impurity radiation modeling with UEDGE code; 3-new diagnostics (ie-a 100-200 kHz camera for null-region mode observations). Supported by DOE under DE-AC52-07NA27344, DE-AC02-09CH11466, DE-FC02-04ER54698.

  6. Cryogenic wind tunnels. II

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    The application of the cryogenic concept to various types of tunnels including Ludwieg tube tunnel, Evans clean tunnel, blowdown, induced-flow, and continuous-flow fan-driven tunnels is discussed. Benefits related to construction and operating costs are covered, along with benefits related to new testing capabilities. It is noted that cooling the test gas to very low temperatures increases Reynolds number by more than a factor of seven. From the energy standpoint, ambient-temperature fan-driven closed-return tunnels are considered to be the most efficient type of tunnel, while a large reduction in the required tunnel stagnation pressure can be achieved through cryogenic operation. Operating envelopes for three modes of operation for a cryogenic transonic pressure tunnel with a 2.5 by 2.5 test section are outlined. A computer program for calculating flow parameters and power requirements for wind tunnels with operating temperatures from saturation to above ambient is highlighted.

  7. Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Kimmel, W. M.; Kuhn, N. S.; Berry, R. F.; Newman, J. A.

    2001-01-01

    An overview and status of current activities seeking alternatives to 200 grade 18Ni Steel CVM alloy for cryogenic wind tunnel models is presented. Specific improvements in material selection have been researched including availability, strength, fracture toughness and potential for use in transonic wind tunnel testing. Potential benefits from utilizing damage tolerant life-prediction methods, recently developed fatigue crack growth codes and upgraded NDE methods are also investigated. Two candidate alloys are identified and accepted for cryogenic/transonic wind tunnel models and hardware.

  8. Cryogenic Propellant Densification Study

    NASA Technical Reports Server (NTRS)

    Ewart, R. O.; Dergance, R. H.

    1978-01-01

    Ground and vehicle system requirements are evaluated for the use of densified cryogenic propellants in advanced space transportation systems. Propellants studied were slush and triple point liquid hydrogen, triple point liquid oxygen, and slush and triple point liquid methane. Areas of study included propellant production, storage, transfer, vehicle loading and system requirements definition. A savings of approximately 8.2 x 100,000 Kg can be achieved in single stage to orbit gross liftoff weight for a payload of 29,484 Kg by utilizing densified cryogens in place of normal boiling point propellants.

  9. Cryogenic submicron linear actuator

    NASA Astrophysics Data System (ADS)

    Serrano, Javier; Moreno Raso, Javier; González de María, David; Argelaguet Vilaseca, Heribert; Lamensans, Mikel; López Justo, David; Sanz Puig, Violeta

    2010-07-01

    The Cryogenic Submicron Linear Actuator (CSA) is a medium range (+/-5 mm) submicron resolution linear actuator suitable to be used at cryogenic temperature (12K). The unit has been developed for fine positioning use. The unit is based on classic motor-gear concept with nut and screw; different materials and lubrications have been tested for the same design configuration to compare performances. Load capability is above 20N. This paper describes main design features, results of different lubrications tested, tested performances, and main lessons learned.

  10. Cryogenic generator cooling

    NASA Astrophysics Data System (ADS)

    Eckels, P. W.; Fagan, T. J.; Parker, J. H., Jr.; Long, L. J.; Shestak, E. J.; Calfo, R. M.; Hannon, W. F.; Brown, D. B.; Barkell, J. W.; Patterson, A.

    The concept for a hydrogen cooled aluminum cryogenic generator was presented by Schlicher and Oberly in 1985. Following their lead, this paper describes the thermal design of a high voltage dc, multimegawatt generator of high power density. The rotor and stator are cooled by saturated liquid and supercritical hydrogen, respectively. The brushless exciter on the same shaft is also cooled by liquid hydrogen. Component development testing is well under way and some of the test results concerning the thermohydraulic performance of the conductors are reported. The aluminum cryogenic generator's characteristics are attractive for hydrogen economy applications.

  11. Cryogenic foil bearing turbopumps

    NASA Technical Reports Server (NTRS)

    Gu, Alston L.

    1993-01-01

    Cryogenic foil bearing turbopumps offer high reliability and low cost. The fundamental cryogenic foil bearing technology has been validated in both liquid hydrogen and liquid oxygen. High load capacity, excellent rotor dynamics, and negligible bearing wear after over 100 starts and stops, and over many hours of testing, were observed in both fluids. An experimental liquid hydrogen foil bearing turbopump was also successfully demonstrated. The results indicate excellent stability, high reliability, wide throttle-ability, low bearing cooling flow, and two-phase bearing operability. A liquid oxygen foil bearing turbopump has been built and is being tested at NASA MSFC.

  12. The effects of the Snowflake Divertor on upstream SOL profiles

    NASA Astrophysics Data System (ADS)

    Tsui, C. K.; Boedo, J. A.; Coda, S.; Labit, B.; Maurizio, R.; Nespoli, F.; Reimerdes, H.; Theiler, C.; Spolaore, M.; Vianello, N.; Lunt, T.; Vijvers, W. A. J.; Walkden, N.; the EUROfusion MST1 Team Team; the TCV Team Team

    2016-10-01

    The Snowflake Divertor creates separated volumes within the SOL and divertor that feature strikingly different ne, Te profiles, and decay lengths, as measured with a scanning probe. Profiles were taken at the outer midplane of TCV plasmas with snowflake divertors as well as just above the X-points within the region of enhanced βpol. Density shoulders in the far SOL in single null plasmas are relaxed by secondary X-points, while effects are more complex in the near SOL. These changes were observed whether the secondary X-point was placed in the low field side SOL, or in the high field side SOL. Additionally, target profiles measured with IR camera and Langmiur probes that were taken in the divertor leg opposite the secondary X-point also show features on the flux surface corresponding to the secondary X-point. Fluctuation statistics from the reciprocating probe as well as comparisons made between upstream and downstream measurements are considered for their implications on SOL transport. Support from EUROfusion Grant 633053 and US DOE Grant DE-SC0010529 are gratefully acknowledged.

  13. Taming the plasma-material interface with the snowflake divertor.

    SciTech Connect

    Soukhanovskii, V A

    2015-04-24

    Experiments in several tokamaks have provided increasing support for the snowflake configuration as a viable tokamak heat exhaust concept. This white paper summarizes the snowflake properties predicted theoretically and studied experimentally, and identifies outstanding issues to be resolved in existing and future facilities before the snowflake divertor can qualify for the reactor interface.

  14. Line Shapes and Opacity Studies in Divertor Plasmas

    SciTech Connect

    Rosato, J.

    2008-10-22

    Large or dense divertor plasmas of magnetic fusion devices can be optically thick to the resonance lines of the hydrogen isotopes. In this work we examine the sensitivity of the line radiation transport to the detailed structure of the spectral profiles.

  15. Visible spectroscopy in the DIII-D divertor

    SciTech Connect

    Brooks, N.H.; Fehling, D.; Hillis, D.L.; Klepper, C.C.; Naumenko, N.; Tugarinov, S.; Whyte, D.G.

    1996-06-01

    Spectroscopy measurements in the DIII-D divertor have been carried out with a survey spectrometer which provides simultaneous registration of the visible spectrum over the region 400--900 nm with a resolution of 0.2 nm. Broad spectral coverage is achieved through use of a fiberoptic transformer assembly to map the curved focal plane of a fast (f/3) Rowland-circle spectrograph into a rastered format on the rectangular sensor area of a two-dimensional CCD camera. Vertical grouping of pixels during CCD readout integrates the signal intensity over the height of each spectral segment in the rastered image, minimizing readout time. For the full visible spectrum, readout time is 50 ms. Faster response time (< 10 ms) may be obtained by selecting for readout just a small number of the twenty spectral segments in the image on the CCD. Simultaneous recording of low charge states of carbon, oxygen and injected impurities has yielded information about gas recycling and impurity behavior at the divertor strike points. Transport of lithium to the divertor region during lithium pellet injection has been studied, as well as cumulative deposition of lithium on the divertor targets from pellet injection over many successive discharges.

  16. Mechanical Design of the NSTX Liquid Lithium Divertor

    SciTech Connect

    R. Ellis, R. Kaita, H. Kugel, G. Paluzzi, M. Viola and R. Nygren

    2009-02-19

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuumcompatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  17. Snowflake Divertor Configuration Studies in DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Allen, S. L.; Cohen, B. I.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meyer, W. H.; Rognlien, T. D.; Ryutov, D. D.; Kolemen, E.; Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.; Boedo, J. A.; Watkins, J. G.

    2013-10-01

    Experiments in DIII-D show the snowflake divertor (SFD) configuration is compatible with high performance operation (H98 y 2 >= 1) and results in greatly reduced divertor heat flux between and during edge localized modes (ELMs). The SFD was sustained for many energy confinement times using the standard poloidal field shaping coils in 3-5 MW neutral beam injection-heated discharges. Pedestal and divertor effects resulting from a large region of reduced poloidal magnetic field in the SFD are measured and studied using the 2D multi-fluid code UEDGE. The pedestal pressure appeared to be unchanged, while the energy loss per ELM was reduced by 50%. Partial detachment of the SFD was observed at higher ne, with an expanded divertor radiation zone and peak ELM heat flux reduced by up to 80%. Work supported by the US Department of Energy under DE-AC52-07NA27344, DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-07ER54917, and DE-AC04-94AL85000.

  18. Modeling results for a linear simulator of a divertor

    SciTech Connect

    Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.

    1993-06-23

    A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach {approximately} 1 Gw/m{sup 2} along the magnetic fieldlines and > 10 MW/m{sup 2} on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report.

  19. Theoretical design of a compact energy recovering divertor

    NASA Astrophysics Data System (ADS)

    Baver, D. A.

    2015-11-01

    An energy recovering divertor (ERD) is a type of plasma direct converter (PDC) designed to fit in the divertor channel of a tokamak. Such a device reduces the heat load to the divertor plate by converting a portion of it into electrical energy. This recovered energy can then be used for auxiliary heating and current drive, fundamentally altering the relationship between scientific and engineering breakeven and reducing dependence on bootstrap current. Previous work on the ERD concept focused on amplification of Alfven waves in a manner similar to a free-electron laser. While conceptually straightforward, this concept was also bulky, thus limiting its applicability to existing tokamak experiments. A design is presented for an ERD based on sheath-localized waves. This makes possible a device sufficiently compact to fit in the divertor channel of many existing tokamak experiments, and moreover requires no new shaping coils to achieve the desired magnetic geometry or topology. In addition, incidental advantages of this concept will be discussed.

  20. Penis Pump

    MedlinePlus

    Penis pump Overview By Mayo Clinic Staff A penis pump is one of a few treatment options ... an erection sufficient for sex (erectile dysfunction). A penis pump consists of a plastic tube that fits ...

  1. Low-thrust chemical propulsion system pump technology

    NASA Technical Reports Server (NTRS)

    Sabiers, R. L.; Siebenhaar, A.

    1981-01-01

    Candidate pump and driver systems for low thrust cargo orbit transfer vehicle engines which deliver large space structures to geosynchronous equatorial orbit and beyond are evaluated. The pumps operate to 68 atmospheres (1000 psi) discharge pressure and flowrates suited to cryogenic engines using either LOX/methane or LOX/hydrogen propellants in thrust ranges from 445 to 8900 N (100 to 2000 lb F). Analysis of the various pumps and drivers indicate that the low specific speed requirement will make high fluid efficiencies difficult to achieve. As such, multiple stages are required. In addition, all pumps require inducer stages. The most attractive main pumps are the multistage centrifugal pumps.

  2. Self-pumping impurity by in-situ metal deposition

    SciTech Connect

    Brooks, J.N.; Mattas, R.F.

    1983-07-01

    A system for in-situ removal of helium trapping in freshly deposited metal surface layers of a limiter or divertor has been studied. The system would trap helium on a limiter front surface, or a divertor plate, at low plasma edge temperatures, or in a limiter slot region, at high edge temperatures. Fresh material, introduced to the plasma and/or scrape-off zone, would be added at a rate of about five times the alpha production rate. The material would be reprocessed periodically, e.g. once a year. Possible materials are nickel, vanadium, niobium, and tantalum. Advantages of a self-pumping system are the absence of vacuum ducts and pumps, and the minimization of tritium processing and inventory.

  3. Acoustic Pump

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1993-01-01

    Pump uses acoustic-radiation forces. Momentum transferred from sound waves to sound-propagating material in way resulting in net pumping action on material. Acoustic pump is solid-state pump. Requires no moving parts, entirely miniaturized, and does not invade pumped environment. Silent, with no conventional vibration. Used as pump for liquid, suspension, gas, or any other medium interacting with radiation pressure. Also used where solid-state pump needed for reliability and controllability. In microgravity environment, device offers unusual control for low flow rates. For medical or other applications in which contamination cannot be allowed, offers noninvasive pumping force.

  4. Cryogenics Research and Engineering Experience

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  5. Disk Valve For Cryogenics

    NASA Technical Reports Server (NTRS)

    Calhoun, Richard B.

    1993-01-01

    Lightweight disk valve designed to have dimensions and capabilities similar to those of valve described in "Lightweight Right-Angle Valve For Cryogenics" (MSC-21889). Simple unit remains leaktight over wide range of pressures and temperatures without need for manual readjustment of packing gland. Weighs less than 60 g and made relatively inexpensively from some commercial and few simple custom-machined components.

  6. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  7. Valve for cryogenic service

    DOEpatents

    Worwetz, H.A.

    1975-09-02

    This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)

  8. Cryogenic structural support

    DOEpatents

    Niemann, Ralph C.; Mataya, Karl F.; Gonczy, John D.

    1982-01-01

    A tensile support member is provided for use in a cryogenic environment. The member is in the form of a link formed of an epoxy glass laminate with at least one ply of the laminate having its fibers aligned circumferentially about the link.

  9. R&D ERL: Cryogenic System

    SciTech Connect

    Than, R.

    2010-01-01

    The ERL cryogenic system will supply cooling to a super-conducting RF (SCRF) gun and the 5-cell super-conducting RF cavity system that need to be held cold at 2K. The engineering of the cavity cryomodules were carried out by AES in collaboration with BNL. The 2K superfluid bath is produced by pumping on the bath using a sub-atmospheric warm compression system. The cryogenic system makes use of mainly existing equipment relocated from other facilities: a 300W 4.5K coldbox, an 45 g/s screw compressor, a 3800 liter liquid helium storage dewar, a 170 m{sup 3} warm gas storage tank, and a 40,000 liter vertical low pressure liquid nitrogen storage dewar. An existing wet expander obtained from another facility has been added to increase the plant capacity. In order to deliver the required 3 to 4 bar helium to the cryomodules while using up stored liquid capacity at low pressure, a new subcooler will be installed to function as the capacity transfer device. A 2K to 4K recovery heat exchanger is also implemented for each cryomodule to recover refrigeration below 4K, thus maximizing 2K cooling capacity with the given sub-atmospheric pump. No 4K-300K refrigeration recovery is implemented at this time of the returning sub-atmospheric cold vapor, hence the 2K load appears as a liquefaction1 load on the cryogenic plant. A separate LN2 cooling loop supplies liquid nitrogen to the superconducting gun's cathode tip.

  10. Cryogenic hydrogen-induced air-liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  11. Front-end system for Yb : YAG cryogenic disk laser

    SciTech Connect

    Perevezentsev, E A; Mukhin, I B; Kuznetsov, I I; Vadimova, O L; Palashov, O V

    2015-05-31

    A new front-end system for a cryogenic Yb : YAG laser is designed. The system consists of a femtosecond source, a stretcher and a regenerative amplifier with an output energy of 25 μJ at a pulse repetition rate of 49 kHz, a pulse duration of ∼2 ns and a bandwidth of ∼1.5 nm. After increasing the pump power of the regenerative amplifier, it is expected to achieve a pulse energy of ∼1 mJ at the input to cryogenic amplification stages, which will allow one to obtain laser pulses with a duration of several picoseconds at the output of the cryogenic laser after compression. (extreme light fields and their applications)

  12. Cryogenic hydrogen-induced air-liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  13. CHANGES IN PARTICLE PUMPING DUE TO VARIATION IN MAGNETIC BALANCE NEAR DOUBLE-NULL IN DIII-D

    SciTech Connect

    PETRIE,TW; WATKINS,JG; ALLEN,SL; BROOKS,NH; FENSTERMACHER,ME; FERRON,JR; GREENFIELD,CM; GROTH,M; HYATT, AW; LUCE,TC; MAHDVI,MA; SCHAFFER,MJ; WADE,MR; WEST,WP; THE DIII-D TEAM

    2003-07-01

    OAK-B135 The authors report on a recent experiment examining how changes in the divertor magnetic balance affect the rate that particles can be pumped at the divertor targets. They find that both the edge density of the core plasma and divertor recycling play important roles in properly interpreting this pumping result. Previous studies on DIII-D have identified several important differences between double-null (DN) and single-null (SN) divertor operation. Small variations in the magnetic balance near-DN have large effects on both the power- and particle loadings at the divertor targets. These most likely result from an interplay between the plasma geometry and ion particle drifts, e.g., ''B x {del}B'' and ''E x B'' drifts. Other studies have shown that changes in magnetic balance affect the core plasma and where ELMs strike the vessel. In this paper, they examine how variations in the magnetic balance impact the rate at which particles are removed from the core plasma via pumping.

  14. Diagnostic options for radiative divertor feedback control on NSTX-U

    SciTech Connect

    Soukhanovskii, V. A.; Gerhardt, S. P.; Kaita, R.; McLean, A. G.; Raman, R.

    2012-10-01

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (qpeak ≤ 15 MW/m2), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D2 or CD4 gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20–30 MW/m2, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic “security” monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  15. Diagnostic options for radiative divertor feedback control on NSTX-U

    SciTech Connect

    Soukhanovskii, V. A.; McLean, A. G.; Gerhardt, S. P.; Kaita, R.; Raman, R.

    2012-10-15

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (q{sub peak} Less-Than-Or-Slanted-Equal-To 15 MW/m{sup 2}), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D{sub 2} or CD{sub 4} gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m{sup 2}, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic 'security' monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  16. Diagnostic options for radiative divertor feedback control on NSTX-U.

    PubMed

    Soukhanovskii, V A; Gerhardt, S P; Kaita, R; McLean, A G; Raman, R

    2012-10-01

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (q(peak) ≤ 15 MW/m(2)), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D(2) or CD(4) gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m(2), are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic "security" monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  17. Cryogenic pellet production developments for long-pulse plasma operation

    SciTech Connect

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.

    2014-01-29

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  18. Optimizing stability, transport, and divertor operation through plasma shaping for steady-state scenario development in DIII-D

    SciTech Connect

    Holcomb, C T; Ferron, J R; Luce, T C; Petrie, T W; Politzer, P A; Rhodes, T L; Doyle, E J; Makowski, M A; Kessel, C; DeBoo, J C; Groebner, R J; Osborne, T H; Snyder, P B; Greenfield, C M; La Haye, R J; Murakami, M; Hyatt, A W; Challis, C; Prater, R; Jackson, G L; Park, J; Reimerdes, H; Turnbull, A D; McKee, G R; Shafer, M W; Groth, M; Porter, G D; West, W P

    2008-12-19

    Recent studies on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] have elucidated key aspects of the dependence of stability, confinement, and density control on the plasma magnetic configuration, leading to the demonstration of nearly noninductive operation for >1 s with pressure 30% above the ideal no-wall stability limit. Achieving fully noninductive tokamak operation requires high pressure, good confinement, and density control through divertor pumping. Plasma geometry affects all of these. Ideal magnetohydrodynamics modeling of external kink stability suggests that it may be optimized by adjusting the shape parameter known as squareness ({zeta}). Optimizing kink stability leads to an increase in the maximum stable pressure. Experiments confirm that stability varies strongly with {zeta}, in agreement with the modeling. Optimization of kink stability via {zeta} is concurrent with an increase in the H-mode edge pressure pedestal stability. Global energy confinement is optimized at the lowest {zeta} tested, with increased pedestal pressure and lower core transport. Adjusting the magnetic divertor balance about a double-null configuration optimizes density control for improved noninductive auxiliary current drive. The best density control is obtained with a slight imbalance toward the divertor opposite the ion grad(B) drift direction, consistent with modeling of these effects. These optimizations have been combined to achieve noninductive current fractions near unity for over 1 s with normalized pressure of 3.5<{beta}{sub N}<3.9, bootstrap current fraction of >65%, and a normalized confinement factor of H{sub 98(y,2)}{approx}1.5.

  19. Optimizing stability, transport, and divertor operation through plasma shaping for steady-state scenario development in DIII-Da)

    NASA Astrophysics Data System (ADS)

    Holcomb, C. T.; Ferron, J. R.; Luce, T. C.; Petrie, T. W.; Politzer, P. A.; Challis, C.; DeBoo, J. C.; Doyle, E. J.; Greenfield, C. M.; Groebner, R. J.; Groth, M.; Hyatt, A. W.; Jackson, G. L.; Kessel, C.; La Haye, R. J.; Makowski, M. A.; McKee, G. R.; Murakami, M.; Osborne, T. H.; Park, J.-M.; Prater, R.; Porter, G. D.; Reimerdes, H.; Rhodes, T. L.; Shafer, M. W.; Snyder, P. B.; Turnbull, A. D.; West, W. P.

    2009-05-01

    Recent studies on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] have elucidated key aspects of the dependence of stability, confinement, and density control on the plasma magnetic configuration, leading to the demonstration of nearly noninductive operation for >1 s with pressure 30% above the ideal no-wall stability limit. Achieving fully noninductive tokamak operation requires high pressure, good confinement, and density control through divertor pumping. Plasma geometry affects all of these. Ideal magnetohydrodynamics modeling of external kink stability suggests that it may be optimized by adjusting the shape parameter known as squareness (ζ). Optimizing kink stability leads to an increase in the maximum stable pressure. Experiments confirm that stability varies strongly with ζ, in agreement with the modeling. Optimization of kink stability via ζ is concurrent with an increase in the H-mode edge pressure pedestal stability. Global energy confinement is optimized at the lowest ζ tested, with increased pedestal pressure and lower core transport. Adjusting the magnetic divertor balance about a double-null configuration optimizes density control for improved noninductive auxiliary current drive. The best density control is obtained with a slight imbalance toward the divertor opposite the ion grad(B) drift direction, consistent with modeling of these effects. These optimizations have been combined to achieve noninductive current fractions near unity for over 1 s with normalized pressure of 3.5<βN<3.9, bootstrap current fraction of >65%, and a normalized confinement factor of H98(y ,2)≈1.5.

  20. Cryogenic, high power, near diffraction limited, Yb:YAG slab laser.

    PubMed

    Ganija, Miftar; Ottaway, David; Veitch, Peter; Munch, Jesper

    2013-03-25

    A cryogenic slab laser that is suitable for scaling to high power, while taking full advantage of the improved thermo-optical and thermo-mechanical properties of Yb:YAG at cryogenic temperatures is described. The laser uses a conduction cooled, end pumped, zigzag slab geometry resulting in a near diffraction limited, robust, power scalable design. The design and the initial characterization of the laser up to 200W are presented.

  1. Modeling of divertor geometry effects in China fusion engineering testing reactor by SOLPS/B2-Eirene

    SciTech Connect

    Zhao, M. L.; Chen, Y. P.; Li, G. Q.; Luo, Z. P.; Guo, H. Y.; Ye, M. Y.; Tendler, M.

    2014-05-15

    The China Fusion Engineering Testing Reactor (CFETR) is currently under design. The SOLPS/B2-Eirene code package is utilized for the design and optimization of the divertor geometry for CFETR. Detailed modeling is carried out for an ITER-like divertor configuration and one with relatively open inner divertor structure, to assess, in particular, peak power loading on the divertor target, which is a key issue for the operation of a next-step fusion machine, such as ITER and CFETR. As expected, the divertor peak heat flux greatly exceeds the maximum steady-state heat load of 10 MW/m{sup 2}, which is a limit dictated by engineering, for both divertor configurations with a wide range of edge plasma conditions. Ar puffing is effective at reducing divertor peak heat fluxes below 10 MW/m{sup 2} even at relatively low densities for both cases, favoring the divertor configuration with more open inner divertor structure.

  2. Development and implementation of the TPX structural and cryogenic design criteria

    SciTech Connect

    Zatz, I.; Heitzenroeder, P.; Schultz, J.H.

    1993-11-01

    The Tokamak Physics Experiment (TPX) is a superconducting tokamak utilizing both Nb{sub 3}Sn and NbTi superconducting magnets and will feature a low-activation titanium alloy vacuum vessel and carbon-carbon composite divertors. Due to the unique nature of the component designs, materials, and environment, the TPX project felt it necessary to develop a design criteria (code) which will specifically address the structural and cryogenic design aspects of such a device. The developed code is intended to serve all components of the device; namely, the TF and PF magnets, vacuum vessel, first wall and divertor, cryostat, diagnostics, heating devices, shielding, and all associated structural elements. The structural portion is based largely on that developed for the Burning Plasma Experiment (BPX), which was modeled after the CIT Vacuum Vessel Structural Design Criteria and ASME Boiler and Pressure Vessel (B & PV) Code. The cryogenic criteria is largely modeled after that proposed in the ITER CDA. This paper summarizes the TPX Criteria document.

  3. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  4. Developing snowflake divertor physics basis in the DIII-D, NSTX and NSTX-U tokamaks aimed at the divertor power exhaust solution [Snowflake divertor experiments in the DIII-D, NSTX and NSTX-U tokamaks aimed at the development of the divertor power exhaust solution

    SciTech Connect

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meier, E. T.; Meyer, W. H.; Rognlien, T. D.; Ryutov, D. D.; Scotti, F.; Kolemen, E.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaita, R.; Kaye, S.; LeBlanc, B. P.; Maingi, R.; Menard, J. E.; Podesta, M.; Roquemore, A. L.; Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.; Ahn, J. -W.; Raman, R.; Watkins, J. G.

    2016-06-02

    Experimental results from the National Spherical Torus Experiment (NSTX), a medium-size spherical tokamak with a compact divertor, and DIII-D, a large conventional aspect ratio tokamak, demonstrate that the snowflake (SF) divertor configuration may provide a promising solution for mitigating divertor heat loads and target plate erosion compatible with core H-mode confinement in future fusion devices, where the standard radiative divertor solution may be inadequate. In NSTX, where the initial high-power SF experiment were performed, the SF divertor was compatible with H-mode confinement, and led to the destabilization of large ELMs. However, a stable partial detachment of the outer strike point was also achieved where inter-ELM peak heat flux was reduced by factors 3-5, and peak ELM heat flux was reduced by up to 80% (cf. standard divertor). The DIII-D studies show the SF divertor enables significant power spreading in attached and radiative divertor conditions. Results include: compatibility with the core and pedestal, peak inter-ELM divertor heat flux reduction due to geometry at lower ne, and ELM energy and divertor peak heat flux reduction, especially prominent in radiative D2-seeded SF divertor, and nearly complete power detachment and broader radiated power distribution in the radiative D2-seeded SF divertor at PSOL = 3 - 4 MW. A variety of SF configurations can be supported by the divertor coil set in NSTX Upgrade. Edge transport modeling with the multi-fluid edge transport code UEDGE shows that the radiative SF divertor can successfully reduce peak divertor heat flux for the projected PSOL ≃9 MW case. In conclusion, the radiative SF divertor with carbon impurity provides a wider ne operating window, 50% less argon is needed in the impurity-seeded SF configuration to achieve similar qpeak reduction factors (cf. standard divertor).

  5. Industrial Pumps

    NASA Astrophysics Data System (ADS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  6. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  7. Engineering, installation, testing, and initial operation of the DIII-D Advanced Divertor

    SciTech Connect

    Andersen, P.M.; Baxi, C.B.; Reis, E.E.; Schaffer, M.J.; Smith, J.P.

    1990-09-01

    The Advanced Divertor (AD) for General Atomics tokamak, DIII-D, was installed in the summer of 1990. The AD has enabled two classes of physics experiments to be run: divertor biasing and divertor baffling. Both are new experiments for DIII-D. The AD has two principal components: (1) a continuous ring electrode; and (2) a toroidally symmetric baffle. The tokamak can be run in bias baffle or standard DIII-D divertor modes by accurate positioning of the outer divertor strike point through the use of the DIII-D control system. The paper covers design, analysis, fabrication, installation, instrumentation, testing, initial operation, and future plans for the Advanced Divertor from an engineering viewpoint. 2 refs., 5 figs.

  8. Preliminary study of divertor particle exhaust in the EAST superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Wang, Liang; Xu, Guosheng; Ding, Fang; Liu, Jianbin; Xu, Jichan; Feng, Wei; Deng, Guozhong; Zheng, Xingwei; Yu, Yaowei; Si, Hang; Liu, Haiqing; Yang, Qingquan; Sun, Zhen; Guo, Houyang

    2017-09-01

    The particle exhaust of the upper tungsten and lower carbon divertors in EAST has been preliminarily studied during the 2016 experimental campaign. The density decay time during terminating gas puffing has been employed as a key parameter to evaluate the divertor particle exhaust performance. Comparative plasma discharges have been carried out on the particle exhaust performance between two toroidal field directions in the upper single null and lower single null divertor configurations. This work has enhanced the understanding of the effects of the in-out asymmetry and divertor geometry on the efficiency of the divertor particle exhaust. In addition, the sensitivity of the particle exhaust capability on different strike point locations has been analyzed. The experimental results are expected to provide important information on the future upgrade of EAST bottom divertor and facilitate the realization of longer pulse operation.

  9. Sensitivity analysis of upstream plasma condition for SST-1 X-Divertor configuration with SOLPS

    NASA Astrophysics Data System (ADS)

    Himabindu, M.; Tyagi, Anil K.; Sharma, Deepti; Sharma, Devendra; Srinivasan, R.

    2017-04-01

    Extensive power exhausts and target heat loads are anticipated in reactor grade fusion devices. Prototyping of an X-Divertor based power exhaust scheme is being attempted by means of simulations of Scrape-off Layer plasma transport in the diverted plasma equilibria of SST-1 tokamak using SOLPS5.1. Evaluation of the relative advantages of an X-Divertor configuration involves simulating the SST-1 standard divertor scheme plasma transport for the reference and then achieving equivalent upstream plasma conditions in the X-divertor equilibrium to ensure equivalent core plasma in both the cases. The first optimization is to be achieved by simulating effects of an external gas puff in the SOL region for controlling separatrix density in the X-divertor configuration with visible modifications in the downstream plasma conditions. The present work analyzes sensitivity of the upstream SOL plasma conditions to the gas puff intensity and its effect on the plasma neutral transport in the divertor region

  10. Kinetic effects in edge plasma: kinetic modeling for edge plasma and detached divertor

    NASA Astrophysics Data System (ADS)

    Takizuka, T.

    2017-03-01

    Detached divertor is considered a solution for the heat control in magnetic-confinement fusion reactors. Numerical simulations using the comprehensive divertor codes based on the plasma fluid modeling are indispensable for the design of the detached divertor in future reactors. Since the agreement in the results between detached-divertor experiments and simulations has been rather fair but not satisfactory, further improvement of the modeling is required. The kinetic effect is one of key issues for improving the modeling. Complete kinetic behaviors are able to be simulated by the kinetic modeling. In this paper at first, major kinetic effects in edge plasma and detached divertor are listed. One of the most powerful kinetic models, particle-in-cell (PIC) model, is described in detail. Several results of PIC simulations of edge-plasma kinetic natures are presented. Future works on PIC modeling and simulation for the deeper understanding of edge plasma and detached divertor are discussed.

  11. Computing Thermal Effects of Cavitation in Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Ahuja, Vineet; Dash, Sanford M.

    2005-01-01

    A computer program implements a numerical model of thermal effects of cavitation in cryogenic fluids. The model and program were developed for use in designing and predicting the performances of turbopumps for cryogenic fluids. Prior numerical models used for this purpose do not account for either the variability of properties of cryogenic fluids or the thermal effects (especially, evaporative cooling) involved in cavitation. It is important to account for both because in a cryogenic fluid, the thermal effects of cavitation are substantial, and the cavitation characteristics are altered by coupling between the variable fluid properties and the phase changes involved in cavitation. The present model accounts for both thermal effects and variability of properties by incorporating a generalized representation of the properties of cryogenic fluids into a generalized compressible-fluid formulation for a cavitating pump. The model has been extensively validated for liquid nitrogen and liquid hydrogen. Using the available data on the properties of these fluids, the model has been shown to predict accurate temperature-depression values.

  12. Characterization of a cryogenic ion guide at IGISOL

    NASA Astrophysics Data System (ADS)

    Saastamoinen, A.; Moore, I. D.; Ranjan, M.; Dendooven, P.; Penttilä, H.; Peräjärvi, K.; Popov, A.; Äystö, J.

    2012-09-01

    A small volume cryogenic ion guide has been characterized at the IGISOL facility, Jyväskylä, as a prototype to verify whether there are any major obstacles to the use of high-density cryogenic helium gas for the stopping and extraction of high-energy ions from a large volume cryogenic ion catcher. The expected temperature scaling of the mass flow through the ion guide has been confirmed, showing that for the same helium density, the differential pumping requirements are less stringent for cryogenic operation. At 90 K a clear reduction in the mass-analyzed impurities is achieved, although lower temperatures are required to freeze out oxygen and nitrogen. This is supported by the reduction in the measured secondary beam current exiting the ion guide in the presence of primary beam. Despite this reduction, the activity of 20Na (t=446 ms) at primary beam intensities above 1 μA is rather similar to that achieved at room temperature. A constant extraction efficiency of a beam of 58Ni+ ions, with initial energy 340 MeV, spanned approximately five orders of magnitude of ionization-rate density. In summary, the cryogenic ion guide is a promising new tool to support the improvement of low-energy beam production at the IGISOL-4 facility which is expected to be operational in 2012.

  13. Material deposition on inner divertor quartz-micro balances during ITER-like wall operation in JET

    NASA Astrophysics Data System (ADS)

    Esser, H. G.; Philipps, V.; Freisinger, M.; Widdowson, A.; Heinola, K.; Kirschner, A.; Möller, S.; Petersson, P.; Brezinsek, S.; Huber, A.; Matthews, G. F.; Rubel, M.; Sergienko, G.

    2015-08-01

    The migration of beryllium, tungsten and carbon to remote areas of the inner JET-ILW divertor and the accompanying co-deposition of deuterium has been investigated using post-mortem analysis of the housings of quartz-micro balances (QMBs) and their quartz crystals. The analysis of the deposition provides that the rate of beryllium atoms is significantly reduced compared to the analogue deposition rate of carbon during the carbon wall conditions (JET-C) at the same locations of the QMBs. A reduction factor of 50 was found at the entrance gap to the cryo-pumps while it was 14 under tile 5, the semi-horizontal target plate. The deposits consist of C/Be atomic ratios of typically 0.1-0.5 showing an enrichment of carbon in remote areas compared to directly exposed areas with less carbon. The deuterium retention fraction D/Be is between 0.3 and 1 at these unheated locations in the divertor.

  14. Stirling cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P. (Inventor)

    1983-01-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  15. Cryogenic Control System

    SciTech Connect

    Goloborod'ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  16. Cryogenic treatment of gas

    DOEpatents

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  17. Flexible cryogenic conduit

    SciTech Connect

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-12-21

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  18. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  19. Stirling cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P.

    1983-06-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  20. Flexible cryogenic conduit

    DOEpatents

    Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  1. Cryogenic support system

    DOEpatents

    Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.

    1988-01-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

  2. Cryogenic support system

    DOEpatents

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  3. Tokamak power exhaust with the snowflake divertor: Present results and outstanding issues

    SciTech Connect

    Soukhanovskii, V. A.; Xu, X.

    2015-09-15

    Here, a snowflake divertor magnetic configuration (Ryutov in Phys Plasmas 14(6):064502, 2007) with the second-order poloidal field null offers a number of possible advantages for tokamak plasma heat and particle exhaust in comparison with the standard poloidal divertor with the first-order null. Results from snowflake divertor experiments are briefly reviewed and future directions for research in this area are outlined.

  4. An automated approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Dekeyser, W.; Baelmans, M.; Gauger, N. R.; Reiter, D.

    2015-01-01

    Automated methods based on optimization can greatly assist computational engineering design in many areas. In this paper an optimization approach to the magnetic design of a nuclear fusion reactor divertor is proposed and applied to a tokamak edge magnetic configuration in a first feasibility study. The approach is based on reduced models for magnetic field and plasma edge, which are integrated with a grid generator into one sensitivity code. The design objective chosen here for demonstrative purposes is to spread the divertor target heat load as much as possible over the entire target area. Constraints on the separatrix position are introduced to eliminate physically irrelevant magnetic field configurations during the optimization cycle. A gradient projection method is used to ensure stable cost function evaluations during optimization. The concept is applied to a configuration with typical Joint European Torus (JET) parameters and it automatically provides plausible configurations with reduced heat load.

  5. Multiplexing thermography for International Thermonuclear Experimental Reactor divertor targets

    SciTech Connect

    Itami, K.; Sugie, T.; Vayakis, G.; Walker, C.

    2004-10-01

    The concept of multiplexing thermography is applied to the design of the divertor thermography system for International Thermonuclear Experimental Reactor (ITER). The combination of the front mirror with multiellipticity and a Czerney-Turner spectrometer with a 0.2 mm pitched multichannel detector enables a spatial resolution of 3 mm and a time resolution of 20 {mu}s above a target temperature of 300 deg. C to be achieved. This should be sufficient to measure ELM heat fluxes to the targets in ITER. To satisfy the measurement requirement, it is very important to keep an accurate alignment around the optical axis against movement of the vessel during the plasma discharges. Several key engineering problems, such as the survivability of components against mirror coating by redeposited divertor material, remain to be solved. Potential solutions have been identified.

  6. Modelling of Divertor Plasma Transport in Stochastic Magnetic Boundary

    SciTech Connect

    Kobayashi, Masahiro

    2010-05-20

    Impacts of stochastic magnetic field structure on divertor functions are discussed based on analyses with the three dimensional (3D) edge transport code package EMC3-EIRENE with Braginskii type fluid equations, in the Large Helical Device (LHD), in comparison with the experimental data. It is shown that the three dimensional field line topology introduced by the stochasticity provides controllability of the edge plasma transport such as divertor regime, impurity transport. The observations in other devices with stochastic magnetic boundary regarding these issues are discussed as well. Also presented are the traditional formulation of the magnetic field and the transport in the stochastic layer based on diffusive picture, which are contrasted with the 3D treatment of the flux tube topology and of the transport.

  7. Diagnosing transient plasma status: from solar atmosphere to tokamak divertor

    NASA Astrophysics Data System (ADS)

    Giunta, A. S.; Henderson, S.; O'Mullane, M.; Harrison, J.; Doyle, J. G.; Summers, H. P.

    2016-09-01

    This work strongly exploits the interdisciplinary links between astrophysical (such as the solar upper atmosphere) and laboratory plasmas (such as tokamak devices) by sharing the development of a common modelling for time-dependent ionisation. This is applied to the interpretation of solar flare data observed by the UVSP (Ultraviolet Spectrometer and Polarimeter), on-board the Solar Maximum Mission and the IRIS (Interface Region Imaging Spectrograph), and also to data from B2-SOLPS (Scrape Off Layer Plasma Simulations) for MAST (Mega Ampère Spherical Tokamak) Super-X divertor upgrade. The derived atomic data, calculated in the framework of the ADAS (Atomic Data and Analysis Structure) project, allow equivalent prediction in non-stationary transport regimes and transients of both the solar atmosphere and tokamak divertors, except that the tokamak evolution is about one thousand times faster.

  8. Modelling of Divertor Plasma Transport in Stochastic Magnetic Boundary

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masahiro

    2010-05-01

    Impacts of stochastic magnetic field structure on divertor functions are discussed based on analyses with the three dimensional (3D) edge transport code package EMC3-EIRENE with Braginskii type fluid equations, in the Large Helical Device (LHD), in comparison with the experimental data. It is shown that the three dimensional field line topology introduced by the stochasticity provides controllability of the edge plasma transport such as divertor regime, impurity transport. The observations in other devices with stochastic magnetic boundary regarding these issues are discussed as well. Also presented are the traditional formulation of the magnetic field and the transport in the stochastic layer based on diffusive picture, which are contrasted with the 3D treatment of the flux tube topology and of the transport.

  9. Edge exposure of poloidal divertor target plate tiles

    SciTech Connect

    Mohanti, R.B.; Gilligan, J.G.; Bourham, M.A.

    1996-12-01

    Exposure to near normal surfaces of poloidal divertor target plate tiles is a limiting feature of the power handling capability of the tiles. The problems associated with the design of poloidal divertor tiles, with beryllium chosen as the tile material, and possible methods of solving the problem are discussed. Thermal two- and three-dimensional analyses are carried out for the assessment of relative merits in performance due to modifications to the surface. The power handling capability (time to reach melting temperature of beryllium) of the target plate tiles is presented for unswept and swept plasma cases. Results have shown that sweeping the plasma improves the power handling capability by a factor of up to 10. 20 refs., 7 figs., 3 tabs.

  10. Characterizing the Outer Divertor Leg Transition to Full Detachment

    NASA Astrophysics Data System (ADS)

    McLean, A. G.; Allen, S. L.; Fenstermacher, M. E.; Lasnier, C. J.; Meyer, W. H.; Porter, G. D.; Soukhanovskii, V. A.; Bray, B. D.; Carlstrom, T. N.; Leonard, A. W.; Liu, C.; Eldon, D.; Groth, M.; Stangeby, P. C.; Tsui, C. K.

    2013-10-01

    Experiments at DIII-D have explored the transition from an attached to fully detached divertor condition in L- and H-mode with an unprecedented level of detail. Improved divertor Thomson scattering capturing Te <= 1 eV, coupled with high resolution spectroscopic studies of molecular and neutral emissions, and Stark broadening of the deuterium Paschen series provide essential data for modeling the transition to detachment. 2D Te and ne profiles of the outer leg reveal movement of the ionization front away from the plate not replicated in modeling. Measured Paschen and molecular emissions suggest the onset of recombination occurs prior to, and to a greater extent than modeled. These data help guide and expose any missing physics in predictions for detached operation in future devices. This work supported in part by the US Department of Energy under DE-AC52-07NA27344 and DE-FC02-04ER54698.

  11. Preparation of the liquid lithium divertor plates for NSTX

    NASA Astrophysics Data System (ADS)

    Nygren, R. E.; McKee, G. R.; Fordham, J. A.; Lewis, S. A.; Kugel, H.; Ellis, R. A.; Viola, M. E.; O'Dell, J. S.

    2011-10-01

    Each of the four toroidal panels of the liquid lithium divertor being installed in NSTX for operation in the 2010 campaign is a conical section inclined at 22° like the previous graphite divertor tiles. Each panel is a copper plate clad with stainless steel and a surface layer of porous plasma sprayed molybdenum (Mo) that will host lithium deposited from an evaporator. This paper describes the processes in fabrication; these include cutting to rough shape, die pressing into conical sections, machining to near final shape with holes for electrical heaters, thermocouples and a groove for a cooling tube, brazing of the 0.25-mm cladding and vacuum plasma spraying of the Mo coating.

  12. Cryogenic Test Technology 1984.

    DTIC Science & Technology

    1985-04-01

    super- sonic cruise research model (Figure 19) made from Vascomax 200, a flat-plate delta wing model (Figure 20) made from Vascomax 200 with pressure...beam welded together Sting design has been considered in papers 8),93, from General Dynamics. An attempt was made to design a composite sting but the...ment in the cryogenic toughness of comrcial high-strength martensitic and maragingW steels has been demonstrated through the use of grain-refining

  13. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark

    2015-01-01

    Under our NASA Innovative Advanced Concepts (NIAC) project we have theoretically demonstrated a novel selective surface that reflects roughly 100 times more solar radiation than any other known coating. If this prediction holds up under experimental tests it will allow cryogenic temperatures to be reached in deep space even in the presence of the sun. It may allow LOX to be carried to the Moon and Mars. It may allow superconductors to be used in deep space without a refrigeration system.

  14. Cryogenic Production Testing

    NASA Astrophysics Data System (ADS)

    Buchness, R. K.; Banks, E.; Doidge, J.; Gable, A.; Nelson, L.; Olsen, D.

    1985-10-01

    Rockwell has realized rapid testing of Infrared Focal Plane Arrays (IRFPAs) using a totally automated cryogenic test station with the latest technology in device handling, data acquisition, illumination and throughput capabilities. This station provides testing of HgCdTe Focal Plane Arrays fabricated in a fully certified production facility. All aspects of this facility are under Quality Control surveillance including the hardware and software used by the automated test station.

  15. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark; Gibson, Tracy; Johnson, Wesley

    2017-01-01

    The NASA Innovative Advanced Concept (NIAC) program has been funding work at KSC on a novel coating that should allow cryogenic materials to be stored in deep space. The NIAC Symposium will be the last week of September and it is a requirement that the funded material be presented both orally and at a poster session. This DAA submission is requesting approval to go public with both the presentation and the poster.

  16. Development of Electrohydrodynamic (EHD) Micropumps for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Foroughi, Parisa; Zhao, Yuan; Lawler, John; Ohadi, Michael M.

    2005-02-01

    This paper presents the development of an innovative electrohydrodynamic (EHD) ion-drag micropump for circulating liquid nitrogen in a cryogenic cooling loop. Two micropumps with different electrode designs were tested in this study. Their electrode arrays are composed of multi-stages of saw-tooth emitters and planar collectors electroplated on alumina substrates. The pumps had electrode spacings of 20 and 50 μm, respectively, for the distance between electrodes in a pair and 80 and 200 μm, respectively, for the distance between electrode pairs. The pump with closer electrode spacing produced a mass flow rate of twice the other pump at half the applied voltage. This improvement in performance is due to the closer electrode spacing, which allows the incorporation of more electrode pairs in a given pump size. The required voltage is also lowered, since the electric field is inversely proportional to the electrode spacing.

  17. Cryogenic technology for CMBPol

    NASA Astrophysics Data System (ADS)

    Di Pirro, M.; Johnson, D. L.; Shirron, P.

    2009-03-01

    Future space telescopes such as CMBPol, SAFIR, DARWIN, SPICA and XEUS will require cooling to very low temperatures. Staged cooling is the most efficient means of achieving low temperature in an observatory or instrument with the least cost and mass. The first stage is usually passive radiators taking advantage of views to deep space. In the past stored cryogen systems provided the next lower stagesof cooling. Mechanical cryocoolers represent a significant enabling technology, especially at the lower temperatures where the passive coolers' effectiveness is limited. These coolers are in general lighter, have more cooling capability, and more operationally flexible than stored cryogens. Sub Kelvin cooling is required for many of the most sensitive detectors. For fundamental reasons, microcalorimeters and bolometers must be cooled to extremely low temperature to achieve their ultimate resolution and, eventually, background-limited detection. The state of the art for these cryogenic cooling technologies are presented along with plans to advance the technology readiness level to enable these future missions.

  18. Thermal and structural analysis of the TPX divertor

    SciTech Connect

    Reis, E.E.; Baxi, C.B.; Chin, E.; Redler, K.M.

    1995-12-31

    The high heat flux on the surfaces of the TPX divertor will require a design in which a carbon-carbon (C-C) tile material is brazed to water cooled copper tubes. Thermal and structural analyses were performed to assist in the design selection of a divertor tile concept and C-C material. The relevancy of finite element analysis (FEA) for evaluating tile design was examined by conducting a literature survey to compare FEA stress results to subsequent brazing and thermal test results. The thermal responses for five tile concepts and four C-C materials were analyzed for a steady-state heat flux of 7.5 MW/m{sup 2}. Elastic-plastic stress analyses were performed to calculate the residual stresses due to brazing C-C tiles to soft copper heat sinks for the various tile designs. Monoblock and archblock divertor tile concepts were analyzed for residual stresses in which elevated temperature creep effects were included with the elastic-plastic behavior of the copper heat sink for an assumed braze cooldown cycle. As a result of these 2D studies, the archblock concept with a 3D fine weave C-C was initially found to be a preferred design for the divertor. A 3D elastic-plastic analysis for brazing of the arch block tile was performed to investigate the singularity effects at the C-C to copper interface in the direction of the tube axis. This analysis showed that the large residual stresses at the tube and tile edge intersection would produce cracks in the C-C and possible delamination along the braze interface. These results, coupled with the difficulties experienced in brazing archblocks for the Tore Supra Limiter, required that other tile designs be considered.

  19. First annual report of the Divertor Task Force: Progress and plans

    SciTech Connect

    1995-10-01

    This report describes the work of the Divertor Task Force of the Massachusetts Institute of Technology Plasma Fusion Center, particularly the Task Force`s founding meeting, original research and development needs, organization, and achievements of its first year. The Task Force`s goal is to obtain an increasingly complete physics understanding of existing divertor plasmas, to build analytical and numerical models of the scrape-off-layer divertor plasmas, and to extrapolate them to find design solutions for the high power divertors of ignited tokamak plasmas such as those of ITER and other high performance future tokamaks. 67 refs., 2 figs.

  20. Results from recent detachment experiments in alternative divertor configurations on TCV

    NASA Astrophysics Data System (ADS)

    Theiler, C.; Lipschultz, B.; Harrison, J.; Labit, B.; Reimerdes, H.; Tsui, C.; Vijvers, W. A. J.; Boedo, J. A.; Duval, B. P.; Elmore, S.; Innocente, P.; Kruezi, U.; Lunt, T.; Maurizio, R.; Nespoli, F.; Sheikh, U.; Thornton, A. J.; van Limpt, S. H. M.; Verhaegh, K.; Vianello, N.; the TCV Team; the EUROfusion MST1 Team

    2017-07-01

    Divertor detachment is explored on the TCV tokamak in alternative magnetic geometries. Starting from typical TCV single-null shapes, the poloidal flux expansion at the outer strikepoint is varied by a factor of 10 to investigate the X-divertor characteristics, and the total flux expansion is varied by 70 % to study the properties of the super-X divertor. The effect of an additional X-point near the target is investigated in X-point target divertors. Detachment of the outer target is studied in these plasmas during Ohmic density ramps and with the ion \

  1. Modelling of radiative divertor operation towards detachment in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Chen, YiPing; Wang, F. Q.; Zha, X. J.; Hu, L. Q.; Guo, H. Y.; Wu, Z. W.; Zhang, X. D.; Wan, B. N.; Li, J. G.

    2013-02-01

    In order to actively control power load on the divertor target plates and study the effect of radiative divertor on plasma parameters in divertor plasmas and heat fluxes to the targets, dedicated experiments with Ar impurity seeding have been performed on experimental advanced superconducting tokamak in typical L-mode discharge with single null divertor configuration, ohmic heating power of 0.5 MW, and lower hybrid wave heating power of 1.0 MW. Ar is puffed into the divertor plasma at the outer target plate near the separatrix strike point with the puffing rate 1.26×1020 s-1. The radiative divertor is formed during the Ar puffing. The SOL/divertor plasma in the L-mode discharge with radiative divertor has been modelled by using SOLPS5.2 code package [V. Rozhansky et al., Nucl. Fusion 49, 025007 (2009)]. The modelling shows the cooling of the divertor plasma due to Ar seeding and is compared with the experimental measurement. The changes of peak electron temperature and heat fluxes at the targets with the shot time from the modelling results are similar to the experimental measurement before and during the Ar impurity seeding, but there is a major difference in time scales when Ar affects the plasma in between experiment and modelling.

  2. Measuring the effect of divertor closure on detachment in DIII-D

    NASA Astrophysics Data System (ADS)

    Moser, Auna; Leonard, A. W.; Petrie, T. W.; Sang, C. F.; Allen, S. L.; McLean, A. G.; Fenstermacher, M. E.; Joseph, I.; Lasnier, C. J.; Makowski, M. A.; Watkins, J. G.; Briesemeister, A. R.

    2015-11-01

    Recent experiments compared the open lower divertor and semi-closed upper divertor in DIII-D to measure the effect of divertor closure on detachment onset and heat flux control, extending past work showing reduced core fueling with the more-closed upper DIII-D divertor. Experiments were performed to determine the extent to which closure may facilitate detachment at collisionalities more relevant to future devices. This work builds on previous experiments that quantified effects of divertor magnetic geometry, including connection length, ∇B-drift direction, incidence angle, and flux expansion; efforts were made to match these parameters while comparing single null configurations in the upper and lower divertor in order to isolate the effects of closure. Experimental measurements coupled with simulation results will help weigh the benefits of a more-closed divertor in facilitating detachment and reducing heat flux against the constraints imposed on the magnetic geometry by a more-closed divertor tile structure, aiding in the design of a future advanced divertor for DIII-D. Supported by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC04-94AL85000, and DE-AC05-00OR22725.

  3. Effect of divertor closure and impurities on detachment onset in DIII-D

    NASA Astrophysics Data System (ADS)

    Moser, A. L.; Leonard, A. W.; Groebner, R. J.; Petrie, T. W.; Sang, C. F.; Wang, H.; Allen, S. L.; McLean, A. G.; Fenstermacher, M. E.; Lasnier, C. J.; Makowski, M.; Watkins, J. G.; Briesemeister, A. R.

    2016-10-01

    Heat flux control in future devices requires a detached divertor with upstream parameters compatible with core performance, e.g., at a lower upstream density than presently achievable. Comparison between matched H-mode discharges in the upper and lower divertors of DIII-D demonstrates onset of detachment at a reduced pedestal density for the more-closed geometry of the upper divertor. The upper divertor also produces a lower pedestal density with a less-steep profile than the lower divertor for matched discharges with no additional fueling, presumably due to a reduction in ionization source for the upper divertor. Recent experiments further compare the upper and lower divertors with the addition of impurities injected into the private flux region. These experiments measure the interplay between increased closure and radiating impurities and the effect on divertor detachment, as well as the ability of the more-closed divertor geometry to prevent the accumulation of impurities in the core. Work supported by US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC04-94AL85000, DE-AC05-00OR22725.

  4. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  5. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  6. Assessment of issues for the MAST divertor biasing experiment

    NASA Astrophysics Data System (ADS)

    Helander, P.; Cohen, R. H.; Fielding, S.; Ryutov, D.

    2001-10-01

    A biasing experiment is being undertaken in the MAST scrape-off layer; the goal is to induce intense convection by a toroidally alternating biasing of divertor tiles. This would lead to a thickening of the SOL and a reduction of the heat load on the divertor plates. In addition, by studying the reaction of a plasma to a varying bias, one can collect new information regarding pre-existing SOL turbulence. We consider the following issues: 1. The bias amplitude required to produce significant SOL broadening; 2. Excitation of shear-flow turbulence in convective cells; 3. The role of magnetic shear; 4. Effects of electrostatic sheaths at the divertor plates; 5. Redistribution of heat fluxes during biasing. We show that a significant effect of the biasing on the SOL structure can be reached at relatively small bias voltages 30 V. We also show that the potential perturbations will be limited to a zone between the X-point and the biased tiles, and will be essentially decoupled from the main SOL plasma. Preliminary experimental results may be shown.

  7. Modeling of Divertor Plates in the Compact Toroidal Hybrid

    NASA Astrophysics Data System (ADS)

    Hartwell, G. J.; Small, C. M.; Ennis, D. A.; Hanson, J. D.; Knowlton, S. F.; Maurer, D. A.

    2014-10-01

    In long pulse length stellarator experiments, edge island divertors can be used as a method of plasma particle and heat exhaust. Knowledge of the detailed power loading on these structures and its relationship to the long connection length scrape off layer physics is a new Compact Toroidal Hybrid research thrust. We report the results of connection length studies for divertor plates to be installed in the Compact Toroidal Hybrid (CTH), a five field period torsatron with R0 = 0 . 75 m, ap ~ 0 . 2 m, and B <= 0 . 7 T. For these studies, CTH will be operated as a pure stellarator with no ohmically generated plasma current. The CTH edge rotational transform can be varied from tvac (a) = 0.02-0.35 by adjusting the ratio of currents in the helical and toroidal field coils. A poloidal field coil is used to adjust the shear of the rotational transform profile, and hence the size of edge islands, while the phase of the island is rotated with a set of five error coils producing an n = 1 perturbation. For the studies conducted, a magnetic configuration with a large n = 1, m = 3 magnetic island at the edge is generated. Results from multiple possible divertor plate locations relative to the island structure will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  8. Fast reciprocating Langmuir probe for the DIII-D divertor

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Hunter, J.; Tafoya, B.; Ulrickson, M.; Watson, R. D.; Moyer, R. A.; Cuthbertson, J. W.; Gunner, G.; Lehmer, R.; Luong, P.; Hill, D. N.; Mascaro, M.; Robinson, J. I.; Snider, R.; Stambaugh, R.

    1997-01-01

    A new reciprocating Langmuir probe was used to measure density and temperature profiles, ion flow, and potential fluctuation levels from the lower divertor floor up to the X point on the DIII-D Tokamak. This probe is designed to make fast (2 kHz swept, 20 kHz Mach, 500 kHz Vfloat) measurements with 2 mm spatial resolution in the region where the largest gradients on the plasma open flux tubes are found and therefore provide the best benchmarks for scrap-off layer and divertor numerical models. Profiles are constructed using the 300 ms time history of the probe measurements during the 25 cm reciprocating stroke. Both single and double null plasmas can be measured and compared with a 20 Hz divertor Thomson scattering system. The probe head is constructed of four different kinds of graphite to optimize the electrical and thermal characteristics. Electrically insulated pyrolytic graphite rings act as a heat shield to absorb the plasma heat flux on the probe shaft and are mounted on a carbon/carbon composite core for mechanical strength. The Langmuir probe sampling tips are made of a linear carbon fiber composite. The mechanical, electrical, data acquisition, and power supply systems will be described. Initial measurements will also be presented.

  9. Precision Cryogenic Dilatometer

    NASA Technical Reports Server (NTRS)

    Dudik, Matthew; Halverson, Peter; Levine-West, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart

    2005-01-01

    A dilatometer based on a laser interferometer is being developed to measure mechanical creep and coefficients of thermal expansion (CTEs) of materials at temperatures ranging from ambient down to 15 K. This cryogenic dilatometer has been designed to minimize systematic errors that limit the best previously available dilatometers. At its prototype stage of development, this cryogenic dilatometer yields a strain measurement error of 35 ppb or 1.7 ppb/K CTE measurement error for a 20-K thermal load, for low-expansion materials in the temperature range from 310 down to 30 K. Planned further design refinements that include a provision for stabilization of the laser and addition of a high-precision sample-holding jig are expected to reduce the measurement error to 5-ppb strain error or 0.3-ppb/K CTE error for a 20-K thermal load. The dilatometer (see figure) includes a common-path, differential, heterodyne interferometer; a dual-frequency, stabilized source bench that serves as the light source for the interferometer; a cryogenic chamber in which one places the material sample to be studied; a cryogenic system for cooling the interior of the chamber to the measurement temperature; an ultra-stable alignment stage for positioning the chamber so that the sample is properly positioned with respect to the interferometer; and a data-acquisition and control system. The cryogenic chamber and the interferometer portion of the dilatometer are housed in a vacuum chamber on top of a vibration isolating optical table in a cleanroom. The sample consists of two pieces a pillar on a base both made of the same material. Using reflections of the interferometer beams from the base and the top of the pillar, what is measured is the change in length of the pillar as the temperature in the chamber is changed. In their fundamental optical and electronic principles of operation, the laser light source and the interferometer are similar to those described in Common-Path Heterodyne

  10. Heat pumps

    NASA Astrophysics Data System (ADS)

    Gilli, P. V.

    1982-11-01

    Heat pumps for residential/commercial space heating and hot tap water make use of free energy of direct or indirect solar heat and save from about 40 to about 70 percent of energy if compared to a conventional heating system with the same energy basis. In addition, the electrically driven compressor heat pump is able to substitute between 40% (bivalent alternative operation) to 100% (monovalent operation) of the fuel oil of an oilfired heating furnace. For average Central European conditions, solar space heating systems with high solar coverage factor show the following sequence of increasing cost effectiveness: pure solar systems (without heat pumps); heat pump assisted solar systems; solar assisted heat pump systems; subsoil/water heat pumps; air/water heat pumps; air/air heat pumps.

  11. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  12. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  13. Nature's pumps

    NASA Astrophysics Data System (ADS)

    Vogel, Steven

    1994-10-01

    Although diverse in both form and function, the fluid-forcing devices in organisms have many of the capabilities and limitations of pumps of human design. Nature's pumps certainly look quite different from those of our technology, but all of them perform the same task. The author examines a few of these with an eye toward technological parallels and the two functional classes -- positive-displacement pumps and fluid-dynamic pumps.

  14. Investigations on the heat flux and impurity for the HL-2M divertor

    NASA Astrophysics Data System (ADS)

    Zheng, G. Y.; Cai, L. Z.; Duan, X. R.; Xu, X. Q.; Ryutov, D. D.; Cai, L. J.; Liu, X.; Li, J. X.; Pan, Y. D.

    2016-12-01

    The controllability of the heat load and impurity in the divertor is very important, which could be one of the critical problems to be solved in order to ensure the success for a steady state tokamak. HL-2M has the advantage of the poloidal field (PF) coils placed inside the demountable toroidal field (TF) coils and close to the main plasma. As a result, it is possible to make highly accurate configuration control of the advanced divertor for HL-2M. The divertor target geometry of HL-2M has been designed to be compatible with different divertor configurations to study the divertor physics and support the high performance plasma operations. In this paper, the heat loads and impurities with different divertor configurations, including the standard X-point divertor, the snowflake-minus divertor and two tripod divertor configurations for HL-2M, are investigated by numerical simulations with the SOLPS5.0 code under the current design of the HL-2M divertor geometry. The plasmas with different conditions, such as the low discharge parameters with {{I}\\text{p}}   =  0.5 MA at the first stage of HL-2M and the high parameters with {{I}\\text{p}}   =  2.0 MA during the normal operations, are simulated. The heat load profiles and the impurity distributions are obtained, and the control of the peak heat load and the effect of impurity on the core plasma are discussed. The compatibility of different divertor configurations for HL-2M is also evaluated. It is seen that the excellent compatibility of different divertor configurations with the current divertor geometry has been verified. The results show that the snowflake-minus divertor and the tripod divertor with {{d}x}=30 \\text{cm} present good performance in terms of the heat load profiles and the impurity distributions under different conditions, which may not have a big effect on the core plasma. In addition, it is possible to optimize the distance between the two X-points, {{d}x} , to achieve a better

  15. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  16. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  17. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  18. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  19. Cryogenic support member

    DOEpatents

    Niemann, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1987-01-01

    A cryogenic support member is comprised of a non-metallic rod having a depression in at least one end and a metallic end connection assembled to the rod. The metallic end connection comprises a metallic plug which conforms to the shape and is disposed in the depression and a metallic sleeve is disposed over the rod and plug. The plug and the sleeve are shrink-fitted to the depression in the rod to form a connection good in compression, tension and bending.

  20. Cryogenic insulation development

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1972-01-01

    Multilayer insulations for long term cryogenic storage are described. The development effort resulted in an insulation concept using lightweight radiation shields, separated by low conductive Dacron fiber tufts. The insulation is usually referred to as Superfloc. The fiber tufts are arranged in a triangular pattern and stand about .040 in. above the radiation shield base. Thermal and structural evaluation of Superfloc indicated that this material is a strong candidate for the development of high performance thermal protection systems because of its high strength, purge gas evacuation capability during boost, its density control and easy application to a tank.

  1. FRIB cryogenic distribution system

    SciTech Connect

    Ganni, Venkatarao; Dixon, Kelly D.; Laverdure, Nathaniel A.; Knudsen, Peter N.; Arenius, Dana M.; Barrios, Matthew N.; Jones, S.; Johnson, M.; Casagrande, Fabio

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  2. Cryogenic ribbon-cutting

    NASA Image and Video Library

    2011-03-30

    NASA cut the ribbon on a new cryogenics control center at John C. Stennis Space Center on March 30. The new facility is part of a project to strengthen Stennis facilities to withstand the impacts of future storms like hurricane Katrina in 2005. Participants in the ribbon-cutting included (l to r): Jason Zuckerman, director of project management for The McDonnel Group; Keith Brock, director of the NASA Project Directorate at Stennis; Stennis Deputy Director Rick Gilbrech; Steve Jackson of Jacobs Technology; and Troy Frisbie, Cryo Control Center Construction project manager for NASA Center Operations at Stennis.

  3. Cryogenic ribbon-cutting

    NASA Image and Video Library

    2011-03-30

    NASA cut the ribbon on a new cryogenics control center at John C. Stennis Space Center on March 30. The new facility is part of a project to strengthen Stennis facilities to withstand the impacts of future storms like hurricane Katrina in 2005. Participants in the ribbon-cutting included (l to r): Jason Zuckerman, director of project management for The McDonnel Group; Keith Brock, director of the NASA Project Directorate at Stennis; Stennis Deputy Director Rick Gilbrech; Steve Jackson, outgoing program manager of the Jacobs Technology NASA Test Operations Group; and Troy Frisbie, Cryo Control Center Construction project manager for NASA Center Operations at Stennis.

  4. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  5. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  6. Biological Applications of Cryogenic Detectors

    SciTech Connect

    Friedrich, S

    2003-12-03

    High energy resolution and broadband efficiency are enabling the use of cryogenic detectors in biological research. Two areas where they have found initial application are X-ray absorption spectroscopy (XAS) and time-of-flight mass spectrometry (TOF-MS). In synchrotron-based fluorescence-detected XAS cryogenic detectors are used to examine the role of metals in biological systems by measuring their oxidation states and ligand symmetries. In time-of-flight mass spectrometry cryogenic detectors increase the sensitivity for biomolecule detection and identification for masses above {approx}50 kDa, and thus enable TOF-MS on large protein complexes or even entire viruses. More recently, cryogenic detectors have been proposed as optical sensors for fluorescence signals from biomarkers. We discuss the potential for cryogenic detectors in biological research, as well as the challenges the technology faces.

  7. Comparison of transient and stationary neutral pressure response in the DIII-D advanced divertor

    SciTech Connect

    Klepper, C.C.; Hogan, J.T.; Owen, L.W.; Mioduszewski, P.K. ); Maingi, R. ); Hill, D.N. ); Buchenauer, D. ); Ali Mahdavi, M.; Schaffer, M.J.; Petrie, T.W.; Jackson, G.L.; Evans, T.E. (General Atomics,

    1992-05-01

    The DIII-D divertor baffle system was designed to facilitate density control in long pulse H-mode discharges by removing a particle flux equal to the neutral beam fueling rate ({approximately}20 Torr-1/s) with a {approximately}1mTorr neutral pressure under the baffle (p{sub 0}). Initial measurements of the baffle pressure indicated that p{sub 0}{approximately} 10 mTorr (without pumping or biasing), a value much in excess of that required for long pulse density control. Radial sweeps of the X-point position have been employed to determine the maximum p{sub 0}, as well as to establish the dependence of this pressure on geometry. An estimate of the particle equilibration time for the baffle system has been made by studying the baffle pressure response to giant'' ELM effects. Steady state'' experiments in which the X-point position was fixed for {approximately}2.5s have also been carried out and steady baffle pressures were observed. The scaling of baffle pressure with plasma parameters has been found to be similar under transient and steady state'' conditions. Detailed modeling of these experiments with the B2, DEGAS, and WDIFFUSE (wall model) codes has been made.

  8. Comparison of transient and stationary neutral pressure response in the DIII-D advanced divertor

    SciTech Connect

    Klepper, C.C.; Hogan, J.T.; Owen, L.W.; Mioduszewski, P.K.; Maingi, R.; Hill, D.N.; Buchenauer, D.; Ali Mahdavi, M.; Schaffer, M.J.; Petrie, T.W.; Jackson, G.L.; Evans, T.E.; Haas, G.

    1992-05-01

    The DIII-D divertor baffle system was designed to facilitate density control in long pulse H-mode discharges by removing a particle flux equal to the neutral beam fueling rate ({approximately}20 Torr-1/s) with a {approximately}1mTorr neutral pressure under the baffle (p{sub 0}). Initial measurements of the baffle pressure indicated that p{sub 0}{approximately} 10 mTorr (without pumping or biasing), a value much in excess of that required for long pulse density control. Radial sweeps of the X-point position have been employed to determine the maximum p{sub 0}, as well as to establish the dependence of this pressure on geometry. An estimate of the particle equilibration time for the baffle system has been made by studying the baffle pressure response to ``giant`` ELM effects. ``Steady state`` experiments in which the X-point position was fixed for {approximately}2.5s have also been carried out and steady baffle pressures were observed. The scaling of baffle pressure with plasma parameters has been found to be similar under transient and ``steady state`` conditions. Detailed modeling of these experiments with the B2, DEGAS, and WDIFFUSE (wall model) codes has been made.

  9. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    NASA Astrophysics Data System (ADS)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  10. Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System

    SciTech Connect

    Baylor, Larry R; Meitner, Steven J; Barbier, Charlotte N; Combs, Stephen Kirk; Duckworth, Robert C; Edgemon, Timothy D; Rasmussen, David A; Hechler, Michael P; Kersevan, R.; Dremel, M.; Pearce, R.J.H.; Boissin, Jean Claude

    2011-01-01

    The ITER vacuum system requires a roughing pump system that can pump the exhaust gas from the torus cryopumps to the tritium exhaust processing plant. The gas will have a high tritium content and therefore conventional vacuum pumps are not suitable. A pump called a cryogenic viscous compressor (CVC) is being designed for the roughing system to pump from ~500 Pa to 10 Pa at flow rates of 200 Pa-m3/ s. A unique feature of this pump is that is allows any helium in the gas to flow through the pump where it is sent to the detritiation system before exhausting to atmosphere. A small scale prototype of the CVC is being tested for heat transfer characteristics and compared to modeling results to ensure reliable operation of the full scale CVC. Keywords- ITER; vacuum; fuel cycle

  11. Axial and centrifugal pump meanline performance analysis

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1994-01-01

    A meanline pump flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump flow code (PUMPA) has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design point rotor efficiency is obtained from empirically derived correlations of loss to rotor specific speed. The rapid input setup and computer run time for the meanline pump flow code makes it an effective analysis and conceptual design tool. The map generation capabilities of the PUMPA code provide the information needed for interfacing with a rocket engine system modeling code.

  12. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamaka)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; McLean, A. G.; Allen, S. L.

    2014-11-01

    New near infrared (NIR) spectroscopic measurements performed in the DIII-D tokamak divertor plasma suggest new viable diagnostic applications: divertor recycling and low-Z impurity flux measurements, a spectral survey for divertor Thomson scattering (DTS) diagnostic, and Te monitoring for divertor detachment control. A commercial 0.3 m spectrometer coupled to an imaging lens via optical fiber and a InGaAs 1024 pixel array detector enabled deuterium and impurity emission measurements in the range 800-2300 nm. The first full NIR survey identified D, He, B, Li, C, N, O, Ne lines and provided plasma Te, ne estimates from deuterium Paschen and Brackett series intensity and Stark line broadening analysis. The range 1.000-1.060 mm was surveyed in high-density and neon seeded divertor plasmas for spectral background emission studies for λ = 1.064 μm laser-based DTS development. The ratio of adjacent deuterium Paschen-α and Brackett Br9 lines in recombining divertor plasmas is studied for divertor Te monitoring aimed at divertor detachment real-time feedback control.

  13. Design, Engineering, and Testing for the Alcator C-Mod Outer Divertor Upgrade

    NASA Astrophysics Data System (ADS)

    Harrison, S.; Vieira, R.; Lipschultz, B.; Ellis, R.; Karnes, D.; Doody, J.; Zhou, L.; Titus, P.; Zhang, H.; Beck, W.; Granetz, R.

    2012-10-01

    Alcator C-mod's major outer divertor upgrade will enable significant advances in our understanding of reactor relevant physics and operations. Two primary features of the new outer divertor are its toroidally continuous design (electrical and mechanical), and ability to be operated up to or independently heated to 600 C. Full control of the divertor PFC temperature from ambient vessel temperature to 600 C, will enable new and important tokamak research into the temperature dependence of fuel retention, PFC deposition and erosion, and divertor recycling. Significant design, analysis, and testing is underway to complete this important and challenging upgrade, which will provide valuable information for ITER and future reactors. Among other aspects of the innovative approach, the divertor plate supports, halo current shunts, and thermal shield assemblies will be discussed. The divertor supports enable pure radial motion of the divertor ring as it expands thermally and robustness to massive disruption induced electro-mechanical loads. Halo current shunts conduct 400kA in an 8T magnetic field and allow for divertor displacement relative to the vessel. Thermal shielding significantly reduces radiation and conduction to surrounding vessel structures.

  14. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamak

    SciTech Connect

    Soukhanovskii, V. A. McLean, A. G.; Allen, S. L.

    2014-11-15

    New near infrared (NIR) spectroscopic measurements performed in the DIII-D tokamak divertor plasma suggest new viable diagnostic applications: divertor recycling and low-Z impurity flux measurements, a spectral survey for divertor Thomson scattering (DTS) diagnostic, and T{sub e} monitoring for divertor detachment control. A commercial 0.3 m spectrometer coupled to an imaging lens via optical fiber and a InGaAs 1024 pixel array detector enabled deuterium and impurity emission measurements in the range 800–2300 nm. The first full NIR survey identified D, He, B, Li, C, N, O, Ne lines and provided plasma T{sub e}, n{sub e} estimates from deuterium Paschen and Brackett series intensity and Stark line broadening analysis. The range 1.000–1.060 mm was surveyed in high-density and neon seeded divertor plasmas for spectral background emission studies for λ = 1.064 μm laser-based DTS development. The ratio of adjacent deuterium Paschen-α and Brackett Br9 lines in recombining divertor plasmas is studied for divertor T{sub e} monitoring aimed at divertor detachment real-time feedback control.

  15. Gyrokinetic projection of the divertor heat-flux width from present tokamaks to ITER

    DOE PAGES

    Chang, Choong Seock; Ku, Seung -Hoe; Loarte, Alberto; ...

    2017-07-11

    Here, the XGC1 edge gyrokinetic code is used to study the width of the heat-flux to divertor plates in attached plasma condition. The flux-driven simulation is performed until an approximate power balance is achieved between the heat-flux across the steep pedestal pressure gradient and the heat-flux on the divertor plates.

  16. Experience with Dry Running Vacuum Pumps in Helium Service

    NASA Astrophysics Data System (ADS)

    Arztmann, R.

    2008-03-01

    A process vacuum system for helium using dry running vacuum pumps only was shop tested and installed in a refrigeration plant to serve cavities operating at 2K for a cryogenic storage ring. The paper explains the joint development steps of Busch AG and Linde Kryotechnik AG to use dry running vacuum pumps for helium service at ambient temperature. A roots type booster pump followed by a non lube rotary screw pump provides very good performance in a helium vacuum pump system. Variable frequency drives on both pumps allow to adjust the pump characteristics to a wide range of operating parameters. Operation without friction of sealing elements in the compression space also of the screw pump promises extended maintenance intervals and virtually no wear on the rotors. The current plant operation at Max Plank Institute in Heidelberg, Germany Laboratory will provide additional experience for further applications.

  17. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  18. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  19. Cryogenics maintenance strategy

    NASA Astrophysics Data System (ADS)

    Cruzat, Fabiola

    2012-09-01

    ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

  20. Facilities for technology testing of ITER divertor concepts, models, and prototypes in a plasma environment

    SciTech Connect

    Cohen, S.A.

    1991-12-01

    The exhaust of power and fusion-reaction products from ITER plasma are critical physics and technology issues from performance, safety, and reliability perspectives. Because of inadequate pulse length, fluence, flux, scrape-off layer plasma temperature and density, and other parameters, the present generation of tokamaks, linear plasma devices, or energetic beam facilities are unable to perform adequate technology testing of divertor components, though they are essential contributors to many physics issues such as edge-plasma transport and disruption effects and control. This Technical Requirements Documents presents a description of the capabilities and parameters divertor test facilities should have to perform accelerated life testing on predominantly technological divertor issues such as basic divertor concepts, heat load limits, thermal fatigue, tritium inventory and erosion/redeposition. The cost effectiveness of such divertor technology testing is also discussed.

  1. The dynamics of coherent scrape-off layer structures in a snowflake divertor

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Cohen, R. H.; Joseph, I.; Rognlien, T. D.; Umansky, M. V.

    2008-11-01

    A characteristic feature of a snowflake divertor is the quadratic dependence of the poloidal magnetic field strength vs the distance from the field null. Compared to a standard X-point divertor, where the magnetic field dependence over distance is linear, this leads to significant changes in the geometry of flux tubes passing in the vicinity of the null. In particular, squeezing of flux tubes by the magnetic shear becomes stronger; the field line mapping from the midplane to the divertor plate indicates much higher poloidal velocities of plasma filaments near the divertor plates. Thus, significant changes are expected in the dynamics of coherent structures (sometimes called ``blobs'') in the scrape-off layer. An analysis of the dynamical effects associated with curvature drive, divertor boundary conditions, and strong magnetic shearing is presented. Regimes of enhanced blob transport are identified. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Reconstruction of Detached Divertor Plasma Conditions in DIII-D Using Spectroscopic and Probe Data

    SciTech Connect

    Stangeby, P; Fenstermacher, M

    2004-12-03

    For some divertor aspects, such as detached plasmas or the private flux zone, it is not clear that the controlling physics has been fully identified. This is a particular concern when the details of the plasma are likely to be important in modeling the problem--for example, modeling co-deposition in detached inner divertors. An empirical method of ''reconstructing'' the plasma based on direct experimental measurements may be useful in such situations. It is shown that a detached plasma in the outer divertor leg of DIII-D can be reconstructed reasonably well using spectroscopic and probe data as input to a simple onion-skin model and the Monte Carlo hydrogenic code, EIRENE. The calculated 2D distributions of n{sub e} and T{sub e} in the detached divertor were compared with direct measurements from the divertor Thomson scattering system, a diagnostic capability unique to DIII-D.

  3. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    NASA Astrophysics Data System (ADS)

    Zhu, C. C.; Song, Y. T.; Peng, X. B.; Wei, Y. P.; Mao, X.; Li, W. X.; Qian, X. Y.

    2016-02-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads.

  4. Calorimeter probe for the DIII-D divertor

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Lasnier, C. J.; Whyte, D. G.; Stangeby, P. C.; Ulrickson, M. A.

    2003-03-01

    Heat flux measurements of the DIII-D divertor plate have been obtained with 6 mm spatial resolution using a calorimeter probe. These measurements complement the infrared camera system normally used for heat flux measurements on DIII-D but at higher-spatial resolution. The calorimeter probe is inserted into the tokamak from below to a position which is flush with the lower divertor plate tiles using the divertor materials experimental station (DiMES). The DiMES mechanism allows for retraction of the probe behind a gate valve and removal from the tokamak for modification or calibration. A 6 mm diameter insulated graphite cylinder for collecting energy is mounted within a standard DiMES sample. A 0.8 mm diameter thermocouple, installed 4 mm below the surface, provides a measurement of the temperature during and after the plasma exposure. The 80 ms time constant for the measurement is fast enough to determine heat flux changes during the 5 s plasma discharge and heat flux profiles have been obtained using both fixed strike points and slow strike point sweeps across the calorimeter. Special electronics and isolation is necessary as the sample is in direct electrical contact with the plasma. The calorimeter observes approximately 100 °C temperature rise over one tokamak discharge. The thermocouple signals are typically less than 1 mV and must be amplified near the vacuum feedthrough, passed through a low-pass filter to eliminate magnetic pickup, isolated, and sent to the data acquisition system approximately 8 m away. Initial measurements are included.

  5. The role of atomic and molecular physics for dissipative divertor operation in helium and deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Canik, J. M.

    2016-10-01

    Recent experiments in DIII-D helium plasmas are examined to resolve the role of atomic and molecular physics in major discrepancies between experiment and modeling of dissipative divertor operation. Helium operation removes the complicated molecular processes of deuterium plasmas that are a prime candidate for the inability of standard fluid models (SOLPS, UEDGE) to reproduce dissipative divertor operation, primarily the consistent under-prediction of radiated power. With helium fueling, a high-recycling divertor was established with divertor densities increasing to ne,div >= 3 ×1020m-3 and temperatures decreasing to Te,div <= 2 eV as measured by divertor Thomson scattering (DTS). The electron pressure, pe , div decreased gradually with increasing density to less than 30% of the low density value. However, the ion flux to the divertor target did not decrease until the highest densities and lowest temperatures, Te,div <= 2 eV. In contrast, with deuterium operation, increasing density leads to a rapid transition from Te,div >= 10 eV to Te,div <= 3 eV, though both pe , div and ion flux do not decrease until Te,div <= 2 eV. These differences indicate an important role for molecular and atomic physics in the dynamics of divertor dissipation. Initial SOLPS modeling has reproduced ne and Te profiles at the midplane and divertor target, as well as the spatial structure of radiation patterns measured in moderate density helium plasmas. However, the modeled divertor radiation is less than measured, similar to deuterium simulations, suggesting processes more universal than species-specific atomic or molecular physics may be the source of radiation deficit. Detailed assessments of ne, Te profiles in the divertor volume, uniquely determined at DIII-D using DTS, are made along with analysis of measured and modeled line radiation to shed more light on these intriguing findings. Supported by the US DOE under DE-AC05-00OR22725.

  6. Ballooning Modes in the Systems Stabilized by Divertors

    SciTech Connect

    Arsenin, V.V.; Skovoroda, A.A.; Zvonkov, A.V.

    2005-01-15

    MHD stability of a plasma in systems with closed magnetic field lines and open systems containing the nonparaxial stabilizing cells with large field lines curvature, in particular, divertors is analyzed. It is shown that population of particles trapped in such cells has a stabilizing effect not only on flute modes, but also on ballooning modes that determine the {beta} limit. At kinetic description that accounts for different effect of trapped and passing particles on perturbations, {beta} limit permitted by stability may be much greater then it follows from MHD model.

  7. Surface erosion issues and analysis for dissipative divertors

    SciTech Connect

    Brooks, J.N.; Ruzic, D.N.; Hayden, D.B.; Turkot, R.B. Jr.

    1994-08-01

    Erosion/redeposition is examined for the sidewall of a dissipative divertor using coupled impurity transport, charge exchange, and sputtering codes, applied to a plasma solution for the ITER design. A key issue for this regime is possible runaway self-sputtering, due to the effect of a low boundary density and nearly parallel field geometry on redeposition parameters. Net erosion rates, assuming finite self-sputtering, vary with wall location, boundary conditions, and plasma solution, and are roughly of the following order: 200--2000 {angstrom}/s for beryllium, 10--100 {angstrom}/s for vanadium, and 0.3--3 {angstrom}/s for tungsten.

  8. Volume Recombination in Alcator C-Mod Divertor Plasmas

    NASA Astrophysics Data System (ADS)

    Terry, J. L.

    1997-11-01

    Volume recombination has been predicted(See, for example, A. Loarte, Proc. 12th PSI Conf, J. Nucl. Mater (1996) I9, in press.) to be a significant sink for plasma ions under the detached divertor conditions achieved on many tokamaks. This volume recombination sink was observed initially in Alcator C-Mod and shown to be a major fraction of the ion loss. Signatures of recombination have now been observed on DIII-D(R.C. Isler, et al., paper submitted for publication), Asdex-UG (B. Napiontek, et al. 24th EPS Conf., Berchtesgaden, Germany, 1997, P4.007, in press.), and JET(R.D. Monk, et al. 24th EPS Conf., Berchtesgaden, Germany, 1997, P1.030, in press.). It is important primarily because the recombined atoms are not accelerated through the sheath - thus reducing divertor plate sputtering, and because most of the potential energy of recombination (13.6 eV) is released as radiation before the ion strikes the plate. The Alcator C-Mod measurements show that the recombination occurs in low Te ( ~1 eV), high ne ( ~1× 10^21 m-3) regions, and is significantly larger in detached regions. At the inboard, detached divertor plate the measured volume recombination rate is typically greater than the rate of ion collection at that plate and is about an order of magnitude higher than on the attached, outer plate. These spatially resolved measurements also show that the recombination rate is peaked near the strike point and imply that the recombination is occurring close to the plate surface. The C-Mod observations about the magnitude and spatial distribution of the recombination are consistent with the modelling of similar discharges(F. Wising et al., Contrib. Plasma Phys. 36, p 136 (1996).). The experimental evidence for recombination is found in the deuterium emission spectra from the divertor, in particular in the Balmer- and/or Lyman-series. The spectra show that the dominant recombination mechanism is 3-body recombination into excited states of deuterium and that the populations

  9. SOLPS5.1 analysis of detachment with drifts and gas pumping effects in EAST

    NASA Astrophysics Data System (ADS)

    Du, Hailong; Sang, Chaofeng; Wang, Liang; Bonnin, Xavier; Guo, Houyang; Sun, Jizhong; Wang, Dezhen

    2016-08-01

    The aim of this paper is to estimate the effects of usual drifts and gas puffing/pumping locations on divertor detachment and Ar ion transport in the Experimental Advanced Superconducting Tokamak (EAST) by using the edge plasma code package SOLPS5.1. The simulated results reveal that which target plate first detaches depends strongly on the usual drifts, but not on the location of impurity gas puffing, which could be one of the possible explanations for the experimentally observed phenomenon (Chen et al 2013 Phys. Plasmas 20 022311) that the lower inner target first detached compared to the lower outer target with the lower outer gas puffing. The physics behind this phenomenon is that drifts not only can induce background ion flux, plasma density and temperature redistribution in the scrape-off layer (SOL) and divertor region, but also can change the Ar impurity force balance leading to Ar ions being dragged from bottom to top. Furthermore, the simulated results illustrate that the Ar ion transport in the SOL and divertor region is similar for different gas puffing locations including upstream and divertor region before partial detachment. However, the Ar ions penetrate into the core more easily, giving rise to more discharge disruption during complete detachment with upstream gas puffing than with divertor region puffing. Finally, we also estimate the effect of gas pumping on the detachment in order to realize long-pulse partial detachment in EAST. The results indicate that long-pulse partial detachment could be obtained by improving the pumping speed to match the puffing speed in case the excess Ar atoms accumulate in the core plasma during partial detachment in EAST.

  10. Cryogenic Infrastructure Upgrade of the Fermilab Magnet and Vertical Cavity Test Facilities

    NASA Astrophysics Data System (ADS)

    Rabehl, R.; Carcagno, R.; Huang, Y.; Norris, B.; Sylvester, C.

    2010-04-01

    The Fermilab Magnet Test Facility (MTF) and the Vertical Cavity Test Facility (VCTF), both located in Industrial Building 1 and serviced by a shared cryogenic infrastructure, provide cryogenic testing of superconducting magnets and superconducting radio-frequency cavities in support of programs such as the Tevatron, US-LHC, LARP, HINS, Project X, and the ILC. While MTF must continue to support a robust magnet test program, VCTF is expected to increase its cavity test throughput by a factor of five, reaching 250 cavity test cycles per year as cavity production ramps up. A cryogenic infrastructure upgrade program has been undertaken in preparation for meeting the challenge of this additional cavity test throughput. The cryogenic infrastructure improvements include dedicated ambient temperature vacuum pumps, a helium compressor, purification skids, and additional helium gas storage. This paper will elaborate on the goals of the upgrade program, the selected equipment, and foreseen integration and operations plans and issues.

  11. Cryogenic Controls for Fermilab's Srf Cavities and Test Facility

    NASA Astrophysics Data System (ADS)

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.

    2008-03-01

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  12. Cryogenic controls for Fermilab's SRF cavities and test facility

    SciTech Connect

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.; /Fermilab

    2007-07-01

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The facility is supplied cryogens from the Cryogenic Test Facility (CTF) located in a separate building 500-m away. The design incorporates ambient temperature pumping for super-fluid helium production, as well as three 0.6-kW at 4.5-K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+{trademark}, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+{trademark} allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+{trademark} nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLC's by KOYO{reg_sign} are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  13. Superfluid helium cryogenic systems for superconducting RF cavities at KEK

    SciTech Connect

    Nakai, H.; Hara, K.; Honma, T.; Hosoyama, K.; Kojima, Y.; Nakanishi, K.; Kanekiyo, T.; Morita, S.

    2014-01-29

    Recent accelerator projects at KEK, such as the Superconducting RF Test Facility (STF) for R and D of the International Linear Collider (ILC) project and the compact Energy Recovery Linac (cERL), employ superconducting RF cavities made of pure niobium, which can generate high gradient acceleration field. Since the operation temperature of these cavities is selected to be 2 K, we have developed two 2 K superfluid helium cryogenic systems for stable operation of superconducting RF cavities for each of STF and cERL. These two 2 K superfluid helium cryogenic systems are identical in principle. Since the operation mode of the cavities is different for STF and cERL, i.e. the pulse mode for STF and the continuous wave mode for cERL, the heat loads from the cavities are quite different. The 2 K superfluid helium cryogenic systems mainly consists of ordinary helium liquefiers/refrigerators, 2 K refrigerator cold boxes, helium gas pumping systems and high-performance transfer lines. The 2 K refrigerators and the high-performance transfer lines are designed by KEK. Some superconducting RF cavity cryomodules have been already connected to the 2 K superfluid helium cryogenic systems for STF and cERL respectively, and cooled down to 2 K successfully.

  14. Distribution of Hydrogen Isotopes, Carbon and Beryllium on In-Vessel Surfaces in the Various JET Divertors

    SciTech Connect

    Coad, J.P.; Rubel, M.; Bekris, N.; Brennan, D.; Hole, D.; Likonen, J.; Vainonen-Ahlgren, E

    2005-07-15

    JET has operated with divertors of differing geometries since 1994. Impurities accumulated in the inner leg of all the divertors, and operation of the first (Mk I) divertor with beryllium tiles demonstrated that most are eroded from the main chamber walls and swept along the scrape-off layer to the inner divertor. Carbon deposited at the inner divertor is then locally transported to shadowed regions such as the inner louvres, where, for example, most of the tritium was trapped during the deuterium-tritium experiment (DTE1). Factors affecting these transport processes (e.g. temperature) are important for ITER, but are not well understood.

  15. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency

  16. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2008-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost-effective approaches to the required on-orbit demonstration are suggested.

  17. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost effective approaches to the required on-orbit demonstration are suggested.

  18. Ground-Based Investigations with the Cryogenic Hydrogen Maser

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.; Mattison, Edward; Vessot, Robert F. C.

    2003-01-01

    The cryogenic hydrogen maser (CHM) developed at the Smithsonian Astrophysical Observatory (SAO) was designed to be functionally similar to SAO room temperature hydrogen masers with appropriate modifications made for operation at cryogenic temperatures. A schematic of the SAO CHM is shown in Figure 1, and a description of this device and its operation follows. A beam of molecular hydrogen is dissociated into atoms at room temperature. The resultant beam of atomic hydrogen is then cooled, magnetically state selected, and focused into a quartz storage bulb centered inside of a microwave cavity resonant with the hydrogen hyperfine transition at 1420 MHz. The quartz storage bulb is coated with a superfluid He-4 film, and both the bulb and cavity are maintained near 0.5 K. The maser signal is coupled out inductively and carried to room temperature via semi-rigid coaxial cable. After passing through a room temperature isolator and preamp, the maser signal is detected with a low-noise heterodyne receiver as used in the room temperature SAO hydrogen masers. The maser temperature is lowered to 0.5 K using a recirculating He-3 refrigerator. This refrigerator consists of several cooling stages: a liquid nitrogen stage at 77 K, a liquid 4He bath at 4.2 K, a pumped He-4 pot at approximately 1.7 K, and the pumped, recirculating He-3 stage at 0.5 K. The atomic hydrogen beam, state selector, storage bulb and cavity are all connected inside a single, maser vacuum chamber (MVC). This space is pumped out from below by a turbo pump. Above the MVC, an inlet to the space allows for the input of flowing superfluid 4He film. External to the MVC is a second, outer vacuum chamber (OVC), maintained for operation of the cryostat and also pumped by a turbo pump. Inside the OVC, there is radiation shielding at 77 K and 1.7 K.

  19. Ground-Based Investigations with the Cryogenic Hydrogen Maser

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.; Mattison, Edward; Vessot, Robert F. C.

    2003-01-01

    The cryogenic hydrogen maser (CHM) developed at the Smithsonian Astrophysical Observatory (SAO) was designed to be functionally similar to SAO room temperature hydrogen masers with appropriate modifications made for operation at cryogenic temperatures. A schematic of the SAO CHM is shown in Figure 1, and a description of this device and its operation follows. A beam of molecular hydrogen is dissociated into atoms at room temperature. The resultant beam of atomic hydrogen is then cooled, magnetically state selected, and focused into a quartz storage bulb centered inside of a microwave cavity resonant with the hydrogen hyperfine transition at 1420 MHz. The quartz storage bulb is coated with a superfluid He-4 film, and both the bulb and cavity are maintained near 0.5 K. The maser signal is coupled out inductively and carried to room temperature via semi-rigid coaxial cable. After passing through a room temperature isolator and preamp, the maser signal is detected with a low-noise heterodyne receiver as used in the room temperature SAO hydrogen masers. The maser temperature is lowered to 0.5 K using a recirculating He-3 refrigerator. This refrigerator consists of several cooling stages: a liquid nitrogen stage at 77 K, a liquid 4He bath at 4.2 K, a pumped He-4 pot at approximately 1.7 K, and the pumped, recirculating He-3 stage at 0.5 K. The atomic hydrogen beam, state selector, storage bulb and cavity are all connected inside a single, maser vacuum chamber (MVC). This space is pumped out from below by a turbo pump. Above the MVC, an inlet to the space allows for the input of flowing superfluid 4He film. External to the MVC is a second, outer vacuum chamber (OVC), maintained for operation of the cryostat and also pumped by a turbo pump. Inside the OVC, there is radiation shielding at 77 K and 1.7 K.

  20. Two phase liquid helium flow testing to simulate the operation of a cryocondensation pump in the DIII-D tokamak

    SciTech Connect

    Laughon, G.J.; Baxi, C.B.; Campbell, G.L.; Mahdavi, M.A.; Makariou, C.C.; Smith, J.P.; Schaffer, M.J.; Schaubel, K.M.; Menon, M.M.

    1994-06-01

    A liquid helium-cooled cryocondensation pump has been installed in the DIII-D tokamak fusion energy research experiment at General Atomics. The pump is located within the tokamak vacuum chamber beneath the divertor baffle plates and is utilized for plasma density and contamination control. Two-phase helium flows through the pump at 5 to 10 g/s utilizing the heat transfer and constant temperature characteristics of boiling liquid . helium. The pump is designed for a pumping speed of 32,000 1/s. Extensive testing was performed with a prototypical pump test fixture. Several pump geometries (simple tube, coaxial flow plug, and coaxial slotted insert) were tested, in an iterative process, to determine which was the most satisfactory for stable cryocondensation pumping. Results from the different tests illustrating the temperature distribution and flow characteristics for each configuration are presented.

  1. Cryogenic expansion machine

    DOEpatents

    Pallaver, Carl B.; Morgan, Michael W.

    1978-01-01

    A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.

  2. Cryogenic Research and Development

    DTIC Science & Technology

    1961-12-31

    8A/8p)TdpT + A*(p,T) - A*(l,T). (14-c) T -8- If A be Helmholtz energy, then (8A/8p) = -RT/p (15) and A*(p,T) = uo0 Q*dpT’ (16) 0 00 where u l/ vI is...respectively, then, are (z - 1)/ u = ( vI -k M-2 /T) +CU + du2 + + klk m+4/T. (5) (z -l)/ u B 1 +CGu + DU + ..... (6) where the conventional virial...r on Cryogenic Research and Development for Quarter Ending December 31, 1960 ~TC94-17400 C 94 6 8017 U . S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF

  3. Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Jones, David

    2011-01-01

    The CPS is an in-space cryogenic propulsive stage based largely on state of the practice design for launch vehicle upper stages. However, unlike conventional propulsive stages, it also contains power generation and thermal control systems to limit the loss of liquid hydrogen and oxygen due to boil-off during extended in-space storage. The CPS provides the necessary (Delta)V for rapid transfer of in-space elements to their destinations or staging points (i.e., E-M L1). The CPS is designed around a block upgrade strategy to provide maximum mission/architecture flexibility. Block 1 CPS: Short duration flight times (hours), passive cryo fluid management. Block 2 CPS: Long duration flight times (days/weeks/months), active and passive cryo fluid management.

  4. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.

    1983-01-01

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

  5. Cryogenic Cam Butterfly Valve

    NASA Technical Reports Server (NTRS)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  6. Cryogenic nuclear gyroscope

    SciTech Connect

    Gallop, J.C.; Potts, S.P.

    1980-09-30

    A cryogenic nuclear gyroscope is described that is comprised of a cylinder of niobium cooled within a helium cryostat so as to be superconducting and to provide a trapped, substantially homogeneous magnetic field, a helium-3 sample contained within a spherical pyrex cell having nuclei possessing a net magnetic moment, coils provided to polarize the sample to provide that net magnetic moment, and a SQUID magnetometer coupled to the sample by a pick-up coil of a transformer and frequency sensitive means coupled to the SQUID to detect changes in the precession of the nuclear moments of the sample caused by rotation of the gyroscope about an axis parallel to the direction of the homogeneous magnetic field. A superconducting lead shield isolates the helium-3 sample from external magnetic fields.

  7. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

    1983-01-04

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

  8. SOLPS modeling of the effect on plasma detachment of closing the lower divertor in DIII-D

    NASA Astrophysics Data System (ADS)

    Sang, C. F.; Stangeby, P. C.; Guo, H. Y.; Leonard, A. W.; Covele, B.; Lao, L. L.; Moser, A. L.; Thomas, D. M.

    2017-02-01

    Scrape-off layer plasma simulation modeling has been carried out to assess the effect of tightly closing the lower divertor in DIII-D, which at present is almost fully open, on the achievement of cold dissipative/detached divertor conditions. To isolate the impact of other factors on the divertor plasma solution and to make direct comparisons, most of the parameters including the meshes were kept as similar as possible. Only the neutral baffling was modified to compare a fully open divertor with a tightly closed one. The modeling shows that the tightly closed divertor greatly improves trapping of recycling neutrals, thereby increasing radiative and charge exchange losses in the divertor and reducing the electron temperature T et and deposited power density q dep at the target plate. Furthermore, the closed structure enables the divertor plasma to enter into highly dissipative and detached divertor conditions at a significantly lower upstream density. The effects of divertor closure on the neutral density and pressure, and their correlation with the divertor plasma conditions are also demonstrated. The effect of molecular D2-ion D+ elastic collisions and neutral-neutral collisions on the divertor plasma solution are assessed.

  9. SOLPS modeling of the effect on plasma detachment of closing the lower divertor in DIII-D

    DOE PAGES

    Sang, C. F.; Stangeby, P. C.; Guo, H. Y.; ...

    2016-12-15

    SOLPS modeling has been carried out to assess the effect of tightly closing the lower divertor in DIII-D, which at present is almost fully open, on the achievement of cold dissipative/detached divertor conditions. To isolate the impact of other factors on the divertor plasma solution and to make direct comparisons, most of the parameters including the meshes were kept as similar as possible. Only the neutral baffling was modified to compare a fully open divertor with a tightly closed one. The modeling shows that the tightly closed divertor greatly improves trapping of recycling neutrals, thereby increasing radiative and charge exchangemore » losses in the divertor and reducing the electron temperature Tet and deposited power density qdep at the target plate. Furthermore, the closed structure enables the divertor plasma to enter into highly dissipative and detached divertor conditions at a significantly lower upstream density. The effects of divertor closure on the neutral density and pressure, and their correlation with the divertor plasma conditions are also demonstrated. The effect of molecular D2- ion D+ elastic collisions and neutral-neutral collisions on the divertor plasma solution are assessed.« less

  10. SOLPS modeling of the effect on plasma detachment of closing the lower divertor in DIII-D

    SciTech Connect

    Sang, C. F.; Stangeby, P. C.; Guo, H. Y.; Leonard, A. W.; Covele, B.; Lao, L. L.; Moser, A. L.; Thomas, D. M.

    2016-12-15

    SOLPS modeling has been carried out to assess the effect of tightly closing the lower divertor in DIII-D, which at present is almost fully open, on the achievement of cold dissipative/detached divertor conditions. To isolate the impact of other factors on the divertor plasma solution and to make direct comparisons, most of the parameters including the meshes were kept as similar as possible. Only the neutral baffling was modified to compare a fully open divertor with a tightly closed one. The modeling shows that the tightly closed divertor greatly improves trapping of recycling neutrals, thereby increasing radiative and charge exchange losses in the divertor and reducing the electron temperature Tet and deposited power density qdep at the target plate. Furthermore, the closed structure enables the divertor plasma to enter into highly dissipative and detached divertor conditions at a significantly lower upstream density. The effects of divertor closure on the neutral density and pressure, and their correlation with the divertor plasma conditions are also demonstrated. The effect of molecular D2- ion D+ elastic collisions and neutral-neutral collisions on the divertor plasma solution are assessed.

  11. Experiments and computational modeling focused on divertor and SOL optimization for advanced tokamak operation on DIII-D

    NASA Astrophysics Data System (ADS)

    Allen, S. L.; Boedo, J. A.; Bozek, A. S.; Brooks, N. H.; Carlstrom, T. N.; Casper, T. A.; Colchin, R. J.; Evans, T. E.; Fenstermacher, M. E.; Friend, M. E.; Isler, R. C.; Jayakumar, R.; Lasnier, C. J.; Leonard, A. W.; Mahdavi, M. A.; Maingi, R.; McKee, G. R.; Moyer, R. A.; Murakami, M.; Osborne, T. H.; O'Neill, R. C.; Petrie, T. W.; Porter, G. D.; Ramsey, A. T.; Schaffer, M. J.; Stangeby, P. C.; Stambaugh, R. D.; Wade, M. R.; Watking, J. G.; West, W. P.; Whyte, D. G.; Wolf, N. S.

    2001-03-01

    We present the results from DIII-D experiments and modeling focused on the divertor issues of an `Advanced Tokamak' (AT). Operation at high plasma pressure β with good energy confinement H requires core and divertor plasma shaping and current profile J( r) control with ECH current drive. Transport modeling indicates that the available DIII-D ECH power determines a density and temperature regime for sustained DIII-D AT experiments. We demonstrate that a high-δ, unbalanced double null divertor with cryopumping (D-2000) is a flexible AT divertor. Impurity levels in AT experiments have been reduced by careful alignment of the divertor tiles; this, in turn has changed the time evolution of the core J( r) profiles. New physics has been observed near the X-point and private flux regions, including flow reversal and recombination, that is important in understanding and controlling the flows and thereby the radiation in the divertor region, which reduces the divertor heat flux.

  12. Evaluation of a monoblock divertor design for the ITER tokamak

    SciTech Connect

    Lee, Y.T.; Hoffman, M.A.; Hafez, M.

    1996-12-31

    A subcooled nucleate boiling computer code (with 3D heat conduction in solid and 1D forced convection in fluid) that incorporates a good estimation of the single-phase and two-phase pressure drop was developed to evaluate a monoblock design of the divertor with smooth tubes as well as a wide variety of cooling designs. Using one of the monoblock divertor designs proposed by the European International Thermonuclear Experimental Reactor (ITER) team as of March 1995, it was found that under a normal steady state operating condition with a peak heat flux of about 5 MW/m{sup 2}, the water flow remained in the single phase liquid regime. Under an abnormal operating condition with a peak heat flux of about 20 MW/m{sup 2}, the partially developed boiling (PDB) regime occurred where the local critical heat flux safety factor (SF{sub CHF}=V@CHF(z)/q{sub ({theta}}=0{degree})), was estimated to be about 1.4 using the Tong-75 CHF correlation. This indicates that further increases in the magnitude of the heat flux beyond 20 MW/m{sup 2} may raise safety concerns for the design. By increasing the mass flux, decreasing the inlet water temperature, or increasing the inlet water pressure, the CHF safety margin of the design can be increased without inserting twisted tapes inside cooling tubes. 8 refs., 6 figs.

  13. On the W7-X divertor performance under detached conditions

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Beidler, C. D.; Geiger, J.; Helander, P.; Hölbe, H.; Maassberg, H.; Turkin, Y.; Reiter, D.; W7-X Team

    2016-12-01

    We present a theoretical/numerical predictive analysis of the performance of the W7-X island divertor under conditions of detachment characterized by intensive radiation. The analysis is based on EMC3-Eirene simulations and the earlier W7-AS experimental and numerical experience. Carbon is employed as a representative radiator. The associated drawbacks, i.e. core contamination and recycling degradation (reduced recycling flux), are evaluated by determining the carbon density at the last closed flux surface (LCFS) and the neutral pressure in the divertor chamber. Optimum conditions are explored in both configuration and plasma parameter space. This study aims to identify the key geometric/magnetic and plasma parameters that affect the performance of detached plasmas in W7-X. Emphasis is placed on what occurs when the islands are enlarged far beyond the maximum size available in W7-AS and whether an island size limit for optimal detachment operation exists, and why. Further issues addressed are the power removal ability of the W7-X edge islands, potentially limiting factors, compatibility between particle and power exhaust, and particle refueling capability of the recycling neutrals.

  14. Near infrared spectroscopy of the DIII-D divertor

    NASA Astrophysics Data System (ADS)

    McLean, A. G.; Soukhanovskii, V. A.; Brooks, N. H.; Bray, B. D.; Carlstrom, T. N.

    2012-10-01

    A high speed, high resolution near infrared (NIR) spectrometer has been installed at DIII-D to make first-of-its-kind observations of the 0.8-2.2 μm region in a tokamak divertor. The goals of this diagnostic are (1) to study Paschen spectra for line-averaged measurement of low temperature plasma parameters, (2) to benchmark the chemical and physically sputtered sources of neutral carbon using the lineshape of the CI, 910 nm multiplet, and (3) to quantify contamination of the 0.75-1.1 μm region where Thomson-shifted laser light is measured by the Thomson scattering diagnostic. Diagnostic capabilities include a 300 mm, f/3.9 design, 300-2400 Gr/mm gratings providing optical resolution of ˜0.65-0.04 nm, and readout at up to 900 frames/second. Data are presented in L-mode plasmas, and in H-mode between ELMs and during the ELM peak. Results acquired by this diagnostic will be applied to design of a proposed divertor Thomson diagnostic for NSTX-U and aid validation of the Thomson system on ITER.

  15. Axisymmetric curvature-driven instability in a model divertor geometry

    SciTech Connect

    Farmer, W. A.; Ryutov, D. D.

    2013-09-15

    A model problem is presented which qualitatively describes a pressure-driven instability which can occur near the null-point in the divertor region of a tokamak where the poloidal field becomes small. The model problem is described by a horizontal slot with a vertical magnetic field which plays the role of the poloidal field. Line-tying boundary conditions are applied at the planes defining the slot. A toroidal field lying parallel to the planes is assumed to be very strong, thereby constraining the possible structure of the perturbations. Axisymmetric perturbations which leave the toroidal field unperturbed are analyzed. Ideal magnetohydrodynamics is used, and the instability threshold is determined by the energy principle. Because of the boundary conditions, the Euler equation is, in general, non-separable except at marginal stability. This problem may be useful in understanding the source of heat transport into the private flux region in a snowflake divertor which possesses a large region of small poloidal field, and for code benchmarking as it yields simple analytic results in an interesting geometry.

  16. Surface heat loads on the ITER divertor vertical targets

    NASA Astrophysics Data System (ADS)

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R. A.; Corre, Y.; Dejarnac, R.; Firdaouss, M.; Kočan, M.; Komm, M.; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-04-01

    The heating of tungsten monoblocks at the ITER divertor vertical targets is calculated using the heat flux predicted by three-dimensional ion orbit modelling. The monoblocks are beveled to a depth of 0.5 mm in the toroidal direction to provide magnetic shadowing of the poloidal leading edges within the range of specified assembly tolerances, but this increases the magnetic field incidence angle resulting in a reduction of toroidal wetted fraction and concentration of the local heat flux to the unshadowed surfaces. This shaping solution successfully protects the leading edges from inter-ELM heat loads, but at the expense of (1) temperatures on the main loaded surface that could exceed the tungsten recrystallization temperature in the nominal partially detached regime, and (2) melting and loss of margin against critical heat flux during transient loss of detachment control. During ELMs, the risk of monoblock edge melting is found to be greater than the risk of full surface melting on the plasma-wetted zone. Full surface and edge melting will be triggered by uncontrolled ELMs in the burning plasma phase of ITER operation if current models of the likely ELM ion impact energies at the divertor targets are correct. During uncontrolled ELMs in pre-nuclear deuterium or helium plasmas at half the nominal plasma current and magnetic field, full surface melting should be avoided, but edge melting is predicted.

  17. ALPS - advanced limiter-divertor plasma-facing systems.

    SciTech Connect

    Allain, J. P.; Bastasz, R.; Brooks, J. N.; Evans, T.; Hassanein, A.; Luckhardt, S.; Maingi, R.; Mattas, R. F.; McCarthy, K.; Mioduszewski, P.; Mogahed, E.; Moir, R.; Molokov, S.; Morely, N.; Nygren, R.; Reed, C.; Rognlien, T.; Ruzic, D.; Sviatoslavsky, I.; Sze, D.; Tillack, M.; Ulrickson, M.; Wade, P. M.; Wong, C.; Wooley, R.

    1999-09-15

    The Advanced Limiter-divertor Plasma-facing Systems (ALPS) program was initiated in order to evaluate the potential for improved performance and lifetime for plasma-facing systems. The main goal of the program is to demonstrate the advantages of advanced limiter/divertor systems over conventional systems in terms of power density capability, component lifetime, and power conversion efficiency, while providing for safe operation and minimizing impurity concerns for the plasma. Most of the work to date has been applied to free surface liquids. A multi-disciplinary team from several institutions has been organized to address the key issues associated with these systems. The main performance goals for advanced limiters and diverters are a peak heat flux of >50 MW/m{sup 2},elimination of a lifetime limit for erosion, and the ability to extract useful heat at high power conversion efficiency ({approximately}40%). The evaluation of various options is being conducted through a combination of laboratory experiments, modeling of key processes, and conceptual design studies. The current emphasis for the work is on the effects of free surface liquids on plasma edge performance.

  18. An exploration of advanced X-divertor scenarios on ITER

    NASA Astrophysics Data System (ADS)

    Covele, B.; Valanju, P.; Kotschenreuther, M.; Mahajan, S.

    2014-07-01

    It is found that the X-divertor (XD) configuration (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA), CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502) can be made with the conventional poloidal field (PF) coil set on ITER (Tomabechi et al and Team 1991 Nucl. Fusion 31 1135), where all PF coils are outside the TF coils. Starting from the standard divertor, a sequence of desirable XD configurations are possible where the PF currents are below the present maximum design limits on ITER, and where the baseline divertor cassette is used. This opens the possibility that the XD could be tested and used to assist in high-power operation on ITER, but some further issues need examination. Note that the increased major radius of the super-X-divertor (Kotschenreuther et al 2007 Bull. Am. Phys. Soc. 53 11, Valanju et al 2009 Phys. Plasmas 16 5, Kotschenreuther et al 2010 Nucl. Fusion 50 035003, Valanju et al 2010 Fusion Eng. Des. 85 46) is not a feature of the XD geometry. In addition, we present an XD configuration for K-DEMO (Kim et al 2013 Fusion Eng. Des. 88 123) to demonstrate that it is also possible to attain the XD configuration in advanced tokamak reactors with all PF coils outside the TF coils. The results given here for the XD are far more encouraging than recent calculations by Lackner and Zohm (2012 Fusion Sci. Technol. 63 43) for the Snowflake (Ryutov 2007 Phys. Plasmas 14 064502, Ryutov et al 2008 Phys. Plasmas 15 092501), where the required high PF currents represent a major technological challenge. The magnetic field structure in the outboard divertor SOL (Kotschenreuther 2013 Phys. Plasmas 20 102507) in the recently created

  19. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  20. Cryogenic storage tank thermal analysis

    NASA Technical Reports Server (NTRS)

    Wright, J. P.

    1976-01-01

    Parametric study discusses relationship between cryogenic boil-off and factors such as tank size, insulation thickness and performance, structural-support heat leaks and use of vapor-cooled shields. Data presented as series of nomographs and curves.

  1. Cryogenic Systems and Superconductive Power

    DTIC Science & Technology

    subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system; and, Provide a sound...technical basis for subsequent applications of superconductive power in the area of ship propulsion .

  2. Cryogenic Systems and Superconductive Power

    DTIC Science & Technology

    The report defines, investigates, and experimentally evaluates the key elements of a representative crogenic turborefrigerator subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system.

  3. Motivation and goals of the new heated outer divertor for Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lipschultz, B.; Doody, J.; Ellis, R.; Granetz, R.; Harrison, S.; Labombard, B.; Vieira, R.; Zhang, H.; Zhou, L.

    2012-10-01

    A precision-aligned, high-temperature outer divertor is being developed for Alcator C-Mod to enhance heatflux handling and to advance our knowledge and experience with high-Z Plasma Facing Components (PFCs) in a reactor-level power density environment. Several departures from the design of the current divertor will be implemented: Instead of 10 toroidal divertor segments that expand toroidally as they heat up, the divertor plate will be toroidally continuous, with no openings or leading edges in the high-heat flux region. It will expand in the radial direction when heated while maintaining good alignment with shallow field line angles (˜ 2 degrees), a requirement for future divertors. Those characteristics will reduce both impurity sources and disruption forces. A second design goal is to be able to control the divertor temperature up to 600^oC by installing heaters in the structure. Given the Arrhenius relation between hydrogen diffusivity and temperature in tungsten (and molybdenum) this will open up a new area of study for tokamaks - exploration of the effect of PFC temperature on fuel retention. Temperature control may also open up a new area of study into the effect of changes in divertor recycling on fueling and core confinement.

  4. Heat loads to divertor nearby components from secondary radiation evolved during plasma instabilities

    SciTech Connect

    Sizyuk, V. Hassanein, A.

    2015-01-15

    A fundamental issue in tokamak operation related to power exhaust during plasma instabilities is the understanding of heat and particle transport from the core plasma into the scrape-off layer and to plasma-facing materials. During abnormal and disruptive operation in tokamaks, radiation transport processes play a critical role in divertor/edge-generated plasma dynamics and are very important in determining overall lifetimes of the divertor and nearby components. This is equivalent to or greater than the effect of the direct impact of escaped core plasma on the divertor plate. We have developed and implemented comprehensive enhanced physical and numerical models in the upgraded HEIGHTS package for simulating detailed photon and particle transport in the evolved edge plasma during various instabilities. The paper describes details of a newly developed 3D Monte Carlo radiation transport model, including optimization methods of generated plasma opacities in the full range of expected photon spectra. Response of the ITER divertor's nearby surfaces due to radiation from the divertor-developed plasma was simulated by using actual full 3D reactor design and magnetic configurations. We analyzed in detail the radiation emission spectra and compared the emission of both carbon and tungsten as divertor plate materials. The integrated 3D simulation predicted unexpectedly high damage risk to the open stainless steel legs of the dome structure in the current ITER design from the intense radiation during a disruption on the tungsten divertor plate.

  5. A comprehensive 2-D divertor data set from DIII-D for edge theory validation

    SciTech Connect

    Fenstermacher, M.E.; Allen, S.L.; Hill, D.N.

    1996-02-01

    A comprehensive set of experiments has been carried out on the DIII-D tokamak to measure the 2-D (R,Z) structure of the divertor plasma in a systematic way using new diagnostics. Measurements cover the divertor radially from inside the X-point to the outer target plate and vertically from the target plate to above the X-point. Identical, repeatable shots were made, each having radial sweeps of the X-point and divertor strike points, to allow complete plasma and radiation profile measurements. Data have been obtained in ohmic, L-mode, ELMing H-mode, and reversed B{sub T} operation ({gradient}B drift away from the X-point). In addition, complete measurements were made of radiative divertor plasmas with a Partially Detached Divertor (PDD) induced by D{sub 2} injection and with a Radiating Mantle induced by Impurity injection (RMI) using neon and nitrogen. The data set includes first observations of the radial and poloidal profiles of the X-point, inner and outer leg plasmas in PDD and RMI radiative divertor operation. Preliminary data analysis shows that intrinsic impurities play a critical role in determining the SOL and divertor conditions.

  6. Simulation of tokamak SOL and divertor region including heat flux mitigation by gas puffing

    NASA Astrophysics Data System (ADS)

    Park, Jin-Woo; Na, Yong-Su; Hong, Sang Hee; Ahn, Joon-Wook; Kim, Deok-Kyu; Han, Hyunsun; Shim, Seong Bo; Lee, Hae June

    2012-08-01

    Two-dimensional (2D), scrape-off layer (SOL)-divertor transport simulations are performed using the integrated plasma-neutral-impurity code KTRAN developed at Seoul National University. Firstly, the code is applied to reproduce a National Spherical Torus eXperiment (NSTX) discharge by using the prescribed transport coefficients and the boundary conditions obtained from the experiment. The plasma density, the heat flux on the divertor plate, and the D α emission rate profiles from the numerical simulation are found to follow experimental trends qualitatively. Secondly, predictive simulations are carried out for the baseline operation mode in Korea Superconducting Tokamak Advanced Research (KSTAR) to predict the heat flux on the divertor target plates. The stationary peak heat flux in the KSTAR baseline operation mode is expected to be 6.5 MW/m2 in the case of an orthogonal divertor. To study the mitigation of the heat flux, we investigated the puffing effects of deuterium and argon gases. The puffing position is assumed to be in front of the strike point at the outer lower divertor plate. In the simulations, mitigation of the peak heat flux at the divertor target plates is found to occur when the gas puffing rate exceeds certain values, ˜1.0 × 1020 /s and ˜5.0 × 1018 /s for deuterium and argon, respectively. Multi-charged impurity transport is also investigated for both NSTX and KSTAR SOL and divertor regions.

  7. Role of cross-field drifts in the onset of divertor detachment

    NASA Astrophysics Data System (ADS)

    Groth, Mathias; Allen, S. L.; Fenstermacher, M. E.; Hill, D. H.; Makowski, M. A.; McLean, A. G.; Lasnier, C. J.; Porter, G. D.; Rognlien, T. D.; Briesemeister, A. R.; Unterberg, E. A.; Leonard, A. W.; Watkins, J. G.

    2015-11-01

    The impact of cross-field drifts in divertor configurations was investigated in DIII-D L and H-mode discharges. The studies show that the electron temperature at the outer divertor plate is reduced to below 2 eV at about 20 % lower pedestal density in configurations with the ion Bx ∇B direction toward the divertor X-point. When attached, these plasmas have significantly lower electron temperatures and and higher densities in the inner than in the outer divertor as directly measured with divertor Thomson scattering and inferred from line emission imaging using tangentially viewing cameras. Upon reversal of the toroidal field direction, the divertor conditions were observed in-out symmetric. Simulations with the edge fluid code UEDGE show that poloidal flows due to the radial electric field in the private flux region dominate the divertor asymmetries. Work supported by US DOE under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-AC05-00OR22725, and DE-AC04-94AL85000.

  8. Impact of real-time magnetic axis sweeping on steady state divertor operation in LHD

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Masuzaki, S.; Morisaki, T.; Ogawa, H.; Watanabe, T.; Kubota, Y.; Sakamoto, R.; Ashikawa, N.; Sato, K.; Chikaraishi, H.; Saito, K.; Seki, T.; Kumazawa, R.; Mutoh, T.; Kubo, S.; Takeiri, Y.; Peterson, B. J.; Komori, A.; Motojima, O.; LHD experimental Group

    2006-07-01

    Steady state divertor operation with high performance plasmas (ne ~ 0.7 × 1019 cm-3, Ti ~ 2 keV) was demonstrated for half an hour in the Large Helical Device (LHD), the superconducting helical device (R = 3.6-3.9 m, a = 0.6 m, B = 3 T, l/m = 2/10). The high performance plasmas have been sustained with an averaged heating power of 680 kW and achieved an injected energy of 1.3 GJ. This required both advanced technological integration of heating systems and divertor heat flux control. In particular, optimization of divertor heat flux distribution along the divertor leg trace on divertor plates and real-time magnetic axis sweeping (R = 3.67-3.7 m) have allowed LHD to access a steady state regime with a margin of safety for the actively cooled divertor plates. The distribution of divertor heat load along the traces was investigated with calorimetric measurements and it was found that there was a localized heat load connected with the loss of high-energy ions produced by ion cyclotron radio frequency near-fields. Orbit analysis shows that the behaviour of high-energy ions is qualitatively in good agreement with the experimental result. Long-pulse discharges were terminated by radiation collapse due to penetration of metallic flakes into the plasma.

  9. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  10. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  11. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  12. A Piezoelectric Cryogenic Heat Switch

    NASA Technical Reports Server (NTRS)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  13. The RHIC cryogenic control system

    SciTech Connect

    Farah, Y.; Sondericker, J.

    1993-08-01

    A cryogenic process control system for the RHIC Project is discussed. It is independent of the main RHIC Control System, consisting of an upgrade of the existing 24.8 Kw helium refrigerator control section with the addition of a ring control section that regulates and monitors all cryogenic signals in the RHIC tunnel. The system is fully automated, which can run without the continuous presence of operators.

  14. Attainment of a stable, fully detached plasma state in innovative divertor configurations

    NASA Astrophysics Data System (ADS)

    Umansky, Maxim

    2016-10-01

    The heat load on plasma facing components is a critical engineering constraint for future tokamaks, which has stimulated the community to consider innovative magnetic divertor geometries for future high power devices. Present-day advanced divertor scenarios generally rely on partially detached regimes, also planned for ITER; a fully detached state would usually lead to MARFE and degradation of core confinement. Modeling reveals that novel magnetic geometries can have a major impact on plasma detachment and power handling. Using the UEDGE tokamak edge transport model for configurations with tightly baffled long divertor legs, extended radially, or vertically, we find stable, fully detached divertor operation. Including a secondary X-point in the outer leg volume extends the attainment of a stable detached state to the highest power. As the input power is reduced to a threshold value, the outer leg transitions to a fully detached state with the detachment front localized at the secondary X-point or in the leg volume; reducing the power further results in the detachment front steady-state location shifting upstream. As the power is reduced, the detachment front eventually moves to the primary X-point, which sets the lower power limit for the range of stable operation. Still, for a long-legged divertor, a fully detached, stable divertor regime is maintained over an order-of-magnitude variation in exhaust power. In contrast, a standard divertor has a much smaller detachment operational window. These results suggest that stable fully detached divertor operation can be realized in tokamaks with extended divertor legs.

  15. The influence of Filaments in the Private Flux Region on Divertor Power and Particle Deposition

    NASA Astrophysics Data System (ADS)

    Harrison, James

    2014-10-01

    Recent advances in imaging of the MAST divertor have revealed, for the first time, evidence for filaments in the private flux region (PFR). Detailed analysis of the image data shows 3 distinct types of fluctuations occurring within the divertor volume: highly sheared filaments in the SOL originating from the outer midplane, high frequency (>50 kHz) filaments near the separatrix of the outer divertor leg and filaments in the private flux region originating from inner divertor leg. With the need to extrapolate divertor performance from existing machines to future devices, these observations can contribute to our quantitative understanding of transport in the PFR. In particular, they suggest that transport in the PFR is, at least in part, driven by turbulence, which may not be well captured by the Eich/Wagner description of the divertor footprint, expressed in terms of exponential decay in space above the X-point and Gaussian spreading below the X-point. The PFR filaments are observed to move largely parallel with the flux surfaces in a way equivalent to a toroidal angular velocity of order 2 ×104 rad/s in H-mode, and slower by a factor of order 2 in L-mode. During their transit parallel to the flux surfaces across the PFR, the filaments eject plasma in bursts, away from the separatrix, deeper into the private flux region. Correlation analysis suggests that they are generated by processes local to the inner divertor leg, as there is a weak correlation between fluctuations in the SOL and PFR above what is expected from line integration effects. Scaling of filament properties with machine operating parameters, such as plasma current, density and auxiliary heating power will be presented, together with a comparison with data from divertor Langmuir probes and IR thermography to estimate the role PFR filaments play in determining the width of the divertor footprint.

  16. Impulse Pump

    DTIC Science & Technology

    2016-06-17

    APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention relates to an impulse pump for generating...impulse pump 15. The sleeve bearings 98 are affixed to the head block 90 to ease axial motion while the plunger 72 is under torsional loads. [0041

  17. Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2001-01-01

    A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.

  18. Latest developments in cryogenic safety

    NASA Technical Reports Server (NTRS)

    Webster, T. J.

    1983-01-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  19. Latest developments in cryogenic safety

    NASA Astrophysics Data System (ADS)

    Webster, T. J.

    1983-03-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  20. Cryogenic deformable mirror technology development

    NASA Astrophysics Data System (ADS)

    Mulvihill, Maureen L.; Roche, Michael E.; Cavaco, Jeffrey L.; Shawgo, Ryan J.; Chaudhry, Zaffir A.; Ealey, Mark A.

    2003-10-01

    Xinetics is working with NASA to develop a cryogenic deformable mirror (DM) specific to the needs of future Origins Program missions such as TPF and JWST. Of utmost importance was the development of an electroceramic material that exhibited electrostrictive properties at cryogenic temperatures. In this paper, the actuator developmental tests and subsequent cryogenic deformable mirror design and cryogenic testing performance of the 349-channel discrete actuator deformable mirror demonstrator are discussed. The cofired actuator stroke response was nearly constant from 35 to 65 K such that at 150V the actuator free-stroke was ~3 microns. The 349-ch cryogenic DM was designed and built with as few parts and materials as possible to minimize the CTE mismatch. The polished mirror was cycled twice from 300 to 35 K. The rms surface figure was monitored using a Zygo interferometer on cooling and consistent data was measured during both temperature cycles. The figure changed from 0.5 waves (P-V) at 300 K to 5 waves at 35 K and returned to 0.6 waves at 300K. The actuators were powered and the influence functions were measured between 35 and 65 K. Even though it is not a functional DM at 35 K, it is a substantial step forward in the development of a cryogenic deformable mirror technology.