Sample records for diving operations

  1. 76 FR 67480 - Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ...] Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB) Approval... Commercial Diving Operations Standard (29 CFR part 1910, subpart T). DATES: Comments must be submitted... existing Standard on Commercial Diving Operations (29 CFR part 1910, Subpart [[Page 67481

  2. Recreational Diving Impacts on Coral Reefs and the Adoption of Environmentally Responsible Practices within the SCUBA Diving Industry

    NASA Astrophysics Data System (ADS)

    Roche, Ronan C.; Harvey, Chloe V.; Harvey, James J.; Kavanagh, Alan P.; McDonald, Meaghan; Stein-Rostaing, Vivienne R.; Turner, John R.

    2016-07-01

    Recreational diving on coral reefs is an activity that has experienced rapidly growing levels of popularity and participation. Despite providing economic activity for many developing coastal communities, the potential role of dive impacts in contributing to coral reef damage is a concern at heavily dived locations. Management measures to address this issue increasingly include the introduction of programmes designed to encourage environmentally responsible practices within the dive industry. We examined diver behaviour at several important coral reef dive locations within the Philippines and assessed how diver characteristics and dive operator compliance with an environmentally responsible diving programme, known as the Green Fins approach, affected reef contacts. The role of dive supervision was assessed by recording dive guide interventions underwater, and how this was affected by dive group size. Of the 100 recreational divers followed, 88 % made contact with the reef at least once per dive, with a mean (±SE) contact rate of 0.12 ± 0.01 per min. We found evidence that the ability of dive guides to intervene and correct diver behaviour in the event of a reef contact decreases with larger diver group sizes. Divers from operators with high levels of compliance with the Green Fins programme exhibited significantly lower reef contact rates than those from dive operators with low levels of compliance. The successful implementation of environmentally responsible diving programmes, which focus on influencing dive industry operations, can contribute to the management of human impacts on coral reefs.

  3. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Mixed-gas diving. 1910.426 Section 1910.426 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Commercial Diving Operations Specific Operations Procedures § 1910.426 Mixed-gas diving. (a) General. Employers engaged in mixed-gas diving shall comply with the following...

  4. Recreational Diving Impacts on Coral Reefs and the Adoption of Environmentally Responsible Practices within the SCUBA Diving Industry.

    PubMed

    Roche, Ronan C; Harvey, Chloe V; Harvey, James J; Kavanagh, Alan P; McDonald, Meaghan; Stein-Rostaing, Vivienne R; Turner, John R

    2016-07-01

    Recreational diving on coral reefs is an activity that has experienced rapidly growing levels of popularity and participation. Despite providing economic activity for many developing coastal communities, the potential role of dive impacts in contributing to coral reef damage is a concern at heavily dived locations. Management measures to address this issue increasingly include the introduction of programmes designed to encourage environmentally responsible practices within the dive industry. We examined diver behaviour at several important coral reef dive locations within the Philippines and assessed how diver characteristics and dive operator compliance with an environmentally responsible diving programme, known as the Green Fins approach, affected reef contacts. The role of dive supervision was assessed by recording dive guide interventions underwater, and how this was affected by dive group size. Of the 100 recreational divers followed, 88 % made contact with the reef at least once per dive, with a mean (±SE) contact rate of 0.12 ± 0.01 per min. We found evidence that the ability of dive guides to intervene and correct diver behaviour in the event of a reef contact decreases with larger diver group sizes. Divers from operators with high levels of compliance with the Green Fins programme exhibited significantly lower reef contact rates than those from dive operators with low levels of compliance. The successful implementation of environmentally responsible diving programmes, which focus on influencing dive industry operations, can contribute to the management of human impacts on coral reefs.

  5. 46 CFR 197.404 - Responsibilities of the diving supervisor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... planning and execution of the diving operation including the responsibility for the safety and health of... SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Operations § 197.404... provisions of this subpart; (2) Be fully cognizant of the provisions of the operations manual required by...

  6. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Surface-supplied mixed-gas diving. 197.434 Section 197... HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Specific Diving Mode Procedures § 197.434 Surface-supplied mixed-gas diving. The diving supervisor shall insure that— (a) When mixed-gas...

  7. 75 FR 36062 - Availability of Conservation Seat and Diving Operations Seat for the Flower Garden Banks National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... Conservation Seat and Diving Operations Seat for the Flower Garden Banks National Marine Sanctuary Advisory... Flower Garden Banks National Marine Sanctuary Advisory Council: Conservation and Diving Operations... Jennifer Morgan, NOAA--Flower Garden Banks National Marine Sanctuary, 4700 Avenue U, Bldg. 216, Galveston...

  8. 29 CFR 1910.402 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a specific depth-time exposure or exposures. Dive-guiding operations means leading groups of sports...). Recreational diving instruction means training diving students in the use of recreational diving procedures and...

  9. Safety Priorities and Underestimations in Recreational Scuba Diving Operations: A European Study Supporting the Implementation of New Risk Management Programmes

    PubMed Central

    Lucrezi, Serena; Egi, Salih Murat; Pieri, Massimo; Burman, Francois; Ozyigit, Tamer; Cialoni, Danilo; Thomas, Guy; Marroni, Alessandro; Saayman, Melville

    2018-01-01

    Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers’ and dive centres’ perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry. Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety. Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres’ perceptions of safety in part aligned with those of scuba divers, with some exceptions. Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in prevention campaigns and training. The study supports the introduction of programmes aiming to create a culture of safety among dive centres and scuba divers. Two examples, which are described in this paper, include the Hazard Identification and Risk Assessment protocol for dive centres and scuba divers, and the Diving Safety Officer programme to create awareness, improve risk management, and mitigate health and safety risks. PMID:29628904

  10. Safety Priorities and Underestimations in Recreational Scuba Diving Operations: A European Study Supporting the Implementation of New Risk Management Programmes.

    PubMed

    Lucrezi, Serena; Egi, Salih Murat; Pieri, Massimo; Burman, Francois; Ozyigit, Tamer; Cialoni, Danilo; Thomas, Guy; Marroni, Alessandro; Saayman, Melville

    2018-01-01

    Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers' and dive centres' perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry. Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety. Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres' perceptions of safety in part aligned with those of scuba divers, with some exceptions. Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in prevention campaigns and training. The study supports the introduction of programmes aiming to create a culture of safety among dive centres and scuba divers. Two examples, which are described in this paper, include the Hazard Identification and Risk Assessment protocol for dive centres and scuba divers, and the Diving Safety Officer programme to create awareness, improve risk management, and mitigate health and safety risks.

  11. 29 CFR 1910.424 - SCUBA diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Commercial Diving Operations Specific Operations Procedures § 1910.424... physically confining spaces. (4) A diver-carried reserve breathing gas supply shall be provided for each... breathing gas supply shall be in the closed position prior to the dive. ...

  12. 36 CFR 3.18 - May I snorkel or underwater dive in park waters?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.18 May I snorkel or underwater dive in park... open to the use of vessels, a diver must prominently display a dive flag during dive operations. A dive...

  13. 36 CFR 3.18 - May I snorkel or underwater dive in park waters?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.18 May I snorkel or underwater dive in park... open to the use of vessels, a diver must prominently display a dive flag during dive operations. A dive...

  14. 46 CFR 197.334 - Open diving bells.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Open diving bells. 197.334 Section 197.334 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.334 Open diving bells. Each open diving... the open bottom and his head in the bubble; (b) Have lifting equipment capable of returning the...

  15. 46 CFR 197.334 - Open diving bells.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Open diving bells. 197.334 Section 197.334 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.334 Open diving bells. Each open diving... the open bottom and his head in the bubble; (b) Have lifting equipment capable of returning the...

  16. 46 CFR 197.334 - Open diving bells.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Open diving bells. 197.334 Section 197.334 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.334 Open diving bells. Each open diving... the open bottom and his head in the bubble; (b) Have lifting equipment capable of returning the...

  17. 46 CFR 197.334 - Open diving bells.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Open diving bells. 197.334 Section 197.334 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.334 Open diving bells. Each open diving... the open bottom and his head in the bubble; (b) Have lifting equipment capable of returning the...

  18. 46 CFR 197.334 - Open diving bells.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Open diving bells. 197.334 Section 197.334 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.334 Open diving bells. Each open diving... the open bottom and his head in the bubble; (b) Have lifting equipment capable of returning the...

  19. Estimating the risk of a scuba diving fatality in Australia.

    PubMed

    Lippmann, John; Stevenson, Christopher; McD Taylor, David; Williams, Jo

    2016-12-01

    There are few data available on which to estimate the risk of death for Australian divers. This report estimates the risk of a scuba diving fatality for Australian residents, international tourists diving in Queensland, and clients of a large Victorian dive operator. Numerators for the estimates were obtained from the Divers Alert Network Asia-Pacific dive fatality database. Denominators were derived from three sources: Participation in Exercise, Recreation and Sport Surveys, 2001-2010 (Australian resident diving activity data); Tourism Research Australia surveys of international visitors to Queensland 2006-2014 and a dive operator in Victoria 2007-2014. Annual fatality rates (AFR) and 95% confidence intervals (95% CI) were calculated using an exact binomial test. Estimated AFRs were: 0.48 (0.37-0.59) deaths per 100,000 dives, or 8.73 (6.85-10.96) deaths per 100,000 divers for Australian residents; 0.12 (0.05-0.25) deaths per 100,000 dives, or 0.46 (0.20-0.91) deaths per 100,000 divers for international visitors to Queensland; and 1.64 (0.20-5.93) deaths per 100,000 dives for the dive operator in Victoria. On a per diver basis, Australian residents are estimated to be almost twenty times more likely to die whilst scuba diving than are international visitors to Queensland, or to lower than fourfold on a per dive basis. On a per dive basis, divers in Victoria are fourteen times more likely to die than are Queensland international tourists. Although some of the estimates are based on potentially unreliable denominator data extrapolated from surveys, the diving fatality rates in Australia appear to vary by State, being considerably lower in Queensland than in Victoria. These estimates are similar to or lower than comparable overseas estimates, although reliability of all such measurements varies with study size and accuracy of the data available.

  20. 75 FR 81224 - Availability of Recreational Diving, Oil and Gas Operations and Commercial Fishing Seats for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Recreational Diving, Oil and Gas Operations and Commercial Fishing Seats for the Flower Garden Banks National... seats on the Flower Garden Banks National Marine Sanctuary Advisory Council: Recreational Diving, Oil... February 4, 2010. ADDRESSES: Application kits may be obtained from Jennifer Morgan, NOAA--Flower Garden...

  1. Nutritional status changes in humans during a 14-day saturation dive: the NASA Extreme Environment Mission Operations V project

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Davis-Street, Janis E.; Fesperman, J. Vernell; Smith, Myra D.; Rice, Barbara L.; Zwart, Sara R.

    2004-01-01

    Ground-based analogs of spaceflight are an important means of studying physiologic and nutritional changes associated with space travel, and the NASA Extreme Environment Mission Operations V (NEEMO) is such an analog. To determine whether saturation diving has nutrition-related effects similar to those of spaceflight, we conducted a clinical nutritional assessment of the NEEMO crew (4 men, 2 women) before, during, and after their 14-d saturation dive. Blood and urine samples were collected before, during, and after the dive. The foods consumed by the crew were typical of the spaceflight food system. A number of physiologic changes were observed, during and after the dive, that are also commonly observed during spaceflight. Hemoglobin and hematocrit were lower (P < 0.05) after the dive. Transferrin receptors were significantly lower immediately after the dive. Serum ferritin increased significantly during the dive. There was also evidence indicating that oxidative damage and stress increased during the dive. Glutathione peroxidase and superoxide dismutase decreased during and after the dive (P < 0.05). Decreased leptin during the dive (P < 0.05) may have been related to the increased stress. Subjects had decreased energy intake and weight loss during the dive, similar to what is observed during spaceflight. Together, these similarities to spaceflight provide a model to use in further defining the physiologic effects of spaceflight and investigating potential countermeasures.

  2. Field Management of Accidental Hypothermia during Diving

    DTIC Science & Technology

    1990-01-01

    diving operations. 4 3. Diving after tending for prolonged periods leading to hypothermia before diving. 4. Dry suit undergarments that are wet due to...dives, reducing insulation of the undergarment, and then remaining at rest for prolonged decompressiofi stops. 6. Inadequate thermal insulation: wet ...suit instead of dry suit, undergarment selection too thin, too compressible or of poor insulation when wet (63-64), inadequate thermal insulation of the

  3. 29 CFR 1910.422 - Procedures during dive.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable to each diving operation unless otherwise specified. (b) Water entry and exit. (1) A means capable... from a dive team member; (3) Communications are lost and can not be quickly re-established between the...

  4. 29 CFR 1910.422 - Procedures during dive.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applicable to each diving operation unless otherwise specified. (b) Water entry and exit. (1) A means capable... from a dive team member; (3) Communications are lost and can not be quickly re-established between the...

  5. 29 CFR 1910.422 - Procedures during dive.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicable to each diving operation unless otherwise specified. (b) Water entry and exit. (1) A means capable... from a dive team member; (3) Communications are lost and can not be quickly re-established between the...

  6. 29 CFR 1910.422 - Procedures during dive.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicable to each diving operation unless otherwise specified. (b) Water entry and exit. (1) A means capable... from a dive team member; (3) Communications are lost and can not be quickly re-established between the...

  7. 29 CFR 1910.422 - Procedures during dive.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicable to each diving operation unless otherwise specified. (b) Water entry and exit. (1) A means capable... from a dive team member; (3) Communications are lost and can not be quickly re-established between the...

  8. 46 CFR 197.420 - Operations manual.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... dive team. (b) The operations manual must be modified in writing when adaptation is required because of...) Hand-held power tools; (ii) Welding and burning equipment; and (iii) Explosives. specific diving mode...

  9. Nutritional Assessment During a 14-d Saturation Dive: the NASA Extreme Environment Mission Operation V Project

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Davis-Street, J. E.; Fesperman, J. V.; Smith, M. D.; Rice, B. L.; Zwart, S. R.

    2006-01-01

    Ground-based analogs of spaceflight are an important means of studying physiological and nutritional changes associated with space travel, particularly since exploration missions are anticipated, and flight research opportunities are limited. A clinical nutritional assessment of the NASA Extreme Environment Mission Operation V (NEEMO) crew (4 M, 2 F) was conducted before, during, and after the 14-d saturation dive. Blood and urine samples were collected before (D-12 and D-1), during (MD 7 and MD 12), and after (R + 0 and R + 7) the dive. The foods were typical of the spaceflight food system. A number of physiological changes were reported both during the dive and post dive that are also commonly observed during spaceflight. Serum hemoglobin and hematocrit were decreased (P less than 0.05) post dive. Serum ferritin and ceruloplasmin significantly increased during the dive, while transferring receptors tended to go down during the dive and were significantly decreased by the last day (R + 0). Along with significant hematological changes, there was also evidence for increased oxidative damage and stress during the dive. 8-hydroxydeoxyguanosine was elevated (P less than 0.05) during the dive, while glutathione peroxidase and superoxide disrnutase activities were decreased (P less than 0.05) during the dive. Serum C-reactive protein (CRP) concentration also tended to increase during the dive, suggesting the presence of a stress-induced inflammatory response, Decreased leptin during the dive (P less than 0.05) may also be related to the increased stress. Similar to what is observed during spaceflight, subjects had decreased energy intake and weight loss during the dive. Together, these similarities to spaceflight provide a model to further define the physiological effects of spaceflight and investigate potential countermeasures.

  10. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Commercial Diving Operations Personnel... control the exposure of others to hyperbaric conditions shall be trained in diving-related physics and...

  11. 29 CFR 1926.1086 - Mixed-gas diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving Specific Operations Procedures § 1926.1086 Mixed-gas diving. Note: The requirements applicable to construction work under this section are...

  12. 29 CFR 1926.1084 - SCUBA diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving Specific Operations Procedures § 1926.1084 SCUBA diving. Note: The requirements applicable to construction work under this section are identical to those...

  13. 29 CFR 1926.1081 - Pre-dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving General Operations Procedures § 1926.1081 Pre-dive procedures. Note: The requirements applicable to construction work under this section are...

  14. 29 CFR 1926.1083 - Post-dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving General Operations Procedures § 1926.1083 Post-dive procedures. Note: The requirements applicable to construction work under this section are...

  15. 29 CFR 1926.1082 - Procedures during dive.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving General Operations Procedures § 1926.1082 Procedures during dive. Note: The requirements applicable to construction work under this section are...

  16. Decompression management by 43 models of dive computer: single square-wave exposures to between 15 and 50 metres' depth.

    PubMed

    Sayer, Martin D J; Azzopardi, Elaine; Sieber, Arne

    2014-12-01

    Dive computers are used in some occupational diving sectors to manage decompression but there is little independent assessment of their performance. A significant proportion of occupational diving operations employ single square-wave pressure exposures in support of their work. Single examples of 43 models of dive computer were compressed to five simulated depths between 15 and 50 metres' sea water (msw) and maintained at those depths until they had registered over 30 minutes of decompression. At each depth, and for each model, downloaded data were used to collate the times at which the unit was still registering "no decompression" and the times at which various levels of decompression were indicated or exceeded. Each depth profile was replicated three times for most models. Decompression isopleths for no-stop dives indicated that computers tended to be more conservative than standard decompression tables at depths shallower than 30 msw but less conservative between 30-50 msw. For dives requiring decompression, computers were predominantly more conservative than tables across the whole depth range tested. There was considerable variation between models in the times permitted at all of the depth/decompression combinations. The present study would support the use of some dive computers for controlling single, square-wave diving by some occupational sectors. The choice of which makes and models to use would have to consider their specific dive management characteristics which may additionally be affected by the intended operational depth and whether staged decompression was permitted.

  17. Accident rates at a busy diving centre.

    PubMed

    Davis, Michael; Malcolm, Kate

    2008-06-01

    Dear Editor, The Poor Knights Islands in Northland, New Zealand, is a world-famous, temperate-water, diving tourism destination, popularised many years ago by Jacques Cousteau. By far the largest dive operator there is Dive! Tutukaka, with five vessels carrying up to 30 divers, operating on a regular basis throughout the year. Dive! Tutukaka is required to keep a detailed, daily vessel manifest. Thus, the number of divers is known accurately and all incidents are recorded by the Skipper or the Chief Divemaster on board. Although all dives are logged (time in, time out and maximum depth for every diver) and kept permanently, these data were not utilised for this brief report. Each customer does two dives on a trip and there are between one and four divemasters on board who may do one, two or more dives a day (van der Hulst G, unpublished observations). Thus the accident rate per diver is known, and it is assumed that the rate per dive is very close to half this figure. In addition, under health and safety regulations all non-diving injuries both on shore and on board are documented, but these will include some non-divers. For the three financial years between July 2005 and 14 June 2008, 32,302 customers dived with Dive! Tutukaka, approximately 63,000 dives (a small minority did only one dive). Over the same period, there were an estimated 7,600 dives conducted by the divemasters. The injuries documented during this time are shown in Table 1. There were seven cases of decompression illness (DCI), a rate of about 1 per 10,000 divers (0.5 per 10,000 dives). Two of the seven DCI cases involved serious neurological injury. There was one further possible case of DCI who did not seek medical advice. If this diver is included then the rate is 1.14 per 10,000 divers. More minor diving injuries and incidents occurred at a rate of approximately 2 per 10,000 divers. Non-diving injuries occurred rarely, the most common being various musculo-skeletal injuries to staff, requiring time off work. Many of these were secondary to lifting and carrying heavy diving equipment, particularly dive tanks. This indicates an area where improved practices by staff could be achieved. We believe these injury data are robust and provide an accurate picture of a single, mainstream, international tourism diving centre in temperate waters, and indicate a low rate of injury, comparable to the international literature.

  18. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Periodic Tests and Inspections of Diving Equipment § 197.450 Breathing gas tests. The diving...

  19. Comparative incidences of decompression illness in repetitive, staged, mixed-gas decompression diving: is 'dive fitness' an influencing factor?

    PubMed

    Sayer, Martin Dj; Akroyd, Jim; Williams, Guy D

    2008-06-01

    Wreck diving at Bikini Atoll consists of a relatively standard series of decompression dives with maximum depths in the region of 45-55 metres' sea water (msw). In a typical week of diving at Bikini, divers can perform up to 12 decompression dives to these depths over seven days; on five of those days, divers can perform two decompression dives per day. All the dives employ multi-level, staged decompression schedules using air and surface-supplied nitrox containing 80% oxygen. Bikini is serviced by a single diving operator and so a relatively precise record exists both of the actual number of dives undertaken and of the decompression illness incidents both for customer divers and the dive guides. The dive guides follow exactly the dive profiles and decompression schedules of the customers. Each dive guide will perform nearly 400 decompression dives a year, with maximum depths mostly around 50 msw, compared with an average of 10 (maximum of 12) undertaken typically by each customer diver in a week. The incidence of decompression illness for the customer population (presumed in the absence of medical records) is over ten times higher than that for the dive guides. The physiological reasons for such a marked difference are discussed in terms of customer demographics and dive-guide acclimatization to repetitive decompression stress. The rates of decompression illness for a range of diving populations are reviewed.

  20. Mobility, expansion and management of a multi-species scuba diving fishery in East Africa.

    PubMed

    Eriksson, Hampus; de la Torre-Castro, Maricela; Olsson, Per

    2012-01-01

    Scuba diving fishing, predominantly targeting sea cucumbers, has been documented to occur in an uncontrolled manner in the Western Indian Ocean and in other tropical regions. Although this type of fishing generally indicates a destructive activity, little attention has been directed towards this category of fishery, a major knowledge gap and barrier to management. With the aim to capture geographic scales, fishing processes and social aspects the scuba diving fishery that operate out of Zanzibar was studied using interviews, discussions, participant observations and catch monitoring. The diving fishery was resilient to resource declines and had expanded to new species, new depths and new fishing grounds, sometimes operating approximately 250 km away from Zanzibar at depths down to 50 meters, as a result of depleted easy-access stock. The diving operations were embedded in a regional and global trade network, and its actors operated in a roving manner on multiple spatial levels, taking advantage of unfair patron-client relationships and of the insufficient management in Zanzibar. This study illustrates that roving dynamics in fisheries, which have been predominantly addressed on a global scale, also take place at a considerably smaller spatial scale. Importantly, while proposed management of the sea cucumber fishery is often generic to a simplified fishery situation, this study illustrates a multifaceted fishery with diverse management requirements. The documented spatial scales and processes in the scuba diving fishery emphasize the need for increased regional governance partnerships to implement management that fit the spatial scales and processes of the operation.

  1. Mobility, Expansion and Management of a Multi-Species Scuba Diving Fishery in East Africa

    PubMed Central

    Eriksson, Hampus; de la Torre-Castro, Maricela; Olsson, Per

    2012-01-01

    Background Scuba diving fishing, predominantly targeting sea cucumbers, has been documented to occur in an uncontrolled manner in the Western Indian Ocean and in other tropical regions. Although this type of fishing generally indicates a destructive activity, little attention has been directed towards this category of fishery, a major knowledge gap and barrier to management. Methodology and Principal Findings With the aim to capture geographic scales, fishing processes and social aspects the scuba diving fishery that operate out of Zanzibar was studied using interviews, discussions, participant observations and catch monitoring. The diving fishery was resilient to resource declines and had expanded to new species, new depths and new fishing grounds, sometimes operating approximately 250 km away from Zanzibar at depths down to 50 meters, as a result of depleted easy-access stock. The diving operations were embedded in a regional and global trade network, and its actors operated in a roving manner on multiple spatial levels, taking advantage of unfair patron-client relationships and of the insufficient management in Zanzibar. Conclusions and Significance This study illustrates that roving dynamics in fisheries, which have been predominantly addressed on a global scale, also take place at a considerably smaller spatial scale. Importantly, while proposed management of the sea cucumber fishery is often generic to a simplified fishery situation, this study illustrates a multifaceted fishery with diverse management requirements. The documented spatial scales and processes in the scuba diving fishery emphasize the need for increased regional governance partnerships to implement management that fit the spatial scales and processes of the operation. PMID:22530034

  2. 29 CFR 1915.6 - Commerical diving operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Commerical diving operations. 1915.6 Section 1915.6 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT General Provisions § 1915.6...

  3. 29 CFR 1915.6 - Commerical diving operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Commerical diving operations. 1915.6 Section 1915.6 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT General Provisions § 1915.6...

  4. 29 CFR 1910.421 - Pre-dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transportation; and (5) The nearest U.S. Coast Guard Rescue Coordination Center. (c) First aid supplies. (1) A first aid kit appropriate for the diving operation and approved by a physician shall be available at the dive location. (2) When used in a decompression chamber or bell, the first aid kit shall be suitable...

  5. Scientific Diving

    EPA Pesticide Factsheets

    Scientific diving plays an important role in helping EPA protect our oceans and waterways. EPA's divers set a high standard for safety and operational procedures in dangerous polluted water conditions.

  6. [Spatio-temporal dynamics of fishing effort in a multi-species artisanal diving fishery and its effects on catch variability: insights for sustainable management].

    PubMed

    Naranjo Madrigall, Helven; Salas Marquez, Silvia

    2014-12-01

    Artisanal diving fisheries are a source of income, employment and food security of coastal areas in many countries. Understanding the dynamics of these fisheries, including the spatial and temporal dynamics of fishing effort, gears and species can help to address the challenges involved in fisheries management. We aimed to analyze the differences in fishing strategies undertaken by fishers that use two different diving methods (hookah and free diving), the conditions and their potential impacts on catches when adjustments to those strategies are applied over time. For this, detailed information of fishing operations from artisanal boats in the North Pacific coast of Costa Rica was analyzed in two fishing seasons (2007-2008 and 2011-2012). Data were collected by onboard observers (fishing site, fishing time, species composition, depth and visibility). Additionally, interviews with divers were applied to obtain information of price per species, species volume and fishing operations. From the total number of trips during both seasons, hookah diving was represented by a sample size of 69.3%, while free diving, with a sample of 41.9%. More than 15 species were identified in each fishing season. Nevertheless, three categories had substantial contributions in both seasons with differences in the proportions for each case: green lobster (Panulirus gracilis), octopus (Octopus sp.) and parrotfish (Scarus perrico and S. ghobban). It is worth noting that an important proportion of catch was retained by fishers for personal consumption purposes, including species of high commercial value. Additional night diving activity, increased the number of dives from one season to another. Besides, cooperation processes in free diving fishing operations, and changes in fishing effort between seasons, defined important changes in fishing strategies. Potential causes of changes in fishing strategies and the implications for management to ensure the sustainability of these fisheries in the long term are discussed.

  7. Documents | Office of Marine and Aviation Operations

    Science.gov Websites

    ; Facilities Public & Legislative Affairs Publication Regulation Report Safety Security Specifications ) 2007 NOAA Diving Program Annual Report This report highlights the significant achievements of the NOAA Program, Office of Marine and Aviation Operation, Report Download from OMAO OMAO (2008) 2008 NOAA Diving

  8. A deep sea Hydrothermal Vent Bio-sampler for large volume in-situ filtration of hydrothermal vent fluids

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Matthews, Jaret; Venkateswaran, Kasthuri; Bruckner, James; Basic, Goran; So, Edmond; Rivadeneyra, Cesar

    2005-01-01

    This paper provides a physical description of the current system, as well as a summary of the preliminary tests conducted in 2005: a pressure chamber test, a dive test in a 30 foot dive pool, and a dive operation at a hydrothermal vent off the northern coast of Iceland.

  9. Commercial diving fatalities.

    PubMed

    Bradley, M E

    1984-08-01

    The distributions of fatal diving accidents in commercial diver populations were examined in the Gulf of Mexico from 1968 to 1975 and in the British sector of the North Sea from 1971 to 1978. Influences and causes of death were analyzed by examining the interaction between host, environmental and agent factors. The interaction of host and environmental factors appeared to be the greatest contributing factor to diving fatalities among the estimated 900 commercial divers in the Gulf of Mexico and the 700 in the North Sea. The most significant host factors were level of experience and behavioral dysfunction. They are also the host characteristics most amenable to change through improved and more thorough training. The most significant environmental factors were equipment failure and supervisor/tender errors. These factors would be minimized by improved selection, maintenance and operation of equipment, together with improved operating and emergency diving procedures. In recent years there has been a significant downward trend in mortality rates in the commercial diver populations of this study due to improved diving techniques and operations. Further research is needed, however, on the cause(s) of diver unconsciousness and inexplicable actions that occur at depths below 91.44m (300 ft.).

  10. Testing Procedures for Open Circuit Air Diving H ELMETS AND Semi-Closed Circuit Mixed Gas Diving Helmets

    DTIC Science & Technology

    1973-12-18

    abosrbent canister under all of the conditions in which the helmet will be expected to operate. These tests are very similar to those of Section III. B. 4... abosrbent canister will be operating but on air). Since the CO2 absorbent canister is not operating, it need not be instrumented. b. Recommended Tests -W 1

  11. 75 FR 14493 - Safety Zone; Dive Platform, Pago Pago Harbor, American Samoa

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... vessels for the planned diving operations in and around the CHEHALIS wreck. Background and Purpose On... performing operations in and around the CHEHALIS wreck. The safety zone is necessary to protect other vessels... CHEHALIS wreck to determine the wreck's potential pollution threat to the environment. In December 2009...

  12. 15 CFR 922.102 - Prohibited or otherwise regulated activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., coral, bottom formation, or marine plant. (B) Taking, gathering, cutting, damaging, destroying, or... the Sanctuary. (3) Diving or conducting diving operations from a vessel not flying in a conspicuous...

  13. Flying After Conducting an Aircraft Excessive Cabin Leakage Test.

    PubMed

    Houston, Stephen; Wilkinson, Elizabeth

    2016-09-01

    Aviation medical specialists should be aware that commercial airline aircraft engineers may undertake a 'dive equivalent' operation while conducting maintenance activities on the ground. We present a worked example of an occupational risk assessment to determine a minimum safe preflight surface interval (PFSI) for an engineer before flying home to base after conducting an Excessive Cabin Leakage Test (ECLT) on an unserviceable aircraft overseas. We use published dive tables to determine the minimum safe PFSI. The estimated maximum depth acquired during the procedure varies between 10 and 20 fsw and the typical estimated bottom time varies between 26 and 53 min for the aircraft types operated by the airline. Published dive tables suggest that no minimum PFSI is required for such a dive profile. Diving tables suggest that no minimum PFSI is required for the typical ECLT dive profile within the airline; however, having conducted a risk assessment, which considered peak altitude exposure during commercial flight, the worst-case scenario test dive profile, the variability of interindividual inert gas retention, and our existing policy among other occupational groups within the airline, we advised that, in the absence of a bespoke assessment of the particular circumstances on the day, the minimum PFSI after conducting ECLT should be 24 h. Houston S, Wilkinson E. Flying after conducting an aircraft excessive cabin leakage test. Aerosp Med Hum Perform. 2016; 87(9):816-820.

  14. Time Variation of the Distance Separating Bomb and Dive Bomber Subsequent to Bomb Release

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W.

    1952-01-01

    A study has been made of the variation of the distance separating bomb and aircraft with time after release as applied to dive-bombing operations, Separation distances determined from this study are presented in terms of two variables only, dive angle and maximum airplane accelerometer reading; the values of separation distance include the effects of delay in initiation of the pull-out and lag in attainment of the maximum normal acceleration.Contains analysis and calculations of the separation distances between bomb and dive bomber following bomb release, Separation distances as determined by the dive angle and the maximum airplane accelerometer reading are presented in a single chart.

  15. 46 CFR 197.300 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Applicability. 197.300 Section 197.300 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.300 Applicability. (a) Each diving...

  16. Mission Accomplished: Deep Submergence Science Routinely Supported Using Multiple Vehicles Throughout the Hawaii Undersea Research Laboratory's 2005 South Pacific Expedition

    NASA Astrophysics Data System (ADS)

    Kerby, T.; Smith, J. R.; Shackelford, R.; Wiltshire, J. C.; Malahoff, A.

    2005-12-01

    The Hawaii Undersea Research Laboratory (HURL) recently completed an internationally partnered 5-month, 14,500 nautical mile multiple leg expedition to the South Pacific that included 21 study sites in the waters of American Samoa, New Zealand, Tonga, and the U.S. Line Islands to commemorate its 25th anniversary of supporting deep submergence science in the Pacific Ocean. During this voyage, HURL successfully operated its two human occupied vehicles ( Pisces IV and Pisces V) each capable of diving to 2000 m from their support ship, the R/V Ka'imikai-o-Kanaloa ( KoK). In addition, a remotely operated vehicle ( RCV-150) with a nearly 1000-m depth limit was utilized alternately with the Pisces HOV's. The size and organized placement of these vehicles on the compact but efficiently run KoK (70-m length, 2000-tons displacement, 14 crew) allowed for deployment of a CTD rosette system and recovery of instrument package moorings during the same cruise leg. The Pisces submersibles are 20-ft long, 13-ton, 3-person vehicles with 7-10 hours duration, up to 350-lb payload capacities, and three forward looking viewports. The small size of the Pisces' relative to much larger deeper diving HOV's increases their agility, thus allowing maneuvering into more difficult sampling site terrain. The smaller package also facilitates rapid launch (8 min avg, stdev=1) and recovery (12 min avg, stdev=2) in heavier seas (up to sea state 5), as routinely experienced in the South Pacific during the austral winter. In addition to the enhanced safety aspect of having two compatible submersibles aboard, scientific efficiency has benefited by allowing the rotation of vehicles on extended deployments prior to battery servicing, thus maintaining an overall dive time average of 7.1 hr (stdev=1.52) for an average dive depth of 891 m (stdev=431) in 2005. Having the two fully operational submersibles also provides a contingency for equipment malfunction while on site that saved 7 dive days in 2005 alone. The final dive count resulted in 61 out of 56 scheduled Pisces science dives completed; made possible by careful planning and on-site cruise management and aided by our can-do crew. The RCV-150 was also used on 17 dives when depth and sea conditions allowed, typically in a scouting mode for potential HOV dives to increase the efficiency of the entire operation. The total package described here was made available for less than $30K per dive day in 2005. Standard equipment on the Pisces pair and the RCV-150 are listed at the URL below. In addition, science team equipment was interfaced including the NOAA VENTS fluid sampler and gas tight bottles, Imagenex pencil beam bathymetric sonar system, and the WHOI TowCam external digital still camera. Tracking and navigation accuracy to within 20 m at 1500-1800 m depth was provided by a TrackLink 5000HA ultra-short baseline system interfaced with a MAHRS motion sensor to provide pitch and roll correction. Additional vehicle details, operational results, and statistics for the 2005 South Pacific expedition will be presented.

  17. JAMSTEC E-library of Deep-sea Images (J-EDI) Realizes a Virtual Journey to the Earth's Unexplored Deep Ocean

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive track makes users experience a virtual dive survey. In addition, by synchronizing a virtual dive track with videos, it is easy to understand living organisms and geological environments of a dive point. Therefore, these functions will visually support understanding of deep-sea environments in lectures and educational activities.

  18. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    PubMed

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae . The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  19. Wind and water tunnel testing of a morphing aquatic micro air vehicle

    PubMed Central

    Ortega Ancel, Alejandro; Kovač, Mirko

    2017-01-01

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae. The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive. PMID:28163877

  20. Oxygen Toxicity and Special Operations Forces Diving: Hidden and Dangerous

    PubMed Central

    Wingelaar, Thijs T.; van Ooij, Pieter-Jan A. M.; van Hulst, Rob A.

    2017-01-01

    In Special Operations Forces (SOF) closed-circuit rebreathers with 100% oxygen are commonly utilized for covert diving operations. Exposure to high partial pressures of oxygen (PO2) could cause damage to the central nervous system (CNS) and pulmonary system. Longer exposure time and higher PO2 leads to faster development of more serious pathology. Exposure to a PO2 above 1.4 ATA can cause CNS toxicity, leading to a wide range of neurologic complaints including convulsions. Pulmonary oxygen toxicity develops over time when exposed to a PO2 above 0.5 ATA and can lead to inflammation and fibrosis of lung tissue. Oxygen can also be toxic for the ocular system and may have systemic effects on the inflammatory system. Moreover, some of the effects of oxygen toxicity are irreversible. This paper describes the pathophysiology, epidemiology, signs and symptoms, risk factors and prediction models of oxygen toxicity, and their limitations on SOF diving. PMID:28790955

  1. New Polish occupational health and safety regulations for underwater works.

    PubMed

    Kot, Jacek; Sićko, Zdzisław

    2007-01-01

    In Poland, the new regulation of the Ministry of Health on Occupational Health for Underwater Works (dated 2007) pursuant to the Act on Underwater Works (dated 2003) has just been published. It is dedicated for commercial, non-military purposes. It defines health requirements for commercial divers and candidates for divers, medical assessment guide with a list of specific medical tests done on initial and periodical medical examination in order for a diver or a candidate for diver to be recognised fit for work, health surveillance during diving operations, compression and decompression procedures, list of content for medical equipment to be present at any diving place, formal qualifications for physicians conducting medical assessment of divers, requirements for certifications confirming the medical status of divers and candidates for divers. Decompression tables cover divings up to 120 meters of depth using compressed air, oxygen, nitrox and heliox as breathing mixtures. There are also decompression tables for repetitive diving, altitude diving and diving in the high-density waters (mud diving). It this paper, general description of health requirements for divers, as well as decompression tables that are included in the new Regulation on Occupational Health for Underwater Works are presented.

  2. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  3. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  4. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  5. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  6. 46 CFR 197.486 - Written report of casualty.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Written report of casualty. 197.486 Section 197.486... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Records § 197.486 Written report of casualty. The... report, in narrative form, when the diving installation is on a facility. The written report must contain...

  7. KSC-04pd1501

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - Onboard the dive boat, members of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission don dive suits. From left are Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick and Doug Wheelock. John Herrington is mission commander. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius offshore from Key Largo - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  8. 75 FR 5907 - Safety Zone; Dive Platform, Pago Pago Harbor, American Samoa

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... platform vessel in Pago Pago Harbor, American Samoa, while diving operations are under way in and around the CHEHALIS wreck. The safety zone is necessary to protect other vessels and the general public from... Pago, American Samoa. Today, the CHEHALIS wreck remains a potential pollution threat to the environment...

  9. Diving injuries of the cervical spine in amateur divers.

    PubMed

    Korres, Demetrios S; Benetos, Ioannis S; Themistocleous, George S; Mavrogenis, Andreas F; Nikolakakos, Leonidas; Liantis, Panagiotis T

    2006-01-01

    Diving injuries are the cause of potentially devastating trauma, primarily affecting the cervical spine. Our purpose was to describe our experience with diving injuries treatment. Retrospective review. Twenty patients with diving injuries. Using the American Spinal Injury Association (ASIA) impairment scales as the primary outcome measure, the patients' neurological status before and after treatment was assessed. In this way we were able to draw conclusions about neurological improvement or deterioration in response to conservative or operative treatment. We retrospectively reviewed 20 patients with diving injuries of the cervical spine who were admitted to our institute over a 34-year period from 1970 until 2004. The typical patient profile was of a young, healthy, athletic male who suffered an injury to the cervical spine after diving into shallow water. The number of cases corresponds to 2.6% of all admitted cervical spine injuries. All injures occurred between May and September. The most commonly fractured vertebrae were C5 and C6. Four patients were treated operatively and 16 conservatively. The indications for surgical treatment were posttraumatic instability and persistent neurological deficit. The mean follow-up of the patients was 17 years. Five patients died within the first month of their hospitalization and 1 patient died 1 year after his injury. Of the 14 patients who were available for follow-up 5 years past injury time, 6 improved neurologically and 8 remained unchanged in relation to their neurology upon admission. Of the 11 patients who were available for follow-up 10 years past injury time, 9 remained neurologically unchanged, 1 deteriorated, and 1 improved in relation to their neurology in the 5-year follow-up. Diving injuries of the cervical spine demonstrate high mortality and morbidity rates. Recovery depends on the severity of the initial neurological damage. Conservative treatment is justified in specific patients and can lead to improvement of the initial neurological deficit.

  10. Cognitive symptoms and welding fume exposure.

    PubMed

    Ross, John A S; Macdiarmid, Jennifer I; Semple, Sean; Watt, Stephen J; Moir, Gill; Henderson, George

    2013-01-01

    Prevalence of moderate to severe cognitive symptoms is markedly higher in UK professional divers who have also worked as a welder (28%) than in either divers who have not welded (18%) or offshore workers who have worked neither as a diver nor as a welder (6%). To determine whether cognitive symptoms are related to welding fume exposure or diving. Three age-matched groups of male workers were studied using postal questionnaire: professional divers who had worked as a welder (PDW, n = 361), professional welders who had not dived (NDW, n = 352), and offshore oil field workers who had neither dived nor welded (NDNW, n =503). Health-related quality of life was assessed by the Short Form 12 questionnaire (SF12). Cognitive symptomatology was assessed using the Cognitive Failures Questionnaire (CFQ). A single variable for welding fume exposure (mg m(-3) days) was calculated, incorporating welding experience in different environments and using different welding techniques and respiratory protective equipment. The level of fume exposure during hyperbaric welding operations was measured during such work as ambient PM(10) (particles of 10 µm or less). Diving exposure was assessed as the number of dives performed plus the number of days spent working during saturation diving. Questionnaires were returned by 153 PDW, 108 NDW, and 252 NDNW. SF12 scores were the same in all groups and fell within normative values. Mean (95% CI) CFQ scores were higher in PDW [40.3 (37.7-42.9)] than in both NDW [34.6 (31.6-37.7)] and NDNW [32.1 (30.4-33.9)], but the scores in no groups fell outside the normative range. The mean PM(10) exposure during hyperbaric welding operations was 2.58 mg m(-3). The geometric mean mg m(-3) days (95% CI) for welding fume exposure in NDW [33 128 (24 625-44 567) n = 85] was higher than for that in PDW [10 904 (8103-14 673) n = 112]. For PDW the geometric mean (95% CI) diving exposure was 1491 [(1192-1866) n = 94] dives and days in saturation. In the general linear model regression analyses adjusted for age, alcohol consumption, and somatization, there was no signification association of CFQ score with either welding fume exposure (F = 0.072, P = 0.79, n = 152) or diving exposure (F = 0.042, P = 0.84, n = 74). In conclusion, cognitive sympomatology was not related to retrospectively assessed measures of welding fume exposure or diving experience. In addition, the levels of cognitive symptomatology, even in PDW, did not exceed normative values.

  11. Performance of life support breathing apparatus for under-ice diving operations.

    PubMed

    Lang, Michael A; Clarke, John R

    2017-01-01

    Single-hose scuba regulators dived in very cold water may suffer first- or second-stage malfunction, yielding complete occlusion of air flow or massive freeflow that rapidly expends a diver's air supply. This study, conducted in Antarctica, evaluated the under-ice performance of a sampling of commercially available regulators. Seventeen science divers logged a total of 305 dives in -1.86°C seawater under 6-meter-thick Antarctic fast-ice over two field seasons in 2008 and 2009. Dive profiles had an average depth of 30 msw and dive time of 29 minutes, including a mandatory three-minute safety stop at 6 msw. Sixty-nine unmodified regulator units (17 models) from 12 different manufacturers underwent standardized pre-dive regulator care and were randomly assigned to divers. Depths and times of onset of second-stage regulator freeflow were recorded. In 305 dives, there were 65 freeflows. The freeflows were not evenly distributed across the regulator brands. Regulator failure rates fell into two categories (⟨ 11% and ⟩ 26%). The regulators classified for the purpose of the test as "acceptable" (⟨ 11% failure rate: Dive-Rite Jetstream, Sherwood Maximus SRB3600, Poseidon Xstream Deep, Poseidon Jetstream, Sherwood Maximus SRB7600, Poseidon Cyklon, Mares USN22 Abyss) experienced only nine freeflows out of 146 exposures for a 6% overall freeflow incidence. Those classified as "unacceptable" (⟨ 26% failure rate) suffered 56 freeflows out of 159 exposures (35% freeflow incidence.). Contrary to expectations, the pooled incidences for the seven best performing regulators was significantly different by Chi-square test from the 10 remaining regulators (P ⟨ 0.001).

  12. KSC-04pd1499

    NASA Image and Video Library

    2004-07-07

    KENNEDY SPACE CENTER, FLA. - After their return from a practice dive at the NOAA Aquarius underwater station offshore at Key Largo, Marc Reagan, John Herrington and Nick Patrick unload dive gear. Herrington is mission commander and Patrick is a member of the crew on the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission. Reagan is mission lead as well as underwater still photographer. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius offshore from Key Largo - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. Other team members are Doug Wheelock and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  13. KSC-04pd1500

    NASA Image and Video Library

    2004-07-07

    KENNEDY SPACE CENTER, FLA. - After their return from a practice dive at the NOAA Aquarius underwater station offshore at Key Largo, John Herrington and Tara Ruttley look over their dive gear. Herrington is mission commander and Ruttley, a biomedical engineer, is a member of the crew on the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius offshore from Key Largo - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. Other team members are astronauts Doug Wheelock and Nick Patrick. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  14. Dive and Explore: An Interactive Exhibit That Simulates Making an ROV Dive to a Submarine Volcano, Hatfield Marine Science Visitor Center, Newport, Oregon

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.

    2002-12-01

    We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created with Macromedia Director using Apple Quicktime and Quicktime VR. The exhibit is based on the NeMO Explorer web site (http://www.pmel.noaa.gov/vents/nemo/explorer.html).

  15. Foraging behavior of Long-tailed Ducks in a ferry wake

    USGS Publications Warehouse

    Perry, Matthew C.

    2012-01-01

    Clangula hyemalis (Long-tailed Ducks) were observed diving in the wake of the Nantucket Island ferry during December over a 5-year period (2005–2009). The unusual diving behavior appeared to be related to foraging, but could not be confirmed. Long-tailed Ducks typically feed on more mobile prey than most other diving ducks, and it is speculated that the propeller wash in shallow water dislodged or disturbed prey and provided an enhanced feeding opportunity. Long-tailed Ducks collected while feeding in a disturbed area near a clamming boat not far from the ferry channel were feeding predominantly on Crangon septemspinosa (Sand Shrimp) that apparently had been dislodged by the clamming operation.

  16. New Web Services for Broader Access to National Deep Submergence Facility Data Resources Through the Interdisciplinary Earth Data Alliance

    NASA Astrophysics Data System (ADS)

    Ferrini, V. L.; Grange, B.; Morton, J. J.; Soule, S. A.; Carbotte, S. M.; Lehnert, K.

    2016-12-01

    The National Deep Submergence Facility (NDSF) operates the Human Occupied Vehicle (HOV) Alvin, the Remotely Operated Vehicle (ROV) Jason, and the Autonomous Underwater Vehicle (AUV) Sentry. These vehicles are deployed throughout the global oceans to acquire sensor data and physical samples for a variety of interdisciplinary science programs. As part of the EarthCube Integrative Activity Alliance Testbed Project (ATP), new web services were developed to improve access to existing online NDSF data and metadata resources. These services make use of tools and infrastructure developed by the Interdisciplinary Earth Data Alliance (IEDA) and enable programmatic access to metadata and data resources as well as the development of new service-driven user interfaces. The Alvin Frame Grabber and Jason Virtual Van enable the exploration of frame-grabbed images derived from video cameras on NDSF dives. Metadata available for each image includes time and vehicle position, data from environmental sensors, and scientist-generated annotations, and data are organized and accessible by cruise and/or dive. A new FrameGrabber web service and service-driven user interface were deployed to offer integrated access to these data resources through a single API and allows users to search across content curated in both systems. In addition, a new NDSF Dive Metadata web service and service-driven user interface was deployed to provide consolidated access to basic information about each NDSF dive (e.g. vehicle name, dive ID, location, etc), which is important for linking distributed data resources curated in different data systems.

  17. Can Foraging Ecology Drive the Evolution of Body Size in a Diving Endotherm?

    PubMed Central

    Cook, Timothée R.; Lescroël, Amélie; Cherel, Yves; Kato, Akiko; Bost, Charles-André

    2013-01-01

    Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes. PMID:23409169

  18. Can foraging ecology drive the evolution of body size in a diving endotherm?

    PubMed

    Cook, Timothée R; Lescroël, Amélie; Cherel, Yves; Kato, Akiko; Bost, Charles-André

    2013-01-01

    Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  19. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms.

    PubMed

    Siddall, R; Kovač, M

    2014-09-01

    Current Micro Aerial Vehicles (MAVs) are greatly limited by being able to operate in air only. Designing multimodal MAVs that can fly effectively, dive into the water and retake flight would enable applications of distributed water quality monitoring, search and rescue operations and underwater exploration. While some can land on water, no technologies are available that allow them to both dive and fly, due to dramatic design trade-offs that have to be solved for movement in both air and water and due to the absence of high-power propulsion systems that would allow a transition from underwater to air. In nature, several animals have evolved design solutions that enable them to successfully transition between water and air, and move in both media. Examples include flying fish, flying squid, diving birds and diving insects. In this paper, we review the biological literature on these multimodal animals and abstract their underlying design principles in the perspective of building a robotic equivalent, the Aquatic Micro Air Vehicle (AquaMAV). Building on the inspire-abstract-implement bioinspired design paradigm, we identify key adaptations from nature and designs from robotics. Based on this evaluation we propose key design principles for the design of successful aerial-aquatic robots, i.e. using a plunge diving strategy for water entry, folding wings for diving efficiency, water jet propulsion for water takeoff and hydrophobic surfaces for water shedding and dry flight. Further, we demonstrate the feasibility of the water jet propulsion by building a proof-of-concept water jet propulsion mechanism with a mass of 2.6 g that can propel itself up to 4.8 m high, corresponding to 72 times its size. This propulsion mechanism can be used for AquaMAV but also for other robotic applications where high-power density is of use, such as for jumping and swimming robots.

  20. Ketogenic diet for high partial pressure oxygen diving.

    PubMed

    Valadao, Jason M; Vigilante, John A; DiGeorge, Nicholas W; O'Connor, Sunila E; Bear, Alexandria; Kenyon, Jeffrey; Annis, Heather; Dituri, Joseph; Dituri, Amy E; Whelan, Harry T

    2014-01-01

    A ketogenic diet (KD) may decrease central nervous system oxygen toxicity symptoms in divers, and in view of this implication a feasibility/ toxicity pilot study was performed to demonstrate tolerance of KD while performing normal diving profiles. The exact mechanism of neuroprotection from the KD remains unknown; however, evidence to support the efficacy of the KD in reducing seizures is present in epilepsy and oxygen toxicity studies, and may provide valuable insight in diving activities. Three divers (two males and one female ages 32-45 with a history of deep diving and high pO2 exposure) on the KD made dives to varying depths in Hawaii using fully closed-circuit MK-15 and Inspiration rebreathers. These rebreathers have an electronically controlled set point, allowing the divers to monitor and control the oxygen level in the breathing loop, which can be varied manually by the divers. Oxygen level was varied during descent, bottom depth and ascent (decompression). Divers fasted for 12-18 hours before diet initiation. The ketosis level was verified by urinating on a Ketostix (reagent strips for urinalysis). Ketosis was achieved and was easily monitored with Ketostix in the simulated operational environment. The KD did not interfere with the diving mission; no seizure activity or signs or symptoms of CNS toxicity were observed, and there were no adverse effects noted by the divers while on the KD.

  1. A subjective evaluation of a drinking system for saturation divers.

    PubMed

    Hope, Arvid; Brekken, Rudolf

    2010-03-01

    Studies have shown that divers may lose large volumes of body fluids in hot water suit (HWS) dives lasting for four hours or longer, and that this dehydration is mainly caused by sweating. Body fluid balance may be impaired and the diver's alertness and power of judgement could be influenced by such imbalance. The main objective of the present study was to obtain a subjective judgement of a drinking system for divers (DSFD) and to obtain information related to body fluid loss during long saturation lock-out dives. Via a suction pipe imbedded in the microphone unit in the oronasal mask, the DSFD makes it possible for the diver to drink while in the water. Ten divers tested the drinking system during 12 saturation lock-out dives lasting on average for 5.5 h. A questionnaire was answered after each dive. The divers drank 21 times (range 5-30 times) during the dives, and the average drinking volume was 1.4 litre (range 1.0-1.5 litre) but only drank 0.04 litre (range 0-0.3 litre) in the bell after diving. The system was easy to operate and preparation and clothing did not cause any delay. The suction pipe did not intrude and the microphone performed excellently. The work in water was not hindered by DSFD and all divers were very satisfied with the drinking system. It was obvious that the need for fluid intake after a dive with DSFD was markedly reduced; another good indication of maintained body fluid balance.

  2. Incidence of Decompression Illness and Other Diving Related Medical Problems Amongst Royal Navy Divers 1995-1999

    DTIC Science & Technology

    1999-01-01

    conditions hypobares ou hyperbares ] To order the complete compilation report, use: ADA395680 The component part is provided here to allow users access to...following report: TITLE: Operational Medical Issues in Hypo-and Hyperbaric Conditions [les Questions medicales a caractere oprationel liees aux...Navy diving accidents, and with the assistance of the British Hyperbaric Association (BHA) all civilian cases of decompression illness treated by member

  3. A Biomedical Assessment of a One-Atmosphere Diving System: JIM-4.

    DTIC Science & Technology

    1981-12-01

    physiological adaptation is required, work methods are based on support vehicles , which can provide recompression chambers for divers after deep diving, and on...Charles Brooner HMI Steve Hall NMRI Charles Flynn Cliff Newell Operational and Technical Support NOAA ENCM( MDV ) William W. Winters MRCS( MDV ) Charles...Submergence Rescue Vehicle (DSRV), as shown in Fig. 26. It was assumed that in the event a submarine was incapacitated at great depths, a JIM

  4. KSC-04pd1505

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - In the water for a practice dive in the ocean offshore from Key Largo are the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team: (left to right) Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick, John Herrington and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  5. KSC-04pd1506

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - A dive boat is moored to the Life Support Buoy, anchored above the NOAA undersea station Aquarius, offshore from Key Largo. Underwater is the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team: (left to right) Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick, John Herrington and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy.

  6. KSC-04pd1510

    NASA Image and Video Library

    2004-07-11

    KENNEDY SPACE CENTER, FLA. - In the water for a practice dive in the ocean offshore from Key Largo is astronaut John Herrington. He is commander of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team. The others are Nick Patrick, Doug Wheelock, and Tara Ruttley, a biomedical engineer. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  7. KSC-04pd1504

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - In the water for a practice dive in the ocean offshore from Key Largo is astronaut John Herrington. He is commander of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team. The others are Nick Patrick, Doug Wheelock, and Tara Ruttley, a biomedical engineer. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  8. Standards on medical fitness examinations for Navy divers.

    PubMed

    Weiss, Michael

    2003-01-01

    The German Navy employs approximately 480 divers in their primary and secondary role. Before entering diving training, every diver has to pass an intensive physical examination programme at the German Naval Medical Institute (NMI) in Kiel-Kronshagen. Annual follow-ups ensure the currency of the medical findings. Criteria of medical fitness for diving reflect industrial medical standards for hyperbaric workers as well as the general medical guidelines for NATO divers. A diving examination consists of the individual medical history, a physical examination including the neurological status and the assessment of the cardiovascular fitness by ECG and bicycle ergometry. The respiratory system is screened by regular chest x-rays and spirometry or body plethysmography. Blood and urine samples are taken to look for abnormal haematological and metabolic conditions as well as disorders of the genito-urinary system. In order to determine visual fitness, diver's visual acuity, colour vision and stereopsis as well as eye fundi are examined by an eye specialist. Also the ENT examination involves a speciality consultant and consists of audiometry, inspection of the external ear and tympanic membrane and functional tests. To ensure a high standard of dental fitness, screening by a dental officer is part of the annual check-up. Every routine diving medical examination at the NMI includes a pressure test in the hyperbaric chamber. Divers who use nitrox or oxygen-rebreather devices have to pass successfully an oxygen tolerance test under hyperbaric conditions. The annual routine diving medical examination contributes to minimize the risk of accidents in military diving operations.

  9. Experiments and Phase-field Modeling of Hydrate Growth at the Interface of Migrating Gas Fingers

    NASA Astrophysics Data System (ADS)

    Fu, X.; Jimenez-Martinez, J.; Porter, M. L.; Cueto-Felgueroso, L.; Juanes, R.

    2016-12-01

    The first indisputable observation of a large expanse of intact seamount exposed in the inner slope of any convergent plate margin was in June 2016. The only other potential evidence for an exposed subducted seamount was observations from a series of Nautile submersible dives in the 1980's. On these dives, brecciated boulders of Cretaceous reefal debris lay on the deepest 30 m of the inner slope of the Japan Trench near Daiichi-Kashima Seamount. Because the subducting plate within 60 to 120 km outboard of a trench is usually heavily faulted, it has been suggested that seamounts impinging on a forearc region should be heavily deformed. This is not what we observed in the inner Mariana Trench during the third leg of the NOAA ship Okeanos Explorer's expedition to the Mariana subduction region. In June 2016 we recorded 275 m of exposed reef on Dive 4 (at 20.5°N) with the NOAA "Deep Discoverer" remotely operated vehicle (D-2 ROV), starting at 5,995 m on the inner slope of the Mariana Trench. The deposits are morphologically identical to observations on Dive 16 on a summit escarpment of the Cretaceous Fryer Guyot ( 20.5°N) just east of the trench. We interpret the inner trench slope exposure to be part of a Cretaceous reef complex of a seamount partially subducted beneath the overriding plate edge. Large-scale differences in the two exposures are the prevalence of vertical debris chutes between steep ridges seen in Dive 4 versus smoother, steeper slopes on Dive 16. The reefal sequences on Dive 16 show numerous fossils including bivalves in place, and layers with rudist morphology (S. Stanley, 2017, pers. comm.) in alternating tan and white bands. Similar sequences were observed on Dive 4. Slump scars observed on Dive 4 indicate mass wasting, but there is no indication of shearing or large-scale deformation. Thus, we interpret the exposure to reveal a large section of the reef complex that is partially subducted and largely intact beneath the overriding Philippine Sea Plate edge.

  10. A Subducted Seamount Revealed: 2016, NOAA OER Deepwater Exploration of the Marianas

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Kelley, C.; Pomponi, S. A.; Glickson, D.; Amon, D.

    2017-12-01

    The first indisputable observation of a large expanse of intact seamount exposed in the inner slope of any convergent plate margin was in June 2016. The only other potential evidence for an exposed subducted seamount was observations from a series of Nautile submersible dives in the 1980's. On these dives, brecciated boulders of Cretaceous reefal debris lay on the deepest 30 m of the inner slope of the Japan Trench near Daiichi-Kashima Seamount. Because the subducting plate within 60 to 120 km outboard of a trench is usually heavily faulted, it has been suggested that seamounts impinging on a forearc region should be heavily deformed. This is not what we observed in the inner Mariana Trench during the third leg of the NOAA ship Okeanos Explorer's expedition to the Mariana subduction region. In June 2016 we recorded 275 m of exposed reef on Dive 4 (at 20.5°N) with the NOAA "Deep Discoverer" remotely operated vehicle (D-2 ROV), starting at 5,995 m on the inner slope of the Mariana Trench. The deposits are morphologically identical to observations on Dive 16 on a summit escarpment of the Cretaceous Fryer Guyot ( 20.5°N) just east of the trench. We interpret the inner trench slope exposure to be part of a Cretaceous reef complex of a seamount partially subducted beneath the overriding plate edge. Large-scale differences in the two exposures are the prevalence of vertical debris chutes between steep ridges seen in Dive 4 versus smoother, steeper slopes on Dive 16. The reefal sequences on Dive 16 show numerous fossils including bivalves in place, and layers with rudist morphology (S. Stanley, 2017, pers. comm.) in alternating tan and white bands. Similar sequences were observed on Dive 4. Slump scars observed on Dive 4 indicate mass wasting, but there is no indication of shearing or large-scale deformation. Thus, we interpret the exposure to reveal a large section of the reef complex that is partially subducted and largely intact beneath the overriding Philippine Sea Plate edge.

  11. KSC-04pd1502

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - Getting ready to enter the water on a practice dive in the ocean offshore from Key Largo are Tara Ruttley (below) and Nick Patrick (above). The two are members of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team. Ruttley is a biomedical engineer. The others are astronauts John Herrington, mission commander, and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  12. KSC-04pd1503

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - Getting ready to enter the water on a practice dive in the ocean offshore from Key Largo is Nick Patrick. He is a member of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team. The others are astronauts John Herrington, mission commander, and Doug Wheelock, plus Tara Ruttley, a biomedical engineer. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  13. Light Weight Diving System (LWDS) Prototype Technical Evaluation - Human Factors, Transportability and Suitability

    DTIC Science & Technology

    1988-08-01

    of the equipment, but NCSC may have non-obstructive life cycle instrumentation attached. NEDU will provide a suitable vehicle to transport the LWDS...CF b. Diving Supervisor - QMCS( MDV ) T.R. Griggs, USN c. Project Medical Department Representative - LCDR M. T. Wallick, MSC, USNU d. Duty Medical...NEDU using a vehicle . Notes on transportability will be made. Per the program of ANNEX A, NCSC will instruct the NEDU team in the operation of the LWDS

  14. Assessment of U.S. Government and Coalition Efforts to Develop the Logistics Sustainment Capability of the Afghan National Army

    DTIC Science & Technology

    2011-12-09

    management are inadequate at some FSDs. • No one was held accountable when ANA vehicles and equipment were wrecked /damaged due to command/operator...regions, services provided, facilities constructed, etc. c. DCOM-Programs also hosts a biweekly review that is more of a deep dive contract...Number 37, for additional details.) • NTM-A/CSTC-A’s, “ANA Logistics Deep Dive ” briefing for DOD IG team, Director CJ4, April 28, 2011

  15. We must reach out to the public

    NASA Astrophysics Data System (ADS)

    Perfit, Michael; Fornari, Daniel J.

    Faced with the current budget crisis, legislators and leaders of federal agencies are asking scientists to communicate why continued and even expanded funding of basic sciences is important to America. There have been repeated requests for oceanographers to communicate the importance of their science to the public at large and to legislators at both state and federal levels. It is often difficult, however, to find opportunities for public and legislative outreach.On March 17, 1996, Neal Lane, Director of the National Science Foundation, and Jerry Lewis (R.-Calif.), Chair of the House Appropriations Subcommittee for VA, HUD, and Independent Agencies, which oversees NSF, participated in a dive off the coast of California in the Deep Submergence Vehicle (DSV) Alvin. The dive was part an ongoing effort to improve science and operational systems on Alvin and to ensure that the submersible systems are ready for the next science program. It followed a 3-month shutdown of the facility imposed, in part, by budget cutbacks. The engineering dives are funded by the National Science Foundation, The U.S. Navy Office of Naval Research, and the National Oceanic and Atmospheric Administration through the Woods Hole Oceanographic Institution, the facility operator. In addition to testing out a new, integrated navigation software package for DSV operations, several vehicle systems and a new digital imaging system were tested.

  16. 29 CFR 1910.420 - Safe practices manual.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Commercial Diving Operations General Operations Procedures § 1910.420..., equipment failure, adverse environmental conditions, and medical illness and injury. [42 FR 37668, July 22...

  17. KSC-04pd1508

    NASA Image and Video Library

    2004-07-11

    KENNEDY SPACE CENTER, FLA. - Onboard the dive boat at the Life Support Buoy offshore from Key Largo is Marc Reagan, mission lead for the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission. At right is Lt. Scott Sparks, a Navy medical officer. Reagan is also the underwater still photographer. The NEEMO-6 team comprises John Herrington, commander, Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  18. Advanced deep sea diving equipment

    NASA Technical Reports Server (NTRS)

    Danesi, W. A.

    1972-01-01

    Design requirements are generated for a deep sea heavy duty diving system to equip salvage divers with equipment and tools that permit work of the same quality and in times approaching that done on the surface. The system consists of a helmet, a recirculator for removing carbon dioxide, and the diver's dress. The diver controls the inlet flow by the recirculatory control valve and is able to change closed cycle operation to open cycle if malfunction occurs. Proper function of the scrubber in the recirculator minimizes temperature and humidity effects as it filters the returning air.

  19. 36 CFR 3.8 - What vessel operations are prohibited?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., except at a launch site designated by the superintendent. (3) Operating a power-driven vessel on waters... power-driven or sailing vessel within 100 feet of a diver's flag except a vessel in support of dive... paragraph. (5) Unless a designated area is marked otherwise, operating a power-driven or sailing vessel...

  20. Relationship of the Levitation Force Between Single and Multiple YBCO Bulks Above a Permanent Magnet Guideway Operating Dive-Lift Movement with Different Angles

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Wang, S. Y.; Liao, X. L.; Deng, Z. G.; Wang, J. S.

    2013-04-01

    In practical applications, the acceleration and deceleration motions inevitably happen in the operation of high temperature superconducting (HTS) maglev trains. For further research of the maglev properties of YBaCuO bulk above a permanent magnet guideway (PMG), by moving a fixed vertical distance, this paper studies the relationship of the levitation force between single and multiple YBCO bulks above a PMG operating dive-lift movement with different angles. Experimental results show that the maximal levitation force increment of two bulks than one bulk is smaller than the maximal levitation force increment of three bulks than two bulks. With the degree decreasing, the maximal levitation force increment of three bulks is bigger than the maximal levitation force increment of two bulks and one bulk, and the hysteresis loop of the levitation force of the three-bulk arrangement is getting smaller.

  1. Effects of successive air and nitrox dives on human vascular function.

    PubMed

    Marinovic, Jasna; Ljubkovic, Marko; Breskovic, Toni; Gunjaca, Grgo; Obad, Ante; Modun, Darko; Bilopavlovic, Nada; Tsikas, Dimitrios; Dujic, Zeljko

    2012-06-01

    SCUBA diving is regularly associated with asymptomatic changes in cardiac, pulmonary and vascular function. The aim of this study was to evaluate the changes in vascular/endothelial function following SCUBA diving and to assess the potential difference between two breathing gases: air and nitrox 36 (36% oxygen and 64% nitrogen). Ten divers performed two 3-day diving series (no-decompression dive to 18 m with 47 min bottom time with air and nitrox, respectively), with 2 weeks pause in between. Arterial/endothelial function was assessed using SphygmoCor and flow-mediated dilation measurements, and concentration of nitrite before and after diving was determined in venous blood. Production of nitrogen bubbles post-dive was assessed by ultrasonic determination of venous gas bubble grade. Significantly higher bubbling was found after all air dives as compared to nitrox dives. Pulse wave velocity increased slightly (~6%), significantly after both air and nitrox diving, indicating an increase in arterial stiffness. However, augmentation index became significantly more negative after diving indicating smaller wave reflection. There was a trend for post-dive reduction of FMD after air dives; however, only nitrox diving significantly reduced FMD. No significant differences in blood nitrite before and after the dives were found. We found that nitrox diving affects systemic/vascular function more profoundly than air diving by reducing FMD response, most likely due to higher oxygen load. Both air and nitrox dives increased arterial stiffness, but decreased wave reflection suggesting a decrease in peripheral resistance due to exercise during diving. These effects of nitrox and air diving were not followed by changes in plasma nitrite.

  2. Dive and Explore: An Interactive Web Visualization that Simulates Making an ROV Dive to an Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.

    2004-12-01

    Several years ago we created an exciting and engaging multimedia exhibit for the Hatfield Marine Science Center that lets visitors simulate making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. The public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. We are now completing a revision to the project that will make this engaging virtual exploration accessible to a much larger audience. With minor modifications we will be able to put the exhibit onto the world wide web so that any person with internet access can view and learn about exciting volcanic and hydrothermal activity at Axial Seamount on the Juan de Fuca Ridge. The modifications address some cosmetic and logistic ISSUES confronted in the museum environment, but will mainly involve compressing video clips so they can be delivered more efficiently over the internet. The web version, like the museum version, will allow users to choose from 1 of 3 different dives sites in the caldera of Axial Volcano. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the computer mouse. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. This virtual exploration is part of the NeMO web site and will be at this URL http://www.pmel.noaa.gov/vents/dive.html

  3. Diving and foraging patterns of Marbled Murrelets (Brachyramphus marmoratus): Testing predictions from optimal-breathing models

    USGS Publications Warehouse

    Jodice, Patrick G.R.; Collopy, Michael W.

    1999-01-01

    The diving behavior of Marbled Murrelets (Brachyramphus marmoratus) was studied using telemetry along the Oregon coast during the 1995 and 1996 breeding seasons and examined in relation to predictions from optimal-breathing models. Duration of dives, pauses, dive bouts, time spent under water during dive bouts, and nondiving intervals between successive dive bouts were recorded. Most diving metrics differed between years but not with oceanographic conditions or shore type. There was no effect of water depth on mean dive time or percent time spent under water even though dive bouts occurred in depths from 3 to 36 m. There was a significant, positive relationship between mean dive time and mean pause time at the dive-bout scale each year. At the dive-cycle scale, there was a significant positive relationship between dive time and preceding pause time in each year and a significant positive relationship between dive time and ensuing pause time in 1996. Although it appears that aerobic diving was the norm, there appeared to be an increase in anaerobic diving in 1996. The diving performance of Marbled Murrelets in this study appeared to be affected by annual changes in environmental conditions and prey resources but did not consistently fit predictions from optimal-breathing models.

  4. 46 CFR 197.342 - Buoyancy-changing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.342 Buoyancy-changing devices. (a...-changing device must have an inflation source separate from the breathing gas supply. ...

  5. 20 CFR 701.301 - Definitions and use of terms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... employment, including: (A) Any longshore worker or other person engaged in longshoring operations; (B) Any... operation (meaning any recreational activity, including but not limited to scuba diving, commercial rafting... renting, leasing or chartering equipment to another for the latter's pleasure), restaurant, museum or...

  6. Sustaining Statewide Disaster Response Capabilities from a Fire Service Perspective

    DTIC Science & Technology

    2013-03-01

    2010). These increased capabilities can be vital to the success of response operations that involve automobile accidents, train wrecks , boat...Trench Rescue  Subterranean Rescue  Dive Rescue  Wilderness Rescue 2. 1670 Operations and Training for Technical Search and Rescue Incidents The

  7. Diving Medicine: Frequently Asked Questions

    MedlinePlus

    ... after diving In-Water Recompression Inter-Island Flights Massage & Diving Return to Diving After DCI Subcutaneous Emphysema ... Donating Blood Flu-like Symptoms Following a Dive Foot Pain After Diving Fin Foot Frontal Headaches Hand & ...

  8. A no-decompression air dive and ultrasound lung comets.

    PubMed

    Dujic, Zeljko; Marinovic, Jasna; Obad, Ante; Ivancev, Vladimir; Breskovic, Toni; Jovovic, Pavle; Ljubkovic, Marko

    2011-01-01

    Increased accumulation of extravascular lung water after repetitive deep trimix dives was recently reported. This effect was evident 40 min post-dive, but in subsequent studies most signs of this lung congestion were not evident 2-3 h post-dive, indicating no major negative effects on respiratory gas exchange following deep dives. Whether this response is unique for trimix dives or also occurs in more frequent air dives is presently unknown. A single no-decompression field dive to 33 m with 20 min bottom time was performed by 12 male divers. Multiple ultrasound lung comets (ULC), bubble grade (BG), and single-breath lung diffusing capacity (DLCO) measurements were made before and up to 120 min after the dive. Median BG was rather high with maximal values observed at 40 min post-dive [median 4 (4-4)]. Arterialization of bubbles from the venous side was observed only in one diver lasting up to 60 min post-dive. Despite high BG, no DCS symptoms were noted. DLCO and ULC were unchanged after the dive at any time point (DLCO(corr) was 33.6 +/- 1.9 ml x min(-1) mmHg(-1) pre-dive, 32.7 +/- 3.8 ml x min(-1) x mmHg(-1) at 60 min post-dive, and 33.2 +/- 5.3 ml x min(-1) x mmHg(-1) at 120 min post-dive; ULC count was 4.1 +/- 1.9 pre-dive, 4.9 +/- 3.3 at 20 min post-dive, and 3.3 +/- 1.9 at 60 min post-dive. These preliminary findings show no evidence of increased accumulation of extravascular lung water in male divers after a single no-decompression air dive at the limits of accepted Norwegian diving tables.

  9. KSC-04pd1507

    NASA Image and Video Library

    2004-07-11

    KENNEDY SPACE CENTER, FLA. - Ready for another dive to the NOAA undersea station Aquarius, offshore from Key Largo, the site of the NASA Extreme Environment Mission Operations 6 (NEEMO-6), are (left to right) Monike Schultz, CB Office lead; Bill Todd, project lead; Marc Reagan, mission lead; and Michele Lucas, OPS planner. Todd and Lucas are also the underwater videographer and still photographer, respectively, for the mission. The NEEMO-6 team comprises John Herrington, commander, Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  10. Index of international publications in aerospace medicine.

    DOT National Transportation Integrated Search

    1993-02-01

    The Index of International Publications in Aerospace Medicine is a comprehensive listing of international publications in clinical aerospace medicine, operational aerospace medicine, aerospace physiology, environmental medicine/physiology, diving med...

  11. Index of international publications in aerospace medicine

    DOT National Transportation Integrated Search

    2001-08-01

    The Index of International Publications in Aerospace Medicine is a comprehensive listing of international publications in clinical aerospace medicine, operational aerospace medicine, aerospace physiology, environmental medicine/physiology, diving med...

  12. Underwater disaster victim identification: the process and the problems.

    PubMed

    Winskog, Calle

    2012-06-01

    An underwater disaster may involve a crime scene investigation which should be handled as if it were located above water and include a detailed description and documentation of items, belongings and findings. The environment, however, creates special circumstances, each with specific problems that are not encountered during land investigations. Risks associated with underwater recovery cannot be overestimated and underwater disaster recovery diving should not be performed without special training and careful pre-dive planning. Handling of cadavers in an underwater recovery operation also requires special training and a systematic approach to victim recovery. Environmental circumstances, local judicial requirements, religious and cultural issues and the scope of the disaster are only some of the factors that have to be considered before commencing any aquatic disaster victim recovery operation.

  13. Validating the relationship between 3-dimensional body acceleration and oxygen consumption in trained Steller sea lions.

    PubMed

    Volpov, Beth L; Rosen, David A S; Trites, Andrew W; Arnould, John P Y

    2015-08-01

    We tested the ability of overall dynamic body acceleration (ODBA) to predict the rate of oxygen consumption ([Formula: see text]) in freely diving Steller sea lions (Eumetopias jubatus) while resting at the surface and diving. The trained sea lions executed three dive types-single dives, bouts of multiple long dives with 4-6 dives per bout, or bouts of multiple short dives with 10-12 dives per bout-to depths of 40 m, resulting in a range of activity and oxygen consumption levels. Average metabolic rate (AMR) over the dive cycle or dive bout calculated was calculated from [Formula: see text]. We found that ODBA could statistically predict AMR when data from all dive types were combined, but that dive type was a significant model factor. However, there were no significant linear relationships between AMR and ODBA when data for each dive type were analyzed separately. The potential relationships between AMR and ODBA were not improved by including dive duration, food consumed, proportion of dive cycle spent submerged, or number of dives per bout. It is not clear whether the lack of predictive power within dive type was due to low statistical power, or whether it reflected a true absence of a relationship between ODBA and AMR. The average percent error for predicting AMR from ODBA was 7-11 %, and standard error of the estimated AMR was 5-32 %. Overall, the extensive range of dive behaviors and physiological conditions we tested indicated that ODBA was not suitable for estimating AMR in the field due to considerable error and the inconclusive effects of dive type.

  14. The impact of consecutive freshwater trimix dives at altitude on human cardiovascular function.

    PubMed

    Lozo, Mislav; Madden, Dennis; Gunjaca, Grgo; Ljubkovic, Marko; Marinovic, Jasna; Dujic, Zeljko

    2015-03-01

    Self-contained underwater breathing apparatus (SCUBA) diving is regularly associated with numerous asymptomatic changes in cardiovascular function. Freshwater SCUBA diving presents unique challenges compared with open sea diving related to differences in water density and the potential for dive locations at altitude. The aim of this study was to evaluate the impact of freshwater trimix diving at altitude on human cardiovascular function. Ten divers performed two dives in consecutive days at 294 m altitude with the surface interval of 24 h. Both dives were at a depth of 45 m with total dive time 29 and 26 min for the first and second dive, respectively. Assessment of venous gas embolization, hydration status, cardiac function and arterial stiffness was performed. Production of venous gas emboli was low, and there were no significant differences between the dives. After the first dive, diastolic blood pressure was significantly reduced, which persisted up to 24 h. Left ventricular stroke volume decreased, and heart rate increased after both dives. Pulse wave velocity was unchanged following the dives. However, the central and peripheral augmentation index became more negative after both dives, indicating reduced wave reflection. Ejection duration and round trip travel time were prolonged 24 h after the first dive, suggesting longer-lasting suppression of cardiac and endothelial function. This study shows that freshwater trimix dives with conservative profiles and low venous gas bubble loads can result in multiple asymptomatic acute cardiovascular changes some of which were present up to 24 h after dive. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  15. Diving at altitude: from definition to practice.

    PubMed

    Egi, S Murat; Pieri, Massimo; Marroni, Alessandro

    2014-01-01

    Diving above sea level has different motivations for recreational, military, commercial and scientific activities. Despite the apparently wide practice of inland diving, there are three major discrepancies about diving at altitude: threshold elevation that requires changes in sea level procedures; upper altitude limit of the applicability of these modifications; and independent validation of altitude adaptation methods of decompression algorithms. The first problem is solved by converting the normal fluctuation in barometric pressure to an altitude equivalent. Based on the barometric variations recorded from a meteorological center, it is possible to suggest 600 meters as a threshold for classifying a dive as an "altitude" dive. The second problem is solved by proposing the threshold altitude of aviation (2,400 meters) to classify "high" altitude dives. The DAN (Divers Alert Network) Europe diving database (DB) is analyzed to solve the third problem. The database consists of 65,050 dives collected from different dive computers. A total of 1,467 dives were found to be classified as altitude dives. However, by checking the elevation according to the logged geographical coordinates, 1,284 dives were disqualified because the altitude setting had been used as a conservative setting by the dive computer despite the fact that the dive was made at sea level. Furthermore, according to the description put forward in this manuscript, 72 dives were disqualified because the surface level elevation is lower than 600 meters. The number of field data (111 dives) is still very low to use for the validation of any particular method of altitude adaptation concerning decompression algorithms.

  16. The global economic impact of manta ray watching tourism.

    PubMed

    O'Malley, Mary P; Lee-Brooks, Katie; Medd, Hannah B

    2013-01-01

    As manta rays face increased threats from targeted and bycatch fisheries, manta ray watching tourism, if managed properly, may present an attractive economic alternative to consumptive use of these species. Both species in the genus Manta (Manta alfredi and Manta birostris) are classified by the International Union for the Conservation of Nature Red List as species Vulnerable to extinction in the wild, and are considered unsustainable as fisheries resources due to their conservative life history characteristics, which considerably reduce their ability to recover population numbers when depleted. Utilising dive operator surveys, Internet research, and a literature review, this study provides the first global estimate of the direct economic impact of manta ray watching tourism and examines the potential socio-economic benefits of non-consumptive manta ray watching operations relative to consumptive use of manta rays as a fishery resource. In the 23 countries in which manta ray watching operations meeting our criteria were identified, we estimated direct revenue to dive operators from manta ray dives and snorkels at over US$73 million annually and direct economic impact, including associated tourism expenditures, of US$140 million annually. Ten countries account for almost 93% of the global revenue estimate, specifically Japan, Indonesia, the Maldives, Mozambique, Thailand, Australia, Mexico, United States, Federated States of Micronesia and Palau. In many of the areas where directed fisheries for manta rays are known to occur, these activities overlap with manta ray tourism sites or the migratory range of the mantas on which these sites depend, and are likely to be unsustainable and detrimental to manta ray watching tourism.

  17. The Global Economic Impact of Manta Ray Watching Tourism

    PubMed Central

    O’Malley, Mary P.; Lee-Brooks, Katie; Medd, Hannah B.

    2013-01-01

    As manta rays face increased threats from targeted and bycatch fisheries, manta ray watching tourism, if managed properly, may present an attractive economic alternative to consumptive use of these species. Both species in the genus Manta (Manta alfredi and Manta birostris) are classified by the International Union for the Conservation of Nature Red List as species Vulnerable to extinction in the wild, and are considered unsustainable as fisheries resources due to their conservative life history characteristics, which considerably reduce their ability to recover population numbers when depleted. Utilising dive operator surveys, Internet research, and a literature review, this study provides the first global estimate of the direct economic impact of manta ray watching tourism and examines the potential socio-economic benefits of non-consumptive manta ray watching operations relative to consumptive use of manta rays as a fishery resource. In the 23 countries in which manta ray watching operations meeting our criteria were identified, we estimated direct revenue to dive operators from manta ray dives and snorkels at over US$73 million annually and direct economic impact, including associated tourism expenditures, of US$140 million annually. Ten countries account for almost 93% of the global revenue estimate, specifically Japan, Indonesia, the Maldives, Mozambique, Thailand, Australia, Mexico, United States, Federated States of Micronesia and Palau. In many of the areas where directed fisheries for manta rays are known to occur, these activities overlap with manta ray tourism sites or the migratory range of the mantas on which these sites depend, and are likely to be unsustainable and detrimental to manta ray watching tourism. PMID:23741450

  18. 29 CFR 1910.427 - Liveboating.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Commercial Diving Operations Specific Operations Procedures § 1910.427... of 220 fsw; (3) Using mixed gas at depths greater than 220 fsw; (4) In rough seas which significantly... while a diver is in the water. (5) A diver-carried reserve breathing gas supply shall be carried by each...

  19. Dive patterns of tagged right whales in the Great South Channel

    NASA Astrophysics Data System (ADS)

    Winn, Howard E.; Goodyear, Jeffrey D.; Kenney, Robert D.; Petricig, Richard O.

    Right whales were tagged in 1988 and 1989 with radio and sonic telemetry tags as part of a multidisciplinary investigation of right whales and their habitat in the Great South Channel region east of Cape Cod. The tags yielded data on the durations of 6456 dives and 6482 surfacings, as well as 23,538 measurements of the depth of a diving whale. Log-survivorship analysis of the 1988 data showed a clear separation between the durations of dives between blows within a single surfacing sequence or bout (intea-bout dives) and longer dives between surfacing sequences (interbout dives) at 27 s, which was also applied to the 1989 data. Inter-bout dives averaged 127.3 s, and were significantly longer in 1988 than in 1989. Inter-bout dives were significantly longer during the day than night in 1988, and longer at night in 1989. The average intea-bout dive duration was 11.8 s, with 1989 dives longer than those in 1988. Surface durations averaged 6.2 s, and were also significantly longer in 1989. Dive depths were recorded only in 1989. Mean dive depth was 7.3 m, and only 12 dives went deeper than 30 m. The typical right whale dive pattern in 1988 included relatively short surfacings, long dives during the day, and shorter dives at night. This correlated with strong diel vertical migration by the dense zooplankton patches on which they were presumed to be feeding based on indirect evidence-from near the surface at night to near the bottom during the day. The 1989 pattern included longer dives during the night, as well as some exceptionally long surfacings. Zooplankton in 1989 did not migrate vertically, and remained near the surface day and night in right whale feeding areas. Right whale dive patterns in the Great South Channel are closely correlated with the horizontal and vertical distributions and movements of dense patches of their zooplankton prey.

  20. Blood oxygen depletion is independent of dive function in a deep diving vertebrate, the northern elephant seal.

    PubMed

    Meir, Jessica U; Robinson, Patrick W; Vilchis, L Ignacio; Kooyman, Gerald L; Costa, Daniel P; Ponganis, Paul J

    2013-01-01

    Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest). This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its most "natural" state.

  1. The effect of pre-dive ingestion of dark chocolate on endothelial function after a scuba dive.

    PubMed

    Theunissen, Sigrid; Balestra, Costantino; Boutros, Antoine; De Bels, David; Guerrero, François; Germonpré, Peter

    2015-03-01

    The aim of the study was to observe the effects of dark chocolate on endothelial function after scuba diving. Forty-two male scuba divers were divided into two groups: a control (n=21) and a chocolate group (n=21). They performed a 33-metres deep scuba-air dive for 20 minutes in a diving pool (Nemo 33, Brussels). Water temperature was 33⁰C. The chocolate group ingested 30 g of dark chocolate (86% cocoa) 90 minutes before the dive. Flow-mediated dilatation (FMD), digital photoplethysmography and nitric oxide (NO) and peroxynitrites (ONOO-) levels were measured before and after the scuba dive in both groups. A significant decrease in FMD was observed in the control group after the dive (91±7% (mean±95% confidence interval) of pre-dive values; P<0.001) while it was increased in the chocolate group (105±5% of pre-dive values; P<0.001). No difference in digital photoplethysmography was observed between before and after the dives. No variation of circulating NO level was observed in the control group whereas an increase was shown in the chocolate group (154±73% of pre-dive values; P=0.04). A significant reduction in ONOO- was observed in the control group (84±12% of pre-dive values; P=0.003) whereas no variation was shown after the dive with chocolate intake (100±28% of pre-dive values; ns). Ingestion of 30 g of dark chocolate 90 minutes before scuba diving prevented post-dive endothelial dysfunction, as the antioxidants contained in dark chocolate probably scavenge free radicals.

  2. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea.

    PubMed

    Hasler, Harald; Ott, Jörg A

    2008-10-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world's most dived (>30,000 dives y(-1)). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined by the point intercept sampling method in the reef crest zone (3m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance of corallivorous and herbivorous fish was evident. At heavily used dive sites, diver-related sedimentation rates significantly decreased with increasing distance from the entrance, indicating poor buoyancy regulation at the initial phase of the dive. The results show a high negative impact of current SCUBA diving intensities on coral communities and coral condition. Corallivorous and herbivorous fishes are apparently not yet affected, but are endangered if coral cover decline continues. Reducing the number of dives per year, ecologically sustainable dive plans for individual sites, and reinforcing the environmental education of both dive guides and recreational divers are essential to conserve the ecological and the aesthetic qualities of these dive sites.

  3. 77 FR 67790 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ...: Socioeconomics of Commercial Fishers and For Hire Diving and Fishing Operations in the Flower Garden Banks... research and monitoring within National Marine Sanctuaries (NMS). In 1996, the Flower Gardens Bank National...

  4. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Periodic Tests and Inspections of... of all joints, connections and high stress areas. [CGD 95-028, 62 FR 51220, Sept. 30, 1997] records ...

  5. The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats

    PubMed Central

    DiNovo, Karyn. M.; Connolly, Tiffanny M.

    2010-01-01

    The mammalian diving response, consisting of apnea, bradycardia, and increased total peripheral resistance, can be modified by conscious awareness, fear, and anticipation. We wondered whether swim and dive training in rats would 1) affect the magnitude of the cardiovascular responses during voluntary and forced diving, and 2) whether this training would reduce or eliminate any stress due to diving. Results indicate Sprague-Dawley rats have a substantial diving response. Immediately upon submersion, heart rate (HR) decreased by 78%, from 453 ± 12 to 101 ± 8 beats per minute (bpm), and mean arterial pressure (MAP) decreased 25%, from 143 ± 1 to 107 ± 5 mmHg. Approximately 4.5 s after submergence, MAP had increased to a maximum 174 ± 3 mmHg. Blood corticosterone levels indicate trained rats find diving no more stressful than being held by a human, while untrained rats find swimming and diving very stressful. Forced diving is stressful to both trained and untrained rats. The magnitude of bradycardia was similar during both voluntary and forced diving, while the increase in MAP was greater during forced diving. The diving response of laboratory rats, therefore, appears to be dissimilar from that of other animals, as most birds and mammals show intensification of diving bradycardia during forced diving compared with voluntary diving. Rats may exhibit an accentuated antagonism between the parasympathetic and sympathetic branches of the autonomic nervous system, such that in the autonomic control of HR, parasympathetic activity overpowers sympathetic activity. Additionally, laboratory rats may lack the ability to modify the degree of parasympathetic outflow to the heart during an intense cardiorespiratory response (i.e., the diving response). PMID:19923359

  6. Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots

    NASA Astrophysics Data System (ADS)

    Cox, S. L.; Miller, P. I.; Embling, C. B.; Scales, K. L.; Bicknell, A. W. J.; Hosegood, P. J.; Morgan, G.; Ingram, S. N.; Votier, S. C.

    2016-09-01

    Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS (global positioning system) tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, Northeast Atlantic. We (i) used a habitat-use availability analysis to determine whether gannets preferentially dived at fronts, and (ii) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. While both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives) and deeper U-shaped dives with an active pursuit phase of at least 3 s (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasizes the importance of cross-disciplinary research when attempting to understand marine ecosystems.

  7. Hidden Markov models reveal complexity in the diving behaviour of short-finned pilot whales

    PubMed Central

    Quick, Nicola J.; Isojunno, Saana; Sadykova, Dina; Bowers, Matthew; Nowacek, Douglas P.; Read, Andrew J.

    2017-01-01

    Diving behaviour of short-finned pilot whales is often described by two states; deep foraging and shallow, non-foraging dives. However, this simple classification system ignores much of the variation that occurs during subsurface periods. We used multi-state hidden Markov models (HMM) to characterize states of diving behaviour and the transitions between states in short-finned pilot whales. We used three parameters (number of buzzes, maximum dive depth and duration) measured in 259 dives by digital acoustic recording tags (DTAGs) deployed on 20 individual whales off Cape Hatteras, North Carolina, USA. The HMM identified a four-state model as the best descriptor of diving behaviour. The state-dependent distributions for the diving parameters showed variation between states, indicative of different diving behaviours. Transition probabilities were considerably higher for state persistence than state switching, indicating that dive types occurred in bouts. Our results indicate that subsurface behaviour in short-finned pilot whales is more complex than a simple dichotomy of deep and shallow diving states, and labelling all subsurface behaviour as deep dives or shallow dives discounts a significant amount of important variation. We discuss potential drivers of these patterns, including variation in foraging success, prey availability and selection, bathymetry, physiological constraints and socially mediated behaviour. PMID:28361954

  8. SERDP/Office of Naval Research Workshop on Acoustic Detection and Classification of UXO in the Underwater Environment

    DTIC Science & Technology

    2013-09-01

    of combat operations A maritime wreck An artificial reef The Navy considers munitions located in waters between high and low tides terrestrial...e.g., operational areas, beach assess). UXO are cleared to provide for civilian safety (e.g., fisheries, diving , cable and pipeline laying

  9. 50 CFR 697.5 - Operator permits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lobster permit under § 697.4(a), or any operator of a vessel of the United States that fishes for, possesses, or lands American lobsters, harvested in or from the EEZ must have been issued and carry on board..., head, and commercial dive vessels that possess six or fewer American lobsters per person aboard the...

  10. 50 CFR 697.5 - Operator permits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lobster permit under § 697.4(a), or any operator of a vessel of the United States that fishes for, possesses, or lands American lobsters, harvested in or from the EEZ must have been issued and carry on board..., head, and commercial dive vessels that possess six or fewer American lobsters per person aboard the...

  11. Effects of Long-term Diving Training on Cortical Gyrification.

    PubMed

    Zhang, Yuanchao; Zhao, Lu; Bi, Wenwei; Wang, Yue; Wei, Gaoxia; Evans, Alan; Jiang, Tianzi

    2016-06-20

    During human brain development, cortical gyrification, which is believed to facilitate compact wiring of neural circuits, has been shown to follow an inverted U-shaped curve, coinciding with the two-stage neurodevelopmental process of initial synaptic overproduction with subsequent pruning. This trajectory allows postnatal experiences to refine the wiring, which may manifest as endophenotypic changes in cortical gyrification. Diving experts, typical elite athletes who commence intensive motor training at a very young age in their early childhood, serve ideal models for examining the gyrification changes related to long-term intensive diving training. Using local gyrification index (LGI), we compared the cortical gyrification between 12 diving experts and 12 controls. Compared with controls, diving experts showed widespread LGI reductions in regions relevant to diving performance. Negative correlations between LGIs and years of diving training were also observed in diving experts. Further exploratory network efficiency analysis of structural cortical networks, inferred from interregional correlation of LGIs, revealed comparable global and local efficiency in diving experts relative to controls. These findings suggest that gyrification reductions in diving experts may be the result of long-term diving training which could refine the neural circuitry (via synaptic pruning) and might be the anatomical substrate underlying their extraordinary diving performance.

  12. Effect of scuba diving on the oxidant/antioxidant status, SIRT1 and SIRT3 expression in recreational divers after a winter nondive period.

    PubMed

    Perović, Antonija; Sobočanec, Sandra; Dabelić, Sanja; Balog, Tihomir; Dumić, Jerka

    2018-02-01

    The aim of this study was to examine the effects of scuba diving on oxidative damage markers in erythrocytes and plasma, antioxidant system in peripheral blood mononuclear cells (PBMCs), as well as sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3) gene expressions in recreational divers after a winter nondive period (at least 5 months). For that purpose, 17 male recreational divers performed an immersion at a depth of 30 m for 30 min. Blood samples were collected immediately before and after diving, 3 and 6 h after diving. Erythrocyte lipid peroxidation measured by thiobarbituric-reactive substances (TBARS) method was significantly increased immediately after diving, but returned to the baseline 6 h after diving, while no significant change was found for plasma TBARS and protein carbonyl derivates in both plasma and erythrocytes. Diving-induced catalase (CAT), superoxide dismutase 2 (SOD2), and consequently total superoxide dismutase (SOD) activities in the PBMC samples (significantly increased immediately after diving, reached the maximum activities 3 h after diving, while 6 h after diving only CAT activity remained significantly increased). No significant change was observed for SOD1 activity and gene expression, as well as SOD2 expression, while CAT and SIRT1 expressions were slightly decreased immediately after diving and 3 h after diving. Interestingly, SIRT3 expression was significantly increased 6 h after diving. In conclusion, after the first dive to 30 m after a nondive season, activation of antioxidant defence was not sufficient to prevent oxidative damage, while SIRT3 upregulation could be a step towards an adaptive response to the diving.

  13. Physiological constraints and energetic costs of diving behaviour in marine mammals: a review of studies using trained Steller sea lions diving in the open ocean.

    PubMed

    Rosen, David A S; Hindle, Allyson G; Gerlinsky, Carling D; Goundie, Elizabeth; Hastie, Gordon D; Volpov, Beth L; Trites, Andrew W

    2017-01-01

    Marine mammals are characterized as having physiological specializations that maximize the use of oxygen stores to prolong time spent under water. However, it has been difficult to undertake the requisite controlled studies to determine the physiological limitations and trade-offs that marine mammals face while diving in the wild under varying environmental and nutritional conditions. For the past decade, Steller sea lions (Eumetopias jubatus) trained to swim and dive in the open ocean away from the physical confines of pools participated in studies that investigated the interactions between diving behaviour, energetic costs, physiological constraints, and prey availability. Many of these studies measured the cost of diving to understand how it varies with behaviour and environmental and physiological conditions. Collectively, these studies show that the type of diving (dive bouts or single dives), the level of underwater activity, the depth and duration of dives, and the nutritional status and physical condition of the animal affect the cost of diving and foraging. They show that dive depth, dive and surface duration, and the type of dive result in physiological adjustments (heart rate, gas exchange) that may be independent of energy expenditure. They also demonstrate that changes in prey abundance and nutritional status cause sea lions to alter the balance between time spent at the surface acquiring oxygen (and offloading CO 2 and other metabolic by-products) and time spent at depth acquiring prey. These new insights into the physiological basis of diving behaviour further our understanding of the potential scope for behavioural responses of marine mammals to environmental changes, the energetic significance of these adjustments, and the consequences of approaching physiological limits.

  14. Systemic arterial baroreceptors in ducks and the consequences of their denervation on some cardiovascular responses to diving

    PubMed Central

    Jones, D. R.

    1973-01-01

    1. In the duck systemic arterial baroreceptors which cause bradycardia in response to induced hypertension are located in the walls of the ascending aorta, innervated by the depressor nerves. 2. The location of the baroreceptors was confirmed both histologically and by recording activity from the depressor nerve. Stimulation of the central cut end of a depressor nerve caused transient bradycardia and a fall in blood pressure which was maintained throughout the period of stimulation. 3. Cardiovascular adjustments to submergence of 2 min duration were monitored in intact, sham-operated and denervated ducks. The sham-operated and denervated ducks were used in the experiments some 20-50 days post-operation. The denervations were checked at post-mortem. 4. In the first series of experiments on young ducks mean arterial pressure during a 2 min dive fell by 30% in intact, 17·5% in sham-operated, and 48% in denervated ducks. In all ducks heart rate was reduced by 84-85%. 5. In a second series of experiments on older ducks sciatic artery blood flow was also recorded and mean arterial blood pressure fell by 9·2% in intact and by 53% in denervated animals, although there were no significant differences in heart rate during the 2 min dives. In normal animals sciatic vascular resistance increased after 2 min submergence by 7·86 ± 1·7 times, whereas in denervated ducks it increased by only 2·32 ± 0·5 times. 6. The role of systemic arterial baroreceptors in generation of the cardiovascular responses to submergence in ducks is discussed in terms of the input supplied by the baroreceptors to the central nervous system. ImagesPlate 1 PMID:4764429

  15. KSC-04pd1497

    NASA Image and Video Library

    2004-07-07

    KENNEDY SPACE CENTER, FLA. - The boat with NEEMO-6 personnel ties up at the dock in Key Largo after a training session offshore at NASA’s undersea research station, named Aquarius. At right is Bill Todd, project lead. The NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission involves spacewalk-like diving excursions and field-testing a variety of biomedical equipment designed to help astronauts living aboard the International Space Station. The NEEMO-6 team comprises astronaut John Herrington, mission commander, astronauts Doug Wheelock and Nick Patrick, and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  16. Advanced instrumentation for research in diving and hyperbaric medicine.

    PubMed

    Sieber, Arne; L'Abbate, Antonio; Kuch, Benjamin; Wagner, Matthias; Benassi, Antonio; Passera, Mirko; Bedini, Remo

    2010-01-01

    Improving the safety of diving and increasing knowledge about the adaptation of the human body to underwater and hyperbaric environment require specifically developed underwater instrumentation for physiological measurements. In fact, none of the routine clinical devices for health control is suitable for in-water and/or under-pressure operation. The present paper addresses novel technological acquisitions and the development of three dedicated devices: * an underwater data logger for recording O2 saturation (reflective pulsoxymetry), two-channel ECG, depth and temperature; * an underwater blood pressure meter based on the oscillometric method; and * an underwater echography system. Moreover, examples of recordings are presented and discussed.

  17. Diving bradycardia of elderly Korean women divers, haenyeo, in cold seawater: a field report

    PubMed Central

    LEE, Joo-Young; LEE, Hyo-Hyun; KIM, Siyeon; JANG, Young-Joon; BAEK, Yoon-Jeong; KANG, Kwon-Yong

    2015-01-01

    The purpose of the present field study was to explore diving patterns and heart rate of elderly Korean women divers (haenyeo) while breath-hold diving in cold seawater. We hypothesized that the decreasing rate in heart rate of elderly haenyeos during breath-hold diving was greater and total diving time was shorter than those of young haenyeos from previous studies. Nine haenyeos participated in a field study [68 ± 10 yr in age, ranged from 56 to 83 yr] at a seawater temperature of 10 to 13 °C. Average total diving time including surface swimming time between dives was 253 ± 73 min (155–341 min). Total frequency of dives was 97 ± 28 times and they dived 23 ± 8 times per hour. All haenyeos showed diving bradycardia with a decreased rate of 20 ± 8% at the bottom time (101 ± 20 bpm) when compared to surface swimming time (125 ± 16 bpm) in the sea. Older haenyeos among the nine elderly haenyeos had shorter diving time, less diving frequencies, and lower heart rate at work (p<0.05). These reductions imply that haenyeos voluntarily adjust their workload along with advancing age and diminished cardiovascular functions. PMID:26632118

  18. Diving bradycardia of elderly Korean women divers, haenyeo, in cold seawater: a field report.

    PubMed

    Lee, Joo-Young; Lee, Hyo-Hyun; Kim, Siyeon; Jang, Young-Joon; Baek, Yoon-Jeong; Kang, Kwon-Yong

    2016-01-01

    The purpose of the present field study was to explore diving patterns and heart rate of elderly Korean women divers (haenyeo) while breath-hold diving in cold seawater. We hypothesized that the decreasing rate in heart rate of elderly haenyeos during breath-hold diving was greater and total diving time was shorter than those of young haenyeos from previous studies. Nine haenyeos participated in a field study [68 ± 10 yr in age, ranged from 56 to 83 yr] at a seawater temperature of 10 to 13 °C. Average total diving time including surface swimming time between dives was 253 ± 73 min (155-341 min). Total frequency of dives was 97 ± 28 times and they dived 23 ± 8 times per hour. All haenyeos showed diving bradycardia with a decreased rate of 20 ± 8% at the bottom time (101 ± 20 bpm) when compared to surface swimming time (125 ± 16 bpm) in the sea. Older haenyeos among the nine elderly haenyeos had shorter diving time, less diving frequencies, and lower heart rate at work (p<0.05). These reductions imply that haenyeos voluntarily adjust their workload along with advancing age and diminished cardiovascular functions.

  19. Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus.

    PubMed

    Hooker, Sascha K; Baird, Robin W; Fahlman, Andreas

    2009-07-31

    A mathematical model, based on current knowledge of gas exchange and physiology of marine mammals, was used to predict blood and tissue tension N2 (P(N2)) using field data from three beaked whale species: northern bottlenose whales, Cuvier's beaked whales, and Blainville's beaked whales. The objective was to determine if physiology (body mass, diving lung volume, dive response) or dive behaviour (dive depth and duration, changes in ascent rate, diel behaviour) would lead to differences in P(N2) levels and thereby decompression sickness (DCS) risk between species. Diving lung volume and extent of the dive response had a large effect on end-dive P(N2). The dive profile had a larger influence on end-dive P(N2) than body mass differences between species. Despite diel changes in dive behaviour, P(N2) levels showed no consistent trend. Model output suggested that all three species live with tissue P(N2) levels that would cause a significant proportion of DCS cases in terrestrial mammals. Cuvier's beaked whale diving behaviour appears to put them at higher risk than the other species, which may explain their prevalence in strandings after the use of mid-frequency sonar.

  20. Fishing for drifts: detecting buoyancy changes of a top marine predator using a step-wise filtering method

    PubMed Central

    Gordine, Samantha Alex; Fedak, Michael; Boehme, Lars

    2015-01-01

    ABSTRACT In southern elephant seals (Mirounga leonina), fasting- and foraging-related fluctuations in body composition are reflected by buoyancy changes. Such buoyancy changes can be monitored by measuring changes in the rate at which a seal drifts passively through the water column, i.e. when all active swimming motion ceases. Here, we present an improved knowledge-based method for detecting buoyancy changes from compressed and abstracted dive profiles received through telemetry. By step-wise filtering of the dive data, the developed algorithm identifies fragments of dives that correspond to times when animals drift. In the dive records of 11 southern elephant seals from South Georgia, this filtering method identified 0.8–2.2% of all dives as drift dives, indicating large individual variation in drift diving behaviour. The obtained drift rate time series exhibit that, at the beginning of each migration, all individuals were strongly negatively buoyant. Over the following 75–150 days, the buoyancy of all individuals peaked close to or at neutral buoyancy, indicative of a seal's foraging success. Independent verification with visually inspected detailed high-resolution dive data confirmed that this method is capable of reliably detecting buoyancy changes in the dive records of drift diving species using abstracted data. This also affirms that abstracted dive profiles convey the geometric shape of drift dives in sufficient detail for them to be identified. Further, it suggests that, using this step-wise filtering method, buoyancy changes could be detected even in old datasets with compressed dive information, for which conventional drift dive classification previously failed. PMID:26486362

  1. User settings on dive computers: reliability in aiding conservative diving.

    PubMed

    Sayer, Martin D J; Azzopardi, Elaine; Sieber, Arne

    2016-06-01

    Divers can make adjustments to diving computers when they may need or want to dive more conservatively (e.g., diving with a persistent (patent) foramen ovale). Information describing the effects of these alterations or how they compare to other methods, such as using enriched air nitrox (EANx) with air dive planning tools, is lacking. Seven models of dive computer from four manufacturers (Mares, Suunto, Oceanic and UWATEC) were subjected to single square-wave compression profiles (maximum depth: 20 or 40 metres' sea water, msw), single multi-level profiles (maximum depth: 30 msw; stops at 15 and 6 msw), and multi-dive series (two dives to 30 msw followed by one to 20 msw). Adjustable settings were employed for each dive profile; some modified profiles were compared against stand-alone use of EANx. Dives were shorter or indicated longer decompression obligations when conservative settings were applied. However, some computers in default settings produced more conservative dives than others that had been modified. Some computer-generated penalties were greater than when using EANx alone, particularly at partial pressures of oxygen (PO₂) below 1.40 bar. Some computers 'locked out' during the multi-dive series; others would continue to support decompression with, in some cases, automatically-reduced levels of conservatism. Changing reduced gradient bubble model values on Suunto computers produced few differences. The range of possible adjustments and the non-standard computer response to them complicates the ability to provide accurate guidance to divers wanting to dive more conservatively. The use of EANx alone may not always generate satisfactory levels of conservatism.

  2. High intensity cycling before SCUBA diving reduces post-decompression microparticle production and neutrophil activation.

    PubMed

    Madden, Dennis; Thom, Stephen R; Yang, Ming; Bhopale, Veena M; Ljubkovic, Marko; Dujic, Zeljko

    2014-09-01

    Venous gas emboli (VGE) have traditionally served as a marker for decompression stress after SCUBA diving and a reduction in bubble loads is a target for precondition procedures. However, VGE can be observed in large quantities with no negative clinical consequences. The effect of exercise before diving on VGE has been evaluated with mixed results. Microparticle (MP) counts and sub-type expression serve as indicators of vascular inflammation and DCS in mice. The goal of the present study is to evaluate the effect of anaerobic cycling (AC) on VGE and MP following SCUBA diving. Ten male divers performed two dives to 18 m for 41 min, one dive (AC) was preceded by a repeated-Wingate cycling protocol; a control dive (CON) was completed without exercise. VGE were analyzed at 15, 40, 80, and 120 min post-diving. Blood for MP analysis was collected before exercise (AC only), before diving, 15 and 120 min after surfacing. VGE were significantly lower 15 min post-diving in the AC group, with no difference in the remaining measurements. MPs were elevated by exercise and diving, however, post-diving elevations were attenuated in the AC dive. Some markers of neutrophil elevation (CD18, CD41) were increased in the CON compared to the AC dive. The repeated-Wingate protocol resulted in an attenuation of MP counts and sub-types that have been related to vascular injury and DCS-like symptoms in mice. Further studies are needed to determine if MPs represent a risk factor or marker for DCS in humans.

  3. Grey nurse shark (Carcharias taurus) diving tourism: Tourist compliance and shark behaviour at Fish Rock, Australia.

    PubMed

    Smith, Kirby; Scarr, Mark; Scarpaci, Carol

    2010-11-01

    Humans can dive with critically endangered grey nurse sharks (Carcharias taurus) along the east coast of Australia. This study investigated both compliance of tourist divers to a code of conduct and legislation and the behaviour of grey nurse sharks in the presence of divers. A total of 25 data collection dives were conducted from December 2008 to January 2009. Grey nurse shark and diver behaviour were documented using 2-min scan samples and continuous observation. The proportion of time spent observing human-shark interactions was 9.4% of total field time and mean human-shark interaction time was 15.0 min. Results were used to gauge the effectiveness of current management practices for the grey nurse shark dive industry at Fish Rock in New South Wales, Australia. Grey nurse shark dive tourists were compliant to stipulations in the code of conduct and legislation (compliance ranged from 88 to 100%). The research detailed factors that may promote compliance in wildlife tourism operations such as the clarity of the stipulations, locality of the target species and diver perceptions of sharks. Results indicated that grey nurse sharks spent the majority of their time milling (85%) followed by active swimming (15%). Milling behaviour significantly decreased in the presence of more than six divers. Distance between sharks and divers, interaction time and number of sharks were not significantly correlated with grey nurse shark school behaviour. Jaw gaping, rapid withdrawal and stiff or jerky movement were the specific behaviours of grey nurse sharks that occurred most frequently and were associated with distance between divers and sharks and the presence of six or more divers. Revision of the number of divers allowed per interaction with a school of grey nurse sharks and further research on the potential impacts that shark-diving tourism may pose to grey nurse sharks is recommended.

  4. Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) - A New U.S. DOE Data Archive

    NASA Astrophysics Data System (ADS)

    Agarwal, D.; Varadharajan, C.; Cholia, S.; Snavely, C.; Hendrix, V.; Gunter, D.; Riley, W. J.; Jones, M.; Budden, A. E.; Vieglais, D.

    2017-12-01

    The ESS-DIVE archive is a new U.S. Department of Energy (DOE) data archive designed to provide long-term stewardship and use of data from observational, experimental, and modeling activities in the earth and environmental sciences. The ESS-DIVE infrastructure is constructed with the long-term vision of enabling broad access to and usage of the DOE sponsored data stored in the archive. It is designed as a scalable framework that incentivizes data providers to contribute well-structured, high-quality data to the archive and that enables the user community to easily build data processing, synthesis, and analysis capabilities using those data. The key innovations in our design include: (1) application of user-experience research methods to understand the needs of users and data contributors; (2) support for early data archiving during project data QA/QC and before public release; (3) focus on implementation of data standards in collaboration with the community; (4) support for community built tools for data search, interpretation, analysis, and visualization tools; (5) data fusion database to support search of the data extracted from packages submitted and data available in partner data systems such as the Earth System Grid Federation (ESGF) and DataONE; and (6) support for archiving of data packages that are not to be released to the public. ESS-DIVE data contributors will be able to archive and version their data and metadata, obtain data DOIs, search for and access ESS data and metadata via web and programmatic portals, and provide data and metadata in standardized forms. The ESS-DIVE archive and catalog will be federated with other existing catalogs, allowing cross-catalog metadata search and data exchange with existing systems, including DataONE's Metacat search. ESS-DIVE is operated by a multidisciplinary team from Berkeley Lab, the National Center for Ecological Analysis and Synthesis (NCEAS), and DataONE. The primarily data copies are hosted at DOE's NERSC supercomputing facility with replicas at DataONE nodes.

  5. Grey Nurse Shark ( Carcharias taurus) Diving Tourism: Tourist Compliance and Shark Behaviour at Fish Rock, Australia

    NASA Astrophysics Data System (ADS)

    Smith, Kirby; Scarr, Mark; Scarpaci, Carol

    2010-11-01

    Humans can dive with critically endangered grey nurse sharks ( Carcharias taurus) along the east coast of Australia. This study investigated both compliance of tourist divers to a code of conduct and legislation and the behaviour of grey nurse sharks in the presence of divers. A total of 25 data collection dives were conducted from December 2008 to January 2009. Grey nurse shark and diver behaviour were documented using 2-min scan samples and continuous observation. The proportion of time spent observing human-shark interactions was 9.4% of total field time and mean human-shark interaction time was 15.0 min. Results were used to gauge the effectiveness of current management practices for the grey nurse shark dive industry at Fish Rock in New South Wales, Australia. Grey nurse shark dive tourists were compliant to stipulations in the code of conduct and legislation (compliance ranged from 88 to 100%). The research detailed factors that may promote compliance in wildlife tourism operations such as the clarity of the stipulations, locality of the target species and diver perceptions of sharks. Results indicated that grey nurse sharks spent the majority of their time milling (85%) followed by active swimming (15%). Milling behaviour significantly decreased in the presence of more than six divers. Distance between sharks and divers, interaction time and number of sharks were not significantly correlated with grey nurse shark school behaviour. Jaw gaping, rapid withdrawal and stiff or jerky movement were the specific behaviours of grey nurse sharks that occurred most frequently and were associated with distance between divers and sharks and the presence of six or more divers. Revision of the number of divers allowed per interaction with a school of grey nurse sharks and further research on the potential impacts that shark-diving tourism may pose to grey nurse sharks is recommended.

  6. Procedures manual for compressed air diving (scuba mode).

    DOT National Transportation Integrated Search

    1980-01-01

    The Virginia Department of Highways and Transportation conducts underwater inspection, maintenance, and salvage activities as part of its routine operations. These activities are carried out by divers from the private sector working on a contract bas...

  7. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Mixed-gas diving. 1910.426 Section 1910.426 Labor... Mixed-gas diving. (a) General. Employers engaged in mixed-gas diving shall comply with the following requirements, unless otherwise specified. (b) Limits. Mixed-gas diving shall be conducted only when: (1) A...

  8. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Mixed-gas diving. 1910.426 Section 1910.426 Labor... Mixed-gas diving. (a) General. Employers engaged in mixed-gas diving shall comply with the following requirements, unless otherwise specified. (b) Limits. Mixed-gas diving shall be conducted only when: (1) A...

  9. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Mixed-gas diving. 1910.426 Section 1910.426 Labor... Mixed-gas diving. (a) General. Employers engaged in mixed-gas diving shall comply with the following requirements, unless otherwise specified. (b) Limits. Mixed-gas diving shall be conducted only when: (1) A...

  10. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Mixed-gas diving. 1910.426 Section 1910.426 Labor... Mixed-gas diving. (a) General. Employers engaged in mixed-gas diving shall comply with the following requirements, unless otherwise specified. (b) Limits. Mixed-gas diving shall be conducted only when: (1) A...

  11. Diving accidents treated at a military hospital-based recompression chamber facility in Peninsular Malaysia.

    PubMed

    Rozali, A; Khairuddin, H; Sherina, M S; Halim, M Abd; Zin, B Mohd; Sulaiman, A

    2008-06-01

    This paper describes the pattern of diving accidents treated in a military hospital-based recompression chamber facility in Peninsular Malaysia. A retrospective study was carried out to utilize secondary data from the respective hospital medical records from 1st January 1996 to 31st December 2004. A total of 179 cases categorized as diving accidents received treatment with an average of 20 cases per year. Out of 179 cases, 96.3% (n = 173) received recompression treatment. Majority were males (93.3%), civilians (87.2%) and non-Malaysian citizens (59.2%). Commercial diving activities contributed the highest percentage of diving accidents (48.0%), followed by recreational (39.2%) and military (12.8%). Diving accidents due to commercial diving (n = 86) were mainly contributed by underwater logging activities (87.2%). The most common cases sustained were decompression illness (DCI) (96.1%). Underwater logging and recreational diving activities which contribute to a significant number of diving accidents must be closely monitored. Notification, centralised data registration, medical surveillance as well as legislations related to diving activities in Malaysia are essential to ensure adequate monitoring of diving accidents in the future.

  12. Risk of Neurological Insult in Competitive Deep Breath-Hold Diving.

    PubMed

    Tetzlaff, Kay; Schöppenthau, Holger; Schipke, Jochen D

    2017-02-01

    It has been widely believed that tissue nitrogen uptake from the lungs during breath-hold diving would be insufficient to cause decompression stress in humans. With competitive free diving, however, diving depths have been ever increasing over the past decades. A case is presented of a competitive free-diving athlete who suffered stroke-like symptoms after surfacing from his last dive of a series of 3 deep breath-hold dives. A literature and Web search was performed to screen for similar cases of subjects with serious neurological symptoms after deep breath-hold dives. A previously healthy 31-y-old athlete experienced right-sided motor weakness and difficulty speaking immediately after surfacing from a breathhold dive to a depth of 100 m. He had performed 2 preceding breath-hold dives to that depth with surface intervals of only 15 min. The presentation of symptoms and neuroimaging findings supported a clinical diagnosis of stroke. Three more cases of neurological insults were retrieved by literature and Web search; in all cases the athletes presented with stroke-like symptoms after single breath-hold dives of depths exceeding 100 m. Two of these cases only had a short delay to recompression treatment and completely recovered from the insult. This report highlights the possibility of neurological insult, eg, stroke, due to cerebral arterial gas embolism as a consequence of decompression stress after deep breath-hold dives. Thus, stroke as a clinical presentation of cerebral arterial gas embolism should be considered another risk of extreme breath-hold diving.

  13. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales.

    PubMed

    Sivle, L D; Kvadsheim, P H; Fahlman, A; Lam, F P A; Tyack, P L; Miller, P J O

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1-2 kHz and mid frequency active sonar (MFAS): 6-7 kHz] during three field seasons (2006-2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals.

  14. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales

    PubMed Central

    Sivle, L. D.; Kvadsheim, P. H.; Fahlman, A.; Lam, F. P. A.; Tyack, P. L.; Miller, P. J. O.

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1–2 kHz and mid frequency active sonar (MFAS): 6–7 kHz] during three field seasons (2006–2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals. PMID:23087648

  15. Flying after diving: in-flight echocardiography after a scuba diving week.

    PubMed

    Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro

    2014-10-01

    Flying after diving may increase decompression sickness risk (DCS), but strong evidence indicating minimum preflight surface intervals (PFSI) is missing. On return flights after a diving week on a live-aboard, 32 divers were examined by in-flight echocardiography with the following protocol: 1) outgoing flight, no previous dive; 2) during the diving week; 3) before the return flight after a 24-h PFSI; and 4) during the return flight. All divers completed similar multiple repetitive dives during the diving week. All dives were equivalent as to inert gas load and gradient factor upon surfacing. No bubbles in the right heart were found in any diver during the outgoing flight or at the preflight control after a 24-h PFSI following the diving week. A significant increase in the number and grade of bubbles was observed during the return flight. However, bubbles were only observed in 6 of the 32 divers. These six divers were the same ones who developed bubbles after every dive. Having observed a 24-h preflight interval, the majority of divers did not develop bubbles during altitude exposure; however, it is intriguing to note that the same subjects who developed significant amounts of bubbles after every dive showed equally significant bubble grades during in-flight echocardiography notwithstanding a correct PFSI. This indicates a possible higher susceptibility to bubble formation in certain individuals, who may need longer PFSI before altitude exposure after scuba diving.

  16. First scientific dives of the Nereid Under Ice hybrid ROV in the Arctic Ocean.

    NASA Astrophysics Data System (ADS)

    German, C. R.; Boetius, A.; Whitcomb, L. L.; Jakuba, M.; Bailey, J.; Judge, C.; McFarland, C.; Suman, S.; Elliott, S.; Katlein, C.; Arndt, S.; Bowen, A.; Yoerger, D.; Kinsey, J. C.; Mayer, L.; Nicolaus, M.; Laney, S.; Singh, H.; Maksym, T. L.

    2014-12-01

    The first scientific dives of the new Nereid Under Ice (NUI) hybrid ROV were conducted in the Arctic Ocean in July 2014 on RV Polarstern cruise PS86, a German-US collaboration. NUI is the latest in a family of vehicles derived from the Nereus prototype, using a single optical fiber to provide real-time telemetry to and from a battery-powered vehicle allowing much greater lateral maneuverability relative to its support ship than a conventional ROV. During PS86, dives conducted in the Arctic Ocean (typical water depths ~4000m) were completed in >80% ice cover beneath multi-year ice that was typically 2-4m thick (increasing to depths of up to 20m beneath ridges). Dives extended up to 800m away from the ship and, over dive durations of approximately 5 hours each, covered survey tracklines of up to 3.7km at depths varying from "landing" on the underside of the sea-ice to maximum depths of 45m to conduct upward looking multibeam sonar mapping. Ultimately, the vehicle will be capable of both AUV and ROV mode operations at ranges of 10-20km away from the support ship and at up to 2000m water depth (including seafloor as well as under ice operations). During the current cruise, the following major science suites were utilized to prove a range of scientific capabilities of the vehicle in ice-covered oceans: multibeam mapping of rugged topography beneath multi-year sea-ice; video- and digital still photography of the under side of the ice, biota associated with the ice-water interface (algal material) and abundant fauna in the immediately underlying water column (ctenophores, larvaceans, copepods were all notable for their abundance in our study site over the Gakkel Ridge near 83N, 6W). Other scientific activities included: vertical profiles combining CTD data with a suite of biosensors to investigate the structure of primary productivity and biogeochemical cycling in minimally distrubed areas of the sunlit under-ice water column, revealing high stratification associated with meltwater formation; lateral surveys of radiance and irradiance (together with co-registered measurements on top of the same ice-floe on our last dive) to investigate light availability and variability as a function of ice-cover. We will present examples of each of these data sets, together with an outline of suggested future activities that NUI could pursue.

  17. Challenges of physiological monitoring in a Navy operational setting

    NASA Technical Reports Server (NTRS)

    Banta, Guy R.

    1988-01-01

    Challenges to physiological monitoring in the Navy include environmental extremes, acceptance of use by test subjects, data transfer, data interpretation, and capability of relating collected data to valid operational relevant criterion measures. These problems are discussed with respect to diving, electrophysiological monitoring, in-flight monitoring, aircrew fatigue, in-flight cardiac stress, and in-flight monitoring devices.

  18. Evidence for foraging -site fidelity and individual foraging behavior of pelagic cormorants rearing chicks in the gulf of Alaska

    USGS Publications Warehouse

    Kotzerka, J.; Hatch, Shyla A.; Garthe, S.

    2011-01-01

    The Pelagic Cormorant (Phalacrocorax pelagicus) is the most widespread cormorant in the North Pacific, but little is known about its foraging and diving behavior. However, knowledge of seabirds' foraging behavior is important to understanding their function in the marine environment. In 2006, using GPS dataloggers, we studied the foraging behavior of 14 male Pelagic Cormorants rearing chicks on Middleton Island, Alaska. For foraging, the birds had high fidelity to a small area 8 km north of the colony. Within that area, the cormorants' diving activity was of two distinct kinds-near-surface dives (1-6 m) and benthic dives (28-33 m). Individuals were consistent in the depths of their dives, either mostly shallow or mostly deep. Few showed no depth preference. Dive duration, time at maximum depth, and pauses at the water surface between consecutive dives were shorter for shallow dives than for deep dives. The cormorants made dives of both types throughout the day, but the frequency of deep dives increased toward evening. Maximum foraging range was 9 km; maximum total distance traveled per trip was 43.4 km. Trip durations ranged from 0.3 to 7.7 hr. Maximum depth of a dive was 42.2 m, and duration of dives ranged from 4 to 120 sec. We found that Pelagic Cormorants at Middleton Island were faithful to one particular foraging area and individuals dived in distinct patterns. Distinct, specialized foraging behavior may be advantageous in reducing intra- and interspecific competition but may also render the species vulnerable to changing environmental conditions. Copyright ?? The Cooper Ornithological Society 2011.

  19. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within the...

  20. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within the...

  1. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within the Preserve. ...

  2. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within the...

  3. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within the...

  4. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Surface-supplied air diving. 197.432 Section 197.432...-supplied air diving. The diving supervisor shall insure that— (a) Surface-supplied air diving is conducted... space; and (f) The surface-supplied air diver has the equipment required by § 197.346 (b) or (d). ...

  5. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Surface-supplied air diving. 197.432 Section 197.432...-supplied air diving. The diving supervisor shall insure that— (a) Surface-supplied air diving is conducted... space; and (f) The surface-supplied air diver has the equipment required by § 197.346 (b) or (d). ...

  6. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Surface-supplied air diving. 1910.425 Section 1910.425... Procedures § 1910.425 Surface-supplied air diving. (a) General. Employers engaged in surface-supplied air...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom...

  7. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Surface-supplied air diving. 1910.425 Section 1910.425... Procedures § 1910.425 Surface-supplied air diving. (a) General. Employers engaged in surface-supplied air...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom...

  8. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Surface-supplied air diving. 1910.425 Section 1910.425... Procedures § 1910.425 Surface-supplied air diving. (a) General. Employers engaged in surface-supplied air...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom...

  9. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Surface-supplied air diving. 197.432 Section 197.432...-supplied air diving. The diving supervisor shall insure that— (a) Surface-supplied air diving is conducted... space; and (f) The surface-supplied air diver has the equipment required by § 197.346 (b) or (d). ...

  10. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Surface-supplied air diving. 1910.425 Section 1910.425... Procedures § 1910.425 Surface-supplied air diving. (a) General. Employers engaged in surface-supplied air...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom...

  11. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Surface-supplied air diving. 197.432 Section 197.432...-supplied air diving. The diving supervisor shall insure that— (a) Surface-supplied air diving is conducted... space; and (f) The surface-supplied air diver has the equipment required by § 197.346 (b) or (d). ...

  12. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... human occupancy; (ii) A built-in-breathing-system with a minimum of one mask per occupant; (iii) A two-way voice communication system between occupants and a dive team member at the dive location; (iv) A... location. (6) A dive team member shall be available at the dive location during and for at least one hour...

  13. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... human occupancy; (ii) A built-in-breathing-system with a minimum of one mask per occupant; (iii) A two-way voice communication system between occupants and a dive team member at the dive location; (iv) A... location. (6) A dive team member shall be available at the dive location during and for at least one hour...

  14. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... human occupancy; (ii) A built-in-breathing-system with a minimum of one mask per occupant; (iii) A two-way voice communication system between occupants and a dive team member at the dive location; (iv) A... location. (6) A dive team member shall be available at the dive location during and for at least one hour...

  15. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... human occupancy; (ii) A built-in-breathing-system with a minimum of one mask per occupant; (iii) A two-way voice communication system between occupants and a dive team member at the dive location; (iv) A... location. (6) A dive team member shall be available at the dive location during and for at least one hour...

  16. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... human occupancy; (ii) A built-in-breathing-system with a minimum of one mask per occupant; (iii) A two-way voice communication system between occupants and a dive team member at the dive location; (iv) A... location. (6) A dive team member shall be available at the dive location during and for at least one hour...

  17. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have the experience or training necessary to perform assigned tasks in a safe and healthful manner. (2) Each dive team...

  18. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have the experience or training necessary to perform assigned tasks in a safe and healthful manner. (2) Each dive team...

  19. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have the experience or training necessary to perform assigned tasks in a safe and healthful manner. (2) Each dive team...

  20. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have the experience or training necessary to perform assigned tasks in a safe and healthful manner. (2) Each dive team...

  1. Provisional report on diving-related fatalities in Australian waters 2004.

    PubMed

    Walker, Douglas; Lippmann, John; Lawrence, Chris; Huston, John; Fock, Andrew

    2009-09-01

    An individual case review of diving-related deaths reported to have occurred in Australia in 2004 was conducted as part of the DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident are provided, and also details from the post-mortem examination, where available. In total, there were 22 reported fatalities, all male. Nine deaths occurred while snorkelling and/or breath-hold diving, 10 while scuba diving, one just prior to scuba diving, one while using surface-supply breath apparatus and one while diving with a rebreather. In this series, cardiac-related issues were thought to have contributed to the deaths of five snorkel divers and three scuba divers, and in one person who was about to go diving. Three of the deaths in breath-hold divers were likely to have been associated with apnoeic hypoxia blackout. Pre-existing medical conditions, inexperience, time away from diving, inadequate supervision, and diving without appropriate training were features in several scuba deaths in this series.

  2. Sperm whale dive behavior characteristics derived from intermediate-duration archival tag data.

    PubMed

    Irvine, Ladd; Palacios, Daniel M; Urbán, Jorge; Mate, Bruce

    2017-10-01

    Here, we describe the diving behavior of sperm whales ( Physeter macrocephalus ) using the Advanced Dive Behavior (ADB) tag, which records depth data at 1-Hz resolution and GPS-quality locations for over 1 month, before releasing from the whale for recovery. A total of 27 ADB tags were deployed on sperm whales in the central Gulf of California, Mexico, during spring 2007 and 2008, of which 10 were recovered for data download. Tracking durations of all tags ranged from 0 to 34.5 days (median = 2.3 days), and 0.6 to 26.6 days (median = 5.0 days) for recovered tags. Recovered tags recorded a median of 50.8 GPS-quality locations and 42.6 dives per day. Dive summary metrics were generated for archived dives and were subsequently classified into six categories using hierarchical cluster analysis. A mean of 77% of archived dives per individual were one of four dive categories with median Maximum Dive Depth >290 m (V-shaped, Mid-water, Benthic, or Variable), likely associated with foraging. Median Maximum Dive Depth was <30 m for the other two categories (Short- and Long-duration shallow dives), likely representing socializing or resting behavior. Most tagged whales remained near the tagging area during the tracking period, but one moved north of Isla Tiburón, where it appeared to regularly dive to, and travel along the seafloor. Three whales were tagged on the same day in 2007 and subsequently traveled in close proximity (<1 km) for 2 days. During this period, the depth and timing of their dives were not coordinated, suggesting they were foraging on a vertically heterogeneous prey field. The multiweek dive records produced by ADB tags enabled us to generate a robust characterization of the diving behavior, activity budget, and individual variation for an important predator of the mesopelagos over temporal and spatial scales not previously possible.

  3. Blood Oxygen Conservation in Diving Sea Lions: How Low Does Oxygen Really Go?

    DTIC Science & Technology

    2014-09-30

    arterial saturations during dives as long as 10 min (Meir and Ponganis 2009). It is also notable that a severe bradycardia during descent occurs in deep...are not completely depleted in even the longest of sea lion dives. The severe bradycardia during deep dives contributes to the preservation of the...3332-3341. McDonald, B.I., and P.J. Ponganis. 2014. Deep-diving sea lions exhibit extreme bradycardia in long- duration dives. Journal of Experimental

  4. Decompression from He-N2-O2 (TRIMIX) Bounce Dives Is Not More Efficient Than From He-O2 (HELIOX) Bounce Dives

    DTIC Science & Technology

    2015-05-28

    Diver Characteristics Appendix E Diving Schedule Appendix F Medical Incidents Appendix G UBA Gas Compositions iv ACKNOWLEDGEMENTS The...experimental dives (median = 3). The schedule of each diver’s participation in experimental dives is given in Appendix E . Divers were required to avoid any...divers’ participation on each test schedule is given in Appendix E . The numbers of completed man-dives on the two schedules are not multiples of the

  5. 29 CFR 1926.1087 - Liveboating.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving Specific Operations Procedures § 1926.1087 Liveboating. Note: The requirements applicable to construction work under this section are identical to those...

  6. Board Diving Regulations in Public Swimming Pools and Risk of Injury.

    PubMed

    Williams, David; Odin, Louise

    2016-06-01

    Public session access to diving boards is one of the stepping stones for those wishing to develop their skills in the sport of diving. The extent to which certain dive forms are considered risky (forward/backward/rotations) and therefore not permitted is a matter for local pool managers. In Study 1, 20 public pools with diving facilities responded to a U.K. survey concerning their diving regulation policy and related injury incidence in the previous year. More restrictive regulation of dive forms was not associated with a decrease in injuries (rs [42] = -0.20, p = 0.93). In Study 2, diving risk perception and attitudes towards regulation were compared between experienced club divers (N = 22) and nondivers (N = 22). Risk was perceived to be lower for those with experience, and these people favored less regulation. The findings are interpreted in terms of a risk thermostat model, where for complex physical performance activities such as diving, individuals may exercise caution in proportion to their ability and previous experience of success and failure related to the activity. Though intuitively appealing, restrictive regulation of public pool diving may be ineffective in practice because risk is not simplistically associated with dive forms, and divers are able to respond flexibly to risk by exercising caution where appropriate. © 2015 Society for Risk Analysis.

  7. Lung function after cold-water dives with a standard scuba regulator or full-face-mask during wintertime.

    PubMed

    Uhlig, Florian; Muth, Claus-Martin; Tetzlaff, Kay; Koch, Andreas; Leberle, Richard; Georgieff, Michael; Winkler, Bernd E

    2014-06-01

    Full-face-masks (FFM) prevent the diver's face from cold and can support nasal breathing underwater. The aim of the study was to evaluate the effect of the use of FFMs on lung function and wellbeing. Twenty-one, healthy, non-asthmatic divers performed two cold-water dives (4⁰C, 25 min, 10 metres' depth) - one with a FFM and the other with a standard scuba regulator (SSR). Spirometry was performed before and after each dive and well-being and cold sensation were assessed after the dives. Significant decreases in forced vital capacity (FVC), forced expiratory volume in one second (FEV₁) and midexpiratory flow at 75% of FVC (MEF₇₅) occurred after both FFM and SSR dives. Changes in FVC and FEV₁ did not differ significantly between FFM and SSR dives. However, the mid-expiratory flows measured at 50% and 25% of FVC (MEF₅₀ and MEF₂₅) were significantly lower 10 minutes after the FFM dive compared to 10 minutes after the SSR dive. The wellbeing and cold sensation of the divers were significantly improved with FFM dives compared to SSR dives. Cold-water dives during wintertime can be associated with airway narrowing. During cold-water dives, the use of a FFM appears to reduce the cold sensation and enhance the well-being of the divers. However, a FFM does not appear to prevent airway narrowing in healthy, non-asthmatic subjects.

  8. Female professional divers. Similarities and differences between male and female professional divers.

    PubMed

    Irgens, Ågot; Troland, Kari; Grønning, Marit

    2017-01-01

    The aim of the present study was to explore the potential differences between female and male professional divers with regards to demographics, diving certificates, areas of diving, diving activity and health effects. The Norwegian Labour Inspection Authority's Diving certificate register contains data on all professional inshore divers who have held a certificate at any time since 1980. Forty nine per cent of these divers responded to the "Norwegian diver 2011" questionnaire. Of these divers 64 female and 1327 male divers completed the questionnaire about their professional diving career, certificate, year of onset and the year they stopped diving professionally if they were not still active in the diving industry. The level of general education was higher among female divers. More males than females were fully certified in diving. The mean age was lower among female than male fully certified divers. Fully certified female divers reported a lower total number of dives, shallower dives and diving for a shorter period of time than the male divers. They also had a lower percentage of work within the quay/construction sector and more often worked as teachers/instructors. A lower percentage of fully certified females than males had experienced decompression sickness (16.7% vs. 26.9%). Life-threatening events and psychologically challenging events were less common among females, as were adverse health effects. No such gender differences were seen for divers with a restricted certificate. The fully certified, female professional divers in our study had a very short diving career, reported fewer and shallower dives, and chose less physically demanding jobs than their male counterparts. They also had a higher level of education, reported less health problems and a better quality of life. The health effects seem to be related to the type of work rather than to gender.

  9. Flipper stroke rate and venous oxygen levels in free-ranging California sea lions.

    PubMed

    Tift, Michael S; Hückstädt, Luis A; McDonald, Birgitte I; Thorson, Philip H; Ponganis, Paul J

    2017-04-15

    The depletion rate of the blood oxygen store, development of hypoxemia and dive capacity are dependent on the distribution and rate of blood oxygen delivery to tissues while diving. Although blood oxygen extraction by working muscle would increase the blood oxygen depletion rate in a swimming animal, there is little information on the relationship between muscle workload and blood oxygen depletion during dives. Therefore, we examined flipper stroke rate, a proxy of muscle workload, and posterior vena cava oxygen profiles in four adult female California sea lions ( Zalophus californianus ) during foraging trips at sea. Flipper stroke rate analysis revealed that sea lions minimized muscle metabolism with a stroke-glide strategy when diving, and exhibited prolonged glides during the descent of deeper dives (>100 m). During the descent phase of these deep dives, 55±21% of descent was spent gliding, with the longest glides lasting over 160 s and covering a vertical distance of 340 m. Animals also consistently glided to the surface from 15 to 25 m depth during these deeper dives. Venous hemoglobin saturation ( S O 2 ) profiles were highly variable throughout dives, with values occasionally increasing during shallow dives. The relationship between S O 2 and flipper stroke rate was weak during deeper dives, while this relationship was stronger during shallow dives. We conclude that (1) the depletion of oxygen in the posterior vena cava in deep-diving sea lions is not dependent on stroke effort, and (2) stroke-glide patterns during dives contribute to a reduction of muscle metabolic rate. © 2017. Published by The Company of Biologists Ltd.

  10. Reactive Oxygen Species, Mitochondria, and Endothelial Cell Death during In Vitro Simulated Dives.

    PubMed

    Wang, Qiong; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Buzzacott, Peter; Belhomme, Marac; Theron, Michaël

    2015-07-01

    Excessive reactive oxygen species (ROS) is considered a consequence of hyperoxia and a major contributor to diving-derived vascular endothelial damage and decompression sickness. The aims of this work were: 1) to directly observe endothelial ROS production during simulated air dives as well as its relation with both mitochondrial activity and cell survival; and 2) to determine which ambient factor during air diving (hydrostatic pressure or oxygen and/or nitrogen partial pressure) is responsible for the observed modifications. In vitro diving simulation was performed with bovine arterial endothelial cells under real-time observation. The effects of air diving, hydrostatic, oxygen and nitrogen pressures, and N-acetylcysteine (NAC) treatment on mitochondrial ROS generation, mitochondrial membrane potential and cellular survival during simulation were investigated. Vascular endothelial cells performing air diving simulation suffered excessive mitochondrial ROS, mitochondrial depolarization, and cell death. These effects were prevented by NAC: after NAC treatment, the cells presented no difference in damage from nondiving cells. Oxygen diving showed a higher effect on ROS generation but lower impacts on mitochondrial depolarization and cell death than hydrostatic or nitrogen diving. Nitrogen diving had no effect on the inductions of ROS, mito-depolarization, or cell death. This study is the first direct observation of mitochondrial ROS production, mitochondrial membrane potential and cell survival during diving. Simulated air SCUBA diving induces excessive ROS production, which leads to mitochondrial depolarization and endothelial cell death. Oxygen partial pressure plays a crucial role in the production of ROS. Deleterious effects of hyperoxia-induced ROS are potentiated by hydrostatic pressure. These findings hold new implications for the pathogenesis of diving-derived endothelial dysfunction.

  11. High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins.

    PubMed

    Meir, Jessica U; Ponganis, Paul J

    2009-10-01

    The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500 m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O2) transport and depletion while diving, we characterized the O2-hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O2 depletion during diving, by applying the dissociation curve to previously collected partial pressure of O2 (PO2) profiles to estimate in vivo Hb saturation (SO2) changes during dives. This investigation revealed enhanced Hb-O2 affinity (P50=28 mmHg, pH 7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O2 at low blood PO2 levels during diving and more complete depletion of the respiratory O2 store. SO2 profiles during diving demonstrated that arterial SO2 levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous SO2 values were widely distributed and optimization of the venous blood O2 store resulted from arterialization and near complete depletion of venous blood O2 during longer dives. The estimated contribution of the blood O2 store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O2 from the lungs into the blood during diving, and variable rates of tissue O2 uptake.

  12. Dark chocolate reduces endothelial dysfunction after successive breath-hold dives in cool water.

    PubMed

    Theunissen, Sigrid; Schumacker, Julie; Guerrero, François; Tillmans, Frauke; Boutros, Antoine; Lambrechts, Kate; Mazur, Aleksandra; Pieri, Massimo; Germonpré, Peter; Balestra, Costantino

    2013-12-01

    The aim of this study is to observe the effects of dark chocolate on endothelial function after a series of successive apnea dives in non-thermoneutral water. Twenty breath-hold divers were divided into two groups: a control group (8 males and 2 females) and a chocolate group (9 males and 1 female). The control group was asked to perform a series of dives to 20 m adding up to 20 min in the quiet diving pool of Conflans-Ste-Honorine (Paris, France), water temperature was 27 °C. The chocolate group performed the dives 1 h after ingestion of 30 g of dark chocolate. Flow-mediated dilatation (FMD), digital photoplethysmography, nitric oxide (NO), and peroxynitrite ONOO−) levels were measured before and after each series of breath-hold dives. A significant decrease in FMD was observed in the control group after the dives (95.28 ± 2.9 % of pre-dive values, p < 0.001) while it was increased in the chocolate group (104.1 ± 2.9 % of pre-dive values, p < 0.01). A decrease in the NO level was observed in the control group (86.76 ± 15.57 %, p < 0.05) whereas no difference was shown in the chocolate group (98.44 ± 31.86 %, p > 0.05). No differences in digital photoplethysmography and peroxynitrites were observed between before and after the dives. Antioxidants contained in dark chocolate scavenge free radicals produced during breath-hold diving. Ingestion of 30 g of dark chocolate 1 h before the dive can thus prevent endothelial dysfunction which can be observed after a series of breath-hold dives.

  13. KSC-04pd1496

    NASA Image and Video Library

    2004-07-07

    KENNEDY SPACE CENTER, FLA. - A boat returns to the dock in Key Largo from a training session offshore at NASA’s undersea research station, named Aquarius. At left is Marc Reagan, lead on the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission. In the bow is astronaut John Herrington, mission commander. The others are support personnel. Members of the team also include astronauts Doug Wheelock and Nick Patrick, and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day. While stationed in Aquarius, the team conducted spacewalk-like diving excursions and field-testing a variety of biomedical equipment designed to help astronauts living aboard the International Space Station.

  14. The effects of acute oral antioxidants on diving-induced alterations in human cardiovascular function

    PubMed Central

    Obad, Ante; Palada, Ivan; Valic, Zoran; Ivančev, Vladimir; Baković, Darija; Wisløff, Ulrik; Brubakk, Alf O; Dujić, Željko

    2007-01-01

    Diving-induced acute alterations in cardiovascular function such as arterial endothelial dysfunction, increased pulmonary artery pressure (PAP) and reduced heart function have been recently reported. We tested the effects of acute antioxidants on arterial endothelial function, PAP and heart function before and after a field dive. Vitamins C (2 g) and E (400 IU) were given to subjects 2 h before a second dive (protocol 1) and in a placebo-controlled crossover study design (protocol 2). Seven experienced divers performed open sea dives to 30 msw with standard decompression in a non-randomized protocol, and six of them participated in a randomized trial. Before and after the dives ventricular volumes and function and pulmonary and brachial artery function were assessed by ultrasound. The control dive resulted in a significant reduction in flow-mediated dilatation (FMD) and heart function with increased mean PAP. Twenty-four hours after the control dive FMD was still reduced 37% below baseline (8.1 versus 5.1%, P = 0.005), while right ventricle ejection fraction (RV-EF), left ventricle EF and endocardial fractional shortening were reduced much less (∼2–3%). At the same time RV end-systolic volume was increased by 9% and mean PAP by 5%. Acute antioxidants significantly attenuated only the reduction in FMD post-dive (P < 0.001), while changes in pulmonary artery and heart function were unaffected by antioxidant ingestion. These findings were confirmed by repeating the experiments in a randomized study design. FMD returned to baseline values 72 h after the dive with pre-dive placebo, whereas for most cardiovascular parameters this occurred earlier (24–48 h). Right ventricular dysfunction and increased PAP lasted longer. Acute antioxidants attenuated arterial endothelial dysfunction after diving, while reduction in heart and pulmonary artery function were unchanged. Cardiovascular changes after diving are not fully reversed up to 3 days after a dive, suggesting longer lasting negative effects. PMID:17110413

  15. Investigating Annual Diving Behaviour by Hooded Seals (Cystophora cristata) within the Northwest Atlantic Ocean

    PubMed Central

    Andersen, Julie M.; Skern-Mauritzen, Mette; Boehme, Lars; Wiersma, Yolanda F.; Rosing-Asvid, Aqqalu; Hammill, Mike O.; Stenson, Garry B.

    2013-01-01

    With the exception of relatively brief periods when they reproduce and moult, hooded seals, Cystophora cristata, spend most of the year in the open ocean where they undergo feeding migrations to either recover or prepare for the next fasting period. Valuable insights into habitat use and diving behaviour during these periods have been obtained by attaching Satellite Relay Data Loggers (SRDLs) to 51 Northwest (NW) Atlantic hooded seals (33 females and 18 males) during ice-bound fasting periods (2004−2008). Using General Additive Models (GAMs) we describe habitat use in terms of First Passage Time (FPT) and analyse how bathymetry, seasonality and FPT influence the hooded seals’ diving behaviour described by maximum dive depth, dive duration and surface duration. Adult NW Atlantic hooded seals exhibit a change in diving activity in areas where they spend >20 h by increasing maximum dive depth, dive duration and surface duration, indicating a restricted search behaviour. We found that male and female hooded seals are spatially segregated and that diving behaviour varies between sexes in relation to habitat properties and seasonality. Migration periods are described by increased dive duration for both sexes with a peak in May, October and January. Males demonstrated an increase in dive depth and dive duration towards May (post-breeding/pre-moult) and August–October (post-moult/pre-breeding) but did not show any pronounced increase in surface duration. Females dived deepest and had the highest surface duration between December and January (post-moult/pre-breeding). Our results suggest that the smaller females may have a greater need to recover from dives than that of the larger males. Horizontal segregation could have evolved as a result of a resource partitioning strategy to avoid sexual competition or that the energy requirements of males and females are different due to different energy expenditure during fasting periods. PMID:24282541

  16. Argon used as dry suit insulation gas for cold-water diving.

    PubMed

    Vrijdag, Xavier Ce; van Ooij, Pieter-Jan Am; van Hulst, Robert A

    2013-06-03

    Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is approximately 32% lower compared to that of air. This study evaluates the benefits of argon, compared to air, as a thermal insulation gas for a dry suit during a 1-h cold-water dive by divers of the Royal Netherlands Navy. Seven male Special Forces divers made (in total) 19 dives in a diving basin with water at 13 degrees C at a depth of 3 m for 1 h in upright position. A rubber dry suit and woollen undergarment were used with either argon (n = 13) or air (n = 6) (blinded to the divers) as suit inflation gas. Core temperature was measured with a radio pill during the dive. Before, halfway, and after the dive, subjective thermal comfort was recorded using a thermal comfort score. No diver had to abort the test due to cold. No differences in core temperature and thermal comfort score were found between the two groups. Core temperature remained unchanged during the dives. Thermal comfort score showed a significant decrease in both groups after a 60-min dive compared to baseline. In these tests the combination of the dry suit and undergarment was sufficient to maintain core temperature and thermal comfort for a dive of 1h in water at 13 degrees C. The use of argon as a suit inflation gas had no added value for thermal insulation compared to air for these dives.

  17. The effects of acute oral antioxidants on diving-induced alterations in human cardiovascular function.

    PubMed

    Obad, Ante; Palada, Ivan; Valic, Zoran; Ivancev, Vladimir; Baković, Darija; Wisløff, Ulrik; Brubakk, Alf O; Dujić, Zeljko

    2007-02-01

    Diving-induced acute alterations in cardiovascular function such as arterial endothelial dysfunction, increased pulmonary artery pressure (PAP) and reduced heart function have been recently reported. We tested the effects of acute antioxidants on arterial endothelial function, PAP and heart function before and after a field dive. Vitamins C (2 g) and E (400 IU) were given to subjects 2 h before a second dive (protocol 1) and in a placebo-controlled crossover study design (protocol 2). Seven experienced divers performed open sea dives to 30 msw with standard decompression in a non-randomized protocol, and six of them participated in a randomized trial. Before and after the dives ventricular volumes and function and pulmonary and brachial artery function were assessed by ultrasound. The control dive resulted in a significant reduction in flow-mediated dilatation (FMD) and heart function with increased mean PAP. Twenty-four hours after the control dive FMD was still reduced 37% below baseline (8.1 versus 5.1%, P = 0.005), while right ventricle ejection fraction (RV-EF), left ventricle EF and endocardial fractional shortening were reduced much less (approximately 2-3%). At the same time RV end-systolic volume was increased by 9% and mean PAP by 5%. Acute antioxidants significantly attenuated only the reduction in FMD post-dive (P < 0.001), while changes in pulmonary artery and heart function were unaffected by antioxidant ingestion. These findings were confirmed by repeating the experiments in a randomized study design. FMD returned to baseline values 72 h after the dive with pre-dive placebo, whereas for most cardiovascular parameters this occurred earlier (24-48 h). Right ventricular dysfunction and increased PAP lasted longer. Acute antioxidants attenuated arterial endothelial dysfunction after diving, while reduction in heart and pulmonary artery function were unchanged. Cardiovascular changes after diving are not fully reversed up to 3 days after a dive, suggesting longer lasting negative effects.

  18. 29 CFR 1926.1080 - Safe practices manual.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving General Operations Procedures § 1926.1080 Safe practices manual. Note: The requirements applicable to construction work under this section are...

  19. 29 CFR Appendix C to Subpart T of... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  20. 29 CFR Appendix C to Subpart T to... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  1. 29 CFR Appendix C to Subpart T of... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  2. 29 CFR Appendix C to Subpart T to... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  3. 29 CFR Appendix C to Subpart T to... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  4. Field validation of Tasmania's aquaculture industry bounce-diving schedules using Doppler analysis of decompression stress.

    PubMed

    Smart, David R; Van den Broek, Cory; Nishi, Ron; Cooper, P David; Eastman, David

    2014-09-01

    Tasmania's aquaculture industry produces over 40,000 tonnes of fish annually, valued at over AUD500M. Aquaculture divers perform repetitive, short-duration bounce dives in fish pens to depths up to 21 metres' sea water (msw). Past high levels of decompression illness (DCI) may have resulted from these 'yo-yo' dives. This study aimed to assess working divers, using Doppler ultrasonic bubble detection, to determine if yo-yo diving was a risk factor for DCI, determine dive profiles with acceptable risk and investigate productivity improvement. Field data were collected from working divers during bounce diving at marine farms near Hobart, Australia. Ascent rates were less than 18 m·min⁻¹, with routine safety stops (3 min at 3 msw) during the final ascent. The Kisman-Masurel method was used to grade bubbling post dive as a means of assessing decompression stress. In accordance with Defence Research and Development Canada Toronto practice, dives were rejected as excessive risk if more than 50% of scores were over Grade 2. From 2002 to 2008, Doppler data were collected from 150 bounce-dive series (55 divers, 1,110 bounces). Three series of bounce profiles, characterized by in-water times, were validated: 13-15 msw, 10 bounces inside 75 min; 16-18 msw, six bounces inside 50 min; and 19-21 msw, four bounces inside 35 min. All had median bubble grades of 0. Further evaluation validated two successive series of bounces. Bubble grades were consistent with low-stress dive profiles. Bubble grades did not correlate with the number of bounces, but did correlate with ascent rate and in-water time. These data suggest bounce diving was not a major factor causing DCI in Tasmanian aquaculture divers. Analysis of field data has improved industry productivity by increasing the permissible number of bounces, compared to earlier empirically-derived tables, without compromising safety. The recommended Tasmanian Bounce Diving Tables provide guidance for bounce diving to a depth of 21 msw, and two successive bounce dive series in a day's diving.

  5. Diving through the thermal window: implications for a warming world

    PubMed Central

    Campbell, Hamish A.; Dwyer, Ross G.; Gordos, Matthew; Franklin, Craig E.

    2010-01-01

    Population decline and a shift in the geographical distribution of some ectothermic animals have been attributed to climatic warming. Here, we show that rises in water temperature of a few degrees, while within the thermal window for locomotor performance, may be detrimental to diving behaviour in air-breathing ectotherms (turtles, crocodilians, marine iguanas, amphibians, snakes and lizards). Submergence times and internal and external body temperature were remotely recorded from freshwater crocodiles (Crocodylus johnstoni) while they free-ranged throughout their natural habitat in summer and winter. During summer, the crocodiles' mean body temperature was 5.2 ± 0.1°C higher than in winter and the largest proportion of total dive time was composed of dive durations approximately 15 min less than in winter. Diving beyond 40 min during summer required the crocodiles to exponentially increase the time they spent on the surface after the dive, presumably to clear anaerobic debt. The relationship was not as significant in winter, even though a greater proportion of dives were of a longer duration, suggesting that diving lactate threshold (DLT) was reduced in summer compared with winter. Additional evidence for a reduced DLT in summer was derived from the stronger influence body mass exerted upon dive duration, compared to winter. The results demonstrate that the higher summer body temperature increased oxygen demand during the dive, implying that thermal acclimatization of the diving metabolic rate was inadequate. If the study findings are common among air-breathing diving ectotherms, then long-term warming of the aquatic environment may be detrimental to behavioural function and survivorship. PMID:20610433

  6. Scanning sonar of rolling porpoises during prey capture dives.

    PubMed

    Akamatsu, T; Wang, D; Wang, K; Li, S; Dong, S

    2010-01-01

    Dolphins and porpoises have excellent biosonar ability, which they use for navigation, ranging and foraging. However, the role of biosonar in free-ranging small cetaceans has not been fully investigated. The biosonar behaviour and body movements of 15 free-ranging finless porpoises (Neophocaena phocaenoides) were observed using electronic tags attached to the animals. The porpoises often rotated their bodies more than 60 deg., on average, around the body axis in a dive bout. This behaviour occupied 31% of the dive duration during 186 h of effective observation time. Rolling dives were associated with extensive searching effort, and 23% of the rolling dive time was phonated, almost twice the phonation ratio of upright dives. Porpoises used short inter-click interval sonar 4.3 times more frequently during rolling dives than during upright dives. Sudden speed drops, which indicated that an individual turned around, occurred 4.5 times more frequently during rolling dives than during upright dives. Together, these data suggest that the porpoises searched extensively for targets and rolled their bodies to enlarge the search area by changing the narrow beam axis of the biosonar. Once a possible target was detected, porpoises frequently produced short-range sonar sounds. Continuous searching for prey and frequent capture trials appeared to occur during rolling dives of finless porpoises. In contrast, head movements ranging +/-2 cm, which can also change the beam axis, were regularly observed during both dives. Head movements might assist in instant assessment of the arbitrary direction by changing the beam axis rather than prey searching and pursuit.

  7. Repetitive Diving in Trained Rats Still Increases Fos Production in Brainstem Neurons after Bilateral Sectioning of the Anterior Ethmoidal Nerve

    PubMed Central

    McCulloch, Paul F.; Warren, Erik A.; DiNovo, Karyn M.

    2016-01-01

    This research was designed to investigate the role of the anterior ethmoidal nerve (AEN) during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N = 24) were trained to swim and dive through a 5 m underwater maze. Some rats (N = 12) had bilateral sectioning of the AEN, others a Sham surgery (N = 12). Twelve rats (6 AEN cut and 6 Sham) had 24 post-surgical dive trials over 2 h to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus, the AENs are not required for initiation of the diving response. Other nerve(s) that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response. PMID:27148082

  8. Venous gas embolism after an open-water air dive and identical repetitive dive.

    PubMed

    Schellart, N A M; Sterk, W

    2012-01-01

    Decompression tables indicate that a repetitive dive to the same depth as a first dive should be shortened to obtain the same probability of occurrence of decompression sickness (pDCS). Repetition protocols are based on small numbers, a reason for re-examination. Since venous gas embolism (VGE) and pDCS are related, one would expect a higher bubble grade (BG) of VGE after the repetitive dive without reducing bottom time. BGs were determined in 28 divers after a first and an identical repetitive air dive of 40 minutes to 20 meters of sea water. Doppler BG scores were transformed to log number of bubbles/cm2 (logB) to allow numerical analysis. With a previously published model (Model2), pDCS was calculated for the first dive and for both dives together. From pDCS, theoretical logBs were estimated with a pDCS-to-logB model constructed from literature data. However, pDCS the second dive was provided using conditional probability. This was achieved in Model2 and indirectly via tissue saturations. The combination of both models shows a significant increase of logB after the second dive, whereas the measurements showed an unexpected lower logB. These differences between measurements and model expectations are significant (p-values < 0.01). A reason for this discrepancy is uncertain. The most likely speculation would be that the divers, who were relatively old, did not perform physical activity for some days before the first dive. Our data suggest that, wisely, the first dive after a period of no exercise should be performed conservatively, particularly for older divers.

  9. Measurement of fatigue following 18 msw dry chamber dives breathing air or enriched air nitrox.

    PubMed

    Harris, R J D; Doolette, D J; Wilkinson, D C; Williams, D J

    2003-01-01

    Many divers report less fatigue following diving breathing oxygen rich N2-O2 mixtures compared with breathing air. In this double blinded, randomized controlled study 11 divers breathed either air or Enriched Air Nitrox 36% (oxygen 36%, nitrogen 64%) during an 18 msw (281 kPa(a)) dry chamber dive for a bottom time of 40 minutes. Two periods of exercise were performed during the dive. Divers were assessed before and after each dive using the Multidimensional Fatigue Inventory-20, a visual analogue scale, Digit Span Tests, Stroop Tests, and Divers Health Survey (DHS). Diving to 18m produced no measurable difference in fatigue, attention levels, ability to concentrate or DHS scores, following dives using either breathing gas.

  10. [Scuba diving in children: Physiology, risks and recommendations].

    PubMed

    Cilveti, R; Osona, B; Peña, J A; Moreno, L; Asensio, O

    2015-12-01

    The increase in recreational scuba diving in recent years, including children, involves risks and the possibility of accidents. While legislation, conditions and risks of scuba diving are well documented in adults, scientific evidence in scuba diving by children and adolescents is sparse and isolated. Furthermore, existing guidelines and recommendations for adults cannot be transferred directly to children. These circumstances have led to the Group on Techniques of the Spanish Society of Pediatric Pulmonology (SENP) to perform a literature search to review and update the knowledge about scuba diving in children. Physiological adaptations of the body are examined during the dive, as well as the anatomical and physiological characteristics of children that should be taken into account in scuba diving. The most common types of accidents and its causes, as well as the risks of scuba diving practice in children with previous diseases are discussed, along with details of the medical and psychological requirements for scuba diving to be considered in the assessment of child and adolescent. A list of recommendations for scuba diving with compressed air in children is presented by a group of experts. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  11. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation.

    PubMed

    Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël

    2013-06-01

    How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.

  12. The diving paradox: new insights into the role of the dive response in air-breathing vertebrates.

    PubMed

    Davis, Randall W; Polasek, Lori; Watson, Rebecca; Fuson, Amanda; Williams, Terrie M; Kanatous, Shane B

    2004-07-01

    When aquatic reptiles, birds and mammals submerge, they typically exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues is reduced. The profound dive response that occurs during forced submergence sequesters blood oxygen for the brain and heart while allowing peripheral tissues to become anaerobic, thus protecting the animal from immediate asphyxiation. However, the decrease in peripheral blood flow is in direct conflict with the exercise response necessary for supporting muscle metabolism during submerged swimming. In free diving animals, a dive response still occurs, but it is less intense than during forced submergence, and whole-body metabolism remains aerobic. If blood oxygen is not sequestered for brain and heart metabolism during normal diving, then what is the purpose of the dive response? Here, we show that its primary role may be to regulate the degree of hypoxia in skeletal muscle so that blood and muscle oxygen stores can be efficiently used. Paradoxically, the muscles of diving vertebrates must become hypoxic to maximize aerobic dive duration. At the same time, morphological and enzymatic adaptations enhance intracellular oxygen diffusion at low partial pressures of oxygen. Optimizing the use of blood and muscle oxygen stores allows aquatic, air-breathing vertebrates to exercise for prolonged periods while holding their breath.

  13. Surfacers change their dive tactics depending on the aim of the dive: evidence from simultaneous measurements of breaths and energy expenditure.

    PubMed

    Okuyama, Junichi; Tabata, Runa; Nakajima, Kana; Arai, Nobuaki; Kobayashi, Masato; Kagawa, Shiro

    2014-11-22

    Air-breathing divers are assumed to have evolved to apportion their time between surface and underwater periods to maximize the benefit gained from diving activities. However, whether they change their time allocation depending on the aim of the dive is still unknown. This may be particularly crucial for 'surfacers' because they dive for various purposes in addition to foraging. In this study, we counted breath events at the surface and estimated oxygen consumption during resting, foraging and other dives in 11 green turtles (Chelonia mydas) in the wild. Breath events were counted by a head-mounted acceleration logger or direct observation based on an animal-borne video logger, and oxygen consumption was estimated by measuring overall dynamic body acceleration. Our results indicate that green turtles maximized their submerged time, following this with five to seven breaths to replenish oxygen for resting dives. However, they changed their dive tactic during foraging and other dives; they surfaced without depleting their estimated stores of oxygen, followed by only a few breaths for effective foraging and locomotion. These dichotomous surfacing tactics would be the result of behavioural modifications by turtles depending on the aim of each dive. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Surfacers change their dive tactics depending on the aim of the dive: evidence from simultaneous measurements of breaths and energy expenditure

    PubMed Central

    Okuyama, Junichi; Tabata, Runa; Nakajima, Kana; Arai, Nobuaki; Kobayashi, Masato; Kagawa, Shiro

    2014-01-01

    Air-breathing divers are assumed to have evolved to apportion their time between surface and underwater periods to maximize the benefit gained from diving activities. However, whether they change their time allocation depending on the aim of the dive is still unknown. This may be particularly crucial for ‘surfacers’ because they dive for various purposes in addition to foraging. In this study, we counted breath events at the surface and estimated oxygen consumption during resting, foraging and other dives in 11 green turtles (Chelonia mydas) in the wild. Breath events were counted by a head-mounted acceleration logger or direct observation based on an animal-borne video logger, and oxygen consumption was estimated by measuring overall dynamic body acceleration. Our results indicate that green turtles maximized their submerged time, following this with five to seven breaths to replenish oxygen for resting dives. However, they changed their dive tactic during foraging and other dives; they surfaced without depleting their estimated stores of oxygen, followed by only a few breaths for effective foraging and locomotion. These dichotomous surfacing tactics would be the result of behavioural modifications by turtles depending on the aim of each dive. PMID:25297856

  15. Cardiac responses of grey seals during diving at sea.

    PubMed

    Thompson, D; Fedak, M A

    1993-01-01

    Heart rate, swimming speed and diving depth data were collected from free-ranging grey seals, Halichoerus grypus, as they foraged and travelled in the sea around the Hebrides Islands off western Scotland. Information was collected on a tracking yacht using a combination of sonic and radio telemetry. Diving heart rate declined as a function of dive duration. In long dives, grey seals employed extreme bradycardia, with heart rates falling to 4 beats min-1 for extended periods, despite the animal being free to breath at will. This extreme dive response is part of the normal foraging behaviour. Seals spent 89% of the time submerged during bouts of long dives; swimming was restricted to ascent and descent. Dive durations exceeded estimated aerobic dive limit, even assuming resting metabolic rates. These results indicate that behavioural, and possibly cellular, energy-sparing mechanisms play an important role in diving behaviour of grey seals. This has implications not only for studies of mammalian energetics but also for our understanding of the foraging tactics and prey selection of marine mammals. If some seals are using energy-sparing mechanisms to reduce metabolic costs while at depth, they may be forced to wait for and ambush prey rather than to search for and chase it.

  16. Decompression sickness in breath-hold divers: a review.

    PubMed

    Lemaitre, Frederic; Fahlman, Andreas; Gardette, Bernard; Kohshi, Kiyotaka

    2009-12-01

    Although it has been generally assumed that the risk of decompression sickness is virtually zero during a single breath-hold dive in humans, repeated dives may result in a cumulative increase in the tissue and blood nitrogen tension. Many species of marine mammals perform extensive foraging bouts with deep and long dives interspersed by a short surface interval, and some human divers regularly perform repeated dives to 30-40 m or a single dive to more than 200 m, all of which may result in nitrogen concentrations that elicit symptoms of decompression sickness. Neurological problems have been reported in humans after single or repeated dives and recent necropsy reports in stranded marine mammals were suggestive of decompression sickness-like symptoms. Modelling attempts have suggested that marine mammals may live permanently with elevated nitrogen concentrations and may be at risk when altering their dive behaviour. In humans, non-pathogenic bubbles have been recorded and symptoms of decompression sickness have been reported after repeated dives to modest depths. The mechanisms implicated in these accidents indicate that repeated breath-hold dives with short surface intervals are factors that predispose to decompression sickness. During deep diving, the effect of pulmonary shunts and/or lung collapse may play a major role in reducing the incidence of decompression sickness in humans and marine mammals.

  17. A case-control study evaluating relative risk factors for decompression sickness: a research report.

    PubMed

    Suzuki, Naoko; Yagishita, Kazuyosi; Togawa, Seiichiro; Okazaki, Fumihiro; Shibayama, Masaharu; Yamamoto, Kazuo; Mano, Yoshihiro

    2014-01-01

    Factors contributing to the pathogenesis of decompression sickness (DCS) in divers have been described in many studies. However, relative importance of these factors has not been reported. In this case-control study, we compared the diving profiles of divers experiencing DCS with those of a control group. The DCS group comprised 35 recreational scuba divers who were diagnosed by physicians as having DCS. The control group consisted of 324 apparently healthy recreational divers. All divers conducted their dives from 2009 to 2011. The questionnaire consisted of 33 items about an individual's diving profile, physical condition and activities before, during and just after the dive. To simplify dive parameters, the dive site was limited to Izu Osezaki. Odds ratios and multiple logistic regression were used for the analysis. Odds ratios revealed several items as dive and health factors associated with DCS. The major items were as follows: shortness of breath after heavy exercise during the dive (OR = 12.12), dehydration (OR = 10.63), and maximum dive depth > 30 msw (OR = 7.18). Results of logistic regression were similar to those by odds ratio analysis. We assessed the relative weights of the surveyed dive and health factors associated with DCS. Because results of several factors conflict with previous studies, future studies are needed.

  18. Persistent (patent) foramen ovale (PFO): implications for safe diving.

    PubMed

    Germonpré, Peter

    2015-06-01

    Diving medicine is a peculiar specialty. There are physicians and scientists from a wide variety of disciplines with an interest in diving and who all practice 'diving medicine': the study of the complex whole-body physiological changes and interactions upon immersion and emersion. To understand these, the science of physics and molecular gas and fluid movements comes into play. The ultimate goal of practicing diving medicine is to preserve the diver's health, both during and after the dive. Good medicine starts with prevention. For most divers, underwater excursions are not a professional necessity but a hobby; avoidance of risk is generally a much better option than risk mitigation or cure. However, prevention of diving illnesses seems to be even more difficult than treating those illnesses. The papers contained in this issue of DHM are a nice mix of various aspects of PFO that divers are interested in, all of them written by specialist doctors who are avid divers themselves. However, diving medicine should also take advantage of research from the "non-diving" medicine community, and PFO is a prime example. Cardiology and neurology have studied PFO for as long, or even longer than divers have been the subjects of PFO research, and with much greater numbers and resources. Unexplained stroke has been associated with PFO, as has severe migraine with aura. As the association seems to be strong, investigating the effect of PFO closure was a logical step. Devices have been developed and perfected, allowing now for a relatively low-risk procedure to 'solve the PFO problem'. However, as with many things in science, the results have not been as spectacular as hoped for: patients still get recurrences of stroke, still have migraine attacks. The risk-benefit ratio of PFO closure for these non-diving diseases is still debated. For diving, we now face a similar problem. Let there be no doubt that PFO is a pathway through which venous gas emboli (VGE) can arterialize, given sufficiently favourable circumstances (such as: a large quantity of VGE, size of the PFO, straining or provocation manoeuvres inducing increased right atrial pressure, delayed tissue desaturation so that seeding arterial gas emboli (AGE) grow instead of shrink, and there may be other, as yet unknown factors). There is no doubt that closing a PFO, either surgically or using a catheter-delivered device, can reduce the number of VGE becoming AGE. There is also no doubt that the procedure itself carries some health risks which are, at 1% or higher risk of serious complications, an order of magnitude greater than the risk for decompression illness (DCI) in recreational diving. Scientists seek the 'truth', but the truth about how much of a risk PFO represents for divers is not likely to be discovered nor universally accepted. First of all, the exact prevalence of PFO in divers is not known. As it has been pointed out in the recent literature, a contrast echocardiography (be it transthoracic or transoesophageal) or Doppler examination is only reliable if performed according to a strict protocol, taking into account the very many pitfalls yielding false negative results. The optimal procedure for injection of contrast medium was described several years ago, but has not received enough attention. Indeed, it is our and others' experience that many divers presenting with PFO-related DCI symptoms initially are declared "PFO-negative" by eminent, experienced cardiologists! Failing a prospective study, the risks of diving with a right-to left vascular shunt can only be expressed as an 'odds ratio', which is a less accurate measure than is 'relative risk'. The DAN Europe Carotid Doppler Study, started in 2001, is nearing completion and will provide more insight into the actual risks of DCI for recreational divers. The degree of DCI risk reduction from closing a PFO is thus not only dependent on successful closure but also (mostly?) on how the diver manages his/her dive and decompression in order to reduce the incidence of VGE. It has been convincingly shown that conservative dive profiles reduce DCI incidence even in divers with large PFOs, just as PFO closure does not protect completely from DCI if the dive profiles are aggressive. Prospective studies should not only focus on the reduction of DCI incidence after closure, but should take into account the costs and side effects of the procedure, as has been done in the cardiology and neurology studies. Imagine lung transplants becoming a routine operation, costly but with a high success rate; imagine also a longterm smoker suffering from a mild form of obstructive lung disease and exercise-limiting dyspnoea. Which of two options would you recommend: having a lung transplant and continue smoking as before, or quit smoking and observe a progressive improvement of pulmonary and cardiac pathology? As opposed to patients with thrombotic disease and migraine, divers can choose to reduce DCI risk. In fact, all it takes is acceptance that some types of diving carry too high a health risk - whether it is because of a PFO or another 'natural' factor. It would be unethical to promote PFO closure in divers solely on the basis of its efficacy of shunt reduction. Unfortunately, at least one device manufacturer has already done so in the past, citing various publications to specifically target recreational divers. Some technical diving organizations even have recommended preventive PFO closure in order to undertaking high-risk dive training. As scientists, we must not allow ourselves to be drawn into intuitive diver fears and beliefs. Nor should we let ourselves be blinded by the ease and seemingly low risk of the procedure. With proper and objective information provided by their diving medicine specialist, divers could make an informed decision, rather than focus on the simplistic idea that they need 'to get it fixed' in order to continue diving. A significant relationship between PFO and cerebral damage, in the absence of high-risk diving or DCI, has yet to be confirmed. Studying PFO-related DCI provides us with unique opportunities to learn more about the effect of gas bubbles in various tissues, including the central vascular bed and neurological tissue. It may also serve to educate divers that safe diving is something that needs to be learned, not something that can be implanted.

  19. 33 CFR 165.117 - Regulated Navigation Areas, Safety and Security Zones: Deepwater Ports, First Coast Guard District.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of deepwater port in 33 CFR 148.5. Dredge means fishing gear consisting of a mouth frame attached to... vessel may anchor, engage in diving operations, or commercial fishing using nets, dredges, traps (pots...

  20. Venous gas emboli are involved in post-dive macro, but not microvascular dysfunction.

    PubMed

    Lambrechts, Kate; Balestra, Costantino; Theron, Michaël; Henckes, Anne; Galinat, Hubert; Mignant, Fanny; Belhomme, Marc; Pontier, Jean-Michel; Guerrero, François

    2017-02-01

    Previous studies have shown vascular dysfunction of main conductance arteries and microvessels after diving. We aim to evaluate the impact of bubble formation on vascular function and haemostasis. To achieve this, we used a vibration preconditioning to influence bubble levels without changing any other parameters linked to the dive. Twentty-six divers were randomly assigned to one of three groups: (1) the "vibrations-dive" group (VD; n = 9) was exposed to a whole-body vibration session 30 min prior the dive; (2) the "diving" group (D; n = 9) served as a control for the effect of the diving protocol; (3) The "vibration" protocol (V; n = 8) allowed us to assess the effect of vibrations without diving. Macro- and microvascular function was assessed for each subject before and after the dive, subsequently. Bubble grades were monitored with Doppler according to the Spencer grading system. Blood was taken before and after the protocol to assess any change of platelets or endothelial function. Bubble formation was lower in the VD than the diving group. The other measured parameters remained unchanged after the "vibration" protocol alone. Diving alone induced macrovascular dysfunction, and increased PMP and thrombin generation. Those parameters were no longer changed in the VD group. Conversely, a microvascular dysfunction persists despite a significant decrease of circulating bubbles. Finally, the results of this study suggest that macro- but not microvascular impairment results at least partly from bubbles, possibly related to platelet activation and generation of pro-coagulant microparticles.

  1. The effects of experimentally induced hyperthyroidism on the diving physiology of harbor seals (Phoca vitulina)

    PubMed Central

    Weingartner, Gundula M.; Thornton, Sheila J.; Andrews, Russel D.; Enstipp, Manfred R.; Barts, Agnieszka D.; Hochachka, Peter W.

    2012-01-01

    Many phocid seals are expert divers that remain submerged longer than expected based on estimates of oxygen storage and utilization. This discrepancy is most likely due to an overestimation of diving metabolic rate. During diving, a selective redistribution of blood flow occurs, which may result in reduced metabolism in the hypoperfused tissues and a possible decline in whole-body metabolism to below the resting level (hypometabolism). Thyroid hormones are crucial in regulation of energy metabolism in vertebrates and therefore their control might be an important part of achieving a hypometabolic state during diving. To investigate the effect of thyroid hormones on diving physiology of phocid seals, we measured oxygen consumption, heart rate, and post-dive lactate concentrations in five harbor seals (Phoca vitulina) conducting 5 min dives on command, in both euthyroid and experimentally induced hyperthyroid states. Oxygen consumption during diving was significantly reduced (by 25%) in both euthyroid and hyperthyroid states, confirming that metabolic rate during diving falls below resting levels. Hyperthyroidism increased oxygen consumption (by 7–8%) when resting in water and during diving, compared with the euthyroid state, illustrating the marked effect of thyroid hormones on metabolic rate. Consequently, post-dive lactate concentrations were significantly increased in the hyperthyroid state, suggesting that the greater oxygen consumption rates forced seals to make increased use of anaerobic metabolic pathways. During diving, hyperthyroid seals also exhibited a more profound decline in heart rate than seals in the euthyroid state, indicating that these seals were pushed toward their aerobic limit and required a more pronounced cardiovascular response. Our results demonstrate the powerful role of thyroid hormones in metabolic regulation and support the hypothesis that thyroid hormones play a role in modulating the at-sea metabolism of phocid seals. PMID:23060807

  2. Decompression sickness in breath-hold diving, and its probable connection to the growth and dissolution of small arterial gas emboli.

    PubMed

    Goldman, Saul; Solano-Altamirano, J M

    2015-04-01

    We solved the Laplace equation for the radius of an arterial gas embolism (AGE), during and after breath-hold diving. We used a simple three-region diffusion model for the AGE, and applied our results to two types of breath-hold dives: single, very deep competitive-level dives and repetitive shallower breath-hold dives similar to those carried out by indigenous commercial pearl divers in the South Pacific. Because of the effect of surface tension, AGEs tend to dissolve in arterial blood when arteries remote from supersaturated tissue. However if, before fully dissolving, they reach the capillary beds that perfuse the brain and the inner ear, they may become inflated with inert gas that is transferred into them from these contiguous temporarily supersaturated tissues. By using simple kinetic models of cerebral and inner ear tissue, the nitrogen tissue partial pressures during and after the dive(s) were determined. These were used to theoretically calculate AGE growth and dissolution curves for AGEs lodged in capillaries of the brain and inner ear. From these curves it was found that both cerebral and inner ear decompression sickness are expected to occur occasionally in single competitive-level dives. It was also determined from these curves that for the commercial repetitive dives considered, the duration of the surface interval (the time interval separating individual repetitive dives from one another) was a key determinant, as to whether inner ear and/or cerebral decompression sickness arose. Our predictions both for single competitive-level and repetitive commercial breath-hold diving were consistent with what is known about the incidence of cerebral and inner ear decompression sickness in these forms of diving. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effect of recreational diving on Patagonian rocky reefs.

    PubMed

    Bravo, Gonzalo; Márquez, Federico; Marzinelli, Ezequiel M; Mendez, María M; Bigatti, Gregorio

    2015-03-01

    Tourism has grown considerably in the last decades, promoting activities such as recreational SCUBA diving that may affect marine benthic communities. In Puerto Madryn, Patagonia Argentina, sub-aquatic tourism areas (STA) receive about 7,000 divers per year. Diving is concentrated on a few small rocky reefs and 50% of the dives occur in summer. In this work, we evaluated the effect of recreational diving activities on benthic communities and determined whether diving causes a press (long-term) or a pulse (short-term) response. We quantified the percentage cover of benthic organisms and compared benthic assemblage structure and composition between two sites with contrasting usage by divers, 'highly disturbed' and 'moderately disturbed' sites, and two 'control' sites with similar physical characteristics but no diving activity, twice before and after the diving peak in summer. We found differences in benthic assemblage structure (identity and relative abundance of taxa) and composition (identity only) among diving sites and controls. These differences were consistent before and after the peak of diving in summer, suggesting that recreational diving may produce a press impact on overall benthic assemblage structure and composition in these STA. At the moderately disturbed site, however, covers of specific taxa, such as some key habitat-forming or highly abundant species, usually differed from those in controls only immediately after summer, after which they begun to resemble controls, suggesting a pulse impact. Thus, STA in Golfo Nuevo seem to respond differently to disturbances of diving depending on the usage of the sites. This information is necessary to develop sound management strategies in order to preserve local biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Physiological, morphological, and ecological tradeoffs influence vertical habitat use of deep-diving toothed-whales in the Bahamas

    PubMed Central

    Durban, John W.; Claridge, Diane E.; Dunn, Charlotte A.; Fearnbach, Holly; Parsons, Kim M.; Andrews, Russel D.; Ballance, Lisa T.

    2017-01-01

    Dive capacity among toothed whales (suborder: Odontoceti) has been shown to generally increase with body mass in a relationship closely linked to the allometric scaling of metabolic rates. However, two odontocete species tagged in this study, the Blainville’s beaked whale Mesoplodon densirostris and the Cuvier’s beaked whale Ziphius cavirostris, confounded expectations of a simple allometric relationship, with exceptionally long (mean: 46.1 min & 65.4 min) and deep dives (mean: 1129 m & 1179 m), and comparatively small body masses (med.: 842.9 kg & 1556.7 kg). These two species also exhibited exceptionally long recovery periods between successive deep dives, or inter-deep-dive intervals (M. densirostris: med. 62 min; Z. cavirostris: med. 68 min). We examined competing hypotheses to explain observed patterns of vertical habitat use based on body mass, oxygen binding protein concentrations, and inter-deep-dive intervals in an assemblage of five sympatric toothed whales species in the Bahamas. Hypotheses were evaluated using dive data from satellite tags attached to the two beaked whales (M. densirostris, n = 12; Z. cavirostris, n = 7), as well as melon-headed whales Peponocephala electra (n = 13), short-finned pilot whales Globicephala macrorhynchus (n = 15), and sperm whales Physeter macrocephalus (n = 27). Body mass and myoglobin concentration together explained only 36% of the variance in maximum dive durations. The inclusion of inter-deep-dive intervals, substantially improved model fits (R2 = 0.92). This finding supported a hypothesis that beaked whales extend foraging dives by exceeding aerobic dive limits, with the extension of inter-deep-dive intervals corresponding to metabolism of accumulated lactic acid. This inference points to intriguing tradeoffs between body size, access to prey in different depth strata, and time allocation within dive cycles. These tradeoffs and resulting differences in habitat use have important implications for spatial distribution patterns, and relative vulnerabilities to anthropogenic impacts. PMID:29020021

  5. Physiological, morphological, and ecological tradeoffs influence vertical habitat use of deep-diving toothed-whales in the Bahamas.

    PubMed

    Joyce, Trevor W; Durban, John W; Claridge, Diane E; Dunn, Charlotte A; Fearnbach, Holly; Parsons, Kim M; Andrews, Russel D; Ballance, Lisa T

    2017-01-01

    Dive capacity among toothed whales (suborder: Odontoceti) has been shown to generally increase with body mass in a relationship closely linked to the allometric scaling of metabolic rates. However, two odontocete species tagged in this study, the Blainville's beaked whale Mesoplodon densirostris and the Cuvier's beaked whale Ziphius cavirostris, confounded expectations of a simple allometric relationship, with exceptionally long (mean: 46.1 min & 65.4 min) and deep dives (mean: 1129 m & 1179 m), and comparatively small body masses (med.: 842.9 kg & 1556.7 kg). These two species also exhibited exceptionally long recovery periods between successive deep dives, or inter-deep-dive intervals (M. densirostris: med. 62 min; Z. cavirostris: med. 68 min). We examined competing hypotheses to explain observed patterns of vertical habitat use based on body mass, oxygen binding protein concentrations, and inter-deep-dive intervals in an assemblage of five sympatric toothed whales species in the Bahamas. Hypotheses were evaluated using dive data from satellite tags attached to the two beaked whales (M. densirostris, n = 12; Z. cavirostris, n = 7), as well as melon-headed whales Peponocephala electra (n = 13), short-finned pilot whales Globicephala macrorhynchus (n = 15), and sperm whales Physeter macrocephalus (n = 27). Body mass and myoglobin concentration together explained only 36% of the variance in maximum dive durations. The inclusion of inter-deep-dive intervals, substantially improved model fits (R2 = 0.92). This finding supported a hypothesis that beaked whales extend foraging dives by exceeding aerobic dive limits, with the extension of inter-deep-dive intervals corresponding to metabolism of accumulated lactic acid. This inference points to intriguing tradeoffs between body size, access to prey in different depth strata, and time allocation within dive cycles. These tradeoffs and resulting differences in habitat use have important implications for spatial distribution patterns, and relative vulnerabilities to anthropogenic impacts.

  6. A red orange extract modulates the vascular response to a recreational dive: a pilot study on the effect of anthocyanins on the physiological consequences of scuba diving.

    PubMed

    Balestra, C; Cimino, F; Theunissen, S; Snoeck, T; Provyn, S; Canali, R; Bonina, A; Virgili, F

    2016-09-01

    Nutritional antioxidants have been proposed as an expedient strategy to counter the potentially deleterious effects of scuba diving on endothelial function, flow-mediated dilation (FMD) and heart function. Sixteen volunteers performing a single standard dive (20 min at 33 m) according to US Navy diving procedures were randomly assigned to two groups: one was administered with two doses of 200 mg of an anthocyanins (AC)-rich extract from red oranges, 12 and 4 h before diving. Anthocyanins supplementation significantly modulated the effects of diving on haematocrit, body water distribution and FMD. AC administration significantly reduces the potentially harmful endothelial effects of a recreational single dive. The lack of any significant effect on the most common markers of plasma antioxidant capacity suggests that the mechanism underlying this protective activity is independent of the putative antioxidant effect of AC and possibly involves cellular signalling modulation of the response to high oxygen.

  7. Characteristics of diving in radio-marked Xantus's Murrelets

    USGS Publications Warehouse

    Hamilton, C.D.; Golightly, R.T.; Takekawa, John Y.

    2005-01-01

    We monitored diving activity of radio-marked Xantus's Murrelets Synthliboramphus hypoleucus near Anacapa Island, California, during the breeding season. Thirteen radio-marked murrelets were remotely monitored from Anacapa Island with a handheld antenna and radio receiver for 29 hours in three sample periods in April and May 2003. Mean dive durations in the sample periods were 18 s ?? 2 s, 28 s ?? 2 s, and 24 s ?? 4 s, suggesting that dives were less than 21 m from the surface. Dive duration and subsequent time on the surface differed between the sample periods. Dive duration and subsequent time on the surface were not correlated in observations stratified by individual bird or by sample period. Further, dive duration and subsequent time on the surface were not correlated within foraging bouts. Dive characteristics measured near Anacapa Island suggested that Xantus's Murrelets have the ability to capture prey found at varying depths, but will feed on prey that is most available near the surface of the water.

  8. Exercise at depth alters bradycardia and incidence of cardiac anomalies in deep-diving marine mammals.

    PubMed

    Williams, Terrie M; Fuiman, Lee A; Kendall, Traci; Berry, Patrick; Richter, Beau; Noren, Shawn R; Thometz, Nicole; Shattock, Michael J; Farrell, Edward; Stamper, Andy M; Davis, Randall W

    2015-01-16

    Unlike their terrestrial ancestors, marine mammals routinely confront extreme physiological and physical challenges while breath-holding and pursuing prey at depth. To determine how cetaceans and pinnipeds accomplish deep-sea chases, we deployed animal-borne instruments that recorded high-resolution electrocardiograms, behaviour and flipper accelerations of bottlenose dolphins (Tursiops truncatus) and Weddell seals (Leptonychotes weddellii) diving from the surface to >200 m. Here we report that both exercise and depth alter the bradycardia associated with the dive response, with the greatest impacts at depths inducing lung collapse. Unexpectedly, cardiac arrhythmias occurred in >73% of deep, aerobic dives, which we attribute to the interplay between sympathetic and parasympathetic drivers for exercise and diving, respectively. Such marked cardiac variability alters the common view of a stereotypic 'dive reflex' in diving mammals. It also suggests the persistence of ancestral terrestrial traits in cardiac function that may help explain the unique sensitivity of some deep-diving marine mammals to anthropogenic disturbances.

  9. Dive and beak movement patterns in leatherback turtles Dermochelys coriacea during internesting intervals in French Guiana.

    PubMed

    Fossette, Sabrina; Gaspar, Philippe; Handrich, Yves; Le Maho, Yvon; Georges, Jean-Yves

    2008-03-01

    1. Investigating the foraging patterns of free-ranging species is essential to estimate energy/time budgets for assessing their real reproductive strategy. Leatherback turtles Dermochelys coriacea (Vandelli 1761), commonly considered as capital breeders, have been reported recently to prospect actively during the breeding season in French Guiana, Atlantic Ocean. In this study we investigate the possibility of this active behaviour being associated with foraging, by studying concurrently diving and beak movement patterns in gravid females equipped with IMASEN (Inter-MAndibular Angle SENsor). 2. Four turtles provided data for periods varying from 7.3 to 56.1 h while exhibiting continuous short and shallow benthic dives. Beak movement ('b-m') events occurred in 34% of the dives, on average 1.8 +/- 1.4 times per dive. These b-m events lasted between 1.5 and 20 s and occurred as isolated or grouped (two to five consecutive beak movements) events in 96.0 +/- 4.0% of the recorded cases, and to a lesser extent in series (> five consecutive beak movements). 3. Most b-m events occurred during wiggles at the bottom of U- and W-shaped dives and at the beginning and end of the bottom phase of the dives. W-shaped dives were associated most frequently with beak movements (65% of such dives) and in particular with grouped beak movements. 4. Previous studies proposed wiggles to be indicator of predatory activity, U- and W-shaped dives being putative foraging dives. Beak movements recorded in leatherbacks during the first hours of their internesting interval in French Guiana may be related to feeding attempts. 5. In French Guiana, leatherbacks show different mouth-opening patterns for different dive patterns, suggesting that they forage opportunistically on occasional prey, with up to 17% of the dives appearing to be successful feeding dives. 6. This study highlights the contrasted strategies adopted by gravid leatherbacks nesting on the Pacific coasts of Costa Rica, in the deep-water Caribbean Sea and in the French Guianan shallow continental shelf, and may be related to different local prey accessibility among sites. Our results may help to explain recently reported site-specific individual body size and population dynamics.

  10. Otorhinolaryngologic disorders and diving accidents: an analysis of 306 divers.

    PubMed

    Klingmann, Christoph; Praetorius, Mark; Baumann, Ingo; Plinkert, Peter K

    2007-10-01

    Diving is a very popular leisure activity with an increasing number of participants. As more than 80% of the diving related problems involve the head and neck region, every otorhinolaryngologist should be familiar with diving medical standards. We here present an analysis of more than 300 patients we have treated in the past four years. Between January 2002 and October 2005, 306 patients presented in our department with otorhinological disorders after diving, or after diving accidents. We collected the following data: name, sex, age, date of treatment, date of accident, diagnosis, special aspects of the diagnosis, number of dives, diving certification, whether and which surgery had been performed, history of acute diving accidents or follow up treatment, assessment of fitness to dive and special remarks. The study setting was a retrospective cohort study. The distribution of the disorders was as follows: 24 divers (8%) with external ear disorders, 140 divers (46%) with middle ear disorders, 56 divers (18%) with inner ear disorders, 53 divers (17%) with disorders of the nose and sinuses, 24 divers (8%) with decompression illness (DCI) and 9 divers (3%) who complained of various symptoms. Only 18% of the divers presented with acute disorders. The most common disorder (24%) was Eustachian tube dysfunction. Female divers were significantly more often affected. Chronic sinusitis was found to be associated with a significantly higher number of performed dives. Conservative treatment failed in 30% of the patients but sinus surgery relieved symptoms in all patients of this group. The middle ear is the main problem area for divers. Middle ear ventilation problems due to Eustachian tube dysfunction can be treated conservatively with excellent results whereas pathology of the tympanic membrane and ossicular chain often require surgery. More than four out of five patients visited our department to re-establish their fitness to dive. Although the treatment of acute diving-related disorders is an important field for the treatment of divers, the main need of divers seems to be assessment and recovery of their fitness to dive.

  11. Structure and composition of the Southern Mariana Forearc: new observations and samples from Shinkai 6500 dive studies in 2010

    NASA Astrophysics Data System (ADS)

    Ohara, Y.; Reagan, M. K.; Ishizuka, O.; Stern, R. J.

    2010-12-01

    The 3000-km long Izu-Bonin-Mariana (IBM) Arc system is an outstanding example of an intraoceanic convergent plate margin, and has become the particular focus of Japanese and US efforts to understand the operation of the “Subduction Factory”. In 2006 and 2008, twelve DSV Shinkai 6500 dives (973-977 and 1091-1097) were performed during YK06-12 and YK08-08 Leg 2 cruises along the landward slope of the southern Mariana Trench. The goal was to sample the remaining early arc crust associated with subduction initiation in the IBM system and upper mantle exposed in the forearc in order to gain a clearer understanding of the structure and evolution of Mariana forearc crust and upper mantle. The fruitful results include the recovery of the entire suite of rocks associated with what could be termed a “supra-subduction zone ophiolite” that formed during subduction initiation. An important discovery is that MORB-like tholeiitic basalts crop out over large areas. These “fore-arc basalts” (FAB) underlie boninites and overlie diabasic and gabbroic rocks. Potential origins include eruption at a spreading center before subduction began or eruption during near-trench spreading after subduction began (Reagan et al., 2010, G3). Another important discovery is a region of active forearc rifting at the southern end of the Mariana arc, named SE Mariana Forearc Rift (SEMFR). The SEMFR was firstly mapped with HMR-1 sonar (Martinez et al., 2000, JGR). Two dives at SEMFR recovered less-depleted backarc related peridotites (at Dive 973; Michibayashi et al., 2009, G3), and fresh basalts and basaltic andesites with petrographic characteristics like backarc basin lavas (at Dive 1096; see Ribeiro et al., AGU FM 2010). Although our previous studies have produced a number of important new observations about the geology of the southern Mariana forearc, our understanding of the region is still primitive. We will be conducting another cruise (YK10-12) during late September, 2010 to tackle two important problems by in-situ dive operations using the Shinkai 6500 and deep-tow camera: (1) Increasing the sampling density along the southern Mariana forearc, thereby providing detail for the lithological map of subduction initiation sequences. A particular goal will be to obtain a more complete suite of gabbroic lithologies for better radiometric age control. (2) Increasing the sampling density in the SEMFR to gain a better understanding of this newly indentified active rift and the origin of its near-trench basalts. In this contribution, we will report the results of this cruise, synthesizing our current understanding of the structure and composition of the southern Mariana forearc.

  12. Are recreational SCUBA divers with asthma at increased risk?

    PubMed

    Ustrup, Amalie S; Ulrik, Charlotte S

    2017-10-01

    Asthma has traditionally been regarded as a contraindication to self-contained underwater breathing apparatus (SCUBA) diving, although large numbers of patients with asthma dive. The aim of the review is to provide an update on current knowledge on potential disease-related hazards in SCUBA divers with asthma. Systematic literature review based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Seven studies met the criteria for inclusion in the review (comprising a total of 560 subjects). Five studies reported an increased risk for developing diving-related injuries in divers with asthma, based on case reports (n = 1), case history combined with objective assessment (n = 1), and dives and/or simulated dives (n = 3). The remaining studies (n = 2) were based on self-reported diving habits in divers suffering from asthma, obtained from anonymous questionnaires in diving magazines, reported no diving-related injuries among respondents. Due to limited evidence it is difficult to draw valid conclusions, but there are indications that recreational divers with asthma may be at increased risk for diving-related injuries compared to non-asthmatic divers. However, it is of at most importance to obtain further evidence from large-scale, well-designed studies.

  13. How seabirds plunge-dive without injuries

    NASA Astrophysics Data System (ADS)

    Chang, Brian; Croson, Matthew; Straker, Lorian; Gart, Sean; Dove, Carla; Gerwin, John; Jung, Sunghwan

    In nature, several seabirds (e.g., gannets and boobies) dive into water at up to 24 m/s as a hunting mechanism; furthermore, gannets and boobies have a slender neck, which is potentially the weakest part of the body under compression during high-speed impact. In this work, we investigate the stability of the bird's neck during plunge-diving by understanding the interaction between the fluid forces acting on the head and the flexibility of the neck. First, we use a salvaged bird to identify plunge-diving phases. Anatomical features of the skull and neck were acquired to quantify the effect of beak geometry and neck musculature on the stability during a plunge-dive. Second, physical experiments using an elastic beam as a model for the neck attached to a skull-like cone revealed the limits for the stability of the neck during the bird's dive as a function of impact velocity and geometric factors. We find that the neck length, neck muscles, and diving speed of the bird predominantly reduce the likelihood of injury during the plunge-dive. Finally, we use our results to discuss maximum diving speeds for humans to avoid injury.

  14. Diving behavior and fishing performance: the case of lobster artisanal fishermen of the Yucatan coast, Mexico.

    PubMed

    Huchim-Lara, Oswaldo; Salas, Silvia; Chin, Walter; Montero, Jorge; Fraga, Julia

    2015-01-01

    An average of 209 cases of decompression sickness (DCS) have been reported every year among artisanal fishermen. divers of the Yucatan Peninsula, Mexico. DCS is a major problem among fishermen divers worldwide. This paper explores how diving behavior and fishing techniques among fishermen relate to the probability of experiencing DCS (Pdcs). Fieldwork was conducted in two communities during the 2012-2013 fishing season. Fishermen were classified into three groups (two per group) according to their fishing performance and followed during their journeys. Dive profiles were recorded using Sensus Ultra dive recorders (Reefet Inc.). Surveys were used to record fishing yields from cooperative and individual fishermen along with fishing techniques and dive behavior. 120 dives were recorded. Fishermen averaged three dives/day, with an average depth of 47 ± 2 feet of sea water (fsw) and an average total bottom time (TBT) of 95 ± 11 minutes. 24% of dives exceeded the 2008 U.S. Navy no-decompression limit. The average ascent rate was 20 fsw/minute, and 5% of those exceeded 40 fsw/minute. Inadequate decompression was observed in all fishermen. Fishermen are diving outside the safety limits of both military and recreational standards. Fishing techniques and dive behavior were important factors in Pdcs. Fishermen were reluctant to seek treatment, and symptoms were relieved with analgesics.

  15. Antioxidant pretreatment and reduced arterial endothelial dysfunction after diving.

    PubMed

    Obad, Ante; Valic, Zoran; Palada, Ivan; Brubakk, Alf O; Modun, Darko; Dujić, Zeljko

    2007-12-01

    We have recently shown that a single air dive leads to acute arterial vasodilation and impairment of endothelium-dependent vasodilatation in humans. Additionally we have found that predive antioxidants at the upper recommended daily allowance partially prevented some of the negative effects of the dive. In this study we prospectively evaluated the effect of long-term antioxidants at a lower RDA dose on arterial endothelial function. Eight professional male divers performed an open sea air dive to 30 msw. Brachial artery flow-mediated dilation (FMD) was assessed before and after diving. The first dive, without antioxidants, caused significant brachial arterial diameter increase from 3.85 +/- 0.55 to 4.04 +/- 0.5 mm and a significant reduction of FMD from 7.6 +/- 2.7 to 2.8 +/- 2.1%. The second dive, with antioxidants, showed unchanged arterial diameter and significant reduction of FMD from 8.11 +/- 2.4 to 6.8 +/- 1.4%. The FMD reduction was significantly less with antioxidants. Vascular smooth muscle function, assessed by nitroglycerine (endothelium-independent dilation), was unaffected by diving. This study shows that long-term antioxidant treatment at a lower RDA dose ending 3-4 h before a dive reduces the endothelial dysfunction in divers. Since the scuba dive was of a similar depth and duration to those practiced by numerous recreational divers, this study raises the possibility of routine predive supplementation with antioxidants.

  16. Novel locomotor muscle design in extreme deep-diving whales.

    PubMed

    Velten, B P; Dillaman, R M; Kinsey, S T; McLellan, W A; Pabst, D A

    2013-05-15

    Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (V(mt)). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (including Ziphius cavirostris and Mesoplodon densirostris) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of several species within these two groups of cetaceans to determine whether they (1) shared muscle design features with other deep divers and (2) performed dives within their calculated ADLs. Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinter's fiber-type profile, composed of ~80% fast-twitch (Type II) fibers with low V(mt). Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both beaked and short-finned pilot whales carry sufficient onboard oxygen to aerobically support their dives.

  17. Diving behavior and movements of juvenile hawksbill turtles Eretmochelys imbricata on a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Blumenthal, J. M.; Austin, T. J.; Bothwell, J. B.; Broderick, A. C.; Ebanks-Petrie, G.; Olynik, J. R.; Orr, M. F.; Solomon, J. L.; Witt, M. J.; Godley, B. J.

    2009-03-01

    As historically abundant spongivores, hawksbill turtles Eretmochelys imbricata likely played a key ecological role on coral reefs. However, coral reefs are now experiencing global declines and many hawksbill populations are critically reduced. For endangered species, tracking movement has been recognized as fundamental to management. Since movements in marine vertebrates encompass three dimensions, evaluation of diving behavior and range is required to characterize marine turtle habitat. In this study, habitat use of hawksbill turtles on a Caribbean coral reef was elucidated by quantifying diel depth utilization and movements in relation to the boundaries of marine protected areas. Time depth recorders (TDRs) and ultrasonic tags were deployed on 21 Cayman Islands hawksbills, ranging in size from 26.4 to 58.4 cm straight carapace length. Study animals displayed pronounced diel patterns of diurnal activity and nocturnal resting, where diurnal dives were significantly shorter, deeper, and more active. Mean diurnal dive depth (±SD) was 8 ± 5 m, range 2-20 m, mean nocturnal dive depth was 5 ± 5 m, range 1-14 m, and maximum diurnal dive depth was 43 ± 27 m, range 7-91 m. Larger individuals performed significantly longer dives. Body mass was significantly correlated with mean dive depth for nocturnal but not diurnal dives. However, maximum diurnal dive depth was significantly correlated with body mass, suggesting partitioning of vertical habitat by size. Thus, variable dive capacity may reduce intraspecific competition and provide resistance to degradation in shallow habitats. Larger hawksbills may also represent important predators on deep reefs, creating a broad ecological footprint over a range of depths.

  18. Residual oxygen time model for oxygen partial pressure near 130 kPa (1.3 atm).

    PubMed

    Shykoff, Barbara E

    2015-01-01

    A two-part residual oxygen time model predicts the probability of detectible pulmonary oxygen toxicity P(P[O2tox]) after dives with oxygen partial pressure (PO2) approximately 130 kPa, and provides a tool to plan dive series with selected risk of P[O2tox]. Data suggest that pulmonary oxygen injury at this PO2 is additive between dives. Recovery begins after a delay and continues during any following dive. A logistic relation expresses P(P[O2tox]) as a function of dive duration (T(dur)) [hours]: P(P[O2tox]) = 100/[1+exp (3.586-0.49 x T(dur))] This expression maps T(dur) to P(P[O2tox]) or, in the linear mid-portion of the curve, P(P[O2tox]) usefully to T(dur). For multiple dives or during recovery, it maps to an equivalent dive duration, T(eq). T(eq) was found after second dives of duration T(dur 2). Residual time from the first dive t(r) = T(eq) - T(dur2). With known t(r), t and T(dur) a recovery model was fitted. t(r) = T(dur) x exp [-k x((t-5)/T(dur)2], where t = t - 5 hours, k = 0.149 for resting, and 0.047 for exercising divers, and t represents time after surfacing. The fits were assessed for 1,352 man-dives. Standard deviations of the residuals were 8.5% and 18.3% probability for resting or exercise dives, respectively.

  19. Twelve years in offshore for Doris C. G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-12

    The offshore engineering operations of Doris have included the design of concrete and steel offshore structures, the design and construction of diving and underwater equipment, offshore equipment, vessels, and heavy mooring systems, and the design and installation of pipelines and risers. The company has also engaged in pipelaying, marine operations, diving, and inspection and maintenance work. Some achievements in 1978 were the completion, tow-out, and installation of the Ninian central platform and the design of an additional riser for the Frigg field manifold compression platform to connect the Piper field to the Frigg gas pipeline. The articulated gravity tower formore » concrete platforms was certified by Norsk Veritas in 1978, but fatigue tests on the articulating ball joint are continuing. New designs include the fixed gravity structure with removable floats, which makes the substructure much smaller, so that concrete platforms become economically feasible in water depths previously considered prohibitive, and the steel-and-concrete hybrid platform, which has been fully developed and certified as safe and economical.« less

  20. 46 CFR 197.314 - First aid and treatment equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... treatment equipment. (a) Each dive location must have— (1) A medical kit approved by a physician that... communications system to obtain emergency assistance except when the vessel or facility ship-to-shore, two-way communications system is readily available. (c) Each dive location supporting mixed-gas dives, dives deeper than...

  1. 46 CFR 197.314 - First aid and treatment equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... treatment equipment. (a) Each dive location must have— (1) A medical kit approved by a physician that... communications system to obtain emergency assistance except when the vessel or facility ship-to-shore, two-way communications system is readily available. (c) Each dive location supporting mixed-gas dives, dives deeper than...

  2. 46 CFR 197.314 - First aid and treatment equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... treatment equipment. (a) Each dive location must have— (1) A medical kit approved by a physician that... communications system to obtain emergency assistance except when the vessel or facility ship-to-shore, two-way communications system is readily available. (c) Each dive location supporting mixed-gas dives, dives deeper than...

  3. 46 CFR 197.410 - Dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... location decompression chamber for at least one hour after the completion of a dive, decompression, or... corrective action taken, if necessary, to reduce the probability of recurrence. (b) The diving supervisor shall ensure that the working interval of a dive is terminated when he so directs or when— (1) A diver...

  4. MBARI's 2001 Hawaii Expedition using the R/V Western Flyer and ROV Tiburon

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Paull, C. K.; Greene, H. G.; Jordahl, K.; Davis, A. S.

    2001-12-01

    The MBARI research vessel Western Flyer with the Tiburon remotely operated vehicle (ROV) spent 36 days at sea doing mainly geologic investigations offshore the Hawaiian Islands during March to May 2001. During these operational days we conducted 57 dives at depths ranging from 150 m to 3820 m and collected 1198 volcanic and carbonate rock samples; 185 sediment samples using sediment scoops, push-cores and short vibracores; and assorted megafauna. We occupied 32 closely spaced heat flow stations, and collected 167 water filtration samples for radium analysis. We also recorded about 280 hours of digital beta format video of the bottom. Heat flow and in-situ thermal conductivity was measured on the northwest flank of Oahu. The radium samples were collected during all of the dives east of Oahu by filtering about 200 liters of seawater on the ROV using a new pump/filtration system. The dives addressed a range of research topics that can be roughly subdivided into four groups. Volcanologic observations and petrologic sampling of constructional volcanic features were done on eruptive fissures on the Kohala terrace west of Hawaii, cones on Kilauea's Puna Ridge and the west rift of Kahoolawe, rejuvenated stage cones and flat-topped cones offshore Oahu, Kauai, and Niihau, and postshield stage cones offshore Niihau. The analyzed lavas from the Puna Ridge are tholeiitic basalts with 4.8-6.4% MgO. The samples from the west rift of Kahoolawe are submarine-erupted, high-SiO2, tholeiitic basalt and tuff. The analyzed rejuvenated and postshield stage lavas and tuffs are alkalic and submarine erupted. The subsidence history of the islands and paleoclimatic history were addressed by sampling old shoreline feature such as drowned coral reefs and drowned beaches. Dives with this objective were done on six terraces on the Kohala terrace, one on East Kohala, four south and southwest of Lanai, one north of Molokai, one south of Oahu, one on the Kaena Ridge, and one northwest of Niihau. We recovered corals from most of these locations and reef limestone from all but the Kaena Ridge dive. We explored the origin of submarine canyons northeast of Oahu, north and south of Molokai and east of Kohala. A related objective was to examine several deep plunge pools that occur at the base of the steep slope below the break-in-slope that marks old shorelines. These topics are covered in other abstracts at this meeting. The structure of the flanks of the volcanoes, mainly associated with the headwalls of giant landslides, was investigated during dives on the south Kona slide, east of Kohala, north of Molokai, west of Oahu on a block in the Waianae landslide, and on the northwest flank of Niihau. The analyzed samples are mostly pillow breccia and hyaloclastite composed of subaerially-erupted tholeiitic basalts, although submarine-erupted lavas occur at the base of the Waianae slide block and the slope of Molokai. Video highlights of the dives and preliminary results will be presented.

  5. Diving-related visual loss in the setting of angioid streaks: report of two cases.

    PubMed

    Angulo Bocco, Maria I; Spielberg, Leigh; Coppens, Greet; Catherine, Janet; Verougstraete, Claire; Leys, Anita M

    2012-01-01

    The purpose of this study was to report diving-related visual loss in the setting of angioid streaks. Observational case reports of two patients with angioid streaks suffering sudden visual loss immediately after diving. Two young adult male patients presented with visual loss after diving headfirst. Funduscopy revealed angioid streaks, peau d'orange, subretinal hemorrhages, and ruptures of Bruch membrane. Choroidal neovascularization developed during follow-up. Both patients had an otherwise uneventful personal and familial medical history. In patients with angioid streaks, diving headfirst can lead to subretinal hemorrhages and traumatic ruptures in Bruch membrane and increase the risk of maculopathy. Ophthalmologists should caution patients with angioid streaks against diving headfirst.

  6. Seals map bathymetry of the Antarctic continental shelf

    NASA Astrophysics Data System (ADS)

    Padman, Laurie; Costa, Daniel P.; Bolmer, S. Thompson; Goebel, Michael E.; Huckstadt, Luis A.; Jenkins, Adrian; McDonald, Birgitte I.; Shoosmith, Deborah R.

    2010-11-01

    We demonstrate the first use of marine mammal dive-depth data to improve maps of bathymetry in poorly sampled regions of the continental shelf. A group of 57 instrumented elephant seals made on the order of 2 × 105 dives over and near the continental shelf on the western side of the Antarctic Peninsula during five seasons, 2005-2009. Maximum dive depth exceeded 2000 m. For dives made near existing ship tracks with measured water depths H<700 m, ˜30% of dive depths were to the seabed, consistent with expected benthic foraging behavior. By identifying the deepest of multiple dives within small areas as a dive to the seabed, we have developed a map of seal-derived bathymetry. Our map fills in several regions for which trackline data are sparse, significantly improving delineation of troughs crossing the continental shelf of the southern Bellingshausen Sea.

  7. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Surface-supplied mixed-gas diving. 197.434 Section 197....434 Surface-supplied mixed-gas diving. The diving supervisor shall insure that— (a) When mixed-gas... supply meeting the requirements of § 197.340; and (k) The surface-supplied mixed-gas diver has the...

  8. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Surface-supplied mixed-gas diving. 197.434 Section 197....434 Surface-supplied mixed-gas diving. The diving supervisor shall insure that— (a) When mixed-gas... supply meeting the requirements of § 197.340; and (k) The surface-supplied mixed-gas diver has the...

  9. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Surface-supplied mixed-gas diving. 197.434 Section 197....434 Surface-supplied mixed-gas diving. The diving supervisor shall insure that— (a) When mixed-gas... supply meeting the requirements of § 197.340; and (k) The surface-supplied mixed-gas diver has the...

  10. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Surface-supplied mixed-gas diving. 197.434 Section 197....434 Surface-supplied mixed-gas diving. The diving supervisor shall insure that— (a) When mixed-gas... supply meeting the requirements of § 197.340; and (k) The surface-supplied mixed-gas diver has the...

  11. Behavioral responses of big brown bats to dives by praying mantises.

    PubMed

    Ghose, Kaushik; Triblehorn, Jeffrey D; Bohn, Kari; Yager, David D; Moss, Cynthia F

    2009-03-01

    Insectivorous echolocating bats face a formidable array of defenses employed by their airborne prey. One such insect defense is the ultrasound-triggered dive, which is a sudden, rapid drop in altitude, sometimes all the way to the ground. Although many previous studies have investigated the dynamics of such dives and their effect on insect survival rate, there has been little work on how bats may adapt to such an insect defense employed in the middle of pursuit. In this study we investigated how big brown bats (Eptesicus fuscus) adjust their pursuit strategy when flying praying mantises (Parasphendale agrionina) execute evasive, ultrasound-triggered dives. Although the mantis dive occasionally forced the bat to completely abort its chase (25% trials), in a number of cases (75% trials) the bat followed the mantis into the dive. In such cases the bat kept its sonar beam locked onto the target and maneuvered to maintain the same time efficient strategy it adopted during level flight pursuit, though it was ultimately defeated by the dive. This study suggests that although the mantis dive can be effective in evading the bat, it does not always deter the bat from continuing pursuit and, given enough altitude, the bat can potentially capture diving prey using the same flight strategy it employs to intercept prey in level flight.

  12. Evidence for behavioural thermoregulation by the world's largest fish

    PubMed Central

    Thums, Michele; Meekan, Mark; Stevens, John; Wilson, Steven; Polovina, Jeff

    2013-01-01

    Many fishes make frequent ascents to surface waters and often show prolonged surface swimming following descents to deep water. This affinity for the surface is thought to be related to the recovery of body heat lost at depth. We tested this hypothesis using data from time–depth recorders deployed on four whale sharks (Rhincodon typus). We summarized vertical movements into bouts of dives and classified these into three main types, using cluster analysis. In addition to day and night ‘bounce’ dives where sharks rapidly descended and ascended, we found a third type: single deep (mean: 340 m), long (mean: 169 min) dives, occurring in daytime with extremely long post-dive surface durations (mean: 146 min). Only sharks that were not constrained by shallow bathymetry performed these dives. We found a negative relationship between the mean surface duration of dives in the bout and the mean minimum temperature of dives in the bout that is consistent with the hypothesis that thermoregulation was a major factor driving use of the surface. The relationship broke down when sharks were diving in mean minimum temperatures around 25°C, suggesting that warmer waters did not incur a large metabolic cost for diving and that other factors may also influence surface use. PMID:23075547

  13. Functional properties of myoglobins from five whale species with different diving capacities.

    PubMed

    Helbo, Signe; Fago, Angela

    2012-10-01

    Whales show an exceptionally wide range of diving capabilities and many express high amounts of the O(2) carrier protein myoglobin (Mb) in their muscle tissues, which increases their aerobic diving capacity. Although previous studies have mainly focused on the muscle Mb concentration and O(2) carrying capacity as markers of diving behavior in whales, it still remains unexplored whether whale Mbs differ in their O(2) affinities and nitrite reductase and peroxidase enzymatic activities, all functions that could contribute to differences in diving capacities. In this study, we have measured the functional properties of purified Mbs from five toothed whales and two baleen whales and have examined their correlation with average dive duration. Results showed that some variation in functional properties exists among whale Mbs, with toothed whale Mbs having higher O(2) affinities and nitrite reductase activities (similar to those of horse Mb) compared with baleen whale Mbs. However, these differences did not correlate with average dive duration. Instead, a significant correlation was found between whale Mb concentration and average duration and depth of dives, and between O(2) affinity and nitrite reductase activity when including horse Mb. Despite the fact that the functional properties showed little species-specific differences in vitro, they may still contribute to enhancing diving capacity as a result of the increased muscle Mb concentration found in extreme divers. In conclusion, Mb concentration rather than specific functional reactivities may support whale diving performance.

  14. The use of drugs by UK recreational divers: illicit drugs.

    PubMed

    Dowse, Marguerite St Leger; Shaw, Steve; Cridge, Christine; Smerdon, Gary

    2011-03-01

    Anecdotal observations suggest the use of illicit drugs takes place amongst recreational divers but, to date, there has been little open debate within the diving community concerning possible prevalence. This study investigated the prevalence and type of illicit drugs used by recreational divers in the United Kingdom (UK). Anonymous questionnaires were circulated via UK dive clubs, dive schools, dive shows and conferences. Questions incorporated diver and diving demographics and general health, which included anxiety, depression and panic attacks, alcohol use, smoking and illicit drug use since learning to dive and closest time to a dive. Questions pertaining to over-the-counter and prescription drug use were also asked. 479 divers responded (66% males and 34% females) in the age range 16 to 59 years. Of the respondents, 22% had used one or more illicit drug since learning to dive, reporting benzodiazepines, amphetamines, cocaine, ecstasy, LSD, cannabis, heroin, and 'magic mushrooms'. Illicit drugs had been used by 3.5% of respondents in the last 12 months, and 3% in the last month. Cannabis, cocaine and ecstasy use was reported within 6 hours of a dive. Logistic regression confirmed a relationship between illicit drug use and depression (P = 0.014), and also between illicit drug use and anxiety (P = 0.024). These data support anecdotal reports that recreational divers use a range of illicit drugs. The significant relationship between illicit drug use and depression and anxiety supports the literature in non-diving populations.

  15. The rat: a laboratory model for studies of the diving response

    PubMed Central

    Gan, Qi; Juric, Rajko

    2010-01-01

    Underwater submersion in mammals induces apnea, parasympathetically mediated bradycardia, and sympathetically mediated peripheral vasoconstriction. These effects are collectively termed the diving response, potentially the most powerful autonomic reflex known. Although these physiological responses are directed by neurons in the brain, study of neural control of the diving response has been hampered since 1) it is difficult to study the brains of animals while they are underwater, 2) feral marine mammals are usually large and have brains of variable size, and 3) there are but few references on the brains of naturally diving species. Similar responses are elicited in anesthetized rodents after stimulation of their nasal mucosa, but this nasopharyngeal reflex has not been compared directly with natural diving behavior in the rat. In the present study, we compared hemodynamic responses elicited in awake rats during volitional underwater submersion with those of rats swimming on the water's surface, rats involuntarily submerged, and rats either anesthetized or decerebrate and stimulated nasally with ammonia vapors. We show that the hemodynamic changes to voluntary diving in the rat are similar to those of naturally diving marine mammals. We also show that the responses of voluntary diving rats are 1) significantly different from those seen during swimming, 2) generally similar to those elicited in trained rats involuntarily “dunked” underwater, and 3) generally different from those seen from dunking naive rats underwater. Nasal stimulation of anesthetized rats differed most from the hemodynamic variables of rats trained to dive voluntarily. We propose that the rat trained to dive underwater is an excellent laboratory model to study neural control of the mammalian diving response, and also suggest that some investigations may be done with nasal stimulation of decerebrate preparations to decipher such control. PMID:20093670

  16. Diving in a warming world: the thermal sensitivity and plasticity of diving performance in juvenile estuarine crocodiles (Crocodylus porosus)

    PubMed Central

    Rodgers, Essie M.; Schwartz, Jonathon J.; Franklin, Craig E.

    2015-01-01

    Air-breathing, diving ectotherms are a crucial component of the biodiversity and functioning of aquatic ecosystems, but these organisms may be particularly vulnerable to the effects of climate change on submergence times. Ectothermic dive capacity is thermally sensitive, with dive durations significantly reduced by acute increases in water temperature; it is unclear whether diving performance can acclimate/acclimatize in response to long-term exposure to elevated water temperatures. We assessed the thermal sensitivity and plasticity of ‘fright-dive’ capacity in juvenile estuarine crocodiles (Crocodylus porosus; n = 11). Crocodiles were exposed to one of three long-term thermal treatments, designed to emulate water temperatures under differing climate change scenarios (i.e. current summer, 28°C; ‘moderate’ climate warming, 31.5°C; ‘high’ climate warming, 35°C). Dive trials were conducted in a temperature-controlled tank across a range of water temperatures. Dive durations were independent of thermal acclimation treatment, indicating a lack of thermal acclimation response. Acute increases in water temperature resulted in significantly shorter dive durations, with mean submergence times effectively halving with every 3.5°C increase in water temperature (Q10 0.17, P < 0.001). Maximal dive performances, however, were found to be thermally insensitive across the temperature range of 28–35°C. These results suggest that C. porosus have a limited or non-existent capacity to thermally acclimate sustained ‘fright-dive’ performance. If the findings here are applicable to other air-breathing, diving ectotherms, the functional capacity of these organisms will probably be compromised under climate warming. PMID:27293738

  17. 76 FR 9817 - Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2011-0008... of Information Collection (Paperwork) Requirements AGENCY: Occupational Safety and Health... OSHA's estimate of the information collection burden is accurate. The Occupational Safety and Health...

  18. 46 CFR 197.203 - Right of appeal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Right of appeal. 197.203 Section 197.203 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations General § 197.203 Right of appeal. Any person directly...

  19. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... taken at the connection point to the distribution system— (1) Every 6 months; and (2) After every repair or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked before... commencement of diving operations, at the umbilical or underwater breathing apparatus connection point for the...

  20. Yet More Visualized JAMSTEC Cruise and Dive Information

    NASA Astrophysics Data System (ADS)

    Tomiyama, T.; Hase, H.; Fukuda, K.; Saito, H.; Kayo, M.; Matsuda, S.; Azuma, S.

    2014-12-01

    Every year, JAMSTEC performs about a hundred of research cruises and numerous dive surveys using its research vessels and submersibles. JAMSTEC provides data and samples obtained during these cruises and dives to international users through a series of data sites on the Internet. The "DARWIN (http://www.godac.jamstec.go.jp/darwin/e)" data site disseminates cruise and dive information. On DARWIN, users can search interested cruises and dives with a combination search form or an interactive tree menu, and find lists of observation data as well as links to surrounding databases. Document catalog, physical sample databases, and visual archive of dive surveys (e. g. in http://www.godac.jamstec.go.jp/jmedia/portal/e) are directly accessible from the lists. In 2014, DARWIN experienced an update, which was arranged mainly for enabling on-demand data visualization. Using login users' functions, users can put listed data items into the virtual basket and then trim, plot and download the data. The visualization tools help users to quickly grasp the quality and characteristics of observation data. Meanwhile, JAMSTEC launched a new data site named "JDIVES (http://www.godac.jamstec.go.jp/jdives/e)" to visualize data and sample information obtained by dive surveys. JDIVES shows tracks of dive surveys on the "Google Earth Plugin" and diagrams of deep-sea environmental data such as temperature, salinity, and depth. Submersible camera images and links to associated databases are placed along the dive tracks. The JDVIES interface enables users to perform so-called virtual dive surveys, which can help users to understand local geometries of dive spots and geological settings of associated data and samples. It is not easy for individual researchers to organize a huge amount of information recovered from each cruise and dive. The improved visibility and accessibility of JAMSTEC databases are advantageous not only for second-hand users, but also for on-board researchers themselves.

  1. Seasonal, Oceanographic and Atmospheric Drivers of Diving Behaviour in a Temperate Seal Species Living in the High Arctic

    PubMed Central

    Blanchet, Marie-Anne; Lydersen, Christian; Ims, Rolf A.; Kovacs, Kit M.

    2015-01-01

    The harbour seal (Phoca vitulina) population in Svalbard marks the northernmost limit of the species’ range. This small population experiences environmental extremes in sea and air temperatures, sea ice cover and also in light regime for this normally temperate species. This study deployed Conductivity Temperature Depth Satellite Relay Data Loggers (CTD-SRDLs) on 30 adult and juvenile harbour seals in 2009 and 2010 to study their foraging behaviour across multiple seasons. A total of 189,104 dives and 16,640 CTD casts (mean depth 72 m ± 59) were recorded. Individuals dove to a mean depth of 41 m ± 24 with a maximum dive depth range of 24 – 403 m. Dives lasted on average 204 sec ± 120 with maximum durations ranging between 240 – 2,220 sec. Average daily depth and duration of dives, number of dives, time spent diving and dive time/surface time were influenced by date, while sex, age, sea-ice concentration and their interactions were not particularly influential. Dives were deeper (~150 m), longer (~480 sec), less numerous (~250 dives/day) and more pelagic during the winter/early spring compared to the fall and animals spent proportionally less time at the bottom of their dives during the winter. Influxes of warm saline water, corresponding to Atlantic Water characteristics, were observed intermittently at depths ~100 m during both winters in this study. The seasonal changes in diving behaviour were linked to average weekly wind stresses from the north or north-east, which induced upwelling events onto the shelf through offshore Ekman transport. During these events the shelf became flooded with AW from the West Spitsbergen Current, which presumably brought Atlantic fish species close to shore and within the seals’ foraging depth-range. Predicted increased in the influx of AW in this region are likely going to favour the growth and geographic expansion of this harbour seal population in the future. PMID:26196289

  2. Dive Risk Factors, Gas Bubble Formation, and Decompression Illness in Recreational SCUBA Diving: Analysis of DAN Europe DSL Data Base.

    PubMed

    Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro

    2017-01-01

    Introduction: The popularity of SCUBA diving is steadily increasing together with the number of dives and correlated diseases per year. The rules that govern correct decompression procedures are considered well known even if the majority of Decompression Sickness (DCS) cases are considered unexpected confirming a bias in the "mathematical ability" to predict DCS by the current algorithms. Furthermore, little is still known about diving risk factors and any individual predisposition to DCS. This study provides an in-depth epidemiological analysis of the diving community, to include additional risk factors correlated with the development of circulating bubbles and DCS. Materials and Methods: An originally developed database (DAN DB) including specific questionnaires for data collection allowed the statistical analysis of 39,099 electronically recorded open circuit dives made by 2,629 European divers (2,189 males 83.3%, 440 females 16.7%) over 5 years. The same dive parameters and risk factors were investigated also in 970 out of the 39,099 collected dives investigated for bubble formation, by 1-min precordial Doppler, and in 320 sea-level dives followed by DCS symptoms. Results: Mean depth and GF high of all the recorded dives were 27.1 m, and 0.66, respectively; the average ascent speed was lower than the currently recommended "safe" one (9-10 m/min). We found statistically significant relationships between higher bubble grades and BMI, fat mass, age, and diving exposure. Regarding incidence of DCS, we identified additional non-bubble related risk factors, which appear significantly related to a higher DCS incidence, namely: gender, strong current, heavy exercise, and workload during diving. We found that the majority of the recorded DCS cases were not predicted by the adopted decompression algorithm and would have therefore been defined as "undeserved." Conclusion: The DAN DB analysis shows that most dives were made in a "safe zone," even if data show an evident "gray area" in the "mathematical" ability to predict DCS by the current algorithms. Some other risk factors seem to influence the possibility to develop DCS, irrespective of their effect on bubble formation, thus suggesting the existence of some factors influencing or enhancing the effects of bubbles.

  3. Navy Irregular Warfare and Counterterrorism Operations: Background and Issues for Congress

    DTIC Science & Technology

    2017-03-21

    appropriation account. Regarding this funding request, DOD states that The Underwater Systems line item procures dry and wet combat submersibles...modifications, and field changes to the Dry Deck Shelter (DDS), and various systems and components for Special Operations Forces (SOF) Combat Diving...environments. The Dry Combat Submersibles (DCS) will provide the capability to insert and extract SOF and/or payloads into denied areas from strategic

  4. [The research progress of diving medicine in China].

    PubMed

    Fang, Yi-Qun; Bao, Xiao-Chen; Li, Ci; Meng, Miao; Yuan, Heng-Rong; Ma, Jun; Wang, Yan

    2012-11-01

    Diving medicine is one of the branches of military medicine, and plays an important role in naval development. This review introduces the progress of researches on undersea and hyperbaric physiology and medicine in the past few years in China. The article describes our research achievement in conventional diving and its medical support, researches on saturation diving and its medical support, submarine escape and its medical support, effects of hyperbaric environments and fast buoyancy ascent on immunological and cardiological functions. Diving disorders (including decompression sickness and oxygen toxicity) are also introduced.

  5. 46 CFR 197.338 - Compressed gas cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.338 Compressed gas cylinders. Each compressed gas cylinder must— (a) Be stored in a ventilated area; (b) Be protected from excessive heat; (c... 46 Shipping 7 2010-10-01 2010-10-01 false Compressed gas cylinders. 197.338 Section 197.338...

  6. 46 CFR 197.326 - Oxygen safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Oxygen safety. 197.326 Section 197.326 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.326 Oxygen safety. (a) Equipment used with oxygen or oxygen mixtures greater than 40 percent by volume must be designed for such use. (b) Oxygen...

  7. 46 CFR 197.326 - Oxygen safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Oxygen safety. 197.326 Section 197.326 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.326 Oxygen safety. (a) Equipment used with oxygen or oxygen mixtures greater than 40 percent by volume must be designed for such use. (b) Oxygen...

  8. 46 CFR 197.326 - Oxygen safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Oxygen safety. 197.326 Section 197.326 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.326 Oxygen safety. (a) Equipment used with oxygen or oxygen mixtures greater than 40 percent by volume must be designed for such use. (b) Oxygen...

  9. 46 CFR 197.326 - Oxygen safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Oxygen safety. 197.326 Section 197.326 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.326 Oxygen safety. (a) Equipment used with oxygen or oxygen mixtures greater than 40 percent by volume must be designed for such use. (b) Oxygen...

  10. 46 CFR 197.326 - Oxygen safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Oxygen safety. 197.326 Section 197.326 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.326 Oxygen safety. (a) Equipment used with oxygen or oxygen mixtures greater than 40 percent by volume must be designed for such use. (b) Oxygen...

  11. 46 CFR 197.314 - First aid and treatment equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false First aid and treatment equipment. 197.314 Section 197... HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.314 First aid and... consists of— (i) Basic first aid supplies; and (ii) Any additional supplies necessary to treat minor trauma...

  12. Flying after diving: should recommendations be reviewed? In-flight echocardiographic study in bubble-prone and bubble-resistant divers.

    PubMed

    Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro

    2015-03-01

    Inert gas accumulated after multiple recreational dives can generate tissue supersaturation and bubble formation when ambient pressure decreases. We hypothesized that this could happen even if divers respected the currently recommended 24-hour pre-flight surface interval (PFSI). We performed transthoracic echocardiography (TTE) on a group of 56 healthy scuba divers (39 male, 17 female) as follows: first echo--during the outgoing flight, no recent dives; second echo--before boarding the return flight, after a multiday diving week in the tropics and a 24-hour PFSI; third echo--during the return flight at 30, 60 and 90 minutes after take-off. TTE was also done after every dive during the week's diving. Divers were divided into three groups according to their 'bubble-proneness': non-bubblers, occasional bubblers and consistent bubblers. During the diving, 23 subjects never developed bubbles, 17 only occasionally and 16 subjects produced bubbles every day and after every dive. Bubbles on the return flight were observed in eight of the 56 divers (all from the 'bubblers' group). Two subjects who had the highest bubble scores during the diving were advised not to make the last dive (increasing their PFSI to approximately 36 hours), and did not demonstrate bubbles on the return flight. Even though a 24-hour PFSI is recommended on the basis of clinical trials showing a low risk of decompression sickness (DCS), the presence of venous gas bubbles in-flight in eight of 56 divers leads us to suspect that in real-life situations DCS risk after such a PFSI is not zero.

  13. Thermal plasticity of diving behavior, aquatic respiration, and locomotor performance in the Mary River turtle Elusor macrurus.

    PubMed

    Clark, Natalie J; Gordos, Matthew A; Franklin, Craig E

    2008-01-01

    Locomotion is a common measure of performance used in studies of thermal acclimation because of its correlation with predator escape and prey capture. However, for sedentary animals such as freshwater turtles, we propose that diving behavior may be a more ecologically relevant measure of performance. Increasing dive duration in hatchling turtles reduces predator exposure and therefore functions as an ecological benefit. Diving behavior is thermally dependent, and in some species of freshwater turtles, it is also reliant on aquatic respiration. This study examined the influence of thermal acclimation on diving behavior, aquatic respiration, and locomotor performance in the endangered, bimodally respiring Mary River turtle Elusor macrurus. Diving behavior was found to partially acclimate at 17 degrees C, with turtles acclimated to a cold temperature (17 degrees C) having a significantly longer dive duration than hatchlings acclimated to a warm temperature (28 degrees C). This increase in dive duration at 17 degrees C was not a result of physiological alterations in metabolic rate but was due instead to an increase in aquatic oxygen consumption. Increasing aquatic oxygen consumption permitted cold-acclimated hatchlings to remain submerged for significantly longer periods, with one turtle undertaking a dive of over 2.5 d. When burst-swimming speed was used as the measure of performance, thermal acclimation was not detected. Overall, E. macrurus demonstrated a partial ability to acclimate to changes in environmental temperature.

  14. Diving bradycardia: a mechanism of defence against hypoxic damage.

    PubMed

    Alboni, Paolo; Alboni, Marco; Gianfranchi, Lorella

    2011-06-01

    A feature of all air-breathing vertebrates, diving bradycardia is triggered by apnoea and accentuated by immersion of the face or whole body in cold water. Very little is known about the afferents of diving bradycardia, whereas the efferent part of the reflex circuit is constituted by the cardiac vagal fibres. Diving bradycardia is associated with vasoconstriction of selected vascular beds and a reduction in cardiac output. The diving response appears to be more pronounced in mammals than in birds. In humans, the bradycardic response to diving varies greatly from person to person; the reduction in heart rate generally ranges from 15 to 40%, but a small proportion of healthy individuals can develop bradycardia below 20 beats/min. During prolonged dives, bradycardia becomes more pronounced because of activation of the peripheral chemoreceptors by a reduction in the arterial partial pressure of oxygen (O2), responsible for slowing of heart rate. The vasoconstriction is associated with a redistribution of the blood flow, which saves O2 for the O2-sensitive organs, such as the heart and brain. The results of several investigations carried out both in animals and in humans show that the diving response has an O2-conserving effect, both during exercise and at rest, thus lengthening the time to the onset of serious hypoxic damage. The diving response can therefore be regarded as an important defence mechanism for the organism.

  15. Behavioral responses of big brown bats to dives by praying mantises

    PubMed Central

    Ghose, Kaushik; Triblehorn, Jeffrey D.; Bohn, Kari; Yager, David D.; Moss, Cynthia F.

    2009-01-01

    Summary Insectivorous echolocating bats face a formidable array of defenses employed by their airborne prey. One such insect defense is the ultrasound-triggered dive, which is a sudden, rapid drop in altitude, sometimes all the way to the ground. Although many previous studies have investigated the dynamics of such dives and their effect on insect survival rate, there has been little work on how bats may adapt to such an insect defense employed in the middle of pursuit. In this study we investigated how big brown bats (Eptesicus fuscus) adjust their pursuit strategy when flying praying mantises (Parasphendale agrionina) execute evasive, ultrasound-triggered dives. Although the mantis dive occasionally forced the bat to completely abort its chase (25% trials), in a number of cases (75% trials) the bat followed the mantis into the dive. In such cases the bat kept its sonar beam locked onto the target and maneuvered to maintain the same time efficient strategy it adopted during level flight pursuit, though it was ultimately defeated by the dive. This study suggests that although the mantis dive can be effective in evading the bat, it does not always deter the bat from continuing pursuit and, given enough altitude, the bat can potentially capture diving prey using the same flight strategy it employs to intercept prey in level flight. PMID:19218521

  16. Echolocation in Blainville's beaked whales (Mesoplodon densirostris).

    PubMed

    Madsen, P T; de Soto, N Aguilar; Arranz, P; Johnson, M

    2013-06-01

    Here we use sound and movement recording tags to study how deep-diving Blainville's beaked whales (Mesoplodon densirostris) use echolocation to forage in their natural mesopelagic habitat. These whales ensonify thousands of organisms per dive but select only about 25 prey for capture. They negotiate their cluttered environment by radiating sound in a narrow 20° field of view which they sample with 1.5-3 clicks per metre travelled requiring only some 60 clicks to locate, select and approach each prey. Sampling rates do not appear to be defined by the range to individual targets, but rather by the movement of the predator. Whales sample faster when they encounter patches of prey allowing them to search new water volumes while turning rapidly to stay within a patch. This implies that the Griffin search-approach-capture model of biosonar foraging must be expanded to account for sampling behaviours adapted to the overall prey distribution. Beaked whales can classify prey at more than 15 m range adopting stereotyped motor patterns when approaching some prey. This long detection range relative to swimming speed facilitates a deliberate mode of sensory-motor operation in which prey and capture tactics can be selected to optimize energy returns during long breath-hold dives.

  17. Investigation of Dive Brakes and a Dive-Recovery Flap on a High-Aspect-Ratio Wing in the Langley 8-Foot High-Speed Tunnel

    NASA Technical Reports Server (NTRS)

    Mattson, Axel T.

    1946-01-01

    The results of tests made to determine the aerodynamic characteristics of a solid brake, a slotted brake, and a dive-recovery flap mounted on a high aspect ratio wing at high Mach numbers are presented. The data were obtained in the Langley 8-foot high-speed tunnel for corrected Mach numbers up to 0.940. The results have been analyzed with regard to the suitability of dive-control devices for a proposed high-speed airplane in limiting the airplane terminal Mach number by the use of dive brakes and in achieving favorable dive-recovery characteristics by the use of a dive-recovery flap. The analysis of the results indicated that the slotted brake would limit the proposed airplane terminal Mach number to values below 0.880 for altitudes up to 35,000 feet and a wing loading of 80 pounds per square foot and the dive-recovery flap would produce trim changes required for controlled pull-outs at 25,000 feet for a Mach number range from 0.800 to 0.900. Basic changes in spanwise loading are presented to aid in the evaluation of the wing strength requirements.

  18. The diving behaviour of green turtles undertaking oceanic migration to and from Ascension Island: dive durations, dive profiles and depth distribution.

    PubMed

    Hays, G C; Akesson, S; Broderick, A C; Glen, F; Godley, B J; Luschi, P; Martin, C; Metcalfe, J D; Papi, F

    2001-12-01

    Satellite telemetry was used to record the submergence duration of green turtles (Chelonia mydas) as they migrated from Ascension Island to Brazil (N=12 individuals) while time/depth recorders (TDRs) were used to examine the depth distribution and dive profiles of individuals returning to Ascension Island to nest after experimental displacement (N=5 individuals). Satellite telemetry revealed that most submergences were short (<5 min) but that some submergences were longer (>20 min), particularly at night. TDRs revealed that much of the time was spent conducting short (2-4 min), shallow (approximately 0.9-1.5 m) dives, consistent with predictions for optimisation of near-surface travelling, while long (typically 20-30 min), deep (typically 10-20 m) dives had a distinctive profile found in other marine reptiles. These results suggest that green turtles crossing the Atlantic do not behave invariantly, but instead alternate between periods of travelling just beneath the surface and diving deeper. These deep dives may have evolved to reduce silhouetting against the surface, which would make turtles more susceptible to visual predators such as large sharks.

  19. Sports-related lung injury during breath-hold diving.

    PubMed

    Mijacika, Tanja; Dujic, Zeljko

    2016-12-01

    The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise.In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition.According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage. Copyright ©ERS 2016.

  20. Potentially conflicting metabolic demands of diving and exercise in seals.

    PubMed

    Castellini, M A; Murphy, B J; Fedak, M; Ronald, K; Gofton, N; Hochachka, P W

    1985-02-01

    Metabolic replacement rates (Ra) for glucose and free fatty acids (FFA) were determined during rest, exercise, and diving conditions in the gray seal using bolus injections of radiotracers. In the exercise experiments the seal swam at a metabolic rate elevated twofold over resting Ra for glucose and FFA while resting were similar to values found in terrestrial mammals and other marine mammal species. During exercise periods glucose turnover increased slightly while FFA turnover changes were variable. However, the energetic demands of exercise could not be met by the increase in the replacement rates of glucose or FFA even if both were completely oxidized. Under diving conditions the tracer pool displayed radically different specific activity curves indicative of the changes in perfusion and metabolic rate associated with a strong dive response. Since the radiotracer curves during exercise and diving differed qualitatively and quantitatively, it is possible that similar studies on freely diving animals can be used to assess the role of the diving response during underwater swimming in nature.

  1. A forensic diving medicine examination of a highly publicised scuba diving fatality.

    PubMed

    Edmonds, Carl

    2012-12-01

    A high-profile diving death occurred in 2003 at the site of the wreck of the SS Yongala off the Queensland coast. The victim's buddy, her husband, was accused of her murder and found guilty of manslaughter in an Australian court. A detailed analysis of all the evidence concerning this fatality suggests alternative medical reasons for her death. The value of decompression computers in determining the diving details and of CT scans in clarifying autopsy findings is demonstrated. The victim was medically, physically and psychologically unfit to undertake the fatal dive. She was inexperienced and inadequately supervised. She was over-weighted and exposed for the first time to difficult currents. The analysis of the dive demonstrates how important it is to consider the interaction of all factors and to not make deductions from individual items of information. It also highlights the importance of early liaison between expert divers, technicians, diving clinicians and pathologists, if inappropriate conclusions are to be avoided.

  2. Strategic Acoustic Control of a Hummingbird Courtship Dive.

    PubMed

    Clark, Christopher J; Mistick, Emily A

    2018-04-23

    Male hummingbirds court females with a high-speed dive in which they "sing" with their tail feathers. The male's choice of trajectory provides him strategic control over acoustic frequency and pressure levels heard by the female. Unlike related species, male Costa's hummingbirds (Calypte costae) choose to place their dives to the side of females. Here we show that this minimizes an audible Doppler curve in their dive sound, thereby depriving females of an acoustic indicator that would otherwise reveal male dive speed. Wind-tunnel experiments indicate that the sounds produced by their feathers are directional; thus, males should aim their tail toward females. High-speed video of dives reveal that males twist half of their tail vertically during the dive, which acoustic-camera video shows effectively aims this sound sideways, toward the female. Our results demonstrate that male animals can strategically modulate female perception of dynamic aspects of athletic motor displays, such as their speed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The cardiovascular system and diving risk.

    PubMed

    Bove, Alfred A

    2011-01-01

    Recreational scuba diving is a sport that requires a certain physical capacity, in addition to consideration of the environmental stresses produced by increased pressure, low temperature and inert gas kinetics in tissues of the body. Factors that may influence ability to dive safely include age, physical conditioning, tolerance of cold, ability to compensate for central fluid shifts induced by water immersion, and ability to manage exercise demands when heart disease might compromise exercise capacity. Patients with coronary heart disease, valvular heart disease, congenital heart disease and cardiac arrhythmias are capable of diving, but consideration must be given to the environmental factors that might interact with the cardiac disorder. Understanding of the interaction of the diving environment with various cardiac disorders is essential to providing a safe diving environment to individual divers with known heart disease.

  4. Gliding flight: speed and acceleration of ideal falcons during diving and pull out.

    PubMed

    Tucker

    1998-01-14

    Some falcons, such as peregrines (Falco peregrinus), attack their prey in the air at the end of high-speed dives and are thought to be the fastest of animals. Estimates of their top speed in a dive range up to 157 m s-1, although speeds this high have never been accurately measured. This study investigates the aerodynamic and gravitational forces on 'ideal falcons' and uses a mathematical model to calculate speed and acceleration during diving. Ideal falcons have body masses of 0.5-2.0 kg and morphological and aerodynamic properties based on those measured for real falcons. The top speeds reached during a dive depend on the mass of the bird and the angle and duration of the dive. Given enough time, ideal falcons can reach top speeds of 89-112 m s-1 in a vertical dive, the higher speed for the heaviest bird, when the parasite drag coefficient has a value of 0.18. This value was measured for low-speed flight, and it could plausibly decline to 0.07 at high speeds. Top speeds then would be 138-174 m s-1. An ideal falcon diving at angles between 15 and 90 degrees with a mass of 1 kg reaches 95 % of top speed after travelling approximately 1200 m. The time and altitude loss to reach 95 % of top speed range from 38 s and 322 m at 15 degrees to 16 s and 1140 m at 90 degrees, respectively. During pull out at top speed from a vertical dive, the 1 kg ideal falcon can generate a lift force 18 times its own weight by reducing its wing span, compared with a lift force of 1.7 times its weight at full wing span. The falcon loses 60 m of altitude while pulling out of the dive, and lift and loss of altitude both decrease as the angle of the dive decreases. The 1 kg falcon can slow down in a dive by increasing its parasite drag and the angle of attack of its wings. Both lift and drag increase with angle of attack, but the falcon can cancel the increased lift by holding its wings in a cupped position so that part of the lift is directed laterally. The increased drag of wings producing maximum lift is great enough to decelerate the falcon at -1.5 times the acceleration of gravity at a dive angle of 45 degrees and a speed of 41 m s-1 (0.5 times top speed). Real falcons can control their speeds in a dive by changing their drag and by choosing the length of the dive. They would encounter both advantages and disadvantages by diving at the top speeds of ideal falcons, and whether they achieve those speeds remains to be investigated.

  5. Diving accidents in sports divers in Orkney waters.

    PubMed

    Trevett, A J; Forbes, R; Rae, C K; Sheehan, C; Ross, J; Watt, S J; Stephenson, R

    2001-12-01

    Scapa Flow in Orkney is one of the major world centres for wreck diving. Because of the geography of Orkney and the nature of the diving, it is possible to make relatively accurate estimates of the number of dives taking place. The denominator of dive activity allows the unusual opportunity of precise calculation of accident rates. In 1999, one in every 178 sports divers visiting Orkney was involved in a significant accident, in 2000 the figure was one in 102. Some of these accidents appear to have been predictable and could be avoided by better education and preparation of visiting divers.

  6. Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy.

    PubMed

    Ponganis, P J; St Leger, J; Scadeng, M

    2015-03-01

    The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are smaller in these deeper-diving species than in the spheniscid penguin of the morphometry study. If penguins do inhale to this maximum air sac volume prior to their deepest dives, the magnitude and distribution of the body O2 store would change considerably. In emperor penguins, total body O2 would increase by 75%, and the respiratory fraction would increase from 33% to 61%. We emphasize that the maximum pre-dive respiratory air volume is still unknown in penguins. However, even lesser increases in air sac volume prior to a dive would still significantly increase the O2 store. More refined evaluations of the respiratory O2 store and baroprotective mechanisms in penguins await further investigation of species-specific lung morphometry, start-of-dive air volumes and body buoyancy, and the possibility of air exhalation during dives. © 2015. Published by The Company of Biologists Ltd.

  7. The value of closed-circuit rebreathers for biological research

    USGS Publications Warehouse

    Pyle, Richrad L.; Lobel, Phillip S.; Tomoleoni, Joseph

    2016-01-01

    Closed-circuit rebreathers have been used for underwater biological research since the late 1960s, but have only started to gain broader application within scientific diving organizations within the past two decades. Rebreathers offer certain specific advantages for such research, especially for research involving behavior and surveys that depend on unobtrusive observers or for a stealthy approach to wildlife for capture and tagging, research that benefits from extended durations underwater, and operations requiring access to relatively deep (>50 m) environments (especially in remote locations). Although many institutions have been slow to adopt rebreather technology within their diving programs, recent developments in rebreather technology that improve safety, standardize training requirements, and reduce costs of equipment and maintenance, will likely result in a trend of increasing utilization of rebreathers for underwater biological research.

  8. 29 CFR Appendix B to Subpart T of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... project using scientific diving is the advancement of science; therefore, information and data resulting... data gatherer. Construction and trouble-shooting tasks traditionally associated with commercial diving...

  9. 29 CFR Appendix B to Subpart T to... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... project using scientific diving is the advancement of science; therefore, information and data resulting... data gatherer. Construction and trouble-shooting tasks traditionally associated with commercial diving...

  10. 29 CFR Appendix B to Subpart T of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... project using scientific diving is the advancement of science; therefore, information and data resulting... data gatherer. Construction and trouble-shooting tasks traditionally associated with commercial diving...

  11. 29 CFR Appendix B to Subpart T to... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... project using scientific diving is the advancement of science; therefore, information and data resulting... data gatherer. Construction and trouble-shooting tasks traditionally associated with commercial diving...

  12. The relative risk of decompression sickness during and after air travel following diving.

    PubMed

    Freiberger, J J; Denoble, P J; Pieper, C F; Uguccioni, D M; Pollock, N W; Vann, R D

    2002-10-01

    Decompression sickness (DCS) can be provoked by post-dive flying but few data exist to quantify the risk of different post-dive, preflight surface intervals (PFSI). We conducted a case-control study using field data from the Divers Alert Network to evaluate the relative risk of DCS from flying after diving. The PFSI and the maximum depths on the last day of diving (MDLD) were analyzed from 627 recreational dive profiles. The data were divided into quartiles based on surface interval and depth. Injured divers (cases) and uninjured divers (controls) were compared using logistic regression to determine the association of DCS with time and depth while controlling for diver and dive profiles characteristics. These included PFSI, MDLD, gender, height, weight, age, and days of diving. The means (+/-SD) for cases and controls were as follows: PFSI, 20.7 +/- 9.6 h vs. 27.1 +/- 6.7 h; MDLD, 22.5 +/- 14 meters sea water (msw) vs. 19 +/- 11.3 msw; male gender, 60% vs. 70%; weight, 75.8 +/- 18 kg vs. 77.6 +/- 16 kg; height, 173 +/- 16 cm vs. 177 +/- 9 cm; age, 36.8 +/- 10 yr vs. 42.9 +/- 11 yr; diving > or = 3 d, 58% vs. 97%. Relative to flying > 28 h after diving, the odds of DCS (95% CI) were: 1.02 (0.61, 1.7) 24-28 h; 1.84 (1.0, 3.3) 20-24 h; and 8.5 (3.85, 18.9) < 20 h. Relative to a depth of < 14.7 msw, the odds of DCS (95% CI) were: 1.2 (0.6, 1.7) 14.7-18.5 msw; 2.9 (1.65, 5.3) 18.5-26 msw; and 5.5 (2.96, 1 0.0) > 26 msw. Odds ratios approximate relative risk in rare diseases such as DCS. This study demonstrated an increase in relative risk from flying after diving following shorter PFSIs and/or greater dive depths on the last day. The relative risk increases geometrically as the PFSI becomes smaller.

  13. Body mass and anaerobic tolerance influence vertical habitat selection in meso- and bathypelagic foraging toothed whales of the Bahamas

    NASA Astrophysics Data System (ADS)

    Joyce, T. W.; Durban, J. W.; Fearnbach, H. H.; Claridge, D. E.; Ballance, L. T.

    2016-02-01

    Diving and spatial distribution data from small (55g) satellite transmitter tags attached to five species of deep-diving toothed whales were used to examine the physiological and ecological tradeoffs influencing vertical foraging ranges in the Bahamas. These tradeoffs have important consequences in terms of the ecological impacts of different toothed whale predators on meso- and bathypelagic prey populations, and also on relative vulnerabilities to human impacts (e.g., noise, vessel-strike). Within this assemblage, larger toothed-whales were hypothesized to more efficiently access deeper prey by having the capacity to sustain longer dives, based on a divergence of metabolic rates from oxygen storage capacity as mass increases. However, the observed vertical foraging ranges of melon-headed whales (Peponocephala electra, n=13), short-finned pilot whales (Globicephala macrorhynchus, n=15), Blainville's beaked whales (Mesoplodon densirostris, n=12), Cuvier's beaked whales (Ziphius cavirostris, n=7), and sperm whales (Physeter macrocephalus, n=27), only weakly support hypothesized increases in dive duration and depth as power law functions body mass (R2=0.36 & 0.23). In particular, the relatively small beaked whales (M.d. 853kg; Z.c. 1557kg) performed extremely long and deep foraging dives (M.d. max. 67mins & 1888m; Z.c. max. 103mins & 1888m) relative to expectations of simple allometric scaling. Based on foraging dive durations and post-foraging dive recovery patterns, both beaked whales appear to exceed aerobic dive limits, which enabled access to bathypelagic niches but at the cost of significantly longer recovery periods between foraging dives and comparatively low foraging time efficiency (<29% of time in foraging strata). The inclusion of aerobic and anaerobic dive strategies in allometric models of dive duration and depth yielded considerably greater explanatory power (R2=0.96 & 0.90), providing an improved framework for interpreting the tradeoffs between body size, diving efficiency, and access to different prey layers. Vertical foraging ranges in turn had important implications in terms of responses to diurnal variation in light intensity, and the relative affinities of different species to deep-scattering and benthic boundary layers of prey.

  14. High diving metabolic rate indicated by high-speed transit to depth in negatively buoyant long-finned pilot whales.

    PubMed

    Aoki, Kagari; Sato, Katsufumi; Isojunno, Saana; Narazaki, Tomoko; Miller, Patrick J O

    2017-10-15

    To maximize foraging duration at depth, diving mammals are expected to use the lowest cost optimal speed during descent and ascent transit and to minimize the cost of transport by achieving neutral buoyancy. Here, we outfitted 18 deep-diving long-finned pilot whales with multi-sensor data loggers and found indications that their diving strategy is associated with higher costs than those of other deep-diving toothed whales . Theoretical models predict that optimal speed is proportional to (basal metabolic rate/drag) 1/3 and therefore to body mass 0.05 The transit speed of tagged animals (2.7±0.3 m s -1 ) was substantially higher than the optimal speed predicted from body mass (1.4-1.7 m s -1 ). According to the theoretical models, this choice of high transit speed, given a similar drag coefficient (median, 0.0035) to that in other cetaceans, indicated greater basal metabolic costs during diving than for other cetaceans. This could explain the comparatively short duration (8.9±1.5 min) of their deep dives (maximum depth, 444±85 m). Hydrodynamic gliding models indicated negative buoyancy of tissue body density (1038.8±1.6 kg m -3 , ±95% credible interval, CI) and similar diving gas volume (34.6±0.6 ml kg -1 , ±95% CI) to those in other deep-diving toothed whales. High diving metabolic rate and costly negative buoyancy imply a 'spend more, gain more' strategy of long-finned pilot whales, differing from that in other deep-diving toothed whales, which limits the costs of locomotion during foraging. We also found that net buoyancy affected the optimal speed: high transit speeds gradually decreased during ascent as the whales approached neutral buoyancy owing to gas expansion. © 2017. Published by The Company of Biologists Ltd.

  15. Individual Foraging Strategies Reveal Niche Overlap between Endangered Galapagos Pinnipeds

    PubMed Central

    Villegas-Amtmann, Stella; Jeglinski, Jana W. E.; Costa, Daniel P.; Robinson, Patrick W.; Trillmich, Fritz

    2013-01-01

    Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis) and sea lions (Zalophus wollebaeki) share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep) indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0–80 m depth and mostly at 19–22 h. Most sea lion dives also occurred at night (63%), between 0–40 m, within fur seals' diving depth range. 34% of sea lions night dives occurred at 19–22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0–30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h), depth during overlapping time (21–24 m), and foraging range (37.7%). Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging “hot spot” for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during warmer periods when prey availability is reduced. PMID:23967096

  16. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression.

    PubMed

    Pontier, J-M; Lambrechts, K

    2014-06-01

    We highlighted a relationship between decompression-induced bubble formation and platelet micro-particle (PMP) release after a scuba air-dive. It is known that decompression protocol using oxygen-stop accelerates the washout of nitrogen loaded in tissues. The aim was to study the effect of oxygen deco-stop on bubble formation and cell-derived MP release. Healthy experienced divers performed two scuba-air dives to 30 msw for 30 min, one with an air deco-stop and a second with 100% oxygen deco-stop at 3 msw for 9 min. Bubble grades were monitored with ultrasound and converted to the Kisman integrated severity score (KISS). Blood samples for cell-derived micro-particle analysis (AnnexinV for PMP and CD31 for endothelial MP) were taken 1 h before and after each dive. Mean KISS bubble score was significantly lower after the dive with oxygen-decompression stop, compared to the dive with air-decompression stop (4.3 ± 7.3 vs. 32.7 ± 19.9, p < 0.001). After the dive with an air-breathing decompression stop, we observed an increase of the post-dive mean values of PMP (753 ± 245 vs. 381 ± 191 ng/μl, p = 0.003) but no significant change in the oxygen-stop decompression dive (329 ± 215 vs. 381 +/191 ng/μl, p = 0.2). For the post-dive mean values of endothelial MP, there was no significant difference between both the dives. The Oxygen breathing during decompression has a beneficial effect on bubble formation accelerating the washout of nitrogen loaded in tissues. Secondary oxygen-decompression stop could reduce bubble-induced platelet activation and the pro-coagulant activity of PMP release preventing the thrombotic event in the pathogenesis of decompression sickness.

  17. The Effect of a Diving Mask on Intraocular Pressure in a Healthy Population.

    PubMed

    Goenadi, Catherina Josephine; Law, David Zhiwei; Lee, Jia Wen; Ong, Ee Lin; Chee, Wai Kitt; Cheng, Jason

    2016-01-01

    Swimming goggles increase the intraocular pressure (IOP) via the periorbital frame pressure and suction effect. In comparison, diving masks have a larger frame rim and incorporate the nose. The exact effect(s) of diving masks on IOP is unknown. This study evaluates the influence of diving masks on IOP in normal, healthy subjects. Tonometry was performed in both eyes of all subjects with an AVIA(®)Tono-Pen by a single investigator. Measurements were taken at baseline without the diving mask and with the subjects wearing a small-volume, double-window diving mask, but with the mask lenses removed. Two IOP readings in each eye were measured, and an additional reading was measured if the difference between the initial 2 was ≥2 mm Hg. Central corneal thickness (CCT) was also measured in each eye, using a contact pachymeter (OcuScan(®)Alcon). Forty eyes of 20 healthy volunteers (age 29.7 ± 9.3 years; range 21-52) were included. The mean CCT was 544.4 ± 43.5 µm. The mean IOP before the diving mask was worn had been 17.23 ± 2.18 mm Hg (n = 40). The IOP decreased by 0.43 mm Hg (p $1003c; 0.05) to 16.80 ± 2.57 mm Hg after the diving mask had been put on. There was no correlation between IOP change and age (r = 0.143, p = 0.337), gender (r = -0.174, p = 0.283) or CCT (r = -0.123, p = 0.445). There was no increase in IOP after the diving mask had been worn. A small but statistically significant decrease in IOP was observed. This study demonstrates that unlike swimming goggles, the strap tension and frame pressure on the periorbital tissue from a diving mask does not increase IOP. Diving masks may be a suitable alternative to swimming goggles for patients with advanced glaucoma or glaucoma filtration surgery.

  18. The Effect of a Diving Mask on Intraocular Pressure in a Healthy Population

    PubMed Central

    Goenadi, Catherina Josephine; Law, David Zhiwei; Lee, Jia Wen; Ong, Ee Lin; Chee, Wai Kitt; Cheng, Jason

    2016-01-01

    Purpose Swimming goggles increase the intraocular pressure (IOP) via the periorbital frame pressure and suction effect. In comparison, diving masks have a larger frame rim and incorporate the nose. The exact effect(s) of diving masks on IOP is unknown. This study evaluates the influence of diving masks on IOP in normal, healthy subjects. Methods Tonometry was performed in both eyes of all subjects with an AVIA®Tono-Pen by a single investigator. Measurements were taken at baseline without the diving mask and with the subjects wearing a small-volume, double-window diving mask, but with the mask lenses removed. Two IOP readings in each eye were measured, and an additional reading was measured if the difference between the initial 2 was ≥2 mm Hg. Central corneal thickness (CCT) was also measured in each eye, using a contact pachymeter (OcuScan®Alcon). Results Forty eyes of 20 healthy volunteers (age 29.7 ± 9.3 years; range 21–52) were included. The mean CCT was 544.4 ± 43.5 µm. The mean IOP before the diving mask was worn had been 17.23 ± 2.18 mm Hg (n = 40). The IOP decreased by 0.43 mm Hg (p $1003c; 0.05) to 16.80 ± 2.57 mm Hg after the diving mask had been put on. There was no correlation between IOP change and age (r = 0.143, p = 0.337), gender (r = −0.174, p = 0.283) or CCT (r = −0.123, p = 0.445). Conclusion There was no increase in IOP after the diving mask had been worn. A small but statistically significant decrease in IOP was observed. This study demonstrates that unlike swimming goggles, the strap tension and frame pressure on the periorbital tissue from a diving mask does not increase IOP. Diving masks may be a suitable alternative to swimming goggles for patients with advanced glaucoma or glaucoma filtration surgery. PMID:27462262

  19. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania

    2016-01-01

    In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Judging complex movement performances for excellence: a principal components analysis-based technique applied to competitive diving.

    PubMed

    Young, Cole; Reinkensmeyer, David J

    2014-08-01

    Athletes rely on subjective assessment of complex movements from coaches and judges to improve their motor skills. In some sports, such as diving, snowboard half pipe, gymnastics, and figure skating, subjective scoring forms the basis for competition. It is currently unclear whether this scoring process can be mathematically modeled; doing so could provide insight into what motor skill is. Principal components analysis has been proposed as a motion analysis method for identifying fundamental units of coordination. We used PCA to analyze movement quality of dives taken from USA Diving's 2009 World Team Selection Camp, first identifying eigenpostures associated with dives, and then using the eigenpostures and their temporal weighting coefficients, as well as elements commonly assumed to affect scoring - gross body path, splash area, and board tip motion - to identify eigendives. Within this eigendive space we predicted actual judges' scores using linear regression. This technique rated dives with accuracy comparable to the human judges. The temporal weighting of the eigenpostures, body center path, splash area, and board tip motion affected the score, but not the eigenpostures themselves. These results illustrate that (1) subjective scoring in a competitive diving event can be mathematically modeled; (2) the elements commonly assumed to affect dive scoring actually do affect scoring (3) skill in elite diving is more associated with the gross body path and the effect of the movement on the board and water than the units of coordination that PCA extracts, which might reflect the high level of technique these divers had achieved. We also illustrate how eigendives can be used to produce dive animations that an observer can distort continuously from poor to excellent, which is a novel approach to performance visualization. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Buoyancy under Control: Underwater Locomotor Performance in a Deep Diving Seabird Suggests Respiratory Strategies for Reducing Foraging Effort

    PubMed Central

    Cook, Timothée R.; Kato, Akiko; Tanaka, Hideji; Ropert-Coudert, Yan; Bost, Charles-André

    2010-01-01

    Background Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag) and report locomotor adjustments to the change of buoyancy with depth. Methodology/Principal Findings Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. Conclusions/Significance Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants - as in other families of diving seabirds - of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control. PMID:20352122

  2. Bioenergetics and diving activity of internesting leatherback turtles Dermochelys coriacea at Parque Nacional Marino Las Baulas, Costa Rica.

    PubMed

    Wallace, Bryan P; Williams, Cassondra L; Paladino, Frank V; Morreale, Stephen J; Lindstrom, R Todd; Spotila, James R

    2005-10-01

    Physiology, environment and life history demands interact to influence marine turtle bioenergetics and activity. However, metabolism and diving behavior of free-swimming marine turtles have not been measured simultaneously. Using doubly labeled water, we obtained the first field metabolic rates (FMRs; 0.20-0.74 W kg(-1)) and water fluxes (16-30% TBW day(-1), where TBW=total body water) for free-ranging marine turtles and combined these data with dive information from electronic archival tags to investigate the bioenergetics and diving activity of reproductive adult female leatherback turtles Dermochelys coriacea. Mean dive durations (7.8+/-2.4 min (+/-1 s.d.), bottom times (2.7+/-0.8 min), and percentage of time spent in water temperatures (Tw) < or =24 degrees C (9.5+/-5.7%) increased with increasing mean maximum dive depths (22.6+/-7.1 m; all P< or =0.001). The FMRs increased with longer mean dive durations, bottom times and surface intervals and increased time spent in Tw< or =24 degrees C (all r2> or =0.99). This suggests that low FMRs and activity levels, combined with shuttling between different water temperatures, could allow leatherbacks to avoid overheating while in warm tropical waters. Additionally, internesting leatherback dive durations were consistently shorter than aerobic dive limits calculated from our FMRs (11.7-44.3 min). Our results indicate that internesting female leatherbacks maintained low FMRs and activity levels, thereby spending relatively little energy while active at sea. Future studies should incorporate data on metabolic rate, dive patterns, water temperatures, and body temperatures to develop further the relationship between physiological and life history demands and marine turtle bioenergetics and activity.

  3. First long-term behavioral records from Cuvier's beaked whales (Ziphius cavirostris) reveal record-breaking dives.

    PubMed

    Schorr, Gregory S; Falcone, Erin A; Moretti, David J; Andrews, Russel D

    2014-01-01

    Cuvier's beaked whales (Ziphius cavirostris) are known as extreme divers, though behavioral data from this difficult-to-study species have been limited. They are also the species most often stranded in association with Mid-Frequency Active (MFA) sonar use, a relationship that remains poorly understood. We used satellite-linked tags to record the diving behavior and locations of eight Ziphius off the Southern California coast for periods up to three months. The effort resulted in 3732 hr of dive data with associated regional movements--the first dataset of its kind for any beaked whale--and included dives to 2992 m depth and lasting 137.5 min, both new mammalian dive records. Deep dives had a group mean depth of 1401 m (s.d. = 137.8, n = 1142) and duration of 67.4 min (s.d. = 6.9). The group mean time between deep dives was 102.3 min (s.d. = 30.8, n = 783). While the previously described stereotypic pattern of deep and shallow dives was apparent, there was considerable inter- and intra-individual variability in most parameters. There was significant diel behavioral variation, including increased time near the surface and decreased shallow diving at night. However, maximum depth and the proportion of time spent on deep dives (presumed foraging), varied little from day to night. Surprisingly, tagged whales were present within an MFA sonar training range for 38% of days locations were received, and though comprehensive records of sonar use during tag deployments were not available, we discuss the effects frequent acoustic disturbance may have had on the observed behaviors. These data better characterize the true behavioral range of this species, and suggest caution should be exercised when drawing conclusions about behavior using short-term datasets.

  4. Open water scuba diving accidents at Leicester: five years' experience.

    PubMed Central

    Hart, A J; White, S A; Conboy, P J; Bodiwala, G; Quinton, D

    1999-01-01

    OBJECTIVES: The aim of this study was to determine the incidence, type, outcome, and possible risk factors of diving accidents in each year of a five year period presenting from one dive centre to a large teaching hospital accident and emergency (A&E) department. METHODS: All patients included in this study presented to the A&E department at a local teaching hospital in close proximity to the largest inland diving centre in the UK. Our main outcome measures were: presenting symptoms, administration of recompression treatment, mortality, and postmortem examination report where applicable. RESULTS: Overall, 25 patients experienced a serious open water diving accident at the centre between 1992 and 1996 inclusive. The percentage of survivors (n = 18) with symptoms of decompression sickness receiving recompression treatment was 52%. All surviving patients received medical treatment for at least 24 hours before discharge. The median depth of diving accidents was 24 metres (m) (range 7-36 m). During the study period, 1992-96, the number of accidents increased from one to 10 and the incidence of diving accidents increased from four per 100,000 to 15.4 per 100,000. Over the same time period the number of deaths increased threefold. CONCLUSIONS: The aetiology of the increase in the incidence of accidents is multifactorial. Important risk factors were thought to be: rapid ascent (in 48% of patients), cold water, poor visibility, the number of dives per diver, and the experience of the diver. It is concluded that there needs to be an increased awareness of the management of diving injuries in an A&E department in close proximity to an inland diving centre. PMID:10353047

  5. Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge.

    PubMed

    Goldbogen, Jeremy A; Calambokidis, John; Croll, Donald A; Harvey, James T; Newton, Kelly M; Oleson, Erin M; Schorr, Greg; Shadwick, Robert E

    2008-12-01

    Lunge feeding in rorqual whales is a drag-based feeding mechanism that is thought to entail a high energetic cost and consequently limit the maximum dive time of these extraordinarily large predators. Although the kinematics of lunge feeding in fin whales supports this hypothesis, it is unclear whether respiratory compensation occurs as a consequence of lunge-feeding activity. We used high-resolution digital tags on foraging humpback whales (Megaptera novaengliae) to determine the number of lunges executed per dive as well as respiratory frequency between dives. Data from two whales are reported, which together performed 58 foraging dives and 451 lunges. During one study, we tracked one tagged whale for approximately 2 h and examined the spatial distribution of prey using a digital echosounder. These data were integrated with the dive profile to reveal that lunges are directed toward the upper boundary of dense krill aggregations. Foraging dives were characterized by a gliding descent, up to 15 lunges at depth, and an ascent powered by steady swimming. Longer dives were required to perform more lunges at depth and these extended apneas were followed by an increase in the number of breaths taken after a dive. Maximum dive durations during foraging were approximately half of those previously reported for singing (i.e. non-feeding) humpback whales. At the highest lunge frequencies (10 to 15 lunges per dive), respiratory rate was at least threefold higher than that of singing humpback whales that underwent a similar degree of apnea. These data suggest that the high energetic cost associated with lunge feeding in blue and fin whales also occurs in intermediate sized rorquals.

  6. Recreational technical diving part 1: an introduction to technical diving methods and activities.

    PubMed

    Mitchell, Simon J; Doolette, David J

    2013-06-01

    Technical divers use gases other than air and advanced equipment configurations to conduct dives that are deeper and/or longer than typical recreational air dives. The use of oxygen-nitrogen (nitrox) mixes with oxygen fractions higher than air results in longer no-decompression limits for shallow diving, and faster decompression from deeper dives. For depths beyond the air-diving range, technical divers mix helium, a light non-narcotic gas, with nitrogen and oxygen to produce 'trimix'. These blends are tailored to the depth of intended use with a fraction of oxygen calculated to produce an inspired oxygen partial pressure unlikely to cause cerebral oxygen toxicity and a nitrogen fraction calculated to produce a tolerable degree of nitrogen narcosis. A typical deep technical dive will involve the use of trimix at the target depth with changes to gases containing more oxygen and less inert gas during the decompression. Open-circuit scuba may be used to carry and utilise such gases, but this is very wasteful of expensive helium. There is increasing use of closed-circuit 'rebreather' devices. These recycle expired gas and potentially limit gas consumption to a small amount of inert gas to maintain the volume of the breathing circuit during descent and the amount of oxygen metabolised by the diver. This paper reviews the basic approach to planning and execution of dives using these methods to better inform physicians of the physical demands and risks.

  7. To what extent might N2 limit dive performance in king penguins?

    PubMed

    Fahlman, A; Schmidt, A; Jones, D R; Bostrom, B L; Handrich, Y

    2007-10-01

    A mathematical model was used to explore if elevated levels of N2, and risk of decompression sickness (DCS), could limit dive performance (duration and depth) in king penguins (Aptenodytes patagonicus). The model allowed prediction of blood and tissue (central circulation, muscle, brain and fat) N2 tensions (P(N2)) based on different cardiac outputs and blood flow distributions. Estimated mixed venous P(N2) agreed with values observed during forced dives in a compression chamber used to validate the assumptions of the model. During bouts of foraging dives, estimated mixed venous and tissue P(N2) increased as the bout progressed. Estimated mean maximum mixed venous P(N2) upon return to the surface after a dive was 4.56+/-0.18 atmospheres absolute (ATA; range: 4.37-4.78 ATA). This is equivalent to N2 levels causing a 50% DCS incidence in terrestrial animals of similar mass. Bout termination events were not associated with extreme mixed venous N2 levels. Fat P(N2) was positively correlated with bout duration and the highest estimated fat P(N2) occurred at the end of a dive bout. The model suggested that short and shallow dives occurring between dive bouts help to reduce supersaturation and thereby DCS risk. Furthermore, adipose tissue could also help reduce DCS risk during the first few dives in a bout by functioning as a sink to buffer extreme levels of N2.

  8. First aid kits for recreational dive boats, what should they contain?

    PubMed

    Pye, Jacqueline; Greenhalgh, Trisha

    2010-09-01

    Well-equipped first-aid kits are necessary but not always provided on recreational dive boats. We aimed to review the types of illness and injury likely to be encountered on such boats and inform a content list for such kits. We conducted a 3-round Delphi study by email using a volunteer panel of 18 experts drawn from diving, dive medicine and nursing. In round 1, panellists shared examples of illnesses and injuries they had come across personally. These scenarios were circulated along with findings from a literature review, including existing recommendations. In rounds 2 and 3, the list of kit for dive boats in different settings was iteratively refined through online discussion and feedback. Passengers and crew on recreational dive boats may encounter a range of medical problems from minor injuries to serious accidents and non-dive-related illnesses. Recommended kit varied depending on context and setting (e.g. distance from land, qualifications and experience of crew). Consensus was quickly reached on key first-aid items but experts' views on emergency medicines differed. The study highlights the diversity of medical problems encountered on recreational dive boats. We offer preliminary guidance on the content of suitable first-aid kits and suggest areas for further research. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. A day in the life of a diabetic diver: the Undersea and Hyperbaric Medical Society/Divers Alert Network protocol for diving with diabetes in action.

    PubMed

    Johnson, Rebecca

    2016-09-01

    Some people with well-managed insulin-dependent diabetes can dive safely. Those cleared to participate should control tightly the variables that impact blood glucose levels, including activity, timing, food and insulin. Honest self-assessment is critical. A diabetic diver should cancel a dive if seasick, unusually anxious, or following significant high or low blood glucose levels in the preceding 24 hours. The diver should enter the water with a blood glucose level above 8.3 mmol·L⁻¹ and below 14 mmol·L⁻¹ with a stable or rising trend in blood glucose established with glucose tests at 90, 60, and 30 minutes prior to a dive. The diver should carry emergency glucose at all times and brief dive buddies about hypoglycaemia procedures. This is a personal account of the author's experience diving with type 1 diabetes and details how the UHMS/DAN recommendations are put into practice on dive days. Key elements of the self-assessment process, long- and rapid-acting insulin adjustments, meal timing, responses to blood glucose trends, handling hypoglycaemia and approaching multi-dive days are described. Some considerations for people using insulin pumps are also briefly discussed.

  10. The marine mammal dive response is exercise modulated to maximize aerobic dive duration.

    PubMed

    Davis, Randall W; Williams, Terrie M

    2012-08-01

    When aquatically adapted mammals and birds swim submerged, they exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues and organs is reduced. The most intense dive response occurs during forced submersion which conserves blood oxygen for the brain and heart, thereby preventing asphyxiation. In free-diving animals, the dive response is less profound, and energy metabolism remains aerobic. However, even this relatively moderate bradycardia seems diametrically opposed to the normal cardiovascular response (i.e., tachycardia and peripheral vasodilation) during physical exertion. As a result, there has been a long-standing paradox regarding how aquatic mammals and birds exercise while submerged. We hypothesized based on cardiovascular modeling that heart rate must increase to ensure adequate oxygen delivery to active muscles. Here, we show that heart rate (HR) does indeed increase with flipper or fluke stroke frequency (SF) during voluntary, aerobic dives in Weddell seals (HR = 1.48SF - 8.87) and bottlenose dolphins (HR = 0.99SF + 2.46), respectively, two marine mammal species with different evolutionary lineages. These results support our hypothesis that marine mammals maintain aerobic muscle metabolism while swimming submerged by combining elements of both dive and exercise responses, with one or the other predominating depending on the level of exertion.

  11. [The heart and underwater diving].

    PubMed

    Lafay, V

    2006-11-01

    Cardiovascular examination of a certain number of candidates for underwater diving raises justifiable questions of aptitude. An indicative list of contraindications has been proposed by the French Federation of Underwater Studies and Sports but a physiopathological basis gives a better understanding of what is involved. During diving, the haemodynamic changes due not only to the exercise but also to cold immersion, hyperoxaemia and decompression impose the absence of any symptomatic cardiac disease. Moreover, the vasoconstriction caused by the cold and hyperoxaemia should incite great caution in both coronary and hypertensive patients. The contraindication related to betablocker therapy is controversial and the debate has not been settled in France. The danger of drowning makes underwater diving hazardous in all pathologies carrying a risk of syncope. Pacemaker patients should be carefully assessed and the depth of diving limited. Finally, the presence of right-to-left intracardiac shunts increases the risk of complications during decompressionand contraindicates underwater diving. Patent foramen ovale is a special case but no special investigation is required for its detection. The cardiologist examining candidates for underwater diving should take all these factors into consideration because, although underwater diving is a sport associated with an increased risk, each year there are more and more people, with differing degrees of aptitude, who wish to practice it.

  12. Decompression syndrome and the evolution of deep diving physiology in the Cetacea

    NASA Astrophysics Data System (ADS)

    Beatty, Brian Lee; Rothschild, Bruce M.

    2008-09-01

    Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early “experiments” in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.

  13. Shallow Water Diving - The NASA Experience

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Daniel; Kelsey-Seybold

    2010-01-01

    This slide presentation reviews some of the problems and solutions that personnel have experienced during sessions in the Neutral Bu0yancy Lab (NBL). It reviews the standard dive that occurs at the NBL, Boyles and Henry's laws as they relate to the effects of diving. It then reviews in depth some of the major adverse physiologic events that happen during a diving session: Ear and Sinus Barotrauma, Decompression Sickness, (DCS), Pulmonary Barotrauma (i.e., Arterial Gas Embolism (AGE). Mediastinal Emphysema, Subcutaneous Emphysema, and Pneumothorax) Oxygen Toxicity and Hypothermia. It includes information about the pulmonary function in NBL divers. Also included is recommendations about flying after diving.

  14. Decompression syndrome and the evolution of deep diving physiology in the Cetacea.

    PubMed

    Beatty, Brian Lee; Rothschild, Bruce M

    2008-09-01

    Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early "experiments" in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.

  15. Effects of oxygen-enriched air on cognitive performance during SCUBA-diving - an open-water study.

    PubMed

    Brebeck, Anne-Kathrin; Deussen, Andreas; Schmitz-Peiffer, Henning; Range, Ursula; Balestra, Costantino; Cleveland, Sinclair; Schipke, Jochen D

    2017-01-01

    Backround: Nitrogen narcosis impairs cognitive function, a fact relevant during SCUBA-diving. Oxygen-enriched air (nitrox) became popular in recreational diving, while evidence of its advantages over air is limited. Compare effects of nitrox28 and air on two psychometric tests. In this prospective, double-blind, open-water study, 108 advanced divers (38 females) were randomized to an air or a nitrox-group for a 60-min dive to 24 m salt water. Breathing gas effects on cognitive performance were assessed during the dive using a short- and long-term memory test and a number connection test. Nitrox28 divers made fewer mistakes only on the long-term memory test (p = 0.038). Female divers remembered more items than male divers (p < 0.001). There were no significant differences in the number connection test between the groups. Likely owing to the comparatively low N 2 reduction and the conservative dive, beneficial nitrox28 effects to diver performance were moderate but could contribute to diving safety.

  16. Extracting Databases from Dark Data with DeepDive.

    PubMed

    Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng

    2016-01-01

    DeepDive is a system for extracting relational databases from dark data : the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data - scientific papers, Web classified ads, customer service notes, and so on - were instead in a relational database, it would give analysts a massive and valuable new set of "big data." DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference.

  17. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  18. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  19. William T. Sherman: Evolution of an Operational Artist

    DTIC Science & Technology

    2013-05-23

    Before diving into Sherman’s civil war trials and tribulations, it is necessary to understand his frame of mind and reference. Sherman’s upbringing...cavalry he has, Hood can constantly break my road. I would definitely prefer to make a wreck of the road and of the country from Chattanooga to Atlanta

  20. Air & Space Power Journal. Volume 27, Number 1, January-February 2013

    DTIC Science & Technology

    2013-02-01

    Chernobyl ” if the program had released the uranium gas in the centri- fuges instead of causing degradation.38 Though operations had previ- ously taken...Langner, Stuxnet Deep Dive. 38. Ellen Messmer, “Stuxnet Could Have Caused ‘New Chernobyl ,’ Russian Ambassador Says,” Network World, 27 January 2011

  1. 46 CFR 197.206 - Substitutes for required equipment, materials, apparatus, arrangements, procedures, or tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Substitutes for required equipment, materials, apparatus, arrangements, procedures, or tests. 197.206 Section 197.206 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations General § 197.206...

  2. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  3. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  4. 78 FR 25957 - Final Notice of Applicability of Special Use Permit Requirements to Certain Categories of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... National Marine Sanctuary System AGENCY: Office of National Marine Sanctuaries (ONMS), National Ocean... in the NMSA and sanctuary regulations. NMSA section 302(3) states that the ``marine environment.... Recreational diving near the USS Monitor. 6. Fireworks displays. 7. The operation of aircraft below the minimum...

  5. 46 CFR 54.01-17 - Pressure vessel for human occupancy (PVHO).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Pressure vessel for human occupancy (PVHO). 54.01-17... PRESSURE VESSELS General Requirements § 54.01-17 Pressure vessel for human occupancy (PVHO). Pressure vessels for human occupancy (PVHO's) must meet the requirements of subpart B (Commercial Diving Operations...

  6. 46 CFR 54.01-17 - Pressure vessel for human occupancy (PVHO).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Pressure vessel for human occupancy (PVHO). 54.01-17... PRESSURE VESSELS General Requirements § 54.01-17 Pressure vessel for human occupancy (PVHO). Pressure vessels for human occupancy (PVHO's) must meet the requirements of subpart B (Commercial Diving Operations...

  7. 46 CFR 54.01-17 - Pressure vessel for human occupancy (PVHO).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pressure vessel for human occupancy (PVHO). 54.01-17... PRESSURE VESSELS General Requirements § 54.01-17 Pressure vessel for human occupancy (PVHO). Pressure vessels for human occupancy (PVHO's) must meet the requirements of subpart B (Commercial Diving Operations...

  8. 46 CFR 54.01-17 - Pressure vessel for human occupancy (PVHO).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Pressure vessel for human occupancy (PVHO). 54.01-17... PRESSURE VESSELS General Requirements § 54.01-17 Pressure vessel for human occupancy (PVHO). Pressure vessels for human occupancy (PVHO's) must meet the requirements of subpart B (Commercial Diving Operations...

  9. 46 CFR 54.01-17 - Pressure vessel for human occupancy (PVHO).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Pressure vessel for human occupancy (PVHO). 54.01-17... PRESSURE VESSELS General Requirements § 54.01-17 Pressure vessel for human occupancy (PVHO). Pressure vessels for human occupancy (PVHO's) must meet the requirements of subpart B (Commercial Diving Operations...

  10. Underwater and Dive Station Work-Site Noise Surveys

    DTIC Science & Technology

    2008-03-14

    A) octave band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet...band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A...noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A) level, and

  11. 'Diving reflex' in man - Its relation to isometric and dynamic exercise.

    NASA Technical Reports Server (NTRS)

    Bergman, S. A., Jr.; Campbell, J. K.; Wildenthal, K.

    1972-01-01

    To test the influence of physical activity on the diving reflex, 10 normal men held their breath with their faces immersed in 15 C water during rest, bicycle exercise, and sustained isometric handgrip contraction. At all conditions, a slight but statistically significant elevation of blood pressure and a marked decrease in heart rate occurred during each dive. During moderate bicycle exercise heart rate fell more rapidly than at rest and the final level of bradycardia approached that achieved at rest, despite the fact that predive heart rates were much higher during exercise. When diving occurred in combination with isometric exercise, bradycardia was less severe than during resting dives and final heart rates could be represented as the sum of the expected responses to each intervention alone. In all conditions apnea without face immersion caused bradycardia that was less severe than during wet dives.

  12. Variability in circulating gas emboli after a same scuba diving exposure.

    PubMed

    Papadopoulou, V; Germonpré, P; Cosgrove, D; Eckersley, R J; Dayton, P A; Obeid, G; Boutros, A; Tang, M-X; Theunissen, S; Balestra, C

    2018-06-01

    A reduction in ambient pressure or decompression from scuba diving can result in ultrasound-detectable venous gas emboli (VGE). These environmental exposures carry a risk of decompression sickness (DCS) which is mitigated by adherence to decompression schedules; however, bubbles are routinely observed for dives well within these limits and significant inter-personal variability in DCS risk exists. Here, we assess the variability and evolution of VGE for 2 h post-dive using echocardiography, following a standardized pool dive in calm warm conditions. 14 divers performed either one or two (with a 24 h interval) standardized scuba dives to 33 mfw (400 kPa) for 20 min of immersion time at NEMO 33 in Brussels, Belgium. Measurements were performed at 21, 56, 91 and 126 min post-dive: bubbles were counted for all 68 echocardiography recordings and the average over ten consecutive cardiac cycles taken as the bubble score. Significant inter-personal variability was demonstrated despite all divers following the same protocol in controlled pool conditions: in the detection or not of VGE, in the peak VGE score, as well as time to VGE peak. In addition, intra-personal differences in 2/3 of the consecutive day dives were seen (lower VGE counts or faster clearance). Since VGE evolution post-dive varies between people, more work is clearly needed to isolate contributing factors. In this respect, going toward a more continuous evaluation, or developing new means to detect decompression stress markers, may offer the ability to better assess dynamic correlations to other physiological parameters.

  13. Bilateral sectioning of the anterior ethmoidal nerves does not eliminate the diving response in voluntarily diving rats

    PubMed Central

    Chotiyanonta, Jill S; DiNovo, Karyn M; McCulloch, Paul F

    2013-01-01

    The diving response is characterized by bradycardia, apnea, and increased peripheral resistance. This reflex response is initiated by immersing the nose in water. Because the anterior ethmoidal nerve (AEN) innervates the nose, our hypothesis was that intact AENs are essential for initiating the diving response in voluntarily diving rats. Heart rate (HR) and arterial blood pressure (BPa) were monitored using implanted biotransmitters. Sprague-Dawley rats were trained to voluntarily swim 5 m underwater. During diving, HR decreased from 480 ± 15 to 99 ± 5 bpm and BPa increased from 136 ± 2 to 187 ± 3 mmHg. Experimental rats (N = 9) then received bilateral AEN sectioning, while Sham rats (N = 8) did not. During diving in Experimental rats 7 days after AEN surgery, HR decreased from 478 ± 13 to 76 ± 4 bpm and BPa increased from 134 ± 3 to 186 ± 4 mmHg. Responses were similar in Sham rats. Then, during nasal stimulation with ammonia vapors in urethane-anesthetized Experimental rats, HR decreased from 368 ± 7 to 83 ± 4 bpm, and BPa increased from 126 ± 7 to 175 ± 4 mmHg. Responses were similar in Sham rats. Thus, 1 week after being sectioned the AENs are not essential for initiating a full cardiorespiratory response during both voluntary diving and nasal stimulation. We conclude that other nerve(s) innervating the nose are able to provide an afferent signal sufficient to initiate the diving response, although neuronal plasticity within the medullary dorsal horn may be necessary for this to occur. PMID:24400143

  14. Estimated Tissue and Blood N(2) Levels and Risk of Decompression Sickness in Deep-, Intermediate-, and Shallow-Diving Toothed Whales during Exposure to Naval Sonar.

    PubMed

    Kvadsheim, P H; Miller, P J O; Tyack, P L; Sivle, L D; Lam, F P A; Fahlman, A

    2012-01-01

    Naval sonar has been accused of causing whale stranding by a mechanism which increases formation of tissue N(2) gas bubbles. Increased tissue and blood N(2) levels, and thereby increased risk of decompression sickness (DCS), is thought to result from changes in behavior or physiological responses during diving. Previous theoretical studies have used hypothetical sonar-induced changes in both behavior and physiology to model blood and tissue N(2) tension [Formula: see text], but this is the first attempt to estimate the changes during actual behavioral responses to sonar. We used an existing mathematical model to estimate blood and tissue N(2) tension [Formula: see text] from dive data recorded from sperm, killer, long-finned pilot, Blainville's beaked, and Cuvier's beaked whales before and during exposure to Low- (1-2 kHz) and Mid- (2-7 kHz) frequency active sonar. Our objectives were: (1) to determine if differences in dive behavior affects risk of bubble formation, and if (2) behavioral- or (3) physiological responses to sonar are plausible risk factors. Our results suggest that all species have natural high N(2) levels, with deep diving generally resulting in higher end-dive [Formula: see text] as compared with shallow diving. Sonar exposure caused some changes in dive behavior in both killer whales, pilot whales and beaked whales, but this did not lead to any increased risk of DCS. However, in three of eight exposure session with sperm whales, the animal changed to shallower diving, and in all these cases this seem to result in an increased risk of DCS, although risk was still within the normal risk range of this species. When a hypothetical removal of the normal dive response (bradycardia and peripheral vasoconstriction), was added to the behavioral response during model simulations, this led to an increased variance in the estimated end-dive N(2) levels, but no consistent change of risk. In conclusion, we cannot rule out the possibility that a combination of behavioral and physiological responses to sonar have the potential to alter the blood and tissue end-dive N(2) tension to levels which could cause DCS and formation of in vivo bubbles, but the actually observed behavioral responses of cetaceans to sonar in our study, do not imply any significantly increased risk of DCS.

  15. Diving dynamics of seabirds

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan; Chang, Brian; Croson, Matt; Straker, Lorian; Dove, Carla

    2015-03-01

    Diving is the activity of falling from air into water, which is somewhat dangerous due to the impact. Humans dive for entertainments less than 20 meters high, however seabirds dive as a hunting mechanism from more than 20 meters high. Moreover, most birds including seabirds have a slender and long neck compared to many other animals, which can potentially be the weakest part of the body upon axial impact compression. Motivated by the diving dynamics, we investigate the effect of surface and geometric configurations on structures consisting of a beak-like cone and a neck-like elastic beam. A transition from non-buckling to buckling is characterized and understood through physical experiments and an analytical model.

  16. Evaluating the Effects of Stressors on Immune Function during Simulated Dives in Marine Mammals

    DTIC Science & Technology

    2014-09-30

    Physiology and Stressors on Immune Cell Function in a Deep Diving Monodontid and Three Shallow Diving Phocid Species. PhD Dissertation, University...Research Permit No. 14245). Blood samples were initially processed in the field and shipped back to Mystic Aquarium in LN dry shippers for hormone...of damage from inflammatory processes . Values were returned to control levels suggesting the effects of a dive are not long lasting. That results for

  17. Time to stop mucking around? Impacts of underwater photography on cryptobenthic fauna found in soft sediment habitats.

    PubMed

    De Brauwer, Maarten; Saunders, Benjamin J; Ambo-Rappe, Rohani; Jompa, Jamaluddin; McIlwain, Jennifer L; Harvey, Euan S

    2018-07-15

    Scuba diving tourism is a sustainable source of income for many coastal communities, but can have negative environmental impacts if not managed effectively. Diving on soft sediment habitats, typically referred to as 'muck diving', is a growing multi-million dollar industry with a strong focus on photographing cryptobenthic fauna. We assessed how the environmental impacts of scuba divers are affected by the activity they are engaged in while diving and the habitat they dive in. To do this, we observed 66 divers on coral reefs and soft sediment habitats in Indonesia and the Philippines. We found diver activity, specifically interacting with and photographing fauna, causes greater environmental disturbances than effects caused by certification level, gender, dive experience or age. Divers touched the substrate more often while diving on soft sediment habitats than on coral reefs, but this did not result in greater environmental damage on soft sediment sites. Divers had a higher impact on the substrate and touch animals more frequently when observing or photographing cryptobenthic fauna. When using dSLR-cameras, divers spent up to five times longer interacting with fauna. With the unknown, long-term impacts on cryptobenthic fauna or soft sediment habitats, and the increasing popularity of underwater photography, we argue for the introduction of a muck diving code of conduct. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial.

    PubMed

    Souday, Vincent; Koning, Nick J; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre

    2016-01-01

    To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P < 0.001). Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217). Weak correlations were observed between bubble scores and age or body mass index, respectively. EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. ISRCTN 31681480.

  19. Abdominally implanted transmitters with percutaneous antennas affect the dive performance of Common Eiders

    USGS Publications Warehouse

    Powell, Abby N.; Latty, Christopher J.; Hollmén, Tuula E.; Petersen, Margaret R.; Andrews, Russel D.

    2010-01-01

    Implanted transmitters have become an important tool for studying the ecology of sea ducks, but their effects remain largely undocumented. To address this, we assessed how abdominally implanted transmitters with percutaneous antennas affect the vertical dive speeds, stroke frequencies, bottom time, and dive duration of captive Common Eiders (Somateria mollissima). To establish baselines, we recorded video of six birds diving 4.9 m prior to surgery, implanted them with 38- to 47-g platform transmitter terminals, and then recorded their diving for 3.5 months after surgery to determine effects. Descent speeds were 16–25% slower and ascent speeds were 17–44% slower after surgery, and both remained below baseline at the end of the study. Dive durations were longer than baseline until day 22. On most days between 15 and 107 days after surgery, foot-stroke frequencies of birds foraging on the bottom were slower. Foot- and wing-stroke frequencies during descent and bottom time did not differ across the time series. If birds that rely on benthic invertebrates for sustenance dive slower and stay submerged longer after being implanted with a satellite transmitter, their foraging energetics may be affected. Researchers considering use of implanted transmitters with percutaneous antennas should be mindful of these effects and the possibility of concomitant alterations in diving behavior, foraging success, and migratory behavior compared to those of unmarked conspecifics.

  20. KSC-04pd1498

    NASA Image and Video Library

    2004-07-07

    KENNEDY SPACE CENTER, FLA. - Disembarking from the boat in Key Largo are Otto Rutten and Marc Reagan, participating in the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission at the NOAA Aquarius underwater station offshore. Rutten is director for the National Underwater Research Center; Reagan is mission lead. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. The NEEMO-6 team comprises astronaut John Herrington, mission commander, astronauts Doug Wheelock and Nick Patrick, and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  1. KSC-04pd1509

    NASA Image and Video Library

    2004-07-11

    KENNEDY SPACE CENTER, FLA. - In the water offshore from Key Largo, site of the NASA Extreme Environment Mission Operations 6 (NEEMO-6), are (left to right) Bill Todd, project lead, and Marc Reagan, mission lead. Todd and Lucas are also the underwater videographer and still photographer, respectively, for the mission. The NEEMO-6 team comprises John Herrington, commander, Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  2. Wind-Tunnel Investigations of Diving Brakes

    NASA Technical Reports Server (NTRS)

    Fucha, D.

    1942-01-01

    Unduly high diving speeds can be effectively controlled by diving brakes but their employment involves at the same time a number of disagreeable features: namely, rotation of zero lift direction, variation of diviving moment, and, the creation of a potent dead air region.

  3. A comparative evaluation of two decompression procedures for technical diving using inflammatory responses: compartmental versus ratio deco.

    PubMed

    Spisni, Enzo; Marabotti, Claudio; De Fazio, Luigia; Valerii, Maria Chiara; Cavazza, Elena; Brambilla, Stefano; Hoxha, Klarida; L'Abbate, Antonio; Longobardi, Pasquale

    2017-03-01

    The aim of this study was to compare two decompression procedures commonly adopted by technical divers: the ZH-L16 algorithm modified by 30/85 gradient factors (compartmental decompression model, CDM) versus the 'ratio decompression strategy' (RDS). The comparison was based on an analysis of changes in diver circulating inflammatory profiles caused by decompression from a single dive. Fifty-one technical divers performed a single trimix dive to 50 metres' sea water (msw) for 25 minutes followed by enriched air (EAN50) and oxygen decompression. Twenty-three divers decompressed according to a CDM schedule and 28 divers decompressed according to a RDS schedule. Peripheral blood for detection of inflammatory markers was collected before and 90 min after diving. Venous gas emboli were measured 30 min after diving using 2D echocardiography. Matched groups of 23 recreational divers (dive to 30 msw; 25 min) and 25 swimmers were also enrolled as control groups to assess the effects of decompression from a standard air dive or of exercise alone on the inflammatory profile. Echocardiography at the single 30 min observation post dive showed no significant differences between the two decompression procedures. Divers adopting the RDS showed a worsening of post-dive inflammatory profile compared to the CDM group, with significant increases in circulating chemokines CCL2 (P = 0.001) and CCL5 (P = 0.006) levels. There was no increase in chemokines following the CDM decompression. The air scuba group also showed a statistically significant increase in CCL2 (P < 0.001) and CCL5 (P = 0.003) levels post dive. No cases of decompression sickness occurred. The ratio deco strategy did not confer any benefit in terms of bubbles but showed the disadvantage of increased decompression-associated secretion of inflammatory chemokines involved in the development of vascular damage.

  4. First Long-Term Behavioral Records from Cuvier’s Beaked Whales (Ziphius cavirostris) Reveal Record-Breaking Dives

    PubMed Central

    Schorr, Gregory S.; Falcone, Erin A.; Moretti, David J.; Andrews, Russel D.

    2014-01-01

    Cuvier’s beaked whales (Ziphius cavirostris) are known as extreme divers, though behavioral data from this difficult-to-study species have been limited. They are also the species most often stranded in association with Mid-Frequency Active (MFA) sonar use, a relationship that remains poorly understood. We used satellite-linked tags to record the diving behavior and locations of eight Ziphius off the Southern California coast for periods up to three months. The effort resulted in 3732 hr of dive data with associated regional movements – the first dataset of its kind for any beaked whale – and included dives to 2992 m depth and lasting 137.5 min, both new mammalian dive records. Deep dives had a group mean depth of 1401 m (s.d. = 137.8, n = 1142) and duration of 67.4 min (s.d. = 6.9). The group mean time between deep dives was 102.3 min (s.d. = 30.8, n = 783). While the previously described stereotypic pattern of deep and shallow dives was apparent, there was considerable inter- and intra-individual variability in most parameters. There was significant diel behavioral variation, including increased time near the surface and decreased shallow diving at night. However, maximum depth and the proportion of time spent on deep dives (presumed foraging), varied little from day to night. Surprisingly, tagged whales were present within an MFA sonar training range for 38% of days locations were received, and though comprehensive records of sonar use during tag deployments were not available, we discuss the effects frequent acoustic disturbance may have had on the observed behaviors. These data better characterize the true behavioral range of this species, and suggest caution should be exercised when drawing conclusions about behavior using short-term datasets. PMID:24670984

  5. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health

    PubMed Central

    Thompson, Laura A.; Romano, Tracy A.

    2016-01-01

    Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples (n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n = 9). Human blood samples (n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies. PMID:27746745

  6. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health.

    PubMed

    Thompson, Laura A; Romano, Tracy A

    2016-01-01

    Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples ( n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska ( n = 9). Human blood samples ( n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies.

  7. Optimal diving behaviour and respiratory gas exchange in birds.

    PubMed

    Halsey, Lewis G; Butler, Patrick J

    2006-11-01

    This review discusses the advancements in our understanding of the physiology and behaviour of avian diving that have been underpinned by optimal foraging theory and the testing of optimal models. To maximise their foraging efficiency during foraging periods, diving birds must balance numerous factors that are directly or indirectly related to the replenishment of the oxygen stores and the removal of excess carbon dioxide. These include (1) the time spent underwater (which diminishes the oxygen supply, increases carbon dioxide levels and may even include a build up of lactate due to anaerobic metabolism), (2) the time spent at the surface recovering from the previous dive and preparing for the next (including reloading their oxygen supply, decreasing their carbon dioxide levels and possibly also metabolising lactate) and (3) the trade-off between maximising oxygen reserves for consumption underwater by taking in more air to the respiratory system, and minimising the energy costs of positive buoyancy caused by this air, to maximise the time available underwater to forage. Due to its importance in avian diving, replenishment of the oxygen stores has become integral to models of optimal diving, which predict the time budgeting of animals foraging underwater. While many of these models have been examined qualitatively, such tests of predictive trends appear fallible and only quantifiable support affords strong evidence of their predictive value. This review describes how the quantification of certain optimal diving models, using tufted ducks, indeed demonstrates some predictive success. This suggests that replenishment of the oxygen stores and removal of excess carbon dioxide have significant influences on the duration of the surface period between dives. Nevertheless, present models are too simplistic to be robust predictors of diving behaviour for individual animals and it is proposed that they require refinement through the incorporation of other variables that also influence diving behaviour such as, perhaps, prey density and predator avoidance.

  8. Pressure equilibration in the penguin middle ear.

    PubMed

    Sadé, Jacob; Handrich, Yves; Bernheim, Joelle; Cohen, David

    2008-01-01

    King penguins have a venous structure in the form of a corpus cavernosum (CC) in their middle ear (ME) submucosa. The CC may be viewed as a special organelle that can change ME volume for pressure equilibration during deep-sea diving it is a pressure regulating organelle (PRO). A similar CC and muscles also surround the external ear (EE) and may constrict it, isolating the tympanic membrane from the outside. A CC was previously found also in the ME of marine diving mammals and can be expected to exist in other deep diving animals, such as marine turtles. Marine animals require equalization of middle ear (ME) pressure when diving hundreds or thousands of meters to catch prey. We investigated what mechanism enables king penguins to protect their ME when they dive to great depths. Biopsies and serial sections of the ME and the EE of the deep diving king penguin (Aptenodytes patagonicus) were examined microscopically. It was demonstrated that the penguin ME has an extensive network of small and large submucosal venous sinuses. This venous formation, a corpus cavernosum, can expand and potentially 'flood' the ME almost completely on diving, thus elevating ME pressure and reducing the ME space. The EE has a similar protective mechanism.

  9. Increase in serum noradrenaline concentration by short dives with bradycardia in Indo-Pacific bottlenose dolphin Tursiops aduncus.

    PubMed

    Suzuki, Miwa; Tomoshige, Mika; Ito, Miki; Koga, Sotaro; Yanagisawa, Makio; Bungo, Takashi; Makiguchi, Yuya

    2017-07-01

    In cetaceans, diving behavior immediately induces a change in blood circulation to favor flow to the brain and heart; this is achieved by intense vasoconstriction of the blood vessels that serve other organs. This blood circulation response is allied to a decrease in heart rate in order to optimize oxygen usage during diving. Vasoconstrictors are present in all mammals and stimulate the contraction of the smooth muscle in the walls of blood vessels. The most important of these vasoconstrictors are the hormones adrenaline (A), noradrenaline (NA), and angiotensin II (ANG II). At present, the contribution of these hormones to vasoconstriction during diving in cetaceans is unclear. To elucidate their possible roles, changes in serum levels of A, NA and ANG II were monitored together with heart rate in the Indo-Pacific bottlenose dolphin Tursiops aduncus during 90 and 180s dives. Both brief diving periods induced an increase in serum NA concentration and a decrease in heart rate; however, no changes were detected in serum levels of A or ANG II. These data indicate that NA may play a role in diving-induced vasoconstriction. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Extracting Databases from Dark Data with DeepDive

    PubMed Central

    Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng

    2016-01-01

    DeepDive is a system for extracting relational databases from dark data: the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data — scientific papers, Web classified ads, customer service notes, and so on — were instead in a relational database, it would give analysts a massive and valuable new set of “big data.” DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference. PMID:28316365

  11. Deep-Diving California Sea Lions: Are They Pushing Their Physiological Limit?

    DTIC Science & Technology

    2014-09-30

    were 55 + 8, 51 + 6, and 40 + bpm. As illustrated in Figs. 1 and 2, the heart rate profile was characterized by rapid development of a bradycardia ...slow heart rate), and a gradual increase in heart rate during the bottom phase of the dive and during ascent. The degree of bradycardia was more...deeper dives of longer duration, and the degree of bradycardia increases with maximum depth and duration of dives. 4 0 20 40 60 80 100 120 140 0

  12. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    PubMed

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-05

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Simple Probabilistic Model for Estimating the Risk of Standard Air Dives

    DTIC Science & Technology

    2004-12-01

    Decompression Models Table Al. Decompression Table Based on the StandAir Model and Comparison with the VVaI-1 8 Algorithm. A-l-A-4 Table A2. The VVaI-1 8...cannot be as strong as might be desired - especially for dives with long TDTs. Comparisons of the positions of the dive-outcome symbols with the... comparisons for several depth/bottom-time combinations. The three left-hand panels, for dives with short bottom times, show that the crossover point

  14. Diving depths

    NASA Astrophysics Data System (ADS)

    Clanet, Christophe; Guillet, Thibault; Coux, Martin; Quéré, David

    2017-11-01

    Many seabirds (gannets, pelicans, gulls, albatrosses) dive into water at high speeds (25 m/s) in order to capture underwater preys. Diving depths of 20 body lengths are reported in the literature. This value is much larger than the one achieved by men, which is typically of the order of 3. We study this difference by comparing the vertical impact of slender vs bluff bodies. We quantify the influence of wetting and of the geometry on the trajectory and discuss the different laws that govern the diving depth.

  15. Deep-Diving California Sea Lions: Are They Pushing Their Physiological Limit

    DTIC Science & Technology

    2015-09-30

    resting heart rate (70 bpm ) (Ponganis et al. 1997) is reached, and e) duration of and heart rate during the ascent tachycardia. If possible, heart rate...Resting heart rates were 54 + 6 beats min-1 ( bpm ), and in dives of 1-3 min, 3-5 min, and > 5 min, dive heart rates (number of beats/dive duration...were 55 + 8, 51 + 6, and 40 + bpm . As illustrated in Figs. 1 and 2, the heart rate profile was characterized by rapid development of a bradycardia

  16. DECOMPRESSION FROM He-N2-O2 (TRIMIX) BOUNCE DIVES IS NOT MORE EFFICIENT THAN FROM He-O2 (HELIOX) BOUNCE DIVES

    DTIC Science & Technology

    2015-05-28

    true, trimix would be an attractive alternative to heliox for U. S. Navy MK 16 MOD 1 underwater breathing apparatus (UBA) diving. However, there is no...for the semi-closed circuit Canadian Underwater Mine-countermeasures Apparatus (CUMA) that are shorter than...diving15-17 and by the U.S. Navy for the MK 6 semi- closed circuit underwater breathing apparatus (UBA);18,19 each of these programs tested trimix schedules

  17. Wind-Tunnel Tests on Various Types of Dive Brakes Mounted in Proximity of the Leading Edge of the Wing

    NASA Technical Reports Server (NTRS)

    Lattanzi, Bernardino; Bellante, Erno

    1949-01-01

    The present report is concerned with a series of tests on a model airplane fitted with four types of dive flaps of various shapes, positions, and incidence located near the leading edge of the wing (from 5 to 20 percent of the wing chord). Tests were also made on a stub airfoil fitted with a ventral dive (located at 8 percent of the wing chord). The hinge moments of the dive flaps were measured.

  18. The hydrothermal exploration system on the 'Qianlong2' AUV

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Jinhui, Z.; Cai, L.; Guoyin, Z.

    2016-12-01

    ABSTRACT: Qianlong2, is a fully Autonomous Underwater Vehicle (AUV) designed for submarine resources research, especially for polymetallic sulphides, and the survey depths of is up to 4500 m. Qianlong2 had successfully explored hydrothermal vent field on the Southwest Indian Ridge (SWIR), and collected conductance, temperature and depth (CTD), turbidity, and Oxidation-Reduction Potential (ORP) data. It also had mapped precise topography by high resolution side scan sonar (HRBSSS) during every dive; and obtained photographs of sulfide deposits during some dives. Here, we detailedly described the implementation of investigation, data administration, and fast mapping of hydrothermal exploration system by Qianlong2. Giving a description of how to remove the platform magnetic interference by using magnetic data during Qianlong2 spin. Based on comprehensive hydrochemical anomalies, we get a rapid method for finding the localization of hydrothermal vents. Taking one dive as an example, we systemically showed the process about how to analyse hydrothermal survey data and acquire the location results of hydrothermal vents. Considering that this method is effective and can be used in other deep-submergence assets such as human occupied vehicles (HOVs) and remotely operated vehicles (ROVs) during further studies. Finally, we discussed how to promote and optimize the installation and application of those sensors and how to improve Qianlong2's autonomy of investigation.

  19. First records of bentfin devil ray (Mobula thurstoni) and the examination in physical factors of its habitat in the western waters of Morotai Island (North Moluccas)

    NASA Astrophysics Data System (ADS)

    Mukharror, D. A.; Baiti, I. T.; Harahap, S. A.; Prihadi, D. J.; Ichsan, M.; Pridina, N.

    2018-04-01

    Bentfin devil ray (Mobula thurstoni) was recorded for the first time in Morotai waters on 3rd March 2017. In a conservation management context, it is important to clarify the population of Mobula thurstoni and their relations with their habitat. Thus, we examined the existence of Mobula thurstoni with the physical parameters: depth, temperature, visibility, current, weather, and tidal. We measured the existence of Mobula thurstoni with the Underwater Visual Census (UVC) combined with Diver Operated Video (DOV) census. The research from 3rd March to 14th July 2017 (50 dives) showed the Frequency of Occurence (FO) is 50% per single dive. The highest aggregation of 30 Mobula thurstoni was recorded at 14th May 2017 and the average sighting was 3.1 Mobula thurstoni per single dive. Among the examined parameters, it was found that strong factor affecting the sighting of Mobula thurstoni were at the depth of 30-35 m, temperature of 30°C, visibility of 16-20 m, low current (< 1 knot), sunny weather, and tidal category of B. Analysis of UVC and DOV results show that the research location was categorised as feeding location for the Mobula thurstoni.

  20. Target deployment and retrieval using JIAOLONG manned submersible in the depth of 6600 m in Mariana Trench

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Ding, Kang; Ren, Yu-gang; Fu, Wen-tao; Ding, Zhong-jun; Zhao, Sheng-ya; Liu, Bao-hua

    2017-10-01

    China's 7000 m manned submersible JIAOLONG carried out an exploration cruise at the Mariana Trench from June to July 2016. The submersible completed nine manned dives on the north and south area of the Mariana Trench from the depth of 5500 to 6700 m, to investigate the geological, biological and chemical characteristics in the hadal area. During the cruise, JIAOLONG deployed a gas-tight serial sampler to collect the water near the sea bottom regularly. Five days later, the sub located the sampler in another dive and retrieved it successfully from the same location, which is the first time that scientists and engineers finished the high accuracy in-situ deployment and retrieval using a manned submersible with Ultra-Short Base Line (USBL) positioning system at the depth more than 6600 m. In this task, we used not only the USBL system of the manned submersible but also a compound strategy, including five position marks, the sea floor terrain, the depth contour, and the heading of the sub. This paper introduces the compound strategy of the target deployment and retrieval with the practical diving experience of JIAOLONG, and provides a promising technique for other underwater vehicles such as manned submersible or Remote Operated Vehicle (ROV) under similar conditions.

  1. Interacting with wildlife tourism increases activity of white sharks.

    PubMed

    Huveneers, Charlie; Watanabe, Yuuki Y; Payne, Nicholas L; Semmens, Jayson M

    2018-01-01

    Anthropogenic activities are dramatically changing marine ecosystems. Wildlife tourism is one of the fastest growing sectors of the tourism industry and has the potential to modify the natural environment and behaviour of the species it targets. Here, we used a novel method to assess the effects of wildlife tourism on the activity of white sharks ( Carcharodon carcharias ). High frequency three-axis acceleration loggers were deployed on ten white sharks for a total of ~9 days. A combination of multivariate and univariate analysis revealed that the increased number of strong accelerations and vertical movements when sharks are interacting with cage-diving operators result in an overall dynamic body acceleration (ODBA) ~61% higher compared with other times when sharks are present in the area where cage-diving occurs. Since ODBA is considered a proxy of metabolic rate, interacting with cage-divers is probably more costly than are normal behaviours of white sharks at the Neptune Islands. However, the overall impact of cage-diving might be small if interactions with individual sharks are infrequent. This study suggests wildlife tourism changes the instantaneous activity levels of white sharks, and calls for an understanding of the frequency of shark-tourism interactions to appreciate the net impact of ecotourism on this species' fitness.

  2. Dive Europa: a search-for-life initiative.

    PubMed

    Naganuma, T; Uematsu, H

    1998-06-01

    Liquid water, underwater volcanoes and possibly life forms have been suggested to be present beneath the estimated 10 km-thick ice shell of Europa the Jovian satellite J2. Europa's possible ocean is estimated to be 100-200km deep. Despite the great depth of the Europa's ocean, hydrostatic pressure at the seafloor would be 130-260 MPa, corresponding to 13-26 km depth of a theoretical Earth's ocean. The hydrostatic pressure is not beyond the edge of existing deep-sea technology. Here we propose exploration of Europa's deep-sea by the use of current technologies, taking a symbolic example of a deep submergence vehicle Shinkai 6500 which dives to a depth of 6.5 km deep (50 km depth of Europa's ocean). Shinkai 6500 is embarkable in the payload bay of the Space Shuttles in terms of size and weight for the transportation to a Low Earth Orbit (LEO). Secondary boost is needed for interplanetary flight from the LEO. On-orbit assembly of the secondary booster is a technological challenge. The International Space Station (ISS) and ISS-related technologies will facilitate the secondary boost. Also, ice shell drilling is a challenge and is needed before the dive into Europa's ocean. These challenges should be overcome during a certain leading time for matured experience in the ISS operation.

  3. Interacting with wildlife tourism increases activity of white sharks

    PubMed Central

    Watanabe, Yuuki Y; Payne, Nicholas L; Semmens, Jayson M

    2018-01-01

    Abstract Anthropogenic activities are dramatically changing marine ecosystems. Wildlife tourism is one of the fastest growing sectors of the tourism industry and has the potential to modify the natural environment and behaviour of the species it targets. Here, we used a novel method to assess the effects of wildlife tourism on the activity of white sharks (Carcharodon carcharias). High frequency three-axis acceleration loggers were deployed on ten white sharks for a total of ~9 days. A combination of multivariate and univariate analysis revealed that the increased number of strong accelerations and vertical movements when sharks are interacting with cage-diving operators result in an overall dynamic body acceleration (ODBA) ~61% higher compared with other times when sharks are present in the area where cage-diving occurs. Since ODBA is considered a proxy of metabolic rate, interacting with cage-divers is probably more costly than are normal behaviours of white sharks at the Neptune Islands. However, the overall impact of cage-diving might be small if interactions with individual sharks are infrequent. This study suggests wildlife tourism changes the instantaneous activity levels of white sharks, and calls for an understanding of the frequency of shark-tourism interactions to appreciate the net impact of ecotourism on this species’ fitness. PMID:29780593

  4. Long-term changes in species composition and relative abundances of sharks at a provisioning site.

    PubMed

    Brunnschweiler, Juerg M; Abrantes, Kátya G; Barnett, Adam

    2014-01-01

    Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today's recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004-2006 and 2007-2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004-2006 and very rare in the period of 2007-2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark species.

  5. Unraveling the Mysteries of Océano Profundo: New organisms, ecosystems and geohazards in deep water around Puerto Rico

    NASA Astrophysics Data System (ADS)

    Cantwell, K. L.; Kennedy, B. R.; Quattrini, A.; Cheadle, M. J.; Sowers, D.; Lobecker, E.; Ford, M.; Garcia-Moliner, G.; Gray, L. M.; Chaytor, J. D.; Demopoulos, A. W.

    2016-02-01

    From February to April 2015, NOAA Ship Okeanos Explorer, America's Ship for Ocean Exploration, surveyed unknown deep-sea ecosystems and potential geohazards off the coast of Puerto Rico and the US Virgin Islands. Over 37,500 km² of high-resolution multibeam sonar data was collected, revealing rugged canyons along shelf breaks, intricate incised channels, and large slumps and slope failures. Twelve remotely operated vehicle (ROV) dives, surveyed seamounts, escarpments, and submarine canyons at depths of 300-6,000 m. Additional ROV exploration of the water column occurred at depths of 800-1200 m. Dives included three of the deepest dives ever conducted in the Puerto Rico Trench and the first exploration of Exocet and Whiting seamounts. Discoveries included assemblages of deep-sea corals (>50 species), and observations of several rare and new species. For example, the seastar Laetmaster spectabilis had not been documented since its original description in 1881 and a new species of benthopelagic cydippid ctenophore was observed at 3900 m in the Aricebo Amphitheater. Other expedition highlights included two rarely observed blind octopods (Cirrothauma murrayi); novel observation of a symbiotic association between predatory tunicates with polychaete associates; and approximately 75 species of demersal fishes, including a new species of wrasse and the first records of Shaefer's anglerfish and the ateleopodid jellynose in Puerto Rican waters. ROV dives traversed elements of the complete geological succession from 1 km deep into the Cretaceous volcanic arc basement, across the carbonate platform sequence unconformity and into the uppermost Pliocene carbonates. Highlights included spectacular slope failure headwall scarps and sub-aerial karstic weathering of the youngest carbonates. All data collected during Océano Profundo 2015 are now publicly available through the National Archives and are awaiting further analysis by the scientific community.

  6. Research on the performance of low-lift diving tubular pumping system by CFD and Test

    NASA Astrophysics Data System (ADS)

    Xia, Chenzhi; Cheng, Li; Liu, Chao; Zhou, Jiren; Tang, Fangping; Jin, Yan

    2016-11-01

    Post-diving tubular pump is always used in large-discharge & low-head irrigation or storm drainage pumping station, its impeller and motor share the same shaft. Considering diving tubular pump system's excellent hydraulic performance, compact structure, good noise resistance and low operating cost, it is used in Chinese pump stations. To study the hydraulic performance and pressure fluctuation of inlet and outlet passage in diving tubular pump system, both of steady and unsteady full flow fields are numerically simulated at three flow rate conditions by using CFD commercial software. The asymmetry of the longitudinal structure of inlet passage affects the flow pattern on outlet. Especially at small flow rate condition, structural asymmetry will result in the uneven velocity distribution on the outlet of passage inlet. The axial velocity distribution uniformity increases as the flow rate increases on the inlet of passage inlet, and there is a positive correlation between hydraulic loss in the passage inlet and flow rate's quadratic. The axial velocity distribution uniformity on the outlet of passage inlet is 90% at design flow rate condition. The predicted result shows the same trend with test result, and the range of high efficiency area between predicted result and test result is almost identical. The dominant frequency of pressure pulsation is low frequency in inlet passage at design condition. The dominant frequency is high frequency in inlet passage at small and large flow rate condition. At large flow rate condition, the flow pattern is significantly affected by the rotation of impeller in inlet passage. At off-design condition, the pressure pulsation is strong at outlet passage. At design condition, the dominant frequency is 35.57Hz, which is double rotation frequency.

  7. Aerobic exercise before diving reduces venous gas bubble formation in humans

    PubMed Central

    Dujić, Željko; Duplančic, Darko; Marinovic-Terzić, Ivana; Baković, Darija; Ivančev, Vladimir; Valic, Zoran; Eterović, Davor; Petri, Nadan M; Wisløff, Ulrik; Brubakk, Alf O

    2004-01-01

    We have previously shown in a rat model that a single bout of high-intensity aerobic exercise 20h before a simulated dive reduces bubble formation and after the dive protects from lethal decompression sickness. The present study investigated the importance of these findings in man. Twelve healthy male divers were compressed in a hyperbaric chamber to 280kPa at a rate of 100kPamin−1 breathing air and remaining at pressure for 80min. The ascent rate was 9mmin−1 with a 7min stop at 130kPa. Each diver underwent two randomly assigned simulated dives, with or without preceding exercise. A single interval exercise performed 24h before the dive consisted of treadmill running at 90% of maximum heart rate for 3min, followed by exercise at 50% of maximum heart rate for 2min; this was repeated eight times for a total exercise period of 40min. Venous gas bubbles were monitored with an ultrasonic scanner every 20min for 80min after reaching surface pressure. The study demonstrated that a single bout of strenuous exercise 24h before a dive to 18 m of seawater significantly reduced the average number of bubbles in the pulmonary artery from 0.98 to 0.22 bubbles cm−2(P= 0.006) compared to dives without preceding exercise. The maximum bubble grade was decreased from 3 to 1.5 (P= 0.002) by pre-dive exercise, thereby increasing safety. This is the first report to indicate that pre-dive exercise may form the basis for a new way of preventing serious decompression sickness. PMID:14755001

  8. Objective vs. Subjective Evaluation of Cognitive Performance During 0.4-MPa Dives Breathing Air or Nitrox.

    PubMed

    Germonpré, Peter; Balestra, Costantino; Hemelryck, Walter; Buzzacott, Peter; Lafère, Pierre

    2017-05-01

    Divers try to limit risks associated with their sport, for instance by breathing enriched air nitrox (EANx) instead of air. This double blinded, randomized trial was designed to see if the use of EANx could effectively improve cognitive performance while diving. Eight volunteers performed two no-decompression dry dives breathing air or EANx for 20 min at 0.4 MPa. Cognitive functions were assessed with a computerized test battery, including MathProc and Ptrail. Measurements were taken before the dive, upon arrival and after 15 min at depth, upon surfacing, and at 30 min postdive. After each dive subjects were asked to identify the gas they had just breathed. Identification of the breathing gas was not possible on subjective assessment alone, while cognitive assessments showed significantly better performance while breathing EANx. Before the dives, breathing air, mean time to complete the task was 1795 ms for MathProc and 1905 ms for Ptrail. When arriving at depth MathProc took 1616 ms on air and 1523 ms on EANx, and Ptrail took 1318 ms on air and and 1356 ms on EANx, followed 15 min later by significant performance inhibition while breathing air during the ascent and the postdive phase, supporting the concept of late dive/postdive impairment. The results suggest that EANx could protect against decreased neuro-cognitive performance induced by inert gas narcosis. It was not possible for blinded divers to identify which gas they were breathing and differences in postdive fatigue between air and EANx diving deserve further investigation.Germonpré P, Balestra C, Hemelryck W, Buzzacott P, Lafère P. Objective vs. subjective evaluation of cognitive performance during 0.4-MPa dives breathing air or nitrox. Aerosp Med Hum Perform. 2017; 88(5):469-475.

  9. Can We Predict Foraging Success in a Marine Predator from Dive Patterns Only? Validation with Prey Capture Attempt Data

    PubMed Central

    Viviant, Morgane; Monestiez, Pascal; Guinet, Christophe

    2014-01-01

    Predicting how climatic variations will affect marine predator populations relies on our ability to assess foraging success, but evaluating foraging success in a marine predator at sea is particularly difficult. Dive metrics are commonly available for marine mammals, diving birds and some species of fish. Bottom duration or dive duration are usually used as proxies for foraging success. However, few studies have tried to validate these assumptions and identify the set of behavioral variables that best predict foraging success at a given time scale. The objective of this study was to assess if foraging success in Antarctic fur seals could be accurately predicted from dive parameters only, at different temporal scales. For this study, 11 individuals were equipped with either Hall sensors or accelerometers to record dive profiles and detect mouth-opening events, which were considered prey capture attempts. The number of prey capture attempts was best predicted by descent and ascent rates at the dive scale; bottom duration and descent rates at 30-min, 1-h, and 2-h scales; and ascent rates and maximum dive depths at the all-night scale. Model performances increased with temporal scales, but rank and sign of the factors varied according to the time scale considered, suggesting that behavioral adjustment in response to prey distribution could occur at certain scales only. The models predicted the foraging intensity of new individuals with good accuracy despite high inter-individual differences. Dive metrics that predict foraging success depend on the species and the scale considered, as verified by the literature and this study. The methodology used in our study is easy to implement, enables an assessment of model performance, and could be applied to any other marine predator. PMID:24603534

  10. Preconditioning to Reduce Decompression Stress in Scuba Divers.

    PubMed

    Germonpré, Peter; Balestra, Costantino

    2017-02-01

    Using ultrasound imaging, vascular gas emboli (VGE) are observed after asymptomatic scuba dives and are considered a key element in the potential development of decompression sickness (DCS). Diving is also accompanied with vascular dysfunction, as measured by flow-mediated dilation (FMD). Previous studies showed significant intersubject variability to VGE for the same diving exposure and demonstrated that VGE can be reduced with even a single pre-dive intervention. Several preconditioning methods have been reported recently, seemingly acting either on VGE quantity or on endothelial inflammatory markers. Nine male divers who consistently showed VGE postdive performed a standardized deep pool dive (33 m/108 ft, 20 min in 33°C water temperature) to investigate the effect of three different preconditioning interventions: heat exposure (a 30-min session of dry infrared sauna), whole-body vibration (a 30-min session on a vibration mattress), and dark chocolate ingestion (30 g of chocolate containing 86% cocoa). Dives were made one day per week and interventions were administered in a randomized order. These interventions were shown to selectively reduce VGE, FMD, or both compared to control dives. Vibration had an effect on VGE (39.54%, SEM 16.3%) but not on FMD postdive. Sauna had effects on both parameters (VGE: 26.64%, SEM 10.4%; FMD: 102.7%, SEM 2.1%), whereas chocolate only improved FMD (102.5%, SEM 1.7%). This experiment, which had the same subjects perform all control and preconditioning dives in wet but completely standardized diving conditions, demonstrates that endothelial dysfunction appears to not be solely related to VGE.Germonpré P, Balestra C. Preconditioning to reduce decompression stress in scuba divers. Aerosp Med Hum Perform. 2017; 88(2):114-120.

  11. Taking movement data to new depths: Inferring prey availability and patch profitability from seabird foraging behavior.

    PubMed

    Chimienti, Marianna; Cornulier, Thomas; Owen, Ellie; Bolton, Mark; Davies, Ian M; Travis, Justin M J; Scott, Beth E

    2017-12-01

    Detailed information acquired using tracking technology has the potential to provide accurate pictures of the types of movements and behaviors performed by animals. To date, such data have not been widely exploited to provide inferred information about the foraging habitat. We collected data using multiple sensors (GPS, time depth recorders, and accelerometers) from two species of diving seabirds, razorbills ( Alca torda , N  = 5, from Fair Isle, UK) and common guillemots ( Uria aalge , N  = 2 from Fair Isle and N  = 2 from Colonsay, UK). We used a clustering algorithm to identify pursuit and catching events and the time spent pursuing and catching underwater, which we then used as indicators for inferring prey encounters throughout the water column and responses to changes in prey availability of the areas visited at two levels: individual dives and groups of dives. For each individual dive ( N  = 661 for guillemots, 6214 for razorbills), we modeled the number of pursuit and catching events, in relation to dive depth, duration, and type of dive performed (benthic vs. pelagic). For groups of dives ( N  = 58 for guillemots, 156 for razorbills), we modeled the total time spent pursuing and catching in relation to time spent underwater. Razorbills performed only pelagic dives, most likely exploiting prey available at shallow depths as indicated by the vertical distribution of pursuit and catching events. In contrast, guillemots were more flexible in their behavior, switching between benthic and pelagic dives. Capture attempt rates indicated that they were exploiting deep prey aggregations. The study highlights how novel analysis of movement data can give new insights into how animals exploit food patches, offering a unique opportunity to comprehend the behavioral ecology behind different movement patterns and understand how animals might respond to changes in prey distributions.

  12. Improved pulmonary function in working divers breathing nitrox at shallow depths

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Daniel T.; Conkin, Johnny

    2003-01-01

    INTRODUCTION: There is limited data about the long-term pulmonary effects of nitrox use in divers at shallow depths. This study examined changes in pulmonary function in a cohort of working divers breathing a 46% oxygen enriched mixture while diving at depths less than 12 m. METHODS: A total of 43 working divers from the Neutral Buoyancy Laboratory (NBL), NASA-Johnson Space Center completed a questionnaire providing information on diving history prior to NBL employment, diving history outside the NBL since employment, and smoking history. Cumulative dive hours were obtained from the NBL dive-time database. Medical records were reviewed to obtain the diver's height, weight, and pulmonary function measurements from initial pre-dive, first year and third year annual medical examinations. RESULTS: The initial forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) were greater than predicted, 104% and 102%, respectively. After 3 yr of diving at the NBL, both the FVC and FEV1 showed a significant (p < 0.01) increase of 6.3% and 5.5%, respectively. There were no significant changes in peak expiratory flow (PEF), forced mid-expiratory flow rate (FEF(25-75%)), and forced expiratory flow rates at 25%, 50%, and 75% of FVC expired (FEF25%, FEF50%, FEF75%). Cumulative NBL dive hours was the only contributing variable found to be significantly associated with both FVC and FEV1 at 1 and 3 yr. CONCLUSIONS: NBL divers initially belong to a select group with larger than predicted lung volumes. Regular diving with nitrox at shallow depths over a 3-yr period did not impair pulmonary function. Improvements in FVC and FEV1 were primarily due to a training effect.

  13. Statistical correlations and risk analyses techniques for a diving dual phase bubble model and data bank using massively parallel supercomputers.

    PubMed

    Wienke, B R; O'Leary, T R

    2008-05-01

    Linking model and data, we detail the LANL diving reduced gradient bubble model (RGBM), dynamical principles, and correlation with data in the LANL Data Bank. Table, profile, and meter risks are obtained from likelihood analysis and quoted for air, nitrox, helitrox no-decompression time limits, repetitive dive tables, and selected mixed gas and repetitive profiles. Application analyses include the EXPLORER decompression meter algorithm, NAUI tables, University of Wisconsin Seafood Diver tables, comparative NAUI, PADI, Oceanic NDLs and repetitive dives, comparative nitrogen and helium mixed gas risks, USS Perry deep rebreather (RB) exploration dive,world record open circuit (OC) dive, and Woodville Karst Plain Project (WKPP) extreme cave exploration profiles. The algorithm has seen extensive and utilitarian application in mixed gas diving, both in recreational and technical sectors, and forms the bases forreleased tables and decompression meters used by scientific, commercial, and research divers. The LANL Data Bank is described, and the methods used to deduce risk are detailed. Risk functions for dissolved gas and bubbles are summarized. Parameters that can be used to estimate profile risk are tallied. To fit data, a modified Levenberg-Marquardt routine is employed with L2 error norm. Appendices sketch the numerical methods, and list reports from field testing for (real) mixed gas diving. A Monte Carlo-like sampling scheme for fast numerical analysis of the data is also detailed, as a coupled variance reduction technique and additional check on the canonical approach to estimating diving risk. The method suggests alternatives to the canonical approach. This work represents a first time correlation effort linking a dynamical bubble model with deep stop data. Supercomputing resources are requisite to connect model and data in application.

  14. 29 CFR 1926.1085 - Surface-supplied air diving.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Surface-supplied air diving. 1926.1085 Section 1926.1085 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Procedures § 1926.1085 Surface-supplied air diving. Note: The requirements applicable to construction work...

  15. 29 CFR 1926.1086 - Mixed-gas diving.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Mixed-gas diving. 1926.1086 Section 1926.1086 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Mixed-gas diving. Note: The requirements applicable to construction work under this section are...

  16. 29 CFR 1926.1086 - Mixed-gas diving.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Mixed-gas diving. 1926.1086 Section 1926.1086 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Mixed-gas diving. Note: The requirements applicable to construction work under this section are...

  17. 29 CFR 1926.1086 - Mixed-gas diving.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Mixed-gas diving. 1926.1086 Section 1926.1086 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Mixed-gas diving. Note: The requirements applicable to construction work under this section are...

  18. 29 CFR 1926.1086 - Mixed-gas diving.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Mixed-gas diving. 1926.1086 Section 1926.1086 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Mixed-gas diving. Note: The requirements applicable to construction work under this section are...

  19. 29 CFR 1926.1085 - Surface-supplied air diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Surface-supplied air diving. 1926.1085 Section 1926.1085 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Procedures § 1926.1085 Surface-supplied air diving. Note: The requirements applicable to construction work...

  20. 29 CFR 1926.1076 - Qualifications of dive team.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under...

  1. 29 CFR 1926.1076 - Qualifications of dive team.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under...

  2. 29 CFR 1926.1076 - Qualifications of dive team.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under...

  3. 29 CFR 1926.1076 - Qualifications of dive team.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under...

  4. 29 CFR 1926.1076 - Qualifications of dive team.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under...

  5. Suitability Analysis For Scuba Diving To Develop Marine Tourism At Saebus Island, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Wijaya, Putranto; Putra, Tri; Hidayat, Fatra; Levraeni, Chandra; Rizmaadi, Mada; Ambariyanto, Ambariyanto

    2018-02-01

    Indonesian government currently has policies to improve the performance of the tourism sector, including marine tourism. One of the attractions of marine tourism is the coral ecosystem especially through scuba diving activities. The purpose of this study was to determine the suitability of the coral ecosystem on Saebus Island, East Java, to find appropriate locations for scuba diving activities. Purposive samplings were done around the island to determine four stations which will be assessed through suitability analysis. Tourism Suitability Index was used to assess all stations for scuba diving activities. The result showed that all four stations were categorized as very suitable with the score: 85%, 85%, 85% and 83%, respectively. Several aspects that need to be improved and anticipated for diving at all stations are coral coverage and water current. These results suggest that there are several spots around Saebus Island that are suitable for diving site, and can be promoted as marine tourism destination.

  6. Provisional report on diving-related fatalities in Australian waters 2003.

    PubMed

    Walker, Douglas; Lippmann, John

    2009-03-01

    An individual case review of the diving-related deaths that were reported to have occurred in Australia in 2003 was conducted as part of the combined Project Stickybeak/DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident are provided, as well as details from the post mortem examination, where available. In total there were 22 reported fatalities, 18 men and four women. Twelve deaths occurred while snorkelling and/or breath-hold diving, nine while scuba diving and one while using surface-supply breathing apparatus. Cardiac-related issues were thought to have contributed to the deaths of six snorkel divers (50%) and four scuba divers (44%) in this series. There were three deaths in breath-hold divers likely to have been associated with apnoeic hypoxia blackout. Inexperience, time away from diving and lack of common sense were features in several scuba deaths.

  7. Provisional report on diving-related fatalities in Australian waters 2005.

    PubMed

    Walker, Douglas; Lippmann, John; Lawrence, Chris; Fock, Andrew; Wodak, Thomas; Jamieson, Scott

    2010-09-01

    An individual case review of diving-related deaths reported as occurring in Australia in 2005 was conducted as part of the DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident and details from the post-mortem examination, where available, are provided. In total, there were 24 reported fatalities, comprising four females and 20 males. Fourteen deaths occurred while snorkelling and/or breath-hold diving, nine while scuba diving, and one while using surface-supply breathing apparatus. Four deaths from large marine animal attacks were recorded. Once again, cardiac-related issues were thought to have contributed to some deaths: five snorkel divers and at least two but possibly up to four scuba divers. Three of the deaths in breath-hold divers were likely to have been associated with apnoeic hypoxia blackout. Pre-existing medical conditions, trauma from marine creatures and snorkelling or diving alone were features in several deaths in this series.

  8. Passenger Carrying Submersibles: System Safety Analysis

    DTIC Science & Technology

    1989-08-01

    General Provisions Subpart B Commercial Diving Operations 33 CFR NAVIGATION (As Applicable) Subchapter 0 - Pollution Part 155 Oil Pollution...and Materials: Specifications and Approvals; Subchapter S, Subdivision and Stability; and finally, 33 CFR Subchapter 0, Part 155 Oil Pollution...contamination. Air contamination could also result from inadequate air circulation, loss of temperature/humidity control, or refrigerant or oil leakage

  9. SEALIFT

    DTIC Science & Technology

    2012-03-01

    Dolores Chouest served primarily as a platform for U.S. and Canadian divers to conduct diving operations. MSC Maritime Prepositioning Force ship...Kanawha also performed an underway replenishment following a short-fused request by Canadian navy frigate HMCS Vancouver, allowing Vancouver to bypass...planning careers within the maritime industry . Fourteen MSCPAC and Ship Sup- port Unit San Diego employees served as MSC representatives at the

  10. A Geographical Information System to Manage the Endeavour Hydrothermal Vents Marine Protected Area

    NASA Astrophysics Data System (ADS)

    Douglas, K. L.; Hillier, M. C. J.; Thornborough, K. J.; Jenkyns, R.; Juniper, K.

    2016-02-01

    The Endeavour Hydrothermal Vents Marine Protected Area (EHVMPA) is located approximately 250 km offshore of Vancouver Island, British Columbia. Since its discovery in 1982, there have been hundreds of dives, samples collected, measurements made, and debris left behind at the EHVMPA. In 2003, the Canadian government declared the region as a Marine Protected Area (MPA) under Canada's Oceans Act, to be managed by the Department of Fisheries and Oceans (DFO). Ocean Networks Canada (ONC) operates a cabled observatory in the EHVMPA, and streams data in near real-time via the Internet to science communities worldwide. ONC's observatory data, combined with observations made during maintenance expeditions provides insight assisting the management and preservation of the MPA. In 2014, DFO partnered with ONC to build a geodatabase to enhance and inform the knowledge base of the EHVMPA Management Plan. The geodatabase, built in ArcGIS, contains data integrated from ONC's Oceans 2.0 database, third parties, and relevant publications. Layers include annual observatory infrastructure deployments, remotely operated vehicle (ROV) dive tracks, sampling activity, anthropogenic debris, high-resolution bathymetry, observations of species of interest, and locations of hydrothermal vents. The combined data show both efforts to better understand the environment and the resulting stressors that impact the MPA. The tool also links observed features such as debris and biological observations to the time-correlated ROV dive video using ONC's SeaTube video viewing tool allowing for further analysis. Through 2017, the geodatabase will be maintained by ONC and enriched with expedition data from organizations such as Monterey Bay Aquarium Research Institute, Woods Hole Oceanographic Institute, and the University of Washington. The end result is a tool that can integrate many types of data obtained from the MPA, and encourages systematic management of a remote, dynamic and fragile environment.

  11. Foraging depths of sea otters and implications to coastal marine communities

    USGS Publications Warehouse

    Bodkin, James L.; Esslinger, George G.; Monson, Daniel H.

    2004-01-01

    We visually observed 1,251 dives, of 14 sea otters instrumented with TDRs in southeast Alaska, and used attribute values from observed dives to classify 180,848 recorded dives as foraging (0.64), or traveling (0.36). Foraging dives were significantly deeper, with longer durations, bottom times, and postdive surface intervals, and greater descent and ascent rates, compared to traveling dives. Most foraging occurred in depths between 2 and 30 m (0.84), although 0.16 of all foraging was between 30 and 100 m. Nine animals, including all five males, demonstrated bimodal patterns in foraging depths, with peaks between 5 and 15 m and 30 and 60 m, whereas five of nine females foraged at an average depth of 10 m. Mean shallow foraging depth was 8 m, and mean deep foraging depth was 44 m. Maximum foraging depths averaged 61 m (54 and 82 for females and males, respectively) and ranged from 35 to 100 m. Female sea otters dove to depths ≤20 m on 0.85 of their foraging dives while male sea otters dove to depths ≥45 m on 0.50 of their foraging dives. Less than 0.02 of all foraging dives were >55 m, suggesting that effects of sea otter foraging on nearshore marine communities should diminish at greater depths. However, recolonization of vacant habitat by high densities of adult male sea otters may result in initial reductions of some prey species at depths >55 m.

  12. U. S. Navy Special Operations (1140) Community Diving and Salvage Functional Area

    DTIC Science & Technology

    1993-04-01

    to $72,000, but were rejected by the Commandant, Marc Island Navy Yard because the costs were too great. Instead, he attempted to use the new, 21,000...throughout Southeast Asia as well as battle damage and recovery operations. This concept proved to be extremely successfu and cost elfectivt.. In theater...mission by contractor personnel and equipment, or Navy sal.vage ships and assets, to provide cost effective and rapid solutions to a variety of salvage

  13. Estimated Tissue and Blood N2 Levels and Risk of Decompression Sickness in Deep-, Intermediate-, and Shallow-Diving Toothed Whales during Exposure to Naval Sonar

    PubMed Central

    Kvadsheim, P. H.; Miller, P. J. O.; Tyack, P. L.; Sivle, L. D.; Lam, F. P. A.; Fahlman, A.

    2012-01-01

    Naval sonar has been accused of causing whale stranding by a mechanism which increases formation of tissue N2 gas bubbles. Increased tissue and blood N2 levels, and thereby increased risk of decompression sickness (DCS), is thought to result from changes in behavior or physiological responses during diving. Previous theoretical studies have used hypothetical sonar-induced changes in both behavior and physiology to model blood and tissue N2 tension PN2, but this is the first attempt to estimate the changes during actual behavioral responses to sonar. We used an existing mathematical model to estimate blood and tissue N2 tension PN2 from dive data recorded from sperm, killer, long-finned pilot, Blainville’s beaked, and Cuvier’s beaked whales before and during exposure to Low- (1–2 kHz) and Mid- (2–7 kHz) frequency active sonar. Our objectives were: (1) to determine if differences in dive behavior affects risk of bubble formation, and if (2) behavioral- or (3) physiological responses to sonar are plausible risk factors. Our results suggest that all species have natural high N2 levels, with deep diving generally resulting in higher end-dive PN2 as compared with shallow diving. Sonar exposure caused some changes in dive behavior in both killer whales, pilot whales and beaked whales, but this did not lead to any increased risk of DCS. However, in three of eight exposure session with sperm whales, the animal changed to shallower diving, and in all these cases this seem to result in an increased risk of DCS, although risk was still within the normal risk range of this species. When a hypothetical removal of the normal dive response (bradycardia and peripheral vasoconstriction), was added to the behavioral response during model simulations, this led to an increased variance in the estimated end-dive N2 levels, but no consistent change of risk. In conclusion, we cannot rule out the possibility that a combination of behavioral and physiological responses to sonar have the potential to alter the blood and tissue end-dive N2 tension to levels which could cause DCS and formation of in vivo bubbles, but the actually observed behavioral responses of cetaceans to sonar in our study, do not imply any significantly increased risk of DCS. PMID:22590458

  14. Scuba Diving and Kinesiology: Development of an Academic Program

    ERIC Educational Resources Information Center

    Kovacs, Christopher R.; Walter, Daniel

    2015-01-01

    The use of scuba diving as a recreational activity within traditional university instructional programs has been well established. Departments focusing on kinesiology, physical education, or exercise science have often provided scuba diving lessons as part of their activity-based course offerings. However, few departments have developed an…

  15. Spinal Injuries in the Aquatics Environment, Part I: Prevention.

    ERIC Educational Resources Information Center

    Dworkin, Gerald M.

    1987-01-01

    Water-related activities are the number one cause of spinal cord injuries resulting from sports and recreation activities. This article discusses principles of safe diving; principles of safe water sliding; ways to reduce springboard diving accidents; factors contributing to springboard diving accidents; and safety recommendations for open water…

  16. 46 CFR 197.346 - Diver's equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... breathing gas supply with a cylinder pressure gage readable by the diver during the dive; and (ii) A diver... (8) A depth gage. (b) Each diver using a heavyweight diving outfit must— (1) Have a helmet group consisting of helmet, breastplate, and associated valves and connections; (2) Have a diving dress group...

  17. 46 CFR 197.346 - Diver's equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... breathing gas supply with a cylinder pressure gage readable by the diver during the dive; and (ii) A diver... (8) A depth gage. (b) Each diver using a heavyweight diving outfit must— (1) Have a helmet group consisting of helmet, breastplate, and associated valves and connections; (2) Have a diving dress group...

  18. Insulin-dependent diabetes mellitus and recreational scuba diving in Australia.

    PubMed

    Johnson, Rebecca

    2016-09-01

    Dive medicine bodies worldwide recognise that, with comprehensive screening and careful management, people with insulin-dependent diabetes (IDDM) can dive safely. Despite this, people with IDDM in Australia are generally denied access to dive training, an out-dated status quo that is not acceptable to the Australian diabetes community. This paper reflects upon the important advocacy work that has been done to progress this issue, and what is still required to open up access and bring Australia into line with more flexible and supportive international standards.

  19. Evaluating the risk of decompression sickness for a yo-yo dive using a rat model.

    PubMed

    Ofir, Dror; Yanir, Yoav; Abramovich, Amir; Bar, Ronen; Arieli, Yehuda

    2016-01-01

    The frequent ascents made during yo-yo diving may contribute to gas bubble clearance but paradoxically may also increase the risk of central nervous system decompression illness (DCI). We evaluated the risk of DCI due to yo-yo dives with very short surface intervals, using a controlled animal model. Dives were conducted on air to a depth of 90 meters (10 atmospheres absolute) for 32 minutes of bottom time, at a descent/ascent rate of 10 meters/ minute. Sprague-Dawley rats weighing ~ 300 grams were divided randomly into three groups. Group A performed a square dive protocol without any surface intervals, Group B conducted a protocol that included two surface intervals during the dive, and Group C performed a protocol with three surface intervals. Ascent/descent rate for surface intervals, each lasting one minute, was also 10 meters/minute. Manifestations of DCI were observed in 13 of 16 animals in Group A (81.3%), six of 12 in Group B (58.3%), and two of 12 in Group C (16.7%). Mortality rates were similar in all groups. Surface intervals during dives breathing air significantly reduced DCI risk in the rat. Further studies are required using a larger animal model to reinforce the results of the present investigation.

  20. Ecological carrying capacity assessment of diving site: A case study of Mabul Island, Malaysia.

    PubMed

    Zhang, Li-Ye; Chung, Shan-Shan; Qiu, Jian-Wen

    2016-12-01

    Despite considered a non-consumptive use of the marine environment, diving-related activities can cause damages to coral reefs. It is imminent to assess the maximum numbers of divers that can be accommodated by a diving site before it is subject to irreversible deterioration. This study aimed to assess the ecological carrying capacity of a diving site in Mabul Island, Malaysia. Photo-quadrat line transect method was used in the benthic survey. The ecological carrying capacity was assessed based on the relationship between the number of divers and the proportion of diver damaged hard corals in Mabul Island. The results indicated that the proportion of diver damaged hard corals occurred exponentially with increasing use. The ecological carrying capacity of Mabul Island is 15,600-16,800 divers per diving site per year at current levels of diver education and training with a quarterly threshold of 3900-4200 per site. Our calculation shows that management intervention (e.g. limiting diving) is justified at 8-14% of hard coral damage. In addition, the use of coral reef dominated diving sites should be managed according to their sensitivity to diver damage and the depth of the reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

    PubMed Central

    Hooker, S. K.; Fahlman, A.; Moore, M. J.; Aguilar de Soto, N.; Bernaldo de Quirós, Y.; Brubakk, A. O.; Costa, D. P.; Costidis, A. M.; Dennison, S.; Falke, K. J.; Fernandez, A.; Ferrigno, M.; Fitz-Clarke, J. R.; Garner, M. M.; Houser, D. S.; Jepson, P. D.; Ketten, D. R.; Kvadsheim, P. H.; Madsen, P. T.; Pollock, N. W.; Rotstein, D. S.; Rowles, T. K.; Simmons, S. E.; Van Bonn, W.; Weathersby, P. K.; Weise, M. J.; Williams, T. M.; Tyack, P. L.

    2012-01-01

    Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years. PMID:22189402

  2. Benefits of thermal acclimation in a tropical aquatic ectotherm, the Arafura filesnake, Acrochordus arafurae.

    PubMed

    Bruton, Melissa J; Cramp, Rebecca L; Franklin, Craig E

    2012-05-01

    The presumption that organisms benefit from thermal acclimation has been widely debated in the literature. The ability to thermally acclimate to offset temperature effects on physiological function is prevalent in ectotherms that are unable to thermoregulate year-round to maintain performance. In this study we examined the physiological and behavioural consequences of long-term exposure to different water temperatures in the aquatic snake Acrochordus arafurae. We hypothesised that long dives would benefit this species by reducing the likelihood of avian predation. To achieve longer dives at high temperatures, we predicted that thermal acclimation of A. arafurae would reduce metabolic rate and increase use of aquatic respiration. Acrochordus arafurae were held at 24 or 32°C for 3 months before dive duration and physiological factors were assessed (at both 24 and 32°C). Although filesnakes demonstrated thermal acclimation of metabolic rate, use of aquatic respiration was thermally independent and did not acclimate. Mean dive duration did not differ between the acclimation groups at either temperature; however, warm-acclimated animals increased maximum and modal dive duration, demonstrating a longer dive duration capacity. Our study established that A. arafurae is capable of thermal acclimation and this confers a benefit to the diving abilities of this snake.

  3. Allometric scaling of lung volume and its consequences for marine turtle diving performance.

    PubMed

    Hochscheid, Sandra; McMahon, Clive R; Bradshaw, Corey J A; Maffucci, Fulvio; Bentivegna, Flegra; Hays, Graeme C

    2007-10-01

    Marine turtle lungs have multiple functions including respiration, oxygen storage and buoyancy regulation, so lung size is an important indicator of dive performance. We determined maximum lung volumes (V(L)) for 30 individuals from three species (Caretta caretta n=13; Eretmochelys imbricata n=12; Natator depressus n=5) across a range of body masses (M(b)): 0.9 to 46 kg. V(L) was 114 ml kg(-1) and increased with M(b) with a scaling factor of 0.92. Based on these values for V(L) we demonstrated that diving capacities (assessed via aerobic dive limits) of marine turtles were potentially over-estimated when the V(L)-body mass effect was not considered (by 10 to 20% for 5 to 25 kg turtles and by >20% for turtles > or =25 kg). While aerobic dive limits scale with an exponent of 0.6, an analysis of average dive durations in free-ranging chelonian marine turtles revealed that dive duration increases with a mass exponent of 0.51, although there was considerable scatter around the regression line. While this highlights the need to determine more parameters that affect the duration-body mass relationship, our results provide a reference point for calculating oxygen storage capacities and air volumes available for buoyancy control.

  4. Subsea approach to work systems development

    NASA Technical Reports Server (NTRS)

    Gernhardt, M. L.; Frisbie, F. R.; Brown, C. E.

    1988-01-01

    Self-contained undersea working environments with applications to space station EVA environments are discussed. Physiological limitations include decompression, inert gas narcosis, high-pressure nervous system, gas toxicity, and thermal limitations. Work task requirements include drilling support, construction, inspection, and repair. Work systems include hyperbaric diving, atmospheric work systems, tele-operated work systems, and hybrid systems. Each type of work system is outlined in terms of work capabilities, special interface requirements, and limitations. Various operational philosophies are discussed. The evolution of work systems in the subsea industry has been the result of direct operational experience in a competitive market.

  5. A large-aperture low-cost hydrophone array for tracking whales from small boats.

    PubMed

    Miller, B; Dawson, S

    2009-11-01

    A passive sonar array designed for tracking diving sperm whales in three dimensions from a single small vessel is presented, and the advantages and limitations of operating this array from a 6 m boat are described. The system consists of four free floating buoys, each with a hydrophone, built-in recorder, and global positioning system receiver (GPS), and one vertical stereo hydrophone array deployed from the boat. Array recordings are post-processed onshore to obtain diving profiles of vocalizing sperm whales. Recordings are synchronized using a GPS timing pulse recorded onto each track. Sensitivity analysis based on hyperbolic localization methods is used to obtain probability distributions for the whale's three-dimensional location for vocalizations received by at least four hydrophones. These localizations are compared to those obtained via isodiachronic sequential bound estimation. Results from deployment of the system around a sperm whale in the Kaikoura Canyon in New Zealand are shown.

  6. Some new cave diving exploration results from Croatian karst area

    NASA Astrophysics Data System (ADS)

    Garasic, Davor; Garasic, Mladen

    2017-04-01

    In the recent years, several international cave diving expeditions took place in the Dinaric karst of Croatia. The objectives were conducting a new research of previously known karstic springs and also exploring new ones. The deepest karst cave in Croatia filled with water is Crveno jezero (lake) near Imotski town, with water depth of 281 meters and total cave depth of 528 meters. Volume of water in this cave is about 16 millions m3. Diving expeditions were held in 1997 and 1998.The deepest karst spring in the Dinaric karst of Croatia is Vrelo of Una River (with max discharge about 100 m3/s), where divers measured depth of -248 meters. Explorations were made in 2007 and 2016. Sinac spring in Pla\\vsko Polje has been dived to the depth of -203 meters. Cave diving was done in 1984, 1999, 2003, 2007 - 2016. Furthermore, very popular springs of the river Kupa (-155 m) in Gorski Kotar (explored since1995 till 2015), river Gacka (-105 in depth, 1150m in length) in Lika, explored from 1992 to 2016, river Cetina (-110 m in depth, 1300 m in length), cave diving explored from 2000 to 2016 in the Dalmatinska Zagora, Rumin Veliki spring (- 150 m in depth) in the Sinjska Krajina (explored and dived in 2006 and 2010), than rivers Krnjeza and Krupa in Ravni kotari with diving depths of over 100 meters (in 2004 and 2005) and so on. Along the Adriatic coast in Croatia there are many deep and long submarine springs (vrulje), ie. caves under seawater springs. called - vruljas for example Vrulja Zecica with over 900 meters ine length and Vrulja Modrič with completely flooded cave channels that extend over 2300 meters in length. Cave diving was conducted from 2010 to 2016. Vrulja Dubci is also worth mentioning (dived and explored in 2000), 161 meters deep and so on. Tectonic activity plays a dominant role in the creation and function of these caves. Geological, hydrogeological and lithostratigraphic conditions are also very important in speleogenesis of these caves in Croatian karst system.

  7. Diving accidents: a cohort study from the Netherlands.

    PubMed

    Smithuis, J W; Gips, E; van Rees Vellinga, T P; Gaakeer, M I

    2016-12-01

    Diving is, besides professional reasons, an increasingly popular leisure activity. Whilst statistically compared to other sports safe, diving accidents can result in serious complications. In order to treat this specific patient category adequately, early diagnosis is important. In this study, we explore various medical aspects of diving accidents. By sharing our experiences, we intend to create awareness and enhance urgent medical care for this specific category of patients. We conducted a retrospective cohort study using anonymized patient records from the emergency department (ED) of the Admiraal De Ruyter Hospital (ADRZ) and affiliated Medical Centre Hyperbaric Oxygen Therapy (MCHZ1) both in Goes, Netherlands. We evaluated all patients that presented to our ED as a diving accident from 1 November 2011 to 30 August 2015. In the selected period, 43 patients presented to our ED with complaints after diving; 84 % were male and 49 % older than 40 years, and they came by ambulance or referred by a general practitioner or other medical centres in the area; 70 % presented the same date as their dive, 21 % 1 to 3 days and 9 % later than 3 days after having dived. Pain was the most frequently reported symptom (44 %), followed by constitutional symptoms (42 %). Numbness or paraesthesia was reported in 33 %. Respiratory symptoms, dizziness, a change in mental status (e.g. apathy, confused or restlessness) and problems with coordination were present in 10-21 % of the cases. Symptoms that were apparent in less than 10 % of the cases were cutis marmorata, visual or auditory complaints, muscle weakness, cardiovascular symptoms or a malfunction of the anal sphincter or urinary bladder. Most of our patients exhibited more than one symptom; 70 % of all patients received hyperbaric oxygen recompression therapy. The limited number of patients presenting with complaints after a diving incident, the difficulty of recognition and the (potential) huge impact if not recognized and treated adequately make us believe that every diving accident should be discussed with a centre of expertise.

  8. The role of infrequent and extraordinary deep dives in leatherback turtles (Dermochelys coriacea).

    PubMed

    Houghton, Jonathan D R; Doyle, Thomas K; Davenport, John; Wilson, Rory P; Hays, Graeme C

    2008-08-01

    Infrequent and exceptional behaviours can provide insight into the ecology and physiology of a particular species. Here we examined extraordinarily deep (300-1250 m) and protracted (>1h) dives made by critically endangered leatherback turtles (Dermochelys coriacea) in the context of three previously suggested hypotheses: predator evasion, thermoregulation and exploration for gelatinous prey. Data were obtained via satellite relay data loggers attached to adult turtles at nesting beaches (N=11) and temperate foraging grounds (N=2), constituting a combined tracking period of 9.6 years (N=26,146 dives) and spanning the entire North Atlantic Ocean. Of the dives, 99.6% (N=26,051) were to depths <300 m with only 0.4% (N=95) extending to greater depths (subsequently termed ;deep dives'). Analysis suggested that deep dives: (1) were normally distributed around midday; (2) may exceed the inferred aerobic dive limit for the species; (3) displayed slow vertical descent rates and protracted durations; (4) were much deeper than the thermocline; and (5) occurred predominantly during transit, yet ceased once seasonal residence on foraging grounds began. These findings support the hypothesis that deep dives are periodically employed to survey the water column for diurnally descending gelatinous prey. If a suitable patch is encountered then the turtle may cease transit and remain within that area, waiting for prey to approach the surface at night. If unsuccessful, then migration may continue until a more suitable site is encountered. Additional studies using a meta-analytical approach are nonetheless recommended to further resolve this matter.

  9. Behaviour and buoyancy regulation in the deepest-diving reptile: the leatherback turtle.

    PubMed

    Fossette, Sabrina; Gleiss, Adrian C; Myers, Andy E; Garner, Steve; Liebsch, Nikolai; Whitney, Nicholas M; Hays, Graeme C; Wilson, Rory P; Lutcavage, Molly E

    2010-12-01

    In the face of the physical and physiological challenges of performing breath-hold deep dives, marine vertebrates have evolved different strategies. Although behavioural strategies in marine mammals and seabirds have been investigated in detail, little is known about the deepest-diving reptile - the leatherback turtle (Dermochelys coriacea). Here, we deployed tri-axial accelerometers on female leatherbacks nesting on St Croix, US Virgin Islands, to explore their diving strategy. Our results show a consistent behavioural pattern within dives among individuals, with an initial period of active swimming at relatively steep descent angles (∼-40 deg), with a stroke frequency of 0.32 Hz, followed by a gliding phase. The depth at which the gliding phase began increased with the maximum depth of the dives. In addition, descent body angles and vertical velocities were higher during deeper dives. Leatherbacks might thus regulate their inspired air-volume according to the intended dive depth, similar to hard-shelled turtles and penguins. During the ascent, turtles actively swam with a stroke frequency of 0.30 Hz but with a low vertical velocity (∼0.40 ms(-1)) and a low pitch angle (∼+26 deg). Turtles might avoid succumbing to decompression sickness ('the bends') by ascending slowly to the surface. In addition, we suggest that the low body temperature of this marine ectotherm compared with that of endotherms might help reduce the risk of bubble formation by increasing the solubility of nitrogen in the blood. This physiological advantage, coupled with several behavioural and physical adaptations, might explain the particular ecological niche the leatherback turtle occupies among marine reptiles.

  10. Determinants of arterial gas embolism after scuba diving.

    PubMed

    Ljubkovic, Marko; Zanchi, Jaksa; Breskovic, Toni; Marinovic, Jasna; Lojpur, Mihajlo; Dujic, Zeljko

    2012-01-01

    Scuba diving is associated with breathing gas at increased pressure, which often leads to tissue gas supersaturation during ascent and the formation of venous gas emboli (VGE). VGE crossover to systemic arteries (arterialization), mostly through the patent foramen ovale, has been implicated in various diving-related pathologies. Since recent research has shown that arterializations frequently occur in the absence of cardiac septal defects, our aim was to investigate the mechanisms responsible for these events. Divers who tested negative for patent foramen ovale were subjected to laboratory testing where agitated saline contrast bubbles were injected in the cubital vein at rest and exercise. The individual propensity for transpulmonary bubble passage was evaluated echocardiographically. The same subjects performed a standard air dive followed by an echosonographic assessment of VGE generation (graded on a scale of 0-5) and distribution. Twenty-three of thirty-four subjects allowed the transpulmonary passage of saline contrast bubbles in the laboratory at rest or after a mild/moderate exercise, and nine of them arterialized after a field dive. All subjects with postdive arterialization had bubble loads reaching or exceeding grade 4B in the right heart. In individuals without transpulmonary passage of saline contrast bubbles, injected either at rest or after an exercise bout, no postdive arterialization was detected. Therefore, postdive VGE arterialization occurs in subjects that meet two criteria: 1) transpulmonary shunting of contrast bubbles at rest or at mild/moderate exercise and 2) VGE generation after a dive reaches the threshold grade. These findings may represent a novel concept in approach to diving, where diving routines will be tailored individually.

  11. Breath-Hold Diving.

    PubMed

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  12. 78 FR 2957 - Notice of Applicability of Special Use Permit Requirements to Certain Categories of Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... MONITOR, NOAA has determined that enhancing recreational diving access to the wreck is a priority. NOAA... diving near the USS MONITOR; and (2) fireworks displays. The remaining two special use permit categories..., etc. Specific examples of such events involve the promotion of SCUBA diving; an annual underwater...

  13. Using Stimulation of the Diving Reflex in Humans to Teach Integrative Physiology

    ERIC Educational Resources Information Center

    Choate, Julia K.; Denton, Kate M.; Evans, Roger G.; Hodgson, Yvonne

    2014-01-01

    During underwater submersion, the body responds by conserving O[subscript 2] and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be…

  14. Studies of Beaked Whale Diving Behavior and Odontocete Stock Structure in Hawai’i in March/April 2006

    DTIC Science & Technology

    2006-09-01

    also been reported for northern bottlenose whales (Hooker and Baird 1999), and for deep- diving beluga whales, Delphinapterus leucas (Martin and...Smith. 1992. Deep diving in wild, free-ranging beluga whales, Delphinapterus leucas . Canadian Journal of Fisheries and Aquatic Sciences 49:462-466

  15. Two fatal cases of immersion pulmonary oedema - using dive accident investigation to assist the forensic pathologist.

    PubMed

    Smart, David R; Sage, Martin; Davis, F Michael

    2014-06-01

    Immersion pulmonary oedema (IPE) is being increasingly recognized in swimmers, snorkellers and scuba divers presenting with acute symptoms of respiratory distress following immersion, but fatal case reports are uncommon. We report two fatal cases of probable IPE in middle-aged women, one whilst snorkelling and the other associated with a scuba dive. In the snorkeller's case, an episode of exercise-related chest tightness and shortness of breath that occurred 10 months previously was investigated but this proved negative, and she was on no medications. However, at autopsy, moderate left ventricular hypertrophy was noted. The scuba diver had suffered several previous episodes of severe shortness of breath following dives, one being so severe it led to cyanosis and impaired consciousness. At inquest, the pathologist's diagnosis was given as drowning and IPE was not mentioned. Expert input from doctors trained in diving medicine should be compulsory in the investigation of diving deaths, and forensic pathologists should be properly trained in and have guidelines for the conduct of post-immersion and post-diving autopsies.

  16. Diving Simulation concerning Adélie Penguin

    NASA Astrophysics Data System (ADS)

    Ito, Shinichiro; Harada, Masanori

    Penguins are sea birds that swim using lift and drag forces by flapping their wings like other birds. Although diving data can be obtained using a micro-data logger which has improved in recent years, all the necessary diving conditions for analysis cannot be acquired. In order to determine all these hard-to-get conditions, the posture and lift and drag forces of penguins were theoretically calculated by the technique used in the analysis of the optimal flight path of aircrafts. In this calculation, the actual depth and speed of the dive of an Adélie penguin (Pygoscelis adeliae) were utilized. Then, the calculation result and experimental data were compared, and found to be in good agreement. Thus, it is fully possible to determine the actual conditions of dive by this calculation, even those that cannot be acquired using a data logger.

  17. Respiration and heart rate at the surface between dives in northern elephant seals.

    PubMed

    Le Boeuf, B J; Crocker, D E; Grayson, J; Gedamke, J; Webb, P M; Blackwell, S B; Costa, D P

    2000-11-01

    All underwater activities of diving mammals are constrained by the need for surface gas exchange. Our aim was to measure respiratory rate (fb) and heart rate (fh) at the surface between dives in free-ranging northern elephant seals Mirounga angustirostris. We recorded fb and fh acoustically in six translocated juveniles, 1.8-2. 4 years old, and three migrating adult males from the rookery at Año Nuevo, California, USA. To each seal, we attached a diving instrument to record the diving pattern, a satellite tag to track movements and location, a digital audio tape recorder or acoustic datalogger with an external hydrophone to record the sounds of respiration and fh at the surface, and a VHF transmitter to facilitate recovery. During surface intervals averaging 2.2+/-0.4 min, adult males breathed a mean of 32.7+/-5.4 times at a rate of 15. 3+/-1.8 breaths min(-)(1) (means +/- s.d., N=57). Mean fh at the surface was 84+/-3 beats min(-)(1). The fb of juveniles was 26 % faster than that of adult males, averaging 19.2+/-2.2 breaths min(-)(1) for a mean total of 41.2+/-5.0 breaths during surface intervals lasting 2.6+/-0.31 min. Mean fh at the surface was 106+/-3 beats min(-)(1). fb and fh did not change significantly over the course of surface intervals. Surface fb and fh were not clearly associated with levels of exertion, such as rapid horizontal transit or apparent foraging, or with measures of immediately previous or subsequent diving performance, such as diving duration, diving depth or swimming speed. Together, surface respiration rate and the duration of the preceding dive were significant predictors of surface interval duration. This implies that elephant seals minimize surface time spent loading oxygen depending on rates of oxygen uptake and previous depletion of stores.

  18. Oxygen minimum zone: An important oceanographic habitat for deep-diving northern elephant seals, Mirounga angustirostris.

    PubMed

    Naito, Yasuhiko; Costa, Daniel P; Adachi, Taiki; Robinson, Patrick W; Peterson, Sarah H; Mitani, Yoko; Takahashi, Akinori

    2017-08-01

    Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal-mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish ( Icosteus aenigmaticus ) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals.

  19. Parameter estimation of the copernicus decompression model with venous gas emboli in human divers.

    PubMed

    Gutvik, Christian R; Dunford, Richard G; Dujic, Zeljko; Brubakk, Alf O

    2010-07-01

    Decompression Sickness (DCS) may occur when divers decompress from a hyperbaric environment. To prevent this, decompression procedures are used to get safely back to the surface. The models whose procedures are calculated from, are traditionally validated using clinical symptoms as an endpoint. However, DCS is an uncommon phenomenon and the wide variation in individual response to decompression stress is poorly understood. And generally, using clinical examination alone for validation is disadvantageous from a modeling perspective. Currently, the only objective and quantitative measure of decompression stress is Venous Gas Emboli (VGE), measured by either ultrasonic imaging or Doppler. VGE has been shown to be statistically correlated with DCS, and is now widely used in science to evaluate decompression stress from a dive. Until recently no mathematical model has existed to predict VGE from a dive, which motivated the development of the Copernicus model. The present article compiles a selection experimental dives and field data containing computer recorded depth profiles associated with ultrasound measurements of VGE. It describes a parameter estimation problem to fit the model with these data. A total of 185 square bounce dives from DCIEM, Canada, 188 recreational dives with a mix of single, repetitive and multi-day exposures from DAN USA and 84 experimentally designed decompression dives from Split Croatia were used, giving a total of 457 dives. Five selected parameters in the Copernicus bubble model were assigned for estimation and a non-linear optimization problem was formalized with a weighted least square cost function. A bias factor to the DCIEM chamber dives was also included. A Quasi-Newton algorithm (BFGS) from the TOMLAB numerical package solved the problem which was proved to be convex. With the parameter set presented in this article, Copernicus can be implemented in any programming language to estimate VGE from an air dive.

  20. Dive and discover: Expeditions to the seafloor

    NASA Astrophysics Data System (ADS)

    Lawrence, Lisa Ayers

    The Dive and Discover Web site is a virtual treasure chest of deep sea science and classroom resources. The goals of Dive and Discover are to engage students, teachers, and the general public in the excitement of ocean disco very through an interactive educational Web site. You can follow scientists on oceanographic research cruises by reading their daily cruise logs, viewing photos and video clips of the discoveries, and even e-mailing questions to the scientists and crew. WHOI has also included an “Educator's Companion” section with teaching strategies, activities, and assessments, making Dive and Discover an excellent resource for the classroom.

  1. Dive and discover: Expeditions to the seafloor

    NASA Astrophysics Data System (ADS)

    Ayers Lawrence, Lisa

    The Dive and Discover Web site is a virtual treasure chest of deep sea science and classroom resources. The goals of Dive and Discover are to engage students, teachers, and the general public in the excitement of ocean disco very through an interactive educational Web site. You can follow scientists on oceanographic research cruises by reading their daily cruise logs, viewing photos and video clips of the discoveries, and even e-mailing questions to the scientists and crew. WHOI has also included an "Educator's Companion" section with teaching strategies, activities, and assessments, making Dive and Discover an excellent resource for the classroom.

  2. Antioxidants may Attenuate Plasma Erythropoietin Decline after Hyperbaric Oxygen Diving.

    PubMed

    Mutzbauer, T S; Schneider, M; Neubauer, B; Weiss, M; Tetzlaff, K

    2015-11-01

    According to previous studies, plasma erythropoietin (EPO) may decrease after hyperbaric oxygen exposure due to oxidative stress. It is hypothesized that the decrease of EPO can be attenuated by oxygen free radical scavengers.The aim of the present study was to evaluate whether EPO plasma levels can be influenced by oral application of vitamin C and E before repeated hyperbaric oxygen exposure during diving. 16 healthy male police task force divers performed 3 morning dives on oxygen within a regular diving schedule on 3 consecutive days. They were randomized into either the placebo group or the vitamin group, receiving 1 g ascorbic acid and 600 IU D-α-tocopherol orally 60 min before the dive. Blood samples for EPO measurement were taken on days 1, 2, and 3 at T1, T3 and T5 60 min before and at T2, T4 and T6 60 min after each dive, respectively. A moderate decrease of EPO was observed beginning at T3 until T6 in the placebo group. The EPO concentrations in the vitamin group did not show relevant variations compared to baseline. Radical scavenging vitamins C and D may counteract hyperbaric oxygen related mechanisms reducing EPO production in hyperbaric oxygen exposure during diving. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Diving behaviour of Cuvier's beaked whales exposed to two types of military sonar.

    PubMed

    Falcone, Erin A; Schorr, Gregory S; Watwood, Stephanie L; DeRuiter, Stacy L; Zerbini, Alexandre N; Andrews, Russel D; Morrissey, Ronald P; Moretti, David J

    2017-08-01

    Cuvier's beaked whales ( Ziphius cavirostris ) have stranded in association with mid-frequency active sonar (MFAS) use, and though the causative mechanism linking these events remains unclear, it is believed to be behaviourally mediated. To determine whether MFAS use was associated with behavioural changes in this species, satellite tags were used to record the diving and movements of 16 Cuvier's beaked whales for up to 88 days in a region of frequent MFAS training off the coast of Southern California. Tag data were combined with summarized records of concurrent bouts of high-power, surface-ship and mid-power, helicopter-deployed MFAS use, along with other potential covariates, in generalized additive mixed-effects models. Deep dives, shallow dives and surface intervals tended to become longer during MFAS use, with some variation associated with the total amount of overlapping MFAS during the behaviour. These changes in dives and surface intervals contributed to a longer interval between deep dives, a proxy for foraging disruption in this species. Most responses intensified with proximity and were more pronounced during mid-power than high-power MFAS use at comparable distances within approximately 50 km, despite the significantly lower source level of mid-power MFAS. However, distance-mediated responses to high-power MFAS, and increased deep dive intervals during mid-power MFAS, were evident up to approximately 100 km away.

  4. Visual accommodation and active pursuit of prey underwater in a plunge-diving bird: the Australasian gannet

    PubMed Central

    Machovsky-Capuska, Gabriel E.; Howland, Howard C.; Raubenheimer, David; Vaughn-Hirshorn, Robin; Würsig, Bernd; Hauber, Mark E.; Katzir, Gadi

    2012-01-01

    Australasian gannets (Morus serrator), like many other seabird species, locate pelagic prey from the air and perform rapid plunge dives for their capture. Prey are captured underwater either in the momentum (M) phase of the dive while descending through the water column, or the wing flapping (WF) phase while moving, using the wings for propulsion. Detection of prey from the air is clearly visually guided, but it remains unknown whether plunge diving birds also use vision in the underwater phase of the dive. Here we address the question of whether gannets are capable of visually accommodating in the transition from aerial to aquatic vision, and analyse underwater video footage for evidence that gannets use vision in the aquatic phases of hunting. Photokeratometry and infrared video photorefraction revealed that, immediately upon submergence of the head, gannet eyes accommodate and overcome the loss of greater than 45 D (dioptres) of corneal refractive power which occurs in the transition between air and water. Analyses of underwater video showed the highest prey capture rates during WF phase when gannets actively pursue individual fish, a behaviour that very likely involves visual guidance, following the transition after the plunge dive's M phase. This is to our knowledge the first demonstration of the capacity for visual accommodation underwater in a plunge diving bird while capturing submerged prey detected from the air. PMID:22874749

  5. Diving behaviour of Cuvier's beaked whales exposed to two types of military sonar

    PubMed Central

    Schorr, Gregory S.; Watwood, Stephanie L.; DeRuiter, Stacy L.; Zerbini, Alexandre N.; Andrews, Russel D.; Morrissey, Ronald P.; Moretti, David J.

    2017-01-01

    Cuvier's beaked whales (Ziphius cavirostris) have stranded in association with mid-frequency active sonar (MFAS) use, and though the causative mechanism linking these events remains unclear, it is believed to be behaviourally mediated. To determine whether MFAS use was associated with behavioural changes in this species, satellite tags were used to record the diving and movements of 16 Cuvier's beaked whales for up to 88 days in a region of frequent MFAS training off the coast of Southern California. Tag data were combined with summarized records of concurrent bouts of high-power, surface-ship and mid-power, helicopter-deployed MFAS use, along with other potential covariates, in generalized additive mixed-effects models. Deep dives, shallow dives and surface intervals tended to become longer during MFAS use, with some variation associated with the total amount of overlapping MFAS during the behaviour. These changes in dives and surface intervals contributed to a longer interval between deep dives, a proxy for foraging disruption in this species. Most responses intensified with proximity and were more pronounced during mid-power than high-power MFAS use at comparable distances within approximately 50 km, despite the significantly lower source level of mid-power MFAS. However, distance-mediated responses to high-power MFAS, and increased deep dive intervals during mid-power MFAS, were evident up to approximately 100 km away. PMID:28879004

  6. Effect of Diving and Diving Hoods on the Bacterial Flora of the External Ear Canal and Skin

    DTIC Science & Technology

    1982-05-01

    in parentheses itidicate number of sites tested. b One strain isolated from skin laceration exposed to water. "Diver developed external otitis media 5... otitis media (11), skin infections skin of wearing diving hoods in and out of the (6), and diarrheal diseases (10). One aspect of water. We

  7. 29 CFR Appendix B to Subpart Y of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart Y of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH..., Subpt. Y, App. B Appendix B to Subpart Y of Part 1926—Guidelines for Scientific Diving Note: The...

  8. Scientific Diving Training Course. Red Sea & Gulf of Aden Programme (PERSGA).

    ERIC Educational Resources Information Center

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents the scientific diving training course organized by the Arab League Educational, Cultural and Scientific Organization (ALECSO) for the Program for Environmental Studies, Red Sea and Gulf of Aden (PERSGA). This course of six weeks duration aims to produce a person who is capable of carrying out scientific diving tasks in the…

  9. Go Deeper, Go Deeper: Understanding submarine command and control during the completion of dived tracking operations.

    PubMed

    Roberts, Aaron P J; Stanton, Neville A; Fay, Daniel T

    2018-05-01

    This is a world's first-of-a-kind study providing empirical evidence for understanding submarine control room performance when completing higher and lower demand Dived Tracking (DT) scenarios. A submarine control room simulator was built, using a non-commercial version of Dangerous Waters as the simulation engine. The creation of networked workstations allowed a team of nine operators to perform tasks completed by submarine command teams during DT. The Event Analysis of Systemic Teamwork (EAST) method was used to model the social, task and information networks and describe command team performance. Ten teams were recruited for the study, affording statistical comparisons of how command team roles and level of demand affected performance. Results indicate that command teams can covertly DT a contact differently depending on demand (e.g. volume of contacts). In low demand it was possible to use periscope more often than in high demand, in a 'duck-and-run' fashion. Therefore, the type of information and frequency of particular task completion, was significantly different between the higher and lower demand conditions. This resulted in different operators in the command team experiencing greater demand depending on how the DT mission objective was completed. Potential bottlenecks in the command team were identified and implications are discussed alongside suggestions for future work. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Injury survey in scuba divers of British Sub-Aqua Club: A retrospective study

    PubMed Central

    Hyun, Gwang-Suk; Jee, Yong-Seok; Park, Jung-Min; Cho, Nam-Heung; Cha, Jun-Youl

    2015-01-01

    Scuba diving itself is generally known as a safe sports. However, various injury accidents can happen, and the incidences vary depending on divers’ education grade levels about the risks. Therefore, the study set out to identify and analyze the causes and patterns of injuries depending on the divers’ safety education grade levels through a questionnaire survey targeting ocean divers (n=12), sports divers (n=16), and dive leaders (n=15), all of whom belong to the British Sub-Aqua Club. After conducting a frequency analysis on the collected questionnaires, the conclusions are made as follows. First, in terms of diving depth, the most frequent diving depth was 15–20 m among ocean divers, 20–25 m among sports divers, and 15–20 m in case of dive leaders. Second, with regard to the causes of injuries, the most frequently answered causes are ‘overtension’ and ‘low skill’ among ocean divers; ‘low skill’ among sports divers; ‘overaction’ among dive leaders. Third, in terms of injury patterns, the most frequently answered injury patterns are ‘ear’ injuries among ocean divers; ‘ankle’ injuries among sports divers; ‘ankle’ and ‘calf’ injuries among dive leaders. Fourth, with regard to who performed first-aid when an injury accident happened, the most frequent answers are ‘instructor’ among ocean divers; ‘instructor’ and ‘self’ among sports divers; ‘self’ among dive leaders. We might suggest that more efforts need to be made to improve divers’ low dependence on specialists for treatment and consultation so that we can prevent an injury from leading to the second injury accident. PMID:26730384

  11. Variation in body condition during the post-moult foraging trip of southern elephant seals and its consequences on diving behaviour.

    PubMed

    Richard, Gaëtan; Vacquié-Garcia, Jade; Jouma'a, Joffrey; Picard, Baptiste; Génin, Alexandre; Arnould, John P Y; Bailleul, Frédéric; Guinet, Christophe

    2014-07-15

    Mature female southern elephant seals (Mirounga leonina) come ashore only in October to breed and in January to moult, spending the rest of the year foraging at sea. Mature females may lose as much as 50% of their body mass, mostly in lipid stores, during the breeding season due to fasting and lactation. When departing to sea, post-breeding females are negatively buoyant, and the relative change in body condition (i.e. density) during the foraging trip has previously been assessed by monitoring the descent rate during drift dives. However, relatively few drift dives are performed, resulting in low resolution of the temporal reconstruction of body condition change. In this study, six post-breeding females were equipped with time-depth recorders and accelerometers to investigate whether changes in active swimming effort and speed could be used as an alternative method of monitoring density variations throughout the foraging trip. In addition, we assessed the consequences of density change on the swimming efforts of individuals while diving and investigated the effects on dive duration. Both descent swimming speed and ascent swimming effort were found to be strongly correlated to descent rate during drift dives, enabling the fine-scale monitoring of seal density change over the whole trip. Negatively buoyant seals minimized swimming effort during descents, gliding down at slower speeds, and reduced their ascent swimming effort to maintain a nearly constant swimming speed as their buoyancy increased. One per cent of seal density variation over time was found to induce a 20% variation in swimming effort during dives with direct consequences on dive duration. © 2014. Published by The Company of Biologists Ltd.

  12. Antioxidants, endothelial dysfunction, and DCS: in vitro and in vivo study.

    PubMed

    Wang, Qiong; Mazur, Aleksandra; Guerrero, François; Lambrechts, Kate; Buzzacott, Peter; Belhomme, Marc; Theron, Michaël

    2015-12-15

    Reactive oxygen species (ROS) production is a well-known effect in individuals after an undersea dive. This study aimed to delineate the links between ROS, endothelial dysfunction, and decompression sickness (DCS) through the use of antioxidants in vitro and in vivo. The effect of N-acetylcysteine (NAC) on superoxide and peroxynitrite, nitric oxide (NO) generation, and cell viability during in vitro diving simulation were analyzed. Also analyzed was the effect of vitamin C and NAC on plasma glutathione thiol and thiobarbituric acid reactive substances (TBARS), plasma angiotensin-converting enzyme (ACE) activity, and angiotensin-II and DCS morbidity during in vivo diving simulation. During an in vitro diving simulation, vascular endothelial cells showed overproduction of superoxide and peroxynitrite, obvious attenuation of NO generation, and promotion of cell death, all of which were reversed by NAC treatment. After in vivo diving simulation, plasma ACE activity and angiotensin-II level were not affected. The plasma level of glutathione thiol was downregulated after the dive, which was attenuated partially by NAC treatment. Plasma TBARS level was upregulated; however, either NAC or vitamin C treatment failed to prevent DCS morbidity. During in vitro simulation, endothelial superoxide and peroxynitrite-mediated oxidative stress were involved in the attenuation of NO availability and cell death. This study is the first attempt to link oxidative stress and DCS occurrence, and the link could not be confirmed in vivo. Even in the presence of antioxidants, ROS and bubbles generated during diving and/or decompression might lead to embolic or biochemical stress and DCS. Diving-induced oxidative stress might not be the only trigger of DCS morbidity. Copyright © 2015 the American Physiological Society.

  13. Beluga (Delphinapterus leucas) granulocytes and monocytes display variable responses to in vitro pressure exposures

    PubMed Central

    Thompson, Laura A.; Romano, Tracy A.

    2015-01-01

    While it is widely known that marine mammals possess adaptations which allow them to make repetitive and extended dives to great depths without suffering ill effects seen in humans, the response of marine mammal immune cells to diving is unknown. Renewed interest in marine mammal dive physiology has arisen due to reports of decompression sickness-like symptoms and embolic damage in stranded and by-caught animals, and there is concern over whether anthropogenic activities can impact marine mammal health by disrupting adaptive dive responses and behavior. This work addresses the need for information concerning marine mammal immune function during diving by evaluating granulocyte and monocyte phagocytosis, and granulocyte activation in belugas (n = 4) in comparison with humans (n = 4), with and without in vitro pressure exposures. In addition, the potential for additional stressors to impact immune function was investigated by comparing the response of beluga cells to pressure between baseline and stressor conditions. Granulocyte and monocyte phagocytosis, as well as granulocyte activation, were compared between pressure exposed and non-exposed cells for each condition, between different pressure profiles and between conditions using mixed generalized linear models (α = 0.05). The effects of pressure varied between species as well by depth, compression/decompression rates, and length of exposures, and condition for belugas. Pressure induced changes in granulocyte and monocyte function in belugas could serve a protective function against dive-related pathologies and differences in the response between humans and belugas could reflect degrees of dive adaptation. The alteration of these responses during physiologically challenging conditions may increase the potential for dive-related in jury and disease in marine mammals. PMID:25999860

  14. Beluga (Delphinapterus leucas) granulocytes and monocytes display variable responses to in vitro pressure exposures.

    PubMed

    Thompson, Laura A; Romano, Tracy A

    2015-01-01

    While it is widely known that marine mammals possess adaptations which allow them to make repetitive and extended dives to great depths without suffering ill effects seen in humans, the response of marine mammal immune cells to diving is unknown. Renewed interest in marine mammal dive physiology has arisen due to reports of decompression sickness-like symptoms and embolic damage in stranded and by-caught animals, and there is concern over whether anthropogenic activities can impact marine mammal health by disrupting adaptive dive responses and behavior. This work addresses the need for information concerning marine mammal immune function during diving by evaluating granulocyte and monocyte phagocytosis, and granulocyte activation in belugas (n = 4) in comparison with humans (n = 4), with and without in vitro pressure exposures. In addition, the potential for additional stressors to impact immune function was investigated by comparing the response of beluga cells to pressure between baseline and stressor conditions. Granulocyte and monocyte phagocytosis, as well as granulocyte activation, were compared between pressure exposed and non-exposed cells for each condition, between different pressure profiles and between conditions using mixed generalized linear models (α = 0.05). The effects of pressure varied between species as well by depth, compression/decompression rates, and length of exposures, and condition for belugas. Pressure induced changes in granulocyte and monocyte function in belugas could serve a protective function against dive-related pathologies and differences in the response between humans and belugas could reflect degrees of dive adaptation. The alteration of these responses during physiologically challenging conditions may increase the potential for dive-related in jury and disease in marine mammals.

  15. Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives.

    PubMed

    Martín López, Lucía Martina; Miller, Patrick J O; Aguilar de Soto, Natacha; Johnson, Mark

    2015-05-01

    Diving animals modulate their swimming gaits to promote locomotor efficiency and so enable longer, more productive dives. Beaked whales perform extremely long and deep foraging dives that probably exceed aerobic capacities for some species. Here, we use biomechanical data from suction-cup tags attached to three species of beaked whales (Mesoplodon densirostris, N=10; Ziphius cavirostris, N=9; and Hyperoodon ampullatus, N=2) to characterize their swimming gaits. In addition to continuous stroking and stroke-and-glide gaits described for other diving mammals, all whales produced occasional fluke-strokes with distinctly larger dorso-ventral acceleration, which we termed 'type-B' strokes. These high-power strokes occurred almost exclusively during deep dive ascents as part of a novel mixed gait. To quantify body rotations and specific acceleration generated during strokes we adapted a kinematic method combining data from two sensors in the tag. Body rotations estimated with high-rate magnetometer data were subtracted from accelerometer data to estimate the resulting surge and heave accelerations. Using this method, we show that stroke duration, rotation angle and acceleration were bi-modal for these species, with B-strokes having 76% of the duration, 52% larger body rotation and four times more surge than normal strokes. The additional acceleration of B-strokes did not lead to faster ascents, but rather enabled brief glides, which may improve the overall efficiency of this gait. Their occurrence towards the end of long dives leads us to propose that B-strokes may recruit fast-twitch fibres that comprise ∼80% of swimming muscles in Blainville's beaked whales, thus prolonging foraging time at depth. © 2015. Published by The Company of Biologists Ltd.

  16. Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals.

    PubMed

    Wright, Traver J; Davis, Randall W

    2015-07-01

    Myoglobin (Mb) is an oxygen binding protein found in vertebrate skeletal muscle, where it facilitates intracellular transport and storage of oxygen. This protein has evolved to suit unique physiological needs in the muscle of diving vertebrates that express Mb at much greater concentrations than their terrestrial counterparts. In this study, we characterized Mb oxygen affinity (P50) from 25 species of aquatic and terrestrial birds and mammals. Among diving species, we tested for correlations between Mb P50 and routine dive duration. Across all species examined, Mb P50 ranged from 2.40 to 4.85 mmHg. The mean P50 of Mb from terrestrial ungulates was 3.72±0.15 mmHg (range 3.70-3.74 mmHg). The P50 of cetaceans was similar to terrestrial ungulates ranging from 3.54 to 3.82 mmHg, with the exception of the melon-headed whale, which had a significantly higher P50 of 4.85 mmHg. Among pinnipeds, the P50 ranged from 3.23 to 3.81 mmHg and showed a trend for higher oxygen affinity in species with longer dive durations. Among diving birds, the P50 ranged from 2.40 to 3.36 mmHg and also showed a trend of higher affinities in species with longer dive durations. In pinnipeds and birds, low Mb P50 was associated with species whose muscles are metabolically active under hypoxic conditions associated with aerobic dives. Given the broad range of potential globin oxygen affinities, Mb P50 from diverse vertebrate species appears constrained within a relatively narrow range. High Mb oxygen affinity within this range may be adaptive for some vertebrates that make prolonged dives. © 2015. Published by The Company of Biologists Ltd.

  17. The Risks of Scuba Diving: A Focus on Decompression Illness

    PubMed Central

    2014-01-01

    Decompression Illness includes both Decompression Sickness (DCS) and Pulmonary Overinflation Syndrome (POIS), subsets of diving-related injury related to scuba diving. DCS is a condition in which gas bubbles that form while diving do not have adequate time to be resorbed or “off-gassed,” resulting in entrapment in specific regions of the body. POIS is due to an overly rapid ascent to the surface resulting in the rupture of alveoli and subsequent extravasation of air bubbles into tissue planes or even the cerebral circulation. Divers must always be cognizant of dive time and depth, and be trained in the management of decompression. A slow and controlled ascent, plus proper control of buoyancy can reduce the dangerous consequences of pulmonary barotrauma. The incidence of adverse effects can be diminished with safe practices, allowing for the full enjoyment of this adventurous aquatic sport. PMID:25478296

  18. Bio-logging of physiological parameters in higher marine vertebrates

    NASA Astrophysics Data System (ADS)

    Ponganis, Paul J.

    2007-02-01

    Bio-logging of physiological parameters in higher marine vertebrates had its origins in the field of bio-telemetry in the 1960s and 1970s. The development of microprocessor technology allowed its first application to bio-logging investigations of Weddell seal diving physiology in the early 1980s. Since that time, with the use of increased memory capacity, new sensor technology, and novel data processing techniques, investigators have examined heart rate, temperature, swim speed, stroke frequency, stomach function (gastric pH and motility), heat flux, muscle oxygenation, respiratory rate, diving air volume, and oxygen partial pressure (P) during diving. Swim speed, heart rate, and body temperature have been the most commonly studied parameters. Bio-logging investigation of pressure effects has only been conducted with the use of blood samplers and nitrogen analyses on animals diving at isolated dive holes. The advantages/disadvantages and limitations of recording techniques, probe placement, calibration techniques, and study conditions are reviewed.

  19. Code of Practice for Scientific Diving: Principles for the Safe Practice of Scientific Diving in Different Environments. Unesco Technical Papers in Marine Science 53.

    ERIC Educational Resources Information Center

    Flemming, N. C., Ed.; Max, M. D., Ed.

    This publication has been prepared to provide scientific divers with guidance on safe practice under varying experimental and environmental conditions. The Code offers advice and recommendations on administrative practices, insurance, terms of employment, medical standards, training standards, dive planning, safety with different breathing gases…

  20. Moderator and Mediator Effects of Scuba Diving Specialization on Marine-Based Environmental Knowledge-Behavior Contingency

    ERIC Educational Resources Information Center

    Thapa, Brijesh; Graefe, Alan R.; Meyer, Louisa A.

    2005-01-01

    Given the growth in scuba diving activities and the importance of environmental education programs to alleviate the potential impacts on coral reef ecosystems, there is a need to better understand the diving community, its environmental knowledge, and subsequent behavioral actions. The purpose of this study was to explore the role or influence of…

  1. 29 CFR Appendix B to Subpart Y of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart Y..., Subpt. Y, App. B Appendix B to Subpart Y of Part 1926—Guidelines for Scientific Diving Note: The requirements applicable to construction work under this appendix B are identical to those set forth at appendix...

  2. 29 CFR Appendix B to Subpart Y of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart Y..., Subpt. Y, App. B Appendix B to Subpart Y of Part 1926—Guidelines for Scientific Diving Note: The requirements applicable to construction work under this appendix B are identical to those set forth at appendix...

  3. Scuba diving accidents.

    PubMed

    Dembert, M L

    1977-08-01

    The principal scuba diving medical problems of barotrauma, air embolism and decompression sickness have as their pathophysiologic basis the Ideal Gas Law and Boyle's Law. Hyperbaric chamber recompression therapy is the only definitive treatment of air embolism and decompression sickness. However, with a basic knowledge of diving medicine, the family physician can provide effective supportive care to the patient prior to initiation of hyperbaric therapy.

  4. 29 CFR Appendix B to Subpart T to... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart T.... 1910, Subpt. T, App. B Appendix B to Subpart T to Part 1910—Guidelines for Scientific Diving This appendix contains guidelines that will be used in conjunction with § 1910.401(a)(2)(iv) to determine those...

  5. Coral Dermatitis or Infectious Dermatitis: Report of a Case of Staphylococcus Aureus Infection of Skin After Scuba Diving

    PubMed Central

    2018-01-01

    Skin lesion which develops after deep sea diving is termed as coral dermatitis. The corals are known to produce a toxic substance which when comes in to contact with human skin may elicit hypersensitive reactions. Most previous reports highlight the allergic reactions caused by deep sea diving. This is a rare case of staphylococcal skin infection in a second-year medical student caused by Staphylococcus aureus; he reported a history of deep sea diving before being presented to the hospital with skin rashes. This case highlights the importance of considering infectious aetiology in cases of coral dermatitis. PMID:29666774

  6. The neuropsychology of repeated 1- and 3-meter springboard diving among college athletes.

    PubMed

    Zillmer, Eric A

    2003-01-01

    This study examined the neuropsychological effects of repeated springboard diving. It was hypothesized that the impact velocity, which can range from 20 to 30 mph, and accompanying deceleration in the water may lead to concussions and affect the diver's cognitive function. Six varsity National Collegiate Athletic Association Division 1 springboard divers participated in the study. Each diver performed a total of 50 practice dives from either the 1- or 3-m springboard. After each set of 10 dives, the participants were immediately evaluated at poolside using the Symbol Digit Modalities Test, the Stroop Color Word Test, and the Trail Making Test B. Baseline testing revealed, consistent with their athletic specialty, clear neurocognitive strengths among the divers on tests sensitive to proprioception, motor speed, and visual-spatial organization. Results from the serial assessments indicated no detectable neuropsychological deficits among competitive divers compared to baseline testing. Skilled diving at the collegiate level appears to be a safe sport and water appears to present the perfect medium for gradual deceleration. More studies, however, are warranted for 5-, 7.5-, and 10-m platform diving since the impact velocity of the diver from these heights is higher.

  7. Provisional report on diving-related fatalities in Australian waters 2008.

    PubMed

    Lippmann, John; Walker, Douglas; Lawrence, Chris; Fock, Andrew; Wodak, Thomas; Harris, Richard; Jamieson, Scott

    2013-03-01

    An individual case review of diving-related deaths, reported as occurring in Australia in 2008, was conducted as part of the DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident and details from the post-mortem examination, where available, are provided. In total, there were 19 reported fatalities (the same as for 2007), 17 involving males. Twelve deaths occurred while snorkelling and/or breath-hold diving,and six while scuba diving. One diver died while using surface-supply breathing apparatus. Two breath-hold divers appear to have died as a result of apnoeic hypoxia, at least one case likely associated with hyperventilation. Two deaths resulted from trauma: one from impact with a boat and the other from an encounter with a great white shark. Cardiac-related issues were thought to have contributed to the deaths of five snorkellers and at least two, possibly three, scuba divers. Trauma from a marine creature, snorkelling or diving alone, apnoeic hypoxia and pre-existing medical conditions were once again features in several deaths in this series.

  8. Gas exchange and dive characteristics of the free-swimming backswimmer Anisops deanei.

    PubMed

    Jones, Karl K; Snelling, Edward P; Watson, Amy P; Seymour, Roger S

    2015-11-01

    Many aquatic insects utilise air bubbles on the surface of their bodies to supply O2 while they dive. The bubbles can simply store O2, as in the case of an 'air store', or they can act as a physical 'gas gill', extracting O2 from the water. Backswimmers of the genus Anisops augment their air store with O2 from haemoglobin cells located in the abdomen. The O2 release from the haemoglobin helps stabilise bubble volume, enabling backswimmers to remain near neutrally buoyant for a period of the dive. It is generally assumed that the backswimmer air store does not act as a gas gill and that gas exchange with the water is negligible. This study combines measurements of dive characteristics under different exotic gases (N2, He, SF6, CO) with mathematical modelling, to show that the air store of the backswimmer Anisops deanei does exchange gases with the water. Our results indicate that approximately 20% of O2 consumed during a dive is obtained directly from the water. Oxygen from the water complements that released from the haemoglobin, extending the period of near-neutral buoyancy and increasing dive duration. © 2015. Published by The Company of Biologists Ltd.

  9. The development of an intermediate-duration tag to characterize the diving behavior of large whales.

    PubMed

    Mate, Bruce R; Irvine, Ladd M; Palacios, Daniel M

    2017-01-01

    The development of high-resolution archival tag technologies has revolutionized our understanding of diving behavior in marine taxa such as sharks, turtles, and seals during their wide-ranging movements. However, similar applications for large whales have lagged behind due to the difficulty of keeping tags on the animals for extended periods of time. Here, we present a novel configuration of a transdermally attached biologging device called the Advanced Dive Behavior (ADB) tag. The ADB tag contains sensors that record hydrostatic pressure, three-axis accelerometers, magnetometers, water temperature, and light level, all sampled at 1 Hz. The ADB tag also collects Fastloc GPS locations and can send dive summary data through Service Argos, while staying attached to a whale for typical periods of 3-7 weeks before releasing for recovery and subsequent data download. ADB tags were deployed on sperm whales ( Physeter macrocephalus; N  = 46), blue whales ( Balaenoptera musculus; N  = 8), and fin whales ( B. physalus; N  = 5) from 2007 to 2015, resulting in attachment durations from 0 to 49.6 days, and recording 31 to 2,539 GPS locations and 27 to 2,918 dives per deployment. Archived dive profiles matched well with published dive shapes of each species from short-term records. For blue and fin whales, feeding lunges were detected using peaks in accelerometer data and matched corresponding vertical excursions in the depth record. In sperm whales, rapid orientation changes in the accelerometer data, often during the bottom phase of dives, were likely related to prey pursuit, representing a relative measure of foraging effort. Sperm whales were documented repeatedly diving to, and likely foraging along, the seafloor. Data from the temperature sensor described the vertical structure of the water column in all three species, extending from the surface to depths >1,600 m. In addition to providing information needed to construct multiweek time budgets, the ADB tag is well suited to studying the effects of anthropogenic sound on whales by allowing for pre- and post-exposure monitoring of the whale's dive behavior. This tag begins to bridge the gap between existing long-duration but low-data throughput tags, and short-duration, high-resolution data loggers.

  10. Being There & Getting Back Again: Half a Century of Deep Ocean Research & Discovery with the Human Occupied Vehicle "Alvin"

    NASA Astrophysics Data System (ADS)

    German, C. R.; Fornari, D. J.; Fryer, P.; Girguis, P. R.; Humphris, S. E.; Kelley, D. S.; Tivey, M.; Van Dover, C. L.; Von Damm, K.

    2012-12-01

    In 2013, Alvin returns to service after significant observational and operational upgrades supported by the NSF, NAVSEA & NOAA. Here we review highlights of the first half-century of deep submergence science conducted by Alvin, describe some of the most significant improvements for the new submarine and discuss the importance of these new capabilities for 21st century ocean science and education. Alvin has a long history of scientific exploration, discovery and intervention at the deep seafloor: in pursuit of hypothesis-driven research and in response to human impacts. One of Alvin's earliest achievements, at the height of the Cold War, was to help locate & recover an H-bomb in the Mediterranean, while the last dives completed, just ahead of the current refit, were to investigate the impacts of the Deep Water Horizon oil spill. Alvin has excelled in supporting a range of Earth & Life Science programs including, in the late 1970s, first direct observations and sampling of deep-sea hydrothermal vents and the unusual fauna supported by microbial chemosynthesis. The 1980s saw expansion of Alvin's dive areas to newly discovered hot-springs in the Atlantic & NE Pacific, Alvin's first dives to the wreck of RMS Titanic and its longest excursions away from WHOI yet, via Loihi Seamount (Hawaii) to the Mariana Trench. The 1990s saw Alvin's first event-response dives to sites where volcanic eruptions had just occurred at the East Pacific Rise & Juan de Fuca Ridge while the 2000s saw Alvin discover novel off-axis venting at Lost City. Observations from these dives fundamentally changed our views of volcanic and microbial processes within young ocean crust and even the origins of life! In parallel, new deep submergence capabilities, including manipulative experiments & sensor development, relied heavily on testing using Alvin. Recently, new work has focused on ocean margins where fluid flow from the seafloor results in the release of hydrocarbons and other chemical species that can sustain chemosynthetic seep ecosystems comparable to, and sometimes sharing species with, hot vents. What will Alvin's next 50 years discover? During 2011-12, Alvin has undergone a transformation, including a larger personnel sphere with more & larger viewports to provide improved overlapping fields of view for the pilot & observers. The new Alvin will be certified for operations to 4500m depth initially, but the new sphere will be 6500m-rated and planned future upgrades will ultimately allow the vehicle to dive that deep, enabling human access to 98% of the global ocean floor. This will allow the study of processes and dynamics of Earth's largest ecosystem (the abyssal plains) as well as margin and ridge environments and the overlying water column. Meantime, the current upgrades to Alvin already include a suite of scientific enhancements including new HD video & still imaging, sophisticated data acquisition systems for seafloor observations and mapping, a new work platform with greater payload capacity and improved observer ergonomics. The new Alvin is poised to play important roles in core Earth and Life science programs and to serve large-scale programs such as the Ocean Observatory Initiative (OOI) and the International Ocean Discovery Program (IODP). It will continue to attract, engage and inspire a new generation of scientists & students to explore and study the largest ecosystem on Earth, just as it has done throughout its first half century.

  11. Poor flight performance in deep-diving cormorants.

    PubMed

    Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André

    2011-02-01

    Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant.

  12. Using stimulation of the diving reflex in humans to teach integrative physiology.

    PubMed

    Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne

    2014-12-01

    During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.

  13. Cervical spine injuries from diving accident: a 10-year retrospective descriptive study on 64 patients.

    PubMed

    Chan-Seng, E; Perrin, F E; Segnarbieux, F; Lonjon, N

    2013-09-01

    Ninety percent of the lesions resulting from diving injuries affect the cervical spine and are potentially associated with spinal cord injuries. The objective is to determine the most frequent lesion mechanisms. Evaluate the therapeutic alternatives and the biomechanical evolution (kyphotic deformation) of diving-induced cervical spine injuries. Define epidemiological characteristics of diving injuries. A retrospective analysis over a period of 10 years was undertaken for patients admitted to the Department of Neurosurgery of Montpellier, France, with cervical spinal injuries due to a diving accident. Patients were re-evaluated and clinical and radiological evaluation follow-ups were done. This study included 64 patients. Cervical spine injuries resulting from diving predominantly affect young male subjects. They represent 9.5% of all the cervical spine injuries. In 22% of cases, patients presented severe neurological troubles (ASIA A, B, C) at the time of admission. A surgical treatment was done in 85% of cases, mostly using an anterior cervical approach. This is a retrospective study (type IV) with some limitations. The incidence of diving injuries in our region is one of the highest as compared to reports in the literature. Despite an increase of our surgical indications, 55% of these cases end up with a residual kyphotic deformation but there is no relationship between the severity of late vertebral deformity and high Neck Pain and Disability Scale (NPDS) scores. Level IV, retrospective study. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Ascorbic acid supplementation diminishes microparticle elevations and neutrophil activation following SCUBA diving.

    PubMed

    Yang, Ming; Barak, Otto F; Dujic, Zeljko; Madden, Dennis; Bhopale, Veena M; Bhullar, Jasjeet; Thom, Stephen R

    2015-08-15

    Predicated on evidence that diving-related microparticle generation is an oxidative stress response, this study investigated the role that oxygen plays in augmenting production of annexin V-positive microparticles associated with open-water SCUBA diving and whether elevations can be abrogated by ascorbic acid. Following a cross-over study design, 14 male subjects ingested placebo and 2-3 wk later ascorbic acid (2 g) daily for 6 days prior to performing either a 47-min dive to 18 m of sea water while breathing air (∼222 kPa N2/59 kPa O2) or breathing a mixture of 60% O2/balance N2 from a tight-fitting face mask at atmospheric pressure for 47 min (∼40 kPa N2/59 kPa O2). Within 30 min after the 18-m dive in the placebo group, neutrophil activation, and platelet-neutrophil interactions occurred, and the total number of microparticles, as well as subgroups bearing CD66b, CD41, CD31, CD142 proteins or nitrotyrosine, increased approximately twofold. No significant elevations occurred among divers after ingesting ascorbic acid, nor were elevations identified in either group after breathing 60% O2. Ascorbic acid had no significant effect on post-dive intravascular bubble production quantified by transthoracic echocardiography. We conclude that high-pressure nitrogen plays a key role in neutrophil and microparticle-associated changes with diving and that responses can be abrogated by dietary ascorbic acid supplementation. Copyright © 2015 the American Physiological Society.

  15. Foraging patterns and prey selection in an increasing and expanding sea otter population

    USGS Publications Warehouse

    Laidre, K.L.; Jameson, R.J.

    2006-01-01

    Focal observations of sea otter (Enhydra lutris kenyoni) foraging patterns and prey selection were collected in coastal Washington between 1993 and 1999. Records consisted of 13,847 individual dives from 841 feeding bouts ranging from 1 min to >4 h. Average dive time was 55 s ?? 0.9 SE and average surface time was 45 s ?? 2.3 SE, irrespective of dive success. At least 77% of all dives (n = 10,636) were successful prey captures (dives in low light or of undetermined success were excluded). Prey capture success was significantly lower for subadults (63% ?? 5 SE) than adults (82% ?? 1 SE; P 60% red urchins (Strongylocentrotus franciscanus), with only 2 other prey species comprising >10% of their diet. Prey size and prey category were dominant predictor variables in generalized linear models of dive duration and postdive surface duration on successful dives. Significant increases in areal extent of surface canopy of giant kelp (Macrocystis integrifolia) and bull kelp (Nereocystis leutkeana) were found both in the outer coast and the Strait of Juan de Fuca (0.4-0.5 km2 per year, P < 0.05) and suggest increasing suitable habitat for a growing population. The growth and expansion of a small and isolated sea otter population provides a unique opportunity to examine the relationship between dietary diversity and population status and explore similarities and differences between trophic paradigms established for sea otter populations at other localities. ?? 2006 American Society of Mammalogists.

  16. Presumed Arterial Gas Embolism After Breath-Hold Diving in Shallow Water.

    PubMed

    Harmsen, Stefani; Schramm, Dirk; Karenfort, Michael; Christaras, Andreas; Euler, Michael; Mayatepek, Ertan; Tibussek, Daniel

    2015-09-01

    Dive-related injuries are relatively common, but almost exclusively occur in recreational or scuba diving. We report 2 children with acute central nervous system complications after breath-hold diving. A 12-year-old boy presented with unilateral leg weakness and paresthesia after diving beneath the water surface for a distance of ∼25 m. After ascent, he suddenly felt extreme thoracic pain that resolved spontaneously. Neurologic examination revealed right leg weakness and sensory deficits with a sensory level at T5. Spinal MRI revealed a nonenhancing T2-hyperintense lesion in the central cord at the level of T1/T2 suggesting a spinal cord edema. A few weeks later, a 13-year-old girl was admitted with acute dizziness, personality changes, confusion, and headache. Thirty minutes before, she had practiced diving beneath the water surface for a distance of ∼25 m. After stepping out, she felt sudden severe thoracic pain and lost consciousness. Shortly later she reported headache and vertigo, and numbness of the complete left side of her body. Neurologic examination revealed reduced sensibility to all modalities, a positive Romberg test, and vertigo. Cerebral MRI revealed no pathologic findings. Both children experienced a strikingly similar clinical course. The chronology of events strongly suggests that both patients were suffering from arterial gas embolism. This condition has been reported for the first time to occur in children after breath-hold diving beneath the water surface without glossopharyngeal insufflation. Copyright © 2015 by the American Academy of Pediatrics.

  17. Left ventricle changes early after breath-holding in deep water in elite apnea divers.

    PubMed

    Pingitore, Alessandro; Gemignani, Angelo; Menicucci, Danilo; Passera, Mirko; Frassi, Francesca; Marabotti, Claudio; Piarulli, Andrea; Benassi, Antonio; L'Abbate, Antonio; Bedini, Remo

    2010-01-01

    To study by ultrasounds cardiac morphology and function early after breath-hold diving in deep water in elite athletes. Fifteen healthy male divers (age 28 +/- 3 years) were studied using Doppler-echocardiography, immediately before (basal condition, BC) and two minutes after breath-hold diving (40 meters, acute post-apnea condition, APAC). Each subject performed a series of three consecutive breath-hold dives (20-30 and 40 m depth). End-diastolic left ventricular (LV) diameter (EDD) and end-diastolic LV volume (EDV) increased significantly (p < 0.01). Stroke volume (SV), cardiac index (CI), septal and posterior systolic wall-thickening (SWT) also significantly increased after diving (p < 0.01). No wall motion abnormalities were detected, and wall motion score index was unchanged between BC and APAC. Doppler mitral E wave increased significantly (p < 0.01), whereas the A wave was unchanged. Systemic vascular resistance (SVR) decreased significantly after diving (p < 0.05). In the factor analysis, filtering out the absolute values smaller than 0.7 in the loading matrix, it resulted that factor I consists of EDV, posterior SWT, SV and CI, factor II of diastolic blood pressure, waves A and E and factor III of heart rate and SVR. Systo-diastolic functions were improved in the early period after deep breath-hold diving due to favorable changes in loading conditions relative to pre-diving, namely the recruitment of left ventricular preload reserve and the reduction in afterload.

  18. JPL-20170825-CASSINf-0001-Cassini Nears the End of Its Mission Video File

    NASA Image and Video Library

    2017-08-25

    On Sept. 15, 2017, NASA's Cassini spacecraft will end it mission by diving into the atomosphere of Saturn. Animation: one of Cassini's final passes between Saturn and its rings, Cassini's final 22 orbits, final plunge. Footage: construction of Cassini at JPL. Interview excerpts from Linda Spilker, Cassini Project Scientist; Earl Maize, Cassini Project Manager; Julie Webster, Cassini Spacecraft Operations Manager.

  19. Three year follow up of a self certification system for the assessment of fitness to dive in Scotland

    PubMed Central

    Glen, S

    2004-01-01

    Background: The need for routine medical examinations of sport divers in the Scottish Sub-Aqua Club (Scot-SAC) was revised in March 2000, and a new system using a self administered screening questionnaire was developed to allow divers to be assessed when necessary by doctors with diving medicine experience. Objective: To assess the effect of the new medical system on medical referee workload, diver exclusion rates, and diving incident frequency. Methods: All divers were required to complete a questionnaire to screen for conditions that might affect fitness to dive. Divers answering "Yes" to any of the questions had their medical background assessed by a diving doctor, and, if necessary, received a clinical examination or investigation. The rate of diver exclusions based on the questionnaire response was recorded in conjunction with analysis of the incident reports. Results: The number of forms requiring review by diving doctors increased from 1.2% to 5.7% (p<0.0001, 95% confidence interval (CI) –0.06 to –0.03) in the year after the introduction of the new medical system and gradually increased in subsequent years to 7.7% (p<0.0001, 95% CI –0.08 to –0.05). The number of divers failing to be certified fit to dive increased slightly from 0.7% to 1.0% after one year (p = 0.26, 95% CI –0.01 to 0.00) and subsequently to 2.0% (p = 0.0003, 95% CI 0.02 to –0.01) after three years. Most divers were certified fit to dive on the basis of the questionnaire alone, and only 0.9% required objective investigation (such as exercise testing or echocardiography). Analysis of the incidents during three years of follow up confirmed that no incident occurred because of an undetected pre-existing medical condition. Two incidents involved divers with hypertension, but both had received medical examinations and investigation based on their responses to the questionnaire. Conclusion: The new self administered questionnaire system appears to be an effective screening tool for the detection of divers requiring detailed assessment by doctors with diving medicine experience. PMID:15562174

  20. Depletion of deep marine food patches forces divers to give up early.

    PubMed

    Thums, Michele; Bradshaw, Corey J A; Sumner, Michael D; Horsburgh, Judy M; Hindell, Mark A

    2013-01-01

    Many optimal foraging models for diving animals examine strategies that maximize time spent in the foraging zone, assuming that prey acquisition increases linearly with search time. Other models have considered the effect of patch quality and predict a net energetic benefit if dives where no prey is encountered early in the dive are abandoned. For deep divers, however, the energetic benefit of giving up is reduced owing to the elevated energy costs associated with descending to physiologically hostile depths, so patch residence time should be invariant. Others consider an asymptotic gain function where the decision to leave a patch is driven by patch-depletion effects - the marginal value theorem. As predator behaviour is increasingly being used as an index of marine resource density and distribution, it is important to understand the nature of this gain function. We investigated the dive behaviour of the world's deepest-diving seal, the southern elephant seal Mirounga leonina, in response to patch quality. Testing these models has largely been limited to controlled experiments on captive animals. By integrating in situ measurements of the seal's relative lipid content obtained from drift rate data (a measure of foraging success) with area-restricted search behaviour identified from first-passage time analysis, we identified regions of high- and low-quality patches. Dive durations and bottom times were not invariant and did not increase in regions of high quality; rather, both were longer when patches were of relatively low quality. This is consistent with the predictions of the marginal value theorem and provides support for a nonlinear relationship between search time and prey acquisition. We also found higher descent and ascent rates in high-quality patches suggesting that seals minimized travel time to the foraging patch when quality was high; however, this was not achieved by increasing speed or dive angle. Relative body lipid content was an important predictor of dive behaviour. Seals did not schedule their diving to maximize time spent in the foraging zone in higher-quality patches, challenging the widely held view that maximizing time in the foraging zone translates to greater foraging success. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  1. Foraging dives by post-breeding northern pintails

    USGS Publications Warehouse

    Miller, Michael R.

    1983-01-01

    Dabbling ducks (Anatini), including Northern Pintails (Anas acuta), typically feed by “tipping-up” (Bellrose, Ducks, Geese, and Swans of North America, Stackpole Books, Harrisburg, Pennsylvania, 1976) in shallow water. Pintails are not as adapted for diving as members of Aythyini or Oxyurini (Catlett and Johnston, Comp. Biochem. Physiol. 47A:925-931, 1974); however, incidents of foraging dives by small numbers of pintails have been reported (Chapman et al., Br. Birds 52:60, 1959; Bourget and Chapdelaine, Wildfowl 26:55-57, 1975). This paper reports on forage diving by a flock of several hundred pintails. Ecological explanations are suggested to account for the behavior and comparisons with tip-up feeding are presented.

  2. DIVE: A Graph-based Visual Analytics Framework for Big Data

    PubMed Central

    Rysavy, Steven J.; Bromley, Dennis; Daggett, Valerie

    2014-01-01

    The need for data-centric scientific tools is growing; domains like biology, chemistry, and physics are increasingly adopting computational approaches. As a result, scientists must now deal with the challenges of big data. To address these challenges, we built a visual analytics platform named DIVE: Data Intensive Visualization Engine. DIVE is a data-agnostic, ontologically-expressive software framework capable of streaming large datasets at interactive speeds. Here we present the technical details of the DIVE platform, multiple usage examples, and a case study from the Dynameomics molecular dynamics project. We specifically highlight our novel contributions to structured data model manipulation and high-throughput streaming of large, structured datasets. PMID:24808197

  3. Reduced taxonomic richness of lice (Insecta: Phthiraptera) in diving birds.

    PubMed

    Felsõ, B; Rózsa, L

    2006-08-01

    Avian lice occupy different habitats in the host plumage that the physical environment outside the host body may affect in several ways. Interactions between host plumage and water may be an important source of such effects. Here, we use a comparative approach to examine the effect of a host's diving behavior on the taxonomic richness of its lice. Louse genera richness was significantly lower in clades of diving birds than on their nondiving sister clades. Species richness of host and body mass did not differ significantly between these clades; thus, these factors did not bias our results. This study suggests that the hosts' diving behavior can effectively influence ectoparasite communities.

  4. Long-Term Changes in Species Composition and Relative Abundances of Sharks at a Provisioning Site

    PubMed Central

    Brunnschweiler, Juerg M.; Abrantes, Kátya G.; Barnett, Adam

    2014-01-01

    Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today’s recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004–2006 and 2007–2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004–2006 and very rare in the period of 2007–2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark species. PMID:24466197

  5. Field Evaluation in Four NEEMO Divers of a Prototype In-suit Doppler Ultrasound Bubble Detector

    NASA Technical Reports Server (NTRS)

    Acock, K. E.; Gernhardt, M. L.; Conkin, J.; Powell, M. R.

    2004-01-01

    It is desirable to know if astronauts produce venous gas emboli (VGE) as a result of their exposure to 4.3 psia during space walks. The current prototype in-suit Doppler (ISD) ultrasound bubble detector provides an objective assessment of decompression stress by monitoring for VGE. The NOAA Aquarius habitat and NASA Extreme Environment Mission Operations (NEEMO) series of dives provided an opportunity to assess the ability of the prototype ISDs to record venous blood flow and possibly detect VGE in the pulmonary artery. From July 16 to 29,2003, four aquanauts (two males and two females) donned the ISD for a 4 hr automated recording session, following excursion dives (up to 6hrs and 29 MSW below storage depth) from air saturation at 17 MSW. Doppler recordings for 32 excursion dives were collected. The recordings consisted of approximately 150 digital wave files. Each wave file contained 24 sec of recording for each min. A 1 - 4 Doppler Quality Score (DQS) was assigned to each wave file in 17 of the 32 records evaluated to date. A DQS of 1 indicates a poor flow signal and a score of 4 indicates an optimum signal. Only 23% of all wave files had DQSs considered adequate to detect low grade VGE (Spencer I-II). The distribution of DQS in 2,356 wave files is as follows: DQS 1-56%, DQS 2-21%, DQS 3-18% and DQS 4-5%. Six of the 17 records had false positive VGE (Spencer I-IV) detected in one or more wave files per dive record. The false positive VGE recordings are attributable to air entrainment associated with drinking (verified by control tests), and this observation is important as astronauts drink water during space walks. The current ISD design provides quality recordings only over a narrow range of chest anatomy.

  6. From the eye of the albatrosses: a bird-borne camera shows an association between albatrosses and a killer whale in the Southern Ocean.

    PubMed

    Sakamoto, Kentaro Q; Takahashi, Akinori; Iwata, Takashi; Trathan, Philip N

    2009-10-07

    Albatrosses fly many hundreds of kilometers across the open ocean to find and feed upon their prey. Despite the growing number of studies concerning their foraging behaviour, relatively little is known about how albatrosses actually locate their prey. Here, we present our results from the first deployments of a combined animal-borne camera and depth data logger on free-ranging black-browed albatrosses (Thalassarche melanophrys). The still images recorded from these cameras showed that some albatrosses actively followed a killer whale (Orcinus orca), possibly to feed on food scraps left by this diving predator. The camera images together with the depth profiles showed that the birds dived only occasionally, but that they actively dived when other birds or the killer whale were present. This association with diving predators or other birds may partially explain how albatrosses find their prey more efficiently in the apparently 'featureless' ocean, with a minimal requirement for energetically costly diving or landing activities.

  7. From the Eye of the Albatrosses: A Bird-Borne Camera Shows an Association between Albatrosses and a Killer Whale in the Southern Ocean

    PubMed Central

    Sakamoto, Kentaro Q.; Takahashi, Akinori; Iwata, Takashi; Trathan, Philip N.

    2009-01-01

    Albatrosses fly many hundreds of kilometers across the open ocean to find and feed upon their prey. Despite the growing number of studies concerning their foraging behaviour, relatively little is known about how albatrosses actually locate their prey. Here, we present our results from the first deployments of a combined animal-borne camera and depth data logger on free-ranging black-browed albatrosses (Thalassarche melanophrys). The still images recorded from these cameras showed that some albatrosses actively followed a killer whale (Orcinus orca), possibly to feed on food scraps left by this diving predator. The camera images together with the depth profiles showed that the birds dived only occasionally, but that they actively dived when other birds or the killer whale were present. This association with diving predators or other birds may partially explain how albatrosses find their prey more efficiently in the apparently ‘featureless’ ocean, with a minimal requirement for energetically costly diving or landing activities. PMID:19809497

  8. Brünnich's guillemots (Uria lomvia) maintain high temperature in the body core during dives.

    PubMed

    Niizuma, Yasuaki; Gabrielsen, Geir W; Sato, Katsufumi; Watanuki, Yutaka; Naito, Yasuhiko

    2007-06-01

    A major challenge for diving birds, reptiles, and mammals is regulating body temperature while conserving oxygen through a reduction in metabolic processes. To gain insight into how these needs are met, we measured dive depth and body temperatures at the core or periphery between the skin and abdominal muscles simultaneously in freely diving Brünnich's guillemots (Uria lomvia), an arctic seabird, using an implantable data logger (16-mm diameter, 50-mm length, 14-g mass, Little Leonardo Ltd., Tokyo). Guillemots exhibited increased body core temperatures, but decreased peripheral temperatures, during diving. Heat conservation within the body core appeared to result from the combined effect of peripheral vasoconstriction and a high wing beat frequency that generates heat. Conversely, the observed tissue hypothermia in the periphery should reduce metabolic processes as well as heat loss to the water. These physiological effects are likely one of the key physiological adaptations that makes guillemots to perform as an efficient predator in arctic waters.

  9. Click rates and silences of sperm whales at Kaikoura, New Zealand

    NASA Astrophysics Data System (ADS)

    Douglas, Lesley A.; Dawson, Stephen M.; Jaquet, Nathalie

    2005-07-01

    Analysis of the usual click rates of sperm whales (Physeter macrocephalus) at Kaikoura, New Zealand, confirms the potential for assessing abundance via ``click counting.'' Usual click rates over three dive cycles each of three photographically identified whales showed that 5 min averages of usual click rate did not differ significantly within dives, among dives of the same whale or among whales. Over the nine dives (n=13 728 clicks) mean usual click rate was 1.272 clicks s-1 (95% CI=0.151). On average, individual sperm whales at Kaikoura spent 60% of their time usual clicking in winter and in summer. There was no evidence that whale identity or stage of the dive recorded affects significantly the percentage of time spent usual clicking. Differences in vocal behavior among sperm whale populations worldwide indicate that estimates of abundance that are based on click rates need to based on data from the population of interest, rather than from another population or some global average.

  10. Seasonal variation in blood and muscle oxygen stores attributed to diving behavior, environmental temperature and pregnancy in a marine predator, the California sea lion.

    PubMed

    Villegas-Amtmann, Stella; Atkinson, Shannon; Paras-Garcia, Alberto; Costa, Daniel P

    2012-08-01

    Survival depends on an animal's ability to find and acquire prey. In diving vertebrates, this ability is directly related to their physiological capability (e.g. oxygen stores). We studied the seasonal variation in oxygen stores, body temperature and body condition in California sea lions (Zalophus californianus) (CSL) as a function of seasonal variation in temperature, primary productivity, diving behavior and reproductive stage. During summer, blood oxygen stores were significantly greater and muscle oxygen stores were significantly lower than in winter. Total oxygen stores, body condition and body temperature did not change between seasons but variations in body temperature were greater during summer. Changes in oxygen stores are partly attributed to diving behavior, temperature and pregnancy that could increase oxygen consumption. Blood and muscle oxygen stores appear to be influenced by reproductive state. Blood oxygen stores are more likely influenced by diving behavior and temperature than muscle oxygen stores. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Decompression illness secondary to occupational diving: recommended management based current legistation and practice in Malaysia.

    PubMed

    Rozali, A; Khairuddin, H; Sherina, M S; Zin, B Mohd; Sulaiman, A

    2008-06-01

    Occupational divers are exposed to hazards which contribute to the risk of developing decompression illnesses (DCI). DCI consists of Type I decompression sickness (DCS), Type II DCS and arterial gas embolism (AGE), developed from formation of bubbles in the tissues or circulation as a result of inadequate elimination of inert gas (nitrogen) after a dive. In Malaysia, DCI is one of the significant contributions to mortality and permanent residual morbidity in diving accidents. This is a case of a diver who suffered from Type II DCS with neurological complications due to an occupational diving activity. This article mentions the clinical management of the case and makes several recommendations based on current legislations and practise implemented in Malaysia in order to educate medical and health practitioners on the current management of DCI from the occupational perspective. By following these recommendations, hopefully diving accidents mainly DCI and its sequalae among occupational divers can be minimized and prevented, while divers who become injured receive the proper compensation for their disabilities.

  12. Convolutional Architecture Exploration for Action Recognition and Image Classification

    DTIC Science & Technology

    2015-01-01

    that has 200 videos taken in 720x480 resolution of 9 different sporting activities: diving, golf , swinging , kicking, lifting, horseback riding, running...sporting activities: diving, golf swinging , kicking, lifting, horseback riding, running, skateboarding, swinging (various gymnastics), and walking. In this...Testing Videos Diving 13 3 Golf Swinging 21 4 Horseback Riding 11 3 Kicking 21 4 Lifting 12 3 Running 12 3 Skateboarding 12 3 Swinging (Gymnastics) 28

  13. Blood Oxygen Conservation in Diving Sea Lions: How Low Does Oxygen Really Go

    DTIC Science & Technology

    2015-09-30

    5 6 7 0 20 40 60 80 100 % H b Sa tu ra tio n (S O2 ) Time into Dive (min) Arterial SO2 PostVenaCava SO2 AntVenaCava SO2 3 Figure 2. Rate of...change in posterior venacaval hemoglobin saturation ( SO2 ) in relation to stroke rate during descent, bottom phase, and ascent of all dives of sea

  14. Lung Mechanics in Marine Mammals

    DTIC Science & Technology

    2014-09-30

    468. 13. Fahlman, A., et al., Estimating the effect of lung collapse and pulmonary shunt on gas exchange during breath -hold diving: the Scholander...vital to understand how diving mammals manage inert and metabolic gases during diving and will help determine what behavioral and physiological...N2 levels, and that they use both physiological and behavioral means to avoid DCS [1, 2]. But what physiological variables are the most important to

  15. A field study of the ventilatory response to ambient temperature and pressure in sport diving.

    PubMed Central

    Muller, F L

    1995-01-01

    This study reports on the relationship between minute ventilation (VE) and environmental variables of temperature (T) and pressure (P) during open water diving. The author conducted a total of 38 dives involving either a light (20 dives) or a moderate (18 dives) level of physical activity. Within each of these groups, P and T taken together accounted for about two thirds of the variance in the VE data. A very significant increase in VE was observed as T decreased (1 < T(degrees C) < 22), and the magnitude of this increase at a given pressure level was similar in the 'light' and the 'moderate' data sets. A second order observation, particularly notable at lower temperature, was the decrease in VE with increasing pressure under conditions of light work. Empirical functions of the from VE = A+B/P n[1 + exp(T - 8)/10], where A, B, and n are adjustable variables, could accommodate both data sets over the whole range of T and P. These results are the first obtained under actual diving conditions to provide evidence for interactions between P, T, and VE. Understanding the physiological mechanisms by which these interactions occur would assist in appreciation of the limitations imposed on scuba divers by the environmental conditions as they affect their ventilatory responses. PMID:8800853

  16. Possible central nervous system oxygen toxicity seizures among US recreational air or enriched air nitrox open circuit diving fatalities 2004-2013.

    PubMed

    Buzzacott, P; Denoble, P J

    2017-01-01

    The first diver certification programme for recreational 'enriched air nitrox' (EAN) diving was released in 1985. Concerns were expressed that many EAN divers might suffer central nervous system (CNS) oxygen toxicity seizures and drown. US fatalities on open-circuit scuba occurring between 2004-2013, where the breathing gas was either air or EAN, were identified. Causes of death and preceding circumstances were examined by a medical examiner experienced in diving autopsies. Case notes were searched for witnessed seizures at elevated partial pressures of oxygen. The dataset comprised 344 air divers (86%) and 55 divers breathing EAN (14%). EAN divers' fatal dives were deeper than air divers' (28 msw vs 18 msw, p < 0.0001). Despite this, of the 249 cases where a cause of death was established, only three EAN divers were considered to have possibly died following CNS oxygen toxicity seizures at depth (ppO2 132, 142 and 193 kPa). The analysis of recreational diving fatalities in the US over 10 years found just one death likely from CNS oxygen toxicity among EAN divers. A further two possible, although unlikely, cases were also found. Fears of commonplace CNS oxygen toxicity seizures while EAN diving have not apparently been realized.

  17. Diurnal variation in the diving bradycardia response in young men.

    PubMed

    Konishi, Masayuki; Kawano, Hiroshi; Xiang, Mi; Kim, Hyeon-Ki; Ando, Karina; Tabata, Hiroki; Nishimaki, Mio; Sakamoto, Shizuo

    2016-04-01

    The present study aimed to examine diurnal variation of the diving bradycardia responses on the same day. Eighteen young men (age 26 ± 2 years; height 174.2 ± 6.0 cm; body mass 70.2 ± 8.1 kg; body fat 18.0 ± 3.8 %; mean ± standard deviation) participated in this study. Oral temperature, heart rate variability (HRV) from 5-min of electrocardiogram data, and diving bradycardia responses were measured at 0900, 1300, and 1700 hours daily. All participants performed diving reflex tests twice in the sitting position with the face immersed in cold water (1.9-3.1 °C) and apnea at midinspiration for a minimum of 30 s and as long as possible, in consecutive order. Oral temperature was found to be less in the morning (0900) than in the afternoon (1300) and evening (1700). In the frequency domain parameters of heart rate variability, the natural logarithms of high-frequency power were higher in the morning than in the evening. All participants showed bradycardia response to the two diving reflex tests. The peak values of R-R interval during the diving reflex test both for as long as possible and 30 s were longer in the morning than in the afternoon and evening. Our results indicated that the maximal bradycardia during the diving reflex test exhibits a diurnal variation, with peak levels at morning and gradual decrease towards the evening. The HRV indexes show the same variation.

  18. Biosonar, diving and movements of two tagged white-beaked dolphin in Icelandic waters

    NASA Astrophysics Data System (ADS)

    Rasmussen, M. H.; Akamatsu, T.; Teilmann, J.; Vikingsson, G.; Miller, L. A.

    2013-04-01

    For the first time bio-logging tags were attached to free-ranging white-beaked dolphins, Lagenorhynchus albirostris. A satellite tag was attached to one animal while an acoustic A-tag, a time-depth recorder and a VHF transmitter complex was attached to a second dolphin with a suction cup. The satellite tag transmitted for 201 day, during which time the dolphin stayed in the coastal waters of western Iceland. The acoustic tag complex was on the second animal for 13 h and 40 min and provided the first insight into the echolocation behaviour of a free-ranging white-beaked dolphin. The tag registered 162 dives. The dolphin dove to a maximum depth of 45 m, which is about the depth of the bay in which the dolphin was swimming. Two basic types of dives were identified; U-shaped and V-shaped dives. The dolphin used more time in U-shaped dives, more clicks and sonar signals with shorter click intervals compared to those it used in V-shaped dives. The dolphin was in acoustic contact with other dolphins about five hours after it was released and stayed with these for the rest of the tagging time. Possible foraging attempts were found based on the reduction of click intervals from about 100 ms to 2-3 ms, which suggests a prey capture attempt. We found 19 punitive prey capture attempts and of these 53% occurred at the maximum dive depth. This suggests that more than half of the possible prey capture events occurred at or near the sea bed.

  19. Sponge divers of the Aegean and medical consequences of risky compressed-air dive profiles.

    PubMed

    Toklu, Akin Savas; Cimsit, Maide

    2009-04-01

    Historically, Turkey once had a substantial number of professional sponge divers, a population known for a relatively high incidence of diving-related conditions such as decompression sickness (DCS) and dysbaric osteonecrosis (DON). Sponge diving ended in the mid-1980s when nearly all of the sponges in the Aegean and Mediterranean Seas contracted a bacterial disease and the occupation became unprofitable. We reviewed the records of Turkish sponge divers for information on their level of knowledge, diving equipment, dive profiles, and occupational health problems. Information was collected by: 1) interviewing former sponge divers near Bodrum, where most of them had settled; 2) reviewing the relevant literature; and 3) examining the medical records of sponge divers who underwent recompression treatment. These divers used three types of surface-supplied equipment, including hard helmets, Fernez apparatus, and hookahs; the latter were preferred because they allowed divers the greatest freedom of movement while harvesting sponges underwater. These divers used profiles that we now know involved a high risk for DCS and DON. We were able to access the records of 58 divers who had received recompression treatment. All of the cases involved severe DCS and delays from dive to recompression that averaged 72 h. Complete resolution of symptoms occurred in only 11 cases (19%). Thus, we were able to document the several factors that contributed to the risks in this occupational group, including unsafe dive profiles, resistance to seeking treatment, long delays before recompression, and the fact that recompression treatment used air rather than oxygen.

  20. Effects of depth and chest volume on cardiac function during breath-hold diving.

    PubMed

    Marabotti, Claudio; Scalzini, Alessandro; Cialoni, Danilo; Passera, Mirko; Ripoli, Andrea; L'Abbate, Antonio; Bedini, Remo

    2009-07-01

    Cardiac response to breath-hold diving in human beings is primarily characterized by the reduction of both heart rate and stroke volume. By underwater Doppler-echocardiography we observed a "restrictive/constrictive" left ventricular filling pattern compatible with the idea of chest squeeze and heart compression during diving. We hypothesized that underwater re-expansion of the chest would release heart constriction and normalize cardiac function. To this aim, 10 healthy male subjects (age 34.2 +/- 10.4) were evaluated by Doppler-echocardiography during breath-hold immersion at a depth of 10 m, before and after a single maximal inspiration from a SCUBA device. During the same session, all subjects were also studied at surface (full-body immersion) and at 5-m depth in order to better characterize the relationship of echo-Doppler pattern with depth. In comparison to surface immersion, 5-m deep diving was sufficient to reduce cardiac output (P = 0.042) and increase transmitral E-peak velocity (P < 0.001). These changes remained unaltered at a 10-m depth. Chest expansion at 10 m decreased left ventricular end-systolic volume (P = 0.024) and increased left ventricular stroke volume (P = 0.024). In addition, it decreased transmitral E-peak velocity (P = 0.012) and increased deceleration time of E-peak (P = 0.021). In conclusion the diving response, already evident during shallow diving (5 m) did not progress during deeper dives (10 m). The rapid improvement in systolic and diastolic function observed after lung volume expansion is congruous with the idea of a constrictive effect on the heart exerted by chest squeeze.

  1. Foraging segregation of two congeneric diving seabird species breeding on St. George Island, Bering Sea

    NASA Astrophysics Data System (ADS)

    Kokubun, Nobuo; Yamamoto, Takashi; Sato, Nobuhiko; Watanuki, Yutaka; Will, Alexis; Kitaysky, Alexander S.; Takahashi, Akinori

    2016-04-01

    Subarctic environmental changes are expected to affect the foraging ecology of marine top predators, but the response to such changes may vary among species if they use food resources differently. We examined the characteristics of foraging behavior of two sympatric congeneric diving seabird: common (Uria aalge: hereafter COMUs) and thick-billed (U. lomvia: hereafter TBMUs) murres breeding on St. George Island, located in the seasonal sea-ice region of the Bering Sea. We investigated their foraging trip and flight durations, diel patterns of dive depth, and underwater wing strokes, along with wing morphology and blood stable isotope signatures and stress hormones. Acceleration-temperature-depth loggers were attached to chick-guarding birds, and data were obtained from 7 COMUs and 12 TBMUs. Both species showed similar mean trip duration (13.2 h for COMUs and 10.5 h for TBMUs) and similar diurnal patterns of diving (frequent dives to various depths in the daytime and less frequent dives to shallow depths in the nighttime). During the daytime, the dive depths of COMUs had two peaks in shallow (18.1 m) and deep (74.2 m) depths, while those of TBMUs were 20.2 m and 59.7 m. COMUs showed more frequent wing strokes during the bottom phase of dives (1.90 s-1) than TBMUs (1.66 s-1). Fish occurred more frequently in the bill loads of COMUs (85 %) than those of TBMUs (56 %). The δ15N value of blood was significantly higher in COMUs (14.5 ‰) than in TBMUs (13.1 ‰). The relatively small wing area (0.053 m2) of COMUs compared to TBMUs (0.067 m2) may facilitate their increased agility while foraging and allow them to capture more mobile prey such as larger fishes that inhabit deeper depths. These differences in food resource use may lead to the differential responses of the two murre species to marine environmental changes in the Bering Sea.

  2. Temporal changes of populations and trophic relationships of wintering diving ducks in Chesapeake Bay

    USGS Publications Warehouse

    Perry, Matthew C.; Wells-Berlin, Alicia M.; Kidwell, David M.; Osenton, Peter C.

    2007-01-01

    Population and trophic relationships among diving ducks in Chesapeake Bay are diverse and complex as they include five species of bay ducks (Aythya spp.), nine species of seaducks (Tribe Mergini), and the Ruddy Duck (Oxyura jamaicensis). Here we considered the relationships between population changes and diet over the past half century to assess the importance of prey changes to wintering waterfowl in the Bay. Food habits of 643 diving ducks collected from Chesapeake Bay during 1999-2006 were determined by analyses of their gullet (esophagus and proventriculus) and gizzard contents and compared to historical data (1885-1979) of 1,541 diving ducks. Aerial waterfowl surveys, in general, suggest that six species of seaducks were more commonly located in the meso- to polyhaline areas of the Bay, whereas five species of bay ducks and Ruddy Ducks were in the oligo- to mesohaline areas. Seaducks fed on a molluscan diet of Hooked Mussel (Ischadium recurvum), Amethyst Gemclam (Gemma gemma), and Dwarf Surfclarn (Mulinia lateralis). Bay ducks and Ruddy Ducks fed more on Baltic Macoma (Macoma balthica), the adventive Atlantic Rangia (Rangia cuneata), and submerged aquatic vegetation (SAV). Mergansers were found over the widest salinity range in the Bay, probably because of their piscivorous diet. Each diving duck species appears to fill a unique foraging niche, although there is much overlap of selected prey. When current food habits are compared to historic data, only the Canvasback (Aythya valisineria) has had major diet changes, although SAV now accounts for less food volume for all diving duck species, except the Redhead (Aythya americana). Understanding the trophic-habitat relationships of diving ducks in coastal wintering areas will give managers a better understanding of the ecological effects of future environmental changes. Intensive restoration efforts on SAV and oyster beds should greatly benefit diving duck populations.

  3. Experimental Studies and Dynamics Modeling Analysis of the Swimming and Diving of Whirligig Beetles (Coleoptera: Gyrinidae)

    PubMed Central

    Jia, Xinghua; Zhang, Mingjun

    2012-01-01

    Whirligig beetles (Coleoptera, Gyrinidae) can fly through the air, swiftly swim on the surface of water, and quickly dive across the air-water interface. The propulsive efficiency of the species is believed to be one of the highest measured for a thrust generating apparatus within the animal kingdom. The goals of this research were to understand the distinctive biological mechanisms that allow the beetles to swim and dive, while searching for potential bio-inspired robotics applications. Through static and dynamic measurements obtained using a combination of microscopy and high-speed imaging, parameters associated with the morphology and beating kinematics of the whirligig beetle's legs in swimming and diving were obtained. Using data obtained from these experiments, dynamics models of both swimming and diving were developed. Through analysis of simulations conducted using these models it was possible to determine several key principles associated with the swimming and diving processes. First, we determined that curved swimming trajectories were more energy efficient than linear trajectories, which explains why they are more often observed in nature. Second, we concluded that the hind legs were able to propel the beetle farther than the middle legs, and also that the hind legs were able to generate a larger angular velocity than the middle legs. However, analysis of circular swimming trajectories showed that the middle legs were important in maintaining stable trajectories, and thus were necessary for steering. Finally, we discovered that in order for the beetle to transition from swimming to diving, the legs must change the plane in which they beat, which provides the force required to alter the tilt angle of the body necessary to break the surface tension of water. We have further examined how the principles learned from this study may be applied to the design of bio-inspired swimming/diving robots. PMID:23209398

  4. Navigating uncertain waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds.

    PubMed

    Carter, Matt Ian Daniel; Bennett, Kimberley A; Embling, Clare B; Hosegood, Philip J; Russell, Debbie J F

    2016-01-01

    In the last thirty years, the emergence and progression of biologging technology has led to great advances in marine predator ecology. Large databases of location and dive observations from biologging devices have been compiled for an increasing number of diving predator species (such as pinnipeds, sea turtles, seabirds and cetaceans), enabling complex questions about animal activity budgets and habitat use to be addressed. Central to answering these questions is our ability to correctly identify and quantify the frequency of essential behaviours, such as foraging. Despite technological advances that have increased the quality and resolution of location and dive data, accurately interpreting behaviour from such data remains a challenge, and analytical methods are only beginning to unlock the full potential of existing datasets. This review evaluates both traditional and emerging methods and presents a starting platform of options for future studies of marine predator foraging ecology, particularly from location and two-dimensional (time-depth) dive data. We outline the different devices and data types available, discuss the limitations and advantages of commonly-used analytical techniques, and highlight key areas for future research. We focus our review on pinnipeds - one of the most studied taxa of marine predators - but offer insights that will be applicable to other air-breathing marine predator tracking studies. We highlight that traditionally-used methods for inferring foraging from location and dive data, such as first-passage time and dive shape analysis, have important caveats and limitations depending on the nature of the data and the research question. We suggest that more holistic statistical techniques, such as state-space models, which can synthesise multiple track, dive and environmental metrics whilst simultaneously accounting for measurement error, offer more robust alternatives. Finally, we identify a need for more research to elucidate the role of physical oceanography, device effects, study animal selection, and developmental stages in predator behaviour and data interpretation.

  5. Pop-up satellite archival tag effects on the diving behaviour, growth and survival of adult Atlantic salmon Salmo salar at sea.

    PubMed

    Hedger, R D; Rikardsen, A H; Thorstad, E B

    2017-01-01

    The effects of large, externally attached pop-up satellite archival tags (PSATs) were compared with those of small implanted data storage tags (DSTs) on adult Atlantic salmon Salmo salar during their ocean migration in regards to depth utilization, diving depth, diving rate, diving speed and temperatures experienced. Additionally the return rate and growth of individuals tagged with PSATs was compared with those of small acoustic tags and DSTs. Overall, the depth distribution of individuals tagged with PSATs was similar to that of those tagged with DSTs, reflecting the pelagic nature of S. salar at sea. Individuals tagged with PSATs, however, dived less frequently and to shallower depths, and dived and surfaced at slower velocities. Sea surface temperatures experienced by individuals tagged with PSATs were similar to those experienced by those tagged with DSTs for the same time of year, suggesting that there were no large differences in the ocean migration. Return rates did not depend on whether individuals were tagged with PSATs or not, indicating that survival at sea was not impacted by PSATs in comparison to small internal tags. Individuals tagged with PSATs, however, had a smaller increase in body mass than those tagged with acoustic tags or DSTs. It was concluded that PSATs are suitable for use in researching large-scale migratory behaviour of adult S. salar at sea, but that some effects on their behaviour from tagging must be expected. Effects of PSATs may be largest in the short term when S. salar are swimming in bursts at high speeds. Even though individuals tagged with PSATs performed deep and frequent dives, the results of this study suggest that untagged individuals would perform even deeper and more frequent dives than tagged individuals. © 2016 The Fisheries Society of the British Isles.

  6. Evaluating the Impact of Handling and Logger Attachment on Foraging Parameters and Physiology in Southern Rockhopper Penguins

    PubMed Central

    Ludynia, Katrin; Dehnhard, Nina; Poisbleau, Maud; Demongin, Laurent; Masello, Juan F.; Quillfeldt, Petra

    2012-01-01

    Logger technology has revolutionised our knowledge of the behaviour and physiology of free-living animals but handling and logger attachments may have negative effects on the behaviour of the animals and their welfare. We studied southern rockhopper penguin (Eudyptes chrysocome) females during the guard stage in three consecutive breeding seasons (2008/09−2010/11) to evaluate the effects of handling and logger attachment on foraging trip duration, dive behaviour and physiological parameters. Smaller dive loggers (TDRs) were used in 2010/11 for comparison to larger GPS data loggers used in all three seasons and we included two categories of control birds: handled controls and PIT control birds that were previously marked with passive integrative transponders (PITs), but which had not been handled during this study. Increased foraging trip duration was only observed in GPS birds during 2010/11, the breeding season in which we also found GPS birds foraging further away from the colony and travelling longer distances. Compared to previous breeding seasons, 2010/11 may have been a period with less favourable environmental conditions, which would enhance the impact of logger attachments. A comparison between GPS and TDR birds showed a significant difference in dive depth frequencies with birds carrying larger GPS data loggers diving shallower. Mean and maximum dive depths were similar between GPS and TDR birds. We measured little impact of logger attachments on physiological parameters (corticosterone, protein, triglyceride levels and leucocyte counts). Overall, handling and short-term logger attachments (1–3 days) showed limited impact on the behaviour and physiology of the birds but care must be taken with the size of data loggers on diving seabirds. Increased drag may alter their diving behaviour substantially, thus constraining them in their ability to catch prey. Results obtained in this study indicate that data recorded may also not represent their normal dive behaviour. PMID:23185623

  7. Apparent Sea Level Rise due to Loading of the Atlantic City Pier by Spectators Viewing (1929-1978) Diving Horses

    NASA Astrophysics Data System (ADS)

    Galvin, C.

    2012-12-01

    Cyril Galvin, Coastal Engineer Springfield, Virginia 22150 USA Since 1911, the Steel Pier at Atlantic City, New Jersey, has been the site of the Atlantic City tide gauge, except for two intervals: 1911-1921 when the gauge was at the Million Dollar Pier in Atlantic City, and 1985-1991 when the gauge was at the Ventnor Fishing Pier (see Table 2, Zervos, 2009). By design, the Steel Pier was an amusement pier, and its most famous amusement was the Diving Horses: they dove bareback with a woman rider from a platform about 40 feet above sea level. They did that between 1929 and 1978, except for seven years - a post-war period, 1945 to 1953, when diving was suspended. The popularity of the diving horses is recorded on photos of crowds which occupied the bleachers at the seaward end of the pier to view the diving horses. By my count, the crowd pictured in the end papers of the book by Steve Liebowitz (2009) was about 4000 people. Typically, there were multiple shows daily. The weight of the crowd, estimated from the count of the crowd, was about 150 tons. This weight was loaded down on the piles by the crowd of spectators, and unloaded between shows of the diving horses. Most of the piles supporting the pier deck were imbedded in sand newly deposited since 1850. Using Atlantic City sea levels from the PSMSL data base and historical facts from Liebowitz (2009), and beginning with a 1912 start of the tide gauge, the apparent sea level rose at a rate of 3.1mm/yr until 1929 when the horses began diving. With the 1929 start of diving, the apparent sea level rise tripled, averaging 9.4 mm/yr until the act was suspended in 1945. In the 1945-1953 interval, when the horses did not dive (no crowds on the pier), apparent sea level fell (sea level FELL) at a rate of -1.6 mm/yr. The horses resumed diving in 1953, when the apparent sea level resumed at a rate of 4.0mm/yr. This 4.0 mm/yr is identical to the longtime sea level trend (1911-2006) from Zervos (2009) of 3.99mm/yr The history of apparent sea level rise at Steel Pier is consistent with increases caused by loading the pier deck with crowds, and the absence of apparent sea level rise when the pier deck was not loaded by spectators. CG/08Aug 2012

  8. Operational Considerations for the Standby Diver in CUMA Dives

    DTIC Science & Technology

    2010-11-01

    avec ACDSM R.Y. Nishi; A.J. Ward; D.J. Eaton; DRDC Toronto TM 2010-082; R & D pour la défense Canada – Toronto; Novembre 2010. Introduction ou...11  Figure A-5. Computed inert gas loading in first and second compartments for 5 min at 9 msw .. 13 ... 13   Figure A-7. Computed inert gas loading in first and second compartments for 30

  9. Towards new paradigms for the treatment of hypobaric decompression sickness.

    PubMed

    Dart, T S; Butler, W

    1998-04-01

    Altitude induced (hypobaric) decompression sickness (DCS) has long been treated with ground level oxygen and U.S. Navy Treatment Tables 5 and 6. These treatment tables originate from surface excursion diving and, when implemented, require significant resource allocation. Although they are effective treatment regimens, these tables were not developed for treating hypobaric DCS which has an etiology similar to saturation diving DCS. In this review, different treatment options for hypobaric DCS are presented. These options include more aggressive use of ground level oxygen and treatment tables using a maximum pressure of 2 atmospheres (ATA). Specific attention is given to USAF Table VIII, an experimental hypobaric DCS treatment-table, and space suit overpressurization treatment. This paradigm shift for DCS treatment is based on a projected increase in hypobaric DCS treatment from exposure to low pressure during several operational conditions: cruise flight in the next generation aircraft (e.g., F-22); high altitude, unpressurized flight by special operations forces; and the extraordinary amount of extravehicular activity (EVA) required to construct the international space station. Anticipating the need to treat DCS encountered during these and other activities, it is proposed that 2 ATA or less hyperbaric oxygen (HBO) treatment conjoined with new collapsible chamber technology can be used to address these issues in a safe and cost effective fashion.

  10. A precision multi-sampler for deep-sea hydrothermal microbial mat studies

    NASA Astrophysics Data System (ADS)

    Breier, J. A.; Gomez-Ibanez, D.; Reddington, E.; Huber, J. A.; Emerson, D.

    2012-12-01

    A new tool was developed for deep-sea microbial mat studies by remotely operated vehicles and was successfully deployed during a cruise to the hydrothermal vent systems of the Mid-Cayman Rise. The Mat Sampler allows for discrete, controlled material collection from complex microbial structures, vertical-profiling within thick microbial mats and particulate and fluid sample collection from venting seafloor fluids. It has a reconfigurable and expandable sample capacity based on magazines of 6 syringes, filters, or water bottles. Multiple magazines can be used such that 12-36 samples can be collected routinely during a single dive; several times more if the dive is dedicated for this purpose. It is capable of hosting in situ physical, electrochemical, and optical sensors, including temperature and oxygen probes in order to guide sampling and to record critical environmental parameters at the time and point of sample collection. The precision sampling capability of this instrument will greatly enhance efforts to understand the structured, delicate, microbial mat communities that grow in diverse benthic habitats.

  11. Marine litter in the upper São Vicente submarine canyon (SW Portugal): Abundance, distribution, composition and fauna interactions.

    PubMed

    Oliveira, Frederico; Monteiro, Pedro; Bentes, Luis; Henriques, Nuno Sales; Aguilar, Ricardo; Gonçalves, Jorge M S

    2015-08-15

    Marine litter has become a worldwide environmental problem, tainting all ocean habitats. The abundance, distribution and composition of litter and its interactions with fauna were evaluated in the upper S. Vicente canyon using video images from 3 remote operated vehicle exploratory dives. Litter was present in all dives and the abundance was as high as 3.31 items100m(-1). Mean abundance of litter over rock bottom was higher than on soft substrate. Mean litter abundance was slightly higher than reported for other canyons on the Portuguese margin, but lower in comparison to more urbanized coastal areas of the world. Lost fishing gear was the prevalent type of litter, indicating that the majority of litter originates from maritime sources, mainly fishing activity. Physical contact with sessile fauna and entanglement of specimens were the major impacts of lost fishing gear. Based on the importance of this region for the local fishermen, litter abundance is expected to increase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Conditioning Bottlenose Dolphins (Tursiops Truncatus Gilli) for Voluntary Diving Studies

    DTIC Science & Technology

    1992-12-31

    biology. ’Discovery’ Rep. 37:1-324. Dolphin, W.F. (1987) Dive behavior and estimated energy expenditure of foraging humpback whales in southeast...case with sperm whales feeding on deep sea squid (Clarke, 1980). Other cetaceans are important constituents of multi-species communities sharing common...diving behavior of these animals remains very sketchy (Kooyman, 1989). Much of what is known about the ecology of pelagic whales and dolphins has been

  13. Case Control Study of Type II Decompression Sickness Associated with Patent Foramen Ovale in Experimental No-Decompression Dives

    DTIC Science & Technology

    2010-05-01

    right-to-left shunt, RLS, transcranial Doppler, TCD, transthoracic echocardiography, TTE , air diving no-stop limits, Navy Experimental Diving...participation. The ultrasonographer and Principal Investigator (PI) were not blinded to either the transthoracic echocardiography ( TTE ) or...his or her ability to detect a PFO/RLS that depends upon a transiently elevated right atrial pressure. The technically easier TTE , in which the US

  14. Interactions among Behavioral Responses of Baleen Whales to Acoustic Stimuli, Oceanographic Features, and Prey Availability

    DTIC Science & Technology

    2015-09-30

    differentiate krill from larger fish targets, as krill have greater backscatter at 120kHz than 38kHz. Figure 3. Clover leaf sampling design...response in dive axis 1 (dive time, surface time, breaths , dive depth, etc.) showed a significant before-after effect including potential changes in...acoustic instruments for fish density estimation: a practical guide. International Council for the Exploration of the Sea (ICES) Cooperative

  15. Cerebral magnetic resonance imaging of compressed air divers in diving accidents.

    PubMed

    Gao, G K; Wu, D; Yang, Y; Yu, T; Xue, J; Wang, X; Jiang, Y P

    2009-01-01

    To investigate the characteristics of the cerebral magnetic resonance imaging (MRI) of compressed air divers in diving accidents, we conducted an observational case series study. MRI of brain were examined and analysed on seven cases compressed air divers complicated with cerebral arterial gas embolism CAGE. There were some characteristics of cerebral injury: (1) Multiple lesions; (2) larger size; (3) Susceptible to parietal and frontal lobe; (4) Both cortical grey matter and subcortical white matter can be affected; (5) Cerebellum is also the target of air embolism. The MRI of brain is an sensitive method for detecting cerebral lesions in compressed air divers in diving accidents. The MRI should be finished on divers in diving accidents within 5 days.

  16. Advance Force Operations: The Middleweight Force’s Essential Role in the Joint Operations

    DTIC Science & Technology

    2013-04-18

    solution selected, the Marine Corps will have to invest in increasing the training and readiness standards of its expeditionary forces. If the Marine Corps...28 Limited common AFO training ………………………………………… 31 Inadequate resourcing…………………………………………………… 32 SOF is the solution...delta while the newly formed SEALs began in Vietnam as advisors training the South Vietnamese in combat diving, demolitions, and guerrilla/anti

  17. Diving response after a one-week diet and overnight fasting.

    PubMed

    Ghiani, Giovanna; Marongiu, Elisabetta; Olla, Sergio; Pinna, Marco; Pusceddu, Matteo; Palazzolo, Girolamo; Sanna, Irene; Roberto, Silvana; Crisafulli, Antonio; Tocco, Filippo

    2016-01-01

    We hypothesized that overnight fasting after a short dietary period, especially with carbohydrates, could allow performing breath-hold diving with no restraint for diaphragm excursion and blood shift and without any increase of metabolism, and in turn improve the diving response. During two separate sessions, 8 divers carried out two trials: (A) a 30-m depth dive, three hours after a normal breakfast and (B) a dive to the same depth, but after following a diet and fasting overnight. Each test consisted of 3 apnea phases: descent, static and ascent whose durations were measured by a standard chronometer. An impedance cardiograph, housed in an underwater torch, provided data on trans-thoracic fluid index (TFI), stroke volume (SV), heart rate (HR) and cardiac output (CO). Mean blood pressure (MBP), arterial O2 saturation (SaO2), blood glucose (Glu) and blood lactate (BLa) were also collected. In condition B, duration of the static phase of the dive was longer than A (37.8 ± 7.4 vs. 27.3 ± 8.4 s respectively, P < 0.05). In static phases, mean ∆ SV value (difference between basal and nadir values) during fasting was lower than breakfast one (-2.6 ± 5.1 vs. 5.7 ± 7.6 ml, P < 0.05). As a consequence, since mean ∆ HR values were equally decreased in both metabolic conditions, mean ∆ CO value during static after fasting was lower than the same phase after breakfast (-0.4 ± 0.5 vs. 0.4 ± 0.5 L · min(-1) respectively, P < 0.05). At emersion, despite the greater duration of dives during fasting, SaO2 was higher than A (92.0 ± 2.7 vs. 89.4 ± 2.9 % respectively, P < 0.05) and BLa was lower in the same comparison (4.2 ± 0.7 vs. 5.3 ± 1.1 mmol∙L(-1), P < 0.05). An adequate balance between metabolic and splancnic status may improve the diving response during a dive at a depth of 30 m, in safe conditions for the athlete's health.

  18. NOAA Deepwater Exploration of the Marianas 2016: Pacific Plate, Mariana Trench, and Mariana Forearc

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Glickson, D.; Kelley, C.; Drazen, J.; Stern, R. J.

    2016-12-01

    Legs 1 and 3 of NOAA Okeanos Explorer EX1605 made 18 (ROV) dives exploring the following: 7 Cretaceous-age, Pacific Plate guyots east of the Trench; 1 small volcano on a Pacific Plate fracture; 3 areas of the inner trench slope; 2 forearc serpentinite mud volcanoes; and 5 forearc fault blocks. The Pacific Plate guyots are heavily manganese encrusted. Part of the rationale for those dives was to make baseline characterization of biota and habitats before potential mining. These guyots had striking diversity and abundance of fauna. Dives on 2 guyots examined high-relief scarps, formed when both down-going plate and edifices fractured outboard of the trench. The scarp on one had Cretaceous reef sequences, whereas the other exposed layers of volcanics. The dive on a small (1 km diameter, 141 m high) volcano on a plate fracture near the trench affirmed that it was relatively young, maybe like Petit-Spot volcanoes east of the Japan Trench. A dive in a canyon west of Guam transitioned from a steep slope of volcanic talus to a gentle sediment-covered slope. The inner trench slope opposite the subducting guyot that exposes reef deposits, revealed similar sequences, suggesting that the guyot is being incorporated into the Mariana forearc. The other inner slope dive traversed talus with fragments of serpentinized peridotite and lies near a chain of forearc serpentinite mud volcanoes. The 2 serpentinite mud volcanoes explored have sedimented, apparently inactive, surfaces, though we recovered a serpentinized peridotite sample from one of them. Dives on the forearc fault blocks attest to dynamic vertical tectonism. Three in the northern forearc show sediment sequences of varying types and textures, all dipping trenchward. Spectacular mid-forearc fault scarps strike east-west, stair-stepping down southward and were traversed on 2 dives. We saw many sequences of indurated sediments. Mapping on Legs 2 and 3 of the expedition showed that these fault scarps are mirrored to the south by north-facing scarps. Thus, vertical tectonics on a grand scale has formed an immense and previously unknown graben across the forearc. These dive results provide a wealth of information for future research into the history of plate convergence processes associated with formation of the Mariana Trench in this Marine National Monument area.

  19. Estimation of the rate of oxygen consumption of the common eider duck (Somateria mollissima), with some measurements of heart rate during voluntary dives.

    PubMed

    Hawkins, P A; Butler, P J; Woakes, A J; Speakman, J R

    2000-09-01

    The relationship between heart rate (f(H)) and rate of oxygen consumption (V(O2)) was established for a marine diving bird, the common eider duck (Somateria mollissima), during steady-state swimming and running exercise. Both variables increased exponentially with speed during swimming and in a linear fashion during running. Eleven linear regressions of V(O2) (ml kg(-1 )min(-1)) on f(H) (beats min(-1)) were obtained: five by swimming and six by running the birds. The common regression was described by V(O2)=10.1 + 0.15f(H) (r(2)=0.46, N=272, P<0.0001). The accuracy of this relationship for predicting mean V(O2) was determined for a group of six birds by recording f(H) continuously over a 2-day period and comparing estimated V(O2) obtained using the common regression with (i) V(O2) estimated using the doubly labelled water technique (DLW) and (ii) V(O2) measured using respirometry. A two-pool model produced the most accurate estimated V(O2) using DLW. Because of individual variability within mean values of V(O2) estimated using both techniques, there was no significant difference between mean V(O2) estimated using f(H) or DLW and measured V(O2) values (P>0.2), although individual errors were substantially less when f(H) was used rather than DLW to estimate V(O2). Both techniques are, however, only suitable for estimating mean V(O2) for a group of animals, not for individuals. Heart rate and behaviour were monitored during a bout of 63 voluntary dives by one female bird in an indoor tank 1.7 m deep. Tachycardia occurred both in anticipation of and following each dive. Heart rate decreased before submersion but was above resting values for the whole of the dive cycle. Mean f(H) at mean dive duration was significantly greater than f(H) while swimming at maximum sustainable surface speeds. Heart rate was used to estimate mean V(O2) during the dive cycle and to predict aerobic dive limit (ADL) for shallow dives.

  20. Rapid maturation of the muscle biochemistry that supports diving in Pacific walruses (Odobenus rosmarus divergens)

    USGS Publications Warehouse

    Norem, Shawn R.; Jay, Chadwick V.; Burns, Jennifer M.; Fischbach, Anthony S.

    2015-01-01

    Physiological constraints dictate animals’ ability to exploit habitats. For marine mammals, it is important to quantify physiological limits that influence diving and their ability to alter foraging behaviors. We characterized age-specific dive limits of walruses by measuring anaerobic (acid-buffering capacity) and aerobic (myoglobin content) capacities of the muscles that power hind (longissimus dorsi) and fore (supraspinatus) flipper propulsion. Mean buffering capacities were similar across muscles and age classes (a fetus, five neonatal calves, a 3 month old and 20 adults), ranging from 41.31 to 54.14 slykes and 42.00 to 46.93 slykes in the longissimus and supraspinatus, respectively. Mean myoglobin in the fetus and neonatal calves fell within a narrow range (longissimus: 0.92–1.68 g 100 g−1 wet muscle mass; supraspinatus: 0.88–1.64 g 100 g−1 wet muscle mass). By 3 months post-partum, myoglobin in the longissimus increased by 79%, but levels in the supraspinatus remained unaltered. From 3 months post-partum to adulthood, myoglobin increased by an additional 26% in the longissimus and increased by 126% in the supraspinatus; myoglobin remained greater in the longissimus compared with the supraspinatus. Walruses are unique among marine mammals because they are born with a mature muscle acid-buffering capacity and attain mature myoglobin content early in life. Despite rapid physiological development, small body size limits the diving capacity of immature walruses and extreme sexual dimorphism reduces the diving capacity of adult females compared with adult males. Thus, free-ranging immature walruses likely exhibit the shortest foraging dives while adult males are capable of the longest foraging dives.

Top