Sample records for dlc coating process

  1. Optically transparent, scratch-resistant, diamond-like carbon coatings

    DOEpatents

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  2. Preparation of multi-layer film consisting of hydrogen-free DLC and nitrogen-containing DLC for conductive hard coating

    NASA Astrophysics Data System (ADS)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto

    2018-01-01

    Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.

  3. The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD

    NASA Astrophysics Data System (ADS)

    Yin, Lianhua; Chen, Qiang

    2017-12-01

    In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.

  4. Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets.

    PubMed

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Nakagaki, Susumu; Endo, Kazuhiko; Mizoguchi, Itaru

    2013-04-01

    This study investigated the effects of a diamond-like carbon (DLC) coating on frictional and mechanical properties of orthodontic brackets. DLC films were deposited on stainless steel brackets using the plasma-based ion implantation/deposition (PBIID) method under two different atmospheric conditions. As-received metal brackets served as the control. Two sizes of stainless steel archwires, 0.018 inch diameter and 0.017 × 0.025 inch cross-section dimensions, were used for measuring static and kinetic friction by drawing the archwires through the bracket slots, using a mechanical testing machine (n = 10). The DLC-coated brackets were observed with a scanning electron microscope (SEM). Values of hardness and elastic modulus were obtained by nanoindentation testing (n = 10). Friction forces were compared by one-way analysis of variance and the Scheffé test. The hardness and elastic modulus of the brackets were compared using Kruskal-Wallis and Mann-Whitney U-tests. SEM photomicrographs showed DLC layers on the bracket surfaces with thickness of approximately 5-7 μm. DLC-coated brackets deposited under condition 2 showed significantly less static frictional force for the stainless steel wire with 0.017 × 0.025 inch cross-section dimensions than as-received brackets and DLC-coated brackets deposited under condition 1, although both DLC-coated brackets showed significantly less kinetic frictional force than as-received brackets. The hardness of the DLC layers was much higher than that of the as-received bracket surfaces. In conclusion, the surfaces of metal brackets can be successfully modified by the PBIID method to create a DLC layer, and the DLC-coating process significantly reduces frictional forces.

  5. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film

    NASA Astrophysics Data System (ADS)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil

    2018-01-01

    Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.

  6. Improvement of corrosion protection property of Mg-alloy by DLC and Si-DLC coatings with PBII technique and multi-target DC-RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Masami, Ikeyama; Setsuo, Nakao; Tsutomu, Sonoda; Junho, Choi

    2009-05-01

    Magnesium alloys have been considered as one of the most promising light weight materials with potential applications for automobile and aircraft components. Their poor corrosion resistance, however, has to date prevented wider usage. Diamond-like carbon (DLC) and silicon-incorporated DLC (Si-DLC) coatings are known to provide a high degree of corrosion protection, and hold accordingly promise for enhancing the corrosion resistance of the magnesium alloys. In this work we have studied the effect of coating conditions of DLC coatings as well as Si incorporation into coating on corrosion resistance, deposited onto AZ91 magnesium alloy substrates by plasma based ion implantation (PBII). The influences of a Ti interlayer beneath the DLC, Si-DLC and Ti incorporated DLC (Ti-DLC) coatings fabricated by multi-target direct-current radio-frequency (DC-RF) magnetron sputtering were also examined on both the adhesion strength and corrosion resistance of the materials. We have also examined the effect of the Si content in the Si-DLC coatings made by magnetron sputtering on the alloys' corrosion resistance. The results of potentiodynamic polarization measurements demonstrate that Si-DLC coating deposited by PBII exhibits the highest corrosion resistance in an aqueous 0.05 M NaCl solution. Although Ti layer is helpful in increasing adhesion between DLC coating and AZ91 substrate, it also influences adversely corrosion protection. The ozone treatment of the magnesium alloy's surface before the formation of coatings has been found to improve both adhesion strength and corrosion resistance.

  7. Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance

    NASA Astrophysics Data System (ADS)

    Sui, Xudong; Liu, Jinyu; Zhang, Shuaituo; Yang, Jun; Hao, Junying

    2018-05-01

    Adhesive wear is one of the major reasons for the failure of components during various tribological application, especially for rubbing with viscous materials. This study presents CrN/DLC/Cr-DLC multilayer composite coatings prepared on a plasma enhanced chemical vapor deposition (PECVD) device with the close field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique. SEM, XRD and Raman spectroscopy were used to determine the structure of multilayer coatings. It was found that the multilayer coatings are composed by the alternating CrN and DLC layers. Compared with the single CrN coatings, the friction coefficient of the CrN/DLC/Cr-DLC multilayer coating decreases about more than seven times after sliding a distance of 500 m. This helps to reduce the adhesive wear of multilayer coatings. Compared with the single CrN and DLC coating, the wear rate of the CrN/DLC/Cr-DLC multilayer coating is reduced by an order of magnitude to 7.10 × 10-17 (sliding with AISI 440C) and 2.64 × 10-17 (sliding with TC4) m3/(N m). The improved tribological performance of multilayer coatings mainly attributes to the introduction of lubricant DLC and hard support CrN layers, the enhancement of crack propagation inhibition, and the increment of elastic recovery value We (71.49%) by multilayer design method.

  8. Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties

    NASA Astrophysics Data System (ADS)

    Tang, X. S.; Wang, H. J.; Feng, L.; Shao, L. X.; Zou, C. W.

    2014-08-01

    Mo (molybdenum) doped diamond like carbon (Mo-DLC) coatings with improved mechanical and blood compatibility properties were deposited by closed field unbalanced magnetron sputtering. The undoped and Mo-doped DLC coatings were analyzed by various characterization techniques such as Raman spectra, Atomic force microscopy, and temperature-dependent frictional wear testing. The results showed that the Mo-DLC coating with low Mo concentration was a effective protective coating with reduced residual stress and increased cohesive strength, and kept good wear resistance at the ambient temperature of 500 °C. The blood compatibility of Mo-DLC coatings was investigated by platelet adhesion. The results showed that the amount of thrombus on the Mo-DLC nanocomposite coatings was much less than that of thrombus on pyrolytic carbon films. The Mo-DLC nanocomposite coatings would be a new kind of promising materials applied to artificial heart valve and endovascula stent.

  9. Further improvement of mechanical and tribological properties of Cr-doped diamond-like carbon nanocomposite coatings by N codoping

    NASA Astrophysics Data System (ADS)

    Zou, Changwei; Xie, Wei; Tang, Xiaoshan

    2016-11-01

    In this study, the effects of nitrogen codoping on the microstructure and mechanical properties of Cr-doped diamond-like carbon (DLC) nanocomposite coatings were investigated in detail. Compared with undoped DLC coatings, the Cr-DLC and N/Cr-DLC coatings showed higher root-mean-square (RMS) roughness values. However, from the X-ray photoelectron spectroscopy (XPS) and Raman results, the fraction of sp2 carbon bonds of N/Cr-DLC coatings increased with increasing N content, which indicated the graphitization of the coatings. The hardness and elastic modulus of N/Cr-DLC coatings with 1.8 at. % N were about 26.8 and 218 GPa, respectively. The observed hardness increase with N codoping was attributed to the incorporation of N in the C network along with the formation of CrC(N) nanoparticles, as confirmed from the transmission electron microscopy (TEM) results. The internal stress markedly decreased from 0.93 to 0.32 GPa as the N content increased from 0 to 10.3 at. %. Furthermore, N doping significantly improved the high-temperature dry friction behavior of DLC coatings. The friction coefficient of N/Cr-DLC coatings with 8.0 and 10.3 at. % N was kept at about 0.2 during the overall sliding test at 500 °C. These results showed that appropriate N doping could promote the mechanical and tribological properties of Cr-DLC nanocomposite coatings.

  10. Friction and fretting wear characteristics of different diamond-like carbon coatings against alumina in water-lubricated fretting conditions.

    PubMed

    Watabe, Tsukasa; Amanov, Auezhan; Tsuboi, Ryo; Sasaki, Shinya

    2013-12-01

    Diamond-like carbon (DLC) coatings typically show low friction and high wear resistance. In this study, the friction and fretting wear characteristics of PVD, CVD and CVD-Si DLC coatings were investigated against an alumina (Al2O3) ball under water-lubricated fretting conditions. The objective of this study is to investigate and compare the friction and fretting wear characteristics of those DLC coatings at various fretting frequencies. The test results showed that the PVD DLC coating led to a lower friction coefficient and a higher resistance to fretting wear compared to those of the CVD and CVD-Si DLC coatings. However, the CVD DLC coating showed that the fretting wear resistance decreases with increasing frequency, while no significant difference in fretting wear resistances of the PVD and CVD-Si DLC coatings was observed. Quantitative surface analyses of the specimens were performed using an energy dispersive spectroscopy (EDS), a laser scanning microscope (LSM), a scanning electron microscope (SEM), an atomic force microscope (AFM) and the Raman spectroscopy.

  11. In vitro evaluation of diamond-like carbon coatings with a Si/SiC x interlayer on surgical NiTi alloy

    NASA Astrophysics Data System (ADS)

    Liu, C. L.; Chu, Paul K.; Yang, D. Z.

    2007-04-01

    Diamond-like carbon (DLC) coatings were produced with a Si/SiCx interlayer by a hybrid plasma immersion ion implantation and deposition process to improve the adhesion between the carbon layer and surgical NiTi alloy substrate. The structure, mechanical properties, corrosion resistance and biocompatibility of the coatings were evaluated in vitro by Raman spectroscopy, pin-on-disk tests, potentiodynamic polarization tests and simulated fluid immersion tests. The DLC coatings with a Si/SiCx interlayer of a suitable thickness have better adhesion, lower friction coefficients and enhanced corrosion resistance. In the simulated body fluid tests, the coatings exhibit effective corrosion protection and good biocompatibility as indicated by PC12 cell cultures. DLC films fabricated on a Si/SiCx interlayer have high potential as protective coatings for biomedical NiTi materials.

  12. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C disk and on a titanium-6 wt % aluminum-4 wt% vanadium (Ti-6Al-4V) flat, both in contact with a 9.4-mm-diameter, hemispherical Ti-6Al-4V pin. The resistance to fretting wear and damage of the a-DLC/Ti-6Al-4V materials pair was superior to that of the Ti-6Al-4V/Ti-6AI-4V materials pair.

  13. Compositionally modulated multilayer diamond-like carbon coatings with AlTiSi multi-doping by reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Gao, Xiang; Liu, Jingmao; Kwon, Se-Hun; Wang, Qimin

    2017-12-01

    Diamond-like carbon (DLC) coatings with AlTiSi multi-doping were prepared by a reactive high power impulse magnetron sputtering with using a gas mixture of Ar and C2H2 as precursor. The composition, microstructure, compressive stress, and mechanical property of the as-deposited DLC coatings were studied systemically by using SEM, XPS, TEM, Raman spectrum, stress-tester, and nanoindentation as a function of the Ar fraction. The results show that the doping concentrations of the Al, Ti and Si atoms increased as the Ar fraction increased. The doped Ti and Si preferred to bond with C while the doped Al mainly existed in oxidation state without bonding with C. As the doping concentrations increased, TiC carbide nanocrystals were formed in the DLC matrix. The microstructure of coatings changed from an amorphous feature dominant AlTiSi-DLC to a carbide nanocomposite AlTiSi-DLC with TiC nanoparticles embedding. In addition, the coatings exhibited the compositionally modulated multilayer consisting of alternate Al-rich layer and Al-poor layer due to the rotation of the substrate holder and the diffusion behavior of the doped Al which tended to separate from C and diffuse towards the DLC matrix surface owing to its weak interactions with C. The periodic Al-rich layer can effectively release the compressive stress of the coatings. On the other hand, the hard TiC nanoparticles were conducive to the hardness of the coatings. Consequently, the DLC coatings with relatively low residual stress and high hardness could be acquired successfully through AlTiSi multi-doping. It is believed that the AlCrSi multi-doping may be a good way for improving the comprehensive properties of the DLC coatings. In addition, we believe that the DLC coatings with Al-rich multilayered structure have a high oxidation resistance, which allows the DLC coatings application in high temperature environment.

  14. Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applications.

    PubMed

    Nandakumar, Deepika; Bendavid, Avi; Martin, Philip J; Harris, Kenneth D; Ruys, Andrew J; Lord, Megan S

    2016-03-23

    Biomaterials with the ability to interface with, but not activate, blood components are essential for a multitude of medical devices. Diamond-like carbon (DLC) and titania (TiO2) have shown promise for these applications; however, both support platelet adhesion and activation. This study explored the fabrication of nanostructured DLC and TiO2 thin film coatings using a block copolymer deposition technique that produced semiordered nanopatterns with low surface roughness (5-8 nm Rrms). These surfaces supported fibrinogen and plasma protein adsorption that predominantly adsorbed between the nanofeatures and reduced the overall surface roughness. The conformation of the adsorbed fibrinogen was altered on the nanopatterned surfaces as compared with the planar surfaces to reveal higher levels of the platelet binding region. Planar DLC and TiO2 coatings supported less platelet adhesion than nanopatterned DLC and TiO2. However, platelets on the nanopatterned DLC coatings were less spread indicating a lower level of platelet activation on the nanostructured DLC coatings compared with the planar DLC coatings. These data indicated that nanostructured DLC coatings may find application in blood contacting medical devices in the future.

  15. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    NASA Astrophysics Data System (ADS)

    Cheng, Feng; Jiang, Shuyun

    2014-02-01

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (-200 V/80 A, labeled DLC-1, and -100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  16. Load-Bearing Biomedical Applications of Diamond-Like Carbon Coatings - Current Status

    PubMed Central

    Alakoski, Esa; Tiainen, Veli-Matti; Soininen, Antti; Konttinen, Yrjö T

    2008-01-01

    The current status of diamond-like carbon (DLC) coatings for biomedical applications is reviewed with emphasis on load-bearing coatings. Although diamond-like carbon coating materials have been studied for decades, no indisputably successful commercial biomedical applications for high load situations exist today. High internal stress, leading to insufficient adhesion of thick coatings, is the evident reason behind this delay of the break-through of DLC coatings for applications. Excellent adhesion of thick DLC coatings is of utmost importance for load-bearing applications. According to this review superior candidate material for articulating implants is thick and adherent DLC on both sliding surfaces. With the filtered pulsed arc discharge method, all the necessary requirements for the deposition of thick and adherent DLC are fulfilled, provided that the substrate material is selected properly. PMID:19478929

  17. [Influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating on pure titanium].

    PubMed

    Yin, Lu; Yao, Jiang-wu; Xu, De-wen

    2010-10-01

    The aim of this study was to observed the influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating (N-DLC) on pure titanium by multi impulse are plasma plating machine. Applying multi impulse are plasma plating machine to produce TiN coatings on pure titanium in nitrogen atmosphere, then filming with nitrogen-doped DLC on TiN in methane (10-80 min in every 5 min). The colors of N-DLC were evaluated in the CIE1976 L*a*b* uniform color scale and Mussell notation. The surface morphology of every specimen was analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). When changing the time of N-DLC coating deposition, N-DLC surface showed different color. Golden yellow was presented when deposition time was 30 min. SEM showed that crystallization was found in N-DLC coatings, the structure changed from stable to clutter by varying the deposition time. The chromatics of N-DLC coatings on pure titanium could get golden yellow when deposition time was 30 min, then the crystallized structure was stable.

  18. Improvement of diamond-like carbon electrochemical corrosion resistance by addition of nanocrystalline diamond.

    PubMed

    Marciano, F R; Almeida, E C; Bonetti, L F; Corat, E J; Trava-Airoldi, V J

    2010-02-15

    Nanocrystalline diamond (NCD) particles were incorporated into diamond-like carbon (DLC) films in order to investigate NCD-DLC electrochemical corrosion resistance. The films were grown over 304 stainless steel using plasma-enhanced chemical vapor deposition. NCD particles were incorporated into DLC during the deposition process. The investigation of NCD-DLC electrochemical corrosion behavior was performed using potentiodynamic polarization against NaCl. NCD-DLC films presented more negative corrosion potential and lower anodic and cathodic current densities. The electrochemical analysis indicated that NCD-DLC films present superior impedance and polarization resistance compared to the pure DLC, which indicate that they are promising corrosion protective coatings in aggressive solutions. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    NASA Astrophysics Data System (ADS)

    Mobarak, H. M.; Masjuki, H. H.; Mohamad, E. Niza; Kalam, M. A.; Rashedul, H. K.; Rashed, M. M.; Habibullah, M.

    2014-10-01

    The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  20. Diamondlike carbon coating as a galvanic corrosion barrier between dental implant abutments and nickel-chromium superstructures.

    PubMed

    Ozkomur, Ahmet; Erbil, Mehmet; Akova, Tolga

    2013-01-01

    The objectives of this study were to evaluate the galvanic corrosion behavior between titanium and nickel-chromium (Ni-Cr) alloy, to investigate the effect of diamondlike carbon (DLC) coating over titanium on galvanic corrosion behavior between titanium and Ni-Cr alloy, and to evaluate the effect of DLC coating over titanium abutments on the fit and integrity of prosthetic assemblies by scanning electron microcopy (SEM). Five Ni-Cr and 10 titanium disks with a diameter of 5 mm and thickness of 3 mm were prepared. DLC coating was applied to five titanium disks. Electrode samples were prepared, and open circuit potential measurements, galvanic current measurements over platinum electrodes, and potentiodynamic polarization tests were carried out. For the SEM evaluation, 20 Ni-Cr alloy and 10 gold alloy superstructures were cast and prepared over 30 abutments. DLC coating was applied to 10 of the abutments. Following the fixation of prosthetic assemblies, the samples were embedded in acrylic resin and cross sectioned longitudinally. Internal fit evaluations were carried out through examination of the SEM images. Titanium showed more noble and electrochemically stable properties than Ni-Cr alloy. DLC coating over the cathode electrode served as an insulating film layer over the surface and prevented galvanic coupling. Results of the SEM evaluations indicated that the DLC-coated and titanium abutments showed no statistically significant difference in fit. Hence, no adverse effects on the adaptation of prosthetic components were found with the application of DLC coating over abutment surfaces. DLC coating might serve as a galvanic corrosion barrier between titanium abutments and Ni-Cr superstructures.

  1. Characteristics of Diamond-Like Carbon Films Deposited on Polymer Dental Materials

    NASA Astrophysics Data System (ADS)

    Ohtake, Naoto; Uchi, Tomio; Yasuhara, Toshiyuki; Takashima, Mai

    2012-09-01

    Characterizations of diamond-like carbon (DLC) deposited on a polymer artificial tooth were performed. DLC films were deposited on dental parts made of poly(methyl methacrylate) (PMMA) resin by dc-pulse plasma chemical vapor deposition (CVD) from methane. Wear resistance test results revealed that a DLC-coated resin tooth has a very high wear resistance against tooth brushing, and endures 24 h brushing without a marked weight decrease. Cell cultivation test results show that DLC plays an important role in preventing cell death. Moreover, a biocompatibility test using a rabbit revealed that a connective tissue in the vicinity of DLC-coated PMMA is significantly thinner than that of noncoated PMMA. The numbers of inflammatory cells in the vicinity of DLC-coated and noncoated surfaces are 0 and 508 cells/mm2, respectively. These results led us to conclude that DLC films are an excellent material for use as the coating of a polymer artificial tooth in terms of not only high wear resistance but also biocompatibility.

  2. Method for producing fluorinated diamond-like carbon films

    DOEpatents

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  3. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    PubMed

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.

  4. Electrochemical Characteristics of a Diamond-Like-Carbon-Coated LiV3O8 Cathode When Used in a Li-Metal Battery with a Li-Powder Anode

    NASA Astrophysics Data System (ADS)

    Lee, Jae Ha; Lee, Jun Kyu; Yoon, Woo Young

    2013-10-01

    A diamond-like-carbon (DLC)-coated LiV3O8 cathode was synthesized for use in a rechargeable 2032-coin-type cell with a Li-powder electrode (LPE) as the anode. The LPE anode was produced using the droplet emulsion technique and was compacted by pressing. The initial discharge capacity of the LPE/DLC-coated LiV3O8 (LVO) cell was 238 mAh g-1 at a C-rate of 0.5, while that of a LPE/bare-LVO cell was 236 mAh g-1. After 50 cycles, the capacity retention rate of the DLC-coated-electrode-containing cell (92%) was higher than that of the uncoated-electrode-containing cell (77%). Results of electron probe microanalysis and Raman spectroscopy confirmed that the electrode had been coated with DLC. Scanning electron microscopy and energy dispersive X-ray spectroscopy were used to determine the sequence of formation of byproducts on the electrode after charging/discharging and to determine its surface composition. The voltage profile and impedance of the DLC-coated-electrode-containing cell were analyzed to determine the electrochemical characteristics of the DLC-coated cathode.

  5. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    NASA Astrophysics Data System (ADS)

    Ozeki, K.; Hirakuri, K. K.; Masuzawa, T.

    2011-04-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO2) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO2 films and DLC/TiO2/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO2-coated and the DLC/TiO2/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO2/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO2/DLC film had a photocatalytic effect even though the TiO2 film was covered with the DLC film.

  6. Comparison of diamond-like carbon-coated nitinol stents with or without polyethylene glycol grafting and uncoated nitinol stents in a canine iliac artery model

    PubMed Central

    Kim, J H; Shin, J H; Shin, D H; Moon, M-W; Park, K; Kim, T-H; Shin, K M; Won, Y H; Han, D K; Lee, K-R

    2011-01-01

    Objective Neointimal hyperplasia is a major complication of endovascular stent placement with consequent in-stent restenosis or occlusion. Improvements in the biocompatibility of stent designs could reduce stent-associated thrombosis and in-stent restenosis. We hypothesised that the use of a diamond-like carbon (DLC)-coated nitinol stent or a polyethylene glycol (PEG)-DLC-coated nitinol stent could reduce the formation of neointimal hyperplasia, thereby improving stent patency with improved biocompatibility. Methods A total of 24 stents were implanted, under general anaesthesia, into the iliac arteries of six dogs (four stents in each dog) using the carotid artery approach. The experimental study dogs were divided into three groups: the uncoated nitinol stent group (n = 8), the DLC-nitinol stent group (n = 8) and the PEG-DLC-nitinol stent group (n = 8). Results The mean percentage of neointimal hyperplasia was significantly less in the DLC-nitinol stent group (26.7±7.6%) than in the nitinol stent group (40.0±20.3%) (p = 0.021). However, the mean percentage of neointimal hyperplasia was significantly greater in the PEG-DLC-nitinol stent group (58.7±24.7%) than in the nitinol stent group (40.0±20.3%) (p = 0.01). Conclusion Our findings indicate that DLC-coated nitinol stents might induce less neointimal hyperplasia than conventional nitinol stents following implantation in a canine iliac artery model; however, the DLC-coated nitinol stent surface when reformed with PEG induces more neointimal hyperplasia than either a conventional or DLC-coated nitinol stent. PMID:21325363

  7. Reduction in static friction by deposition of a homogeneous diamond-like carbon (DLC) coating on orthodontic brackets.

    PubMed

    Akaike, Shun; Hayakawa, Tohru; Kobayashi, Daishiro; Aono, Yuko; Hirata, Atsushi; Hiratsuka, Masanori; Nakamura, Yoshiki

    2015-01-01

    In orthodontics, a reduction in static friction between the brackets and wire is important to enable easy tooth movement. The aim of this study was to examine the effects of a homogeneous diamond-like carbon (DLC) coating on the whole surfaces of slots in stainless steel orthodontic brackets on reducing the static friction between the brackets and the wire. The DLC coating was characterized using Raman spectroscopy, surface roughness and contact angle measurements, and SEM observations. Rectangular stainless steel and titanium-molybdenum alloy wires with two different sizes were employed, and the static friction between the brackets and wire was measured under dry and wet conditions. The DLC coating had a thickness of approximately 1.0 μm and an amorphous structure was identified. The results indicated that the DLC coating always led to a reduction in static friction.

  8. The effect of fluoroalkylsilanes on tribological properties and wettability of Si-DLC coatings

    NASA Astrophysics Data System (ADS)

    Bystrzycka, E.; Prowizor, M.; Piwoński, I.; Kisielewska, A.; Batory, D.; Jędrzejczak, A.; Dudek, M.; Kozłowski, W.; Cichomski, M.

    2018-03-01

    Silicon-containing diamond-like carbon (Si-DLC) coatings were prepared on silicon wafers by Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) method using methane/hexamethyl-disiloxane atmosphere. Herein, we report that Si-DLC coatings can be effectively modified by fluoroalkylsilanes which results in significant enhancement of frictional and wettability properties. Two types of fluoroalkylsilanes differing in the length of fluorocarbon chains were deposited on Si-DLC coatings with the use of Vapor Phase Deposition (VPD) method. The chemical composition of Si-DLC coatings and effectiveness of modification with fluoroalkylsilanes were confirmed by Fourier Transform Infrared Spectroscopy (FTIR) and x-ray Photoelectron Spectroscopy (XPS). Frictional properties in microscale were investigated with the use of ball-on-flat apparatus operating at millinewton (mN) load range. It was found that the presence of silicon enhances the chemisorption of fluoroalkylsilanes on Si-DLC coatings by creating adsorption anchoring centers. In consequence, a decrease of adhesion and an increase of hydrophobicity along with a decrease of coefficient of friction were observed. Experimental results indicate, that tribological properties are correlated with dispersive and acid-base components of the surface free energy as well as with the work of adhesion.

  9. Atomic force microscopy and tribology study of the adsorption of alcohols on diamond-like carbon coatings and steel

    NASA Astrophysics Data System (ADS)

    Kalin, M.; Simič, R.

    2013-04-01

    Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2-20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.

  10. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  11. Diamondlike carbon applications in infrared optics and microelectronics

    NASA Technical Reports Server (NTRS)

    Woollam, John A.; De, Bhola N.; Orzeszko, S.; Ianno, N. J.; Snyder, Paul G.; Alterovitz, Samuel A.; Pouch, John J.; Wu, R. L. C.; Ingram, D. C.

    1990-01-01

    The use of diamondlike carbon (DLC) as a protective coating in harsh environments is addressed. There are three topics presented. The first is a description of the preparation of DLC on seven different infrared transmitting materials, and the possibility of using DLC as an antireflecting coating at commonly used wavelengths. DLC doesn't bond easily to all materials, and special techniques for bonding are presented. The second topic deals with how well DLC will protect a substrate from moisture penetration. This is an important aspect in numerous uses of DLC, including both infrared optics and integrated circuits. The third topic is the effect of particulate impact on film performance and integrity.

  12. Dual ion beam processed diamondlike films for industrial applications

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Kussmaul, M. T.; Banks, B. A.; Sovey, J. S.

    1991-01-01

    Single and dual beam ion source systems are used to generate amorphous diamondlike carbon (DLC) films, which were evaluated for a variety of applications including protective coatings on transmitting materials, power electronics as insulated gates and corrosion resistant barriers. A list of the desirable properties of DLC films along with potential applications are presented.

  13. Tribological behavior of DLC films deposited on nitrided and post-oxidized stainless steel by PACVD

    NASA Astrophysics Data System (ADS)

    Dalibon, E. L.; Brühl, S. P.; Heim, D.

    2012-06-01

    In this work, the tribological behavior and adhesion of DLC films deposited by PACVD on AISI 420 martensitic stainless steel was evaluated. Prior to DLC deposition, the samples were nitrided and some of them also post-oxidized. The films were characterized by Raman and EDS, microhardness was assessed with Vickers indenter and the microstructure was analyzed by OM, SEM, FIB. Fretting and linear reciprocating sliding tests were performed using a WC ball as counterpart, and the adhesion of the DLC films was characterized using the Scratch Test and Rockwell C indentation. Corrosion behavior was evaluated by the Salt Spray Fog Test. The film showed a hardness of only about 1500 HV but it was about 15-20 microns thick. The results of the mechanical tests showed that pre-treatments (nitriding and oxidizing) of the substrate did not have a big influence in the tribological behavior of the coating. However, the nitriding treatment before the DLC coating process reduced the interface stress and enhanced the adhesion. Additionally, all the films evidenced good corrosion resistance in a saline environment, better than the AISI 420 itself.

  14. DLC coating on a micro-trench by bipolar PBII&D and analysis of plasma behaviour

    NASA Astrophysics Data System (ADS)

    Park, Wonsoon; Tokioka, Hideyuki; Tanaka, Masaaki; Choi, Junho

    2014-08-01

    Bipolar plasma-based ion implantation and deposition (bipolar PBII&D) has been recognized as a promising technique for coating deposition on complex three-dimensional targets. As the target is fully immersed in the plasma throughout the process, the plasma sheath can be formed with quite high conformability around the target. In this study, diamond-like carbon (DLC) coating was deposited on a micro-trench pattern by using bipolar PBII&D, and the structure of the DLC film across the overall surface region of the trench was examined by making use of their corresponding Raman spectra. The two types of negative high voltage pulses were applied to the targets for comparison: -0.5 and -15 kV. The scale of the micro-trench used in the study is much smaller than that of the plasma sheath produced under these negative voltages (about 1 cm and 14 cm for -0.5 kV and -15 kV, respectively). The plasma behaviour (i.e., ion flux, impact angle and energy) in the surrounding of the micro-trench was calculated with the particle-in-cell Monte Carlo collision method (PIC-MCCM). As a result, DLC film was successfully coated on the overall surface of the trench. When the applied negative voltage was -0.5 kV, the structure of DLC film coated on the sidewall of the trench became a more polymer-like carbon (PLC) than those of the top and bottom surfaces. This, as indicated by the simulation results, is because the ions, which strike the sidewall, tend to have less incident energy. Whereas in the case of -15 kV, the DLC film on the sidewall was a more graphite-like carbon (GLC) film, despite its smaller incident ion energy in comparison to those of the top and bottom surfaces. This phenomenon is attributed to the sputtering effect from the bottom surface of the trench, as evidenced by the plasma simulation.

  15. Scratch-Resistant Lenses

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Lewis Research Center developed a process for achieving diamond- hard coatings for aerospace systems. The technique involves coating the material with a film of diamond-like carbon (DLC) using direct ion deposition. An ion generator creates a stream of ions from a hydrocarbon gas source; the carbon ions impinge directly on the target substrate and 'grow' into a thin DLC film. In 1988, Air Products and Chemicals, Inc. received a license to the NASA patent. Diamonex, an Air Products spinoff company, further developed the NASA process to create the DiamondHard technology used on the Bausch & Lomb Ray- Ban Survivors sunglasses. The sunglasses are scratch-resistant and shed water more easily, thus reducing spotting.

  16. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    NASA Astrophysics Data System (ADS)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  17. In vitro and in vivo biocompatibility investigation of diamond-like carbon coated nickel-titanium shape memory alloy.

    PubMed

    Li, Qiang; Xia, Ya-Yi; Tang, Ji-Cun; Wang, Ri-Ying; Bei, Chao-Yong; Zeng, Yanjum

    2011-06-01

    To investigate the biocompatibility of diamond-like carbon (DLC) coated nickel-titanium shape memory alloy (NiTi SMA) in vitro and in vivo. The in vitro study was carried out by co-culturing the DLC coated and uncoated NiTi SMA with bone marrow mesenchymal stem cells (MSCs), respectively, and the in vivo study was carried out by fixing the rabbits' femoral fracture model by DLC coated and uncoated NiTi SMA embracing fixator for 4 weeks, respectively. The concentration of the cells, alkaline phosphatase (AKP), and nickel ion in culture media were detected, respectively, at the first to fifth day after co-culturing. The inorganic substance, osteocalcin, alkaline phosphatase (ALP), and tumor necrosis factor (TNF) in callus surrounding fracture and the Ni(+) in muscles surrounding fracture site, liver and brain were detected 4 weeks postoperatively. The in vitro study showed that the proliferation of MSCs and the expression of AKP in the DLC-coated group were higher than the uncoated group (P < 0.05), while the uncoated group released more Ni(2+) into the culture media than that in the coated group (P < 0.05). The in vivo study revealed that the inorganic substance and AKP, osteocalcin, and TNF expression were significantly higher in the DLC coated NiTi SMA embracing fixator than that in the uncoated group (P < 0.05). Ni(2+) in liver, brain, and muscles surrounding the fracture were significantly lower in the DLC coated groups than that in the uncoated group (P < 0.05). Nickel-titanium shape memory alloy coated by diamond-like carbon appears to have better biocompatibility in vitro and in vivo compared to the uncoated one.

  18. Carbon film coating of abutment surfaces: effect on the abutment screw removal torque.

    PubMed

    Corazza, Pedro Henrique; de Moura Silva, Alecsandro; Cavalcanti Queiroz, José Renato; Salazar Marocho, Susana María; Bottino, Marco Antonia; Massi, Marcos; de Assunção e Souza, Rodrigo Othávio

    2014-08-01

    To evaluate the effect of diamond-like carbon (DLC) coating of prefabricated implant abutment on screw removal torque (RT) before and after mechanical cycling (MC). Fifty-four abutments for external-hex implants were divided among 6 groups (n = 9): S, straight abutment (control); SC, straight coated abutment; SCy, straight abutment and MC; SCCy, straight coated abutment and MC; ACy, angled abutment and MC; and ACCy, angled coated abutment and MC. The abutments were attached to the implants by a titanium screw. RT values were measured and registered. Data (in Newton centimeter) were analyzed with analysis of variance and Dunnet test (α = 0.05). RT values were significantly affected by MC (P = 0.001) and the interaction between DLC coating and MC (P = 0.038). SCy and ACy showed the lowest RT values, statistically different from the control. The abutment coated groups had no statistical difference compared with the control. Scanning electron microscopy analysis showed DLC film with a thickness of 3 μm uniformly coating the hexagonal abutment. DLC film deposited on the abutment can be used as an alternative procedure to reduce abutment screw loosening.

  19. Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth.

    PubMed

    Santos, Thaisa B; Vieira, Angela A; Paula, Luciana O; Santos, Everton D; Radi, Polyana A; Khouri, Sônia; Maciel, Homero S; Pessoa, Rodrigo S; Vieira, Lucia

    2017-04-01

    Camphor was incorporated in diamond-like carbon (DLC) films to prevent the Candida albicans yeasts fouling on polyurethane substrates, which is a material commonly used for catheter manufacturing. The camphor:DLC and DLC film for this investigation was produced by plasma enhanced chemical vapor deposition (PECVD), using an apparatus based on the flash evaporation of organic liquid (hexane) containing diluted camphor for camphor:DLC and hexane/methane, mixture for DLC films. The film was deposited at a low temperature of less than 25°C. We obtained very adherent camphor:DLC and DLC films that accompanied the substrate flexibility without delamination. The adherence of camphor:DLC and DLC films on polyurethane segments were evaluated by scratching test and bending polyurethane segments at 180°. The polyurethane samples, with and without camphor:DLC and DLC films were characterized by Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical profilometry. Candida albicans biofilm formation on polyurethane, with and without camphor:DLC and DLC, was assessed. The camphor:DLC and DLC films reduced the biofilm growth by 99.0% and 91.0% of Candida albicans, respectively, compared to bare polyurethane. These results open the doors to studies of functionalized DLC coatings with biofilm inhibition properties used in the production of catheters or other biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Nd:YOV4 laser surface texturing on DLC coating: Effect on morphology, adhesion, and dry wear behavior

    NASA Astrophysics Data System (ADS)

    Surfaro, Maria; Giorleo, Luca; Montesano, Lorenzo; Allegri, Gabriele; Ceretti, Elisabetta; La Vecchia, Giovina Marina

    2018-05-01

    The surface of structural components is usually subjected to higher stresses, greater wear or fatigue damage, and more direct environmental exposure than the inner parts. For this reason, the interest to improve superficial properties of items is constantly increasing in different fields as automotive, electronic, biomedical, etc. Different approaches can be used to achieve this goal: case hardening by means of superficial heat treatments like carburizing or nitriding, deposition of thin or thick coatings, roughness modification, etc. Between the available technologies to modify components surface, Laser Surface Texturing (LST) has already been recognized in the last decade as a process, which improves the tribological properties of various parts. Based on these considerations the aim of the present research work was to realize a controlled laser texture on a Diamond-like Carbon (DLC) thin coating (about 3 µm thick) without damaging both the coating itself and the substrate. In particular, the effect of laser process parameters as marking speed and loop cycle were investigated in terms of texture features modifications. Both qualitative and quantitative analyses of the texture were executed by using a scanning electron microscope and a laser probe system to select the proper laser parameters. Moreover, the effect of the selected texture on the DLC nanohardness, adhesion and wear behavior was pointed out.

  1. Electronic Power System Application of Diamond-Like Carbon Films

    NASA Technical Reports Server (NTRS)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  2. Diamondlike carbon as a moisture barrier and antireflecting coating on optical materials

    NASA Technical Reports Server (NTRS)

    Woollam, John A.; De, Bhola N.; Chen, L. Y.; Pouch, John J.; Alterovitz, Samuel A.

    1990-01-01

    Diamondlike carbon (DLC) is amorphous, hard, semitransparent, and is under consideration for use as a coating material for infrared optics. DLC is also designated as a-C:H to indicate its amorphous nature as well as to indicate the presence of large (20 to 55 percent) amounts of hydrogen in the film. Two important questions arise with respect to use of DLC in infrared optics. Will the lack of grain boundaries help to keep moisture from penetrating the film. Secondly, application as an antireflection coating places restrictions on the allowed values of the index of refraction of the film relative to the particular substrate material being used. Will DLC have the correct index range. These two questions are addressed in this paper.

  3. Wear and Tribological Properties of Silicon-Containing Diamond-Like Carbon (Si-DLC) Coatings Synthesized with Nitrogen, Argon Plus Nitrogen, and Argon Ion Beams

    DTIC Science & Technology

    1998-06-01

    of the (Ar + N)/Si-DLC and Ar/Si-DLC coatings. Meletis, Erdemir, and Fenske [10, 11] have attributed the smaller friction coefficient of their...vol. 15, p. 227,1986. 9. Rao, P., and E. H. Lee. /. of Mater. Sei., vol. 10, p. 2661,1996. 10. Meletis, E. I., A. Erdemir, and G. R. Fenske . Surface

  4. Diamond-like carbon coatings with zirconium-containing interlayers for orthopedic implants.

    PubMed

    Choudhury, Dipankar; Lackner, Juergen; Fleming, Robert A; Goss, Josh; Chen, Jingyi; Zou, Min

    2017-04-01

    Six types of diamond-like carbon (DLC) coatings with zirconium (Zr)-containing interlayers on titanium alloy (Ti-6Al-4V) were investigated for improving the biotribological performance of orthopedic implants. The coatings consist of three layers: above the substrate a layer stack of 32 alternating Zr and ZrN sublayers (Zr:ZrN), followed by a layer comprised of Zr and DLC (Zr:DLC), and finally a N-doped DLC layer. The Zr:ZrN layer is designed for increasing load carrying capacity and corrosion resistance; the Zr:DLC layer is for gradual transition of stress, thus enhancing layer adhesion; and the N-doped DLC layer is for decreasing friction, squeaking noises and wear. Biotribological experiments were performed in simulated body fluid employing a ball-on-disc contact with a Si 3 N 4 ball and a rotational oscillating motion to mimic hip motion in terms of gait angle, dynamic contact pressures, speed and body temperature. The results showed that the Zr:DLC layer has a substantial influence on eliminating delamination of the DLC from the substrates. The DLC/Si 3 N 4 pairs significantly reduced friction coefficient, squeaking noise and wear of both the Si 3 N 4 balls and the discs compared to those of the Ti-6Al-4V/Si 3 N 4 pair after testing for a duration that is equivalent to one year of hip motion in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Finite Element Analysis of Multilayered and Functionally Gradient Tribological Coatings With Measured Material Properties (Preprint)

    DTIC Science & Technology

    2006-11-01

    gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were assumed as a series of perfectly bonded layers with...resistance and low friction. Ti1-xCx (0≤ x ≤1) gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were...indenter tip was used for the FEA model. Each coating sample consists of 1 μm thick coating and 440C stainless steel substrate. The area function for

  6. Diamondlike carbon protective coatings for optical windows

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.

    1989-01-01

    Diamondlike carbon (DLC) films were deposited on infrared transmitting optical windows and were evaluated as protective coatings for these windows exposed to particle and rain erosion. The DLC films were deposited on zinc selenide (ZnSe) and zinc sulfide (ZnS) by three different ion beam methods: (1) sputter deposition from a carbon target using an 8-cm argon ion source; (2) direct deposition by a 30-cm hollow cathode ion source with hydrocarbon gas in argon; and (3) dual beam direct deposition by the 30-cm hollow cathode ion source and an 8-cm argon ion source. In an attempt to improve the adherence of the DLC films on ZnSc and ZnS, ion beam cleaning, ion implantation with helium and neon ions, or sputter deposition of a thin, ion beam intermediate coating was employed prior to deposition of the DLC film. The protection that the DLC films afforded the windows from particle and rain erosion was evaluated, along with the hydrogen content, adherence, intrinsic stress, and infrared transmittance of the films. Because of the elevated stress levels in the ion beam sputtered DLC films and in those ion beam deposited with butane, films thicker than 0.1 micron and with good adherence on ZnS and ZnSe could not be generated. An intermediate coating of germanium successfully allowed the DLC films to remain adherent to the optical windows and caused only negligible reduction in the specular transmittance of the ZnS and ZnSe at 10 microns.

  7. Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments

    NASA Astrophysics Data System (ADS)

    Simič, R.; Kalin, M.

    2013-10-01

    Fatty acids are known to affect the friction and wear of steel contacts via adsorption onto the surface, which is one of the fundamental boundary-lubrication mechanisms. The understanding of the lubrication mechanisms of polar molecules on diamond-like carbon (DLC) is, however, still insufficient. In this work we aimed to find out whether such molecules have a similar effect on DLC coatings as they do on steel. The adsorption of hexadecanoic acid in various concentrations (2-20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage of the adsorbed fatty-acid molecules was analysed. In addition, tribological tests were performed to correlate the wear and friction behaviours in tribological contacts with the adsorption of molecules on the surface under static conditions. A good correlation between the AFM results and the tribological behaviour was observed. We confirmed that fatty acids can adsorb onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for DLC coatings. The adsorption of the fatty acid onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction. Tentative adsorption mechanisms that include an environmental species effect, a temperature effect and a tribochemical effect are proposed for DLC and steel surfaces based on our results and few potential mechanisms found in literature.

  8. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Mamat, Azuddin Bin; Masjuki, H. H.; Pingguan-Murphy, Belinda

    2015-06-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy.

  9. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    PubMed Central

    Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Bin Mamat, Azuddin; Masjuki, H H; Pingguan-Murphy, Belinda

    2015-01-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy. PMID:27877803

  10. Tribological study of novel metal-doped carbon-based coatings with enhanced thermal stability

    NASA Astrophysics Data System (ADS)

    Mandal, Paranjayee

    Low friction and high temperature wear resistant PVD coatings are in high demand for use on engine components, which operate in extreme environment. Diamond-like-carbon (DLC) coatings are extensively used for this purpose due to their excellent tribological properties. However, DLC degrades at high temperature and pressure conditions leading to significant increase in friction and wear rate even in the presence of lubricant. To withstand high working temperature and simultaneously maintain improved tribological properties in lubricated condition at ambient and at high temperature, both the transitional metals Mo and W are simultaneously introduced in a carbon-based coating (Mo-W-C) for the first time utilising the benefits of smart material combination and High Power Impulse Magnetron Sputtering (HIPIMS).This research includes development of Mo-W-C coating and investigation of thermal stability and tribological properties at ambient and high temperatures. The as-deposited Mo-W-C coating contains nanocrystalline almost X-ray amorphous structure and show dense microstructure, good adhesion with substrate (Lc -80 N) and high hardness (-17 GPa). During boundary lubricated sliding (commercially available engine oil without friction modifier used as lubricant) at ambient temperature, Mo-W-C coating outperforms commercially available state-of-the-art DLC coatings by providing significantly low friction (u- 0.03 - 0.05) and excellent wear resistance (no measurable wear). When lubricated sliding tests are carried out at 200°C, Mo-W-C coating provides low friction similar to ambient temperature, whereas degradation of DLC coating properties fails to maintain low friction coefficient.A range of surface analyses techniques reveal "in-situ" formation of solid lubricants (WS2 and M0S2) at the tribo-contacts due to tribochemically reactive wear mechanism at ambient and high temperature. Mo-W-C coating reacts with EP additives present in the engine oil during sliding to form WS2 and M0S2. This mechanism is believed to be the key-factor for low friction properties of Mo-W-C coating and presence of graphitic carbon particles further benefits the friction behaviour. It is observed that low friction is achieved mostly due to formation of WS2 at ambient temperature, whereas formation of both WS2 and M0S2 significantly decreases the friction of Mo-W-C coating at high temperature. This further indicates importance of combined Mo and W doping over single-metal doping into carbon-based coatings.Isothermal oxidation tests indicate that Mo-W-C coating preserves it's as-deposited graphitic nature up to 500°C, whereas local delamination of DLC coating leads to substrate exposure and loss of its diamond-like structure at the same temperature. Further, thermo-gravimetric tests confirm excellent thermal stability of Mo-W-C coating compared to DLC. Mo-W-C coating resists oxidation up to 800°C and no coating delamination is observed due to retained coating integrity and its strong adhesion with substrate. On the other hand, state-of-the-art DLC coating starts to delaminate beyond 380°C.The test results confirm that Mo-W-C coating sustains high working temperature and simultaneously maintains improved tribological properties during boundary lubricated condition at ambient and high temperature. Thus Mo-W-C coating is a suitable candidate for low friction and high temperature wear resistant applications compared to commercially available state-of-the-art DLC coatings.

  11. Diamond and diamondlike carbon as wear-resistant, self-lubricating coatings for silicon nitride

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1995-01-01

    Recent work on the friction and wear properties of as-deposited fine-grain diamond, polished coarse-grain diamond, and as-deposited diamondlike carbon (DLC) films in humid air at a relative humidity of approximately 40 percent and in dry nitrogen is reviewed. Two types of chemical vapor deposition (CVD) processes are used to deposit diamond films on silicon nitride (Si3N4) substrates: microwave-plasma and hot-filament. Ion beams are used to deposit DLC films of Si3N4 substrates. The diamond and DLC films in sliding contact with hemispherical bare Si3N4 pins have low steady-state coefficients of friction (less than 0.2) and low wear rates (less than 10(exp -7) mm(exp 2)/N-m), and thus, can be used effectively as wear-resistant, self-lubricating coatings for Si3N4 in the aforementioned two environments.

  12. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility

    PubMed Central

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Abstract Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices. PMID:28179961

  13. Diamond-Coated Carbon Nanotubes for Efficient Field Emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Stevan; Withers, James C.

    2005-01-01

    Field-emission cathodes containing arrays of carbon nanotubes coated with diamond or diamondlike carbon (DLC) are undergoing development. Multiwalled carbon nanotubes have been shown to perform well as electron field emitters. The idea underlying the present development is that by coating carbon nanotubes with wideband- gap materials like diamond or DLC, one could reduce effective work functions, thereby reducing threshold electric-field levels for field emission of electrons and, hence, improving cathode performance. To demonstrate feasibility, experimental cathodes were fabricated by (1) covering metal bases with carbon nanotubes bound to the bases by an electrically conductive binder and (2) coating the nanotubes, variously, with diamond or DLC by plasma-assisted chemical vapor deposition. In tests, the threshold electric-field levels for emission of electrons were reduced by as much as 40 percent, relative to those of uncoated- nanotube cathodes. Coating with diamond or DLC could also make field emission-cathodes operate more stably by helping to prevent evaporation of carbon from nanotubes in the event of overheating of the cathodes. Cathodes of this type are expected to be useful principally as electron sources for cathode-ray tubes and flat-panel displays.

  14. Diamond Coatings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advances in materials technology have demonstrated that it is possible to get the advantages of diamond in a number of applications without the cost penalty, by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC). Diamond films offer tremendous technical and economic potential in such advances as chemically inert protective coatings; machine tools and parts capable of resisting wear 10 times longer; ball bearings and metal cutting tools; a broad variety of optical instruments and systems; and consumer products. Among the American companies engaged in DLC commercialization is Diamonex, Inc., a diamond coating spinoff of Air Products and Chemicals, Inc. Along with its own proprietary technology for both polycrystalline diamond and DLC coatings, Diamonex is using, under an exclusive license, NASA technology for depositing DLC on a substrate. Diamonex is developing, and offering commercially, under the trade name Diamond Aegis, a line of polycrystalline diamond-coated products that can be custom tailored for optical, electronic and engineering applications. Diamonex's initial focus is on optical products and the first commercial product is expected in late 1990. Other target applications include electronic heat sink substrates, x-ray lithography masks, metal cutting tools and bearings.

  15. Improved wear resistance of functional diamond like carbon coated Ti-6Al-4V alloys in an edge loading conditions.

    PubMed

    Choudhury, Dipankar; Lackner, Jürgen M; Major, Lukasz; Morita, Takehiro; Sawae, Yoshinori; Bin Mamat, Azuddin; Stavness, Ian; Roy, Chanchal K; Krupka, Ivan

    2016-06-01

    This study investigates the durability of functional diamond-like carbon (DLC) coated titanium alloy (Ti-6Al-4V) under edge loading conditions for application in artificial hip joints. The multilayered (ML) functional DLC coatings consist of three key layers, each of these layers were designed for specific functions such as increasing fracture strength, adapting stress generation and enhancing wear resistance. A 'ball-on-disk' multi-directional wear tester was used in the durability test. Prior to the wear testing, surface hardness, modulus elasticity and Raman intensity were measured. The results revealed a significant wear reduction to the DLC coated Ti-6Al-4V disks compared to that of non-coated Ti-6Al-4V disks. Remarkably, the counterpart Silicon Nitride (Si3N4) balls also yielded lowered specific wear rate while rubbed against the coated disks. Hence, the pairing of a functional multilayered DLC and Si3N4 could be a potential candidate to orthopedics implants, which would perform a longer life-cycle against wear caused by edge loading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires.

    PubMed

    Kobayashi, Shinya; Ohgoe, Yasuharu; Ozeki, Kazuhide; Hirakuri, Kenji; Aoki, Hideki

    2007-12-01

    Nickel-titanium (NiTi) has been used for implants in orthodontics due to the unique properties such as shape memory effect and superelasticity. However, NiTi alloys are eroded in the oral cavity because they are immersed by saliva with enzymolysis. Their reactions lead corrosion and nickel release into the body. The higher concentrations of Ni release may generate harmful reactions. Ni release causes allergenic, toxic and carcinogenic reactions. It is well known that diamond-like carbon (DLC) films have excellent properties, such as extreme hardness, low friction coefficients, high wear resistance. In addition, DLC film has many other superior properties as a protective coating for biomedical applications such as biocompatibility and chemical inertness. Therefore, DLC film has received enormous attention as a biocompatible coating. In this study, DLC film coated NiTi orthodontic archwires to protect Ni release into the oral cavity. Each wire was immersed in physiological saline at the temperature 37 degrees C for 6 months. The release concentration of Ni ions was detected using microwave induced plasma mass spectrometry (MIP-MS) with the resolution of ppb level. The toxic effect of Ni release was studied the cell growth using squamous carcinoma cells. These cells were seeded in 24 well culture plates and materials were immersed in each well directly. The concentration of Ni ions in the solutions had been reduced one-sixth by DLC films when compared with non-coated wire. This study indicated that DLC films have the protective effect of the diffusion and the non-cytotoxicity in corrosive environment.

  17. Synthesis of Diamond-Like Carbon Films on Planar and Non-Planar Geometries by the Atmospheric Pressure Plasma Chemical Vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Noborisaka, Mayui; Hirako, Tomoaki; Shirakura, Akira; Watanabe, Toshiyuki; Morikawa, Masashi; Seki, Masaki; Suzuki, Tetsuya

    2012-09-01

    Diamond-like carbon (DLC) films were synthesized by the dielectric barrier discharge-based plasma deposition at atmospheric pressure and their hardness and gas barrier properties were measured. A decrease in size of grains and heating substrate temperature improved nano-hardness up to 3.3 GPa. The gas barrier properties of DLC-coated poly(ethylene terephthalate) (PET) sheets were obtained by 3-5 times of non-coated PET with approximately 0.5 µm in film thickness. The high-gas-barrier DLC films deposited on PET sheets are expected to wrap elevated bridge of the super express and prevent them from neutralization of concrete. We also deposited DLC films inside PET bottles by the microwave surface-wave plasma chemical vapor deposition (CVD) method at near-atmospheric pressure. Under atmospheric pressure, the films were coated uniformly inside the PET bottles, but did not show high gas barrier properties. In this paper, we summarize recent progress of DLC films synthesized at atmospheric pressure with the aimed of food packaging and concrete pillar.

  18. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Zou, Y. S.; Wu, Y. F.; Yang, H.; Cang, K.; Song, G. H.; Li, Z. X.; Zhou, K.

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  19. Wear of ultra-high molecular weight polyethylene against damaged and undamaged stainless steel and diamond-like carbon-coated counterfaces.

    PubMed

    Firkins, P; Hailey, J L; Fisher, J; Lettington, A H; Butter, R

    1998-10-01

    The wear of ultra-high molecular weight polyethylene (UHMWPE) in artificial joints and the resulting wear debris-induced osteolysis remains a major clinical concern in the orthopaedic sector. Third-body damage of metallic femoral heads is often cited as a cause of accelerated polyethylene wear, and the use of ceramic femoral heads in the hip is gaining increasing favour. In the knee prostheses and for smaller diameter femoral heads, the application of hard surface coatings, such as diamond-like carbon, is receiving considerable attention. However, to date, there has been little or no investigation of the tribology of these coatings in simulated biological environments. In this study, diamond-like carbon (DLC) has been compared to stainless steel in its undamaged form and following simulated third-body damage. The wear of UHMWPE was found to be similar when sliding against undamaged DLC and stainless steel counterfaces. DLC was found to be much more damage resistant than DLC. Under test conditions that simulate third-body damage to the femoral head, the wear of UHMWPE was seven times lower against DLC than against stainless steel (P < 0.05). The study shows DLC has considerable potential as a femoral bearing surface in artificial joints.

  20. Photochemically modified diamond-like carbon surfaces for neural interfaces.

    PubMed

    Hopper, A P; Dugan, J M; Gill, A A; Regan, E M; Haycock, J W; Kelly, S; May, P W; Claeyssens, F

    2016-01-01

    Diamond-like carbon (DLC) was modified using a UV functionalization method to introduce surface-bound amine and aldehyde groups. The functionalization process rendered the DLC more hydrophilic and significantly increased the viability of neurons seeded to the surface. The amine functionalized DLC promoted adhesion of neurons and fostered neurite outgrowth to a degree indistinguishable from positive control substrates (glass coated with poly-L-lysine). The aldehyde-functionalized surfaces performed comparably to the amine functionalized surfaces and both additionally supported the adhesion and growth of primary rat Schwann cells. DLC has many properties that are desirable in biomaterials. With the UV functionalization method demonstrated here it may be possible to harness these properties for the development of implantable devices to interface with the nervous system. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Effect of substrate bias voltage on tensile properties of single crystal silicon microstructure fully coated with plasma CVD diamond-like carbon film

    NASA Astrophysics Data System (ADS)

    Zhang, Wenlei; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2018-06-01

    Tensile strength and strength distribution in a microstructure of single crystal silicon (SCS) were improved significantly by coating the surface with a diamond-like carbon (DLC) film. To explore the influence of coating parameters and the mechanism of film fracture, SCS microstructure surfaces (120 × 4 × 5 μm3) were fully coated by plasma enhanced chemical vapor deposition (PECVD) of a DLC at five different bias voltages. After the depositions, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal desorption spectrometry (TDS), surface profilometry, atomic force microscope (AFM) measurement, and nanoindentation methods were used to study the chemical and mechanical properties of the deposited DLC films. Tensile test indicated that the average strength of coated samples was 13.2-29.6% higher than that of the SCS sample, and samples fabricated with a -400 V bias voltage were strongest. The fracture toughness of the DLC film was the dominant factor in the observed tensile strength. Deviations in strength were reduced with increasingly negative bias voltage. The effect of residual stress on the tensile properties is discussed in detail.

  2. Corrosion and Wear Behaviors of Cr-Doped Diamond-Like Carbon Coatings

    NASA Astrophysics Data System (ADS)

    Viswanathan, S.; Mohan, L.; Bera, Parthasarathi; Kumar, V. Praveen; Barshilia, Harish C.; Anandan, C.

    2017-08-01

    A combination of plasma-enhanced chemical vapor deposition and magnetron sputtering techniques has been employed to deposit chromium-doped diamond-like carbon (DLC) coatings on stainless steel, silicon and glass substrates. The concentrations of Cr in the coatings are varied by changing the parameters of the bipolar pulsed power supply and the argon/acetylene gas composition. The coatings have been studied for composition, morphology, surface nature, nanohardness, corrosion resistance and wear resistance properties. The changes in I D / I G ratio with Cr concentrations have been obtained from Raman spectroscopy studies. Ratio decreases with an increase in Cr concentration, and it has been found to increase at higher Cr concentration, indicating the disorder in the coating. Carbide is formed in Cr-doped DLC coatings as observed from XPS studies. There is a decrease in sp 3/ sp 2 ratios with an increase in Cr concentration, and it increases again at higher Cr concentration. Nanohardness studies show no clear dependence of hardness on Cr concentration. DLC coatings with lower Cr contents have demonstrated better corrosion resistance with better passive behavior in 3.5% NaCl solution, and corrosion potential is observed to move toward nobler (more positive) values. A low coefficient of friction (0.15) at different loads is observed from reciprocating wear studies. Lower wear volume is found at all loads on the Cr-doped DLC coatings. Wear mechanism changes from abrasive wear on the substrate to adhesive wear on the coating.

  3. Prospects of DLC coating as environment friendly surface treatment process.

    PubMed

    Kim, S W; Kim, S G

    2011-06-01

    After first commercialization in 90's, the applications of diamond-like carbon (DLC) have been significantly expanded to tool, automobile parts, machineries and moulds to enhance wear and friction properties. Although DLC has many advantages like high hardness, low friction electrical insulating and chemical stability and has the possible market, its application in the field is still very limited due to the gaps of understanding between end-user and developer of its advantage of costing. Recently, one of the most popular issues in the surface modification is providing the long lasting super-hydrophilic or -hydrophobic properties on the material surface for the outdoor usage. A lot of material loss is caused due to water corrosion which has to do with the flow and contacts of water like fuel cell separator and air conditioner parts. The consequence of development of functional surface based on the hydrophilic or hydrophobic design for the important parts would be really helpful for materials to be cleaner and more energy effective. Here, we first reviewed the DLC technology and then examined the kind of surface modification as well as its merits and disadvantage. We also looked at how we can improve super-hydrophilic and super hydrophobic for the DLC coating layer as well as current status of technology and arts of DLC. In the end, we would like to suggest it as one of the environmental friendly industrial technology. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  4. Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C:H) on silicon

    NASA Astrophysics Data System (ADS)

    Catena, Alberto; McJunkin, Thomas; Agnello, Simonpietro; Gelardi, Franco M.; Wehner, Stefan; Fischer, Christian B.

    2015-08-01

    Silicon (1 0 0) has been gradually covered by amorphous hydrogenated carbon (a-C:H) films via an industrial process. Two types of these diamond-like carbon (DLC) coatings, one more flexible (f-DLC) and one more robust (r-DLC), have been investigated. Both types have been grown by a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. Surface morphologies have been studied in detail by atomic force microscopy (AFM) and Raman spectroscopy has been used to investigate the DLC structure. Both types appeared to have very similar morphology and sp2 carbon arrangement. The average height and area for single grains have been analyzed for all depositions. A random distribution of grain heights was found for both types. The individual grain structures between the f- and r-type revealed differences: the shape for the f-DLC grains is steeper than for the r-DLC grains. By correlating the average grain heights to the average grain areas for all depositions a limited region is identified, suggesting a certain regularity during the DLC deposition mechanisms that confines both values. A growth of the sp2 carbon entities for high r-DLC depositions is revealed and connected to a structural rearrangement of carbon atom hybridizations and hydrogen content in the DLC structure.

  5. Research on Crack-Filling Heat Treatment and Hydrogen Permeation Test of Self-healing Tritium Permeation Barriers

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Wang, Yan; Zhang, Ying; Ouyang, Taoyuan; Zhou, Tong; Fang, Xuanwei; Suo, Jinping

    2018-04-01

    A TiC + mixture (TiC/Al2O3 (1:1 wt.%)) +Al2O3 self-healing triple layer coating (TLC) was designed and manufactured by our group, and the crack-filling heat treatment process had been roughly explored in the past. In this work, the accelerating test with a thick TiC + mixture (TiC/Al2O3 (1:1 wt.%)) double-layer coating (DLC) was carried out. The DLC coating warped when the heat treatment temperature was lower than 550 °C, which was rare in similar researches, and it crushed into fan-shaped pieces when the treatment temperature was higher than 650 °C. The two different spalling failures were explained by weight gain, porosity and stress analyses. The heating rate had a significant effect. The bonding strength and hydrogen permeation of the TLC samples were also tested. Remaining at 650 °C for 40 h was proved to be an optimal crack-filling heat treatment process, considering the hydrogen resistance.

  6. Impact of modified diamond-like carbon coatings on the spatial organization and disinfection of mixed-biofilms composed of Escherichia coli and Pantoea agglomerans industrial isolates.

    PubMed

    Gomes, L C; Deschamps, J; Briandet, R; Mergulhão, F J

    2018-07-20

    This work investigated the effects of diamond-like carbon (DLC) coatings on the architecture and biocide reactivity of dual-species biofilms mimicking food processing contaminants. Biofilms were grown using industrial isolates of Escherichia coli and Pantoea agglomerans on bare stainless steel (SST) and on two DLC surface coatings (a-C:H:Si:O designated by SICON® and a-C:H:Si designated by SICAN) in order to evaluate their antifouling activities. Quantification and spatial organization in single- and dual-species biofilms were examined by confocal laser scanning microscopy (CLSM) using a strain specific labelling procedure. Those assays revealed that the E. coli isolate exhibited a higher adhesion to the modified surfaces and a decreased susceptibility to disinfectant in presence of P. agglomerans than alone in axenic culture. While SICON® reduced the short-term growth of E. coli in axenic conditions, both DLC surfaces increased the E. coli colonization in presence of P. agglomerans. However, both modified surfaces triggered a significantly higher log reduction of E. coli cells within mixed-species biofilms, thus the use of SICON® and SICAN surfaces may be a good approach to facilitate the disinfection process in critical areas of food processing plants. This study presents a new illustration of the importance of interspecies interactions in surface-associated community functions, and of the need to evaluate the effectiveness of hygienic strategies with relevant multi-species consortia. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Beam Tests of Diamond-Like Carbon Coating for Mitigation of Electron Cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffrey; Backfish, Michael; Kato, Shigeki

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Our results evaluate the efficacy of a diamond-like carbon (DLC) coating for the mitigation of electron in the Fermilab Main Injector. The interior surface of the beampipe conditions in response to electron bombardment from the electron cloud and we track the change in electron cloud flux over time in the DLC coated beampipe and uncoated stainless steel beampipe. The electron flux is measured by retarding field analyzers placed in a field-free region of the Mainmore » Injector. We find the DLC coating reduces the electron cloud signal to roughly 2\\% of that measured in the uncoated stainless steel beampipe.« less

  8. Comparative study of the tribological behavior under hybrid lubrication of diamond-like carbon films with different adhesion interfaces

    NASA Astrophysics Data System (ADS)

    Costa, R. P. C.; Lima-Oliveira, D. A.; Marciano, F. R.; Lobo, A. O.; Corat, E. J.; Trava-Airoldi, V. J.

    2013-11-01

    This paper reports the influence of the adhesion interlayer between stainless steel and diamond-like carbon (DLC) films in two different contact conditions: in dry air and deionized water. The water was the liquid used to understand the mechanism and chemical reactions of the tribolayer formation under boundary lubrication. The effect of silicon and carbonitride adhesion interlayer was investigated on uncoated and coated DLC films. The results show that DLC/DLC pairs using carbonitride in air (30% RH) showed 60% less friction coefficient and wear less than three orders of magnitude than DLC/DLC pairs using silicon as interlayer. In deionized water, DLC/DLC pairs using carbonitride as interlayer showed 31% less friction coefficient when compared to DLC/DLC pairs with silicon. Raman related the chemical and structural changes in the DLC films during sliding in air and in the presence of water. Scratch tests showed a critical load of 14 N and 33 N in DLC films with silicon and carbonitride, respectively.

  9. Tribological evaluation and analysis of coating materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1992-01-01

    A physical characterization of coating materials by analytical techniques such as XPS, AES, ellipsometry, and nuclear reaction analysis can contribute to the understanding of adhesion and friction of the coatings and can partially predict the tribological properties of the coatings. This two-part paper describes the tribological properties and physical characteristics of (1) diamondlike carbon (DLC) films and (2) silicon nitride (SiN(x)) films. Emphasis is to relate plasma deposition conditions to the film chemistry and composition and to the adhesion and friction of the films. With the DLC films, the higher the plasma deposition power, the less the hydrogen concentration and the greater the film density and the hardness. The friction behavior of DLC films deposited at higher deposition powers (200 to 300 W) is similar to that of bulk diamond. Even in a vacuum, the DLC films effectively lubricate ceramic surfaces (Si3N4) at temperatures to 500 C. With SiN(x) films, the silicon to nitrogen ratios and the amount of amorphous silicon depend on deposition frequency. The presence of rich amorphous silicon in the high-frequency plasma-deposited SiN(x) films increases their adhesion and friction above 500 C in vacuum.

  10. Osteogenic differentiation on DLC-PDMS-h surface.

    PubMed

    Soininen, Antti; Kaivosoja, Emilia; Sillat, Tarvo; Virtanen, Sannakaisa; Konttinen, Yrjö T; Tiainen, Veli-Matti

    2014-10-01

    The hypothesis was that anti-fouling diamond-like carbon polydimethylsiloxane hybrid (DLC-PDMS-h) surface impairs early and late cellular adhesion and matrix-cell interactions. The effect of hybrid surface on cellular adhesion and cytoskeletal organization, important for osteogenesis of human mesenchymal stromal cells (hMSC), where therefore compared with plain DLC and titanium (Ti). hMSCs were induced to osteogenesis and followed over time using scanning electron microscopy (SEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS), immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), and hydroxyapatite (HA) staining. SEM at 7.5 hours showed that initial adherence and spreading of hMSC was poor on DLC-PDMS-h. At 5 days some hMSC were undergoing condensation and apoptotic fragmentation, whereas cells on DLC and Ti grew well. DAPI-actin-vinculin triple staining disclosed dwarfed cells with poorly organized actin cytoskeleton-focal complex/adhesion-growth substrate attachments on hybrid coating, whereas spread cells, organized microfilament bundles, and focal adhesions were seen on DLC and in particular on Ti. Accordingly, at day one ToF-SIMS mass peaks showed poor protein adhesion to DLC-PDMS-h compared with DLC and Ti. COL1A1, ALP, OP mRNA levels at days 0, 7, 14, 21, and/or 28 and lack of HA deposition at day 28 demonstrated delayed or failed osteogenesis on DLC-PDMS-h. Anti-fouling DLC-PDMS-h is a poor cell adhesion substrate during the early protein adsorption-dependent phase and extracellular matrix-dependent late phase. Accordingly, some hMSCs underwent anoikis-type apoptosis and failed to complete osteogenesis, due to few focal adhesions and poor cell-to-ECM contacts. DLC-PDMS-h seems to be a suitable coating for non-integrating implants/devices designed for temporary use. © 2014 Wiley Periodicals, Inc.

  11. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    NASA Astrophysics Data System (ADS)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  12. Effect of tetramethylsilane flow on the deposition and tribological behaviors of silicon doped diamond-like carbon rubbed against poly(oxymethylene)

    NASA Astrophysics Data System (ADS)

    Deng, Xingrui; Lim, Yankuang; Kousaka, Hiroyuki; Tokoroyama, Takayuki; Umehara, Noritsugu

    2014-11-01

    In this study, silicon doped diamond-like carbon (Si-DLC) was deposited on stainless steel (JIS SUS304) by using surface wave-excited plasma (SWP). The effects of tetramethylsilane (TMS) flow on the composition, topography, mechanical properties and tribological behavior were investigated. Pin-on-disc tribo-meter was used to investigate the tribological behavior of the Si-DLC coating rubbed against poly(oxymethylene) (POM). The results show that the deposition rate, roughness of Si-DLC increased and the hardness of Si-DLC decreased with the increase of TMS flow rate from 2 to 4 sccm; the roughness increase therein led to the increase of ploughing term of friction. The increase of adhesion term was also seen with the increase of TMS flow rate, being attributed to the decrease of hydrogen concentration in the coating. It was considered that more POM transferred onto the Si-DLC deposited at higher TMS flow rate due to larger heat generation by friction.

  13. Atomic oxygen effects on thin film space coatings studied by spectroscopic ellipsometry, atomic force microscopy, and laser light scattering

    NASA Technical Reports Server (NTRS)

    Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.

    1992-01-01

    The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.

  14. Effect of structure and deposition technology on tribological properties of DLC coatings alloyed with VIA group metals

    NASA Astrophysics Data System (ADS)

    Khrushchov, M.; Levin, I.; Marchenko, E.; Avdyukhina, V.; Petrzhik, M.

    2016-07-01

    The results of a comprehensive research on atomic structure, phase composition, micromechanical and tribological characteristics of alloyed DLC coatings have been presented. The coatings have been deposited by reactive magnetron sputtering in acetylene-nitrogen gas mixtures of different compositions (a-C:H:Cr), by plasma-assisted chemical vapor deposition in atmospheres of silicone-organic precursor gases (a-C:H:Mo:Si), and by nonreactive magnetron sputtering of a composite target (a-C:H:W).

  15. Mechanical properties, chemical analysis and evaluation of antimicrobial response of Si-DLC coatings fabricated on AISI 316 LVM substrate by a multi-target DC-RF magnetron sputtering method for potential biomedical applications

    NASA Astrophysics Data System (ADS)

    Bociaga, Dorota; Sobczyk-Guzenda, Anna; Szymanski, Witold; Jedrzejczak, Anna; Jastrzebska, Aleksandra; Olejnik, Anna; Jastrzebski, Krzysztof

    2017-09-01

    In this study silicon doped diamond-like carbon (Si-DLC) coatings were synthesized on two substrates: silicon and AISI 316LVM stainless steel using a multi-target DC-RF magnetron sputtering method. The Si content in the films ranged between 4 and 16 at.%, and was controlled by the electrical power applied in RF regime to Si cathode target. The character of the chemical bonds was revealed by FTIR analysis. With the addition of silicon the hydroxyl absorption (band in the range of 3200-3600 cm-1) increased what suggests more hydrophilic character of the coating. There were also observed significant changes in bonding of Si atoms. For low content of dopant, Si-O-Si bond system is predominant, while for the highest content of silicon there is an evidence of the shift to Si-C bonds in close proximity to methyl groups. The Raman spectroscopy revealed that the G peak position is shifted to a lower wavenumber and the ID/IG ratio decreased with increasing Si content, which indicates an increase in the C-sp3 content. Regardless of the coatings' composition, the improvement of hardness in comparison to pure substrate material (AISI 316 LVM) was observed. Although the reduction of the level of hardness from the level of 10.8 GPa for pure DLC to about 9.4 GPa for the silicon doped coatings was observed, the concomitant improvement of films adhesion with higher amount of Si was revealed. Although incorporation of the dopant to DLC coatings increases the number of E. coli cells which adhered to the examined surfaces, the microbial colonisation remains on the level of substrate material. The presented results prove the potential of Si-DLC coatings in biomedical applications from the point of view of their mechanical properties.

  16. CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1998-01-01

    When the main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) mm(exp 3)/N-m, respectively, carbon- and nitrogen-ion-implanted, fine-grain CVD diamond and DLC ion beam deposited on fine-grain CVD diamond met the requirements regardless of environment (vacuum, nitrogen, and air).

  17. Nanocomposite tribological coatings with "chameleon" surface adaptation

    NASA Astrophysics Data System (ADS)

    Voevodin, A. A.; Fitz, T. A.; Hu, J. J.; Zabinski, J. S.

    2002-07-01

    Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed "chameleon" because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its "skin" chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS2/DLC coatings against steel and Si3N4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 degC in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS2 for sliding in dry N2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 degC (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS2/DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design concept. copyright 2002 American Vacuum Society.

  18. CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Miyake, Shojiro; Wu, Richard L. C.

    1998-01-01

    The main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) cubic MM /(N*m), respectively. Carbon- and nitrogen-ion-implanted, fine-grain, chemical-vapor-deposited (CVD) diamond and diamondlike carbon (DLC) ion beam deposited on fine-grain CVD diamond met the criteria regardless of environment (vacuum, nitrogen, and air).

  19. Does the Use of Diamond-Like Carbon Coating and Organophosphate Lubricant Additive Together Cause Excessive Tribochemical Material Removal?

    DOE PAGES

    Zhou, Yan; Leonard, Donovan N.; Meyer, Harry M.; ...

    2015-08-22

    We observe unexpected wear increase on a steel surface that rubbed against diamond-like carbon (DLC) coatings only when lubricated by phosphate-based antiwear additives. Contrary to the literature hypothesis of a competition between zinc dialkyldithiophosphate produced tribofilms and DLC-induced carbon transfer, here a new wear mechanism based on carbon-catalyzed tribochemical interactions supported by surface characterization is proposed

  20. Cu incorporated amorphous diamond like carbon (DLC) composites: An efficient electron field emitter over a wide range of temperature

    NASA Astrophysics Data System (ADS)

    Ahmed, Sk Faruque; Alam, Md Shahbaz; Mukherjee, Nillohit

    2018-03-01

    The effect of temperature on the electron field emission properties of copper incorporated amorphous diamond like carbon (a-Cu:DLC) thin films have been reported. The a-Cu:DLC thin films have been deposited on indium tin oxide (ITO) coated glass and silicon substrate by the radio frequency sputtering process. The chemical composition of the films was investigated using X-ray photoelectron spectroscopy and the micro structure was established using high resolution transmission electron microscopy. The sp2 and sp3 bonding ratio in the a-Cu:DLC have been analyzed by the Fourier transformed infrared spectroscopy studies. The material showed excellent electron field emission properties; which was optimized by varying the copper atomic percentage and temperature of the films. It was found that the threshold field and effective emission barrier were reduced significantly by copper incorporation as well as temperature and a detailed explanation towards emission mechanism has been provided.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imazono, Takashi, E-mail: imazono.takashi@jaea.go.jp; Koike, Masato; Nagano, Tetsuya

    Efficiently detecting the B-K emission band around 6.76 nm from a trace concentration of boron in steel compounds has motivated a theoretical exploration of means of increasing the diffraction efficiency of a laminar grating with carbon overcoating. To experimentally evaluate this enhancement, a Ni grating was coated with a high-density carbon film, i.e., diamond-like carbon (DLC). The first order diffraction efficiencies of the Ni gratings coated with and without DLC were measured to be 25.8 % and 16.9 %, respectively, at a wavelength of 6.76 nm and an angle of incidence of 87.07°. The ratio of diffraction efficiency obtained experimentallymore » vs. that calculated by numerical simulation is 0.87 for the DLC-coated Ni grating. The diffraction efficiency of a Ni grating coated with a low-density carbon film, amorphous carbon (a-C), was also slightly improved to be 19.6 %. Furthermore, a distinct minimum of the zeroth order lights of the two carbon-coated Ni gratings were observed at around 6.76 nm, which is coincident with the maximum of the first order light.« less

  2. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakakibara, Y.; Yamamoto, K.; Chen, D.

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  3. Plasma-Based Surface Modification and Corrosion in High Temperature Environments

    DTIC Science & Technology

    2009-02-05

    supercritical water, molten salts, supercritical carbon dioxide (KAPL), and helium have been designed and built Room temperature corrosion tests for...coatings such as diamond-like carbon (DLC) and Si-DLC, performed at < 5kV) 4 Energetic ion mixing of thin nano-multilayers Enhancing coating-substrate...Nitrogen ion implantation of 17-7PH stainless steel (with Alison Gas Turbines ) Also a 11% decrease in erosion rate for the N+ implanted sample

  4. Factors influencing microinjection molding replication quality

    NASA Astrophysics Data System (ADS)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  5. Friction and wear behaviour of Mo-W doped carbon-based coating during boundary lubricated sliding

    NASA Astrophysics Data System (ADS)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-03-01

    A molybdenum and tungsten doped carbon-based coating (Mo-W-C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo-W-C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo-W-C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and 'in situ' formed metal sulphides (WS2 and MoS2, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  6. Influence of Diamondlike Carbon Coating of Screws on Axial Tightening Force and Stress Distribution on Overdenture Bar Frameworks with Different Fit Levels and Materials.

    PubMed

    dos Santos, Mateus Bertolini Fernandes; Bacchi, Atais; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço

    2015-01-01

    The aim of this study was to evaluate the axial tightening force applied by conventional and diamondlike carbon (DLC)-coated screws and to verify, through three-dimensional finite element analysis (FEA), the stress distribution caused by different framework materials and prosthetic screws in overdenture frameworks with different misfit levels. The axial tightening force applied by the screw was evaluated by means of a titanium matrix connected to a load cell. Conventional titanium or DLC-coated screws were tightened with a digital torque wrench, and the load values were recorded. The values were applied in an FEA to a bar-clip attachment system connected to two 4.0 × 11-mm external-hexagon titanium implants placed in an anterior edentulous arch. DLC-coated and conventional screws were modeled with their respective axial forces obtained on the experimental evaluation for three bar framework materials (titanium, nickel-chromium, and cobalt-chromium) and three levels of misfit (100, 150, and 200 μm). Von Mises stresses for prosthetic components and maximum principal stress and microstrains (maximum principal strains) for bone tissue were measured. The mean force applied by the conventional screw was 25.55 N (± 1.78); the prosthetic screw coated with a DLC layer applied a mean force of 31.44 N (± 2.11), a statistically significant difference. In the FEA, the DLC screw led to higher stresses on the framework; however, the prosthetic screw suffered lower stress. No influence of screw type was seen in the bone tissue. Titanium frameworks reduced the stress transmitted to the bone tissue and the bar framework but had no influence on the screws. Higher misfit values resulted in an increased stress/strain in bone tissue and bar framework, which was not the case for retention screws.

  7. The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S-P2S5 glass-ceramics

    NASA Astrophysics Data System (ADS)

    Visbal, Heidy; Aihara, Yuichi; Ito, Seitaro; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang

    2016-05-01

    There have been several reports on improvements of the performance of all solid-state battery using lithium metal oxide coatings on the cathode active material. However, the mechanism of the performance improvement remains unclear. To better understand the effect of the surface coating, we studied the impact of diamond-like carbon (DLC) coating on LiNi0.8Co0.15Al0.05O2 (NCA) by chemical vapor deposition (CVD). The DLC coated NCA showed good cycle ability and rate performance. This result is further supported by reduction of the interfacial resistance of the cathode and electrolyte observed in impedance spectroscopy. The DLC layer was analyzed by transmission electron microscopy electron energy loss spectroscopy (TEM-EELS). After 100 cycles the sample was analyzed by X-ray photo spectroscopy (XPS), and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). These analyses showed that the thickness of the coating layer was around 4 nm on average, acting to hinder the side reactions between the cathode particle and the solid electrolyte. The results of this study will provide useful insights for understanding the nature of the buffer layer for the cathode materials.

  8. Plasma enhanced chemical vapor deposition of wear resistant gradual a-Si1-x:Cx:H coatings on nickel-titanium for biomedical applications

    NASA Astrophysics Data System (ADS)

    Niermann, Benedikt; Böke, Marc; Schauer, Janine-Christina; Winter, Jörg

    2010-03-01

    Plasma enhanced chemical vapor deposition has been used to deposit thin films with gradual transitions from silicon to carbon on Cu, Ni, stainless steel, and NiTi. Thus show low stress, elasticity, and wear resistance with excellent adhesion on all metals under investigation. Already at low Si concentrations of 10 at. % the intrinsic stress is considerably reduced compared to pure diamondlike carbon (DLC) films. The deposition process is controlled by optical emission spectroscopy. This technique has been applied to monitor the growth precursors and to correlate them with the film composition. The compositions of the films were determined by Rutherford backscattering spectroscopy and XPS measurements. Due to the elastic properties of the gradual transition and the excellent biocompatibility of DLC, the described film systems present a useful coating for biomedical applications.

  9. Thin Carbon Layers on Nanostructured Silicon-Properties and Applications

    NASA Astrophysics Data System (ADS)

    Angelescu, Anca; Kleps, Irina; Miu, Mihaela; Simion, Monica; Bragaru, Adina; Petrescu, Stefana; Paduraru, Crina; Raducanu, Aurelia

    Thin carbon layers such as silicon carbide (SiC) and diamond like carbon (DLC) layers on silicon, or on nanostructured silicon substrats were obtained by different methods. This paper is a review of our results in the areas of carbon layer microfabrication technologies and their properties related to different microsystem apllications. So, silicon membranes using a-SiC or DLC layers as etching mask, as well as silicon carbide membranes using a combined porous silicon — DLC structure were fabricated for sensor applications. A detailed evaluation of the field emission (FE) properties of these films was done to demonstrate their capability to be used in field emission devices. Carbon thin layers on nanostructured silicon samples were also investigated with respect to the living cell adhesion on these structures. The experiments indicate that the cell attachment on the surface of carbon coatings can be controlled by deposition parameters during the technological process.

  10. Laser Subdivision of the Genesis Concentrator Target Sample 60000

    NASA Technical Reports Server (NTRS)

    Lauer, Howard V., Jr.; Burkett, P. J.; Rodriquez, M. C.; Nakamura-Messenger, K.; Clemett, S. J.; Gonzales, C. P.; Allton, J. H.; McNamara, K. M.; See, T. H.

    2013-01-01

    The Genesis Allocation Committee received a request for 1 square centimeter of the diamond-like-carbon (DLC) concentrator target for the analysis of solar wind nitrogen isotopes. The target consists of a single crystal float zone (FZ) silicon substrate having a thickness on the order of 550 micrometers with a 1.5-3.0 micrometer-thick coating of DLC on the exposed surface. The solar wind is implanted shallowly in the front side DLC. The original target was a circular quadrant with a radius of 3.1 cm; however, the piece did not survive intact when the spacecraft suffered an anomalous landing upon returning to Earth on September 8, 2004. An estimated 75% of the DLC target was recovered in at least 18 fragments. The largest fragment, Genesis sample 60000, has been designated for this allocation and is the first sample to be subdivided using our laser scribing system Laser subdivision has associated risks including thermal diffusion of the implant if heating occurs and unintended breakage during cleavage. A careful detailed study and considerable subdividing practice using non-flight FZ diamond on silicon, DOS, wafers has considerably reduced the risk of unplanned breakage during the cleaving process. In addition, backside scribing reduces the risk of possible thermal excursions affecting the implanted solar wind, implanted shallowly in the front side DLC.

  11. Intrinsic stress modulation in diamond like carbon films with incorporation of gold nanoparticles by PLA

    NASA Astrophysics Data System (ADS)

    Panda, Madhusmita; Krishnan, R.; Krishna, Nanda Gopala; Madapu, Kishore K.; Kamruddin, M.

    2018-04-01

    Intrinsic stress modulation in the diamond-like carbon (DLC) coatings with incorporation of gold nanoparticles was studied qualitatively from Raman shift. The films were deposited on Si (1 0 0) substrates by using Pulsed laser ablation (PLA) of pure pyrolytic graphite target and with a gold foil on it. Films compositional and chemical behavior was studied by X-ray photoelectron spectroscopy (XPS) and Visible Raman spectroscopy, respectively. The sp3 content obtained from XPS shows dramatic variation in DLC, DLC-Au(100), DLC-Au(200) and DLC-Au(300) as 39%, 41%, 47% and 66% with various gold contentsas 0%, 12%, 7.3% and 4.7%, respectively. The Raman spectra of DLC/Au films showed G-peak shift towards lower wavenumber indicating the reduction of intrinsic stress (internal compressive stress). The sp2, sp3 fraction in the films are also determined from FWHM (G-Peak).

  12. Prediction of the properties of PVD/CVD coatings with the use of FEM analysis

    NASA Astrophysics Data System (ADS)

    Śliwa, Agata; Mikuła, Jarosław; Gołombek, Klaudiusz; Tański, Tomasz; Kwaśny, Waldemar; Bonek, Mirosław; Brytan, Zbigniew

    2016-12-01

    The aim of this paper is to present the results of the prediction of the properties of PVD/CVD coatings with the use of finite element method (FEM) analysis. The possibility of employing the FEM in the evaluation of stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N, Ti/(Ti,Si)N/(Ti,Si)N, and Ti/DLC/DLC coatings by taking into account their deposition conditions on magnesium alloys has been discussed in the paper. The difference in internal stresses in the zone between the coating and the substrate is caused by, first of all, the difference between the mechanical and thermal properties of the substrate and the coating, and also by the structural changes that occur in these materials during the fabrication process, especially during the cooling process following PVD and CVD treatment. The experimental values of stresses were determined based on X-ray diffraction patterns that correspond to the modelled values, which in turn can be used to confirm the correctness of the accepted mathematical model for testing the problem. An FEM model was established for the purpose of building a computer simulation of the internal stresses in the coatings. The accuracy of the FEM model was verified by comparing the results of the computer simulation of the stresses with experimental results. A computer simulation of the stresses was carried out in the ANSYS environment using the FEM method. Structure observations, chemical composition measurements, and mechanical property characterisations of the investigated materials has been carried out to give a background for the discussion of the results that were recorded during the modelling process.

  13. Friction Reduction in Powertrain Materials: Role of Tribolayers

    NASA Astrophysics Data System (ADS)

    Banerji, Anindya

    This study aims at understanding the micromechanisms responsible for reduction in friction and wear in the engine cylinder bore/liner materials when tested under lubricated and unlubricated conditions. The tribolayers formed in-situ during sliding contact are unique to each tribosystem and a detailed study of these tribolayers will shed light on the friction reduction mechanisms in powertrain materials. Boundary lubricated tribological performance of grey cast iron (CI) tested against non-hydrogenated diamond-like carbon coating (NH-DLC) resulted in 21% lower coefficient of friction (COF) and an order of magnitude lower volumetric wear compared to CI and steel counterfaces. Dilution of the engine oil by ethanol containing E85 biofuel, consisting of 85% ethanol and 15% gasoline, was beneficial as COF and volumetric wear losses were further reduced. TEM/EELS studies of the NH-DLC counterface provided evidence for OH adsorption of the dangling carbon bonds at the coating surface leading to low friction. Advantage of E85/engine oil blend was also evident during boundary lubricated sliding of eutectic Al-12.6% Si alloy against AISI 52100 steel. The oil residue layer (ORL) formed during boundary lubricated sliding incorporated nanocrystalline regions of Al, Si, ZnS, AlPO4 and ZnO surrounded by amorphous carbon regions. Higher proportions of Zn, S, and P antiwear compounds formed in the ORL when tested using the E85/oil (1:1) blend compared to the unmixed engine oil as the hydroxyl groups in ethanol molecules facilitated ZDDP degradation. Mico-Raman spectroscopy indicated two types of tribolayers formed during unlubricated sliding of thermally sprayed low carbon steel 1010 coating deposited on linerless Al 380 cylinder bore: i) Fe2O3 layer transformed from FeO during dry sliding and ii) Fe2O3 layer with a top amorphous carbon transfer layer when run against H-DLC coated TCR with COF of 0.18. The NH- and H-DLC coatings, that provide low friction under room temperature conditions, fail at temperatures > 200 °C. It was shown that W containing DLC (W-DLC) coatings offered low and stable COF of 0.07 at 400 °C while a Ti incorporated multilayer MoS2 (Ti-MoS2) coating maintained COF between 0.11 at 25 °C to 0.13 at 350 °C. The low friction provided by these coatings was attributed to formation of high temperature lubricious oxides: tungsten trioxide (WO3) in case of W-DLC and MoO3 in case of MoS2, as revealed by Raman analyses of the tribolayers formed on counterface surfaces. Tribolayer formation during sliding friction of multuilayered graphene (MLG), a potential lubricant, depended on the material transfer and relative humidity (RH). Sliding friction tests performed on MLG in air (10- 45% RH) and under a dry N2 atmosphere showed that progressively lower friction values were observed when the RH was increased, with maximum COF of 0.52 in dry N2 and lowest COF of about 0.10 at 45% RH. Microstructural studies including cross-sectional FIB/HR-TEM determined that sliding induced defects which comprised of edge fracture, fragmented/bent graphene stacks compared to pristine graphene and disordered regions between them. In summary, this work shows that delineating the micromechanisms responsible for reduction in friction and wear is critical for development of appropriate materials and coatings for powertrain components.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; Leonard, Donovan N.; Meyer, Harry M.

    We observe unexpected wear increase on a steel surface that rubbed against diamond-like carbon (DLC) coatings only when lubricated by phosphate-based antiwear additives. Contrary to the literature hypothesis of a competition between zinc dialkyldithiophosphate produced tribofilms and DLC-induced carbon transfer, here a new wear mechanism based on carbon-catalyzed tribochemical interactions supported by surface characterization is proposed

  15. Antibacterial activity of DLC films containing TiO2 nanoparticles.

    PubMed

    Marciano, F R; Lima-Oliveira, D A; Da-Silva, N S; Diniz, A V; Corat, E J; Trava-Airoldi, V J

    2009-12-01

    Diamond-like carbon (DLC) films have been the focus of extensive research in recent years due to their potential applications as surface coatings on biomedical devices. Titanium dioxide (TiO2) in the anatase crystalline form is a strong bactericidal agent when exposed to near-UV light. In this work we investigate the bactericidal activity of DLC films containing TiO2 nanoparticles. The films were grown on 316L stainless-steel substrates from a dispersion of TiO2 in hexane using plasma-enhanced chemical vapor deposition. The composition, bonding structure, surface energy, stress, and surface roughness of these films were also evaluated. The antibacterial tests were performed against Escherichia coli (E. coli) and the results were compared to the bacterial adhesion force to the studied surfaces. The presence of TiO2 in DLC bulk was confirmed by Raman spectroscopy. As TiO2 content increased, I(D)/I(G) ratio, hydrogen content, and roughness also increased; the films became more hydrophilic, with higher surface free energy and the interfacial energy of bacteria adhesion decreased. Experimental results show that TiO2 increased DLC bactericidal activity. Pure DLC films were thermodynamically unfavorable to bacterial adhesion. However, the chemical interaction between the E. coli and the studied films increased for the films with higher TiO2 concentration. As TiO2 bactericidal activity starts its action by oxidative damage to the bacteria wall, a decrease in the interfacial energy of bacteria adhesion causes an increase in the chemical interaction between E. coli and the films, which is an additional factor for the increasing bactericidal activity. From these results, DLC with TiO2 nanoparticles can be useful for producing coatings with antibacterial properties.

  16. Diamond-like carbon prepared by pulsed laser deposition with ion bombardment: physical properties

    NASA Astrophysics Data System (ADS)

    Písařík, P.; Mikšovský, J.; Remsa, J.; Zemek, J.; Tolde, Z.; Jelínek, M.

    2018-01-01

    Diamond-like carbon (DLC) and titanium-doped DLC thin films were prepared by unique hybrid system consisting of pulsed laser deposition, ion source (bombardment) and magnetron sputtering. The influence of deposition parameters (ion energies, deposition pressures and magnetron power) on composition and physical properties was studied. Composition and sp 3/ sp 2 ratio were determined by XPS. sp 3/ sp 2 ratio was in the range from 1.4 to 2.2 for undoped DLC and from 3.4 to 4.8 for Ti-DLC. AFM showed that the layers were smooth, but with small amounts of random droplets. The measurements of the contact angle and determination of surface free energy were made for water, diiodomethane and ethylene glycol. Hardness and reduced Young's modulus varied from 20 to 31 GPa and from 182 to 276 GPa, respectively. Film adhesion was determined by scratch test; L C3 reached 23 N for DLC and 27 N for TiDLC. Optimization of sp 3/ sp 2 ratio, hardness and adhesion to biomedical alloys will advance the DLC coatings usability in the field of implantology.

  17. Tribological Behaviour of Ti:Ta-DLC Films Under Different Tribo-Test Conditions

    NASA Astrophysics Data System (ADS)

    Efeoglu, İhsan; Keleş, Ayşenur; Totik, Yaşar; Çiçek, Hikmet; Emine Süküroglu, Ebru

    2018-01-01

    Diamond-like carbon (DLC) films are suitable applicants for cutting tools due to their high hardness, low friction coefficient and wear rate. Doping metals in DLC films have been improved its tribological properties. In this study, titanium and tantalum doped hydrogenated DLC films were deposited by closed-field unbalanced magnetron sputtering system onto M2 high speed steels in Ar/N2/C2H2 atmosphere. The friction and wear properties of Ti:Ta-DLC film were investigated under different tribo-test conditions including in atmospheric pressure, distilled water, commercial oil and Ar atmosphere. The coated specimens were characterized by SEM and X-ray diffraction techniques. The bonding state of C-C (sp3) and C=C (sp2) were obtained with XPS. The tribological properties of Ti:Ta-DLC were investigated with pin-on-disc wear test. Hardness measurements performed by micro-indentation. Our results suggest that Ti:Ta-doped DLC film shows very dense columnar microstructure, high hardness (38.2 GPa) with low CoF (µ≈0.02) and high wear resistance (0.5E-6 mm3/Nm).

  18. Tribological performance of an H-DLC coating prepared by PECVD

    NASA Astrophysics Data System (ADS)

    Solis, J.; Zhao, H.; Wang, C.; Verduzco, J. A.; Bueno, A. S.; Neville, A.

    2016-10-01

    Carbon-based coatings are of wide interest due to their application in machine elements subjected to continuous contact where fluid lubricant films are not permitted. This paper describes the tribological performance under dry conditions of duplex layered H-DLC coating sequentially deposited by microwave excited plasma enhanced chemical vapour deposition on AISI 52100 steel. The architecture of the coating comprised Cr, WC, and DLC (a-C:H) with a total thickness of 2.8 μm and compressive residual stress very close to 1 GPa. Surface hardness was approximately 22 GPa and its reduced elastic modulus around 180 GPa. Scratch tests indicated a well adhered coating achieving a critical load of 80 N. The effect of normal load on the friction and wear behaviours were investigated with steel pins sliding against the actual coating under dry conditions at room temperature (20 ± 2 °C) and 35-50% RH. The results show that coefficient of friction of the coating decreased from 0.21 to 0.13 values with the increase in the applied loads (10-50 N). Specific wear rates of the surface coating also decrease with the increase in the same range of applied loads. Maximum and minimum values were 14 × 10-8 and 5.5 × 10-8 mm-3/N m, respectively. Through Raman spectroscopy and electron microscopy it was confirmed the carbon-carbon contact, due to the tribolayer formation on the wear scars of the coating and pin. In order to further corroborate the experimental observations regarding the graphitisation behaviour, the existing mathematical relationships to determine the graphitisation temperature of the coating/steel contact as well as the flash temperature were used.

  19. A FED Prototype Using Patterned DLC Thin Films as the Cathode

    NASA Astrophysics Data System (ADS)

    Li, W.; Feng, T.; Mao, D. S.; Wang, X.; Liu, X. H.; Zou, S. C.; Zhu, Y. K.; Li, Q.; Xu, J. F.; Jin, S.; Zheng, J. S.

    In our study, diamond-like-carbon (DLC) thin films were prepared by filtered arc deposition (FAD), which provided a way to deposit DLC thin films on large areas at room temperature. Glass slides coated 100nm chromium or titanium thin films were used as cathode substrates. Millions of rectangular holes with sizes of 5 × 5μm were made on the DLC films using a routine patterning process. Here a special reactive ion beam etching method was applied to etch the DLC films. The anodes of the devices were made by electrophoretic deposition. ZnO:Zn phosphor (P15) was employed, which has a broad band bluish green (centered at 490nm). Before electrophoretic deposition, the anode substrates (ITO glass slides) had been patterned into 50 anode electrodes. In order to improve the adherence of phosphor layers, the as-deposited screens were treated in Na2SiO3 solution for 24h to add additional binder. A kind of matrix-addressed diode FED prototype was designed and packaged. 50-100μm-thick glass slides were used as spacers and getters were applied to maintain the vacuum after the exhaustion. The applied DC voltage was ranged in 0-3000V and much higher current density was measured in the cathode-patterned prototypes than the unpatterned ones during the test. As a result, characters could be well displayed.

  20. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    PubMed Central

    Juknius, Tadas; Ružauskas, Modestas; Tamulevičius, Tomas; Šiugždinienė, Rita; Juknienė, Indrė; Vasiliauskas, Andrius; Jurkevičiūtė, Aušrinė; Tamulevičius, Sigitas

    2016-01-01

    In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique). The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile. PMID:28773494

  1. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages.

    PubMed

    Juknius, Tadas; Ružauskas, Modestas; Tamulevičius, Tomas; Šiugždinienė, Rita; Juknienė, Indrė; Vasiliauskas, Andrius; Jurkevičiūtė, Aušrinė; Tamulevičius, Sigitas

    2016-05-13

    In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique). The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans' and animals' infected wounds were used. It is demonstrated that the efficiency of the Ag⁺ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile.

  2. Beneficial silver: antibacterial nanocomposite Ag-DLC coating to reduce osteolysis of orthopaedic implants

    NASA Astrophysics Data System (ADS)

    Endrino, J. L.; Sánchez-López, J. C.; Escobar Galindo, R.; Horwat, D.; Anders, A.

    2010-11-01

    Silver-containing diamond-like-carbon (DLC) is a promising material for biomedical implants due to its excellent combination of antibacterial and mechanical properties. In this work, a dual-cathode pulsed filtered cathodic arc source containing silver and graphite rods was employed in order to obtain DLC samples with various silver contents. Chemical composition of the samples was analyzed by acquiring their compositional depth-profiles using radio-frequency Glow Discharge Optical Emission Spectroscopy (rf-GDOES), while the microstructural properties were analyzed by X-ray diffraction and Raman spectroscopy. Tribological studies carried out against UHMWPE balls in fetal bovine serum indicate that the presence of silver in DLC could be beneficial to reduce the wear of the polymeric surfaces.

  3. Silver-doped nanocomposite carbon coatings (Ag-DLC) for biomedical applications - Physiochemical and biological evaluation

    NASA Astrophysics Data System (ADS)

    Bociaga, Dorota; Komorowski, Piotr; Batory, Damian; Szymanski, Witold; Olejnik, Anna; Jastrzebski, Krzysztof; Jakubowski, Witold

    2015-11-01

    The formation of bacteria biofilm on the surface of medical products is a major clinical issue nowadays. Highly adaptive ability of bacteria to colonize the surface of biomaterials causes a lot of infections. This study evaluates samples of the AISI 316 LVM with special nanocomposite silver-doped (by means of ion implantation) diamond-like carbon (DLC) coating prepared by hybrid RF/MS PACVD (radio frequency/magnetron sputtering plasma assisted chemical vapour deposition) deposition technique in order to improve the physicochemical and biological properties of biomaterials and add new features such as antibacterial properties. The aim of the following work was to evaluate antimicrobial efficacy and biocompatibility of gradient a-C:H/Ti + Ag coatings in relation to the physiochemical properties of the surface and chemical composition of coating. For this purpose, samples were tested in live/dead test using two cell strains: human endothelial cells (Ea.hy926) and osteoblasts-like cells (Saos-2). For testing bactericidal activity of the coatings, an exponential growth phase of Escherichia coli strain DH5α was used as a model microorganism. Surface condition and its physicochemical properties were investigated using SEM, AFM and XPS. Examined coatings showed a uniformity of silver ions distribution in the amorphous DLC matrix, good biocompatibility in contact with mammalian cells and an increased level of bactericidal properties. What is more, considering very good mechanical parameters of these Ag including gradient a-C:H/Ti coatings, they constitute an excellent material for biomedical application in e.g. orthopedics or dentistry.

  4. Architectural design of diamond-like carbon coatings for long-lasting joint replacements.

    PubMed

    Liu, Yujing; Zhao, Xiaoli; Zhang, Lai-Chang; Habibi, Daryoush; Xie, Zonghan

    2013-07-01

    Surface engineering through the application of super-hard, low-friction coatings as a potential approach for increasing the durability of metal-on-metal replacements is attracting significant attention. In this study innovative design strategies are proposed for the development of diamond-like-carbon (DLC) coatings against the damage caused by wear particles on the joint replacements. Finite element modeling is used to analyze stress distributions induced by wear particles of different sizes in the newly-designed coating in comparison to its conventional monolithic counterpart. The critical roles of architectural design in regulating stress concentrations and suppressing crack initiation within the coatings is elucidated. Notably, the introduction of multilayer structure with graded modulus is effective in modifying the stress field and reducing the magnitude and size of stress concentrations in the DLC diamond-like-carbon coatings. The new design is expected to greatly improve the load-carrying ability of surface coatings on prosthetic implants, in addition to the provision of damage tolerance through crack arrest. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  6. Preparation and properties of DLC/MoS2 multilayer coatings for high humidity tribology

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoyu; Lu, Zhibin; Wu, Guizhi; Zhang, Guangan; Wang, Liping; Xue, Qunji

    2016-06-01

    The DLC/MoS2 multilayer coatings with different modulus ratios were deposited by magnetron sputtering in this study. The morphology, structure, composition, mechanical properties and tribological properties were investigated using several analytical techniques (FESEM, AFM, TEM, AES, XPS, nanoindentation and high humidity tribological test). The results showed that the well-defined multilayer coatings were composed of densely packed particles in which many nanocrystallines with some kinds of defects were distributed in matrix. The incorporation of oxygen into the lattice led to the degraded chemical stability. The coating’s hardness and elastic modulus were almost in the same range. Moderate improvement on the high humidity tribological properties were obtained, which was important for the extension of the service life of MoS2 in humid air.

  7. Fabrication and characterization of DLC coated microdimples on hip prosthesis heads.

    PubMed

    Choudhury, Dipankar; Ay Ching, Hee; Mamat, Azuddin Bin; Cizek, Jan; Abu Osman, Noor Azuan; Vrbka, Martin; Hartl, Martin; Krupka, Ivan

    2015-07-01

    Diamond like carbon (DLC) is applied as a thin film onto substrates to obtain desired surface properties such as increased hardness and corrosion resistance, and decreased friction and wear rate. Microdimple is an advanced surface modification technique enhancing the tribological performance. In this study, DLC coated microdimples were fabricated on hip prosthesis heads and their mechanical, material and surface properties were characterized. An Electro discharge machining (EDM) oriented microdrilling was utilized to fabricate a defined microdimple array (diameter of 300 µm, depth of 70 µm, and pitch of 900 µm) on stainless steel (SS) hip prosthesis heads. The dimpled surfaces were then coated by hydrogenated amorphous carbon (a-C:H) and tetrahedral amorphous carbon (Ta-C) layers by using a magnetron sputtering technology. A preliminary tribology test was conducted on these fabricated surfaces against a ceramic ball in simulated hip joint conditions. It was found that the fabricated dimples were perpendicular to the spherical surfaces and no cutting-tools wear debris was detected inside the individual dimples. The a-C:H and Ta-C coatings increased the hardness at both the dimple edges and the nondimpled region. The tribology test showed a significant reduction in friction coefficient for coated surfaces regardless of microdimple arrays: the lowest friction coefficient was found for the a-C:H samples (µ = 0.084), followed by Ta-C (µ = 0.119), as compared to the SS surface (µ = 0.248). © 2014 Wiley Periodicals, Inc.

  8. Smart Nanocomposite Coatings with Chameleon Surface Adaptation in Tribological Applications

    NASA Astrophysics Data System (ADS)

    Voevodin, A. A.; Zabinski, J. S.

    Smart nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These coatings have been dubbed "chameleon" because of their ability to change their surface chemistry and structure to avoid wear. The first "chameleon" coatings were made of WC, WS2, and DLC; these coatings provided superior mechanical toughness and performance in dry/humid environmental cycling. In order to address temperature variation, the second generation of "chameleon" coatings were made of yttria stabilized zirconia (YSZ) in a gold matrix with encapsulated nano-sized reservoirs of MoS2 and DLC. High temperature lubrication with low melting point glassy ceramic phases was also explored. All coatings were produced using a combination of laser ablation and magnetron sputtering. They were thoroughly characterized by various analytical, mechanical, and tribological methods. Coating toughness was remarkably enhanced by activation of a grain boundary sliding mechanism. Friction and wear endurance measurements were performed in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500-600 °C in air. Unique friction and wear performance in environmental cycling was demonstrated.

  9. Thin-film hermeticity - A quantitative analysis of diamondlike carbon using variable angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Orzeszko, S.; De, Bhola N.; Woollam, John A.; Pouch, John J.; Alterovitz, Samuel A.

    1988-01-01

    This paper reports on the successful application of variable-angle spectroscopic ellipsometry to quantitative thin-film hermeticity evaluation. It is shown that, under a variety of film preparations and moisture introduction conditions, water penetrates only a very thin diamondlike carbon (DLC) top surface-roughness region. Thus, DLC is an excellent candidate for use as protective coatings in adverse chemical and aqueous environments.

  10. TiO2-NT electrodes modified with Ag and diamond like carbon (DLC) for hydrogen production by alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Baran, Evrim; Baz, Zeynep; Esen, Ramazan; Yazici Devrim, Birgül

    2017-10-01

    In present work, the two-step anodization technique was applied for synthesis of TiO2 nanotube (NT). Silver and diamond like carbon (DLC) were coated on the surface of as prepared TiO2-NT using chemical reduction method and MW ECR plasma system. The morphology, composition and structure of the electrodes were examined by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results showed that Ag nanoparticles, having size in the range of 48-115 nm, are evenly distributed on the top, inside and outside surface of TiO2-NT and when DLC was coated on the surface of TiO2-NT and TiO2-NT-Ag, the top of nanotubes were partially open and the pore diameter of hexagonal structure decreased from 165 nm to of 38-80 nm. On the other hand, the microhardness test and contact angle measurements revealed that additions of Ag and diamond like carbon have a positive effect on the mechanical properties of TiO2-NT film. The electrocatalytic properties of the electrodes towards the hydrogen evolution reaction (HER) were investigated by the electrochemical measurements recorded in 1 M KOH solution. In addition, long-term durability of electrodes towards HER and the energy consumption of alkaline electrolysis were investigated. The energy requirement showed that while the deposition of silver provides approximately 14.95% savings of the energy consumption, the DLC coating causes increase in energy consumption.

  11. Synthesis of flat sticky hydrophobic carbon diamond-like films using atmospheric pressure Ar/CH4 dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Rincón, R.; Hendaoui, A.; de Matos, J.; Chaker, M.

    2016-06-01

    An Ar/CH4 atmospheric pressure dielectric barrier discharge (AP-DBD) was used to synthesize sticky hydrophobic diamond-like carbon (DLC) films on glass surface. The film is formed with plasma treatment duration shorter than 30 s, and water contact angles larger than 90° together with contact angle hysteresis larger than 10° can be achieved. According to Fourier transform infrared spectroscopy and atomic force microscopy analysis, hydrocarbon functional groups are created on the glass substrate, producing coatings with low surface energy (˜35 mJ m-2) with no modification of the surface roughness. To infer the plasma processes leading to the formation of low energy DLC surfaces, optical emission spectroscopy was used. From the results, a direct relationship between the CH species present in the plasma and the carbon concentration in the hydrophobic layer was found, which suggests that the CH species are the precursors of DLC film growth. Additionally, the plasma gas temperature was measured to be below 350 K which highlights the suitability of using AP-DBD to treat thermo-sensitive surfaces.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rincón, R., E-mail: rocio.rincon@emt.inrs.ca, E-mail: chaker@emt.inrs.ca; Matos, J. de; Chaker, M., E-mail: rocio.rincon@emt.inrs.ca, E-mail: chaker@emt.inrs.ca

    An Ar/CH{sub 4} atmospheric pressure dielectric barrier discharge (AP-DBD) was used to synthesize sticky hydrophobic diamond-like carbon (DLC) films on glass surface. The film is formed with plasma treatment duration shorter than 30 s, and water contact angles larger than 90° together with contact angle hysteresis larger than 10° can be achieved. According to Fourier transform infrared spectroscopy and atomic force microscopy analysis, hydrocarbon functional groups are created on the glass substrate, producing coatings with low surface energy (∼35 mJ m{sup −2}) with no modification of the surface roughness. To infer the plasma processes leading to the formation of low energymore » DLC surfaces, optical emission spectroscopy was used. From the results, a direct relationship between the CH species present in the plasma and the carbon concentration in the hydrophobic layer was found, which suggests that the CH species are the precursors of DLC film growth. Additionally, the plasma gas temperature was measured to be below 350 K which highlights the suitability of using AP-DBD to treat thermo-sensitive surfaces.« less

  13. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  14. Concurrent improvement in biocompatibility and bioinertness of diamond-like carbon films with nitrogen doping.

    PubMed

    Liao, Wen-Hsiang; Lin, Chii-Ruey; Wei, Da-Hua; Shen, You-Ruey; Li, Yi-Chieh; Lee, Jen-Ai; Liang, Chia-Yao

    2012-11-01

    The surfaces of implantable biomaterials improving biocompatibility and bioinertness are critical for new application of bioimplantable devices. Diamond-like carbon (DLC) film is a promising biomaterial with use for coating bioimplantable devices because of its good biocompatibility, bioinertness, and mechanical properties. In this study, concurrent improvement in biocompatibility and bioinertness of DLC films has been achieved using N-incorporation technique. The N doping degree was found to play an important role in affecting the biocompatibility and bioinertness of N-doped DLC films. The results indicated that the N-doped DLC films deposited at N(2) concentration of 5% could help to create suitable condition of surface/structure/adhesion combination of DLC films in the both affinity of the L929 mouse fibroblasts and electrochemical inertness in the Hank's balanced salt solutions (simulating human body fluids). N doping supports the attachment and proliferation of cells and prevents the permeation of electrolyte solutions, thereby simultaneity improved the biocompatibility and bioinertness of DLC films. This finding is useful for the fabrication and encapsulation of in vivo devices without induced immune response in the human body. Copyright © 2012 Wiley Periodicals, Inc.

  15. Fabrication of Transparent Protective Diamond-Like Carbon Films on Polymer

    NASA Astrophysics Data System (ADS)

    Baek, Sang-min; Shirafuji, Tatsuru; Saito, Nagahiro; Takai, Osamu

    2011-08-01

    Si doped hydrogenated amorphous carbon (Si-DLC) films as a candidate protection coating for polycarbonate (PC) were prepared using a pulse-biased inductively coupled plasma chemical vapor deposition (ICP-CVD) system with a gas mixture of acetylene (C2H2) and tetramethylsilane [Si(CH3)4]. The effects of Si incorporation on the structure and optical properties of the Si-DLC films were investigated. In addition, plasma pretreatments with O2, N2, and Ar gases were carried out to enhance the adhesion strength of Si-DLC films on polycarbonate. Structural characterization through Raman and X-ray photoelectron spectroscopy (XPS) analyses showed that the incorporation of Si atoms in DLC films leads to an increase in the optical band gap (Eopt) with the formation of sp3 C-Si bonds. O2 plasma pretreatment improved the strength of adhesion of the Si-DLC films to polycarbonate, while Ar and N2 plasma treatments did not. This can be explained by the formation of an activated dense interfacial layer by O2 plasma pretreatment.

  16. Wetting of polymer melts on coated and uncoated steel surfaces

    NASA Astrophysics Data System (ADS)

    Vera, Julie; Contraires, Elise; Brulez, Anne-Catherine; Larochette, Mathieu; Valette, Stéphane; Benayoun, Stéphane

    2017-07-01

    A comparative study of the wetting of three different commercial polymer melts on various coated and uncoated steel surfaces is described in this report. The wettability of steel and coatings (three different titanium nitride coatings, TiN, TiNOx, TiNOy, a chromium coating, CrN, and a diamond-like carbon coating, DLC) used for mold in polymer processing is determined at different temperatures between 25 °C and 120 °C. Contact angle measurements of melted polypropylene (PP), Acrylonitrile Butadiene Styrene (ABS) and Polycarbonate (PC) on steel and on the different coatings were performed to investigate the wetting behavior under closer-to-processing conditions. Recommendations for good measurement conditions were proposed. Moreover, the surface free energy of each melt polymer was determined. The works of adhesion between all polymers and all substrates were established. Among all tested polymers, the lowest value of the works of adhesion is calculated for ABS and for PC thereafter, and the highest value is calculated for PP. These results will be particularly important for such applications as determining the extent to which these polymers can contribute to the replication quality in injection molding.

  17. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  18. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  19. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  20. Wear Behavior of Low-Cost, Lightweight TiC/Ti-6Al-4V Composite Under Fretting: Effectiveness of Solid-Film Lubricant Counterparts

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Street, Kenneth W., Jr.; Sanders, Jeffrey H.; Hager, Carl H., Jr.; Zabinski, Jeffrey S.; VanderWal, Randall L.; Andrews, Rodney; Lerch, Bradley A.

    2007-01-01

    The wear behavior of low-cost, lightweight 10-wt% TiC-particulate-reinforced Ti-6Al-4V matrix composite (TiC/Ti- 6Al-4V) was examined under fretting at 296, 423, and 523 K in air. Bare 10-wt% TiC/Ti-6Al-4V hemispherical pins were used in contact with dispersed multiwalled carbon nanotubes (MWNTs), magnetron-sputtered diamondlike carbon/chromium (DLC/Cr), magnetron-sputtered graphite-like carbon/chromium (GLC/Cr), and magnetron-sputtered molybdenum disulphide/titanium (MoS2/Ti) deposited on Ti-6Al-4V, Ti-48Al-2Cr-2Nb, and nickel-based superalloy 718. When TiC/Ti-6Al-4V was brought into contact with bare Ti-6Al-4V, bare Ti-48Al-2Cr-2Nb, and bare nickel-based superalloy 718, strong adhesion, severe galling, and severe wear occurred. However, when TiC/Ti-6Al-4V was brought into contact with MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings, no galling occurred in the contact, and relatively minor wear was observed regardless of the coating. All the solid-film lubricants were effective from 296 to 523 K, but the effectiveness of the MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings decreased as temperature increased.

  1. Synthesis and characterization of CrCN-DLC composite coatings by cathodic arc ion-plating

    NASA Astrophysics Data System (ADS)

    Wang, R. Y.; Wang, L. L.; Liu, H. D.; Yan, S. J.; Chen, Y. M.; Fu, D. J.; Yang, B.

    2013-07-01

    CrCN-DLC composite coatings were deposited onto silicon (1 0 0) and cemented carbides substrates using pure Cr targets under C2H2 ambient by cathodic arc ion plating system. The influence of C2H2 flow rate on the structure and mechanical properties of the coatings was investigated systemically. The coatings structure and bonding state were characterized by XRD, Raman and X-ray photoelectron spectroscopy. The chemical composition was measured by EDS. The mechanical performance and tribological behaviour of the coatings were studied by a hardness tester and ball-on-disc wear tester. The results showed that with increasing C2H2 flow rate from 50 to 100 sccm, the corresponding hardness of coatings increased firstly and then decreased with further addition of C2H2 flow rate. The coatings deposited at lower C2H2 flow rate (less than 200 sccm) exhibited a relatively higher hardness value (more than HV0.0252000) and then the hardness decrease with increasing C2H2 flow rate. The friction coefficient also exhibited similar variation trend, when the C2H2 flow rate was higher than 100 sccm, the friction coefficient decreased and then maintained in a relatively lower value from 0.18 to 0.24, which may be attribute to the increasing carbon content and the coating exhibited more diamond-like structure.

  2. Optimization of Cvd Diamond Coating Type on Micro Drills in Pcb Machining

    NASA Astrophysics Data System (ADS)

    Lei, X. L.; He, Y.; Sun, F. H.

    2016-12-01

    The demand for better tools for machining printed circuit boards (PCBs) is increasing due to the extensive usage of these boards in digital electronic products. This paper is aimed at optimizing coating type on micro drills in order to extend their lifetime in PCB machining. First, the tribotests involving micro crystalline diamond (MCD), nano crystalline diamond (NCD) and bare tungsten carbide (WC-Co) against PCBs show that NCD-PCB tribopair exhibits the lowest friction coefficient (0.35) due to the unique nano structure and low surface roughness of NCD films. Thereafter, the dry machining performance of the MCD- and NCD-coated micro drills on PCBs is systematically studied, using diamond-like coating (DLC) and TiAlN-coated micro drills as comparison. The experiments show that the working lives of these micro drills can be ranked as: NCD>TiAlN>DLC>MCD>bare WC-Co. The superior cutting performance of NCD-coated micro drills in terms of the lowest flank wear growth rate, no tool degradation (e.g. chipping, tool tipping) appearance, the best hole quality as well as the lowest feed force may come from the excellent wear resistance, lower friction coefficient against PCB as well as the high adhesive strength on the underneath substrate of NCD films.

  3. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD) Coatings on Thermoplastic Polyurethane Polymers.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Hartmann, Paul; Bruckert, Franz; Weidenhaupt, Marianne; Major, Roman; Sanak, Marek; Wiesinger, Martin; Heim, Daniel

    2012-04-17

    Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.

  4. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    NASA Astrophysics Data System (ADS)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  5. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD) Coatings on Thermoplastic Polyurethane Polymers

    PubMed Central

    Lackner, Juergen M.; Waldhauser, Wolfgang; Hartmann, Paul; Bruckert, Franz; Weidenhaupt, Marianne; Major, Roman; Sanak, Marek; Wiesinger, Martin; Heim, Daniel

    2012-01-01

    Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials. PMID:24955532

  6. Beryllium Science: US-UK agreement on the use of Atomic Energy for mutual defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanafee, J.E.

    1988-02-19

    Twenty-seven papers are presented on beryllium supply, production, fabrication, safe handling, analysis, powder technology, and coatings. Separate abstracts have been prepared for the individual papers. (DLC)

  7. Pathological laughter and crying: A case series and proposal for a new classification.

    PubMed

    Gondim, Francisco de Assis Aquino; Thomas, Florian P; Cruz-Flores, Salvador; Nasrallah, Henry A; Selhorst, John B

    2016-02-01

    Disorders of laughter and crying (DLC) are seen in several neuropsychiatric conditions. Their nomenclature remains under debate. We present the clinical and imaging findings of 17 patients with DLC and introduce a new classification based on phenomenology and pathogenesis. According to intensity and frequency of laughter and crying (observed behavioral output), patients were divided into hypoactive or hyperactive DLC and subdivided into 5 subtypes: sensory (positive and negative), motor (positive and negative), and mixed. The sensory subtype is represented by disorders of "feeling processing," whereas the motor subtype is represented by disorders of "emotion processing." "Positive" and "negative" describe elicitation by irritative vs destructive lesions, respectively. Among the patients studied, DLC resulted from ischemic stroke (n = 12), intracerebral hemorrhage (n = 2), gunshot wound (n = 1), amyotrophic lateral sclerosis (n = 1), or vestibular migraine (n = 1). Ten patients had lesions in the brainstem, 4 in the cerebral hemispheres, and 2 in sub-cortical-diencephalic structures. Six patients had negative motor DLC, 5 had positive sensory DLC, 4 had negative sensory DLC, and 2 had positive motor DLC. Phenomenology changed or progressed to mixed DLC in 7 patients. This novel phenomenological and pathomechanistic nomenclature explains all subtypes of DLC in neurologic, medical, and psychiatric conditions. Future studies are needed to validate it prospectively.

  8. Synthesis and tribological properties of diamond-like carbon films by electrochemical anode deposition

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, GuiFeng; Hou, XiaoDuo; Deng, DeWei

    2012-06-01

    Diamond-like carbon films (DLC) are deposited on Ti substrate by electrochemical anodic deposition at room temperature in pure methanol solution using a pulsed DC voltage at a range from 200 V to 2000 V. Raman spectroscopy analysis of the films reveals two broaden characteristic absorption peaks centred at ˜1350 cm-1 and 1580 cm-1, relating to D- and G-band of typical DLC films, respectively. A broad peak centred at 1325-1330 cm-1 is observed when an applied potential is 1200 V, which can confirm that the deposited films contained diamond structure phase. Tribological properties of the coated Ti substrates have been measured by means of a ball-on-plate wear test machine. A related growth mechanism of DLC films by the anodic deposition mode has also been discussed.

  9. Diagnostics of capacitively-coupled hydrocarbon plasmas for deposition of diamond-like carbon films using quadrupole mass spectrometry and Langmuir probe

    NASA Astrophysics Data System (ADS)

    Oda, Akinori; Fukai, Shun; Kousaka, Hiroyuki; Ohta, Takayuki

    2015-09-01

    Diamond-like carbon (DLC) films are the hydrogenated amorphous carbon films, which contains a mixture of sp2- and sp3-bonded carbon. The DLC films have been widely used for various applications, such as automotive, semiconductors, medical devices, since have excellent material properties in lower friction, higher chemical stability, higher hardness, higher wear resistance. Until now, numerous investigations on the DLC films using plasma assisted chemical vapor deposition have been done. For precise control of coating technique of DLC films, it is enormously important to clarify the fundamental properties in hydrocarbon plasmas, as a source of hydrocarbon ions and radicals. In this paper, the fundamental properties in a low pressure radio-frequency hydrocarbon (Ar/CH4 (1 %) gas mixture) plasmas have been diagnosed using a quadrupole mass spectrometer (HIDEN ANARYTICAL Ltd., EQP-300) and Langmuir probe system (HIDEN ANARYTICAL Ltd., ESPion). This work was partly supported by KAKENHI (No.26420247), and a ``Grant for Advanced Industrial Technology Development (No.11B06004d)'' in 2011 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

  10. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  11. Plasmon-organic fiber interactions in diamond-like carbon coated nanostructured gold films

    NASA Astrophysics Data System (ADS)

    Cielecki, Paweł Piotr; Sobolewska, Elżbieta Karolina; Kostiuočenko, Oksana; Leißner, Till; Tamulevičius, Tomas; Tamulevičius, Sigitas; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek

    2017-11-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays, coated with protective layers of varying thickness. We numerically investigate the spectral position of surface plasmon polariton resonances and electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we characterize the plasmonic coupling between organic nanofibers and underlying substrates, considered as one of the main loss channels for photoluminescence from nanofibers, by time-resolved photoluminescence spectroscopy. Our findings reveal that, for the investigated system, plasmonic interactions are preserved for DLC coatings up to 55 nm. This is relevant for the fabrication of new passive and active plasmonic components with increased durability and hence prolonged lifetime.

  12. Effects of surface coating on reducing friction and wear of orthopaedic implants

    PubMed Central

    Ching, Hee Ay; Choudhury, Dipankar; Nine, Md Julker; Abu Osman, Noor Azuan

    2014-01-01

    Coatings such as diamond-like carbon (DLC) and titanium nitride (TiN) are employed in joint implants due to their excellent tribological properties. Recently, graphite-like carbon (GLC) and tantalum (Ta) have been proven to have good potential as coating as they possess mechanical properties similar to bones—high hardness and high flexibility. The purpose of this systematic literature review is to summarize the coating techniques of these four materials in order to compare their mechanical properties and tribological outcomes. Eighteen studies published between January 2000 and February 2013 have met the inclusion criteria for this review. Details of their fabrication parameters, material and mechanical properties along with the tribological outcomes, such as friction and wear rate, were identified and are presented in a systematic way. Although experiment conditions varied, we conclude that Ta has the lowest wear rate compared to DLC, GLC and TiN because it has a lower wear rate with high contact pressure as well as higher hardness to elasticity ratio. However, a further tribology test is needed in an environment which replicates artificial joints to confirm the acceptability of these findings. PMID:27877638

  13. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    NASA Astrophysics Data System (ADS)

    Fan, Qiwen; Du, Yinghui; Zhang, Rong; Xu, Guoji

    2013-04-01

    Thin diamond-like carbon (DLC) stripper foils ˜5 μg/cm2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ˜4 μg/cm2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine-saccharose as releasing agent, which were previously covered with evaporated carbon layers ˜1 μg/cm2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4for the 197Au- (˜9 MeV, ˜1 μA) and 63Cu- (˜9 MeV, ˜1 μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (ID/IG) measured by the Raman spectroscopy is0.78.

  14. Electrical properties of multilayer (DLC-TiC) films produced by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Nima, Zeid A.; Kelly, Nigel; Watanabe, Fumiya; Biris, Alexandru S.

    2018-04-01

    In this work, pulsed laser deposition was used to produce a multilayer diamond like carbon (ML (DLC-TiC)) thin film. The ML (DLC-TiC) films were deposited on Si (100) and glass substrates at various substrate temperatures in the range of 20-450 °C. Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy were utilized to characterize the prepared films. Raman analysis revealed that as the substrate temperature increased, the G-peak position shifted to a higher raman shift and the full width at half maximum of the G and D bands decreased. XPS analysis indicated a decrease in sp3/sp2 ratio and an increase in Ti-C bond intensity when the substrate temperature was increased. Additionally, the surface roughness of ML (DLC-TiC) filmswas affected by the type and temperature of the substrate. The electrical measurement results indicated that the electrical resistivity of the ML (DLC-TiC) film deposited on Si and glass substrates showed the same behavior-the resistivity decreased when substrate temperature increased. Furthermore, the ML (DLC-TiC) films deposited on silicon showed lower electrical resistivity, dropping from 8.39E-4 Ω-cm to 5.00E-4 Ω-cm, and, similarly, the films on the glass substrate displayed a drop in electrical resistivity from 1.8E-2 Ω-cm to 1.2E-3 Ω-cm. These enhanced electrical properties indicate that the ML (DLC-TiC) films have widespread potential as transducers for biosensors in biological research; electrochemical electrodes, because these films can be chemically modified; biocompatible coatings for medicals tools; and more.

  15. Photovoltaic Properties and Ultrafast Plasmon Relaxation Dynamics of Diamond-Like Carbon Nanocomposite Films with Embedded Ag Nanoparticles.

    PubMed

    Meškinis, Šarūnas; Peckus, Domantas; Vasiliauskas, Andrius; Čiegis, Arvydas; Gudaitis, Rimantas; Tamulevičius, Tomas; Yaremchuk, Iryna; Tamulevičius, Sigitas

    2017-12-01

    Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.

  16. Photovoltaic Properties and Ultrafast Plasmon Relaxation Dynamics of Diamond-Like Carbon Nanocomposite Films with Embedded Ag Nanoparticles

    NASA Astrophysics Data System (ADS)

    Meškinis, Šarūnas; Peckus, Domantas; Vasiliauskas, Andrius; Čiegis, Arvydas; Gudaitis, Rimantas; Tamulevičius, Tomas; Yaremchuk, Iryna; Tamulevičius, Sigitas

    2017-04-01

    Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.

  17. The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells.

    PubMed

    Ismail, F S Magdon; Rohanizadeh, R; Atwa, S; Mason, R S; Ruys, A J; Martin, P J; Bendavid, A

    2007-05-01

    The purpose of the present study was to determine in vitro the effects of different surface topographies and chemistries of commercially pure titanium (cpTi) and diamond-like carbon (DLC) surfaces on osteoblast growth and attachment. Microgrooves (widths of 2, 4, 8 and 10 microm and a depth of 1.5-2 microm) were patterned onto silicon (Si) substrates using microlithography and reactive ion etching. The Si substrates were subsequently vapor coated with either cpTi or DLC coatings. All surfaces were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Using the MG63 Osteoblast-Like cell line, we determined cell viability, adhesion, and morphology on different substrates over a 3 day culture period. The results showed cpTi surfaces to be significantly more hydrophilic than DLC for groove sizes larger than 2 microm. Cell contact guidance was observed for all grooved samples in comparison to the unpatterned controls. The cell viability tests indicated a significantly greater cell number for 8 and 10 microm grooves on cpTi surfaces compared to other groove sizes. The cell adhesion study showed that the smaller groove sizes, as well as the unpatterned control groups, displayed better cell adhesion to the substrate.

  18. A novel tribological study on DLC-coated micro-dimpled orthopedics implant interface.

    PubMed

    Choudhury, Dipankar; Urban, Filip; Vrbka, Martin; Hartl, Martin; Krupka, Ivan

    2015-05-01

    This study investigates a tribological performance of diamond like carbon (DLC) coated micro dimpled prosthesis heads against ceramic cups in a novel pendulum hip joint simulator. The simulator enables determining friction coefficient and viscous effects of a concave shaped specimen interface (conformal contact). Two types of DLC such as hydrogenated amorphous carbon (a-C:H) and tetrahedral amorphous carbon (Ta-C) and one set of micro dimple (diameter of 300µm, depth of 70µm, and pitch of 900µm) were fabricated on metallic prosthesis heads. The experiment results reveal a significant friction coefficient reduction to the 'dimpled a-C:H/ceramic' prosthesis compared to a 'Metal (CoCr)/ceramic' prosthesis because of their improved material and surface properties and viscous effect. The post-experiment surface analysis displays that the dimpled a-C:H yielded a minor change in the surface roughness, and generated a larger sizes of wear debris (40-200nm sized, equivalent diameter), a size which could be certainly stored in the dimple, thus likely to reducing their possible third body abrasive wear rate. Thus, dimpled a:C-H can be used as a 'metal on ceramic hip joint interface', whereas the simulator can be utilized as an advanced bio-tribometer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Synthesis and electrochemical properties of Ti-doped DLC films by a hybrid PVD/PECVD process

    NASA Astrophysics Data System (ADS)

    Jo, Yeong Ju; Zhang, Teng Fei; Son, Myoung Jun; Kim, Kwang Ho

    2018-03-01

    Low electrical conductivity and poor adhesion to metallic substrates are the main drawbacks of diamond-like carbon (DLC) films when used in electrode applications. In this study, Ti-doped DLC films with various Ti contents were synthesized on metal Ti substrates by a hybrid PVD/PECVD process, where PECVD was used for deposition of DLC films and PVD was used for Ti doping. The effects of the Ti doping ratio on the microstructure, adhesion strength, and electrical and electrochemical properties of the DLC films were systematically investigated. An increase in the Ti content led to increased surface roughness and a higher sp2/sp3 ratio of the Ti-DLC films. Ti atoms existed as amorphous-phase Ti carbide when the Ti doping ratio was less than 2.8 at.%, while the nanocrystalline TiC phase was formed in DLC films when the Ti doping ratio was exceeded 4.0 at.%. The adhesion strength, electrical resistivity, electrochemical activity and reversibility of the DLC films were greatly improved by Ti doping. The influence of Ti doping ratio on the electrical and electrochemical properties of the DLC films were also investigated and the best performance was obtained at a Ti content of 2.8 at.%.

  20. Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc (FCVA) technique for tribological improvement

    NASA Astrophysics Data System (ADS)

    Bootkul, D.; Saenphinit, N.; Supsermpol, B.; Aramwit, C.; Intarasiri, S.

    2014-08-01

    Currently, stainless steels are widely used in various industrial applications due to their excellence in toughness and corrosion resistance. But their resistance to wear needs to be improved for appropriate use in tribological applications. The Filtered Cathodic Vacuum Arc (FCVA) is a superior technique for forming a high-density film structure of amorphous carbon, especially for a tetrahedral amorphous carbon (ta-C) type, because it can produce a plasma of highly energetic ions that can penetrate into a growing coating, resulting in densification of the film. However, this technique tends to generate high internal stress, due to serious accumulation of energy in the film structure that then leads to film delamination. In general, there are numerous solutions that have been used to reduce the internal stress. DLC with various additive elements such as Ti, Cr or W as strong-carbide-forming (SCF) metals is one of the popular methods to provide attractive combinations of properties of wear resistance and film adhesion as well as reducing the internal stress. The present study was focused on investigation of titanium-doped DLC coating on SS304 steel, mainly for adhesion improvement in optimizing for tribological applications. The synthesized films were formed by the FCVA technique at normal substrate temperature. In the experimental set-up, the films were produced by mixing the titanium and carbon ions generated by dual cathode plasma source operating in synchronous pulsed mode. Their compositions were adjusted by varying the relative duration of the pulse length from each cathode. Titanium doping concentration was varied from pure DLC deposition as the control group to titanium and graphite trigger pulses ratios of 1:16, 1:12, 1:10, 1:8 and 1:4, as the Ti-doped DLC group. The results showed that by increasing titanium trigger pulses ratio from 1:16, 1:12, 1:10 and 1:8, respectively, the film adhesion was increased while the wear rate did not change significantly as measured by scratch test measurement while adjusted more titanium trigger pulses at 1:4 ratio, the wear rate raised rapidly up to be beyond 50%. In summary, the optimized range of Ti doping in DLC structure to maintain both acceptable wear rate and good adhesion properties of FCVA-synthesized Ti-doped DLC was considered to not over 1:8 of titanium and graphite trigger pulses ratio. Mechanism involved in the phenomenon was discussed.

  1. The effects of novel surface treatments on the wear and fatigue properties of steel and chilled cast iron

    NASA Astrophysics Data System (ADS)

    Carroll, Jason William

    Contact fatigue driven wear is a principal design concern for gear and camshaft engineering of power systems. To better understand how to engineer contact fatigue resistant surfaces, the effects of electroless nickel and hydrogenated diamond-like-carbon (DLC) coatings on the fatigue life at 108 cycles of SAE 52100 steel were studied using ultrasonic fatigue methods. The addition of DLC and electroless nickel coatings to SAE 52100 bearing steel had no effect on the fatigue life. Different inclusion types were found to affect the stress intensity value beyond just the inclusion size, as theorized by Murakami. The difference in stress intensity values necessary to propagate a crack for Ti (C,N) and alumina inclusions was due to the higher driving force for crack extension at the Ti (C,N) inclusions and was attributed to differences in the shape of the inclusion: rhombohedral for the Ti (C,N) versus spherical for the oxides. A correction factor was added to the Murakami equation to account for inclusion type. The wear properties of DLC coated SAE 52100 and chilled cast iron were studied using pin-on-disk tribometry and very high cycle ultrasonic tribometry. A wear model that includes sliding thermal effects as well as thermodynamics consistent with the wear mechanism for DLCs was developed based on empirical results from ultrasonic wear testing to 108 cycles. The model fit both ultrasonic and classic tribometer data for wear of DLCs. Finally, the wear properties of laser hardened steels - SAE 8620, 4140, and 52100 - were studied at high contact pressures and low numbers of cycles. A design of experiments was conducted to understand how the laser processing parameters of power, speed, and beam size, as well as carbon content of the steel, affected surface hardness. A hardness maximum was found at approximately 0.7 wt% carbon most likely resulting from increased amounts of retained austenite. The ratcheting contact fatigue model of Kapoor was found to be useful in predicting the wear results. The empirical model of Clayton and Su and extended by Afferente and Ciavarella, also provided reasonable semi-quantitative contact fatigue life models for these steels.

  2. Tribological Characteristics and Applications of Superhard Coatings: CVD Diamond, DLC, and c-BN

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Wu, Richard L. C.

    1999-01-01

    Results of fundamental research on the tribological properties of chemical-vapor-deposited (CVD) diamond, diamondlike carbon, and cubic boron nitride films in sliding contact with CVD diamond in ultrahigh vacuum, dry nitrogen, humid air, and water are discussed. Furthermore, the actual and potential applications of the three different superhard coatings in the field of tribology technology, particularly for wear parts and tools, are reviewed.

  3. Study of PECVD films containing flourine and carbon and diamond like carbon films for ultra low dielectric constant interlayer dielectric applications

    NASA Astrophysics Data System (ADS)

    Sundaram, Nandini Ganapathy

    Lowering the capacitance of Back-end-of-line (BEOL) structures by decreasing the dielectric permittivity of the interlayer dielectric material in integrated circuits (ICs) lowers device delay times, power consumption and parasitic capacitance. a:C-F films that are thermally stable at 400°C were deposited using tetrafluorocarbon and disilane (5% by volume in Helium) as precursors. The bulk dielectric constant (k) of the film was optimized from 2.0 / 2.2 to 1.8 / 1.91 as-deposited and after heat treatment. Films, with highly promising k-values but discarded for failing to meet shrinkage rate requirements were salvaged by utilizing a novel extended heat treatment scheme. Film properties including chemical bond structure, F/C ratio, refractive index, surface planarity, contact angle, dielectric constant, flatband voltage shift, breakdown field potential and optical energy gap were evaluated by varying process pressure, power, substrate temperature and flow rate ratio (FRR) of processing gases. Both XPS and FTIR results confirmed that the stoichiometry of the ultra-low k (ULK) film is close to that of CF2 with no oxygen. C-V characteristics indicated the presence of negative charges that are either interface trapped charges or bulk charges. Average breakdown field strength was in the range of 2-8 MV/cm while optical energy gap varied between 2.2 eV and 3.4 eV. Irradiation or plasma damage significantly impacts the ability to integrate the film in VSLI circuits. The film was evaluated after exposure to oxygen plasma and HMDS vapors and no change in the FTIR spectra or refractive index was observed. Film is resistant to attack by developers CD 26 and KOH. While the film dissolves in UVN-30 negative resist, it is impermeable to PGDMA. A 12% increase in dielectric constant and a decrease in contact angle from 65° to 47° was observed post e-beam exposure. The modified Gaseous Electronics Conference (mGEC) reference cell was used to deposit DLC films using CH4 and Argon as precursors. Pre and post-anneal structural properties of the deposited thin film were studied using laser excitation of 633 nm in a Jobin Yvon Labram high-resolution micro-Raman spectrometer. The film was further characterized using AFM, FTIR, XRD, goniometry and electrical testing. Average film roughness as measured by AFM was less than 1 nm, the k-value was 2.5, and the contact angle with water was 42°. Lastly, layered dielectric films comprising of Diamond like Carbon (DLC) and Amorphous Fluorocarbon (a:C-F) were generated using three different stack configurations and subsequently evaluated. Seven unique process conditions generated promising stacks with k-values between 1.69 and 1.95. Of these, only one film exhibited very low shrinkage rates acceptable for semiconductor device processing. Annealed a:C-F films with DLC top coat are similar in bonding structure to as deposited FC films proving that DLC deposition significantly modified the bonding structure of the underlying annealed a:C-F film. Stacks comprised of a:C-F films with higher oxygen content, deposited using high FRRs exhibited both macro and microbuckling to a larger degree and extent. Film integrity was preserved by annealing the Fluorocarbon component or by providing a DLC base coat.

  4. Life Prediction of Fretting Fatigue with Advanced Surface Treatments (Preprint)

    DTIC Science & Technology

    2006-05-01

    surfaces and not the fretting pads. The chosen coatings included DLC, Ni-B, Molybdenum, and Nitride. These 4 coatings, their application to the titanium ...Article Preprint 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 4 . TITLE AND SUBTITLE LIFE PREDICTION OF FRETTING FATIGUE WITH ADVANCED SURFACE...TREATMENTS (PREPRINT) 5c. PROGRAM ELEMENT NUMBER N/A 5d. PROJECT NUMBER M02R 5e. TASK NUMBER 30 6 . AUTHOR(S) Patrick J. Golden and Michael

  5. Interfaces - Weak Links, Yet Great Opportunities

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Dimofte, Florin; Chupp, Raymond E.; Steinetz, Bruce M.

    2011-01-01

    Inadequate turbomachine interface design can rapidly degrade system performance, yet provide great opportunity for improvements. Engineered coatings of seals and bearing interfaces are major issues in the operational life of power systems. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining component life. Interface coatings, like lubricants, are sacrificial for the benefit of the component. Bearing and sealing surfaces are routinely protected by tribologically paired coatings such as silicon diamond like coatings (SiDLC) in combination with an oil lubricated wave bearing that prolongs bearing operational life. Likewise, of several methods used or researched for detecting interface failures, dopants within coatings show failures in functionally graded ceramic coatings. The Bozzolo-Ferrante-Smith (BFS) materials models and quantum mechanical tools, employed in interface design, are discussed.

  6. Failure mechanism of coated biomaterials under high impact-sliding contact stresses

    NASA Astrophysics Data System (ADS)

    Chen, Ying

    This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support to coating better and a ductile and adhesive interface layer can delay the cracked coating from peeled-off.

  7. Prediction Surface Morphology of Nanostructure Fabricated by Nano-Oxidation Technology.

    PubMed

    Huang, Jen-Ching; Chang, Ho; Kuo, Chin-Guo; Li, Jeen-Fong; You, Yong-Chin

    2015-12-04

    Atomic force microscopy (AFM) was used for visualization of a nano-oxidation technique performed on diamond-like carbon (DLC) thin film. Experiments of the nano-oxidation technique of the DLC thin film include those on nano-oxidation points and nano-oxidation lines. The feature sizes of the DLC thin film, including surface morphology, depth, and width, were explored after application of a nano-oxidation technique to the DLC thin film under different process parameters. A databank for process parameters and feature sizes of thin films was then established, and multiple regression analysis (MRA) and a back-propagation neural network (BPN) were used to carry out the algorithm. The algorithmic results are compared with the feature sizes acquired from experiments, thus obtaining a prediction model of the nano-oxidation technique of the DLC thin film. The comparative results show that the prediction accuracy of BPN is superior to that of MRA. When the BPN algorithm is used to predict nano-point machining, the mean absolute percentage errors (MAPE) of depth, left side, and right side are 8.02%, 9.68%, and 7.34%, respectively. When nano-line machining is being predicted, the MAPEs of depth, left side, and right side are 4.96%, 8.09%, and 6.77%, respectively. The obtained data can also be used to predict cross-sectional morphology in the DLC thin film treated with a nano-oxidation process.

  8. Loosening torque of Universal Abutment screws after cyclic loading: influence of tightening technique and screw coating.

    PubMed

    Bacchi, Atais; Regalin, Alexandre; Bhering, Claudia Lopes Brilhante; Alessandretti, Rodrigo; Spazzin, Aloisio Oro

    2015-10-01

    The purpose of this study was to evaluate the influence of tightening technique and the screw coating on the loosening torque of screws used for Universal Abutment fixation after cyclic loading. Forty implants (Titamax Ti Cortical, HE, Neodent) (n=10) were submerged in acrylic resin and four tightening techniques for Universal Abutment fixation were evaluated: A - torque with 32 Ncm (control); B - torque with 32 Ncm holding the torque meter for 20 seconds; C - torque with 32 Ncm and retorque after 10 minutes; D - torque (32 Ncm) holding the torque meter for 20 seconds and retorque after 10 minutes as initially. Samples were divided into subgroups according to the screw used: conventional titanium screw or diamond like carbon-coated (DLC) screw. Metallic crowns were fabricated for each abutment. Samples were submitted to cyclic loading at 10(6) cycles and 130 N of force. Data were analyzed by two-way ANOVA and Tukey's test (5%). The tightening technique did not show significant influence on the loosening torque of screws (P=.509). Conventional titanium screws showed significant higher loosening torque values than DLC (P=.000). The use of conventional titanium screw is more important than the tightening techniques employed in this study to provide long-term stability to Universal Abutment screws.

  9. Exploring the low friction of diamond-like carbon films in carbon dioxide atmosphere by experiments and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Huo, Lei; Wang, Shunhua; Pu, Jibin; Sun, Junhui; Lu, Zhibin; Ju, Pengfei; Wang, Liping

    2018-04-01

    The friction behavior and the mechanism of DLC films in CO2 atmosphere are rarely explored, which is a significant obstacle for the potential practical application of DLC films in primarily CO2 environment. Here, the experiments and first-principles calculations are performed to simultaneously investigate this theme. We find that DLC films in CO2 atmosphere exhibit astoundingly low friction coefficient compared with in ambient air and vacuum atmospheres. The XPS and Raman spectrums demonstrate the possibly activation of CO2 molecule in the shearing interfaces, which may be critical for the low friction of DLC films in CO2 atmosphere. The calculated results reveal that the lactone groups can easily form during the horizontally chemisorption of CO2 molecule on the DLC surface, which is energetic and is a favorable process under the interfacial stress. Because of the presence of the lone-pairs of the lactone group, the lactone-terminated surfaces appear to be responsible for the low friction of DLC films in CO2 atmosphere. The studies may open up the possibility for DLC films usage in Mars applications.

  10. Biocompatibility and Inflammatory Potential of Titanium Alloys Cultivated with Human Osteoblasts, Fibroblasts and Macrophages

    PubMed Central

    Markhoff, Jana; Krogull, Martin; Schulze, Christian; Rotsch, Christian; Hunger, Sandra; Bader, Rainer

    2017-01-01

    The biomaterials used to maintain or replace functions in the human body consist mainly of metals, ceramics or polymers. In orthopedic surgery, metallic materials, especially titanium and its alloys, are the most common, due to their excellent mechanical properties, corrosion resistance, and biocompatibility. Aside from the established Ti6Al4V alloy, shape memory materials such as nickel-titanium (NiTi) have risen in importance, but are also discussed because of the adverse effects of nickel ions. These might be reduced by specific surface modifications. In the present in vitro study, the osteoblastic cell line MG-63 as well as primary human osteoblasts, fibroblasts, and macrophages were cultured on titanium alloys (forged Ti6Al4V, additive manufactured Ti6Al4V, NiTi, and Diamond-Like-Carbon (DLC)-coated NiTi) to verify their specific biocompatibility and inflammatory potential. Additive manufactured Ti6Al4V and NiTi revealed the highest levels of metabolic cell activity. DLC-coated NiTi appeared as a suitable surface for cell growth, showing the highest collagen production. None of the implant materials caused a strong inflammatory response. In general, no distinct cell-specific response could be observed for the materials and surface coating used. In summary, all tested titanium alloys seem to be biologically appropriate for application in orthopedic surgery. PMID:28772412

  11. Biocompatibility and Inflammatory Potential of Titanium Alloys Cultivated with Human Osteoblasts, Fibroblasts and Macrophages.

    PubMed

    Markhoff, Jana; Krogull, Martin; Schulze, Christian; Rotsch, Christian; Hunger, Sandra; Bader, Rainer

    2017-01-10

    The biomaterials used to maintain or replace functions in the human body consist mainly of metals, ceramics or polymers. In orthopedic surgery, metallic materials, especially titanium and its alloys, are the most common, due to their excellent mechanical properties, corrosion resistance, and biocompatibility. Aside from the established Ti6Al4V alloy, shape memory materials such as nickel-titanium (NiTi) have risen in importance, but are also discussed because of the adverse effects of nickel ions. These might be reduced by specific surface modifications. In the present in vitro study, the osteoblastic cell line MG-63 as well as primary human osteoblasts, fibroblasts, and macrophages were cultured on titanium alloys (forged Ti6Al4V, additive manufactured Ti6Al4V, NiTi, and Diamond-Like-Carbon (DLC)-coated NiTi) to verify their specific biocompatibility and inflammatory potential. Additive manufactured Ti6Al4V and NiTi revealed the highest levels of metabolic cell activity. DLC-coated NiTi appeared as a suitable surface for cell growth, showing the highest collagen production. None of the implant materials caused a strong inflammatory response. In general, no distinct cell-specific response could be observed for the materials and surface coating used. In summary, all tested titanium alloys seem to be biologically appropriate for application in orthopedic surgery.

  12. Loosening torque of Universal Abutment screws after cyclic loading: influence of tightening technique and screw coating

    PubMed Central

    Regalin, Alexandre; Bhering, Claudia Lopes Brilhante; Alessandretti, Rodrigo; Spazzin, Aloisio Oro

    2015-01-01

    PURPOSE The purpose of this study was to evaluate the influence of tightening technique and the screw coating on the loosening torque of screws used for Universal Abutment fixation after cyclic loading. MATERIALS AND METHODS Forty implants (Titamax Ti Cortical, HE, Neodent) (n=10) were submerged in acrylic resin and four tightening techniques for Universal Abutment fixation were evaluated: A - torque with 32 Ncm (control); B - torque with 32 Ncm holding the torque meter for 20 seconds; C - torque with 32 Ncm and retorque after 10 minutes; D - torque (32 Ncm) holding the torque meter for 20 seconds and retorque after 10 minutes as initially. Samples were divided into subgroups according to the screw used: conventional titanium screw or diamond like carbon-coated (DLC) screw. Metallic crowns were fabricated for each abutment. Samples were submitted to cyclic loading at 106 cycles and 130 N of force. Data were analyzed by two-way ANOVA and Tukey's test (5%). RESULTS The tightening technique did not show significant influence on the loosening torque of screws (P=.509). Conventional titanium screws showed significant higher loosening torque values than DLC (P=.000). CONCLUSION The use of conventional titanium screw is more important than the tightening techniques employed in this study to provide long-term stability to Universal Abutment screws. PMID:26576253

  13. Optical and Scratch Resistant Properties of Diamondlike Carbon Films Deposited with Single and Dual Ion Beams

    NASA Technical Reports Server (NTRS)

    Kussmaul, Michael T.; Bogdanski, Michael S.; Banks, Bruce A.; Mirtich, Michael J.

    1993-01-01

    Amorphous diamond-like carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance, frictional, and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries.

  14. Optical and scratch resistant properties of diamondlike carbon films deposited with single and dual ion beams

    NASA Technical Reports Server (NTRS)

    Kussmaul, Michael T.; Bogdanski, Michael S.; Banks, Bruce A.; Mirtich, Michael J.

    1993-01-01

    Amorphous diamondlike carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance and frictional and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries.

  15. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells

    PubMed Central

    Gao, Yuanfang; Chen, Xiaohui; Gupta, Sanju; Gillis, Kevin D.; Gangopadhyay, Shubhra

    2008-01-01

    Carbon electrodes are widely used in electrochemistry due to their low cost, wide potential window, and low and stable background noise. Carbon-fiber electrodes (CFE) are commonly used to electrochemically measure “quantal” catecholamine release via exocytosis from individual cells, but it is difficult to integrate CFEs into lab-on-a-chip devices. Here we report the development of nitrogen doped diamond-like carbon (DLC:N) microelectrodes on a chip to monitor quantal release of catecholamines from cells. Advantages of DLC:N microelectrodes are that they are batch producible at low cost, and are harder and more durable than graphite films. The DLC:N microelectrodes were prepared by a magnetron sputtering process with nitrogen doping. The 30 μm by 40 μm DLC:N microelectrodes were patterned onto microscope glass slides by photolithography and lift-off technology. The properties of the DLC:N microelectrodes were characterized by AFM, Raman spectroscopy and cyclic voltammetry. Quantal catecholamine release was recorded amperometrically from bovine adrenal chromaffin cells on the DLC:N microelectrodes. Amperometric spikes due to quantal release of catecholamines were similar in amplitude and area as those recorded using CFEs and the background current and noise levels of microchip DLC:N electrodes were also comparable to CFEs. Therefore, DLC:N microelectrodes are suitable for microchip-based high-throughput measurement of quantal exocytosis with applications in basic research, drug discovery and cell-based biosensors. PMID:18493856

  16. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Nichols, F.A.; Pan, X.Z.

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 {mu}m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature {approx} 22{plus_minus}1{degrees}C, and humidity, {approx} 30{plus_minus}5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 to 0.9 andmore » the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10{sup {minus}5} mm{sup 3}/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.« less

  17. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Nichols, F.A.; Pan, X.Z.

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 [mu]m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature [approx] 22[plus minus]1[degrees]C, and humidity, [approx] 30[plus minus]5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 tomore » 0.9 and the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10[sup [minus]5] mm[sup 3]/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.« less

  18. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Jones, B. J.; Nelson, N.

    2016-10-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp2/sp3 ratio (graphitic/diamond-like bonding ratio) and sp2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions.

  19. Characterization of Diamond-like Carbon (DLC) films deposited by RF ICP PECVD method

    NASA Astrophysics Data System (ADS)

    Oleszkiewicz, Waldemar; Kijaszek, Wojciech; Gryglewicz, Jacek; Zakrzewski, Adrian; Gajewski, Krzysztof; Kopiec, Daniel; Kamyczek, Paulina; Popko, Ewa; Tłaczała, Marek

    2013-07-01

    The work presents the results of a research carried out with Plasmalab Plus 100 system, manufactured by Oxford Instruments Company. The system was configured for deposition of diamond-like carbon films by ICP PECVD method. The deposition processes were carried out in CH4 or CH4/H2 atmosphere and the state of the plasma was investigated by the OES method. The RF plasma was capacitively coupled by 13.56 MHz generator with supporting ICP generator (13.56 Mhz). The deposition processes were conducted in constant value of RF generator's power and resultant value of the DC Bias. The power values of RF generator was set at 70 W and the power values of ICP generator was set at 300 W. In this work we focus on the influence of DLC film's thickness on optical, electrical and structural properties of the deposited DLC films. The quality of deposited DLC layers was examined by the Raman spectroscopy, AFM microscopy and spectroscopic ellipsometry. In the investigated DLC films the calculated sp3 content was ranging from 60 % to 70 %. The films were characterized by the refractive index ranging from 2.03 to 2.1 and extinction coefficient ranging from 0.09 to 0.12.

  20. High performance diamond-like carbon layers obtained by pulsed laser deposition for conductive electrode applications

    NASA Astrophysics Data System (ADS)

    Stock, F.; Antoni, F.; Le Normand, F.; Muller, D.; Abdesselam, M.; Boubiche, N.; Komissarov, I.

    2017-09-01

    For the future, one of the biggest challenge faced to the technologies of flat panel display and various optoelectronic and photovoltaic devices is to find an alternative to the use of transparent conducting oxides like ITO. In this new approach, the objective is to grow high conductive thin-layer graphene (TLG) on the top of diamond-like carbon (DLC) layers presenting high performance. DLC prepared by pulsed laser deposition (PLD) have attracted special interest due to a unique combination of their properties, close to those of monocrystalline diamond, like its transparency, hardness and chemical inertia, very low roughness, hydrogen-free and thus high thermal stability up to 1000 K. In our future work, we plane to explore the synthesis of conductive TLG on top of insulating DLC thin films. The feasibility and obtained performances of the multi-layered structure will be explored in great details in the short future to develop an alternative to ITO with comparable performance (conductivity of transparency). To select the best DLC candidate for this purpose, we focus this work on the physicochemical properties of the DLC thin films deposited by PLD from a pure graphite target at two wavelengths (193 and 248 nm) at various laser fluences. A surface graphenization process, as well as the required efficiency of the complete structure (TLG/DLC) will clearly be related to the DLC properties, especially to the initial sp3/sp2 hybridization ratio. Thus, an exhaustive description of the physicochemical properties of the DLC layers is a fundamental step in the research of comparable performance to ITO.

  1. Mechanical and tribological properties of gradient a-C:H/Ti coatings

    NASA Astrophysics Data System (ADS)

    Batory, D.; Szymański, W.; Cłapa, M.

    2013-08-01

    The unusual combination of high hardness and very low friction coefficient are the most attractive tribological parameters of DLC (diamond-like carbon) layers. However, their usability is strongly restricted by the limited thickness due to high residual stress. The main goal of the presented work was to obtain thick, wear resistant and well adherent DLC layers while keeping their perfect friction parameters. As a proposed solution a Ti-Ti x C y gradient layer was manufactured as the adhesion improving interlayer followed by a thick diamond-like carbon film. This kind of combination seems to be very promising for many applications, where dry friction conditions for highly loaded elements can be observed. Both layers were obtained in one process using a hybrid deposition system combining PVD and CVD techniques in one reaction chamber. The investigation was performed on nitrided samples made from X53CrMnNiN21-9 valve steel. Structural features, surface topography, tribological and mechanical properties of manufactured layers were evaluated. The results of the investigation confirmed that the presented deposition technique makes it possible to manufacture thick and well adherent carbon layers with high hardness and very good tribological parameters. Preliminary investigation results prove the possibility of application of presented technology in automotive industry.

  2. Coatings and surface treatments for enhanced performance suspensions for future gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Birney, R.; Cumming, A. V.; Campsie, P.; Gibson, D.; Hammond, G. D.; Hough, J.; Martin, I. W.; Reid, S.; Rowan, S.; Song, S.; Talbot, C.; Vine, D.; Wallace, G.

    2017-12-01

    Further improvements in the low frequency sensitivity of gravitational wave detectors are important for increasing the observable population of astrophysical sources, such as intermediate mass compact black hole binary systems. Improvements in the lower stage mirror and suspension systems will set challenging targets for the required thermal noise performance of the cantilever blade springs, which provide vertical softness and, thus, isolation to the mirror suspension stack. This is required due to the coupling between the vertical and horizontal axes due to the curvature of the Earth. This can be achieved through use of high mechanical Q materials, which are compatible with cryogenic cooling, such as crystalline silicon. However, such materials are brittle, posing further challenges for assembly/jointing and, more generally, for long-term robustness. Here, we report on experimental studies of the breaking strength of silicon at room temperature, via both tensile and 4-point flexural testing; and on the effects of various surface treatments and coatings on durability and strength. Single- and multi-layer DLC (diamond-like carbon) coatings, together with magnetron-sputtered silica and thermally-grown silica, are investigated, as are the effects of substrate preparation and argon plasma pre-treatment. Application of single- or multi-layer DLC coatings can significantly improve the failure stress of silicon flexures, in addition to improved robustness for handling (assessed through abrasion tests). Improvements of up to 80% in tensile strength, a twofold increase in flexural strength, in addition to a 6.4 times reduction in the vertical thermal noise contribution of the suspension stack at 10 Hz are reported (compared to current Advanced LIGO design). The use of silicon blade springs would also significantly reduce potential ‘crackling noise’ associated with the underlying discrete events associated with plastic deformation in loaded flexures.

  3. Hepatitis B core protein promotes liver cancer metastasis through miR-382-5p/DLC-1 axis.

    PubMed

    Du, Juan; Bai, Fuxiang; Zhao, Peiqing; Li, Xiaoyan; Li, Xueen; Gao, Lifen; Ma, Chunhong; Liang, Xiaohong

    2018-01-01

    The hepatitis B virus core protein (HBc), also named core antigen, is well-known for its key role in viral capsid formation and virus replication. Recently, studies showed that HBc has the potential to control cell biology activity by regulating host gene expression. Here, we utilized miRNA microarray to identify 24 upregulated miRNAs and 21 downregulated miRNAs in HBc-expressed HCC cells, which were involved in multiple biological processes, including cell motility. Consistently, the in vitro transwell assay and the in vivo tail-vein injection model showed HBc promotion on HCC metastasis. Further, the miRNA-target gene network analysis displayed that the deleted in liver cancer (DLC-1) gene, an important negative regulator for cell motility, was potentially targeted by several differentially expressed miRNAs in HBc-introduced cells. Introduction of miRNAs mimics or inhibitors and 3'UTR luciferase activity assay proved that miR-382-5p efficiently suppressed DLC-1 expression and its 3'-UTR luciferase reporter activity. Importantly, cotransfection of miR-382-5p mimics/inhibitors and the DLC-1 expression vector almost abrogated HBc promotion on cell motility, indicating that the miR-382-5p/DLC-1 axis is important for mediating HBc-enhanced HCC motility. Clinical HCC samples also showed a negative correlation between miR-382-5p and DLC-1 expression level. Furthermore, HBc-positive HCC tissues showed high miR-382-5p level and reduced DLC-1 expression. In conclusion, our findings revealed that HBc promoted HCC motility by regulating the miR-382-5p/DLC-1 axis, which might provide a novel target for clinical diagnosis and treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Report on the workshop on Ion Implantation and Ion Beam Assisted Deposition

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1992-03-01

    This workshop was organized by the Corpus Christi Army Depot (CCAD), the major helicopter repair base within AVSCOM. Previous meetings had revealed a strong interest throughout DoD in ion beam technology as a means of extending the service life of military systems by reducing wear, corrosion, fatigue, etc. The workshop opened with an account by Dr. Bruce Sartwell of the successful application of ion implantation to bearings and gears at NRL, and the checkered history of the MANTECH Project at Spire Corporation. Dr. James Hirvonen (AMTL) continued with a summary of successful applications to reduce wear in biomedical components, and he also described the processes of ion beam-assisted deposition (IBAD) for a variety of protective coatings, including diamond-like carbon (DLC).

  5. Nanoindentation data analysis of loading curve performed on DLC thin films: Effect of residual stress on the elasto-plastic properties

    NASA Astrophysics Data System (ADS)

    Ouchabane, M.; Dublanche-Tixier, Ch.; Dergham, D.

    2017-11-01

    The present work is a contribution to the understanding of the mechanical behavior of DLC thin films through nanoindentation tests. DLC films of different thicknesses deposited by the PECVD process on a silicon substrate contain high residual compressive stresses when they are very thin and the stresses become relatively low and more relaxed as the film thickens. These different levels of residual stress influence the values of hardness (H) and Young's modulus (E) obtained when probing the film-substrate system by nanoindentation. It is observed that the DLC layers exhibit different mechanical behaviors even when they are deposited under the same conditions. It is proposed that the compressive stress induces structural modifications resulting in modifying the elasto-plastic properties of each thin film-substrate system. Data analysis of the loading curve can provide information on the elasto-plastic properties of DLC thin films, particularly the stiffness (S) and Er2/H, as a function of residual compressive stresses. The structural changes induced by residual stresses were probed by using Raman spectroscopy and correlated to the mechanical properties.

  6. Characterisation of DLC films deposited using titanium isopropoxide (TIPOT) at different flow rates.

    PubMed

    Said, R; Ali, N; Ghumman, C A A; Teodoro, O M N D; Ahmed, W

    2009-07-01

    In recent years, there has been growing interest in the search for advanced biomaterials for biomedical applications, such as human implants and surgical cutting tools. It is known that both carbon and titanium exhibit good biocompatibility and have been used as implants in the human body. It is highly desirable to deposit biocompatible thin films onto a range of components in order to impart biocompatibility and to minimise wear in implants. Diamond like carbon (DLC) is a good candidate material for achieving biocompatibility and low wear rates. In this study, thin films of diamond-like-carbon DLC were deposited onto stainless steel (316) substrates using C2H2, argon and titanium isopropoxide (TIPOT) precursors. Argon was used to generate the plasma in the plasma enhanced vapour deposition (PECVD) system. A critical coating feature governing the performance of the component during service is film thickness. The as-grown films were in the thickness range 90-100 nm and were found to be dependent on TIPOT flow rate. Atomic force microscopy (AFM) was used to characterise the surface roughness of the samples. As the flow rate of TIPOT increased the average roughness was found to increase in conjunction with the film thickness. Raman spectroscopy was used to investigate the chemical structure of amorphous carbon matrix. Surface tension values were calculated using contact angle measurements. In general, the trend of the surface tension results exhibited an opposite trend to that of the contact angle. The elemental composition of the samples was characterised using a VG ToF SIMS (IX23LS) instrument and X-ray photoelectron spectroscopy (XPS). Surprisingly, SIMS and XPS results showed that the DLC samples did not show evidence of titanium since no peaks representing to titanium appeared on the SIMS/XPS spectra.

  7. Friction behavior of a multi-interface system and improved performance by AlMgB 14–TiB 2–C and diamond-like-carbon coatings

    DOE PAGES

    Qu, Jun; Blau, Peter J.; Higdon, Clifton; ...

    2016-03-29

    We investigated friction behavior of a bearing system with two interfaces involved: a roller component experiencing rolling–sliding interaction against twin cylinders under point contacts while simultaneously undergoing pure sliding interaction against a socket under a conformal contact. Lubrication modeling predicted a strong correlation between the roller's rolling condition and the system's friction behavior. Experimental observations first validated the analytical predictions using steel and iron components. Diamond-like-carbon (DLC) coating and AlMgB 14–TiB 2 coating with a carbon topcoat (BAMC) were then applied to the roller and twin cylinders, respectively. In conclusion, testing and analysis results suggest that the coatings effectively decreasedmore » the slip ratio for the roller–cylinder contact and the sliding friction at both bearing interfaces and, as a result, significantly reduced the system frictional torque.« less

  8. Desloratadine citrate disodium injection, a potent histamine H(1) receptor antagonist, inhibits chemokine production in ovalbumin-induced allergic rhinitis guinea pig model and histamine-induced human nasal epithelial cells via inhibiting the ERK1/2 and NF-kappa B signal cascades.

    PubMed

    Chen, Meiling; Xu, Shuhong; Zhou, Peipei; He, Guangwei; Jie, Qiong; Wu, Yulin

    2015-11-15

    Chemokines have chemotactic properties on leukocyte subsets whose modulation plays a pivotal role in allergic inflammatory processes. Our present study was designed to investigate the anti-allergic and anti-inflammatory properties of desloratadine citrate disodium injection (DLC) and elucidate the molecular mechanisms of its anti-inflammatory properties. The anti-allergic effects of DLC were evaluated based on allergic symptoms, serological marker production and histological changes of the nasal mucosa in guinea pigs model of allergic rhinitis. The anti-inflammatory properties and molecular mechanisms of DLC were explored by studying the regulation of a set of chemokines and extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) pathways, after DLC treatment in guinea pigs model of allergic rhinitis in vivo and histamine-activated human nasal epithelial cells (HNECs) in vitro. In vivo model in guinea pigs, DLC alleviated the rhinitis symptoms, inhibited inflammatory cells infiltration in nasal lavage fluid (NLF) and histamine, monocyte chemotactic protein (MCP)-1, regulated on activation normal T cell expressed, and presumably secreted (RANTEs) and interleukin (IL)-8 release in sera and P-ERK1/2 and NF-κB activation in nasal mucosa. In vitro, DLC markedly inhibited histamine-induced production of MCP-1, RANTEs and IL-8 and suppressed c-Raf, mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) and ERK1/2 activation in HNECs. These results provide evidence that DLC possesses potent anti-allergic and anti-inflammatory properties. The mechanism of action underlying DLC in allergic inflammation appears to be inhibition of the phosphorylation of ERK1/2, in addition to blocking of the NF-κB pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A Morlet wavelet signal analysis with a Daubechies filter for the wear assessment of hip prostheses coated with diamond-like carbon by triboadhesion.

    PubMed

    Rodríguez-Lelis, Jose Maria; Mata, Dagoberto Tolosa; Vargas-Treviño, Marciano; Navarro-Torres, Jose; Piña-Piña, Gilberto; Abundez-Pliego, Arturo

    2010-08-01

    In the present work, based on high frequency wavelet analysis of dynamic signals of mechanical systems, a multiple-resolution wavelet analysis is carried out, to the signal obtained from an accelerometer mounted on the structure of a hip prosthesis wearing test device. The prostheses employed had a femoral head made of aluminum oxide and the acetabular cup of ultra-high-molecular-weight polyethylene. The first two aluminum oxide femoral heads were coated with diamond-like carbon and a third one was tested without coating and used as a reference. The coating was carried out by triboadhesion. Tests results showed that maximum vibration amplitude reached after 32 hr for the coated prostheses was 0.2 g. The noncoated prosthesis amplitude presented was 0.75 g in the same time interval. These values were attributed to wear damage on the surface of the prostheses, indicating that thin film DLC coating caused an increase of stiffness on the surface and therefore an increase in wear resistance approximately of 314%.

  10. Friction and wear performance of bearing ball sliding against diamond-like carbon coatings

    NASA Astrophysics Data System (ADS)

    Wu, Shenjiang; Kousaka, Hiroyuki; Kar, Satyananda; Li, Dangjuan; Su, Junhong

    2017-01-01

    We have studied the tribological properties of bearing steel ball (Japan standard, SUJ2) sliding against tetrahedral amorphous carbon (ta-C) coatings and amorphous hydrogenated carbon (a-C:H) coatings. The reciprocating sliding testes are performed with ball-on-plate friction tester in ambient air condition. Analysis of friction coefficient, wear volume and microstructure in wear scar are carried out using optical microscopy, atom force morphology (AFM) and Raman spectroscopy. The results show the SUJ2 on ta-C coating has low friction coefficient (around 0.15) but high wear loss. In contrast, the low wear loss of SUJ2 on a-C:H coating with high (around 0.4) and unsteady friction coefficient. Some Fe2O3, FeO and graphitization have been found on the wear scar of SUJ2 sliding against ta-C coating. Nearly no oxide materials exist on the wear scar of SUJ2 against a-C:H coating. The mechanism and hypothesis of the wear behavior have been investigated according to the measurement results. This study will contribute to proper selection and understand the tribological performance of bearing steels against DLC coatings.

  11. Diamond and Carbon Nanotube Composites for Supercapacitor Devices

    NASA Astrophysics Data System (ADS)

    Moreira, João Vitor Silva; May, Paul William; Corat, Evaldo José; Peterlevitz, Alfredo Carlos; Pinheiro, Romário Araújo; Zanin, Hudson

    2017-02-01

    We report on the synthesis and electrochemical properties of diamond grown onto vertically aligned carbon nanotubes with high surface areas as a template, resulting in a composite material exhibiting high double-layer capacitance as well as low electrochemical impedance electrodes suitable for applications as supercapacitor devices. We contrast results from devices fabricated with samples which differ in both their initial substrates (Si and Ti) and their final diamond coatings, such as boron-doped diamond and diamond-like carbon (DLC). We present for first time a conducting model for non-doped DLC thin-films. All samples were characterized by scanning and transmission electron microscopy and Fourier transform infrared and Raman spectroscopy. Our results show specific capacitance as high as 8.25 F g-1 (˜1 F cm-2) and gravimetric specific energy and power as high as 0.7 W h kg-1 and 176.4 W kg-1, respectively, which suggest that these diamond/carbon nanotube composite electrodes are excellent candidates for supercapacitor fabrication.

  12. Antibacterial and Tribological Performance of Carbonitride Coatings Doped with W, Ti, Zr, or Cr Deposited on AISI 316L Stainless Steel

    PubMed Central

    Yao, Sun-Hui; Su, Yen-Liang; Lai, Yu-Cheng

    2017-01-01

    Carbonitride (CNx) coatings have existed for several decades but are not well understood. Related studies have indicated that CNx coatings exhibit behaviors comparable to diamond-like carbon (DLC) coatings. Metal-doped CNx coatings are expected to show superior performance to single CNx coatings. In this study, a CNx coating and a group of CNx coatings with 6 at. % metal doping (W, Ti, Zr, or Cr) were prepared on biograde AISI 316L stainless steel (SS316L) substrates, and they were then characterized and studied for antibacterial and wear performance. The microstructure, constituent phase, nanohardness, adhesion, surface roughness, and contact angle were evaluated. The antimicrobial test used Staphylococcus aureus and followed the Japanese Industrial Standard JIS Z 2801:2010. Finally, the wear behavior was assessed. The results showed that the CNx coating was a composite of amorphous CNx and amorphous C structures. The metal doping caused crystalline metal carbides/nitrides to form in the CNx coatings, which weakened their overall integrity. All the coatings showed antimicrobial ability for the SS316L samples. The CNx-Zr coating, the surface of which had the highest hydrophilicity, produced the best antibacterial performance. However, the CNx-Zr coating showed lower wear resistance than the CNx-W and CNx-Ti coatings. The CNx-Ti coating with a highly hydrophilic surface exhibited the lowest antibacterial ability. PMID:29039782

  13. Effects of CPII implantation on the characteristics of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Chen, Ya-Chi; Weng, Ko-Wei; Chao, Ching-Hsun; Lien, Shui-Yang; Han, Sheng; Chen, Tien-Lai; Lee, Ying-Chieh; Shih, Han-Chang; Wang, Da-Yung

    2009-05-01

    A diamond-like carbon film (DLC) was successfully synthesized using a hybrid PVD process, involving a filter arc deposition source (FAD) and a carbon plasma ion implanter (CPII). A quarter-torus plasma duct filter markedly reduced the density of the macro-particles. Graphite targets were used in FAD. Large electron and ion energies generated from the plasma duct facilitate the activation of carbon plasma and the deposition of high-quality DLC films. M2 tool steel was pre-implanted with 45 kV carbon ions before the DLC was deposited to enhance the adhesive and surface properties of the film. The ion mixing effect, the induction of residual stress and the phase transformation at the interface were significantly improved. The hardness of the DLC increased to 47.7 GPa and 56.5 GPa, and the wear life was prolonged to over 70 km with implantation fluences of 1 × 10 17 ions/cm 2 and 2 × 10 17 ions/cm 2, respectively.

  14. Cora rotary pump for implantable left ventricular assist device: biomaterial aspects.

    PubMed

    Montiès, J R; Dion, I; Havlik, P; Rouais, F; Trinkl, J; Baquey, C

    1997-07-01

    Our group is developing a left ventricular assist device based on the principle of the Maillard-Wankel rotative compressor: it is a rotary, not centrifugal, pump that produces a pulsatile flow. Stringent requirements have been defined for construction materials. They must be light, yet sufficiently hard and rigid, and able to be machined with high precision. The friction coefficient must be low and the wear resistance high. The materials must be chemically inert and not deformable. Also, the materials must be biocompatible, and the blood contacting surface must be hemocompatible. We assessed the materials in terms of physiochemistry, mechanics, and tribology to select the best for hemocompatibility (determined by studies of protein adsorption; platelet, leukocyte, and red cell retention; and hemolysis, among other measurements) and biocompatibility (determined by measurement of complement activation and toxicity, among other criteria). Of the materials tested, for short- and middle-term assistance, we chose titanium alloy (Ti6Al4V) and alumina ceramic (Al2O3) and for long-term and permanent use, composite materials (TiN coating on graphite). We saw that the polishing process of the substrate must be improved. For the future, the best coating material would be diamond-like carbon (DLC) or crystalline diamond coating.

  15. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    NASA Astrophysics Data System (ADS)

    Hatada, R.; Flege, S.; Bobrich, A.; Ensinger, W.; Dietz, C.; Baba, K.; Sawase, T.; Watamoto, T.; Matsutani, T.

    2014-08-01

    Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C2H4 plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C2H4 was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria.

  16. Lubrication by Diamond and Diamondlike Carbon Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1997-01-01

    Regardless of environment (ultrahigh vacuum, humid air, dry nitrogen, or water), ion-beam-deposited diamondlike carbon (DLC) and nitrogen-ion-implanted, chemical-vapor-deposited (CVD) diamond films had low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6)cu mm/N(dot)m). These films can be used as effective wear-resistant, self-lubricating coatings regardless of environment. On the other hand, as-deposited, fine-grain CVD diamond films; polished, coarse-grain CVD diamond films; and polished and then fluorinated, coarse-grain CVD diamond films can be used as effective wear-resistant, self-lubricating coatings in humid air, in dry nitrogen, and in water, but they had a high coefficient of friction and a high wear rate in ultrahigh vacuum. The polished, coarse-grain CVD diamond film revealed an extremely low wear rate, far less than 10(exp 10) cu mm/N(dot)m, in water.

  17. Removal of DLC film on polymeric materials by low temperature atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kobayashi, Daichi; Tanaka, Fumiyuki; Kasai, Yoshiyuki; Sahara, Junki; Asai, Tomohiko; Hiratsuka, Masanori; Takatsu, Mikio; Koguchi, Haruhisa

    2017-10-01

    Diamond-like carbon (DLC) thin film has various excellent functions. For example, high hardness, abrasion resistance, biocompatibility, etc. Because of these functionalities, DLC has been applied in various fields. Removal method of DLC has also been developed for purpose of microfabrication, recycling the substrate and so on. Oxygen plasma etching and shot-blast are most common method to remove DLC. However, the residual carbon, high cost, and damage onto the substrate are problems to be solved for further application. In order to solve these problems, removal method using low temperature atmospheric pressure plasma jet has been developed in this work. The removal effect of this method has been demonstrated for DLC on the SUS304 substrate. The principle of this method is considered that oxygen radical generated by plasma oxidize carbon constituting the DLC film and then the film is removed. In this study, in order to widen application range of this method and to understand the mechanism of film removal, plasma irradiation experiment has been attempted on DLC on the substrate with low heat resistance. The DLC was removed successfully without any significant thermal damage on the surface of polymeric material.

  18. EVAHEART: an implantable centrifugal blood pump for long-term circulatory support.

    PubMed

    Yamazaki, Kenji; Kihara, Shinichiro; Akimoto, Takehide; Tagusari, Osamu; Kawai, Akihiko; Umezu, Mitsuo; Tomioka, Jun; Kormos, Robert L; Griffith, Bartley P; Kurosawa, Hiromi

    2002-11-01

    We developed "EVAHEART": a compact centrifugal blood pump system as an implantable left ventricular assist device for long-term circulatory support. The 55 x 64 mm pump is made from pure titanium, and weighs 370 g. The entire blood-contacting surface is covered with an anti-thrombogenic coating of diamond like carbon (DLC) or 2-methacryloyloxyethyl phosphorylcholine (MPC) to improve blood compatibility. Flows exceeding 12 L/min against 100 mmHg pressure at 2600 rpm was measured. A low-temperature mechanical seal with recirculating cooling system is used to seal the shaft. EVAHEART demonstrated an acceptably low hemolysis rate with normalized index of hemolysis of 0.005 +/- 0.002 g/100L. We evaluated the pump in long-term in-vivo experiments with seven calves. Via left thoracotomy, we conducted left ventricular apex-descending aorta bypass, placing the pump in the left thoracic cavity. Pump flow rates was maintained at 5-9 L/min, pump power consumption remained stable at 9-10 W in all cases, plasma free Hb levels were less than 15 mg/dl, and the seal system showed good seal capability throughout the experiments. The calves were sacrificed on schedule on postoperative day 200, 222, 142, 90, 151, 155, and 133. No thrombi formed on the blood contacting surface with either the DLC or MPC coating, and no major organ thromboembolisms occurred except for a few small renal infarcts. EVAHEART centrifugal blood pump demonstrated excellent performance in long-term in-vivo experiments.

  19. Dose-dependent cytotoxicity evaluation of graphite nanoparticles for diamond-like carbon film application on artificial joints.

    PubMed

    Liao, T T; Deng, Q Y; Wu, B J; Li, S S; Li, X; Wu, J; Leng, Y X; Guo, Y B; Huang, N

    2017-01-24

    While a diamond-like carbon (DLC)-coated joint prosthesis represents the implant of choice for total hip replacement in patients, it also leads to concern due to the cytotoxicity of wear debris in the form of graphite nanoparticles (GNs), ultimately limiting its clinical use. In this study, the cytotoxicity of various GN doses was evaluated. Mouse macrophages and osteoblasts were incubated with GNs (<30 nm diameter), followed by evaluation of cytotoxicity by means of assessing inflammatory cytokines, results of alkaline phosphatase assays, and related signaling protein expression. Cytotoxicity evaluation showed that cell viability decreased in a dose-dependent manner (10-100 μg ml -1 ), and steeply declined at GNs concentrations greater than 30 μg ml -1 . Noticeable cytotoxicity was observed as the GN dose exceeded this threshold due to upregulated receptor of activator of nuclear factor kB-ligand expression and downregulated osteoprotegerin expression. Meanwhile, activated macrophage morphology was observed as a result of the intense inflammatory response caused by the high doses of GNs (>30 μg ml -1 ), as observed by the increased release of TNF-α and IL-6. The results suggest that GNs had a significant dose-dependent cytotoxicity in vitro, with a lethal dose of 30 μg ml -1 leading to dramatic increases in cytotoxicity. Our GN cytotoxicity evaluation indicates a safe level for wear debris-related arthropathy and could propel the clinical application of DLC-coated total hip prostheses.

  20. Fabrication and electrochemistry characteristics of nickel-doped diamond-like carbon film toward applications in non-enzymatic glucose detection

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Wen; Chen, Wei-En; Sun, Yin Tung Albert; Lin, Chii-Ruey

    2018-04-01

    This research work focused on the fabrication of nickel-doped diamond-like carbon (DLC) films and their characteristics including of surface morphology, microstructure, and electrochemical aiming at applications in non-enzymatic glucose detection. Novel nanodiamond target was employed in unbalanced magnetron radio-frequency co-sputtering process to prepared high quality Ni-doped DLC thin film at room temperature. TEM analysis reveals a highly uniform distribution of Ni crystallites in amorphous carbon matrix with fraction ranged from 3 to 11.5 at.% which is considered as active sites for the glucose detection. Our cyclic voltammetry measurements using 0.1 M H2SO4 solution demonstrated that the as-prepared Ni-doped DLC films possess large electrochemical potential window of 2.12 V, and this was also observed to be significantly reduced at high Ni doping level owing to lower sp3 fraction. The non-enzymatic glucose detection investigation indicates that the Ni-doped DLC thin film electrode prepared under 7 W of DC sputtering power on Ni target possesses good detecting performance, high stability, and high sensitivity to glucose concentration up to 10 mM, even with the existence of uric acid and ascorbic acid. The peak current was observed to be proportional to glucose concentration and scanning rate, demonstrating highly reversibility redox process of the film electrode and glucose.

  1. Preparation and comparative testing of advanced diamond-like carbon foils for tandem accelerators and time-of-flight spectrometers

    NASA Astrophysics Data System (ADS)

    Liechtenstein, V. Kh.; Ivkova, T. M.; Olshanski, E. D.; Baranov, A. M.; Repnow, R.; Hellborg, R.; Weller, R. A.; Wirth, H. L.

    1999-12-01

    The sputter preparation technique for thin diamond-like carbon (DLC) foils, advantageously used for ion-beam stripping and timing in accelerator experiments, has been optimized to improve the quality and the performance of the foils. Irradiation lifetimes of 5 μg/cm 2 DLC foils prepared by this technique have been compared with those for foils of approximately the same thickness, prepared by laser plasma ablation and for ethylene cracked foils when bombarded by 11 MeV Cu - - and Au --ion beams of ˜1 μA beam current at the Heidelberg MP-tandem. Standard carbon arc-evaporated foils were used as references. In these experiments, DLC stripper foils appeared to have a mean lifetime approximately two times longer than ethylene-cracked foils regardless of ion species, and compared favorably with foils prepared by laser ablation method. All these foils lasted at least, 10 times longer than standard carbon foils, when irradiated in the MP terminal. Approximately, the same improvement factor was confirmed with 3 μg/cm 2 DLC stripper foils irradiated with 2.3 MeV Ni-beams at the Pelletron accelerator in Lund. Unlike standard carbon foils, most of the advanced lifetime foils exhibited thinning during long irradiation, under clean vacuum. This suggests that sputtering of the foil by the heavy-ion beam might be a dominant process, responsible for the observed failure of these long-lived strippers. Along with specifically corrugated self-supporting DLC beam strippers, we succeeded in the fabrication of very smooth and ultra thin (˜0.5 μg/cm 2) DLC foils, mounted on grids and used as start foils for the ToF spectrometers applied in ion beam analysis.

  2. p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities.

    PubMed

    Yang, X-Y; Guan, M; Vigil, D; Der, C J; Lowy, D R; Popescu, N C

    2009-03-19

    DLC1 (deleted in liver cancer 1), which encodes a Rho GTPase-activating protein (Rho-GAP), is a potent tumor suppressor gene that is frequently inactivated in several human cancers. DLC1 is a multidomain protein that has been shown previously to bind members of the tensin gene family. Here we show that p120Ras-GAP (Ras-GAP; also known as RASA1) interacts and extensively colocalizes with DLC1 in focal adhesions. The binding was mapped to the SH3 domain located in the N terminus of Ras-GAP and to the Rho-GAP catalytic domain located in the C terminus of the DLC1. In vitro analyses with purified proteins determined that the isolated Ras-GAP SH3 domain inhibits DLC1 Rho-GAP activity, suggesting that Ras-GAP is a negative regulator of DLC1 Rho-GAP activity. Consistent with this possibility, we found that ectopic overexpression of Ras-GAP in a Ras-GAP-insensitive tumor line impaired the growth-suppressing activity of DLC1 and increased RhoA activity in vivo. Our observations expand the complexity of proteins that regulate DLC1 function and define a novel mechanism of the cross talk between Ras and Rho GTPases.1R01CA129610

  3. Recent Optical and SEM Characterization of Genesis Solar Wind Concentrator Diamond on Silicon Collector

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.

    2013-01-01

    One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.

  4. On the performances and wear of WC-diamond like carbon coated tools in drilling of CFRP/Titanium stacks

    NASA Astrophysics Data System (ADS)

    Boccarusso, L.; Durante, M.; Impero, F.; Minutolo, F. Memola Capece; Scherillo, F.; Squillace, A.

    2016-10-01

    The use of hybrid structures made of CFRP and titanium alloys is growing more and more in the last years in the aerospace industry due to the high strength to weight ratio. Because of their very different characteristics, the mechanical fastening represent the most effective joining technique for these materials. As a consequence, drilling process plays a key role in the assembly. The one shot drilling, i.e. the contemporary drilling of the stack of the two materials, seems to be the best option both in terms of time saving and assembly accuracy. Nevertheless, due to the considerable different machinability of fiber reinforced plastics and metallic materials, the one shot drilling is a critical process both for the holes quality and for the tools wear. This research was carried out to study the effectiveness of new generation tools in the drilling of CFRP/Titanium stacks. The tools are made of sintered grains of tungsten carbide (WC) in a binder of cobalt and coated with Diamond like carbon (DLC), and are characterized by a patented geometry; they mainly differ in parent WC grain size and binder percentage. Both the cutting forces and the wear phenomena were accurately investigated and the results were analyzed as a function of number of holes and their quality. The results show a clear increase of the cutting forces with the number of holes for all the used drilling tools. Moreover, abrasive wear phenomena that affect initially the tools coating layer were observed.

  5. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parhad, Swapnil S.; Jaiswal, Deepa; TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075

    The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show thatmore » DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in L-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell. - Highlights: • The effect of interaction of nNOS with DLC1 has been debatable with contradicting reports in literature. • Purified DLC1 has no effect on electron transport between reductase and oxygenase domain of purified nNOS-CaM. • The NO release activity of nNOS was not altered by DLC1, supporting that DLC1 does not inhibit the enzyme. • These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell.« less

  6. NEXAFS Study of the Annealing Effect on the Local Structure of FIB-CVD DLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saikubo, Akihiko; Kato, Yuri; Igaki, Jun-ya

    2007-01-19

    Annealing effect on the local structure of diamond like carbon (DLC) formed by focused ion beam-chemical vapor deposition (FIB-CVD) was investigated by the measurement of near edge x-ray absorption fine structure (NEXAFS) and energy dispersive x-ray (EDX) spectra. Carbon K edge absorption NEXAFS spectrum of FIB-CVD DLC was measured in the energy range of 275-320 eV. In order to obtain the information on the location of the gallium in the depth direction, incidence angle dependence of NEXAFS spectrum was measured in the incident angle range from 0 deg. to 60 deg. . The peak intensity corresponding to the resonance transitionmore » of 1s{yields}{sigma}* originating from carbon-gallium increased from the FIB-CVD DLC annealed at 200 deg. C to the FIB-CVD DLC annealed at 400 deg. C and decreased from that at 400 deg. C to that at 600 deg. C. Especially, the intensity of this peak remarkably enhanced in the NEXAFS spectrum of the FIB-CVD DLC annealed at 400 deg. C at the incident angle of 60 deg. . On the contrary, the peak intensity corresponding to the resonance transition of 1s{yields}{pi}* originating from carbon double bonding of emission spectrum decreased from the FIB-CVD DLC annealed at 200 deg. C to that at 400 deg. C and increased from that at 400 deg. C to that at 600 deg. C. Gallium concentration in the FIB-CVD DLC decreased from {approx_equal}2.2% of the as-deposited FIB-CVD DLC to {approx_equal}1.5% of the FIB-CVD DLC annealed at 600 deg. C from the elementary analysis using EDX. Both experimental results indicated that gallium atom departed from FIB-CVD DLC by annealing at the temperature of 600 deg. C.« less

  7. Long-lasting hydrophilicity on nanostructured Si-incorporated diamond-like carbon films.

    PubMed

    Yi, Jin Woo; Moon, Myoung-Woon; Ahmed, Sk Faruque; Kim, Haeri; Cha, Tae-Gon; Kim, Ho-Young; Kim, Seock-Sam; Lee, Kwang-Ryeol

    2010-11-16

    We investigated the long-lasting hydrophilic behavior of a Si-incorporated diamond-like carbon (Si-DLC) film by varying the Si fraction in DLC matrix through oxygen and nitrogen plasma surface treatments. The wetting behavior of the water droplets on the pure DLC and Si-DLC with the nitrogen or oxygen plasma treatment revealed that the Si element in the oxygen-plasma-treated Si-DLC films played a major role in maintaining a hydrophilic wetting angle of <10° for 20 days in ambient air. The nanostructured patterns with a roughness of ∼10 nm evolved because of the selective etching of the carbon matrix by the oxygen plasma in the Si-DLC film, where the chemical component of the Si-Ox bond was enriched on the top of the nanopatterns and remained for over 20 days.

  8. Diamond-like carbon (DLC) thin film bioelectrodes: effect of thermal post-treatments and the use of Ti adhesion layer.

    PubMed

    Laurila, Tomi; Rautiainen, Antti; Sintonen, Sakari; Jiang, Hua; Kaivosoja, Emilia; Koskinen, Jari

    2014-01-01

    The effect of thermal post-treatments and the use of Ti adhesion layer on the performance of thin film diamond like carbon bioelectrodes (DLC) have been investigated in this work. The following results were obtained: (i) The microstructure of the DLC layer after the deposition was amorphous and thermal annealing had no marked effect on the structure, (ii) formation of oxygen containing SiOx and Ti[O,C] layers were detected at the Si/Ti and Ti/DLC interfaces with the help of transmission electron microscope (TEM), (iii) thermal post-treatments increased the polar fraction of the surface energy, (iv) cyclic voltammetry (CV) measurements showed that the DLC films had wide water windows and were stable in contact with dilute sulphuric acid and phosphate buffered saline (PBS) solutions, (v) use of Ti interlayer between Pt(Ir) microwire and DLC layer was crucial for the electrodes to survive the electrochemical measurements without the loss of adhesion of the DLC layer, (vi) DLC electrodes with small exposed Pt areas were an order of magnitude more sensitive towards dopamine than Pt electrodes and (vii) thermal post-treatments did not markedly change the electrochemical behavior of the electrodes despite the significant increase in the polar nature of the surfaces. It can be concluded that thin DLC bioelectrodes are stable under physiological conditions and can detect dopamine in micro molar range, but their sensitivity must be further improved. © 2013 Elsevier B.V. All rights reserved.

  9. Uncovering the Rare Variants of DLC1 Isoform 1 and Their Functional Effects in a Chinese Sporadic Congenital Heart Disease Cohort

    PubMed Central

    Wang, Zhen; Tan, Huilian; Kong, Xianghua; Shu, Yang; Zhang, Yuchao; Huang, Yun; Zhu, Yufei; Xu, Heng; Wang, Zhiqiang; Wang, Ping; Ning, Guang; Kong, Xiangyin; Hu, Guohong; Hu, Landian

    2014-01-01

    Congenital heart disease (CHD) is the most common birth defect affecting the structure and function of fetal hearts. Despite decades of extensive studies, the genetic mechanism of sporadic CHD remains obscure. Deleted in liver cancer 1 (DLC1) gene, encoding a GTPase-activating protein, is highly expressed in heart and essential for heart development according to the knowledge of Dlc1-deficient mice. To determine whether DLC1 is a susceptibility gene for sporadic CHD, we sequenced the coding region of DLC1 isoform 1 in 151 sporadic CHD patients and identified 13 non-synonymous rare variants (including 6 private variants) in the case cohort. Importantly, these rare variants (8/13) were enriched in the N-terminal region of the DLC1 isoform 1 protein. Seven of eight amino acids at the N-terminal variant positions were conserved among the primates. Among the 9 rare variants that were predicted as “damaging”, five were located at the N-terminal region. Ensuing in vitro functional assays showed that three private variants (Met360Lys, Glu418Lys and Asp554Val) impaired the ability of DLC1 to inhibit cell migration or altered the subcellular location of the protein compared to wild-type DLC1 isoform 1. These data suggest that DLC1 might act as a CHD-associated gene in addition to its role as a tumor suppressor in cancer. PMID:24587289

  10. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    PubMed

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  11. Optical properties of diamond like carbon nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Alam, Md Shahbaz; Mukherjee, Nillohit; Ahmed, Sk. Faruque

    2018-05-01

    The optical properties of silicon incorporated diamond like carbon (Si-DLC) nanocomposite thin films have been reported. The Si-DLC nanocomposite thin film deposited on glass and silicon substrate by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process. Fourier transformed infrared spectroscopic analysis revealed the presence of different bonding within the deposited films and deconvolution of FTIR spectra gives the chemical composition i.e., sp3/sp2 ratio in the films. Optical band gap calculated from transmittance spectra increased from 0.98 to 2.21 eV with a variation of silicon concentration from 0 to 15.4 at. %. Due to change in electronic structure by Si incorporation, the Si-DLC film showed a broad photoluminescence (PL) peak centered at 467 nm, i.e., in the visible range and its intensity was found to increase monotonically with at. % of Si.

  12. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature

    PubMed Central

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-01-01

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures. PMID:28772520

  13. Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films: Relative humidity dependent character

    NASA Astrophysics Data System (ADS)

    Shi, Jing; Gong, Zhenbin; Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2017-11-01

    In this study, tribological properties of hydrogenated and hydrogen free diamond-like carbon films at various relative humidity (RH) were investigated to understand the friction mechanism in the presence of water molecules. At normal load of 2N, DLC-H film's friction coefficient was 0.06 at RH14% while DLC film's friction coefficient was 0.19 at RH17%. With the increase of RH, their friction coefficient converged to about 0.15. This character remained unaltered when the normal load was 5N. Results show that low friction of DLC-H film at low RH was attributed to the low shear force aroused by graphitic tribofilm at wear care center. However, the high friction of DLC film was mainly endowed by the high adhesive force aroused by σ dangling bonds. At high RH, solid-to-solid contact was isolated by water molecules confined between the counterfaces, where capillary was a dominant factor for friction. In addition to the capillary force, the absence of tribofilm was also accountable. These two factors lead to the level off of friction coefficient for DLC-H and DLC films. Moreover, for both DLC-H and DLC films, tribo-oxidization was proved to be closely related to wear rate with the assist of H2O molecules during sliding.

  14. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature.

    PubMed

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-02-10

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures.

  15. A study for anticorrosion and tribological behaviors of thin/thick diamond-like carbon films in seawater

    NASA Astrophysics Data System (ADS)

    Ye, Yewei; Jia, Shujuan; Zhang, Dawei; Liu, Wei; Zhao, Haichao

    2018-03-01

    The thin and thick diamond-like carbon (DLC) films were prepared by unbalanced magnetron sputtering technique on 304L stainless steels and (100) silicon wafers. Microstructure, mechanical, corrosion and tribological properties were systematically investigated by SEM, Raman, nanoindenter, scratch tester, modulab electrochemical workstation and R-tec multifunctional tribological tester. Results showed that the adhesion force presented a descending trend with the growth in soaking time. The adhesion force of the thin DLC film with high residual compressive stress (‑3.72 GPa) was higher than that of the thick DLC film (‑2.96 GPa). During the corrosion test, the thick DLC film showed a higher impendence and a lower corrosion current density than the thin DLC film, which is attributed to the barrier action of large thickness. Compared to bare 304L substrate, the friction coefficients and wear rates of DLC films in seawater were obviously decreased. Meanwhile, the thin DLC film with ideal residual compressive stress, super adhesion force and good plastic deformation resistance revealed an excellent anti-wear ability in seawater.

  16. Digitalis-like compounds in the toad Bufo viridis: tissue and plasma levels and significance in osmotic stress.

    PubMed

    Lichtstein, D; Gati, I; Haver, E; Katz, U

    1992-01-01

    Digitalis-like compounds (DLC), constituents of animal tissues, are possible regulators of the Na+, K(+)-ATPase implicated in water and salt homeostasis. The distribution of DLC in the toad (Bufo viridis) was determined following methanol extraction and partial purification. DLC highest levels were found in the skin but it was also detected in the plasma and many internal organs. Short term (hours) exposure of the toad to hypertonic shock (1.5% NaCl) induced an increase in plasma osmolarity due to an increase in Na+ and Cl- levels. This treatment induced a transient, three fold, increase of DLC levels in the brain and transient reduction of its levels in the ventral skin. Acclimation of the toads to burrowing conditions for six weeks resulted in an increase in plasma osmolarity due to a large increase in plasma urea with a small increase in ion concentrations. Under these conditions DLC levels in the dorsal skin increased by 100% without alteration of its levels in the plasma, brain and ventral skin. DLC levels in the toad brain of control animals, showed a significant dependence on season, being highest in the summer and lowest in the winter. DLC levels in the skin peaked in May while the levels in the plasma were season independent. The changes in DLC levels induced by the short- as well as long-term perturbations in the animal environmental salinity together with the seasonal differences suggest that DLC in the toad is involved in water and salt homeostasis of these animals, but may also participate in other unknown functions.

  17. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk.

    PubMed

    Wang, Song; Wang, Fei; Liao, Zhenhua; Wang, Qingliang; Liu, Yuhong; Liu, Weiqiang

    2015-10-01

    A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in vitro cervical prosthesis simulations according to the literature. Copyright © 2015. Published by Elsevier B.V.

  18. Surface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Ghosh, B.; Ray, Sekhar C.; Espinoza-González, Rodrigo; Villarroel, Roberto; Hevia, Samuel A.; Alvarez-Vega, Pedro

    2018-04-01

    Diamond-like carbon (DLC) films and nanocrystalline silver particles containing diamond-like carbon (DLC:Ag) films were electrodeposited on n-type silicon substrate (n-Si) to prepare n-Si/DLC and n-Si/DLC:Ag heterostructures for photovoltaic (PV) applications. Surface plasmon resonance (SPR) effect in this cell structure and its overall performance have been studied in terms of morphology, optical absorption, current-voltage characteristics, capacitance-voltage characteristics, band diagram and external quantum efficiency measurements. Localized surface plasmon resonance effect of silver nanoparticles (Ag NPs) in n-Si/DLC:Ag PV structure exhibited an enhancement of ∼28% in short circuit current density (JSC), which improved the overall efficiency of the heterostructures.

  19. Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mansoureh; Mahboubi, Farzad; Naimi-Jamal, M. Reza

    2016-12-01

    The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH4 flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH4 ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH4 flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.

  20. Friction and Wear Properties of Selected Solid Lubricating Films. Part 3; Magnetron-Sputtered and Plasma-Assisted, Chemical-Vapor-Deposited Diamondlike Carbon Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro

    2000-01-01

    To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of magnetron-sputtered diamondlike carbon (MS DLC) and plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DLC) films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of L-2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7x10(exp -7) Pa), humid air (relative humidity, approx.20 percent), and dry nitrogen (relative humidity, <1 percent). The resultant films were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry. Marked differences in the friction and wear of the DLC films investigated herein resulted from the environmental conditions. The main criteria for judging the performance of the DLC films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10(exp -6) cu mm/N-m or less, respectively. MS DLC films and PACVD DLC films met the criteria in humid air and dry nitrogen but failed in ultrahigh vacuum, where the coefficients of friction were greater than the criterion, 0.3. In sliding contact with 440C stainless steel balls in all three environments the PACVD DLC films exhibited better tribological performance (i.e., lower friction and wear) than the MS DLC films. All sliding involved adhesive transfer of wear materials: transfer of DLC wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart DLC film.

  1. Biological responses of diamond-like carbon (DLC) films with different structures in biomedical application.

    PubMed

    Liao, T T; Zhang, T F; Li, S S; Deng, Q Y; Wu, B J; Zhang, Y Z; Zhou, Y J; Guo, Y B; Leng, Y X; Huang, N

    2016-12-01

    Diamond-like carbon (DLC) films are potential candidates for artificial joint surface modification in biomedical applications, and the influence of the structural features of DLC surfaces on cell functions has attracted attention in recent decades. Here, the biocompatibility of DLC films with different structures was investigated using macrophages, osteoblasts and fibroblasts. The results showed that DLC films with a low ratio of sp(2)/sp(3), which tend to have a structure similar to that of diamond, led to less inflammatory, excellent osteogenic and fibroblastic reactions, with higher cell viability, better morphology, lower release of TNF-α (tumor necrosis factor-α) and IL-6 (interleukin-6), and higher release of IL-10 (interleukin-10). The results also demonstrated that the high-density diamond structure (low ratio of sp(2)/sp(3)) of DLC films is beneficial for cell adhesion and growth because of better protein adsorption without electrostatic repulsion. These findings provide valuable insights into the mechanisms underlying inhibition of an inflammatory response and the promotion of osteoblastogenesis and fibrous propagation, and effectively build a system for evaluating the biocompatibility of DLC films. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. DLC1-dependent parathyroid hormone-like hormone inhibition suppresses breast cancer bone metastasis.

    PubMed

    Wang, Yufeng; Lei, Rong; Zhuang, Xueqian; Zhang, Ning; Pan, Hong; Li, Gang; Hu, Jing; Pan, Xiaoqi; Tao, Qian; Fu, Da; Xiao, Jianru; Chin, Y Eugene; Kang, Yibin; Yang, Qifeng; Hu, Guohong

    2014-04-01

    Bone metastasis is a frequent complication of breast cancer that is often accelerated by TGF-β signaling; however, little is known about how the TGF-β pathway is regulated during bone metastasis. Here we report that deleted in liver cancer 1 (DLC1) is an important regulator of TGF-β responses and osteolytic metastasis of breast cancer cells. In murine models, breast cancer cells lacking DLC1 expression exhibited enhanced capabilities of bone metastasis. Knockdown of DLC1 in cancer cells promoted bone metastasis, leading to manifested osteolysis and accelerated death in mice, while DLC1 overexpression suppressed bone metastasis. Activation of Rho-ROCK signaling in the absence of DLC1 mediated SMAD3 linker region phosphorylation and TGF-β-induced expression of parathyroid hormone-like hormone (PTHLH), leading to osteoclast maturation for osteolytic colonization. Furthermore, pharmacological inhibition of Rho-ROCK effectively reduced PTHLH production and breast cancer bone metastasis in vitro and in vivo. Evaluation of clinical breast tumor samples revealed that reduced DLC1 expression was linked to elevated PTHLH expression and organ-specific metastasis to bone. Overall, our findings define a stroma-dependent paradigm of Rho signaling in cancer and implicate Rho-TGF-β crosstalk in osteolytic bone metastasis.

  3. Two SmDLC antigens as potential vaccines against schistosomiasis.

    PubMed

    Diniz, Patricia Placoná; Nakajima, Erika; Miyasato, Patricia Aoki; Nakano, Eliana; de Oliveira Rocha, Márcia; Martins, Elizabeth Angelica Leme

    2014-12-01

    The Schistosoma mansoni transcriptome revealed new members of the dynein light chain family (DLC/LC8). The antigenicity and immunogenicity of these proteins, and their potential as vaccine candidates were investigated. Two DLC genes (DLC12_JI392413.1 and DLC13_JI387686.1) were cloned and the recombinant proteins produced in E. coli. The immunization of mice with the rDLCs, using alhydrogel as adjuvant, resulted in high titers of antibodies, indicated that these proteins are highly immunogenic. The anti-DLCs antibodies presented cross reactivity with both recombinant antigens and also recognized proteins from S. mansoni adult worm extracts. The DLC12 and DLC13 immunized animals were challenged by infection with cercariae and a protective profile was observed in three different assays, with a significant decreased in worm burden, of 43% and 51% respectively, when compared to the non-vaccinated group. The granulomas formation due to egg retention in the hepatic tissues was evaluated 45 days after infection. Smaller granulomas were observed in the liver of DLC immunized animals, up to 70% reduction in comparison to the granulomas size in the non-vaccinated animals. Fifty-five days after infection, the average size of the hepatic granulomas was still 25-35% smaller in the DLCs vaccinated groups. The interference of DLC immunization on the hepatic granuloma formation may reflect the lower worm burden and consequent decrease on the number of eggs retained in the liver, resulting in lower pro-inflammatory level in the tissue. The protective effect of DLCs immunization, decreasing the worm burden and delaying the rate of granuloma formation, suggests that these antigens should be further studied as potential vaccine candidates. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Results of upper airway radiography and ultrasonography predict dynamic laryngeal collapse in affected horses.

    PubMed

    Fjordbakk, C T; Chalmers, H J; Holcombe, S J; Strand, E

    2013-11-01

    The pathogenesis of dynamic bilateral laryngeal collapse (DLC) associated with poll flexion is unknown. Diagnosis is dependent upon exercise endoscopy while replicating the flexed head position harness racehorses experience during racing. To describe the effects of poll flexion on rostrocaudal laryngeal positioning and laryngeal lumen width in resting horses diagnosed with DLC compared to controls, and to establish diagnostic criteria for DLC by use of diagnostic imaging. Case-control study. Fifty harness racehorses were prospectively included in the study: 25 cases diagnosed with DLC by treadmill endoscopy and 25 controls in which treadmill endoscopy revealed no abnormal findings. Laryngeal radiography and ultrasonography were obtained in neutral and flexed head positions. Laryngeal positioning and laryngohyoid conformation were compared between the groups and head positions. Poll flexion induced a greater rostral advancement of the larynx in relation to the hyoid apparatus in resting harness racehorses affected with DLC compared to controls (P = 0.007). At the level of the vocal folds, poll flexion resulted in a smaller laryngeal lumen width in horses affected with DLC compared to controls (P = 0.04). Horses were significantly more likely to be affected with DLC when the thyrohyoid bone to thyroid cartilage distance was ≥12 mm in poll flexion (odds ratio 21.3, 95% confidence interval 3.65-124.8, P = 0.004) and when laryngeal lumen width at the level of the vocal folds was less in poll flexion than in the neutral head position (odds ratio 8.4; 95% confidence interval 1.6-44.1, P = 0.012). In DLC horses, poll flexion advanced the larynx more rostrally and resulted in a decreased airway lumen width compared to control horses. Laryngeal ultrasound and radiography may facilitate the diagnosis of DLC at rest. © 2013 EVJ Ltd.

  5. Tribological and Electrical Properties of Diamond-Like Carbon Films Deposited by Filtered Vacuum Arc Method for Medical Guidewire Application.

    PubMed

    Kang, Ki-Noh; Jeong, Hyejeong; Lee, Jaehyeong; Park, Yong Seob

    2018-09-01

    A good medical guidewires are used to introduce stents, catheters, and other medical devices inside the human body. In this study, diamond-like carbon (DLC) film was proposed to solve the poor adhesion problem of guidewire and to improve the tribological performance of guidewire. DLC films were fabricated on Si substrate by using FVA (Filtered Vacuum Arc) method. In this work, the tribological, structural, and electrical properties of the fabricated DLC films with various arc currents were experimentally investigated. All DLC films showed smooth and uniform surface with increasing applied arc current. The rms surface roughness was increased and the value of contact angle on the film surface was decreased with increasing arc current. The hardness and elastic modulus of DLC films were improved, and the resistivity value of DLC films were decreased with increasing arc current. These results are associated with ion bombardment effects by the applied arc current and bias voltage.

  6. Electron microscopy and microanalysis of the fiber-matrix interface in monolithic silicone carbide-based ceramic composite material for use in a fusion reactor application.

    PubMed

    Toplisek, Tea; Drazic, Goran; Novak, Sasa; Kobe, Spomenka

    2008-01-01

    A composite material made from continuous monolithic silicone carbide (SiC) fibers and a SiC-based matrix (SiC(f)/SiC), was prepared using a novel technique, i.e. adapted dip coating and infiltration of SiC fibers with a water suspension containing SiC particles and a sintering additive. This kind of material could be used in the first-wall blanket of a future fusion reactor. Using magnetron sputtering, the SiC fibers were coated with various thin layers (TiC, CrN, CrC, WC, DLC-diamond-like carbon) of the interface material by physical vapor deposition (PVD). Using scanning and transmission electron microscopy and microanalysis, detailed microstructural studies of the fiber-matrix interface were performed. Both samples, with coated and uncoated fibers, were examined under a load. The microcracks introduced by the Vickers indenter continued their path through the fibers, and thus caused the failure of the composite material, in the case of the uncoated fibers or deviated from their primary direction at the fiber-matrix interface in the case of the coated fibers.

  7. Modeling the electrostatic field localization in nanostructures based on DLC films using the tunneling microscopy methods

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Akchurin, Garif G.

    2018-04-01

    A model for calculating the electrostatic field in the system "probe of a tunnel microscope - a nanostructure based on a DLC film" was developed. A finite-element modeling of the localization of the field was carried out, taking into account the morphological and topological features of the nanostructure. The obtained results and their interpretation contribute to the development of the concepts to the model of tunnel electric transport processes. The possibility for effective usage of the tunneling microscopy methods in the development of new nanophotonic devices is shown.

  8. DLC1-dependent parathyroid hormone–like hormone inhibition suppresses breast cancer bone metastasis

    PubMed Central

    Wang, Yufeng; Lei, Rong; Zhuang, Xueqian; Zhang, Ning; Pan, Hong; Li, Gang; Hu, Jing; Pan, Xiaoqi; Tao, Qian; Fu, Da; Xiao, Jianru; Chin, Y. Eugene; Kang, Yibin; Yang, Qifeng; Hu, Guohong

    2014-01-01

    Bone metastasis is a frequent complication of breast cancer that is often accelerated by TGF-β signaling; however, little is known about how the TGF-β pathway is regulated during bone metastasis. Here we report that deleted in liver cancer 1 (DLC1) is an important regulator of TGF-β responses and osteolytic metastasis of breast cancer cells. In murine models, breast cancer cells lacking DLC1 expression exhibited enhanced capabilities of bone metastasis. Knockdown of DLC1 in cancer cells promoted bone metastasis, leading to manifested osteolysis and accelerated death in mice, while DLC1 overexpression suppressed bone metastasis. Activation of Rho-ROCK signaling in the absence of DLC1 mediated SMAD3 linker region phosphorylation and TGF-β–induced expression of parathyroid hormone–like hormone (PTHLH), leading to osteoclast maturation for osteolytic colonization. Furthermore, pharmacological inhibition of Rho-ROCK effectively reduced PTHLH production and breast cancer bone metastasis in vitro and in vivo. Evaluation of clinical breast tumor samples revealed that reduced DLC1 expression was linked to elevated PTHLH expression and organ-specific metastasis to bone. Overall, our findings define a stroma-dependent paradigm of Rho signaling in cancer and implicate Rho–TGF-β crosstalk in osteolytic bone metastasis. PMID:24590291

  9. Spectroscopic studies on diamond like carbon films synthesized by pulsed laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Madhusmita; Krishnan, R., E-mail: krish@igcar.gov.in; Ravindran, T. R.

    2016-05-23

    Hydrogen free Diamond like Carbon (DLC) thin films enriched with C-C sp{sup 3} bonding were grown on Si (111) substrates at laser pulse energies varying from 100 to 400 mJ (DLC-100, DLC-200, DLC-300, DLC-400), by Pulsed Laser Ablation (PLA) utilizing an Nd:YAG laser operating at fundamental wavelength. Structural, optical and morphological evolutions as a function of laser pulse energy were studied by micro Raman, UV-Vis spectroscopic studies and Atomic Force Microscopy (AFM), respectively. Raman spectra analysis provided critical clues for the variation in sp{sup 3} content and optical energy gap. The sp{sup 3} content was estimated using the FWHM ofmore » the G peak and found to be in the range of 62-69%. The trend of evolution of sp{sup 3} content matches well with the evolution of I{sub D}/I{sub G} ratio with pulse energy. UV-Vis absorption study of DLC films revealed the variation of optical energy gap with laser pulse energy (1.88 – 2.23 eV), which matches well with the evolution of G-Peak position of the Raman spectra. AFM study revealed that roughness, size and density of particulate in DLC films increase with laser pulse energy.« less

  10. Significance of genetic variants in DLC1 and their association with hepatocellular carcinoma

    PubMed Central

    XIE, CHENG-RONG; SUN, HONG-GUANG; SUN, YU; ZHAO, WEN-XIU; ZHANG, SHENG; WANG, XIAO-MIN; YIN, ZHEN-YU

    2015-01-01

    DLC1 has been shown to be downregulated or absent in hepatocellular carcinoma (HCC) and is associated with tumorigenesis and development. However, only a small number of studies have focused on genetic variations of DLC1. The present study performed exon sequencing for the DLC1 gene in HCC tissue samples from 105 patients to identify functional genetic variation of DLC1 and its association with HCC susceptibility, clinicopathological features and prognosis. A novel missense mutation and four non-synonymous single nucleotide polymorphisms (SNPs; rs3816748, rs11203495, rs3816747 and rs532841) were identified. A significant correlation of rs3816747 polymorphisms with HCC susceptibility was identified. Compared to individuals with the GG genotype of rs3816747, those with the GA (odds ratio (OR)=0.486; P=0.037) or GA+AA genotype (OR=0.51; P=0.039) were associated with a significantly decreased HCC risk. Furthermore, patients with the GC+CC genotype of rs3816748, the TC+CC genotype of rs11203495 or the GA+AA genotype of rs3816747 had small-sized tumors compared with those carrying the wild-type genotype. No significant association of DLC1 SNPs with the patients' prognosis was found. These results indicated that genetic variations in the DLC1 gene may confer a risk for HCC. PMID:26095787

  11. Microstructure and high-temperature tribological properties of Si-doped hydrogenated diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Zhang, Teng Fei; Wan, Zhi Xin; Ding, Ji Cheng; Zhang, Shihong; Wang, Qi Min; Kim, Kwang Ho

    2018-03-01

    Si-doped DLC films have attracted great attention for use in tribological applications. However, their high-temperature tribological properties remain less investigated, especially in harsh oxidative working conditions. In this study, Si-doped hydrogenated DLC films with various Si content were synthesized and the effects of the addition of Si on the microstructural, mechanical and high-temperature tribological properties of the films were investigated. The results indicate that Si doping leads to an obvious increase in the sp3/sp2 ratio of DLC films, likely due to the silicon atoms preferentially substitute the sp2-hybridized carbon atoms and augment the number of sp3 sites. With Si doping, the mechanical properties, including hardness and adhesion strength, were improved, while the residual stress of the DLC films was reduced. The addition of Si leads to higher thermal and mechanical stability of DLC films because the Si atoms inhibit the graphitization of the films at an elevated temperature. Better high-temperature tribological properties of the Si-DLC films under oxidative conditions were observed, which can be attributed to the enhanced thermal stability and formation of a Si-containing lubricant layer on the surfaces of the wear tracks. The nano-wear resistance of the DLC films was also improved by Si doping.

  12. Evolution of the mechanical and tribological properties of DLC thin films doped with low-concentration hafnium on 316L steel

    NASA Astrophysics Data System (ADS)

    Qi, Meng; Xiao, Jianrong; Gong, Chenyang; Jiang, Aihua; Chen, Yong

    2018-01-01

    Low concentrations (<1 at%) of hafnium doped into diamond-like thin films (Hf-DLC) were deposited on 316L stainless steel and silicon (1 0 0) substrates by magnetron sputtering to attain superior mechanical and tribological properties. Ar and CH4 were used as source gases. The microstructure, chemical composition, and morphology of the Hf-DLC thin films in various concentrations were analyzed using x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. Results showed that Hf species transferred from the particulate microstructure to Hf carbide phases, and the surface roughness increased monotonically with increasing Hf concentration. Moreover, the hardness and elastic modulus exhibited high values when the doped Hf concentration was 0.42 at%. Similarly, the tribological behaviors and wear life of Hf-DLC thin films had a low friction coefficient and excellent wear resistance at 0.42 at% Hf concentration. Therefore, 0.42 at% Hf is an optimal doping concentration to improve the mechanical and tribological properties of DLC thin films. Generally, the use of low-concentration Hf doping into DLC thin films is novel, and the present results provide guidance for the selection of suitable and effective concentration to optimize Hf-DLC thin films with superior performance.

  13. Effects of bias voltage on diamond like carbon coatings deposited using titanium isopropoxide (TIPOT) and acetylene/argon mixtures onto various substrate materials.

    PubMed

    Said, R; Ghumman, C A A; Teodoro, M N D; Ahmed, W; Abuazza, A; Gracio, J

    2010-04-01

    RF-PECVD was used to prepare amorphous of carbon (DLC) onto stainless steel 316 and glass substrates. The substrates were negatively biased at between 100 V to 400 V. Thin films of DLC have been deposited using C2H2 and titanium isopropoxide (TIPOT). Argon was used to generate the plasma in the PECVD system chamber. DEKTAK 8 surface stylus profilometer was used to measure the film thickness and the deposition rate was calculated. Micro Raman spectroscopy was employed to determine the chemical structure and bonding present in the films. Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) instrument. In addition, X-ray photoelectron spectroscopy (XPS) was used to analyze the composition and chemical state of the films. The wettability of the films was examined using the optical contact angle meter (CAM200) system. Two types of liquids with different polarities were used to study changes in the surface energy. The as-grown films were in the thickness range of 200-400 nm. Raman spectroscopy results showed that the I(D)/I(G) ratio decreased when the bias voltage on the stainless steel substrates was increased. This indicates an increase in the graphitic nature of the film deposited. In contrast, on the glass substrates the I(D)/I(G) ratio increased when the bias voltage was increased indicates a greater degree of diamond like character. Chemical composition determined using XPS showed the presence of carbon and oxygen in both samples on glass and stainless steel substrates. Both coatings the contact angle of the films decreased except for 400 V which showed a slight increase. The oxygen is thought to play an important role on the polar component of a-C.

  14. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.

  15. Validation of a two-dimensional liquid chromatography method for quality control testing of pharmaceutical materials.

    PubMed

    Yang, Samuel H; Wang, Jenny; Zhang, Kelly

    2017-04-07

    Despite the advantages of 2D-LC, there is currently little to no work in demonstrating the suitability of these 2D-LC methods for use in a quality control (QC) environment for good manufacturing practice (GMP) tests. This lack of information becomes more critical as the availability of commercial 2D-LC instrumentation has significantly increased, and more testing facilities begin to acquire these 2D-LC capabilities. It is increasingly important that the transferability of developed 2D-LC methods be assessed in terms of reproducibility, robustness and performance across different laboratories worldwide. The work presented here focuses on the evaluation of a heart-cutting 2D-LC method used for the analysis of a pharmaceutical material, where a key, co-eluting impurity in the first dimension ( 1 D) is resolved from the main peak and analyzed in the second dimension ( 2 D). A design-of-experiments (DOE) approach was taken in the collection of the data, and the results were then modeled in order to evaluate method robustness using statistical modeling software. This quality by design (QBD) approach gives a deeper understanding of the impact of these 2D-LC critical method attributes (CMAs) and how they affect overall method performance. Although there are multiple parameters that may be critical from method development point of view, a special focus of this work is devoted towards evaluation of unique 2D-LC critical method attributes from method validation perspective that transcend conventional method development and validation. The 2D-LC method attributes are evaluated for their recovery, peak shape, and resolution of the two co-eluting compounds in question on the 2 D. In the method, linearity, accuracy, precision, repeatability, and sensitivity are assessed along with day-to-day, analyst-to-analyst, and lab-to-lab (instrument-to-instrument) assessments. The results of this validation study demonstrate that the 2D-LC method is accurate, sensitive, and robust and is ultimately suitable for QC testing with good method transferability. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of diamond-like carbon coating on corrosion rate of machinery steel HQ 805

    NASA Astrophysics Data System (ADS)

    Slat, Winda Sanni; Malau, Viktor; Iswanto, Priyo Tri; Sujitno, Tjipto; Suprapto

    2018-04-01

    HQ 805 is known as a super strength alloys steel and widely applied in military equipment and, aircraft components, drilling device and so on. It is due to its excellent behavior in wear, fatigue, high temperature and high speed operating conditions. The weakness of this material is the vulnerablality to corrosion when employed in sour environments where hydrogen sulfide and chlorides are present. To overcome the problems, an effort should be made to improve or enhance the surface properties for a longer service life. There are varieties of coatings developed and used to improve surface material properties. There are several kinds of coating methods; chemical vapour deposition (CVD), physical vapour deposition (PVD), thermochemical treatment, oxidation, or plasma spraying. This paper presents the research result of the influence of Diamond-Like Carbon (DLC) coating deposited using DC plasma enhanced chemical vapor deposition (DC-PECVD) on corrosion rate (by potentiodynamic polarization method) of HQ 805 machinery steel. As a carbon sources, a mixture of argon (Ar) and methane (CH4) with ratio 76% : 24% was used in this experiment. The conditions of experiment were 400 °C of temperature, 1.2 mbar, 1.4 mbar, 1.6 mbar and 1.8 mbar of pressure of process. Investigated surface properties were hardness (microhardness tester), roughness (roughness test), chemical composition (Spectrometer), microstructure (SEM) and corrosion rate (potentiodynamic polarization). It has been found that the optimum condition with the lowest corrosion rate is at a pressure of 1.4 mbar with a deposition duration of 4 hours at a constant temperature of 400 °C. In this condition, the corrosion rate decreases from 12.326 mpy to 4.487 mpy.

  17. Efficient critical design load case identification for floating offshore wind turbines with a reduced nonlinear model

    NASA Astrophysics Data System (ADS)

    Matha, Denis; Sandner, Frank; Schlipf, David

    2014-12-01

    Design verification of wind turbines is performed by simulation of design load cases (DLC) defined in the IEC 61400-1 and -3 standards or equivalent guidelines. Due to the resulting large number of necessary load simulations, here a method is presented to reduce the computational effort for DLC simulations significantly by introducing a reduced nonlinear model and simplified hydro- and aerodynamics. The advantage of the formulation is that the nonlinear ODE system only contains basic mathematic operations and no iterations or internal loops which makes it very computationally efficient. Global turbine extreme and fatigue loads such as rotor thrust, tower base bending moment and mooring line tension, as well as platform motions are outputs of the model. They can be used to identify critical and less critical load situations to be then analysed with a higher fidelity tool and so speed up the design process. Results from these reduced model DLC simulations are presented and compared to higher fidelity models. Results in frequency and time domain as well as extreme and fatigue load predictions demonstrate that good agreement between the reduced and advanced model is achieved, allowing to efficiently exclude less critical DLC simulations, and to identify the most critical subset of cases for a given design. Additionally, the model is applicable for brute force optimization of floater control system parameters.

  18. Confluent diode laser coagulation: the gold standard of therapy for retinopathy of prematurity.

    PubMed

    Prepiaková, Zuzana; Tomcíková, Dana; Kostolná, Barbora; Gerinec, Anton

    2015-01-01

    The authors compare results of retinopathy of prematurity treatment with single-spot diode laser coagulation (DLC) versus confluent DLC. The final anatomical outcome and need for additional therapy, such as additional DLC, cryotherapy, scleral buckling, and intravitreal bevacizumab, were evaluated. A retrospective review of patients with threshold retinopathy of prematurity treated between January 2001 and October 2012 was conducted. Single-spot laser treatment or confluent laser treatment was applied anterior to the ridge extending to the ora serrata. In the first group (the single-spot group), a single-spot DLC was used between January 2001 and May 2008. The single-spot group included 338 patients (671 eyes) with retinopathy of prematurity. In the second group (the confluent group), confluent DLC was used in 326 patients (652 eyes) between June 2008 and October 2012. The authors compared the need for re-treatment to achieve regression of retinopathy of prematurity in both groups. The rate of progression, frequency of re-treatment, complications, and structural outcomes were evaluated. In the single-spot group, re-treatment only with DLC was necessary in 43 (6.4%) eyes, additional cryotherapy was performed in 22 (3.3%) eyes, and scleral buckling in 107 (15.9%) eyes. Altogether, additional therapy was used in 172 (25.6%) eyes. In the confluent group, re-treatment with DLC was used in 5 (0.8%) eyes, additional cryotherapy in 6 (0.9%) eyes, scleral buckling in 16 (2.5%) eyes, and intravitreal bevacizumab in 14 (2.1%) eyes. Altogether, additional therapy was used in 41 (6.3%) eyes. The confluent group showed a favorable anatomical outcome in 99.1% of the cases compared with 96.4% in the single-spot group. The results were statistically significant (P = .001.) The DLC method was significantly more effective than single-spot DLC in the treatment of retinopathy of prematurity. Copyright 2015, SLACK Incorporated.

  19. Interface architecture for superthick carbon-based films toward low internal stress and ultrahigh load-bearing capacity.

    PubMed

    Wang, Junjun; Pu, Jibin; Zhang, Guangan; Wang, Liping

    2013-06-12

    Superthick diamond-like carbon (DLC) films [(Six-DLC/Siy-DLC)n/DLC] were deposited on 304 stainless steel substrates by using a plane hollow cathode plasma-enhanced chemical vapor deposition method. The structure was investigated by scanning electron microscopy and transmission electron microscopy. Chemical bonding was examined by Raman, Auger electron, and X-ray photoelectron spectroscopy techniques. Mechanical and tribological properties were evaluated using nanoindentation, scratch, interferometry, and reciprocating-sliding friction testing. The results showed that implantation of a silicon ion into the substrate and the architecture of the tensile stress/compressive stress structure decreased the residual stress to almost 0, resulting in deposition of (Six-DLC/Siy-DLC)n/DLC films with a thickness of more than 50 μm. The hardness of the film ranged from 9 to 23 GPa, and the adhesion strength ranged from 4.6 to 57 N depending on the thickness of the film. Friction coefficients were determined in three tested environments, namely, air, water, and oil. Friction coefficients were typically below 0.24 and as low as 0.02 in a water environment. The as-prepared superthick films also showed an ultrahigh load-bearing capacity, and no failure was detected in the reciprocating wear test with contact pressure higher than 3.2 GPa. Reasons for the ultrahigh load-bearing capacity are proposed in combination with the finite-element method.

  20. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-12-01

    DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C2H2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C2H2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C2H2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C2H2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus deteriorate the wear performance of the films.

  1. Magnetic STAR technology for real-time localization and classification of unexploded ordnance and buried mines

    NASA Astrophysics Data System (ADS)

    Wiegert, R. F.

    2009-05-01

    A man-portable Magnetic Scalar Triangulation and Ranging ("MagSTAR") technology for Detection, Localization and Classification (DLC) of unexploded ordnance (UXO) has been developed by Naval Surface Warfare Center Panama City Division (NSWC PCD) with support from the Strategic Environmental Research and Development Program (SERDP). Proof of principle of the MagSTAR concept and its unique advantages for real-time, high-mobility magnetic sensing applications have been demonstrated by field tests of a prototype man-portable MagSTAR sensor. The prototype comprises: a) An array of fluxgate magnetometers configured as a multi-tensor gradiometer, b) A GPS-synchronized signal processing system. c) Unique STAR algorithms for point-by-point, standoff DLC of magnetic targets. This paper outlines details of: i) MagSTAR theory, ii) Design and construction of the prototype sensor, iii) Signal processing algorithms recently developed to improve the technology's target-discrimination accuracy, iv) Results of field tests of the portable gradiometer system against magnetic dipole targets. The results demonstrate that the MagSTAR technology is capable of very accurate, high-speed localization of magnetic targets at standoff distances of several meters. These advantages could readily be transitioned to a wide range of defense, security and sensing applications to provide faster and more effective DLC of UXO and buried mines.

  2. Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver.

    PubMed

    Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2016-12-01

    In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.

  3. Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver

    NASA Astrophysics Data System (ADS)

    Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2016-03-01

    In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.

  4. Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys.

    PubMed

    Hinüber, C; Kleemann, C; Friederichs, R J; Haubold, L; Scheibe, H J; Schuelke, T; Boehlert, C; Baumann, M J

    2010-11-01

    Diamond-like carbon (DLC) films are favored for wear components because of diamond-like hardness, low friction, low wear, and high corrosion resistance (Schultz et al., Mat-wiss u Werkstofftech 2004;35:924-928; Lappalainen et al., J Biomed Mater Res B Appl Biomater 2003;66B:410-413; Tiainen, Diam Relat Mater 2001;10:153-160). Several studies have demonstrated their inertness, nontoxicity, and the biocompatibility, which has led to interest among manufacturers of surgical implants (Allen et al., J Biomed Mater Res B Appl Biomater 2001;58:319-328; Uzumaki et al., Diam Relat Mater 2006;15:982-988; Hauert, Diam Relat Mater 2003;12:583-589; Grill, Diam Relat Mater 2003;12:166-170). In this study, hydrogen-free amorphous, tetrahedrally bonded DLC films (ta-C) were deposited at low temperatures by physical vapor deposition on medical grade Co28Cr6Mo steel and the titanium alloy Ti6Al4V (Scheibe et al., Surf Coat Tech 1996;85:209-214). The mechanical performance of the ta-C was characterized by measuring its surface roughness, contact angle, adhesion, and wear behavior, whereas the biocompatibility was assessed by osteoblast (OB) attachment and cell viability via Live/Dead assay. There was no statistical difference found in the wettability as measured by contact angle measurements for the ta-C coated and the uncoated samples of either Co28Cr6Mo or Ti6Al4V. Rockwell C indentation and dynamic scratch testing on 2-10 μm thick ta-C films on Co28Cr6Mo substrates showed excellent adhesion with HF1 grade and up to 48 N for the critical load L(C2) during scratch testing. The ta-C coating reduced the wear from 3.5 × 10(-5) mm(3)/Nm for an uncoated control sample (uncoated Co28Cr6Mo against uncoated stainless steel) to 1.1 × 10(-7) mm(3)/Nm (coated Co28Cr6Mo against uncoated stainless steel) in reciprocating pin-on-disk testing. The lowest wear factor of 3.9 × 10(-10) mm(3)/Nm was measured using a ta-C coated steel ball running against a ta-C coated and polished Co28Cr6Mo disk. Student's t-test found that the ta-C coating had no statistically significant (p < 0.05) effect on OB attachment, when compared with the uncoated control samples. There was no significant difference (p < 0.05) in the Live/Dead assay results in cell death between the ta-C coated Co28Cr6Mo and Ti6Al4V samples and the uncoated controls. Therefore, these ta-C coatings show improved wear and corrosion (Dorner-Reisel et al., Diam Relat Mater 2003;11:823-827; Affato et al., J Biomed Mater Res B Appl Biomater 2000;53:221-226; Dorner-Reisel et al., Surf Coat Tech 2004;177-178:830-837; Kim et al., Diam Relat Mater 2004;14:35-41) performance and excellent in vitro cyto-compatibility, when compared with currently used uncoated Co28Cr6Mo and Ti6Al4V implant materials.

  5. Essays on Mathematical Optimization for Residential Demand Response in the Energy Sector

    NASA Astrophysics Data System (ADS)

    Palaparambil Dinesh, Lakshmi

    In the electric utility industry, it could be challenging to adjust supply to match demand due to large generator ramp up times, high generation costs and insufficient in-house generation capacity. Demand response (DR) is a technique for adjusting the demand for electric power instead of the supply. Direct Load Control (DLC) is one of the ways to implement DR. DLC program participants sign up for power interruption contracts and are given financial incentives for curtailing electricity usage during peak demand time periods. This dissertation studies a DLC program for residential air conditioners using mathematical optimization models. First, we develop a model that determines what contract parameters to use in designing contracts between the provider and residential customers, when to turn which power unit on or off and how much power to cut during peak demand hours. The model uses information on customer preferences for choice of contract parameters such as DLC financial incentives and energy usage curtailment. In numerical experiments, the proposed model leads to projected cost savings of the order of 20%, compared to a current benchmark model used in practice. We also quantify the impact of factors leading to cost savings and study characteristics of customers picked by different contracts. Second, we study a DLC program in a macro economic environment using a Computable General Equilibrium (CGE) model. A CGE model is used to study the impact of external factors such as policy and technology changes on different economic sectors. Here we differentiate customers based on their preference for DLC programs by using different values for price elasticity of demand for electricity commodity. Consequently, DLC program customers could substitute demand for electricity commodity with other commodities such as transportation sector. Price elasticity of demand is calculated using a novel methodology that incorporates customer preferences for DLC contracts from the first model. The calculation of elasticity based on our methodology is useful since the prices of commodities are not only determined by aggregate demand and supply but also by customers' relative preferences for commodities. In addition to this we quantify the indirect substitution and rebound effects on sectoral activity levels, incomes and prices based on customer differences, when DLC is implemented.

  6. Development and Testing of PRD-66 Hot Gas Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, J.A.; Garnier, J.E.; McMahon, T. J.

    1996-12-31

    The overall objective of this program is to develop and commercialize PRD-66 hot gas filters for application in pressurized fluidized bed combustors (PFBC) and Integrated Gas Combined Cycle (IGCC) power generation systems. The work is being carried out in phases with the following specific objectives: 1. Demonstrate acceptable mechanical, chemical, and filtration properties in exposure tests. 2. Produce and qualify selected prototype design filter elements in high temperature high pressure (HTHP) simulated PFBC exposure tests. 3. (Option) Generate a manufacturing plan to support commercial scale-up. 4. (Option) Recommend process equipment upgrades and produce 50 candle filters. Since the beginning ofmore » this program, a parallel evaluation of DuPont Lanxide Composites Inc. (DLC) PRD-66 hot gas candle filters took place using AEP`s TIDD PFBC facility. Several PRD-66 filters experienced damage during the final testing phase at TIDD, after highly successful testing in earlier runs. During the past year, DLC has undertaken a study under this contract to understand the mechanism of damage sustained in TIDD Test Segment 5. DLC has formulated a hypothesis for the damage mechanism based on the available evidence, and verified that the damage mechanism is possible given the conditions known to exist in TIDD. Improvements to the filter design to eliminate the root cause of the failure have been undertaken. This report details DLC`s conclusions regarding the failure mechanism, the evidence supporting the conclusions, and steps being taken to eliminate the root cause.« less

  7. DLC Film Formation Technologies by Applying Pulse Voltage Coupled with RF Voltage to Complicated 3-dimensional Substrates and Industrial Application

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuo

    A uniform plasma-based ion implantation and DLC film formation technologies on the surface of complicated 3-dimensional substrates have been developed by applying pulse voltage coupled with RF voltage to the substrates such as plastics, rubber as well as metals with the similar deposition rate. These technologies are widely applicable to both ion implantation and DLC film formation onto the automobile parts, mechanical parts and metal molds. A problem to be solved is reducing cost. The deposition rate of DLC films is expected to increase to around 10μm/hr, which is ten times larger than that of the conventional method, by hybridizing the ICP (Induction Coupling Plasma) with a plus-minus voltage source. This epoch-making technology will be able to substitute for the electro-plating method in the near future. In this paper, the DLC film formation technology by applying both RF and pulse voltage, its applications and its prospect are presented.

  8. Enhanced field electron emission from aligned diamond-like carbon nanorod arrays prepared by reactive ion beam etching

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Qin, Shi-Qiao; Zhang, Xue-Ao; Chang, Sheng-Li; Li, Hui-Hui; Yuan, Ji-Ren

    2016-05-01

    Homogeneous diamond-like carbon (DLC) films were deposited on Si supports by a pulsed filtered cathodic vacuum arc deposition system. Using DLC films masked by Ni nanoparticles as precursors, highly aligned diamond-like carbon nanorod (DLCNR) arrays were fabricated by the etching of inductively coupled radio frequency oxygen plasma. The as-prepared DLCNR arrays exhibit excellent field emission properties with a low turn-on field of 2.005 V μm-1 and a threshold field of 4.312 V μm-1, respectively. Raman spectroscopy and x-ray photoelectron spectroscopy were employed to determine the chemical bonding structural change of DLC films before and after etching. It is confirmed that DLC films have good connection with Si supports via the formation of the SiC phase, and larger conductive sp2 domains are formed in the as-etched DLC films, which play essential roles in the enhanced field emission properties for DLCNR arrays.

  9. Ceramics in nuclear waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T D; Mendel, J E

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Wei, E-mail: wei.ren@helsinki.fi; Avchaciov, Konstantin; Nordlund, Kai

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether themore » quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp{sup 3} bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp{sup 3}-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40–70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity.« less

  11. Status of Reconstruction of Fragmented Diamond-on-Silicon Collector From Genesis Spacecraft Solar Wind Concentrator

    NASA Technical Reports Server (NTRS)

    Rodriquez, Melissa C.; Calaway, M. C.; McNamara, K. M.; Hittle, J. D.

    2009-01-01

    In addition to passive solar wind collector surfaces, the Genesis Discovery Mission science canister had on board an electrostatic concave mirror for concentrating the solar wind ions, known as the concentrator . The 30-mm-radius collector focal point (the target) was comprised of 4 quadrants: two of single crystal SiC, one of polycrystalline 13C diamond and one of diamond-like-carbon (DLC) on a silicon substrate. [DLC-on-silicon is also sometimes referenced as Diamond-on-silicon, DOS.] Three of target quadrants survived the hard landing intact, but the DLC-on-silicon quadrant fractured into numerous pieces (Fig. 1). This abstract reports the status of identifying the DLC target fragments and reconstructing their original orientation.

  12. Hybrid laser technology and doped biomaterials

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Zemek, Josef; Remsa, Jan; Mikšovský, Jan; Kocourek, Tomáš; Písařík, Petr; Trávníčková, Martina; Filová, Elena; Bačáková, Lucie

    2017-09-01

    Hybrid laser-based technologies for deposition of new types of doped thin films are presented. The focus is on arrangements combining pulsed laser deposition (PLD) with magnetron sputtering (MS), and on the setup with two simultaneously running PLD systems (dual PLD). Advantages and disadvantages of both arrangements are discussed. Layers of different dopants concentration were prepared. Experience with deposition of chromium and titanium doped diamond-like carbon (DLC) films for potential coating of bone implants is presented. Properties of the layers prepared by both technologies are compared and discussed. The suitability of the layers for colonization with human bone marrow mesenchymal stem cells and human osteoblast-like cells, were also evaluated under in vitro conditions.

  13. Enhanced p122RhoGAP/DLC-1 Expression Can Be a Cause of Coronary Spasm

    PubMed Central

    Kinjo, Takahiko; Tanaka, Makoto; Osanai, Tomohiro; Shibutani, Shuji; Narita, Ikuyo; Tanno, Tomohiro; Nishizaki, Kimitaka; Ichikawa, Hiroaki; Kimura, Yoshihiro; Ishida, Yuji; Yokota, Takashi; Shimada, Michiko; Homma, Yoshimi; Tomita, Hirofumi; Okumura, Ken

    2015-01-01

    Background We previously showed that phospholipase C (PLC)-δ1 activity was enhanced by 3-fold in patients with coronary spastic angina (CSA). We also reported that p122Rho GTPase-activating protein/deleted in liver cancer-1 (p122RhoGAP/DLC-1) protein, which was discovered as a PLC-δ1 stimulator, was upregulated in CSA patients. We tested the hypothesis that p122RhoGAP/DLC-1 overexpression causes coronary spasm. Methods and Results We generated transgenic (TG) mice with vascular smooth muscle (VSM)-specific overexpression of p122RhoGAP/DLC-1. The gene and protein expressions of p122RhoGAP/DLC-1 were markedly increased in the aorta of homozygous TG mice. Stronger staining with anti-p122RhoGAP/DLC-1 in the coronary artery was found in TG than in WT mice. PLC activities in the plasma membrane fraction and the whole cell were enhanced by 1.43 and 2.38 times, respectively, in cultured aortic vascular smooth muscle cells from homozygous TG compared with those from WT mice. Immediately after ergometrine injection, ST-segment elevation was observed in 1 of 7 WT (14%), 6 of 7 heterozygous TG (84%), and 7 of 7 homozygous TG mice (100%) (p<0.05, WT versus TGs). In the isolated Langendorff hearts, coronary perfusion pressure was increased after ergometrine in TG, but not in WT mice, despite of the similar response to prostaglandin F2α between TG and WT mice (n = 5). Focal narrowing of the coronary artery after ergometrine was documented only in TG mice. Conclusions VSM-specific overexpression of p122RhoGAP/DLC-1 enhanced coronary vasomotility after ergometrine injection in mice, which is relevant to human CSA. PMID:26624289

  14. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  15. Increasing Flexibility in Two-Dimensional Liquid Chromatography by Pulsed Elution of the First Dimension: A Proof of Concept.

    PubMed

    Jakobsen, Simon S; Christensen, Jan H; Verdier, Sylvain; Mallet, Claude R; Nielsen, Nikoline J

    2017-09-05

    This work demonstrates the development of an online two-dimensional liquid chromatography (2D-LC) method where the first dimension column is eluted by a sequence of pulses of increasing eluotropic strength generated by the LC pumps (pulsed-elution 2D-LC). Between the pulses, the first dimension is kept in a no-elution state using low eluent strength. The eluate from the first dimension is actively modulated using trap columns and subsequently analyzed in the second dimension. We demonstrate that by tuning the length and eluotropic strength of the pulses, peaks with retention factors in water, k w , above 150 can be manipulated to elute in 3-4 pulses. The no-elution state can be kept for 1-10 min with only minor changes as to which and how many pulses the peaks elute in. Pulsed-elution 2D-LC combined with active modulation tackles three of the main challenges encountered in 2D-LC and specifically online comprehensive 2D-LC: undersampling, difficulties in refocusing, and lack of flexibility in the selection of column dimensions and flow rates because the two dimensions constrain each other. The pulsed-elution 2D-LC was applied for the analysis of a basic fraction of vacuum gas oil. Peak capacity was 4018 for a 540 min analysis and 4610 for a 1040 min analysis.

  16. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    NASA Astrophysics Data System (ADS)

    Miksovsky, J.; Voss, A.; Kozarova, R.; Kocourek, T.; Pisarik, P.; Ceccone, G.; Kulisch, W.; Jelinek, M.; Apostolova, M. D.; Reithmaier, J. P.; Popov, C.

    2014-04-01

    Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O2 or NH3/N2 plasmas and UV/O3 treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.

  17. Synthesis of water-soluble curcumin derivatives and their inhibition on lysozyme amyloid fibrillation

    NASA Astrophysics Data System (ADS)

    Wang, Sujuan; Peng, Xixi; Cui, Liangliang; Li, Tongtong; Yu, Bei; Ma, Gang; Ba, Xinwu

    2018-02-01

    The potential application of curcumin was heavily limited in biomedicine because of its poor solubility in pure water. To circumvent the detracting feature, two novel water-soluble amino acid modified curcumin derivatives (MLC and DLC) have been synthesized through the condensation reaction between curcumin and Nα-Fmoc-Nε-Boc-L-lysine. Benefiting from the enhanced solubility of 3.32 × 10- 2 g/mL for MLC and 4.66 × 10- 2 g/mL for DLC, the inhibition effects of the as-prepared derivatives on the amyloid fibrillation of lysozyme (HEWL) were investigated detaily in water solution. The obtained results showed that the amyloid fibrillation of HEWL was inhibited to a great extent when the concentrations of MLC and DLC reach to 20.139 mM and 49.622 mM, respectively. The fluorescence quenching upon the addition of curcumin to HEWL provide a support for static and dynamic recombination quenching process. The binding driving force was assigned to classical hydrophobic interaction between curcumin derivatives and HEWL. In addition, UV-Vis absorption and circular dichroism (CD) spectra confirmed the change of the conformation of HEWL.

  18. Development of program package for investigation and modeling of carbon nanostructures in diamond like carbon films with the help of Raman scattering and infrared absorption spectra line resolving

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, David B.; Hovhannisyan, Levon; Mantashyan, Paytsar A.

    2013-04-01

    The analysis of complex spectra is an actual problem for modern science. The work is devoted to the creation of a software package, which analyzes spectrum in the different formats, possesses by dynamic knowledge database and self-study mechanism, performs automated analysis of the spectra compound based on knowledge database by application of certain algorithms. In the software package as searching systems, hyper-spherical random search algorithms, gradient algorithms and genetic searching algorithms were used. The analysis of Raman and IR spectrum of diamond-like carbon (DLC) samples were performed by elaborated program. After processing the data, the program immediately displays all the calculated parameters of DLC.

  19. Performance test of different 3.5 mm drill bits and consequences for orthopaedic surgery.

    PubMed

    Clement, Hans; Zopf, Christoph; Brandner, Markus; Tesch, Norbert P; Vallant, Rudolf; Puchwein, Paul

    2015-12-01

    Drilling of bones in orthopaedic and trauma surgery is a common procedure. There are yet no recommendations about which drill bits/coating should be preferred and when to change a used drill bit. In preliminary studies typical "drilling patterns" of surgeons concerning used spindle speed and feeding force were recorded. Different feeding forces were tested and abrasion was analysed using magnification and a scanning electron microscope (SEM). Acquired data were used for programming a friction stir welding machine (FSWM). Four drill bits (a default AISI 440A, a HSS, an AISI 440B and a Zirconium-oxide drill bit) were analysed for abrasive wear after 20/40/60 machine-guided and hand-driven drilled holes. Additionally different drill coatings [diamond-like carbon/grafitic (DLC), titanium nitride/carbide (Ti-N)] were tested. The mean applied feeding force by surgeons was 45 ± 15.6 Newton (N). HSS bits were still usable after 51 drill holes. Both coated AISI 440A bits showed considerable breakouts of the main cutting edge after 20 hand-driven drilled holes. The coated HSS bit showed very low abrasive wear. The non-coated AISI 440B bit had a similar durability to the HSS bits. The ZrO2 dental drill bit excelled its competitors (no considerable abrasive wear at >100 holes). If the default AISI 440A drill bit cannot be checked by 20-30× magnification after surgery, it should be replaced after 20 hand-driven drilled holes. Low price coated HSS bits could be a powerful alternative.

  20. Sex-specific differences in effect of prenatal exposure to dioxin-like compounds on neurodevelopment in Japanese children: Sapporo cohort study.

    PubMed

    Nakajima, Sonomi; Saijo, Yasuaki; Miyashita, Chihiro; Ikeno, Tamiko; Sasaki, Seiko; Kajiwara, Junboku; Kishi, Reiko

    2017-11-01

    Consistent reports are not available on the effects of dioxin-like polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDD)/ polychlorinated dibenzofurans (PCDF) (dioxin-like compounds [DLCs]) on child neurodevelopment. Further, the effect of background-level exposure to individual DLC isomers is not known. We carried out the Sapporo cohort study to evaluate the effect of prenatal exposure to each DLC isomer on child neurodevelopment at 6 and 18 months of age, and assessed sex-specific differences in these effects. The levels of all and each individual DLC isomers were estimated in maternal peripheral blood. Neurodevelopment was evaluated using the Bayley Scales of Infant Development-2nd Edition for 6-month-old infants (n = 190) and 18-month-old children (n = 121). In male children, levels of 10 DLC isomers were significantly negatively associated with the Psychomotor Developmental Index (PDI) at 6 months of age after adjustment for potential confounding variables. However, at 18 months of age, these associations were absent. In female children, the level of only one DLC isomer was significantly negatively associated with PDI at 6 months of age. However, in contrast to the male children, the levels of six DLC isomers in 18-month-old female children were significantly positively associated with the Mental Developmental Index. These findings indicate that adverse neurodevelopmental effects of prenatal background-level exposure to DLCs may be stronger in male children. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Big muddy: can a chemical flood breathe new life into a tired old giant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-06-01

    A 9-year, $35.5-million tertiary recovery project has been begun in the Big Muddy Field in Wyoming. It will evaluate a chemical flooding process employing an aqueous surfactant slug followed by polymer. (DLC)

  2. Structurally Driven Enhancement of Resonant Tunneling and Nanomechanical Properties in Diamond-like Carbon Superlattices.

    PubMed

    Dwivedi, Neeraj; McIntosh, Ross; Dhand, Chetna; Kumar, Sushil; Malik, Hitendra K; Bhattacharyya, Somnath

    2015-09-23

    We report nitrogen-induced enhanced electron tunnel transport and improved nanomechanical properties in band gap-modulated nitrogen doped DLC (N-DLC) quantum superlattice (QSL) structures. The electrical characteristics of such superlattice devices revealed negative differential resistance (NDR) behavior. The interpretation of these measurements is supported by 1D tight binding calculations of disordered superlattice structures (chains), which include bond alternation in sp(3)-hybridized regions. Tandem theoretical and experimental analysis shows improved tunnel transport, which can be ascribed to nitrogen-driven structural modification of the N-DLC QSL structures, especially the increased sp(2) clustering that provides additional conduction paths throughout the network. The introduction of nitrogen also improved the nanomechanical properties, resulting in enhanced elastic recovery, hardness, and elastic modulus, which is unusual but is most likely due to the onset of cross-linking of the network. Moreover, the materials' stress of N-DLC QSL structures was reduced with the nitrogen doping. In general, the combination of enhanced electron tunnel transport and nanomechanical properties in N-DLC QSL structures/devices can open a platform for the development of a new class of cost-effective and mechanically robust advanced electronic devices for a wide range of applications.

  3. Microwave plasma induced surface modification of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  4. Fast, comprehensive two-dimensional liquid chromatography

    PubMed Central

    Stoll, Dwight R.; Li, Xiaoping; Wang, Xiaoli; Carr, Peter W.; Porter, Sarah E. G.; Rutan, Sarah C.

    2011-01-01

    The absolute need to improve the separating power of liquid chromatography, especially for multi-constituent biological samples, is becoming increasingly evident. In response, over the past few years, there has been a great deal of interest in the development of two dimension liquid chromatography (2DLC). Just as 1DLC is preferred to 1DGC based on its compatibility with biological materials we believe that ultimately 2DLC will be preferred to the much more highly developed 2DGC for such samples. The huge advantage of 2D chromatographic techniques over 1D methods is inherent in the tremendous potential increase in peak capacity (resolving power). This is especially true of comprehensive 2D chromatography wherein it is possible, under ideal conditions, to obtain a total peak capacity equal to the product of the peak capacities of the first and second dimension separations. However, the very long timescale (typically several hours to tens of hours) of comprehensive 2DLC is clearly its chief drawback. Recent advances in the use of higher temperatures to speed up isocratic and gradient elution liquid chromatography have been used to decrease the time needed to do the second dimension LC separation of 2DLC to about 20 seconds for a full gradient elution run. Thus fast, high temperature LC is becoming a very promising technique. Peak capacities of over 2000 and rates of peak capacity production of nearly 1 peak/s have been achieved. In consequence, many real samples showing more than 200 peaks with signal to noise ratios of better than 10:1 have been run in total times of under 30 minutes. This report is not intended to be a comprehensive review of 2DLC, but is deliberately focused on the issues involved in doing fast 2DLC by means of elevating the column temperature; however, many issues of broader applicability will be discussed. PMID:17888443

  5. Materials and Molecular Research Division annual report 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  6. Corrosion behavior of aluminum doped diamond-like carbon thin films in NaCl aqueous solution.

    PubMed

    Khun, N W; Liu, E

    2010-07-01

    Aluminum doped diamond-like carbon (DLC:Al) thin films were deposited on n-Si(100) substrates by co-sputtering a graphite target under a fixed DC power (650 W) and an aluminum target under varying DC power (10-90 W) at room temperature. The structure, adhesion strength and surface morphology of the DLC:Al films were characterized by X-ray photoelectron spectroscopy (XPS), micro-scratch testing and atomic force microscopy (AFM), respectively. The corrosion performance of the DLC:Al films was investigated by means of potentiodynamic polarization testing in a 0.6 M NaCl aqueous solution. The results showed that the polarization resistance of the DLC:Al films increased from about 18 to 30.7 k(omega) though the corrosion potentials of the films shifted to more negative values with increased Al content in the films.

  7. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linville, B.

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  8. Method and apparatus for making diamond-like carbon films

    DOEpatents

    Pern, Fu-Jann [Golden, CO; Touryan, Kenell J [Indian Hills, CO; Panosyan, Zhozef Retevos [Yerevan, AM; Gippius, Aleksey Alekseyevich [Moscow, RU

    2008-12-02

    Ion-assisted plasma enhanced deposition of diamond-like carbon (DLC) films on the surface of photovoltaic solar cells is accomplished with a method and apparatus for controlling ion energy. The quality of DLC layers is fine-tuned by a properly biased system of special electrodes and by exact control of the feed gas mixture compositions. Uniform (with degree of non-uniformity of optical parameters less than 5%) large area (more than 110 cm.sup.2) DLC films with optical parameters varied within the given range and with stability against harmful effects of the environment are achieved.

  9. University students' cognitive performance under temperature cycles induced by direct load control events.

    PubMed

    Zhang, F; de Dear, R

    2017-01-01

    As one of the most common strategies for managing peak electricity demand, direct load control (DLC) of air-conditioners involves cycling the compressors on and off at predetermined intervals. In university lecture theaters, the implementation of DLC induces temperature cycles which might compromise university students' learning performance. In these experiments, university students' learning performance, represented by four cognitive skills of memory, concentration, reasoning, and planning, was closely monitored under DLC-induced temperature cycles and control conditions simulated in a climate chamber. In Experiment 1 with a cooling set point temperature of 22°C, subjects' cognitive performance was relatively stable or even slightly promoted by the mild heat intensity and short heat exposure resulting from temperature cycles; in Experiment 2 with a cooling set point of 24°C, subjects' reasoning and planning performance observed a trend of decline at the higher heat intensity and longer heat exposure. Results confirm that simpler cognitive tasks are less susceptible to temperature effects than more complex tasks; the effect of thermal variations on cognitive performance follows an extended-U relationship with performance being relatively stable across a range of temperatures. DLC appears to be feasible in university lecture theaters if DLC algorithms are implemented judiciously. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Dual laser deposition of Ti:DLC composite for implants

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Zemek, Josef; Kocourek, Tomáš; Remsa, Jan; Mikšovský, Jan; Písařík, Petr; Jurek, Karel; Tolde, Zdeněk; Trávníčková, Martina; Vandrovcová, Marta; Filová, Elena

    2016-10-01

    Ti-doped hydrogen free diamond-like carbon (DLC) layers of dopation up to ~25 at.% were prepared by dual beam pulsed laser deposition (PLD) using two excimer lasers. The arrangement allows continuous fine tuning of dopant concentration on a large scale and deposition flexibility. The layers were prepared on Si(1 0 0) and Ti6Al4V substrates at room temperature. The surface morphology, mechanical properties, bonds, composition, morphology of human osteoblast-like Saos-2 cells, their metabolic activity and production of osteocalcin, a marker of osteogenic cells’ differentiation were tested. The films’ composition changed after x-ray photoelectron spectroscopy (XPS) surface cleaning by argon clusters. Adhesion moved with Ti dopation from 4 N (DLC film) to 11 N (25 at.% of Ti in DLC). Creation of TiC was observed for higher Ti dopation. The contact angle and surface free energy stayed unchanged for higher Ti dopation. Saos-2 cells had the highest metabolic activity/viability on DLC with 10 at.% of Ti and on control polystyrene dishes on days 1 and 3. The Ti dopation improved the formation of vinculin-containing focal adhesion plaques in Saos-2 cells. Immunofluorescence staining revealed similar production of osteocalcin in cells on all tested samples.

  11. Surface characterization and orientation interaction between diamond- like carbon layer structure and dimeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Naradikian, H.; Petrov, M.; Katranchev, B.; Milenov, T.; Tinchev, S.

    2017-01-01

    Diamond-like carbon (DLC) and amorphous carbon films are very promising type of semiconductor materials. Depending on the hybridization sp2/sp3 ratio, the material’s band gap varies between 0.8 and 3 eV. Moreover carbon films possess different interesting for practice properties: comparable to the Silicon, Diamond like structure has 22-time better thermal conductivity etc. Here we present one type of implementation of such type nanostructure. That is one attempt for orientation of dimeric LC by using of pre-deposited DLC layer with different ratio of sp2/sp3 hybridized carbon content. It could be expected a pronounced π1-π2interaction between s and p orbital levels on the surface and the dimeric ring of LC. We present comparison of surface anchoring strengths of both orientation inter-surfaces DLC/dimeric LC and single wall carbon nanotubes (SWCNT)/dimeric LC. The mechanism of interaction of dimeric LC and activated surfaces with DLC or SWCNT will be discussed. In both cases we have π-π interaction, which in combination with hydrogen bonding, typical for the dimeric LCs, influence the LC alignment. The Raman spectroscopy data evidenced the presence of charge transfer between contacting hexagonal rings of DLC and the C = O groups of the LC molecules.

  12. Diamond MEMS: wafer scale processing, devices, and technology insertion

    NASA Astrophysics Data System (ADS)

    Carlisle, J. A.

    2009-05-01

    Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.

  13. International Congress on Glass XII (in several languages)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doremus, R H; LaCourse, W C; Mackenzie, J D

    1980-01-01

    A total of 158 papers are included under nine headings: structure and glass formation; optical properties; electrical and magnetic properties; mechanical properties and relaxation; mass transport; chemical durability and surfaces; nucleation; crystallization; and glass ceramics; processing; and automatic controls. Separate abstracts were prepared for eight papers; four of the remaining papers had been processed previously for the data base. (DLC)

  14. A comparative study of tribological characteristics of hydrogenated DLC film sliding against ceramic mating materials for helium applications

    NASA Astrophysics Data System (ADS)

    Wu, Daheng; Ren, Siming; Pu, Jibin; Lu, Zhibin; Zhang, Guangan; Wang, Liping

    2018-05-01

    The tribological behaviors of hydrogenated DLC film sliding against Al2O3, ZrO2, Si3N4 and WC mating balls have been comparatively investigated by a ball-on-disk tribometer at 150 °C under helium and air (RH = 6%) conditions. The results showed that the mating material influenced the friction and wear behavior remarkably in helium atmosphere, where the wear rates were in inversely proportional to the friction coefficients (COF) of those tribo-pairs. Compared to the tests in helium, the tribological performance of DLC film significantly improved in air. Scanning electron microscope (SEM) and Raman spectroscopy were performed to study the friction behavior and wear mechanism of the film under different conditions. It suggested that the severe abrasion was caused by the strong interaction between the tribo-pairs in helium atmosphere at 150 °C, whereas the sufficient passivation of the dangling bonds of carbon atoms at sliding interface by chemically active molecules, such as water and oxygen, dominated the ultralow friction under air condition. Meanwhile, Hertz analysis was used to further elucidate the frictional mechanism of DLC film under helium and air conditions. It showed that the coefficient of friction was consistent with the varied tendency of the contact radius, namely, higher friction coefficient corresponded to the larger contact radius, which was the same with the relationship between the wear rate and the contact pressure. All of the results made better understanding of the essential mechanism of hydrogenated DLC film sliding against different pairs, which were able to guide the further application of DLC film in the industrial fields of helium atmosphere.

  15. Erosion of fluorinated diamond-like carbon films by exposure to soft X-rays

    NASA Astrophysics Data System (ADS)

    Kanda, Kazuhiro; Takamatsu, Hiroki; Miura-Fujiwara, Eri; Akasaka, Hiroki; Saiga, Akihiro; Tamada, Koji

    2018-04-01

    The effects of soft X-ray irradiation on fluorinated diamond-like carbon (F-DLC) films were investigated using synchrotron radiation (SR). The Vickers hardness of the F-DLC films substantially increased from an initial value of about 290 to about 800 HV at a dose of 50 mA·h and the remained constant at about 1100 HV at doses of more than 300 mA·h. This dose dependence was consistent with those of the film thickness and elemental composition. The depth profile of the elemental composition inside each F-DLC film obtained by the measurement of the X-ray photoelectron spectrum (XPS) during sputtering showed that the composition ratio of fluorine was approximately constant from the surface to the neighborhood of the substrate. Namely, fluorine atoms were desorbed by SR irradiation from not only the surface but also the substrate neighborhood. Modification by SR irradiation was found to occur in the entire F-DLC film of about 200 nm thickness.

  16. Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Li, Liuhe; Luo, Sida; Lu, Qiuyuan; Gu, Jiabin; Lei, Ning; Huo, Chunqin

    2017-01-01

    Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PIII&D) have been proved to be highly effective for depositing diamond-like carbon (DLC) films on the inner surface of the slender quartz tube with a deposition rate of 1.3 μm/min. Such a high-efficiency DLC films deposition was explained previously as the short electrons mean free path to cause large collision frequency between electrons and neutral particles. However, in this paper, we found that the inner surface material of the tube itself play a vital role on the films deposition. To disclose the mechanism of this phenomenon, the effect of different inner surface materials on plasma discharge was experimentally and theoretically investigated. Then a self-enhancing plasma discharge is discovered. It is found that secondary electrons emitted from the inner surface material, whatever it is the tube inner surface or deposited DLC films, can dramatically enhance the plasma discharge to improve the DLC films deposition rate.

  17. Effect of salt acclimation on digitalis-like compounds in the toad.

    PubMed

    Lichtstein, D; Gati, I; Babila, T; Haver, E; Katz, U

    1991-01-23

    Digitalis-like compounds (DLC) were shown to be a normal constituent of the skin and plasma of toads. In order to assess the possible physiological role of these compounds in the toad, their levels were determined in the brain, plasma and skin following acclimation in different NaCl solutions. We demonstrate that an increase in salt concentrations in the animal medium from 0 to 1.2% decreased the levels of DLC in the brain by 50% without altering significantly its levels in the plasma and skin. An increase in medium salt concentration to 1.5% resulted in a 50% increase of DLC levels in the skin without changing its levels in the plasma or brain. These results suggest that skin and brain DLC may participate in the long-term salt and water homeostasis in the toad, while the plasma compound either participates in the short-term regulations of salt and water homeostasis or have some other, unknown, function.

  18. Structural characteristics of surface-functionalized nitrogen-doped diamond-like carbon films and effective adjustment to cell attachment

    NASA Astrophysics Data System (ADS)

    Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua

    2015-05-01

    Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).

  19. Disparate bilingual experiences modulate task-switching advantages: A diffusion-model analysis of the effects of interactional context on switch costs.

    PubMed

    Hartanto, Andree; Yang, Hwajin

    2016-05-01

    Drawing on the adaptive control hypothesis (Green & Abutalebi, 2013), we investigated whether bilinguals' disparate interactional contexts modulate task-switching performance. Fifty-eight bilinguals within the single-language context (SLC) and 75 bilinguals within the dual-language context (DLC) were compared in a typical task-switching paradigm. Given that DLC bilinguals switch between languages within the same context, while SLC bilinguals speak only one language in one environment and therefore rarely switch languages, we hypothesized that the two groups' stark difference in their interactional contexts of conversational exchanges would lead to differences in switch costs. As predicted, DLC bilinguals showed smaller switch costs than SLC bilinguals. Our diffusion-model analyses suggest that DLC bilinguals' benefits in switch costs are more likely driven by task-set reconfiguration than by proactive interference. Our findings underscore the modulating role of the interactional context of conversational exchanges in task switching. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Estimating the Impacts of Direct Load Control Programs Using GridPIQ, a Web-Based Screening Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Seemita; Thayer, Brandon L.; Barrett, Emily L.

    In direct load control (DLC) programs, utilities can curtail the demand of participating loads to contractually agreed-upon levels during periods of critical peak load, thereby reducing stress on the system, generation cost, and required transmission and generation capacity. Participating customers receive financial incentives. The impacts of implementing DLC programs extend well beyond peak shaving. There may be a shift of load proportional to the interrupted load to the times before or after a DLC event, and different load shifts have different consequences. Tools that can quantify the impacts of such programs on load curves, peak demand, emissions, and fossil fuelmore » costs are currently lacking. The Grid Project Impact Quantification (GridPIQ) screening tool includes a Direct Load Control module, which takes into account project-specific inputs as well as the larger system context in order to quantify the impacts of a given DLC program. This allows users (utilities, researchers, etc.) to test and compare different program specifications and their impacts.« less

  1. Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Peiyu, JI; Jun, YU; Tianyuan, HUANG; Chenggang, JIN; Yan, YANG; Lanjian, ZHUGE; Xuemei, WU

    2018-02-01

    A high growth rate fabrication of diamond-like carbon (DLC) films at room temperature was achieved by helicon wave plasma chemical vapor deposition (HWP-CVD) using Ar/CH4 gas mixtures. The microstructure and morphology of the films were characterized by Raman spectroscopy and scanning electron microscopy. The diagnosis of plasma excited by a helicon wave was measured by optical emission spectroscopy and a Langmuir probe. The mechanism of high growth rate fabrication for DLC films by HWP-CVD has been discussed. The growth rate of the DLC films reaches a maximum value of 54 μm h-1 at the CH4 flow rate of 85 sccm, which is attributed to the higher plasma density during the helicon wave plasma discharge. The CH and H α radicals play an important role in the growth of DLC films. The results show that the H α radicals are beneficial to the formation and stabilization of C=C bond from sp2 to sp3.

  2. Probing superlubricity stability of hydrogenated diamond-like carbon film by varying sliding velocity

    NASA Astrophysics Data System (ADS)

    Liu, Yunhai; Yu, Bingjun; Cao, Zhongyue; Shi, Pengfei; Zhou, Ningning; Zhang, Bin; Zhang, Junyan; Qian, Linmao

    2018-05-01

    In this study, the superlubricity stability of hydrogenated diamond-like carbon (H-DLC) film in vacuum was investigated by varying the sliding velocity (30-700 mm/s). The relatively stable superlubricity state can be maintained for a long distance at low sliding velocity, whereas the superlubricity state quickly disappears and never recovers at high sliding velocity. Under superlubricity state, the transfer layer of H-DLC film was observed on the Al2O3 ball, which played a key role in obtaining ultra-low friction coefficient. Although the transfer layer can be generated at the beginning of the test, high-velocity sliding tends to accelerate the superlubricity failure and leads to the severe wear of H-DLC film. Analysis indicated that the main reason for superlubricity failure at high sliding velocity is not attributed to friction heat or the break of hydrogen passivation but to the absence of transfer layer on Al2O3 ball. The present study can enrich the understanding of superlubricity mechanism of H-DLC film.

  3. Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers.

    PubMed

    Lee, Sanghoon; Choi, Heejae; Chang, Taihyun; Staal, Bastiaan

    2018-05-15

    A detailed characterization of a commercial polystyrene/polybutadiene block copolymer material (Styrolux) was carried out using two-dimensional liquid chromatography (2D-LC). The Styrolux is prepared by statistical linking reaction of two different polystyrene- block-polybutadienyl anion precursors with a multivalent linking agent. Therefore, it is a mixture of a number of branched block copolymers different in molecular weight, composition, and chain architecture. While individual LC analysis, including size exclusion chromatography, interaction chromatography, or liquid chromatography at critical condition, is not good enough to resolve all the polymer species, 2D-LC separations coupling two chromatography methods were able to resolve all polymer species present in the sample; at least 13 block copolymer species and a homopolystyrene blended. Four different 2D-LC analyses combining a different pair of two LC methods provide their characteristic separation results. The separation characteristics of the 2D-LC separations are compared to elucidate the elution characteristics of the block copolymer species.

  4. Public meeting: Western New York Nuclear Service Center options study. [Problem of West Valley plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This document is a transcript of the meeting, with additional written comments. The main topic is the West Valley Processing Plant and how to dispose of it and its high-level wastes. Objective is to get public input on this topic. (DLC)

  5. Experimental studies at the Idaho Chemical Processing Plant on actinide partitioning from acidic nuclear wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIssaac, L. D.; Baker, J. D.; Meikrantz, D. H.

    1980-01-01

    Wastes generated at ICPP and in the reprocessing of LWR fuel is discussed separately. DHDECMP is used as extractant. Studies on DHDECMP purification and toxicity, diluent effects, reaction kinetics, radioloysis, mixer-settler performance, etc. are reported. 10 tables, 3 figures. (DLC)

  6. Factors inducing in-stent restenosis: an in-vitro model.

    PubMed

    Santin, M; Morris, C; Harrison, M; Mikhalovska, L; Lloyd, A W; Mikhalovsky, S

    2004-05-01

    In-stent restenosis is caused by the proliferation of the smooth muscle cells (SMCs) following a host response towards the implanted device. However, the precise biochemical and cellular mechanisms are still not completely understood. In this paper, the behaviour of SMCs has been investigated by an in vitro model where the cells were stimulated by platelet derived growth factor (PDGF) on tissue-like substrates as well as on biomaterials such as stainless steel (St) and diamond-like carbon (DLC)-coated St. The results demonstrated that SMCs have a completely different adhesion mode on St and become particularly prone to proliferation and pro-inflammatory cytokine secretion under PDGF stimulus. This would suggest that restenosis may caused by the accidental contact of the SMC with the St substrate under an inflammatory insult.

  7. An investigation of material properties and tribological performance of magnetron sputtered thin film coatings

    NASA Astrophysics Data System (ADS)

    Singh, Harpal

    This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon coating to increase the durability of contacting surfaces under boundary lubrication were studied. The performance of highly hydrogenated Diamond Like Carbon (DLC) was evaluated in a mixed sliding and rolling contact. Experimental results show significant improvement in fatigue life of steel specimens after coating with a highly hydrogenated Diamond Like Carbon coating. The improved fatigue life is attributed to the coating microstructure and the mechanical properties.

  8. Structural and optical properties of gold-incorporated diamond-like carbon thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Majeed, Shahbaz; Siraj, K.; Naseem, S.; Khan, Muhammad F.; Irshad, M.; Faiz, H.; Mahmood, A.

    2017-07-01

    Pure and gold-doped diamond-like carbon (Au-DLC) thin films are deposited at room temperature by using RF magnetron sputtering in an argon gas-filled chamber with a constant flow rate of 100 sccm and sputtering time of 30 min for all DLC thin films. Single-crystal silicon (1 0 0) substrates are used for the deposition of pristine and Au-DLC thin films. Graphite (99.99%) and gold (99.99%) are used as co-sputtering targets in the sputtering chamber. The optical properties and structure of Au-DLC thin films are studied with the variation of gold concentration from 1%-5%. Raman spectroscopy, atomic force microscopy (AFM), Vickers hardness measurement (VHM), and spectroscopic ellipsometry are used to analyze these thin films. Raman spectroscopy indicates increased graphitic behavior and reduction in the internal stresses of Au-DLC thin films as the function of increasing gold doping. AFM is used for surface topography, which shows that spherical-like particles are formed on the surface, which agglomerate and form larger clusters on the surface by increasing the gold content. Spectroscopy ellipsometry analysis elucidates that the refractive index and extinction coefficient are inversely related and the optical bandgap energy is decreased with increasing gold content. VHM shows that gold doping reduces the hardness of thin films, which is attributed to the increase in sp2-hybridization.

  9. Design criteria for Reedy Creek Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felicione, F.S.; Logan, J.A.

    1980-11-01

    This document defines the basic criteria for the 100-ton/day pilot plant which will use the Andco-Torrax pyrolysis process at Walt Disney World in Orlando, Florida, to produce hot water. The waste will simulate transuranic wastes which are stored at INEL. The Andco-Torrax process is designed to convert mixed municipal refuse into energy and is called slagging pyrolysis solid waste conversion. (DLC)

  10. Resveratrol inhibits age-dependent spontaneous tumorigenesis by SIRT1-mediated post-translational modulations in the annual fish Nothobranchius guentheri

    PubMed Central

    Liu, Tingting; Ma, Long; Zheng, Zhaodi; Li, Fenglin; Liu, Shan; Xie, Yingbo; Li, Guorong

    2017-01-01

    Resveratrol, SIRT1 activator, inhibits carcinogenesis predominantly performed in transgenic animal models, orthotopic cancers of nude mice or different cancer cell lines, but its effects during process of spontaneous tumors using vertebrate models remain untested. Spontaneous liver neoplasm is an age-related disease and is inhibited by resveratrol in the annual fish Nothobranchius guentheri, which indicates that the fish can act as an excellent model to study spontaneous tumorigenesis. Totally, 175 fish were fed with resveratrol and another 175 fish for controls. Treated fish were fed with resveratrol (25 μg/fish/day) from sexual maturity (4-month-old) until they were sacrificed at 6-, 9- and 12-month-old. Immunoblot, immunohistochemistry and co-immunoprecipitation were employed to investigate the underlying mechanisms that resveratrol inhibited age-dependent spontaneous tumorigenesis in the fish. Results showed that resveratrol increased protein level of SIRT1 and alleviated age-associated tumorigenesis in liver. With SIRT1 up-regulation, resveratrol reduced proliferation by deacetylating K-Ras and inactivating K-Ras/PI3K/AKT pathway; and promoted apoptosis through deacetylation and dephosphorylation of FoxOs, up-regulation of DLC1 and interaction between SIRT1 and DLC1, and dephosphorylation of DLC1 in spontaneous neoplasms. We established a novel short-lived fish model for understanding the molecular mechanisms of drugs on age-dependent spontaneous tumorigenesis. PMID:28903430

  11. Bioprocessing of lignite coals using reductive microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, D.L.

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coalmore » depolymerizing enzymes.« less

  12. Surface Roughness of Various Diamond-Like Carbon Films

    NASA Astrophysics Data System (ADS)

    Liu, Dongping; Liu, Yanhong; Chen, Baoxiang

    2006-11-01

    Atomic force microscopy is used to estimate and compare the surface morphology of hydrogenated and hydrogen-free diamond-like carbon (DLC) films. The films were prepared by using DC magnetron sputtering of a graphite target, pulsed cathodic carbon arcs, electron cyclotron resonance (ECR), plasma source ion implantation and dielectric barrier discharge (DBD). The difference in the surface structure is presented for each method of deposition. The influences of various discharge parameters on the film surface properties are discussed based upon the experimental results. The coalescence process via the diffusion of adsorbed carbon species is responsible for the formation of hydrogen-free DLC films with rough surfaces. The films with surface roughness at an atomic level can be deposited by energetic ion impacts in a highly ionized carbon plasma. The dangling bonds created by atomic hydrogen lead to the uniform growth of hydrocarbon species at the a-C:H film surfaces of the ECR or DBD plasmas.

  13. High-temperature two-dimensional liquid chromatography of ethylene-vinylacetate copolymers.

    PubMed

    Ginzburg, Anton; Macko, Tibor; Dolle, Volker; Brüll, Robert

    2010-10-29

    Temperature rising elution fractionation hyphenated to size exclusion chromatography (TREF×SEC) is a routine technique to determine the chemical heterogeneity of semicrystalline olefin copolymers. Its applicability is limited to well crystallizing samples. High-temperature two-dimensional liquid chromatography, HT 2D-LC, where the chromatographic separation by HPLC is hyphenated to SEC (HPLC×SEC) holds the promise to separate such materials irrespective of their crystallizability. A model blend consisting of ethylene-vinyl acetate (EVA) copolymers covering a broad range of chemical composition distribution including amorphous and semicrystalline copolymers and a polyethylene standard was separated by HT 2D-LC at 140°C. Both axes of the contour plot, i.e. the compositional axis from the HPLC and the molar mass axis from the SEC separation were calibrated for the first time. Therefore, a new approach to determine the void and dwell volume of the developed HT 2D-LC instrument was applied. The results from the HT 2D-LC separation are compared to those from a cross-fractionation (TREF×SEC) experiment. Copyright © 2010. Published by Elsevier B.V.

  14. Chemical structural analysis of diamondlike carbon films: II. Raman analysis

    NASA Astrophysics Data System (ADS)

    Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji

    2018-02-01

    The chemical structure of diamondlike carbon (DLC) films, synthesized by photoemission-assisted glow discharge, has been analyzed by Raman spectroscopy. Raman analysis in conjunction with the sp2 cluster model clarified the film structure. The sp2 clusters in DLC films synthesized at low temperature preferred various aliphatic structures. Sufficient argon-ion assist allowed for formation of less strained DLC films containing large amounts of hydrogen. As the synthesis temperature was increased, thermal desorption of hydrogen left carbon dangling bonds with active unpaired electrons in the films, and the reactions that followed created strained films containing aromatic sp2 clusters. In parallel, the desorption of methane molecules from the growing surface by chemisorption of hydrogen radicals prevented the action of argon ions, promoting internal strain of the films. However, in synthesis at very high temperature, where sp2 clusters are sufficiently dominant, the strain was dissolved gradually. In contrast, the DLC films synthesized at low temperature were more stable than other films synthesized at the same temperature because of stable hydrogen-carbon bonds in the films.

  15. Controllable synthesizing DLC nano structures as a super hydrophobic layer on cotton fabric using a low-cost ethanol electrospray-assisted atmospheric plasma jet.

    PubMed

    Sohbatzadeh, F; Eshghabadi, M; Mohsenpour, T

    2018-06-29

    The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.

  16. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment.

    PubMed

    Ashraf, Shazia; Kudo, Hiroki; Rao, Jia; Kikuchi, Atsuo; Widmeier, Eugen; Lawson, Jennifer A; Tan, Weizhen; Hermle, Tobias; Warejko, Jillian K; Shril, Shirlee; Airik, Merlin; Jobst-Schwan, Tilman; Lovric, Svjetlana; Braun, Daniela A; Gee, Heon Yung; Schapiro, David; Majmundar, Amar J; Sadowski, Carolin E; Pabst, Werner L; Daga, Ankana; van der Ven, Amelie T; Schmidt, Johanna M; Low, Boon Chuan; Gupta, Anjali Bansal; Tripathi, Brajendra K; Wong, Jenny; Campbell, Kirk; Metcalfe, Kay; Schanze, Denny; Niihori, Tetsuya; Kaito, Hiroshi; Nozu, Kandai; Tsukaguchi, Hiroyasu; Tanaka, Ryojiro; Hamahira, Kiyoshi; Kobayashi, Yasuko; Takizawa, Takumi; Funayama, Ryo; Nakayama, Keiko; Aoki, Yoko; Kumagai, Naonori; Iijima, Kazumoto; Fehrenbach, Henry; Kari, Jameela A; El Desoky, Sherif; Jalalah, Sawsan; Bogdanovic, Radovan; Stajić, Nataša; Zappel, Hildegard; Rakhmetova, Assel; Wassmer, Sharon-Rose; Jungraithmayr, Therese; Strehlau, Juergen; Kumar, Aravind Selvin; Bagga, Arvind; Soliman, Neveen A; Mane, Shrikant M; Kaufman, Lewis; Lowy, Douglas R; Jairajpuri, Mohamad A; Lifton, Richard P; Pei, York; Zenker, Martin; Kure, Shigeo; Hildebrandt, Friedhelm

    2018-05-17

    No efficient treatment exists for nephrotic syndrome (NS), a frequent cause of chronic kidney disease. Here we show mutations in six different genes (MAGI2, TNS2, DLC1, CDK20, ITSN1, ITSN2) as causing NS in 17 families with partially treatment-sensitive NS (pTSNS). These proteins interact and we delineate their roles in Rho-like small GTPase (RLSG) activity, and demonstrate deficiency for mutants of pTSNS patients. We find that CDK20 regulates DLC1. Knockdown of MAGI2, DLC1, or CDK20 in cultured podocytes reduces migration rate. Treatment with dexamethasone abolishes RhoA activation by knockdown of DLC1 or CDK20 indicating that steroid treatment in patients with pTSNS and mutations in these genes is mediated by this RLSG module. Furthermore, we discover ITSN1 and ITSN2 as podocytic guanine nucleotide exchange factors for Cdc42. We generate Itsn2-L knockout mice that recapitulate the mild NS phenotype. We, thus, define a functional network of RhoA regulation, thereby revealing potential therapeutic targets.

  17. Controllable synthesizing DLC nano structures as a super hydrophobic layer on cotton fabric using a low-cost ethanol electrospray-assisted atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Sohbatzadeh, F.; Eshghabadi, M.; Mohsenpour, T.

    2018-06-01

    The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.

  18. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, D.L.

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coalmore » depolymerizing enzymes.« less

  19. Effect of sputtering power on structure, adhesion strength and corrosion resistance of nitrogen doped diamond-like carbon thin films.

    PubMed

    Khun, N W; Liu, E

    2011-06-01

    Nitrogen doped diamond-like carbon (DLC:N) thin films were deposited on highly conductive p-Si substrates using a DC magnetron sputtering deposition system. The DLC:N films were characterized using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM), contact angle measurement and micro-scratch test. The XPS and Raman results indicated that the sputtering power significantly influenced the properties of the films in terms of bonding configuration in the films. The corrosion performance of the DLC:N films was investigated in a 0.6 M NaCl solution by means of potentiodynamic polarization testing. It was found that the corrosion performance of the films could be enhanced by higher sputtering powers.

  20. Deposition of hard and adherent diamond-like carbon films inside steel tubes using a pulsed-DC discharge.

    PubMed

    Trava-Airoldi, Vladimir Jesus; Capote, Gil; Bonetti, Luís Francisco; Fernandes, Jesum; Blando, Eduardo; Hübler, Roberto; Radi, Polyana Alves; Santos, Lúcia Vieira; Corat, Evaldo José

    2009-06-01

    A new, low cost, pulsed-DC plasma-enhanced chemical vapor deposition system that uses a bipolar, pulsed power supply was designed and tested to evaluate its capacity to produce quality diamond-like carbon films on the inner surface of steel tubes. The main focus of the study was to attain films with low friction coefficients, low total stress, a high degree of hardness, and very good adherence to the inner surface of long metallic tubes at a reasonable growth rate. In order to enhance the diamond-like carbon coating adhesion to metallic surfaces, four steps were used: (1) argon ion sputtering; (2) plasma nitriding; (3) a thin amorphous silicon interlayer deposition, using silane as the precursor gas; and (4) diamond-like carbon film deposition using methane atmosphere. This paper presents various test results as functions of the methane gas pressure and of the coaxial metal anode diameter, where the pulsed-DC voltage constant is kept constant. The influence of the coaxial metal anode diameter and of the methane gas pressure is also demonstrated. The results obtained showed the possibilities of using these DLC coatings for reduced friction and to harden inner surface of the steel tubes.

  1. Downhole steam generator using low-pressure fuel and air supply

    DOEpatents

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

  2. Mobile Technology: Implications of Its Application on Learning

    ERIC Educational Resources Information Center

    Adeyemo, Samuel Adesola; Adedoja, Gloria Olusola; Adelore, Omobola

    2013-01-01

    Learning in Nigeria is considered to have taken a new dimension as the Distance Learning Centre (DLC) of the University of Ibadan has created wider access to learning through the application of mobile technology to learning with particular reference to mobile phones use for the teaching and learning process. By this, the Centre seeks to achieve…

  3. Cesium recovery from aqueous solutions

    DOEpatents

    Goodhall, C. A.

    1960-09-13

    A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)

  4. Chemistry and Materials Science, 1990--1991. [Second annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugihara, T.T.; Bruner, J.M.; McElroy, L.A.

    1991-12-31

    This 2-year (FY 1990-91) contains 49 technical articles in ten sections: research sampler, metals and alloys, energetic materials, chemistry and physics of advanced materials, bonding and reactions at surfaces and interfaces, superconductivity, energy R and D, waste processing and management, characterization and analysis, and facilities and instrumentation. Two more sections list department personnel, their publications etc., consultants, and summary of department budgets. The articles are processed separately for the data base. (DLC)

  5. Structure, adhesive strength and electrochemical performance of nitrogen doped diamond-like carbon thin films deposited via DC magnetron sputtering.

    PubMed

    Khun, N W; Liu, E; Krishna, M D

    2010-07-01

    Nitrogen doped diamond-like carbon (DLC:N) thin films were deposited on p-Si (100) substrates by DC magnetron sputtering with different nitrogen flow rates at a substrate temperature of about 100 degrees C. The chemical bonding structure of the films was characterized by X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The adhesive strength and surface morphology of the films were studied using micro-scratch tester and scanning electron microscope (SEM), respectively. The electrochemical performance of the films was evaluated by potentiodynamic polarization testing and linear sweep voltammetry. The electrolytes used for the electrochemical tests were deaerated and unstirred 0.47 M KCl aqueous solution for potentiodynamic polarization testing and 0.2 M KOH and 0.1 M KCl solutions for voltammetric analysis. It was found that the DLC:N films could well passivate the underlying substrates though the corrosion resistance of the films decreased with increased nitrogen content in the films. The DLC:N films showed wide potential windows in the KOH solution, in which the detection ability of the DLC:N films to trace lead of about 1 x 10(-3) M Pb(2+) was also tested.

  6. Properties of Diamond-Like Carbon Films Synthesized by Dual-Target Unbalanced Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Liu, Cui; Li, Guo-Qing; Gou, Wei; Mu, Zong-Xin; Zhang, Cheng-Wu

    2004-11-01

    Smooth, dense and uniform diamond-like carbon films (DLC films) for industrial applications have successfully been prepared by dual-target unbalanced magnetron sputtering and the DLC characteristics of the films are confirmed by Raman spectra. It is found that the sputtering current of target plays an important role in the DLC film deposition. Deposition rate of 3.5 μm/h is obtained by using the sputtering current of 30 A. The friction coefficient of the films is 0.2-0.225 measured by using a pin-on-disc microtribometer. The structure of the films tends to have a growth of sp3 bonds content at high sputtering current. The compressive residual stress in the films increases with the increasing sputtering current of the target.

  7. Normally closed microgrippers using a highly stressed diamond-like carbon and Ni bimorph structure

    NASA Astrophysics Data System (ADS)

    Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2004-12-01

    A normally closed microgripper with a radius of curvature of 18-50 μm using a diamond-like carbon (DLC) and stress free electroplated Ni bimorph structure has been demonstrated. The large curvature in the fingers of the microgrippers is due to the high compressive stress of the DLC layer. The radius of curvature of the figures can be adjusted by the thickness ratio, and the closure of the devices can also be adjusted by varying the finger length. This device works much more efficiently than other bimorph structures due to the large difference in thermal expansion coefficients between the DLC and the Ni layers. Preliminary electrical tests have shown these microgrippers can be opened by 60°-90° at an applied power of <20mW.

  8. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon, L.F.

    1980-05-01

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)

  9. Patterning of a-C DLC films: exploration of an aqueous electro-oxidative mechanism

    NASA Astrophysics Data System (ADS)

    Mühl, Thomas; Myhra, Sverre

    2007-06-01

    Conducting ion-beam assisted CVD deposited a-C type DLC films can be patterned electro-oxidatively by masked and maskless probe-induced STM-based lithography. The former constitutes a parallel rapid processing technology, with the tip acting as a distant stationary electrode. The latter is a higher spatial resolution serial technology, with the tip defining a travelling local electro-chemical cell. The mechanism is based on electro-oxidative conversion of solid carbon to gaseous CO or CO2 in the presence of an aqueous phase, either as a bulk fluid or as a thin adsorbed film. The process is constrained kinetically in the early stages by limitations on charge transport through the surface barrier at the fluid-to-solid interface and subsequently by the availability of oxidants and by their transport to reactive sites. The as-received surface is terminated by chemisorbed oxygen, leading to the formation of an insulating surface barrier. The threshold potential for initiation of conversion depends on the width of the barrier. The results may have implications for new technologies exploiting the properties of carbon-based materials, but may also add to the present understanding of the electrochemistry of carbon solids.

  10. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.

    PubMed

    Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A

    2004-02-07

    The expanding clinical use of low-energy photon emitting 125I and 103Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst +/- 5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately +/- 2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV.

  11. Chemical structural analysis of diamondlike carbon films: I. Surface growth model

    NASA Astrophysics Data System (ADS)

    Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji

    2018-02-01

    The surface growth mechanisms of diamondlike carbon (DLC) films has been clarified. DLC films were synthesized in atmospheres with a fixed methane-to-argon ratio at different temperatures up to 700 °C by the photoemission-assisted glow discharge of photoemission-assisted plasma-enhanced chemical vapor deposition. The electrical resistivity of the films decreased logarithmically as the synthesis temperature was increased. Conversely, the dielectric constant of the films increased and became divergent at high temperature. However, the very high electrical resistivity of the film synthesized at 150 °C was retained even after post-annealing treatments at temperatures up to 500 °C, and divergence of the dielectric constant was not observed. Such films exhibited excellent thermal stability and retained large amounts of hydrogen, even after post-annealing treatments. These results suggest that numerous hydrogen atoms were incorporated into the DLC films during synthesis at low temperatures. Hydrogen atoms terminate carbon dangling bonds in the films to restrict π-conjugated growth. During synthesis at high temperature, hydrogen was desorbed from the interior of the growing films and π-conjugated conductive films were formed. Moreover, hydrogen radicals were chemisorbed by carbon atoms at the growing DLC surface, leading to removal of carbon atoms from the surface as methane gas. The methane molecules decomposed into hydrocarbons and hydrogen radicals through the attack of electrons above the surface. Hydrogen radicals contributed to the etching reaction cycle of the film; the hydrocarbon radicals were polymerized by reacting with other radicals and the methane source. The polymer radicals remained above the film, preventing the supply of the methane source and disrupting the action of argon ions. At high temperatures, the resultant DLC films were rough and thin.

  12. Variations in dynamic lung compliance during endoscopic thoracic sympathectomy with CO2 insufflation.

    PubMed

    El-Dawlatly, Abdelazeem Ali; Al-Dohayan, Abdullah; Abdel-Meguid, Mohamed Essam; Turkistani, Ahmed; Alotaiby, Wadha Mubarak; Abdelaziz, Emad Mansoor

    2003-12-01

    Endoscopic thoracic sympathectomy (ETS) is the preferred surgery for treatment of intractable palmar hyperhidrosis (PH). General anesthesia with onelung collapsed ventilation (OLCV) using single-lumen tracheal tube (SLT), is our preferred anesthetic technique for ETS. Intrapleural CO(2) insufflation (capnothorax) was used to ensure lung collapse. The current study examined the effects of capnothorax on dynamic lung compliance (DLC) of the ventilated lung during ETS. After obtaining written informed consent, 10 adult male patients ASA I&II undergoing ETS were studied. Their average age and weight were 25 +/- 7 yr and 67 +/- 8 kg. General anesthesia with SLT and OLCV technique was used. Capnothorax with intrapleural pressure (IPP) of 10 mmHg was initially used, then it was reduced and maintained at 5 mmHg throughout the operation. Anesthesia delivery unit (Datex Ohmeda type A_Elec, Promma, Sweden) was used where airway pressures and DLC were displayed during OLCV. A computer program (SPSS 9.0 for Windows; SPSS Inc., Chicago, IL) was used for statistical analysis of the data obtained. One way analysis of variance (ANOVA) was used for analysis of data before, during and after OLCV. P<0.05 was considered significant. The mean values of the DLC were 52 +/- 6, 30 +/- 3, 39 +/- 5 and 53 +/- 9 ml/cmH(2)O before, during (at 10 and 5 mmHg IPP) and after OLCV respectively with significant differences before and at 10 and 5mmHg IPP. In conclusions, during OLCV and capnothorax for ETS, DLC tends to decrease with increasing of intrapleural CO(2) insufflation pressure. However, in short procedures it has no deleterious postoperative effect. To the best of our knowledge this is the first study performed to investigate DLC changes during OLCV with capnothorax.

  13. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Engler, Charles; Canham, John

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the initial valve design and subsequent improvements that resulted from prototype testing. The initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the initial Valve design was used to develop a second, more robust Aperture Valve. Based on a check-ball design, the ETU / flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, non-magnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  14. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Hakun, Claef F.; Engler, Charles D.; Barber, Willie E.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated.Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  15. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Engler, Charles D.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU /flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  16. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    NASA Astrophysics Data System (ADS)

    Li, Jing; Tian, Xiubo; Gong, Chunzhi; Yang, Shiqin; Fu, Ricky K. Y.; Chu, Paul K.

    2009-12-01

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  17. Real-time observation of slipping and rolling events in DLC wear nanoparticles.

    PubMed

    Sato, Takaaki; Nabeya, Shinsuke; Menon, Vivek; Ishida, Tadashi; Kometani, Reo; Fujita, Hiroyuki

    2018-08-10

    Real-time observation of the actual contact area between surface interfaces at the nanoscale enables more precise examination of what happens during friction. We have combined micro electro mechanical system actuators and transmission electron microscopy (TEM) observation, to both apply and measure forces across nanoscale junctions and contacts. This custom-designed experimental system can measure the true surface area of a contact site from a lateral viewpoint, while simultaneously measuring the friction force. We scratched surfaces coated with diamond like carbon, a classical solid lubricant, and observed the formation of wear particles that slipped and rolled between the interface. TEM images showed that the shape of the surface at the nanoscale underwent permanent deformation when acted upon with forces as low as several tens of nano newtons. The results demonstrated the limitations of friction analyses relying on friction force measurements without real-time surface profiling.

  18. Think tanks and influence on US foreign policy: The people and the ideas

    DTIC Science & Technology

    2016-06-26

    Strategic and International Studies CSP Center for Security Policy DLC Democratic Leadership Council FPI Foreign Policy Initiative IISS International...1977) followed in the same vein. The Progressive Policy Institute (PPI)(1989), established as the research element of the Democratic Leadership Council...President of the United States, the Progressive Policy Institute (PPI) was established as a think tank for the Democratic Leadership Council (DLC). It

  19. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    PubMed Central

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  20. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-03-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  1. Fabrication and characterization of diamond-like carbon/Ni bimorph normally closed microcages

    NASA Astrophysics Data System (ADS)

    Luo, J. K.; He, J. H.; Fu, Y. Q.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-08-01

    Normally closed microcages based on highly compressively stressed diamond-like carbon (DLC) and electroplated Ni bimorph structures have been simulated, fabricated and characterized. Finite-element and analytical models were used to simulate the device performance. It was found that the radius of curvature of the bimorph layer can be adjusted by varying the DLC film stress, the total layer thickness and the thickness ratio of the DLC to Ni layers. The angular deflection of the bimorph structures can also be adjusted by varying the finger length. The radius of curvature of the microcage was in the range of 18-50 µm, suitable for capturing and confining micro-objects with sizes of 20-100 µm. The operation of this type of device is very efficient due to the large difference in thermal expansion coefficients of the DLC and the Ni layers. Electrical tests have shown that these microcages can be opened by ~90° utilizing a power smaller than 20 mW. The operating temperatures of the devices under various pulsed currents were extracted through the change in electrical resistance of the devices. The results showed that an average temperature in the range of 400-450 °C is needed to open this type of microcage by ~90°, consistent with the results from analytical simulation and finite-element modelling.

  2. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties.

    PubMed

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W

    2016-03-09

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  3. Genetic basis for rapidly evolved tolerance in the wild ...

    EPA Pesticide Factsheets

    Atlantic killifish (Fundulus heteroclitus) residing in some urban and industrialized estuaries of the US eastern seaboard demonstrate recently evolved and extreme tolerance to toxic aryl hydrocarbon pollutants, characterized as dioxin-like compounds (DLCs). Here we provide an unusually comprehensive accounting (69%) through Quantitative Trait Locus (QTL) analysis of the genetic basis for DLC tolerance in killifish inhabiting an urban estuary contaminated with PCB congeners, the most toxic of which are DLCs. Consistent with mechanistic knowledge of DLC toxicity in fish and other vertebrates, the Aryl Hydrocarbon Receptor (ahr2) region accounts for 17% of trait variation; however, QTLs on independent linkage groups and their interactions have even greater explanatory power (44%). QTLs interpreted within the context of recently available Fundulus genomic resources and shared synteny among fish species suggest adaptation via inter-acting components of a complex stress response network. Some QTLs were also enriched in other killifish populations characterized as DLC tolerant and residing in distant urban estuaries contaminated with unique mixtures of pollutants. Together, our results suggest that DLC tolerance in killifish represents an emerging example of parallel contemporary evolution that has been driven by intense human-mediated selection on natural populations. This manuscript describes experimental studies that contribute to our understanding of the ecological

  4. Tribology of bio-inspired nanowrinkled films on ultrasoft substrates.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Major, Lukasz; Teichert, Christian; Hartmann, Paul

    2013-01-01

    Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum) with high elasticity of the bulk (epidermis, dermis, hypodermis). The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue): Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC) and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial friction coefficient of the film against the sliding counterpart low, e.g. found for DLC.

  5. Tribology of bio-inspired nanowrinkled films on ultrasoft substrates

    PubMed Central

    Lackner, Juergen M.; Waldhauser, Wolfgang; Major, Lukasz; Teichert, Christian; Hartmann, Paul

    2013-01-01

    Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum) with high elasticity of the bulk (epidermis, dermis, hypodermis). The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue): Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC) and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial friction coefficient of the film against the sliding counterpart low, e.g. found for DLC. PMID:24688710

  6. 1986 fuel cell seminar: Program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  7. Overview on the target fabrication facilities at ELI-NP and ongoing strategies

    NASA Astrophysics Data System (ADS)

    Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.

    2016-10-01

    Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.

  8. Feasibility of applying data mining techniques for predicting technical difficulties during laparoscopic cholecystectomy based on routine patient work-up in a small community hospital.

    PubMed

    Stanisic, Veselin; Andjelkovic, Igor; Vlaovic, Darko; Babic, Igor; Kocev, Nikola; Nikolic, Bosko; Milicevic, Miroslav

    2013-10-01

    Predicting technical difficulties in laparoscopic cholecystectomy (LC) in a small regional hospital increases efficacy, cost-benefit and safety of the procedure. The aim of the study was to assess whether it is possible to accurately predict a difficult LC (DLC) in a small regional hospital based only on the routine available clinical work-up parameters (patient history, ultrasound examination and blood chemistry) and their combinations. A prospective, cohort, of 369 consecutive patients operated by the same surgeon was analyzed. Conversion rate was 10 (2.7%). DLC was registered in 55 (14.90%). Various data mining techniques were applied and assessed. Seven significant predictors of DLC were identified: i) shrunken (fibrotic) gallbladder (GB); ii) ultrasound (US) GB wall thickness >4 mm; iii) >5 attacks of pain lasting >5 hours; iv) WBC >10x109 g/L; v) pericholecystic fluid; vi) urine amylase >380 IU/L, and vii) BMI >30kg/m2. Bayesian network was selected as the best classifier with accuracy of 94.57, specificity 0.98, sensitivity 0.77, AUC 0.96 and F-measure 0.81. It is possible to predict a DLC with high accuracy using data mining techniques, based on routine preoperative clinical parameters and their combinations. Use of sophisticated diagnostic equipment is not necessary.

  9. Research and development plan for the Slagging Pyrolysis Incinerator. [For TRU waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedahl, T.G.; McCormack, M.D.

    1979-01-01

    Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance. (DLC)

  10. Determination of tropane alkaloids by heart cutting reversed phase - Strong cation exchange two dimensional liquid chromatography.

    PubMed

    Long, Zhen; Zhang, Yanhai; Gamache, Paul; Guo, Zhimou; Steiner, Frank; Du, Nana; Liu, Xiaoda; Jin, Yan; Liu, Xingguo; Liu, Lvye

    2018-01-01

    Current Chinese Pharmacopoeia (ChP) standards apply liquid extraction combined with one dimensional liquid chromatography (1DLC) method for determining alkaloids in herbal medicines. The complex pretreatments lead to a low analytical efficiency and possible component loss. In this study, a heart cutting reversed phase - strong cation exchange two dimensional liquid chromatography (RP - SCX 2DLC) approach was optimized for simultaneously quantifying tropane alkaloids (anisodine, scopolamine and hyoscyamine) in herbal medicines and herbal medicine tablets without further treatment of the filtered extract. The chromatographic conditions were systematically optimized in terms of column type, mobile phase composition and flow rate. To improve peak capacity and obtain symmetric peak shape of alkaloids, a polar group embedded C18 column combined with chaotropic salts was used in the first dimension. To remove the disturbance of non-alkaloids, achieve unique selectivity and acquire symmetric peak shape of alkaloids, an SCX column combined with phosphate buffer was used in the second dimension. Method validation was performed in terms of linearity, precision (0.54-0.82%), recovery (94.1-105.2%), limit of detection (LOD) and limit of quantification (LOQ) of the three analytes varied between 0.067-0.115mgL -1 and 0.195-0.268mgL -1 , respectively. The method demonstrated superiority over 1DLC method in respect of resolution (less alkaloid co-eluted), sample preparation (no pretreatment procedure) and transfer rate (minimum component loss). The optimized RP - SCX 2DLC approach was subsequently applied to quantify target alkaloids in five herbal medicines and herbal medicine tablets from three different manufactures. The results demonstrated that the developed heart cutting RP - SCX 2DLC approach represented a new, strategically significant methodology for the quality evaluation of tropane alkaloid in related herbal medicines that involve complex chemical matrix. Copyright © 2017. Published by Elsevier B.V.

  11. Gradient titanium and silver based carbon coatings deposited on AISI316L

    NASA Astrophysics Data System (ADS)

    Batory, Damian; Reczulska, Malgorzata Czerniak-; Kolodziejczyk, Lukasz; Szymanski, Witold

    2013-06-01

    The constantly growing market for medical implants and devices caused mainly due to a lack of proper attention attached to the physical condition as well as extreme sports and increased elderly population creates the need of new biocompatible biomaterials with controlled bioactivity and certain useful properties. According to many literature reports, regarding the modifications of variety of different biomaterials using the surface engineering techniques and their biological and physicochemical examination results, the most promising material for great spectra of medical applications seem to be carbon layers. Another issue is the interaction between the implant material and surrounding tissue. In particular cases this interface area is directly exposed to air. Abovementioned concern occurs mainly in case of the external fixations, thus they are more vulnerable to infection. Therefore a crucial role has the inhibition of bacterial adhesion that may prevent implant-associated infections, occurrence of other numerous complications and in particular cases rejection of the implant. For this reason additional features of carbon coatings like antibacterial properties seem to be desired and justified. Silver doped diamond-like carbon coatings with different Ag concentrations were prepared by hybrid RF PACVD/MS (Radio Frequency Plasma Assisted Chemical Vapor Deposition/Magnetron Sputtering) deposition technique. Physicochemical parameters like chemical composition, morphology and surface topography, hardness and adhesion were determined. Examined layers showed a uniform distribution of silver in the amorphous DLC matrix, high value of H/E ratio, good adhesion and beneficial topography which make them a perfect material for medical applications e.g. modification of implants for the external fixations.

  12. The versatility of heart-cutting and comprehensive two-dimensional liquid chromatography in monoclonal antibody clone selection.

    PubMed

    Sandra, Koen; Steenbeke, Mieke; Vandenheede, Isabel; Vanhoenacker, Gerd; Sandra, Pat

    2017-11-10

    In recent years, two-dimensional liquid chromatography (2D-LC) has seen an enormous evolution and one of the fields where it is being widely adopted is in the analysis of therapeutic monoclonal antibodies (mAbs). We here further add to the many flavours of this powerful technology. Workflows based on heart-cutting (LC-LC) and comprehensive (LC×LC) 2D-LC are described that allow to guide the clone selection process in mAb and biosimilar development. Combining Protein A affinity chromatography in the first dimension with size exclusion (SEC), cation exchange (CEX) or reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) in the second dimension simultaneously allows to assess mAb titer and critical structural aspects such as aggregation, fragmentation, charge heterogeneity, molecular weight (MW), amino acid sequence and glycosylation. Complementing the LC-LC measurements at intact protein level with LC×LC based peptide mapping provides the necessary information to make clear decisions on which clones to take further into development. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Waste Isolation Pilot Plant (WIPP) conceptual design report. Part I: executive summary. Part II: facilities and system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-06-01

    The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)

  14. Polymer Treatment by Plasma Immersion Ion Implantation of Nitrogen for Formation of Diamond-Like Carbon Film

    NASA Astrophysics Data System (ADS)

    Tan, Ing Hwie; Ueda, Mario; Kostov, Konstantin; Nascente, Pedro Augusto P.; Demarquette, Nicole Raymonde

    2004-09-01

    Nitrogen ions were implanted by plasma immersion in Kapton, Mylar and polypropylene, with the objective of forming a diamond-like carbon layer on these polymers. The Raman spectrum of the implanted polypropylene showed typical Diamond-Like Carbon (DLC) graphite (G) and disorder (D) peaks, with an sp3/sp2 hybridization ratio of approximately 0.4 to 0.6. The XPS analysis of the three implanted polymers also showed peaks of C-C and N-C bonds in the sp3 configuration, with hybridization ratios in the same range as the Raman result. The implanted polymers were exposed to oxygen plasma to test the resistance of the polymers to oxygen degradation. Mass loss rate results, however, showed that the DLC layer formed is not sufficiently robust for this application. Nevertheless, the layer formed can be suitable for other applications such as in gas barriers in beverage containers. Further study of implantation conditions may improve the quality of the DLC layer.

  15. Structural Evolution of Q-Carbon and Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Gupta, Siddharth; Bhaumik, Anagh; Sachan, Ritesh; Narayan, Jagdish

    2018-04-01

    This article provides insights pertaining to the first-order phase transformation involved in the growth of densely packed Q-carbon and nanodiamonds by nanosecond laser melting and quenching of diamond-like carbon (DLC) thin films. DLC films with different sp 3 content were melted rapidly in a controlled way in super-undercooled state and quenched, leading to formation of distinct nanostructures, i.e., nanodiamonds, Q-carbon, and Q-carbon nanocomposites. This analysis provides direct evidence of the dependence of the super-undercooling on the structural evolution of Q-carbon. Finite element heat flow calculations showed that the super-undercooling varies monotonically with the sp 3 content. The phenomenon of solid-liquid interfacial instability during directional solidification from the melt state is studied in detail. The resulting lateral segregation leads to formation of cellular filamentary Q-carbon nanostructures. The dependence of the cell size and wavelength at the onset of instability on the sp 3 content of DLC thin films was modeled based on perturbation theory.

  16. Effect of microstructural evolution on mechanical and tribological properties of Ti-doped DLC films: How was an ultralow friction obtained?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fei; Li, Hongxuan; Ji, Li

    2016-05-15

    This paper examined the evolution of microstructure and its effect on the mechanical and tribological properties of ultralow friction Ti-doped diamondlike carbon (DLC) films, by adjusting the CH{sub 4}/Ar ratio under constant radio frequency discharge power and bias. The Raman, high resolution transmission electron microscopy, atomic force microscope and nanoindentation measurements consistently reveal or indicate the formation of curved graphene sheets or fullerenelike nanostructures with increasing CH{sub 4}/Ar ratio. The superior frictional performance (0.008–0.01) of Ti-DLC films can be attributed to the special microstructure related to the development of embedded fullerenelike nanostructures as a result of incorporation of TiO{sub 2}more » clusters. The contributing factors include high hardness and cohesion, excellent toughness, high load-bearing capacity, as well as the ultralow shear resistance transform layer and the excellent antioxidation stability brought by the doped Ti.« less

  17. Dynein light chain 1 induces assembly of large Bim complexes on mitochondria that stabilize Mcl-1 and regulate apoptosis

    PubMed Central

    Singh, Prafull Kumar; Roukounakis, Aristomenis; Frank, Daniel O.; Kirschnek, Susanne; Das, Kushal Kumar; Neumann, Simon; Madl, Josef; Römer, Winfried; Zorzin, Carina; Borner, Christoph; Haimovici, Aladin; Garcia-Saez, Ana; Weber, Arnim; Häcker, Georg

    2017-01-01

    The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-XL, recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim–Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-XL inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy. PMID:28982759

  18. Portable Magnetic Gradiometer for Real-Time Localization and Classification of Unexploded Ordnance

    DTIC Science & Technology

    2006-09-01

    classification (DLC) of Unexploded Ordnance (UXO). The portable gradiometer processes data from triaxial fluxgate magnetometers to develop sets of...low-noise (ង pTrms/√Hz) fluxgate -type Triaxial Magnetometers (TM). Paired sets of TMs comprise magnetic gradient sensor “axes” of the array that...channels of analog B-field data. The digitizers can be locked to the Global Positioning System to provide; a) Precise sensor channel timing, and b

  19. Chemistry Division: Annual progress report for period ending March 31, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  20. pH dependent unfolding characteristics of DLC8 dimer: Residue level details from NMR.

    PubMed

    Mohan, P M Krishna; Hosur, Ramakrishna V

    2008-11-01

    Environment dependence of folding and unfolding of a protein is central to its function. In the same vein, knowledge of pH dependence of stability and folding/unfolding is crucial for many biophysical equilibrium and kinetic studies designed to understand protein folding mechanisms. In the present study we investigated the guanidine induced unfolding transition of dynein light chain protein (DLC8), a cargo adaptor of the dynein complex in the pH range 7-10. It is observed that while the protein remains a dimer in the entire pH range, its stability is somewhat reduced at alkaline pH. Global unfolding features monitored using fluorescence spectroscopy revealed that the unfolding transition of DLC8 at pH 7 is best described by a three-state model, whereas, that at pH 10 is best described by a two-state model. Chemical shift perturbations due to pH change provided insights into the corresponding residue level structural perturbations in the DLC8 dimer. Likewise, backbone (15)N relaxation measurements threw light on the corresponding motional changes in the dimeric protein. These observations have been rationalized on the basis of expected changes with increasing pH in the protonation states of the titratable residues on the structure of the protein. These, in turn provide an explanation for the change from three-state to two-state guanidine induced unfolding transition as the pH is increased from 7 to 10. All these results exemplify and highlight the role of environment vis-à-vis the sequence and structure of a given protein in dictating its folding/unfolding characteristics.

  1. Voluntary Ethanol Intake Predicts κ-Opioid Receptor Supersensitivity and Regionally Distinct Dopaminergic Adaptations in Macaques

    PubMed Central

    Siciliano, Cody A.; Calipari, Erin S.; Cuzon Carlson, Verginia C.; Helms, Christa M.; Lovinger, David M.; Grant, Kathleen A.

    2015-01-01

    The dopaminergic projections from the ventral midbrain to the striatum have long been implicated in mediating motivated behaviors and addiction. Previously it was demonstrated that κ-opioid receptor (KOR) signaling in the striatum plays a critical role in the increased reinforcing efficacy of ethanol following ethanol vapor exposure in rodent models. Although rodents have been used extensively to determine the neurochemical consequences of chronic ethanol exposure, establishing high levels of voluntary drinking in these models has proven difficult. Conversely, nonhuman primates exhibit similar intake and pattern to humans in regard to drinking. Here we examine the effects of chronic voluntary ethanol self-administration on dopamine neurotransmission and the ability of KORs to regulate dopamine release in the dorsolateral caudate (DLC) and nucleus accumbens (NAc) core. Using voltammetry in brain slices from cynomolgus macaques after 6 months of ad libitum ethanol drinking, we found increased KOR sensitivity in both the DLC and NAc. The magnitude of ethanol intake predicted increases in KOR sensitivity in the NAc core, but not the DLC. Additionally, ethanol drinking increased dopamine release and uptake in the NAc, but decreased both of these measures in the DLC. These data suggest that chronic daily drinking may result in regionally distinct disruptions of striatal outputs. In concert with previous reports showing increased KOR regulation of drinking behaviors induced by ethanol exposure, the strong relationship between KOR activity and voluntary ethanol intake observed here gives further support to the hypothesis that KORs may provide a promising pharmacotherapeutic target in the treatment of alcoholism. PMID:25878269

  2. New on-line separation workflow of microbial metabolites via hyphenation of analytical and preparative comprehensive two-dimensional liquid chromatography.

    PubMed

    Yan, Xia; Wang, Li-Juan; Wu, Zhen; Wu, Yun-Long; Liu, Xiu-Xiu; Chang, Fang-Rong; Fang, Mei-Juan; Qiu, Ying-Kun

    2016-10-15

    Microbial metabolites represent an important source of bioactive natural products, but always exhibit diverse of chemical structures or complicated chemical composition with low active ingredients content. Traditional separation methods rely mainly on off-line combination of open-column chromatography and preparative high performance liquid chromatography (HPLC). However, the multi-step and prolonged separation procedure might lead to exposure to oxygen and structural transformation of metabolites. In the present work, a new two-dimensional separation workflow for fast isolation and analysis of microbial metabolites from Chaetomium globosum SNSHI-5, a cytotoxic fungus derived from extreme environment. The advantage of this analytical comprehensive two-dimensional liquid chromatography (2D-LC) lies on its ability to analyze the composition of the metabolites, and to optimize the separation conditions for the preparative 2D-LC. Furthermore, gram scale preparative 2D-LC separation of the crude fungus extract could be performed on a medium-pressure liquid chromatograph×preparative high-performance liquid chromatography system, under the optimized condition. Interestingly, 12 cytochalasan derivatives, including two new compounds named cytoglobosin Ab (3) and isochaetoglobosin Db (8), were successfully obtained with high purity in a short period of time. The structures of the isolated metabolites were comprehensively characterized by HR ESI-MS and NMR. To be highlighted, this is the first report on the combination of analytical and preparative 2D-LC for the separation of microbial metabolites. The new workflow exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Dynein light chain 1 induces assembly of large Bim complexes on mitochondria that stabilize Mcl-1 and regulate apoptosis.

    PubMed

    Singh, Prafull Kumar; Roukounakis, Aristomenis; Frank, Daniel O; Kirschnek, Susanne; Das, Kushal Kumar; Neumann, Simon; Madl, Josef; Römer, Winfried; Zorzin, Carina; Borner, Christoph; Haimovici, Aladin; Garcia-Saez, Ana; Weber, Arnim; Häcker, Georg

    2017-09-01

    The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-X L , recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim-Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-X L inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy. © 2017 Singh et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Ferromagnetic order in diamond-like carbon films by Co implantation

    NASA Astrophysics Data System (ADS)

    Gupta, Prasanth; Williams, Grant; Markwitz, Andreas

    2016-02-01

    We report the observation of ferromagnetic order in diamond-like carbon (DLC) films made by mass selective ion beam deposition and after low energy implantation with Co ions. Different Co fluences were studied with a peak concentration of up to 25% at an average Co implantation depth of 30 nm. The saturation moment per Co atom (0.2-0.3 μ B) was found to be strongly dependent on temperature and it was significantly lower than that reported in bulk cobalt or cobalt nanoparticles (1.67 μ B per Co atom). The observed magnetic moment cannot be attributed to ferromagnetic nanoparticles as no evidence for superparamagnetism was detected. The magnetic order observed may be due to Co bonding in DLC possibly leading to dilute ferromagnetic semiconductor behaviour with an inhomogeneous distribution of cobalt atoms. Raman spectroscopy measurements showed that Co implantation resulted in an increase in the sp2 clustering with increasing Co fluence. Thus, our results show that Co implantation into DLC films increases the graphitic properties of the film and leads to magnetic order at room temperature.

  5. Influence of surface morphology on adsorption of potassium stearate molecules on diamond-like carbon substrate: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Guo, Shusen; Cao, Yongzhi; Sun, Tao; Zhang, Junjie; Gu, Le; Zhang, Chuanwei; Xu, Zhiqiang

    2018-05-01

    Molecular dynamics (MD) simulations were used to provide insights into the influence of nano-scale surface morphology on adsorptive behavior of Potassium stearate molecules on diamond-like carbon (DLC) substrates. Particular focus was given to explain that how the distinctive geometric properties of different surface morphologies affect the equilibrium structures and substrate-molecules interactions of monolayers, which was achieved through adsorptive analysis methods including adsorptive process, density profile, density distribution and surface potential energy. Analysis on surface potential energy demonstrated that the adsorptivity of amorphous smooth substrate is uniformly distributed over the surface, while DLC substrates with different surface morphologies appear to be more potentially corrugated, which improves the adsorptivity significantly. Because of the large distance of molecules from carbon atoms located at the square groove bottom, substrate-molecules interactions vanish significantly, and thus potassium stearate molecules cannot penetrate completely into the square groove. It can be observed that the equilibrium substrate-molecules interactions of triangle groove and semi-circle groove are much more powerful than that of square groove due to geometrically advantageous properties. These findings provided key information of optimally design of solid substrates with controllable adsorptivity.

  6. Diamond like carbon nanocomposites with embedded metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamulevičius, Sigitas; Meškinis, Šarūnas; Tamulevičius, Tomas; Rubahn, Horst-Günter

    2018-02-01

    In this work we present an overview on structure formation, optical and electrical properties of diamond like carbon (DLC) based metal nanocomposites deposited by reactive magnetron sputtering and treated by plasma and laser ablation methods. The influence of deposition mode and other technological conditions on the properties of the nanosized filler, matrix components and composition were studied systematically in relation to the final properties of the nanocomposites. Applications of the nanocomposites in the development of novel biosensors combining resonance response of wave guiding structures in DLC based nanocomposites as well as plasmonic effects are also presented.

  7. Genomic profiling of human penile carcinoma predicts worse prognosis and survival.

    PubMed

    Busso-Lopes, Ariane F; Marchi, Fábio A; Kuasne, Hellen; Scapulatempo-Neto, Cristovam; Trindade-Filho, José Carlos S; de Jesus, Carlos Márcio N; Lopes, Ademar; Guimarães, Gustavo C; Rogatto, Silvia R

    2015-02-01

    The molecular mechanisms underlying penile carcinoma are still poorly understood, and the detection of genetic markers would be of great benefit for these patients. In this study, we assessed the genomic profile aiming at identifying potential prognostic biomarkers in penile carcinoma. Globally, 46 penile carcinoma samples were considered to evaluate DNA copy-number alterations via array comparative genomic hybridization (aCGH) combined with human papillomavirus (HPV) genotyping. Specific genes were investigated by using qPCR, FISH, and RT-qPCR. Genomic alterations mapped at 3p and 8p were related to worse prognostic features, including advanced T and clinical stage, recurrence and death from the disease. Losses of 3p21.1-p14.3 and gains of 3q25.31-q29 were associated with reduced cancer-specific and disease-free survival. Genomic alterations detected for chromosome 3 (LAMP3, PPARG, TNFSF10 genes) and 8 (DLC1) were evaluated by qPCR. DLC1 and PPARG losses were associated with poor prognosis characteristics. Losses of DLC1 were an independent risk factor for recurrence on multivariate analysis. The gene-expression analysis showed downexpression of DLC1 and PPARG and overexpression of LAMP3 and TNFSF10 genes. Chromosome Y losses and MYC gene (8q24) gains were confirmed by FISH. HPV infection was detected in 34.8% of the samples, and 19 differential genomic regions were obtained related to viral status. At first time, we described recurrent copy-number alterations and its potential prognostic value in penile carcinomas. We also showed a specific genomic profile according to HPV infection, supporting the hypothesis that penile tumors present distinct etiologies according to virus status. ©2014 American Association for Cancer Research.

  8. Voluntary ethanol intake predicts κ-opioid receptor supersensitivity and regionally distinct dopaminergic adaptations in macaques.

    PubMed

    Siciliano, Cody A; Calipari, Erin S; Cuzon Carlson, Verginia C; Helms, Christa M; Lovinger, David M; Grant, Kathleen A; Jones, Sara R

    2015-04-15

    The dopaminergic projections from the ventral midbrain to the striatum have long been implicated in mediating motivated behaviors and addiction. Previously it was demonstrated that κ-opioid receptor (KOR) signaling in the striatum plays a critical role in the increased reinforcing efficacy of ethanol following ethanol vapor exposure in rodent models. Although rodents have been used extensively to determine the neurochemical consequences of chronic ethanol exposure, establishing high levels of voluntary drinking in these models has proven difficult. Conversely, nonhuman primates exhibit similar intake and pattern to humans in regard to drinking. Here we examine the effects of chronic voluntary ethanol self-administration on dopamine neurotransmission and the ability of KORs to regulate dopamine release in the dorsolateral caudate (DLC) and nucleus accumbens (NAc) core. Using voltammetry in brain slices from cynomolgus macaques after 6 months of ad libitum ethanol drinking, we found increased KOR sensitivity in both the DLC and NAc. The magnitude of ethanol intake predicted increases in KOR sensitivity in the NAc core, but not the DLC. Additionally, ethanol drinking increased dopamine release and uptake in the NAc, but decreased both of these measures in the DLC. These data suggest that chronic daily drinking may result in regionally distinct disruptions of striatal outputs. In concert with previous reports showing increased KOR regulation of drinking behaviors induced by ethanol exposure, the strong relationship between KOR activity and voluntary ethanol intake observed here gives further support to the hypothesis that KORs may provide a promising pharmacotherapeutic target in the treatment of alcoholism. Copyright © 2015 the authors 0270-6474/15/355959-10$15.00/0.

  9. Pulmonary NO and C18O2 uptake during pressure-induced lung expansion in rabbits.

    PubMed

    Heller, Hartmut; Schuster, Klaus-Dieter

    2007-01-01

    In artificially ventilated animals we investigated the dependence of the pulmonary diffusing capacities of nitric oxide (NO) and doubly 18O-labeled carbon dioxide (DLNO, DLC18O2) on lung expansion with respect to ventilator-driven increases in intrapulmonary pressure. For this purpose we applied computerized single-breath experiments to 11 anesthetized paralyzed rabbits (weight 2.8-3.8 kg) at various alveolar volumes (45-72 ml) by studying the almost entire inspiratory limb of the respective pressure/volume curves (intrapulmonary pressure: 6-27 cmH2O). The animals were ventilated with room air, employing a computerized ventilatory servo-system that we designed to maintain mechanical ventilation and to execute the particular lung function tests automatically. Each single-breath maneuver was started from residual volume (13.5+/-2 ml, mean+/-SD) by inflating the rabbit lungs with 35-55 ml indicator gas mixture containing 0.05% NO in N2 or 0.9% C18O2 in N2. Alveolar partial pressures of NO and C18O2 were measured by respiratory mass spectrometry. Values of DLNO and DLC18O2 ranged between 1.55 and 2.49 ml/(mmHg min) and 11.7 and 16.6 ml/(mmHg min), respectively. Linear regression analyses yielded a significant increase in DLNO with simultaneous increase in alveolar volume (P<0.005) and intrapulmonary pressure (P<0.023) whereas DLC18O2 was not improved. Our results suggest that the ventilator-driven lung expansion impaired the C18O2 blood uptake conductance, finally compensating for the beneficial effect of the increase in alveolar volume on DLC18O2 values.

  10. Macroscale superlubricity enabled by graphene nanoscroll formation

    NASA Astrophysics Data System (ADS)

    Berman, Diana; Deshmukh, Sanket A.; Sankaranarayanan, Subramanian K. R. S.; Erdemir, Ali; Sumant, Anirudha V.

    2015-06-01

    Friction and wear remain as the primary modes of mechanical energy dissipation in moving mechanical assemblies; thus, it is desirable to minimize friction in a number of applications. We demonstrate that superlubricity can be realized at engineering scale when graphene is used in combination with nanodiamond particles and diamondlike carbon (DLC). Macroscopic superlubricity originates because graphene patches at a sliding interface wrap around nanodiamonds to form nanoscrolls with reduced contact area that slide against the DLC surface, achieving an incommensurate contact and substantially reduced coefficient of friction (~0.004). Atomistic simulations elucidate the overall mechanism and mesoscopic link bridging the nanoscale mechanics and macroscopic experimental observations.

  11. Development of molecularly imprinted column-on line-two dimensional liquid chromatography for rapidly and selectively monitoring estradiol in cosmetics.

    PubMed

    Guo, Pengqi; Xu, Xinya; Xian, Liang; Ge, Yanhui; Luo, Zhimin; Du, Wei; Jing, Wanghui; Zeng, Aiguo; Chang, Chun; Fu, Qiang

    2016-12-01

    Nowadays, the illegal use of estradiol in cosmetics has caused a series of events which endangering public health seriously. Therefore, it is imperative to establish a simple, fast and specific method for monitoring the illegal use of estradiol in cosmetics. In current study, we developed a molecular imprinted monolithic column two dimensional liquid chromatography method (MIMC-2D-LC) for rapid and selective determination of estradiol in various cosmetic samples. The best polymerization, morphology, structure property, surface groups, and the adsorption performance of the prepared material were investigated. The MIMC-2D-LC was validated and successfully used for detecting estradiol in cosmetic samples with good selectivity, sensitivity, efficiency and reproducibility. The linear range of the MIMC-2D-LC for estradiol was 0.5-50μgg -1 with the limit of detection of 0.08μgg -1 . Finally, six batches of cosmetic samples obtained from local markets were tested by the proposed method. The test results showed that the illegal use of estradiol still existed in the commercially available samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Operation and Management of Thermostatically Controlled Loads for Providing Regulation Services to Power Grids

    NASA Astrophysics Data System (ADS)

    Vanouni, Maziar

    The notion of demand-side participation in power systems operation and control is on the verge of realization because of the advancement in the required technologies an tools like communications, smart meters, sensor networks, large data management techniques, large scale optimization method, etc. Therefore, demand-response (DR) programs can be one of the prosperous solutions to accommodate part of the increasing demand for load balancing services which is brought about by the high penetration of intermittent renewable energies in power systems. This dissertation studies different aspects of the DR programs that utilized the thermostatically controlled loads (TCLs) to provide load balancing services. The importance of TCLs among the other loads lie on their flexibility in power consumption pattern while the customer/end-user comfort is not (or minimally) impacted. Chapter 2 discussed a previously presented direct load control (DLC) to control the power consumption of aggregated TCLs. The DLC method performs a power tracking control and based on central approach where a central controller broadcasts the control command to the dispersed TCLs to toggle them on/off. The central controller receives measurement feedback from the TCLs once per couple of minutes to run a successful forecast process. The performance evaluation criteria to evaluate the load balancing service provided by the TCLs are presented. The results are discussed under different scenarios and situation. The numerical results show the proper performance of the DLC method. This DLC method is used as the control method in all the studies in this dissertation. Chapter 3 presents performance improvements for the original method in Chapter 2 by communicating two more pieces of information called forecast parameters (FPs). Communicating improves the forecast process in the DLC and hence, both performance accuracy and the amount of tear-and-wear imposed on the TCLs. Chapter 4 formulates a stochastic optimization model for a load aggregator (LA) to participate in the performance-based regulation markets (PBRM). PBRMs are the recently developed and practiced regulation market structure recommended by Federal Energy Regulatory Commission (FERC) in 2011. In PBRMs, regulation resources are paid based on both regulation capacity bids and the regulation performance including the provided mileage and the performance accuracy. In order to develop the income from the PBRM, the convention of California Independent System Operator (CAISO) is used. In the presented optimization model, the amount of tear-and-wear imposed on the TCLs are confined to prevent abrupt switching of TCLs. In Chapter 5, a two-stage reward allocation mechanism is developed for a LA recruiting TCLs for regulation service provision. The mechanism helps the LA to distribute the total reward (earned from regulation service provision) among the TCLs according to their contribution in the whole provided service. In the first stage, TCLs are prioritized based on their service provision capability. In order to do so, an index called SPCI is presented to quantify TCLs capability/flexibility and therefore, prioritize them. After prioritization TCLs a priority list is constructed in the first stage. In the second stage, a reward curve is constructed representing the functionality of the possible total reward with respect to the number top TCLs in the priority list. Then, the allocated reward to individual TCLs is calculated by applying the incremental method on the constructed reward curve. This presented reward allocation mechanism is based on the definition of maximum service capacity (MSC) for a control group including TCLs. MSC is defined and its calculation method is presented before discussing the two stages of the reward allocation mechanism. The numerical results proves the suitability of the proposed prioritization method as it is observed the TCLs with higher rankings can contribute more to the total reward in comparison to the TCLs with lower rankings in the priority list.

  13. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    PubMed

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Plowshare

    DOE R&D Accomplishments Database

    Teller, E.

    1963-02-04

    The purpose of this lecture is to give an impression of the main characteristic feature of Plowshare: its exceedingly wide applicability throughout fields of economic or scientific interest. If one wants to find the right applications, knowledge of the nuclear tool is not enough. One needs to have a thorough familiarity with the materials, with the processes, with all of science, with all the economics on our globe and maybe beyond. A survey is presented of all aspects of peaceful applications of nuclear explosives: earth moving, large-scale chemical and mining engineering, and scientific experiments. (D.L.C.)

  15. Diamond-Like Carbon Nanorods and Fabrication Thereof

    NASA Technical Reports Server (NTRS)

    Varshney, Deepak (Inventor); Makarov, Vladimir (Inventor); Morell, Gerardo (Inventor); Saxena, Puja (Inventor); Weiner, Brad (Inventor)

    2017-01-01

    Novel sp. (sup 3) rich diamond-like carbon (DLC) nanorod films were fabricated by hot filament chemical vapor deposition technique. The results are indicative of a bottom-up self-assembly synthesis process, which results in a hierarchical structure that consists of microscale papillae comprising numerous nanorods. The papillae have diameters ranging from 2 to 4 microns and the nanorods have diameters in the 35-45 nanometer range. A growth mechanism based on the vapor liquid-solid mechanism is proposed that accounts for the morphological aspects in the micro- and nano-scales.

  16. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  17. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.

    PubMed

    Berman, Diana; Deshmukh, Sanket A; Sankaranarayanan, Subramanian K R S; Erdemir, Ali; Sumant, Anirudha V

    2015-06-05

    Friction and wear remain as the primary modes of mechanical energy dissipation in moving mechanical assemblies; thus, it is desirable to minimize friction in a number of applications. We demonstrate that superlubricity can be realized at engineering scale when graphene is used in combination with nanodiamond particles and diamondlike carbon (DLC). Macroscopic superlubricity originates because graphene patches at a sliding interface wrap around nanodiamonds to form nanoscrolls with reduced contact area that slide against the DLC surface, achieving an incommensurate contact and substantially reduced coefficient of friction (~0.004). Atomistic simulations elucidate the overall mechanism and mesoscopic link bridging the nanoscale mechanics and macroscopic experimental observations. Copyright © 2015, American Association for the Advancement of Science.

  18. Boron stripper foils for particle accelerators

    NASA Astrophysics Data System (ADS)

    Zeisler, Stefan K.; Brigham, Michael; Kaur, Ishneet; Jaggi, Vinder

    2018-05-01

    Micromatter Technologies Inc., now located in Surrey B.C., Canada, is a worldwide supplier of pure and boron containing diamond-like carbon (DLC) stripper foils ranging from 10 nm to 10 μm. These foils are manufactured in-house using pulsed laser deposition. Continuing our research into novel production methods and alternative materials to be used as beam strippers for heavy elements and in particular for tandem particle accelerators, pure boron foils were prepared by laser plasma ablation of a disc shaped boron sputter target. Foil thickness between 10 nm to approximately 0.7 μm were achieved. The new boron foils showed considerably less stress, higher mechanical strength and better flexibility than comparable DLC films.

  19. The effect of prone position on respiratory mechanics during spinal surgery.

    PubMed

    Manna, Essam M; Ibraheim, Osama A; Samarkandi, Abdulhamid H; Alotaibi, Wadha M; Elwatidy, Sherif M

    2005-10-01

    To study the effect of prone position on respiratory mechanics during spine surgery. Prospective study. Elective spine surgery at a university hospital. 12 ASA physical I & II with no coexisting cardiorespiratory disease undergoing cervical or lumbar laminectomy under general anesthesia in prone position. Ten min after induction of general anesthesia and endotracheal intubation, while patients were in supine position, the following measurements were taken using anesthesia delivery unit (Datex Ohmeda type A_Elec, Promma, Sweden): peak airway pressure (Ppeak), peak plataeu pressure (Pplat), peak mean pressure (Pmean) and dynamic lung compliance (DLC). The same measurements were recorded 10 min after placing patients into prone position. At the end of surgery and 5 min after turning the patients supine and before tracheal extubation, the same measurements were again recorded. The results expressed as means +/- sd. One way ANOVA was used for analysis of differences in the data before, during prone position and after turning patients supine at the end of the procedure. For all comparisons p < 0.05 was considered significant. During prone position there was significant reduction in DLC and significant increase in airway pressures. We conclude that turning the patients form supine to prone position during anesthesia for spine surgery caused significant decrease of DLC and significant increase of airway pressure.

  20. Targeted Approach to Identify Genetic Loci Associated with ...

    EPA Pesticide Factsheets

    Extreme tolerance to highly toxic dioxin-like contaminants (DLCs) has evolved independently and contemporaneously in (at least) four populations of Atlantic killifish (Fundulus heteroclitus). Surprisingly, the magnitude and phenotype of DLC tolerance is similar among these killifish populations that have adapted to varied, but highly contaminated urban/industrialized estuaries of the US Atlantic coast. We hypothesized that comparisons among tolerant populations and in contrast to their sensitive neighboring killifish might reveal genetic loci associated with DLC tolerance. Since the aryl hydrocarbon receptor (AHR) pathway partly or fully mediates DLC toxicity in vertebrates, we identified single nucleotide polymorphisms (SNPs) from 43 genes associated with the AHR to serve as targeted markers. Wild fish from the four highly tolerant killifish populations and four nearby sensitive populations were genotyped using 59 SNP markers. Consistent with other killifish population genetic analyses, our results revealed strong genetic differentiation among populations, consistent with isolation by distance models. Pairwise comparisons of nearby tolerant and sensitive populations revealed differentiation among these loci: AHR 1 and 2, cathepsin Z, the cytochrome P450s (CYP) 1A and 3A30, and the NADH ubiquinone oxidoreductase MLRQ subunit. By grouping tolerant versus sensitive populations, we also identified cytochrome P450 1A and the AHR2 loci as under selection, lend

  1. Simultaneous quantitation of five Panax notoginseng saponins by multi heart-cutting two-dimensional liquid chromatography: Method development and application to the quality control of eight Notoginseng containing Chinese patent medicines.

    PubMed

    Yao, Chang-liang; Yang, Wen-zhi; Wu, Wan-Yyng; Da, Juan; Hou, Jin-jun; Zhang, Jing-xian; Zhang, Yan-hai; Jin, Yan; Yang, Min; Jiang, Bao-hong; Liu, Xuan; Guo, De-an

    2015-07-10

    Current China Pharmacopoeia (ChP) standards employ diversified and case-dependent assay methods to evaluate the quality of different Chinese patent medicines (CPMs) that contain Panax notoginseng as the monarch drug. These conventional, HPLC-based approaches, utilizing a complex sample preparation procedure, can easily result in low analytical efficiency and possible component loss. Here, a "monomethod-heterotrait matrix" (MHM) strategy is proposed, that is, developing a universal multi heart-cutting two-dimensional liquid chromatography (MHC-2D-LC) approach that facilitates the simultaneous quantitation of five P. notoginseng saponins (noto-R1, Re, Rg1, Rb1, and Rd) in eight different CPMs. The MHC-2D-LC system was constructed on a dual-gradient liquid chromatography instrument equipped with a Poroshell SB C18 column and a Zorbax SB-Aq column for respective (1)D and (2)D separation. Method validation was performed in terms of specificity, linearity (r(2) and F-test), intra-/inter-day precision (0.4-7.9%), stability (1.2-3.9%), and recovery (90.2-108.7%), and the LODs and LOQs (loaded masses) of the five analytes varied between 4.0-11.0ng and 6.0-33.0ng, respectively. The validated MHC-2D-LC approach was subsequently applied to quantify the five saponins in thirty batches of different CPMs. The method demonstrated superiority over the current ChP assay methods in respect of specificity (avoiding co-elution), resolution (Rs>1.5), sample preparation (easy-to-implement ultrasonic extraction without repeated re-extraction), and transfer rate (minimum component loss). This is the first application of an MHC-2D-LC method for the quantitative assessment of the constituents of CPMs. The MHM approach represents a new, strategically significant methodology for the quality control of CPMs that involve complex chemical matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography.

    PubMed

    Stoll, Dwight R; Sajulga, Ray W; Voigt, Bryan N; Larson, Eli J; Jeong, Lena N; Rutan, Sarah C

    2017-11-10

    An important research direction in the continued development of two-dimensional liquid chromatography (2D-LC) is to improve the detection sensitivity of the method. This is especially important in applications where injection of large volumes of effluent from the first dimension ( 1 D) column into the second dimension ( 2 D) column leads to severe 2 D peak broadening and peak shape distortion. For example, this is common when coupling two reversed-phase columns and the organic solvent content of the 1 D mobile phase overwhelms the 2 D column with each injection of 1 D effluent, leading to low resolution in the second dimension. In a previous study we validated a simulation approach based on the Craig distribution model and adapted from the work of Czok and Guiochon [1] that enabled accurate simulation of simple isocratic and gradient separations with very small injection volumes, and isocratic separations with mismatched injection and mobile phase solvents [2]. In the present study we have extended this simulation approach to simulate separations relevant to 2D-LC. Specifically, we have focused on simulating 2 D separations where gradient elution conditions are used, there is mismatch between the sample solvent and the starting point in the gradient elution program, injection volumes approach or even exceed the dead volume of the 2 D column, and the extent of sample loop filling is varied. To validate this simulation we have compared results from simulations and experiments for 101 different conditions, including variation in injection volume (0.4-80μL), loop filling level (25-100%), and degree of mismatch between sample organic solvent and the starting point in the gradient elution program (-20 to +20% ACN). We find that that the simulation is accurate enough (median errors in retention time and peak width of -1.0 and -4.9%, without corrections for extra-column dispersion) to be useful in guiding optimization of 2D-LC separations. However, this requires that real injection profiles obtained from 2D-LC interface valves are used to simulate the introduction of samples into the 2 D column. These profiles are highly asymmetric - simulation using simple rectangular pulses leads to peak widths that are far too narrow under many conditions. We believe the simulation approach developed here will be useful for addressing practical questions in the development of 2D-LC methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. An Application of X-Ray Fluorescence as Process Analytical Technology (PAT) to Monitor Particle Coating Processes.

    PubMed

    Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka

    2018-06-01

    An attempt to apply X-Ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.

  4. Investigation of fatigue strength of tool steels in sheet-bulk metal forming

    NASA Astrophysics Data System (ADS)

    Pilz, F.; Gröbel, D.; Merklein, M.

    2018-05-01

    To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.

  5. Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Qiuying; Rudenko, Pavlo; Miller, Dean J.

    The paper reports the operando and self-healing formation of DLC films at sliding contact surfaces by the addition of synthetic magnesium silicon hydroxide (MSH) nanoparticles to base oil. The formation of such films leads to a reduction of the coefficient of friction by nearly an order of magnitude and substantially reduces wear losses. The ultralow friction layer characterized by transmission electron microscope (TEM), electron energy loss spectroscopy (EELS), and Raman spectroscopy consists of amorphous DLC containing SiOx that forms in a continuous and self-repairing manner during operation. This environmentally benign and simple approach offers promise for significant advances in lubricationmore » and reduced energy losses in engines and other mechanical systems.« less

  6. A temperature match based optimization method for daily load prediction considering DLC effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Z.

    This paper presents a unique optimization method for short term load forecasting. The new method is based on the optimal template temperature match between the future and past temperatures. The optimal error reduction technique is a new concept introduced in this paper. Two case studies show that for hourly load forecasting, this method can yield results as good as the rather complicated Box-Jenkins Transfer Function method, and better than the Box-Jenkins method; for peak load prediction, this method is comparable in accuracy to the neural network method with back propagation, and can produce more accurate results than the multi-linear regressionmore » method. The DLC effect on system load is also considered in this method.« less

  7. Solid-State Division progress report for period ending March 31, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Watson, D.M.

    1983-09-01

    Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)

  8. An update on pharmaceutical film coating for drug delivery.

    PubMed

    Felton, Linda A; Porter, Stuart C

    2013-04-01

    Pharmaceutical coating processes have generally been transformed from what was essentially an art form in the mid-twentieth century to a much more technology-driven process. This review article provides a basic overview of current film coating processes, including a discussion on polymer selection, coating formulation additives and processing equipment. Substrate considerations for pharmaceutical coating processes are also presented. While polymeric coating operations are commonplace in the pharmaceutical industry, film coating processes are still not fully understood, which presents serious challenges with current regulatory requirements. Novel analytical technologies and various modeling techniques that are being used to better understand film coating processes are discussed. This review article also examines the challenges of implementing process analytical technologies in coating operations, active pharmaceutical ingredients in polymer film coatings, the use of high-solids coating systems and continuous coating and other novel coating application methods.

  9. Capattery double layer capacitor life performance

    NASA Astrophysics Data System (ADS)

    Evans, David A.; Clark, Nancy H.; Baca, W. E.; Miller, John R.; Barker, Thomas B.

    Double layer capacitors (DLCs) have received increased use in computer memory backup applications for consumer products during the past ten years. Their extraordinarily high capacitance density along with their maintenance-free operation makes them particularly suited for these products. These same features also make DLCs very attractive in military type applications. Unfortunately, lifetime performance data has not been reported in the literature for any DLC component. Our objective in this study was to investigate the effects that voltage and temperature have on the properties and performance of single and series-connected DLCs as a function of time. Evans model RE110474, 0.47-farad, 11.0-volt Capatteries were evaluated. These components have a tantalum package, use welded construction, and contain a glass-to-metal seal, all incorporated to circumvent the typical DLC failure modes of electrolyte loss and container corrosion. A five-level, two-factor Central Composite Design was used in the study. Single and series-connected Capatteries rated at 85 C, 11.0-volts operation were subjected to test temperatures between 25 and 95 C, and voltages between 0 and 12.9 volts (9 test conditions). Measured responses included capacitance, equivalent series resistance, and discharge time. Data were analyzed using a regression analysis to obtain response functions relating DLC properties to their voltage, temperature, and test time history. These results are described and should aid system and component engineers in using DLCs in critical applications.

  10. Investigation of spectral characteristics of tunnel photodiodes based on DLC nanofilms

    NASA Astrophysics Data System (ADS)

    Akchurin, Garif G.; Aban'shin, Nickolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Kochubey, Vyacheslav I.; Yakunin, Alexander N.

    2018-04-01

    The tunneling photo effect has been studied in a microdiode with an electrostatic field localized at an emitter based on a nanosized DLC structure. It is established the photocurrent, when the carbon nanoemitter is exposed by laser and tunable low-coherent radiation in the spectral range from UV to near IR with photons of low energy (below work function). A linear dependence of the photocurrent on the level of optical power in the range of micro- and milliwatt power is established. The effect of saturation of the current-voltage characteristics of the tunnel photocurrent associated with a finite concentration of non-equilibrium photoelectrons is observed. The observed spectral Watt-Amper characteristics can be adequately interpreted using a modified Fowler-Nordheim equation for non-equilibrium photoelectrons.

  11. Los Alamos science, Number 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    Nine authored articles are included covering: natural heat engine, photoconductivity, the Caribbean Basin, energy in Central America, peat, geothermal energy, and the MANIAC computer. Separate abstracts were prepared for the articles. (DLC)

  12. Evaluating a dementia learning community: exploratory study and research implications.

    PubMed

    Sheaff, Rod; Sherriff, Ian; Hennessy, Catherine Hagan

    2018-02-05

    Access times for, the costs and overload of hospital services are an increasingly salient issue for healthcare managers in many countries. Rising demand for hospital care has been attributed partly to unplanned admissions for older people, and among these partly to the increasing prevalence of dementia. The paper makes a preliminary evaluation of the logic model of a Dementia Learning Community (DLC) intended to reduce unplanned hospital admissions from care homes of people with dementia. A dementia champion in each DLC care home trained other staff in dementia awareness and change management with the aims of changing work routines, improving quality of life, and reducing demands on external services. Controlled mixed methods realistic evaluation comparing 13 intervention homes with 10 controls in England during 2013-15. Each link in the assumed logic model was tested to find whether that link appeared to exist in the DLC sites, and if so whether its effects appeared greater there than in control sites, in terms of selected indicators of quality of life (DCM Well/Ill-Being, QUALID, end-of-life planning); and impacts on ambulance call-outs and hospital admissions. The training was implemented as planned, and triggered cycles of Plan-Do-Study-Act activity in all the intervention care homes. Residents' well-being scores, measured by dementia care mapping, improved markedly in half of the intervention homes but not in the other half, where indeed some scores deteriorated markedly. Most other care quality indicators studied did not significantly improve during the study period. Neither did ambulance call-out or emergency hospital admission rates. PDSA cycles appeared to be the more 'active ingredient' in this intervention. The reasons why they impacted on well-being in half of the intervention sites, and not the others, require further research. A larger, longer study would be necessary to measure definitively any impacts on unplanned hospital admissions. Our evidence suggested revising the DLC logic model to include care planning and staff familiarisation with residents' personal histories and needs as steps towards improving residents' quality of life.

  13. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    PubMed

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  14. Analyses of fine paste ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabloff, J A

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaques, A.

    The entire report consists of tables of thermodynamic properties (including sound velocity, thermal conductivity and diffusivity, Prandtl number, density) of argon at 86 to 400/degree/K, in the form of isobars over 0.9 to 100 bars. (DLC)

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferris, Y.M.

    The paper by A.S. Goldman, R.R. Picard, and J.P. Shipley of Los Alamos is critiqued, particularly with respect to the following: definition of safeguards, limits of accuracy, shipper/receiver differences, statistical terminology, material balance, and errors. (DLC)

  17. ANNUAL REPORT ON PHYSICAL SCIENCES, ENGINEERING AND LIFE SCIENCES , JULY 1, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-10-31

    The research program at Brooknaven is described. Current activities in physics, high-energy accelerators, instrumentation, chemistry, nuclear engineering, applied mathematics, biology, and medical research are outlined. (D.L.C.)

  18. Second symposium on macrocyclic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izatt, R.M.; Christensen, J.J.

    1978-01-01

    Forty papers were presented at the sumposium under five session headings: inorganic reactions, industrial applications, biological and biochemistry, organic synthesis and reactions, and thermodynamics and kinetics. Abstracts of these papers are included in this document. (DLC)

  19. The analysis of 146 patients with difficult laparoscopic cholecystectomy.

    PubMed

    Bat, Orhan

    2015-01-01

    Laparoscopic cholecystectomy (LC) is very commonly performed surgical intervention. Acute or chronic cholecystitis, adhesions due to previous upper abdomen surgeries, Mirrizi's syndrome and obesity are common clinical conditions that can be associated with difficult cholecystectomy. In this study, we evaluated and scored the patients with difficult surgical exploration during laparoscopic cholecystectomy. All patients who underwent LC from 2010 to 2015 were retrospectively rewieved. According to intraoperative findings DLC cases were described and classified. Class I difficulty: Adhesion of omentum majus, transverse colon, duodenum to the fundus of the gallbladder. Class II difficulty: Adhesions in Calot's triangle and difficulty in dissection of cystic artery and cystic duct Class III difficulty: Difficulty in dissection of gallbladder bed (scleroathrophic gallbladder, hemorrhage from liver during dissection of gallbladder, chirotic liver). Class IV difficulty: Difficulty in exploration of gallbladder due to intraabdominal adhesions including technical problems. A total of 146 patients were operated with DLC. The most common difficulty type was Class I difficulty (88 patients/60.2%). Laparoscopic cholecystectomy was converted to laparotomy in 98 patients. Operation time was found to be related with conversion to open surgery (P<0.05). Wound infection rate was also statistically higher in conversion group (P<0.05). The opertion time was found to be longest with Class II difficulty. Conversion rate to open surgery was also highest with Class II difficulty group. Class II difficulty characterized by severe adhesions in calot's triangle is most serious problem among all DLC cases. They have longer operation time and higher conversion rate.

  20. Three dimensional liquid chromatography coupling ion exchange chromatography/hydrophobic interaction chromatography/reverse phase chromatography for effective protein separation in top-down proteomics.

    PubMed

    Valeja, Santosh G; Xiu, Lichen; Gregorich, Zachery R; Guner, Huseyin; Jin, Song; Ge, Ying

    2015-01-01

    To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.

  1. An analysis of MCNP cross-sections and tally methods for low-energy photon emitters.

    PubMed

    Demarco, John J; Wallace, Robert E; Boedeker, Kirsten

    2002-04-21

    Monte Carlo calculations are frequently used to analyse a variety of radiological science applications using low-energy (10-1000 keV) photon sources. This study seeks to create a low-energy benchmark for the MCNP Monte Carlo code by simulating the absolute dose rate in water and the air-kerma rate for monoenergetic point sources with energies between 10 keV and 1 MeV. The analysis compares four cross-section datasets as well as the tally method for collision kerma versus absorbed dose. The total photon attenuation coefficient cross-section for low atomic number elements has changed significantly as cross-section data have changed between 1967 and 1989. Differences of up to 10% are observed in the photoelectric cross-section for water at 30 keV between the standard MCNP cross-section dataset (DLC-200) and the most recent XCOM/NIST tabulation. At 30 keV, the absolute dose rate in water at 1.0 cm from the source increases by 7.8% after replacing the DLC-200 photoelectric cross-sections for water with those from the XCOM/NIST tabulation. The differences in the absolute dose rate are analysed when calculated with either the MCNP absorbed dose tally or the collision kerma tally. Significant differences between the collision kerma tally and the absorbed dose tally can occur when using the DLC-200 attenuation coefficients in conjunction with a modern tabulation of mass energy-absorption coefficients.

  2. The aqueous electrochemistry of carbon-based surfaces-investigation by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Mühl, T.; Myhra, S.

    2007-04-01

    Electro-oxidation of carbon-based materials will lead to conversion of the solid to CO2/CO at the anode, with H2 being produced at the cathode. Recent voltammetric investigations of carbon nano-tubes and single crystal graphite have shown that only edge sites and other defect sites are electrochemically active. Local oxidation of diamond-like carbon films (DLC) by an STM tip in moist air followed by imaging allows correlation of topographical change with electro-chemical conditions and surface reactivity. The results may have implications for lithographic processing of carbon surfaces, and may have relevance for electrochemical H2 production.

  3. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, R., E-mail: rifky-mec@yahoo.com; Tauviqirrahman, M., E-mail: rifky-mec@yahoo.com; Laboratory for Surface Technology and Tribology, Faculty of Engineering Technology, University of Twente, Enschede

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boronmore » nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio‐degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser‐print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running‐in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.« less

  4. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  5. Influence of Mold Surface Treatments on Flow of Polymer in Injection Moulding. Application to Weldlines

    NASA Astrophysics Data System (ADS)

    Chailly, M.; Charmeau, J.-Y.; Bereaux, Y.; Monasse, B.

    2007-04-01

    Due to increasing expectations from the market, the aspect of molded parts has to be improved constantly. Some of the defects observed on these parts such as weldlines are related to the filling stage. To limit this, we investigated the influence on weldlines using various surface deposits on the mold surface, mainly PVD and PACVD deposits : Chromium nitride (CrN), Titanium nitride (TiN), Diamond like Carbon (DLC), Chromium and polished steel (PG) on an instrumented plate mold. Injection campaign was led on three polymers which differ in terms of nature (amorphous, semi-crystalline, copolymers). We studied the evolution of the dimensions of weldlines appearing on the plate using the same injection parameters for a given polymer, but with various deposits and thicknesses. Another aspect that had been investigated is the morphology of the weldline through the thickness of the part, depending on polymer nature. Adhesion of polymer at the flow front with the mold surface proved to change. The modification of the initial contact in the filling stage and thus the thermal resistance at the mold implied a change in the process, increasing or reducing the pressure loss in the flow and differential shrinkage in the final part. The induced impact on dimensions of the weldlines allowed to distinguish which surface treatments were able to reduce the defect. A complementary study was led on both polymers in molten state and deposits in terms of wetting using a sessile drop method to confirm the adhesion at the polymer/mold interface. This study proved the influence of the use of surface treatments has clearly an impact on the filling stage of the injection molding process, and it is necessary to get a better knowledge of the interactions between physical adhesion, tribology of polymer/mold contact, and thermal properties of the coatings and their impact on solidification of the polymer.

  6. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    PubMed

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fixed site neutralization model programmer's manual. Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engi, D.; Chapman, L.D.; Judnick, W.

    This report relates to protection of nuclear materials at nuclear facilities. This volume presents the source listings for the Fixed Site Neutralization Model and its supporting modules, the Plex Preprocessor and the Data Preprocessor. (DLC)

  8. Solventless pharmaceutical coating processes: a review.

    PubMed

    Bose, Sagarika; Bogner, Robin H

    2007-01-01

    Coatings are an essential part in the formulation of pharmaceutical dosage form to achieve superior aesthetic quality (e.g., color, texture, mouth feel, and taste masking), physical and chemical protection for the drugs in the dosage forms, and modification of drug release characteristics. Most film coatings are applied as aqueous- or organic-based polymer solutions. Both organic and aqueous film coating bring their own disadvantages. Solventless coating technologies can overcome many of the disadvantages associated with the use of solvents (e.g., solvent exposure, solvent disposal, and residual solvent in product) in pharmaceutical coating. Solventless processing reduces the overall cost by eliminating the tedious and expensive processes of solvent disposal/treatment. In addition, it can significantly reduce the processing time because there is no drying/evaporation step. These environment-friendly processes are performed without any heat in most cases (except hot-melt coating) and thus can provide an alternative technology to coat temperature-sensitive drugs. This review discusses and compares six solventless coating methods - compression coating, hot-melt coating, supercritical fluid spray coating, electrostatic coating, dry powder coating, and photocurable coating - that can be used to coat the pharmaceutical dosage forms.

  9. Effect of photocatalytic and hydrophobic coatings on brewery surface microorganisms.

    PubMed

    Priha, O; Laakso, J; Tapani, K; Levänen, E; Kolari, M; Mäntylä, T; Storgårds, E

    2011-11-01

    The aim of this study was to determine whether process hygiene in the beverage industry could be improved by applying new coating techniques to process surfaces. Photocatalytic titanium dioxide (TiO(2)) and hydrophobic coatings applied to stainless steel with or without added antimicrobial compounds were studied in laboratory attachment tests and in a 15-month process study. No clear reductions in numbers of attached microbes were obtained with photocatalytic coatings, except for coatings to which silver had been added. These TiO(2)+Ag coatings reduced microbial coverage in laboratory studies and in some process samples. Hydrophobic coatings reduced the area coverage of microorganisms in 4-h laboratory studies but did not affect colony counts in laboratory or process studies. The surfaces had changed from hydrophobic into hydrophilic during the process study. The coatings did not mechanically fully withstand process conditions; part of the hydrophobic coatings had peeled off, most of the precipitated Ag had dissolved, and some of the TiO(2) coatings were damaged. In conclusion, functional coatings have potential for reducing microbial loads on beverage industry surfaces, but these coatings need further development.

  10. Evaluating the process parameters of the dry coating process using a 2(5-1) factorial design.

    PubMed

    Kablitz, Caroline Désirée; Urbanetz, Nora Anne

    2013-02-01

    A recent development of coating technology is dry coating, where polymer powder and liquid plasticizer are layered on the cores without using organic solvents or water. Several studies evaluating the process were introduced in literature, however, little information about the critical process parameters (CPPs) is given. Aim of the study was the investigation and optimization of CPPs with respect to one of the critical quality attributes (CQAs), the coating efficiency of the dry coating process in a rotary fluid bed. Theophylline pellets were coated with hydroxypropyl methylcellulose acetate succinate as enteric film former and triethyl citrate and acetylated monoglyceride as plasticizer. A 2(5-1) design of experiments (DOEs) was created investigating five independent process parameters namely coating temperature, curing temperature, feeding/spraying rate, air flow and rotor speed. The results were evaluated by multilinear regression using the software Modde(®) 7. It is shown, that generally, low feeding/spraying rates and low rotor speeds increase coating efficiency. High coating temperatures enhance coating efficiency, whereas medium curing temperatures have been found to be optimum in terms of coating efficiency. This study provides a scientific base for the design of efficient dry coating processes with respect to coating efficiency.

  11. Metals and Ceramics Division Materials Sciences Program. Annual progress report for period ending December 31, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiegler, J.O.

    1986-06-01

    The report is divided into the following: structural characterization, high-temperature alloy research, structural ceramics, radiation effects, structure and properties of surfaces and interfaces, and collaborative research centers. (DLC)

  12. Engineering of the function of diamond-like carbon binding peptides through structural design.

    PubMed

    Gabryelczyk, Bartosz; Szilvay, Géza R; Singh, Vivek K; Mikkilä, Joona; Kostiainen, Mauri A; Koskinen, Jari; Linder, Markus B

    2015-02-09

    The use of phage display to select material-specific peptides provides a general route towards modification and functionalization of surfaces and interfaces. However, a rational structural engineering of the peptides for optimal affinity is typically not feasible because of insufficient structure-function understanding. Here, we investigate the influence of multivalency of diamond-like carbon (DLC) binding peptides on binding characteristics. We show that facile linking of peptides together using different lengths of spacers and multivalency leads to a tuning of affinity and kinetics. Notably, increased length of spacers in divalent systems led to significantly increased affinities. Making multimers influenced also kinetic aspects of surface competition. Additionally, the multivalent peptides were applied as surface functionalization components for a colloidal form of DLC. The work suggests the use of a set of linking systems to screen parameters for functional optimization of selected material-specific peptides.

  13. Formation of high mass carbon cluster ions from laser ablation of polymers and thin carbon films

    NASA Astrophysics Data System (ADS)

    Creasy, William R.; Brenna, J. T.

    1990-02-01

    Three materials were studied by laser ablation/Fourier transform mass spectrometry, using 266 nm laser radiation: a copolymer of ethylene and tetrafluoroethylene (ETFE), polyphenylene sulfide (PPS), and a diamond-like carbon film (DLC). In each case, positive ion mass spectra exhibit primarily even-numbered, high mass carbon clusters (``fullerenes'') of the type previously reported for graphite ablation. In the case of ETFE, a large C+60 peak (``buckminsterfullerene'') was observed. The polymer spectra showed a strong dependence on the number of laser pulses on one spot and the laser power density. For ETFE, the fullerene ion relative intensity first increases and then decreases as a function of the number of laser pulses. For the DLC film, fullerenes are observed with a single laser pulse on a fresh spot of the sample. The results are interpreted in terms of a gas phase growth model for the fullerene ion formation.

  14. Dynamic control of supplemental lighting for greenhouse

    NASA Astrophysics Data System (ADS)

    Wang, Yuanxv; Wei, Ruihua; Xu, Lihong

    2018-04-01

    The development of light-emitting diodes (LED) technology to a large extent reduce the energy consumption of greenhouse, however, the light control methods to realize the energy saving still have great potential. The aim of this paper is to develop a more efficient control method of dynamic control of the LED top-lighting (TL) intensity and the LED inter-lighting (IL) intensity for the greatest economic benefits. A dynamic lighting control algorithm (DLC) based on model is proposed, which defines the economic benefit performance criterion of the supplemental lighting control. The optimal light intensity of TL and IL is calculated in real time according to the algorithm. The simulation shows that economic benefit can be increased by up to 107.35% compared to TL on-off control. It is concluded that DLC is a feasible supplemental light control method, especially under low natural light conditions.

  15. Performance of μ-RWELL detector vs resistivity of the resistive stage

    NASA Astrophysics Data System (ADS)

    Bencivenni, G.; De Oliveira, R.; Felici, G.; Gatta, M.; Morello, G.; Ochi, A.; Lener, M. Poli; Tskhadadze, E.

    2018-04-01

    The μ-RWELL is a compact spark-protected single amplification stage Micro-Pattern-Gaseous-Detector (MPGD). The detector amplification stage is realized with a polyimide structure, micro-patterned with a dense matrix of blind-holes, integrated into the readout structure. The anode is formed by a thin Diamond Like Carbon (DLC) resistive layer separated by an insulating glue layer from the readout strips. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (> 104), without significantly affecting the capability to be efficiently operated in high particle fluxes. In this work we present the results of a systematic study of the μ-RWELL performance as a function of the DLC resistivity. The tests have been performed either with collimated 5.9 keV X-rays or with pion and muon beams at the SPS Secondary Beamline H4 and H8 at CERN.

  16. Impact of Processing Conditions on Inter-tablet Coating Thickness Variations Measured by Terahertz In-Line Sensing

    PubMed Central

    Lin, Hungyen; May, Robert K; Evans, Michael J; Zhong, Shuncong; Gladden, Lynn F; Shen, Yaochun; Zeitler, J Axel

    2015-01-01

    A novel in-line technique utilising pulsed terahertz radiation for direct measurement of the film coating thickness of individual tablets during the coating process was previously developed and demonstrated on a production-scale coater. Here, we use this technique to monitor the evolution of tablet film coating thickness and its inter-tablet variability during the coating process under a number of different process conditions that have been purposefully induced in the production-scale coating process. The changes that were introduced to the coating process include removing the baffles from the coater, adding uncoated tablets to the running process, halting the drum, blockage of spray guns and changes to the spray rate. The terahertz sensor was able to pick up the resulting changes in average coating thickness in the coating drum and we report the impact of these process changes on the resulting coating quality. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:2513–2522, 2015 PMID:26037660

  17. The Effect of Surfactant Content over Cu-Ni Coatings Electroplated by the sc-CO₂ Technique.

    PubMed

    Chuang, Ho-Chiao; Sánchez, Jorge; Cheng, Hsiang-Yun

    2017-04-19

    Co-plating of Cu-Ni coatings by supercritical CO₂ (sc-CO₂) and conventional electroplating processes was studied in this work. 1,4-butynediol was chosen as the surfactant and the effects of adjusting the surfactant content were described. Although the sc-CO₂ process displayed lower current efficiency, it effectively removed excess hydrogen that causes defects on the coating surface, refined grain size, reduced surface roughness, and increased electrochemical resistance. Surface roughness of coatings fabricated by the sc-CO₂ process was reduced by an average of 10%, and a maximum of 55%, compared to conventional process at different fabrication parameters. Cu-Ni coatings produced by the sc-CO₂ process displayed increased corrosion potential of ~0.05 V over Cu-Ni coatings produced by the conventional process, and 0.175 V over pure Cu coatings produced by the conventional process. For coatings ~10 µm thick, internal stress developed from the sc-CO₂ process were ~20 MPa lower than conventional process. Finally, the preferred crystal orientation of the fabricated coatings remained in the (111) direction regardless of the process used or surfactant content.

  18. The analysis of 146 patients with difficult laparoscopic cholecystectomy

    PubMed Central

    Bat, Orhan

    2015-01-01

    Introduction: Laparoscopic cholecystectomy (LC) is very commonly performed surgical intervention. Acute or chronic cholecystitis, adhesions due to previous upper abdomen surgeries, Mirrizi’s syndrome and obesity are common clinical conditions that can be associated with difficult cholecystectomy. In this study, we evaluated and scored the patients with difficult surgical exploration during laparoscopic cholecystectomy. Material and Method: All patients who underwent LC from 2010 to 2015 were retrospectively rewieved. According to intraoperative findings DLC cases were described and classified. Class I difficulty: Adhesion of omentum majus, transverse colon, duodenum to the fundus of the gallbladder. Class II difficulty: Adhesions in Calot’s triangle and difficulty in dissection of cystic artery and cystic duct Class III difficulty: Difficulty in dissection of gallbladder bed (scleroathrophic gallbladder, hemorrhage from liver during dissection of gallbladder, chirotic liver). Class IV difficulty: Difficulty in exploration of gallbladder due to intraabdominal adhesions including technical problems. Results: A total of 146 patients were operated with DLC. The most common difficulty type was Class I difficulty (88 patients/60.2%). Laparoscopic cholecystectomy was converted to laparotomy in 98 patients. Operation time was found to be related with conversion to open surgery (P<0.05). Wound infection rate was also statistically higher in conversion group (P<0.05). The opertion time was found to be longest with Class II difficulty. Conversion rate to open surgery was also highest with Class II difficulty group. Conclusion: Class II difficulty characterized by severe adhesions in calot’s triangle is most serious problem among all DLC cases. They have longer operation time and higher conversion rate. PMID:26629124

  19. Impact of the variation in dynamic vehicle load on flexible pavement responses

    NASA Astrophysics Data System (ADS)

    Ahsanuzzaman, Md

    The purpose of this research was to evaluate the dynamic variation in asphalt pavement critical responses due to dynamic tire load variations. An attempt was also made to develop generalized regression equations to predict the dynamic response variation in flexible pavement under various dynamic load conditions. The study used an extensive database of computed pavement response histories for five different types of sites (smooth, rough, medium rough, very rough and severely rough), two different asphalt pavement structures (thin and thick) at two temperatures (70 °F and 104 °F), subjected to a tandem axle dual tire at three speeds 25, 37 and 50 mph (40, 60 and 80 km/h). All pavement responses were determined using the 3D-Move Analysis program (Version 1.2) developed by University of Nevada, Reno. A new term called Dynamic Response Coefficient (DRC) was introduced in this study to address the variation in critical pavement responses due to dynamic loads as traditionally measured by the Dynamic Load Coefficient (DLC). While DLC represents the additional varying component of the tire load, DRC represents the additional varying component of the response value (standard deviation divided by mean response). In this study, DRC was compared with DLC for five different sites based on the roughness condition of the sites. Previous studies showed that DLC varies with vehicle speed and suspension types, and assumes a constant value for the whole pavement structure (lateral and vertical directions). On the other hand, in this study, DRC was found to be significantly varied with the asphalt pavement and function of pavement structure, road roughness conditions, temperatures, vehicle speeds, suspension types, and locations of the point of interest in the pavement. A major contribution of the study is that the variation of pavement responses due to dynamic load in a flexible pavement system can be predicted with generalized regression equations. Fitting parameters (R2) in the rage of 0.60 to 0.87 were observed the DRC predictive equations. In addition, verification of those generalized equations was evaluated using different sets of asphalt pavement structures and pavement materials. The differences between calculated and predicted values were found to be within +/-20% for the maximum tensile strain and +/-30% for the maximum compressive strain in the asphalt layer.

  20. Precision Optical Coatings for Large Space Telescope Mirrors

    NASA Astrophysics Data System (ADS)

    Sheikh, David

    This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.

  1. Investigation on influence of Wurster coating process parameters for the development of delayed release minitablets of Naproxen.

    PubMed

    Shah, Neha; Mehta, Tejal; Aware, Rahul; Shetty, Vasant

    2017-12-01

    The present work aims at studying process parameters affecting coating of minitablets (3 mm in diameter) through Wurster coating process. Minitablets of Naproxen with high drug loading were manufactured using 3 mm multi-tip punches. The release profile of core pellets (published) and minitablets was compared with that of marketed formulation. The core formulation of minitablets was found to show similarity in dissolution profile with marketed formulation and hence was further carried forward for functional coating over it. Wurster processing was implemented to pursue functional coating over core formulation. Different process parameters were screened and control strategy was applied for factors significantly affecting the process. Modified Plackett Burman Design was applied for studying important factors. Based on the significant factors and minimum level of coating required for functionalization, optimized process was executed. Final coated batch was evaluated for coating thickness, surface morphology, and drug release study.

  2. A continuous silicon-coating facility

    NASA Technical Reports Server (NTRS)

    Butter, C.; Heaps, J. D.

    1979-01-01

    Automatic continuous silicon-coating facility is used to process 100 by 10 cm graphite-coated ceramic substrates for silicon solar cells. Process reduces contamination associated with conventional dip-coating processes, improving material service life.

  3. The Effect of Surfactant Content over Cu-Ni Coatings Electroplated by the sc-CO2 Technique

    PubMed Central

    Chuang, Ho-Chiao; Sánchez, Jorge; Cheng, Hsiang-Yun

    2017-01-01

    Co-plating of Cu-Ni coatings by supercritical CO2 (sc-CO2) and conventional electroplating processes was studied in this work. 1,4-butynediol was chosen as the surfactant and the effects of adjusting the surfactant content were described. Although the sc-CO2 process displayed lower current efficiency, it effectively removed excess hydrogen that causes defects on the coating surface, refined grain size, reduced surface roughness, and increased electrochemical resistance. Surface roughness of coatings fabricated by the sc-CO2 process was reduced by an average of 10%, and a maximum of 55%, compared to conventional process at different fabrication parameters. Cu-Ni coatings produced by the sc-CO2 process displayed increased corrosion potential of ~0.05 V over Cu-Ni coatings produced by the conventional process, and 0.175 V over pure Cu coatings produced by the conventional process. For coatings ~10 µm thick, internal stress developed from the sc-CO2 process were ~20 MPa lower than conventional process. Finally, the preferred crystal orientation of the fabricated coatings remained in the (111) direction regardless of the process used or surfactant content. PMID:28772787

  4. Integrative proteomics to understand the transmission mechanism of Barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi

    PubMed Central

    Wang, Hui; Wu, Keke; Liu, Yan; Wu, Yunfeng; Wang, Xifeng

    2015-01-01

    Barley yellow dwarf virus-GPV (BYDV-GPV) is transmitted by Rhopalosiphum padi and Schizaphis graminum in a persistent nonpropagative manner. To improve our understanding of its transmission mechanism by aphid vectors, we used two approaches, isobaric tags for relative and absolute quantitation (iTRAQ) and yeast two-hybrid (YTH) system, to identify proteins in R. padi that may interact with or direct the spread of BYDV-GPV along the circulative transmission pathway. Thirty-three differential aphid proteins in viruliferous and nonviruliferous insects were identified using iTRAQ coupled to 2DLC-MS/MS. With the yeast two-hybrid system, 25 prey proteins were identified as interacting with the readthrough protein (RTP) and eight with the coat protein (CP), which are encoded by BYDV-GPV. Among the aphid proteins identified, most were involved in primary energy metabolism, synaptic vesicle cycle, the proteasome pathway and the cell cytoskeleton organization pathway. In a systematic comparison of the two methods, we found that the information generated by the two methods was complementary. Taken together, our findings provide useful information on the interactions between BYDV-GPV and its vector R. padi to further our understanding of the mechanisms regulating circulative transmission in aphid vectors. PMID:26161807

  5. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy.

    PubMed

    Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït

    2005-04-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

  6. In-line monitoring of pellet coating thickness growth by means of visual imaging.

    PubMed

    Oman Kadunc, Nika; Sibanc, Rok; Dreu, Rok; Likar, Boštjan; Tomaževič, Dejan

    2014-08-15

    Coating thickness is the most important attribute of coated pharmaceutical pellets as it directly affects release profiles and stability of the drug. Quality control of the coating process of pharmaceutical pellets is thus of utmost importance for assuring the desired end product characteristics. A visual imaging technique is presented and examined as a process analytic technology (PAT) tool for noninvasive continuous in-line and real time monitoring of coating thickness of pharmaceutical pellets during the coating process. Images of pellets were acquired during the coating process through an observation window of a Wurster coating apparatus. Image analysis methods were developed for fast and accurate determination of pellets' coating thickness during a coating process. The accuracy of the results for pellet coating thickness growth obtained in real time was evaluated through comparison with an off-line reference method and a good agreement was found. Information about the inter-pellet coating uniformity was gained from further statistical analysis of the measured pellet size distributions. Accuracy and performance analysis of the proposed method showed that visual imaging is feasible as a PAT tool for in-line and real time monitoring of the coating process of pharmaceutical pellets. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampath, Sanjay

    2015-04-02

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is beingmore » taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness and resulted in improved TBC lifetimes. Processing based approaches of identifying optimal processing regimes deploying advanced in-situ coating property measurements and in-flight diagnostic tools were used to develop process maps for bond coats. Having established a framework for the bond coat processing using the HVOF process, effort were channeled towards fabrication of APS and VPS bond coats with the same material composition. Comparative evaluation of the three deposition processes with regard to their microstrcuture , surface profiles and TBC performance were carried out and provided valuable insights into factors that require concurrent consideration for the development of bond coats for advanced TBC systems. Over the course of this program several advancements were made on the development of durable thermal barrier coatings. Process optimization techniques were utilized to identify processing regimes for both conventional YSZ as well as other TBC compositions such as Gadolinium Zirconate and other Co-doped materials. Measurement of critical properties for these formed the initial stages of the program to identify potential challenges in their implementation as part of a TBC system. High temperature thermal conductivity measurements as well as sintering behavior of both YSZ and GDZ coatings were evaluated as part of initial efforts to undersand the influence of processing on coating properties. By effectively linking fundamental coating properties of fracture toughness and elastic modulus to the cyclic performance of coatings, a durability strategy for APS YSZ coatings was developed. In order to meet the goals of fabricating a multimaterial TBC system further research was carried out on the development of a gradient thermal conductivity model and the evaluation of sintering behavior of multimaterial coatings. Layer optimization for desired properties in the multimaterial TBC was achieved by an iterative feedback approach utilizing process maps and in-situ and ex-situ coating property sensors. Addressing the challenges pertaining to the integration of the two materials YSZ and GDZ led to one of most the critical outcomes of this program, the development of durable multimaterial, multifunctional TBC systems.« less

  8. Waste Isolation Safety Assessment Program. Task 4. Third Contractor Information Meeting. [Adsorption-desorption on geological media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-01

    The study subject of this meeting was the adsorption and desorption of radionuclides on geologic media under repository conditions. This volume contans eight papers. Separate abstracts were prepared for all eight papers. (DLC)

  9. Lectures on combustion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burstein, S.Z.; Lax, P.D.; Sod, G.A.

    1978-09-01

    Eleven lectures are presented on mathematical aspects of combustion: fluid dynamics, deflagrations and detonations, chemical kinetics, gas flows, combustion instability, flame spread above solids, spark ignition engines, burning rate of coal particles and hydrocarbon oxidation. Separate abstracts were prepared for three of the lectures. (DLC)

  10. Microstructure and Mechanical Properties of Microwave Post-processed Ni Coating

    NASA Astrophysics Data System (ADS)

    Zafar, Sunny; Sharma, Apurbba Kumar

    2017-03-01

    Flame-sprayed coatings are widely used in the industries attributed to their low cost and simple processing. However, the presence of porosity and poor adhesion with the substrate requires suitable post-processing of the as-sprayed deposits. In the present work, post-processing of the flame-sprayed Ni-based coating has been successfully attempted using microwave hybrid heating. Microwave post-processing of the flame-sprayed coatings was carried out at 2.45 GHz in a 1 kW multimode industrial microwave applicator. The microwave-processed and as-sprayed deposits were characterized for their microstructure, porosity, fracture toughness and surface roughness. The properties of the coatings were correlated with their abrasive wear behavior using a sliding abrasion test on a pin-on-disk tribometer. Microwave post-processing led to healed micropores and microcracks, thus causing homogenization of the microstructure in the coating layer. Therefore, microwave post-processed coating layer exhibits improved mechanical and tribological properties compared to the as-sprayed coating layer.

  11. Advanced methods for processing ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, W.B.

    1997-04-01

    Combustion chemical vapor deposition (combustion CVD) is being developed for the deposition of high temperature oxide coatings. The process is being evaluated as an alternative to more capital intensive conventional coating processes. The thrusts during this reporting period were the development of the combustion CVD process for depositing lanthanum monazite, the determination of the influence of aerosol size on coating morphology, the incorporation of combustion CVD coatings into thermal barrier coatings (TBCs) and related oxidation research, and continued work on the deposition of zirconia-yttria coatings.

  12. Processing of fused silicide coatings for carbon-based materials

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1982-01-01

    The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks.

  13. Application of TiC reinforced Fe-based coatings by means of High Velocity Air Fuel Spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Sommer, J.

    2017-03-01

    In the field of hydraulic applications, different development trends can cause problems for coatings currently used as wear and corrosion protection for piston rods. Aqueous hydraulic fluids and rising raw material prices necessitate the search for alternatives to conventional coatings like galvanic hard chrome or High Velocity Oxygen Fuel (HVOF)-sprayed WC/Co coatings. In a previous study, Fe/TiC coatings sprayed by a HVOF-process, were identified to be promising coating systems for wear and corrosion protection in hydraulic systems. In this feasibility study, the novel High Velocity Air Fuel (HVAF)-process, a modification of the HVOF-process, is investigated using the same feedstock material, which means the powder is not optimized for the HVAF-process. The asserted benefits of the HVAF-process are higher particle velocities and lower process temperatures, which can result in a lower porosity and oxidation of the coating. Further benefits of the HVAF process are claimed to be lower process costs and higher deposition rates. In this study, the focus is set on to the applicability of Fe/TiC coatings by HVAF in general. The Fe/TiC HVAF coating could be produced, successfully. The HVAF- and HVOF-coatings, produced with the same powder, were investigated using micro-hardness, porosity, wear and corrosion tests. A similar wear coefficient and micro-hardness for both processes could be achieved. Furthermore the propane/hydrogen proportion of the HVAF process and its influence on the coating thickness and the porosity was investigated.

  14. Electrodeposited MCrAlY Coatings for Gas Turbine Engine Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2015-11-01

    Electrolytic codeposition is a promising alternative process for fabricating MCrAlY coatings. The coating process involves two steps, i.e., codeposition of CrAlY-based particles and a metal matrix of Ni, Co, or (Ni,Co), followed by a diffusion heat treatment to convert the composite coating to the desired MCrAlY microstructure. Despite the advantages such as low cost and non-line-of-sight, this coating process is less known than electron beam-physical vapor deposition and thermal spray processes for manufacturing high-temperature coatings. This article provides an overview of the electro-codeposited MCrAlY coatings for gas turbine engine applications, highlighting the unique features of this coating process and some important findings in the past 30 years. Challenges and research opportunities for further optimization of this type of MCrAlY coatings are also discussed.

  15. Quantitative image analysis for evaluating the coating thickness and pore distribution in coated small particles.

    PubMed

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    2009-04-01

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken with Confocal Laser Scanning Microscopy (CSLM). The coating thicknesses have been determined along the particle perimeter, from which a statistical analysis could be performed to obtain relevant thickness properties, e.g. the minimum coating thickness and the span of the thickness distribution. The characterization of the pore structure involved a proper segmentation of pores from the coating and a granulometry operation. The presented method facilitates the quantification of porosity, thickness and pore size distribution of a coating. These parameters are considered the important coating properties, which are critical to coating functionality. Additionally, the effect of the coating process variations on coating quality can straight-forwardly be assessed. Enabling a good characterization of the coating qualities, the presented method can be used as a fast and effective tool to predict coating functionality. This approach also enables the influence of different process conditions on coating properties to be effectively monitored, which latterly leads to process tailoring.

  16. Purchase of a Raman and Photoluminescence Imaging System for Characterization of Advanced Electrochemical and Electronic Materials

    DTIC Science & Technology

    2016-01-05

    2015, Abstract #1092. The Role of Chromium (III) in the Corrosion Inhibition of AA2024-T3 By Trivalent Chromium Process Coatings by Greg Swain...to replace chromate conversion coatings and primers with more environmentally-friendly, non-chromated coatings. The Trivalent Chromium Process (TCP...coatings and primers with more environmentally-friendly, non-chromated coatings. The Trivalent Chromium Process (TCP) coating, originally developed

  17. The Workshop on Conductive Polymers: Final Report

    DOE R&D Accomplishments Database

    1985-10-01

    Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)

  18. SUMMARY REPORT ON THE STUDY OF BETA TREATMENT OF URANIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, R.B.; Wolff, A.K.

    A study was made on the effects of beta treatment variables on the texture, grain size, and distortion in unalloyed dingot and ingot uranium. The effects of delta heat treatment, various cooling regimes, recrystallization, etc., were studied. (D.L.C.)

  19. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process.

    PubMed

    Möltgen, C-V; Puchert, T; Menezes, J C; Lochmann, D; Reich, G

    2012-04-15

    Film coating of tablets is a multivariate pharmaceutical unit operation. In this study an innovative in-line Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS) application is described which enables real-time monitoring of a full industrial scale pan coating process of heart-shaped tablets. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film of up to approx. 28 μm on the tablet face as determined by SEM, corresponding to a weight gain of 2.26%. For a better understanding of the aqueous coating process the NIR probe was positioned inside the rotating tablet bed. Five full scale experimental runs have been performed to evaluate the impact of process variables such as pan rotation, exhaust air temperature, spray rate and pan load and elaborate robust and selective quantitative calibration models for the real-time determination of both coating growth and tablet moisture content. Principal Component (PC) score plots allowed each coating step, namely preheating, spraying and drying to be distinguished and the dominating factors and their spectral effects to be identified (e.g. temperature, moisture, coating growth, change of tablet bed density, and core/coat interactions). The distinct separation of HPMC coating growth and tablet moisture in different PCs enabled a real-time in-line monitoring of both attributes. A PLS calibration model based on Karl Fischer reference values allowed the tablet moisture trajectory to be determined throughout the entire coating process. A 1-latent variable iPLS weight gain calibration model with calibration samples from process stages dominated by the coating growth (i.e. ≥ 30% of the theoretically applied amount of coating) was sufficiently selective and accurate to predict the progress of the thin HPMC coating layer. At-line NIR Chemical Imaging (NIR-CI) in combination with PLS Discriminant Analysis (PLSDA) verified the HPMC coating growth and physical changes at the core/coat interface during the initial stages of the coating process. In addition, inter- and intra-tablet coating variability throughout the process could be assessed. These results clearly demonstrate that in-line NIRS and at-line NIR-CI can be applied as complimentary PAT tools to monitor a challenging pan coating process. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Processing of fused silicide coatings for carbon-based materials

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1983-01-01

    The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks. Previously announced in STAR as N83-27019

  1. A novel two-dimensional liquid-chromatography method for online prediction of the toxicity of transformation products of benzophenones after water chlorination.

    PubMed

    Li, Jian; Ma, Li-Yun; Xu, Li; Shi, Zhi-Guo

    2015-08-01

    Benzophenone-type UV filters (BPs) are ubiquitous in the environment. Transformation products (TPs) of BPs with suspected toxicity are likely to be produced during disinfection of water by chlorination. To quickly predict the toxicity of TPs, in this study, a novel two-dimensional liquid-chromatography (2D-LC) method was established in which the objective of the first dimension was to separate the multiple components of the BPs sample after chlorination, using a reversed-phase liquid-chromatography mode. A biochromatographic system, i.e. bio-partitioning micellar chromatography with the polyoxyethylene (23) lauryl ether aqueous solution as the mobile phase, served as the second dimension to predict the toxicity of the fraction from the first dimension on the basis of the quantitative retention-activity relationships (QRARs) model. Six BPs, namely 2,4-dihydroxybenzophenone, oxybenzone, 4-hydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone and 2,2'-dihydroxy-4-methoxybenzophenone, were the target analytes subjected to chlorination. The products of these BPs after chlorination were directly injected to the 2D-LC system for analysis. The results indicated that most TPs may be less toxic than their parent chemicals, but some may be more toxic, and that intestinal toxicity of TPs may be more obvious than blood toxicity. The proposed method is time-saving, high-throughput, and reliable, and has great potential for predicting toxicity or bioactivity of unknown and/or known components in a complex sample. Graphical Abstract The scheme for the 2D-LC online prediction of toxicity of the transformation products of benzophenone-type UV filters after chlorination.

  2. Human trophoblasts recruited T lymphocytes and monocytes into decidua by secretion of chemokine CXCL16 and interaction with CXCR6 in the first-trimester pregnancy.

    PubMed

    Huang, Yu; Zhu, Xiao-Yong; Du, Mei-Rong; Li, Da-Jin

    2008-02-15

    During human early pregnancy, fetus-derived trophoblasts come into direct contact with maternal immune cells at the maternofetal interface. At sites of placental attachment, invasive extravillous trophoblasts encounter decidual leukocytes (DLC) that accumulate within the decidua. Because we first found chemokine CXCL16 was highly expressed in and secreted by the first-trimester human trophoblasts previously, in this study we tested the hypothesis of whether the fetal trophoblasts can direct migration of maternal T lymphocyte and monocytes into decidua by secreting CXCL16. We analyzed the transcription and translation of CXCL16 in the isolated first-trimester human trophoblast, and examined the kinetic secretion of CXCL16 in the supernatant of the primary-cultured trophoblasts. We demonstrated that the sole receptor of CXCL16, CXCR6, is preferentially expressed in T lymphocytes, NKT cells, and monocytes, hardly expressed in two subsets of NK cells from either the peripheral blood or decidua. We further demonstrated the chemotactic activity of CXCL16 in the supernatant of the primary trophoblast on the peripheral mononuclear cells and DLC. Moreover, the CXCL16/CXCR6 interaction is involved in the migration of the peripheral T lymphocytes, gammadelta T cells, and monocytes, but not NKT cells. In addition, the trophoblast-conditioned medium could enrich PBMC subsets selectively to constitute a leukocyte population with similar composition to that of DLC, which suggests that the fetus-derived trophoblasts can attract T cells, gammadelta T cells, and monocytes by producing CXCL16 and interaction with CXCR6 on these cells, leading to forming a specialized immune milieu at the maternofetal interface.

  3. DDD(R)-pacing, but not AAI(R)-pacing induces left ventricular desynchronization in patients with sick sinus syndrome: tissue-Doppler and 3D echocardiographic evaluation in a randomized controlled comparison.

    PubMed

    Albertsen, Andi Eie; Nielsen, Jens Cosedis; Poulsen, Steen Hvitfeldt; Mortensen, Peter Thomas; Pedersen, Anders Kirstein; Hansen, Peter Steen; Jensen, Henrik Kjaerulf; Egeblad, Henrik

    2008-02-01

    Increasing evidence from randomized trials and experimental studies indicates that right ventricular (RV) pacing may induce congestive heart failure. We studied regional left ventricular (LV) dyssynchrony and global LV function in 50 consecutive patients with sick sinus syndrome (SSS) randomized to either atrial pacing [AAI(R)] or dual chamber RV-pacing [DDD(R)]. Fifty consecutive patients were randomized to AAI(R) or DDD(R)-pacing. Tissue-Doppler imaging was used to quantify LV dyssynchrony in terms of number of segments with delayed longitudinal contraction (DLC). Left ventricular ejection fraction (LVEF) was measured using three-dimensional echocardiography. Dyssynchrony was more pronounced in the DDD(R)-group than in the AAI(R)-group at the 12 months follow-up (P < 0.05). This reflected a significant increase of dyssynchrony in the DDD(R)-group from baseline to the 12 months follow-up (1.3 +/- 1 to 2.1 +/- 1 segments displaying DLC per patient), P < 0.05. No change was observed in the AAI(R)-group (1.6 +/- 2 to 1.3 +/- 2 segments displaying DLC per patient, NS). No difference in LVEF, NYHA or NT-proBNP was observed between AAI(R)- and DDD(R)-mode after 12 months of pacing although LVEF decreased significantly in the DDD(R)-group from baseline (63.1 +/- 8%) to the 12 months follow-up (59.3 +/- 8%, P < 0.05), while LVEF remained unchanged in the AAI(R)-group (61.5 +/- 11% at baseline vs. 62.3 +/- 7% after 12 months, NS. In patients with SSS, DDD(R)-pacing but not AAI(R)-pacing induces significant LV desynchronization and reduction of LVEF.

  4. Biventricular pacing preserves left ventricular performance in patients with high-grade atrio-ventricular block: a randomized comparison with DDD(R) pacing in 50 consecutive patients.

    PubMed

    Albertsen, Andi E; Nielsen, Jens C; Poulsen, Steen H; Mortensen, Peter T; Pedersen, Anders K; Hansen, Peter S; Jensen, Henrik K; Egeblad, Henrik

    2008-03-01

    We aimed to investigate whether biventricular (BiV) pacing minimizes left ventricular (LV) dyssynchrony and preserves LV ejection fraction (LVEF) as compared with standard dual-chamber DDD(R) pacing in consecutive patients with high-grade atrio-ventricular (AV) block. Fifty patients were randomized to DDD(R) pacing or BiV pacing. LVEF was measured using three-dimensional echocardiography. Tissue-Doppler imaging was used to quantify LV dyssynchrony in terms of number of segments with delayed longitudinal contraction (DLC). LVEF was not different between groups after 12 months (P = 0.18). In the DDD(R) group LVEF decreased significantly from 59.7(57.4-61.4)% at baseline to 57.2(52.1-60.6)% at 12 months of follow-up (P = 0.03), whereas LVEF remained unchanged in the BiV group [58.9(47.1-61.7)% at baseline vs. 60.1(55.2-63.3)% after 12 months (P = 0.15)]. Dyssynchrony was more prominent in the DDD(R) group than in the BiV group at baseline (2.2 +/- 2.2 vs. 1.4 +/- 1.3 segments with DLC per patient, P = 0.10); and at 12 month follow-up (1.8 +/- 1.9 vs. 0.8 +/- 0.9 segments with DLC per patient, P = 0.02). NT-proBNP was unchanged in the DDD(R) group during follow-up (122 +/- 178 pmol/L vs. 91 +/- 166 pmol/L, NS) but decreased significantly in the BiV-group (from 198 +/- 505 pmol/L to 86 +/- 95 pmol/L after 12 months, P = 0.02). BiV pacing minimizes LV dyssynchrony, preserves LV function, and reduces NT-proBNP in contrast to DDD(R) pacing in patients with high-grade AV block.

  5. Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry.

    PubMed

    Ji, Shuai; He, Dan-Dan; Wang, Tian-Yun; Han, Jie; Li, Zheng; Du, Yan; Zou, Jia-Hui; Guo, Meng-Zhe; Tang, Dao-Quan

    2017-11-30

    Ginkgo biloba extract (GBE), derived from the leaves of Ginkgo biloba L., is one of the most widely used traditional Chinese medicines worldwide. Due to high structural diversity and low abundance of chemical constituents in GBE, conventional reversed-phase liquid chromatography has limited power to meet the needs of its quality control. In this study, an off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography (HILIC×RP 2D-LC) system coupled with diode array detection (DAD) and quadrupole time-of-flight mass spectrometry (qTOF-MS) was established to comprehensively analyze the chemical constituents of GBE. After optimizing the chromatographic columns and mobile phase of 2D-LC, a Waters XBridge Amide column using acetonitrile/water/formic acid as the mobile phase was selected as the first dimension to fractionate GBE, and the obtained fractions were further separated on an Agilent Zorbax XDB-C18 column with methanol/water/formic acid as the mobile phase. As a result, a total of 125 compounds were detected in GBE. The orthogonality of the 2D-LC system was 69.5%, and the practical peak capacity was 3864 and 2994, respectively, calculated by two different methods. The structures of 104 compounds were tentatively characterized by qTOF-MS analysis, and 21 of them were further confirmed by comparing with reference standards. This established HILIC×RP 2D-LC-qTOF/MS system can greatly improve the separation and characterization of natural products in GBE or other complicated herbal extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Persistent organic pollutants and related biological responses measured in coastal fish using chemical and biological screening methods.

    PubMed

    Tairova, Zhanna; Strand, Jakob; Bossi, Rossana; Larsen, Martin M; Förlin, Lars; Bignert, Anders; Hedman, Jenny; Gercken, Jens; Lang, Thomas; Fricke, Nicolai F; Asmund, Gert; Long, Manhai; Bonefeld-Jørgensen, Eva C

    2017-01-01

    The aim of this study was to investigate the spatial distribution, levels of dioxin-like compounds (DLC), and biological responses in two fish species. The viviparous eelpout (Zoarces viviparus) was collected from various locations in the Baltic Sea and in fjords of Kattegat and Skagerrak, while shorthorn sculpin (Myoxocephalus scorpius) was obtained at the polychlorinated biphenyl (PCB) polluted site in North West Greenland. Significant differences were detected both in contaminant levels and relative contributions from either polychlorinated dibenzodioxins (PCDD) or polychlorinated dibenzofurans (PCDF or furans) and mono-ortho- and non-ortho (coplanar) polychlorinated biphenyls (dl-PCB). Fish from the eastern Baltic Sea generally displayed higher contributions from PCDD/F compared to dl-PCB, whereas dl-PCB were generally predominated in fish from Danish, Swedish, and German sites. Levels of dl-PCB in muscle tissues were above OSPAR environmental assessment criteria (EAC) for PCB118, indicating a potential risk of adverse biological effects in the ecosystem, whereas levels of the total WHO-TEQs were below threshold for sea food suggesting limited risks for humans. No significant relationships between levels of DLC (expressed as WHO-TEQ), and biological responses such as the induction of CYP1A enzymatic activity and fry reproductive disorders were observed in eelpout. No marked relationship between WHO-TEQ and combined biological aryl hydrocarbon receptor-mediated transactivity (expressed as AhR-TEQ) was noted. However, there was a positive correlation between polycyclic aromatic hydrocarbon (PAH) metabolites and induction of CYP1A activity, suggesting that PAH exhibited greater potential than DLC to produce biological effects in eelpout from the Baltic Sea.

  7. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses.

    PubMed

    Huang, Yi; Song, Lei; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Chen, Jiyong; Wu, Fang; Gu, Zhongwei

    2010-12-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 µm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  8. A novel electrostatic dry powder coating process for pharmaceutical dosage forms: immediate release coatings for tablets.

    PubMed

    Qiao, Mingxi; Zhang, Liqiang; Ma, Yingliang; Zhu, Jesse; Chow, Kwok

    2010-10-01

    An electrostatic dry powder coating process for pharmaceutical solid dosage forms was developed for the first time by electrostatic dry powder coating in a pan coater system. Two immediate release coating compositions with Opadry® AMB and Eudragit® EPO were successfully applied using this process. A liquid plasticizer was sprayed onto the surface of the tablet cores to increase the conductivity of tablet cores to enhance particle deposition, electrical resistivity reduced from greater than 1×10(13)Ωm to less than 1×10(9)Ωm, and to lower the glass transition temperature (T(g)) of the coating polymer for film forming in the pan coater. The application of liquid plasticizer was followed by spraying charged coating particles using an electrostatic charging gun to enhance the uniform deposition on tablet surface. The coating particles were coalesced into a thin film by curing at an acceptable processing temperature as formation was confirmed by SEM micrographs. The results also show that the optimized dry powder coating process produces tablets with smooth surface, good coating uniformity and release profile that are comparable to that of the tablet cores. The data also suggest that this novel electrostatic dry powder coating technique is an alternative to aqueous- or solvent-based coating process for pharmaceutical products. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  9. PROCEEDINGS OF THE PROTACTINIUM CHEMISTRY SYMPOSIUM, GATLINBURG, TENNESSEE, APRIL 25-26, 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-04-26

    Eleven papers are presented on the chemistry of protactinium. Most of the emphasis is on solvent extraction and solution chemistry. Separate abstracts were prepared for ten of the papers; the remaining paper was previously abstracted in NSA. (D.L.C.)

  10. Near-resonant vibration. -->. vibration energy transfer under single-collision conditions. [Propynal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breener, D M

    1981-01-01

    Energy transfer in single collisions of propynal (HC triple bond C-CHO) subsequent to ir multiphonon absorption (CO/sub 2/ laser) was studied. SiF/sub 4/, CH/sub 3/F, CCl/sub 4/, and CH/sub 4/ were added. (DLC)

  11. Targeted Approach to Identify Genetic Loci Associated with Evolved Dioxin Tolerance in Atlantic Killifish (Fundulus heteroclitus)

    EPA Science Inventory

    Extreme tolerance to highly toxic dioxin-like contaminants (DLCs) has evolved independently and contemporaneously in (at least) four populations of Atlantic killifish (Fundulus heteroclitus). Surprisingly, the magnitude and phenotype of DLC tolerance is similar among these killi...

  12. Research in Chemical Kinetics: Progress Report, January 1, 1978 to September 30, 1978

    DOE R&D Accomplishments Database

    Rowland, F. S.

    1978-01-01

    Research was conducted on the following topics: stratospheric chemistry of chlorinated molecules, atmospheric chemistry of methane, atmospheric chemistry of cosmogenic tritium, reactions of energetic and thermal radioactive atoms, methylene chemistry, and laboratory simulation of chemical reactions in Jupiter atmosphere. (DLC)

  13. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering.

    PubMed

    Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2012-01-01

    The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of -84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering.

  14. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering

    NASA Astrophysics Data System (ADS)

    Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2012-02-01

    The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of -84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering.

  15. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering

    PubMed Central

    Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2012-01-01

    The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of −84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering. PMID:22355759

  16. Modeling and experimental validation of a Hybridized Energy Storage System for automotive applications

    NASA Astrophysics Data System (ADS)

    Fiorenti, Simone; Guanetti, Jacopo; Guezennec, Yann; Onori, Simona

    2013-11-01

    This paper presents the development and experimental validation of a dynamic model of a Hybridized Energy Storage System (HESS) consisting of a parallel connection of a lead acid (PbA) battery and double layer capacitors (DLCs), for automotive applications. The dynamic modeling of both the PbA battery and the DLC has been tackled via the equivalent electric circuit based approach. Experimental tests are designed for identification purposes. Parameters of the PbA battery model are identified as a function of state of charge and current direction, whereas parameters of the DLC model are identified for different temperatures. A physical HESS has been assembled at the Center for Automotive Research The Ohio State University and used as a test-bench to validate the model against a typical current profile generated for Start&Stop applications. The HESS model is then integrated into a vehicle simulator to assess the effects of the battery hybridization on the vehicle fuel economy and mitigation of the battery stress.

  17. Measurement of Afterburning Effect of Underoxidized Explosives by Underwater Explosion Method

    NASA Astrophysics Data System (ADS)

    Cao, Wei; He, Zhongqi; Chen, Wanghua

    2015-04-01

    The afterburning effect of TNT and a desensitized hexogen RDX-Al explosive was studied in a defined gas volume under water. A double-layer container (DLC) filled with different gases (air, oxygen, and nitrogen) was used to control and distinguish the afterburning effect of explosives. After the charges in the DLC were initiated under water, the shock wave signals were collected and analyzed. It is shown that shock wave peak pressures are duly in compliance with explosion similarity law, pressure, and impulse histories for explosions in oxygen and air are greater than those recorded for explosions in nitrogen due to the afterburing reaction. Moreover, the afterburning energy was calculated. Results show that even though there is excess oxygen in the gas volume, the afterburning energy may not reach the theoretically maximum value. This result is different from that in confined explosion, where the presence of excess oxygen in the compressed gas filling a bomb leads to complete combustion of the detonation products.

  18. Optical enhancing durable anti-reflective coating

    DOEpatents

    Maghsoodi, Sina; Varadarajan, Aravamuthan; Movassat, Meisam

    2016-07-05

    Disclosed herein are polysilsesquioxane based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In embodiments, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in the polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, Si--OH condensation catalyst and/or nanofillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes including flow coating and roll coating, and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  19. The Influence of the Coating Deposition Process on the Interdiffusion Behavior Between Nickel-Based Superalloys and MCrAlY Bond Coats

    NASA Astrophysics Data System (ADS)

    Elsaß, M.; Frommherz, M.; Oechsner, M.

    2018-02-01

    In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.

  20. Quality control of the tribological coating PS212

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher; Deadmore, Daniel L.

    1989-01-01

    PS212 is a self-lubricating, composite coating that is applied by the plasma spray process. It is a functional lubricating coating from 25 C (or lower) to 900 C. The coating is prepared from a blend of three different powders with very dissimilar properties. Therefore, the final chemical composition and lubricating effectiveness of the coatings are very sensitive to the process variables used in their preparation. Defined here are the relevant variables. The process and analytical procedures that will result in satisfactory tribological coatings are discussed.

  1. Fused slurry silicide coatings for columbium alloy reentry heat shields. Volume 2: Experimental and coating process details

    NASA Technical Reports Server (NTRS)

    Fitzgerald, B.

    1973-01-01

    The experimental and coating process details are presented. The process specifications which were developed for the formulation and application of the R-512E fused slurry silicide coating using either an acrylic or nitrocellulose base slurry system is also discussed.

  2. Optimization of process parameters for a quasi-continuous tablet coating system using design of experiments.

    PubMed

    Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah

    2011-03-01

    The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists

  3. Diagnostics vehicle’s condition using obd-ii and raspberry pi technology: study literature

    NASA Astrophysics Data System (ADS)

    Moniaga, J. V.; Manalu, S. R.; Hadipurnawan, D. A.; Sahidi, F.

    2018-03-01

    Transportation accident rate are still being a major challenge in many countries. There are many factors that could be cause transportation accident, especially in vehicle’s internal system problem. To overcome this problem, OBD-II technology has been created to diagnostics vehicle’s condition. OBD-II scanner plugged to OBD-II port or usually called Data Link Connector (DLC), and after that it sends the diagnostics to Raspberry Pi. Compared from another microcontrollers, Arduino, Raspberry Pi are chosen because it sustains the application to receive real-time diagnostics, process the diagnostics and send command to automobiles at the same time, rather than Arduino that must wait for another process finished to run another process. Outcome from this application is to enable automobile’s user to diagnostics their own vehicles. If there is found something unusual or a problem, the application can told the problem to user, so they could know what to fix before they use their vehicle safely.

  4. Coated graphite articles useful in metallurgical processes and method for making same

    DOEpatents

    Holcombe, Cressie E.; Bird, Eugene L.

    1995-01-01

    Graphite articles including crucibles and molds used in metallurgical processes involving the melting and the handling of molten metals and alloys that are reactive with carbon when in a molten state and at process temperatures up to about 2000.degree. C. are provided with a multiple-layer coating for inhibiting carbon diffusion from the graphite into the molten metal or alloys. The coating is provided by a first coating increment of a carbide-forming metal on selected surfaces of the graphite, a second coating increment of a carbide forming metal and a refractory metal oxide, and a third coating increment of a refractory metal oxide. The second coating increment provides thermal shock absorbing characteristics to prevent delamination of the coating during temperature cycling. A wash coat of unstabilized zirconia or titanium nitride can be applied onto the third coating increment to facilitate release of melts from the coating.

  5. 75 FR 18209 - Depository Library Council to the Public Printer; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... the Federal Depository Library Program. All sessions are open to the public. The sleeping rooms... GOVERNMENT PRINTING OFFICE Depository Library Council to the Public Printer; Meeting The Depository Library Council to the Public Printer (DLC) will meet on Monday, April 26, 2010, through Wednesday...

  6. 78 FR 56706 - Depository Library Council to the Public Printer; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... GOVERNMENT PRINTING OFFICE Depository Library Council to the Public Printer; Meeting The Depository Library Council to the Public Printer (DLC) will meet on Monday, October 21, 2013 through... Columbia. The purpose of this meeting is to discuss the Federal Depository Library Program. All sessions...

  7. 75 FR 61760 - Depository Library Council to the Public Printer; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... to discuss the Federal Depository Library Program. All sessions are open to the public. The sleeping... GOVERNMENT PRINTING OFFICE Depository Library Council to the Public Printer; Meeting The Depository Library Council to the Public Printer (DLC) will meet on Monday, October 18, 2010, through...

  8. Targeted approach to identify genetic loci associated with evolved dioxin tolerance in Atlantic Killifish (Fundulus heteroclitus)

    USDA-ARS?s Scientific Manuscript database

    Extreme tolerance to highly toxic dioxin-like contaminants (DLCs) has evolved independently and contemporaneously in (at least) four populations of Atlantic killifish (Fundulus heteroclitus). Surprisingly, the magnitude and phenotype of DLC tolerance is similar among these killifish populations tha...

  9. Organometallic chemistry of heterobimetallic compounds: Final report for the period August 1, 1985-June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, C.P.

    1988-03-01

    Work is reported on the following: formyl compounds, cyclopentadienyl ring slippage, ..mu..-hydrocarbyl diiron complexes, heterobimetallic compounds linked by heterodifunctional ligands, heterobimetallic dihydrides, reactions of heterobimetallic dihydrides, early-late transition metal bimetallic compounds, and heterobimetallic ..mu..-alkylidene complexes. (DLC)

  10. Deposition of Hydroxyapatite Onto Superelastic Nitinol Using an Ambient Temperature Blast Coating Process

    NASA Astrophysics Data System (ADS)

    Dunne, Conor F.; Roche, Kevin; Ruddy, Mark; Doherty, Kevin A. J.; Twomey, Barry; O'Donoghue, John; Hodgson, Darel; Stanton, Kenneth T.

    2018-06-01

    This work investigates the deposition of hydroxyapatite (HA) onto superelastic nickel-titanium (NiTi) using an ambient temperature coating process known as CoBlast. The process utilises a stream of abrasive alumina (Al2O3) and a coating medium (HA) sprayed simultaneously at the surface of the substrate. The use of traditional coatings methods, such as plasma spray, is unsuitable due to the high temperatures of the process. This can result in changes to both the crystallinity of the HA and properties of the thermally sensitive NiTi. HA is a biocompatible, biodegradable and osteoconductive ceramic, which when used as a coating can promote bone growth and prevent the release of nickel from NiTi in vivo. Samples were coated using different blast pressures and abrasive particle sizes and were examined using a variety of techniques. The coated samples had a thin adherent coating, which increased in surface roughness and coating thickness with increasing abrasive particle size. X-ray diffraction analysis revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of HA onto the surface of superelastic NiTi.

  11. A Comparative Study on Ni-Based Coatings Prepared by HVAF, HVOF, and APS Methods for Corrosion Protection Applications

    NASA Astrophysics Data System (ADS)

    Sadeghimeresht, E.; Markocsan, N.; Nylén, P.

    2016-12-01

    Selection of the thermal spray process is the most important step toward a proper coating solution for a given application as important coating characteristics such as adhesion and microstructure are highly dependent on it. In the present work, a process-microstructure-properties-performance correlation study was performed in order to figure out the main characteristics and corrosion performance of the coatings produced by different thermal spray techniques such as high-velocity air fuel (HVAF), high-velocity oxy fuel (HVOF), and atmospheric plasma spraying (APS). Previously optimized HVOF and APS process parameters were used to deposit Ni, NiCr, and NiAl coatings and compare with HVAF-sprayed coatings with randomly selected process parameters. As the HVAF process presented the best coating characteristics and corrosion behavior, few process parameters such as feed rate and standoff distance (SoD) were investigated to systematically optimize the HVAF coatings in terms of low porosity and high corrosion resistance. The Ni and NiAl coatings with lower porosity and better corrosion behavior were obtained at an average SoD of 300 mm and feed rate of 150 g/min. The NiCr coating sprayed at a SoD of 250 mm and feed rate of 75 g/min showed the highest corrosion resistance among all investigated samples.

  12. Electrostatic coating technologies for food processing.

    PubMed

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  13. Lubricant Coating Process

    NASA Technical Reports Server (NTRS)

    1989-01-01

    "Peen Plating," a NASA developed process for applying molybdenum disulfide, is the key element of Techniblast Co.'s SURFGUARD process for applying high strength solid lubricants. The process requires two machines -- one for cleaning and one for coating. The cleaning step allows the coating to be bonded directly to the substrate to provide a better "anchor." The coating machine applies a half a micron thick coating. Then, a blast gun, using various pressures to vary peening intensities for different applications, fires high velocity "media" -- peening hammers -- ranging from plastic pellets to steel shot. Techniblast was assisted by Rural Enterprises, Inc. Coating service can be performed at either Techniblast's or a customer's facility.

  14. Process to minimize cracking of pyrolytic carbon coatings

    DOEpatents

    Lackey, Jr., Walter J.; Sease, John D.

    1978-01-01

    Carbon-coated microspheroids useful as fuels in nuclear reactors are produced with a low percentage of cracked coatings and are imparted increased strength and mechanical stability characteristics by annealing immediately after the carbon coating processes.

  15. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties

    NASA Astrophysics Data System (ADS)

    Bakan, Emine; Vaßen, Robert

    2017-08-01

    The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.

  16. Sol-gel antireflective spin-coating process for large-size shielding windows

    NASA Astrophysics Data System (ADS)

    Belleville, Philippe F.; Prene, Philippe; Mennechez, Francoise; Bouigeon, Christian

    2002-10-01

    The interest of the antireflective coatings applied onto large-area glass components increases everyday for the potential application such as building or shop windows. Today, because of the use of large size components, sol-gel process is a competitive way for antireflective coating mass production. The dip-coating technique commonly used for liquid-deposition, implies a safety hazard due to coating solution handling and storage in the case of large amounts of highly flammable solvent use. On the other hand, spin-coating is a liquid low-consumption technique. Mainly devoted to coat circular small-size substrate, we have developed a spin-coating machine able to coat large-size rectangular windows (up to 1 x 1.7 m2). Both solutions and coating conditions have been optimized to deposit optical layers with accurate and uniform thickness and to highly limit the edge effects. Experimental single layer antireflective coating deposition process onto large-area shielding windows (1000 x 1700 x 20 mm3) is described. Results show that the as-developed process could produce low specular reflection value (down to 1% one side) onto white-glass windows over the visible range (460-750 nm). Low-temperature curing process (120°C) used after sol-gel deposition enables antireflective-coating to withstand abrasion-resistance properties in compliance to US-MIL-C-0675C moderate test.

  17. Applying terahertz technology for nondestructive detection of crack initiation in a film-coated layer on a swelling tablet

    PubMed Central

    Momose, Wataru; Yoshino, Hiroyuki; Katakawa, Yoshifumi; Yamashita, Kazunari; Imai, Keiji; Sako, Kazuhiro; Kato, Eiji; Irisawa, Akiyoshi; Yonemochi, Etsuo; Terada, Katsuhide

    2012-01-01

    Here, we describe a nondestructive approach using terahertz wave to detect crack initiation in a film-coated layer on a drug tablet. During scale-up and scale-down of the film coating process, differences in film density and gaps between the film-coated layer and the uncoated tablet were generated due to differences in film coating process parameters, such as the tablet-filling rate in the coating machine, spray pressure, and gas–liquid ratio etc. Tablets using the PEO/PEG formulation were employed as uncoated tablets. We found that heat and humidity caused tablets to swell, thereby breaking the film-coated layer. Using our novel approach with terahertz wave nondestructively detect film surface density (FSD) and interface density differences (IDDs) between the film-coated layer and an uncoated tablet. We also found that a reduced FSD and IDD between the film-coated layer and uncoated tablet increased the risk of crack initiation in the film-coated layer, thereby enabling us to nondestructively predict initiation of cracks in the film-coated layer. Using this method, crack initiation can be nondestructively assessed in swelling tablets after the film coating process without conducting accelerated stability tests, and film coating process parameters during scale-up and scale-down studies can be appropriately established. PMID:25755992

  18. Reinforced Carbon Carbon (RCC) oxidation resistant material samples - Baseline coated, and baseline coated with tetraethyl orthosilicate (TEOS) impregnation

    NASA Technical Reports Server (NTRS)

    Gantz, E. E.

    1977-01-01

    Reinforced carbon-carbon material specimens were machined from 19 and 33 ply flat panels which were fabricated and processed in accordance with the specifications and procedures accepted for the fabrication and processing of the leading edge structural subsystem (LESS) elements for the space shuttle orbiter. The specimens were then baseline coated and tetraethyl orthosilicate impregnated, as applicable, in accordance with the procedures and requirements of the appropriate LESS production specifications. Three heater bars were ATJ graphite silicon carbide coated with the Vought 'pack cementation' coating process, and three were stackpole grade 2020 graphite silicon carbide coated with the chemical vapor deposition process utilized by Vought in coating the LESS shell development program entry heater elements. Nondestructive test results are reported.

  19. Plasma Spray and Pack Cementation Process Optimization and Oxidation Behaviour of Novel Multilayered Coatings

    NASA Astrophysics Data System (ADS)

    Gao, Feng

    The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the effects of process parameters on the coating microstructure, and the effects of layers and their interactions on the oxidation behavior of the multilayered coatings.

  20. Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.; Shuford, D. M.; Mueller, J. I.

    1975-01-01

    Results are presented for a study to determine the mechanisms involved in a high-temperature pack cementation process which provides a silicon carbide coating on a carbon-carbon composite. The process and materials used are physically and chemically analyzed. Possible reactions are evaluated using the results of these analytical data. The coating is believed to develop in two stages. The first is a liquid controlled phase process in which silicon carbide is formed due to reactions between molten silicon metal and the carbon. The second stage is a vapor transport controlled reaction in which silicon vapors react with the carbon. There is very little volume change associated with the coating process. The original thickness changes by less than 0.7%. This indicates that the coating process is one of reactive penetration. The coating thickness can be increased or decreased by varying the furnace cycle process time and/or temperature to provide a wide range of coating thicknesses.

  1. 76 FR 58005 - Meeting Notice; Depository Library Council to the Public Printer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... Drive, Arlington, Virginia, to discuss the Federal Depository Library Program. All sessions are open to... GOVERNMENT PRINTING OFFICE Meeting Notice; Depository Library Council to the Public Printer The Depository Library Council to the Public Printer (DLC) will meet on Monday, October 17, through Thursday...

  2. 76 FR 13617 - Depository Library Council to the Public Printer Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... to discuss the Federal Depository Library Program. All sessions are open to the public. The sleeping... GOVERNMENT PRINTING OFFICE Depository Library Council to the Public Printer Meeting The Depository Library Council to the Public Printer (DLC) will meet on Monday, April 4, 2011 through Wednesday, April 6...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, R.L.

    A procedure for the analysis of observed isotope effects on rates of complex reactions is outlined which can be applied to kinetic isotope effect data for any reaction having a virtual transition state whose structure can be varied by adjusting a reaction parameter. This procedure is applied to the basic hydrolysis of p-nitroacetanilide. 3 tables. (DLC)

  4. Summaries of FY 1980 research in the chemical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included. (DLC)

  5. Delayed cure bismaleimide resins

    DOEpatents

    Not Available

    1982-08-12

    Prior art polybismaleimides begin to polymerize at or just above the melting point of the monomer. This patent describes new bismaleimide resins which have an increased pot life and provide longer time periods in which the monomer remains fluid. The resins can be polymerized into molded articles with a high uniformity of properties. (DLC)

  6. Optical fuel pin scanner. [Patent application; for reading identifications

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-09

    This patent relates to an optical identification system developed for post-irradiation disassembly and analysis of fuel bundle assemblies. The apparatus is designed to be lowered onto a stationary fuel pin to read identification numbers or letters imprinted on the circumference of the top fuel pin and cap. (DLC)

  7. Proceedings of the seventh international conference on high voltage electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, R.M.; Gronsky, R.; Westmacott, K.H.

    1983-01-01

    Eight-four papers are arranged under the following headings: high resolution, techniques and instrumentation, radiation effects, in-situ and phase transformations, minerals and ceramics, and semiconductors and thin films. Twenty-three papers were abstracted separately for the data base; three of the remainder had previously been abstracted. (DLC)

  8. Development of Weighted Distributions of REPs for Dioxin-Like Compounds: Implications for Risk Assessment

    EPA Science Inventory

    In their recent reevaluation of the TEF methodology, the WHO expert panel indicated that consideration should be given to developing weighted distributions of REP values to establish TEFs for each dioxin-like compound (DLC). As such, we developed a consensus-based weighting frame...

  9. A Novel Nonelectrolytic Process for Chromium and Nickel Coating

    DTIC Science & Technology

    2015-06-01

    thermal spraying and involves similar protocols for coating an object. The process proceeds after powder is injected into a plasma jet then superheated...HVOF) High velocity oxygen fuel coating is characteristic of a thermal spray coating process , enhancing anti-corrosion and anti-wear properties of...observations due to limited metal deposition on the surface during treatment. No powder particles were produced during this RES process . a. Optical

  10. Role of Systemic Markers in Periodontal Diseases: A Possible Inflammatory Burden and Risk Factor for Cardiovascular Diseases?

    PubMed Central

    Kalburgi, V; Sravya, L; Warad, S; Vijayalaxmi, K; Sejal, P; Hazeil, DJ

    2014-01-01

    Background: Periodontitis is a local inflammatory process mediating destruction of periodontium triggered by bacterial insult leading to systemic inflammatory mayhem in the host. Epidemiologically, it has been modestly associated with cardiovascular diseases (CVD) with elevated acute-phase reactant C-reactive protein (CRP) and rheological variables such as total leukocyte count and differential leukocyte count (TLC and DLC), which are potential predictors of CVD. Aim: The aim of this study was to investigate the serum CRP level, leukocyte count in chronic periodontitis patients and their relation to the severity of chronic periodontitis. Subjects and Methods: This cross-sectional study comprised 30 subjects, of which 20 were diagnosed as chronic periodontitis based on the Gingival index, probing depth and clinical attachment levels and 10 healthy subjects as controls. Following, which peripheral blood samples were drawn and serum CRP, TLC and DLC were quantified using the turbidimetric immunoassay. Data was analyzed using Intercooled Stata 9.2 version, (Stata corporation, LP, USA) ANOVA, Mann Whitney U test and Newman-Keuls post hoc procedures. P values less than) 0.05 were considered as significant Results: The mean serum CRP levels were statistically significant (P < 0.05) in severe and moderate periodontitis subjects when compared with healthy controls. Leukocytes were significantly elevated in severe periodontitis compared with moderate periodontitis and controls; this finding was primarily explained by the increase in number of neutrophils. Conclusion: The increased serum CRP levels and neutrophils in chronic periodontitis subjects suggest an addition to the inflammatory burden of the individual potentially striking toward an increasing risk for cardiovascular events. Further research is needed to determine the specificity of these markers and their role in the inflammatory burden of one's systemic health. PMID:24971214

  11. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  12. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    PubMed

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  14. Laser ablation and competitive technologies in paint stripping of heavy anticorrosion coatings

    NASA Astrophysics Data System (ADS)

    Schuöcker, Georg D.; Bielak, Robert

    2007-05-01

    During the last years surface preparation prior to coating operations became an important research and development task, since tightened environmental regulations have to be faced in view of the deliberation of hazardous compounds of coatings. Especially, ship-yards get more and more under pressure, because the environmental commitment of their Asian competitors is fairly limited. Therefore, in the US and in Europe several technology evaluation projects have been launched to face this challenge. The majority of coating service providers and ship yards use grit blasting; this process causes heavy emissions as of dust and enormous amounts of waste as polluted sand. Coating removal without any blasting material would reduce the environmental impact. Laser processing offers ecological advantages. Therefore thermal processes like laser ablation have been studied thoroughly in several published projects and also in this study. Many of these studies have been focused on the maintenance of airplanes, but not on de-coating of heavy protective coatings. In this case the required laser power is extra-high. This study is focused on the maintenance of heavy anti-corrosion coatings and compares the industrial requirements and the opportunities of the innovative laser processes. Based on the results of this analysis similar approaches as e.g. plasma jet coating ablation have been studied. It was concluded that none of these methods can compete economically with the conventional processes as grit blasting and water jetting since the required ablation rate is very high (>60m2/h). A new process is required that is not based on any blasting operation and which does not depend strongly on the coating's characteristic. The delamination of the coating where the coatings is not removed by evaporation, but in little pieces of the complete coating system meets these requirements. The delamination can be accomplished by the thermal destruction of the primer coating by an intense heat pulse generated by inductive heating of substrate's surface. After this operation the coating can be peeled off.

  15. Automated Plasma Spray (APS) process feasibility study

    NASA Technical Reports Server (NTRS)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1981-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal barrier coatings to aircraft and stationary gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical positioning subsystem incorporating two interlaced six degree of freedom assemblies (one for coating deposition and one for coating thickness monitoring); a noncoherent optical metrology subsystem (for in process gaging of the coating thickness buildup at specified points on the specimen); a microprocessor based adaptive system controller (to achieve the desired overall thickness profile on the specimen); and commerical plasma spray equipment. Over fifty JT9D first stage aircraft turbine blade specimens, ten W501B utility turbine blade specimens and dozens of cylindrical specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary turbine blade specimens achieved an overall coating thickness uniformity of 53 micrometers (2.1 mils), much better than is achievable manually. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were performed. One of the preliminary turbine blade evaluation specimens was subjected to a torch test and metallographic evaluation. Some cylindrical specimens coated with the APS process survived up to 2000 cycles in subsequent burner rig testing.

  16. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  17. Increased Reliability of Gas Turbine Components by Robust Coatings Manufacturing

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Dudykevych, T.; Sansom, D.; Subramanian, R.

    2017-08-01

    The expanding operational windows of the advanced gas turbine components demand increasing performance capability from protective coating systems. This demand has led to the development of novel multi-functional, multi-materials coating system architectures over the last years. In addition, the increasing dependency of components exposed to extreme environment on protective coatings results in more severe penalties, in case of a coating system failure. This emphasizes that reliability and consistency of protective coating systems are equally important to their superior performance. By means of examples, this paper describes the effects of scatter in the material properties resulting from manufacturing variations on coating life predictions. A strong foundation in process-property-performance correlations as well as regular monitoring and control of the coating process is essential for robust and well-controlled coating process. Proprietary and/or commercially available diagnostic tools can help in achieving these goals, but their usage in industrial setting is still limited. Various key contributors to process variability are briefly discussed along with the limitations of existing process and product control methods. Other aspects that are important for product reliability and consistency in serial manufacturing as well as advanced testing methodologies to simplify and enhance product inspection and improve objectivity are briefly described.

  18. Study on influence of Surface roughness of Ni-Al2O3 nano composite coating and evaluation of wear characteristics

    NASA Astrophysics Data System (ADS)

    Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa

    2018-02-01

    Electrodeposition is one of the most technologically feasible and economically superior techniques for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the Ni-Al2O3nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. In addition to this surface roughness is an important parameter for any coating method and material. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters and surface roughness before and after coating is analyzed on wear rate and coating thickness. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate. The surface roughness is significantly affected the wear behaviour and thickness of coating.

  19. Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.

    PubMed

    Avalle, P; Pollitt, M J; Bradley, K; Cooper, B; Pearce, G; Djemai, A; Fitzpatrick, S

    2014-07-01

    This work focused on the control of the manufacturing process for a controlled release (CR) pellet product, within a Quality by Design (QbD) framework. The manufacturing process was Wurster coating: firstly layering active pharmaceutical ingredient (API) onto sugar pellet cores and secondly a controlled release (CR) coating. For each of these two steps, development of a Process Analytical Technology (PAT) method is discussed and also a novel application of automated microscopy as the reference method. Ultimately, PAT methods should link to product performance and the two key Critical Quality Attributes (CQAs) for this CR product are assay and release rate, linked to the API and CR coating steps respectively. In this work, the link between near infra-red (NIR) spectra and those attributes was explored by chemometrics over the course of the coating process in a pilot scale industrial environment. Correlations were built between the NIR spectra and coating weight (for API amount), CR coating thickness and dissolution performance. These correlations allow the coating process to be monitored at-line and so better control of the product performance in line with QbD requirements. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Hydroxyapatite Coatings on High Nitrogen Stainless Steel by Laser Rapid Manufacturing

    NASA Astrophysics Data System (ADS)

    Das, Ashish; Shukla, Mukul

    2017-11-01

    In this research, the laser rapid manufacturing (LRM) additive manufacturing process was used to deposit multifunctional hydroxyapatite (HAP) coatings on high nitrogen stainless steel. LRM overcomes the limitations of conventional coating processes by producing coatings with metallurgical bond, osseointegration, and infection inhibition properties. The microstructure, microhardness, antibacterial efficacy, and bioactivity of the coatings were investigated. The microstructure studies established that the coatings consist of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. A Vickers microhardness test confirmed the hardness values of deposited HAP coatings to be higher than those of the bare 254SS samples, while a fluorescence activated cell sorting test confirmed their superior antibacterial properties as compared with pristine samples. The coated samples immersed in simulated body fluid showed rapid apatite forming ability. The results obtained in this research signify the potential application of the LRM process in synthesizing multifunctional orthopaedic coatings.

  1. Influence of the aqueous film coating process on the properties and stability of tablets containing a moisture-labile drug.

    PubMed

    Ruotsalainen, Mirja; Heinämäki, Jyrki; Taipale, Krista; Yliruusi, Jouko

    2003-01-01

    The effects of an aqueous film coating process on the morphology and storage stability of hydroxypropyl methylcellulose-coated tablets containing a moisture-labile model drug (acetylsalicylic acid, ASA) were evaluated using an instrumented side-vented tablet pan coater. Coating parameters studied were inlet air absolute humidity 5 g/m3 and 12 g/m3, spraying air pressure 100 kPa and 500 kPa, pan air temperature 35 degrees C and 55 degrees C, and coating solution flow rate 2.2 g/min and 7.8 g/min. The surface roughness of the coatings was measured with a laser profilometer and the chemical hydrolysis of the model drug ASA with an UV-spectrophotometer. The film-coated tablets were stored at 25 degrees C/60% RH and 40 degrees C/75% RH for three months. The high absolute humidity of the inlet air increased the residual water content and surface roughness of the coated tablets. Using a lower coating solution flow rate, higher spraying air pressure and pan temperature the coatings were smooth and homogeneous. In both ambient and accelerated storage conditions, the roughness of the coatings and the hydrolysis of ASA increased, but this was independent of the film coating process. Uniform and smooth hydroxypropyl methylcellulose coatings can be achieved by improved control of process parameters related to the application of the coating solution and water evaporation of the tablet surface.

  2. Anti-reflection coatings applied by acid leaching process

    NASA Technical Reports Server (NTRS)

    Pastirik, E.

    1980-01-01

    The Magicote C process developed by S.M. Thompsen was evaluated for use in applying an antireflective coating to the cover plates of solar panels. The process uses a fluosilicic acid solution supersaturated with silica at elevated temperature to selectively attack the surface of soda-lime glass cover plates and alter the physical and chemical composition of a thin layer of glass. The altered glass layer constitutes an antireflective coating. The process produces coatings of excellent optical quality which possess outstanding resistance to soiling and staining. The coatings produced are not resistant to mechanical abrasion and are attacked to some extent by glass cleansers. Control of the filming process was found to be difficult.

  3. Dry particle coating of polymer particles for tailor-made product properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blümel, C., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Dielesen, A., E-mail: karl-ernst.wirth@fau.de

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratiomore » and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.« less

  4. Laser-Assisted Cold-Sprayed Corrosion- and Wear-Resistant Coatings: A Review

    NASA Astrophysics Data System (ADS)

    Olakanmi, E. O.; Doyoyo, M.

    2014-06-01

    Laser-assisted cold spray (LACS) process will be increasingly employed for depositing coatings because of its unique advantages: solid-state deposition of dense, homogeneous, and pore-free coatings onto a range of substrates; and high build rate at reduced operating costs without the use of expensive heating and process inert gases. Depositing coatings with excellent performance indicators via LACS demands an accurate knowledge and control of processing and materials' variables. By varying the LACS process parameters and their interactions, the functional properties of coatings can be manipulated. Moreover, thermal effect due to laser irradiation and microstructural evolution complicate the interpretation of LACS mechanical deformation mechanism which is essential for elucidating its physical phenomena. In order to provide a basis for follow-on-research that leads to the development of high-productivity LACS processing of coatings, this review focuses on the latest developments in depositing corrosion- and wear-resistant coatings with the emphasis on the composition, structure, and mechanical and functional properties. Historical developments and fundamentals of LACS are addressed in an attempt to describe the physics behind the process. Typical technological applications of LACS coatings are also identified. The investigations of all process sequences, from laser irradiation of the powder-laden gas stream and the substrate, to the impingement of thermally softened particles on the deposition site, and subsequent further processes, are described. Existing gaps in the literature relating to LACS-dependent microstructural evolution, mechanical deformation mechanisms, correlation between functional properties and process parameters, processing challenges, and industrial applications have been identified in order to provide insights for further investigations and innovation in LACS deposition of wear- and corrosion-resistant coatings.

  5. Background Paper on Aerospace & Missile Needs

    DTIC Science & Technology

    2006-05-01

    Micro- welding based coatings Trivalent chromium plated coatings Nano-composite Ni-P and Co-P based plated coatings Thermal diffusion coatings Plasma...working in conjunction with Advanced Surfaces and Processes, Inc. to determine the applicability of another type of ESD process. Trivalent Chromium ...Plating: Trivalent chromium is considered to be much less toxic than hexavalent chromium . Consequently, trivalent chromium coatings are being

  6. The effect of spraying parameters on micro-structural properties of WC-12%Co coating deposited on copper substrate by HVOF process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathwara, Nishit, E-mail: nishit-25@live.in; Metallurgical & Materials Engineering Department, Indus University, Ahmedabad-382115; Jariwala, C., E-mail: chetanjari@yahoo.com

    High Velocity Oxy-Fuel (HVOF) thermal sprayed coatingmade from Tungsten Carbide (WC) isconsidered as one of the most durable materials as wear resistance for industrial applications at room temperature. WC coating offers high wear resistance due to its high hardness and tough matrix imparts. The coating properties strongly depend on thermal spray processing parameters, surface preparation and surface finish. In this investigation, the effect of variousHVOF process parameters was studied on WC coating properties. The WC-12%Co coating was produced on Copper substrate. Prior to coating, theCopper substrate surface was prepared by grit blasting. WC-12%Co coatings were deposited on Coppersubstrates with varyingmore » process parameters such as Oxygen gas pressure, Air pressure, and spraying distance. Microstructure of coating was examined using Scanning Electron Microscope (SEM) and characterization of phasespresentin the coating was examined by X-Ray Diffraction (XRD). Microhardness of all coatingswas measured by VickerMicrohardness tester. At low Oxygen Pressure(10.00 bar), high Air pressure (7bar) and short nozzle to substrate distance of 170mm, best coating adhesion and porosity less structure isachieved on Coppersubstrate.« less

  7. The effect of spraying parameters on micro-structural properties of WC-12%Co coating deposited on copper substrate by HVOF process

    NASA Astrophysics Data System (ADS)

    Sathwara, Nishit; Jariwala, C.; Chauhan, N.; Raole, P. M.; Basa, D. K.

    2015-08-01

    High Velocity Oxy-Fuel (HVOF) thermal sprayed coatingmade from Tungsten Carbide (WC) isconsidered as one of the most durable materials as wear resistance for industrial applications at room temperature. WC coating offers high wear resistance due to its high hardness and tough matrix imparts. The coating properties strongly depend on thermal spray processing parameters, surface preparation and surface finish. In this investigation, the effect of variousHVOF process parameters was studied on WC coating properties. The WC-12%Co coating was produced on Copper substrate. Prior to coating, theCopper substrate surface was prepared by grit blasting. WC-12%Co coatings were deposited on Coppersubstrates with varying process parameters such as Oxygen gas pressure, Air pressure, and spraying distance. Microstructure of coating was examined using Scanning Electron Microscope (SEM) and characterization of phasespresentin the coating was examined by X-Ray Diffraction (XRD). Microhardness of all coatingswas measured by VickerMicrohardness tester. At low Oxygen Pressure(10.00 bar), high Air pressure (7bar) and short nozzle to substrate distance of 170mm, best coating adhesion and porosity less structure isachieved on Coppersubstrate.

  8. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  9. In-Line Monitoring of a Pharmaceutical Pan Coating Process by Optical Coherence Tomography.

    PubMed

    Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Buchsbaum, Andreas; Pescod, Russel; Baele, Thomas; Khinast, Johannes G

    2015-08-01

    This work demonstrates a new in-line measurement technique for monitoring the coating growth of randomly moving tablets in a pan coating process. In-line quality control is performed by an optical coherence tomography (OCT) sensor allowing nondestructive and contact-free acquisition of cross-section images of film coatings in real time. The coating thickness can be determined directly from these OCT images and no chemometric calibration models are required for quantification. Coating thickness measurements are extracted from the images by a fully automated algorithm. Results of the in-line measurements are validated using off-line OCT images, thickness calculations from tablet dimension measurements, and weight gain measurements. Validation measurements are performed on sample tablets periodically removed from the process during production. Reproducibility of the results is demonstrated by three batches produced under the same process conditions. OCT enables a multiple direct measurement of the coating thickness on individual tablets rather than providing the average coating thickness of a large number of tablets. This gives substantially more information about the coating quality, that is, intra- and intertablet coating variability, than standard quality control methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    DOEpatents

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  11. Microneedle Coating Techniques for Transdermal Drug Delivery

    PubMed Central

    Haj-Ahmad, Rita; Khan, Hashim; Arshad, Muhammad Sohail; Rasekh, Manoochehr; Hussain, Amjad; Walsh, Susannah; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2015-01-01

    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates. PMID:26556364

  12. High gain durable anti-reflective coating

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev R.

    2016-07-26

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  13. Localized analysis of paint-coat drying using dynamic speckle interferometry

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, Daniel; Tebaldi, Myrian; Grumel, Eduardo; Rabal, Hector; Elmaghraby, Adel

    2018-07-01

    The paint-coating is part of several industrial processes, including the automotive industry, architectural coatings, machinery and appliances. These paint-coatings must comply with high quality standards, for this reason evaluation techniques from paint-coatings are in constant development. One important factor from the paint-coating process is the drying, as it has influence on the quality of final results. In this work we present an assessment technique based on the optical dynamic speckle interferometry, this technique allows for the temporal activity evaluation of the paint-coating drying process, providing localized information from drying. This localized information is relevant in order to address the drying homogeneity, optimal drying, and quality control. The technique relies in the definition of a new temporal history of the speckle patterns to obtain the local activity; this information is then clustered to provide a convenient indicative of different drying process stages. The experimental results presented were validated using the gravimetric drying curves

  14. Anodized aluminum coatings for thermal control. I - Coating process and stresses

    NASA Technical Reports Server (NTRS)

    Alwitt, R. S.; Mcclung, R. C.; Jacobs, S.

    1992-01-01

    Anodized aluminum is a candidate material for use as a thermal radiator surface on Space Station Freedom. Here, results of measurements of coating stress at room temperature are presented. The effects of coating process conditions and also subsequent exposure to different humidities, from above ambient to vacuum, are reported. The most important observation with regard to space applications is that the coating stress is very dependent on humidity, changing from compressive at ambient humidity to strongly tensile in 10 exp -6 torr vacuum. The increase in stress is accompanied by loss of water from the coating, and the process is reversible.

  15. Real-time imaging as an emerging process analytical technology tool for monitoring of fluid bed coating process.

    PubMed

    Naidu, Venkata Ramana; Deshpande, Rucha S; Syed, Moinuddin R; Wakte, Pravin S

    2018-07-01

    A direct imaging system (Eyecon TM ) was used as a Process Analytical Technology (PAT) tool to monitor fluid bed coating process. Eyecon TM generated real-time onscreen images, particle size and shape information of two identically manufactured laboratory-scale batches. Eyecon TM has accuracy of measuring the particle size increase of ±1 μm on particles in the size range of 50-3000 μm. Eyecon TM captured data every 2 s during the entire process. The moving average of D90 particle size values recorded by Eyecon TM were calculated for every 30 min to calculate the radial coating thickness of coated particles. After the completion of coating process, the radial coating thickness was found to be 11.3 and 9.11 μm, with a standard deviation of ±0.68 and 1.8 μm for Batch 1 and Batch 2, respectively. The coating thickness was also correlated with percent weight build-up by gel permeation chromatography (GPC) and dissolution. GPC indicated weight build-up of 10.6% and 9.27% for Batch 1 and Batch 2, respectively. In conclusion, weight build-up of 10% can also be correlated with 10 ± 2 μm increase in the coating thickness of pellets, indicating the potential applicability of real-time imaging as an endpoint determination tool for fluid bed coating process.

  16. Real-time data processing for in-line monitoring of a pharmaceutical coating process by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Markl, Daniel; Ziegler, Jakob; Hannesschläger, Günther; Sacher, Stephan; Buchsbaum, Andreas; Leitner, Michael; Khinast, Johannes G.

    2014-05-01

    Coating of tablets is a widely applied unit operation in the pharmaceutical industry. Thickness and uniformity of the coating layer are crucial for efficacy as well as for compliance. Not only due to different initiatives it is thus essential to monitor and control the coating process in-line. Optical coherence tomography (OCT) was already shown in previous works to be a suitable candidate for in-line monitoring of coating processes. However, to utilize the full potential of the OCT technology an automatic evaluation of the OCT measurements is essential. The automatic evaluation is currently implemented in MATLAB and includes several steps: (1) extraction of features of each A-scan, (2) classification of Ascan measurements based on their features, (3) detection of interfaces (air/coating and coating/tablet core), (4) correction of distortions due to the curvature of the bi-convex tablets and the oblique orientation of the tablets, and (5) determining the coating thickness. The algorithm is tested on OCT data acquired by moving the sensor head of the OCT system across a static tablet bed. The coating thickness variations of single tablets (i.e., intra-tablet coating variability) can additionally be analyzed as OCT allows the measurement of the coating thickness on multiple displaced positions on one single tablet. Specifically, the information about those parameters emphasizes the high capability of the OCT technology to improve process understanding and to assure a high product quality.

  17. Innovations in coating technology.

    PubMed

    Behzadi, Sharareh S; Toegel, Stefan; Viernstein, Helmut

    2008-01-01

    Despite representing one of the oldest pharmaceutical techniques, coating of dosage forms is still frequently used in pharmaceutical manufacturing. The aims of coating range from simply masking the taste or odour of drugs to the sophisticated controlling of site and rate of drug release. The high expectations for different coating technologies have required great efforts regarding the development of reproducible and controllable production processes. Basically, improvements in coating methods have focused on particle movement, spraying systems, and air and energy transport. Thereby, homogeneous distribution of coating material and increased drying efficiency should be accomplished in order to achieve high end product quality. Moreover, given the claim of the FDA to design the end product quality already during the manufacturing process (Quality by Design), the development of analytical methods for the analysis, management and control of coating processes has attracted special attention during recent years. The present review focuses on recent patents claiming improvements in pharmaceutical coating technology and intends to first familiarize the reader with the available procedures and to subsequently explain the application of different analytical tools. Aiming to structure this comprehensive field, coating technologies are primarily divided into pan and fluidized bed coating methods. Regarding pan coating procedures, pans rotating around inclined, horizontal and vertical axes are reviewed separately. On the other hand, fluidized bed technologies are subdivided into those involving fluidized and spouted beds. Then, continuous processing techniques and improvements in spraying systems are discussed in dedicated chapters. Finally, currently used analytical methods for the understanding and management of coating processes are reviewed in detail in the last section of the review.

  18. Crisis contained, The Department of Energy at Three Mile Island: a history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantelon, P L; Williams, R C

    An account is given of the response of US DOE to the Three Mile Island-2 accident on March 28, 1979. The accident is treated as though it was a military battle. A synoptic chronologgy of the accident events and of DOE and other responses is included. (DLC)

  19. Workshop on the interface between radiation chemistry and radiation physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-03-01

    Twenty-four papers are grouped under the session headings: measurements of physical and chemical properties, track structure modeling, spurs and track structure, and the 10/sup -16/ to 10/sup -12/ second region. Separate abstracts were prepared for 12 of the papers; four of the remaining papers had previously been abstracted. (DLC)

  20. Analytical Chemistry Division. Annual progress report for period ending December 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, W.S.

    1981-05-01

    This report is divided into: analytical methodology; mass and emission spectrometry; technical support; bio/organic analysis; nuclear and radiochemical analysis; quality assurance, safety, and tabulation of analyses; supplementary activities; and presentation of research results. Separate abstracts were prepared for the technical support, bio/organic analysis, and nuclear and radiochemical analysis. (DLC)

  1. Coercion: A Credible and Capable United States Military Instrument of Power Key to Future US Foreign Policy Success

    DTIC Science & Technology

    2012-06-17

    53 Democratic Leadership Council, “A New Covenant for American Security: address at Georgetown University,” http://www.dlc.org/ndol_ci.cfm?kaid...Company Publishers, Inc., 2002. Democratic Leadership Council, “A New Covenant for American Security: address at Georgetown University,” http

  2. Downhole steam generator with improved preheating, combustion, and protection features

    DOEpatents

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)

  3. Method and means for radiation dosimetry

    DOEpatents

    Shulte, J. W.; Suttle, J. F.

    1960-10-18

    A precise dosimeter for and x radiations is designed in which a reproducible response to radiation is achieved by controlling the amount of sensitizer. The sensitizer is present in a halogenated hydrocarbon system and is a leuco base of certain dyestuffs. This patent is related to U. S. Patent No. 2,824,234. (D.L.C.)

  4. METHOD AND MEANS FOR RADIATION DOSIMETRY

    DOEpatents

    Schulte, J.W.; Suttle, J.F.

    1960-10-11

    A precise dosimeter for and x radiations is designed in which a reproducible response to radiation is achieved by controlling the amount of sensitizer. The sensitizer is present in a halogenated hydrocarbon system and is a leuco base of certain dyestuffs. This patent is related to U. S. Patent No. 2,824,234. (D.L.C.)

  5. Screening a mouse liver gene expression Compendium Identifies Effectors of the Aryl Hydrocarbon receptor (AhR)

    EPA Science Inventory

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxic effects of 2,3, 7 ,8-tetrachlorodibenzo-p-dioxin {TCDD), dioxin-like compounds (DLC) as well as some drugs and endogenous tryptophan metabolites. Short-term act...

  6. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  7. Mapping dominant annual land cover from 2009 to 2013 across Victoria, Australia using satellite imagery

    PubMed Central

    Sheffield, Kathryn; Morse-McNabb, Elizabeth; Clark, Rob; Robson, Susan; Lewis, Hayden

    2015-01-01

    There is a demand for regularly updated, broad-scale, accurate land cover information in Victoria from multiple stakeholders. This paper documents the methods used to generate an annual dominant land cover (DLC) map for Victoria, Australia from 2009 to 2013. Vegetation phenology parameters derived from an annual time series of the Moderate Resolution Imaging Spectroradiometer Vegetation Indices 16-day 250 m (MOD13Q1) product were used to generate annual DLC maps, using a three-tiered hierarchical classification scheme. Classification accuracy at the broadest (primary) class level was over 91% for all years, while it ranged from 72 to 81% at the secondary class level. The most detailed class level (tertiary) had accuracy levels ranging from 61 to 68%. The approach used was able to accommodate variable climatic conditions, which had substantial impacts on vegetation growth patterns and agricultural production across the state between both regions and years. The production of an annual dataset with complete spatial coverage for Victoria provides a reliable base data set with an accuracy that is fit-for-purpose for many applications. PMID:26602009

  8. Design and Validation of PEG-Derivatized Vitamin E Copolymer for Drug Delivery into Breast Cancer.

    PubMed

    Li, Yanping; Liu, Qinhui; Li, Wenyao; Zhang, Ting; Li, Hanmei; Li, Rui; Chen, Lei; Pu, Shiyun; Kuang, Jiangying; Su, Zhiguang; Zhang, Zhirong; He, Jinhan

    2016-08-17

    This study examined the ability of amphiphilic poly(ethylene glycol) (PEG) derivatives to assemble into micelles for drug delivery. Linear PEG chains were modified on one end with hydrophobic vitamin E succinate (VES), and PEG and VES were mixed in different molar ratios to make amphiphiles, which were characterized in terms of critical micelle concentration (CMC), drug loading capacity (DLC), serum stability, tumor spheroid penetration and tumor targeting in vitro and in vivo. The amphiphile PEG5K-VES6 (PAMV6), which has a wheat-like structure, showed a CMC of 3.03 × 10(-6) M, good serum stability, and tumor accumulation. The model drug, pirarubicin (THP), could be efficiently loaded into PAMV6 micelles at a DLC of 24.81%. PAMV6/THP micelles were more effective than THP solution at inducing cell apoptosis and G2/M arrest in 4T1 cells. THP-loaded PAMV6 micelles also inhibited tumor growth much more than free THP in a syngeneic mouse model of breast cancer. PAMV6-based micellar systems show promise as nanocarriers for improved anticancer chemotherapy.

  9. Development and evaluation of automatic landing control laws for light wing loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Feinreich, B.; Degani, O.; Gevaert, G.

    1981-01-01

    Automatic flare and decrab control laws were developed for NASA's experimental Twin Otter. This light wing loading STOL aircraft was equipped with direct lift control (DLC) wing spoilers to enhance flight path control. Automatic landing control laws that made use of the spoilers were developed, evaluated in a simulation and the results compared with these obtained for configurations that did not use DLC. The spoilers produced a significant improvement in performance. A simulation that could be operated faster than real time in order to provide statistical landing data for a large number of landings over a wide spectrum of disturbances in a short time was constructed and used in the evaluation and refinement of control law configurations. A longitudinal control law that had been previously developed and evaluated in flight was also simulated and its performance compared with that of the control laws developed. Runway alignment control laws were also defined, evaluated, and refined to result in a final recommended configuration. Good landing performance, compatible with Category 3 operation into STOL runways, was obtained.

  10. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  11. Photocatalytic activity of titania coatings synthesised by a combined laser/sol–gel technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adraider, Y.; Pang, Y.X., E-mail: F6098038@tees.ac.uk; Nabhani, F.

    2014-06-01

    Highlights: • Sol–gel method was used to prepare titania coatings. • Titania thin films were coated on substrate surface by dip coating. • Fibre laser was employed to irradiate the titania coated surfaces. • Photocatalytic efficiency of titania coatings was significantly improved after laser processing. - Abstract: Titania coatings were prepared using sol–gel method and then applied on the substrate surface by dip coating. Fibre laser (λ = 1064 nm) in continuous wave mode was used to irradiate the titania coated surfaces at different specific energies. The ATR-FTIR, XRD, SEM, EDS and contact angle measurement were employed to analyse surfacemore » morphology, phase composition and crystalline structure of laser-irradiated titania coatings, whilst the photocatalytic activity was evaluated by measuring the decomposition of methylene blue (MB) after exposure to the visible light for various illumination times. Results showed that the laser-irradiated titania coatings demonstrate significant different composition and microstructure in comparison with the as-coated from the same sol–gel titania. Photocatalytic efficiency of titania coatings was significantly improved after laser processing. The photocatalytic activity of laser-irradiated titania coatings was higher than that of the as-coated titania. The titania coating processed at laser specific energy of 6.5 J/mm{sup 2} exhibited the highest photocatalytic activity among all titania samples.« less

  12. Ceramic electrolyte coating and methods

    DOEpatents

    Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH; Dawson, William J [Dublin, OH; McCormick, Buddy E [Dublin, OH

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  13. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Ella; Bellum, John; Kletecka, Damon

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  14. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    PubMed

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE PAGES

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-11-06

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  16. Formation Mechanisms, Structure, and Properties of HVOF-Sprayed WC-CoCr Coatings: An Approach Toward Process Maps

    NASA Astrophysics Data System (ADS)

    Varis, T.; Suhonen, T.; Ghabchi, A.; Valarezo, A.; Sampath, S.; Liu, X.; Hannula, S.-P.

    2014-08-01

    Our study focuses on understanding the damage tolerance and performance reliability of WC-CoCr coatings. In this paper, the formation of HVOF-sprayed tungsten carbide-based cermet coatings is studied through an integrated strategy: First-order process maps are created by using online-diagnostics to assess particle states in relation to process conditions. Coating properties such as hardness, wear resistance, elastic modulus, residual stress, and fracture toughness are discussed with a goal to establish a linkage between properties and particle characteristics via second-order process maps. A strong influence of particle state on the mechanical properties, wear resistance, and residual stress stage of the coating was observed. Within the used processing window (particle temperature ranged from 1687 to 1831 °C and particle velocity from 577 to 621 m/s), the coating hardness varied from 1021 to 1507 HV and modulus from 257 to 322 GPa. The variation in coating mechanical state is suggested to relate to the microstructural changes arising from carbide dissolution, which affects the properties of the matrix and, on the other hand, cohesive properties of the lamella. The complete tracking of the coating particle state and its linking to mechanical properties and residual stresses enables coating design with desired properties.

  17. Feasibility of Raman spectroscopy as PAT tool in active coating.

    PubMed

    Müller, Joshua; Knop, Klaus; Thies, Jochen; Uerpmann, Carsten; Kleinebudde, Peter

    2010-02-01

    Active coating is a specific application of film coating where the active ingredient is comprised in the coating layer. This implementation is a challenging operation regarding the achievement of desired amount of coating and coating uniformity. To guarantee the quality of such dosage forms it is desirable to develop a tool that is able to monitor the coating operation and detect the end of the process. Coating experiments were performed at which the model drug diprophylline is coated in a pan coater on placebo tablets and tablets containing the active ingredient itself. During the active coating Raman spectra were recorded in-line. The spectral measurements were correlated with the average weight gain and the amount of coated active ingredient at each time point. The developed chemometric model was tested by monitoring further coated batches. Furthermore, the effects of pan rotation speed and working distance on the acquired Raman signal and, hence, resulting effect of the chemometric model were examined. Besides coating on placebo cores it was possible to determine the amount of active ingredient in the film when coated onto cores containing the same active ingredient. In addition, the method is even applicable when varying the process parameters and measurement conditions within a restricted range. Raman spectroscopy is an appropriate process analytical technology too.

  18. Sol-gel-Derived nano-sized double layer anti-reflection coatings (SiO2/TiO2) for low-cost solar cell fabrication.

    PubMed

    Lee, Seung Jun; Hur, Man Gyu; Yoon, Dae Ho

    2013-11-01

    We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.

  19. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  20. Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.

    PubMed

    Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin

    2018-05-09

    Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.

Top