NASA Astrophysics Data System (ADS)
Rigaux, G.; Gheran, C. V.; Callewaert, M.; Cadiou, C.; Voicu, S. N.; Dinischiotu, A.; Andry, M. C.; Vander Elst, L.; Laurent, S.; Muller, R. N.; Berquand, A.; Molinari, M.; Huclier-Markai, S.; Chuburu, F.
2017-02-01
Chitosan CS—tripolyphosphate TPP/hyaluronic acid HA nanohydrogels loaded with gadolinium chelates (GdDOTA ⊂ CS-TPP/HA NGs) synthesized by ionic gelation were designed for lymph node (LN) MRI. In order to be efficiently drained to LNs, nanogels (NGs) needed to exhibit a diameter ϕ < 100 nm. For that, formulation parameters were tuned, using (i) CS of two different molecular weights (51 and 37 kDa) and (ii) variable CS/TPP ratio (2 < CS/TPP < 8). Characterization of NG size distribution by dynamic light scattering (DLS) and asymetrical flow-field-flow-fractionation (AF4) showed discrepancies since DLS diameters were consistently above 200 nm while AF4 showed individual nano-objects with ϕ < 100 nm. Such a difference could be correlated to the presence of aggregates inherent to ionic gelation. This point was clarified by atomic force microscopy (AFM) in liquid mode which highlighted the main presence of individual nano-objects in nanosuspensions. Thus, combination of DLS, AF4 and AFM provided a more precise characterization of GdDOTA ⊂ CS-TPP/HA nanohydrogels which, in turn, allowed to select formulations leading to NGs of suitable mean sizes showing good MRI efficiency and negligible toxicity.
Zeta-potential and particle size studies of silver sulphide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vikash, E-mail: vikash@csr.res.in; Tarachand,; Ganesan, V.
Silver sulfide (Ag{sub 2}S) nanoparticles (NPs) were prepared successfully for the first time using diethylene glycol (DEG) as a surfactant. X-ray diffraction (XRD) data revealed single phase nature of the compound and energy-dispersive X-ray (EDX) confirmed its nominal composition. Their sizes were 43 nm from XRD, 50 nm from atomic force microscopy (AFM) and 19 nm & 213 nm from dynamic light scattering (DLS); their differences have been discussed. Autotitration study of zeta potential of these NPs in deionized water by DLS at different pH values confirmed an isoelectric point at pH = 5.14 and their very unstable nature in deionized water.
NASA Astrophysics Data System (ADS)
Palmieri, Valentina; Lucchetti, Donatella; Gatto, Ilaria; Maiorana, Alessandro; Marcantoni, Margherita; Maulucci, Giuseppe; Papi, Massimiliano; Pola, Roberto; De Spirito, Marco; Sgambato, Alessandro
2014-09-01
Extracellular vesicles (EVs) are cell-to-cell shuttles that have recently drawn interest both as drug delivery platforms and disease biomarkers. Despite the increasingly recognized relevance of these vesicles, their detection, and characterization still have several technical drawbacks. In this paper, we accurately assess the size distribution and concentration of EVs by using a high-throughput non-perturbative technique such as Dynamic Light Scattering (DLS). The vesicle radii distribution, as further confirmed by Atomic Force Microscopy experiments, ranges from 10 to 80 nm and appears very asymmetric towards larger radii with a main peak at roughly 30 nm. By combining DLS and Bradford assay, we also demonstrate the feasibility of recovering the concentration and its distribution of proteins contained inside vesicles. The sensitivity of our approach allows to detect protein concentrations as low as 0.01 mg/ml.
Thermoelectric properties of CuS/Ag{sub 2}S nanocomposites synthesed by modified polyol method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarachand,, E-mail: tarachand@csr.res.in; Sharma, Vikash; Ganesan, V.
This is the report on successful synthesis of Ag doped CuS nanostructures by modified polyol method. The resulting samples were characterized by powder X-ray diffraction (XRD), energy dispersive X-ray (EDX), atomic force microscopy (AFM) and dynamic light scattering (DLS). Particle size of pure CuS nanoparticles (NPs) was 17 nm, 38 nm and 97 nm as determined from Scherrer formula, AFM and DLS, respectively. Introduction of Ag led to formation of CuS/Ag{sub 2}S composites. A transition at 55 K in thermopower is ascribed to structural transformation from hexagonal to orthorhombic structure. Further, their thermoelectric properties exhibit remarkable change owing to Agmore » doping in CuS nanostructures. The power factor improves with increasing Ag content. They reveal that CuS/Ag{sub 2}S nanocomposites are some of the potential candidates for generation of thermoelectricity in future.« less
NASA Astrophysics Data System (ADS)
Montes-Bayón, M.; Camuña-Aguilar, F.; Pereiro, R.; Sánchez-Uria, J. E.; Sanz-Medel, A.
1996-06-01
A comparative study of the effect of CO 2 and Xe added along with the plasma gas to He and Ar microwave induced plasmas (MIPs), simulating possible conditions to be used when a MIP is employed as specific detector for supercritical fluid chromatography (SFC), has been carried out. The proportions of CO 2 and Xe to the plasma gas investigated are comparable to the typical percentages used for SFC-MIP couplings. The study has been performed with two different MIP systems: an atmospheric pressure discharge held in a Beenakker cavity TM 010 and a reduced pressure surfatron-MIP. The influence of CO 2 and Xe addition on the spectrochemical properties of the discharge has been studied by using the atomic emission of mercury and some typical non-metals (chlorine, carbon and sulfur) at different wavelengths (atomic and ionic lines). Results showed that ion line emission intensities are always reduced more significantly than atom line emissions by both dopant gases on study, whatever the pressure. In general terms, however, the effect of adding Xe is less severe, both for atom and ion lines, than that of CO 2; in most cases the detection limits (DLs) observed are better for Xe than for CO 2 as dopant gas. In fact, the DLs obtained for the selected lines of mercury measured were practically unaltered by the addition of 0.2% Xe to atmospheric pressure Ar or He MIPs. CO 2 addition (0.2%) produced about 1.5 times worsening of the observed DLs for mercury. For non-metal analyses better DLs were also obtained, in general terms, with Xe than with CO 2 as dopant gas.
Sinsurin, Komsak; Srisangboriboon, Sarun; Vachalathiti, Roongtiwa
2017-07-01
Side-to-side differences of lower extremities may influence the likelihood of injury. Moreover, adding the complexity of jump-landing direction would help to explain lower extremity control during sport activities. The aim was to determine the effects of limb dominance and jump-landing direction on lower extremity biomechanics. Nineteen female volleyball athletes participated. Both dominant limbs (DLs) and non-dominant limbs (NLs) were examined in single-leg jump-landing tests in four directions, including forward (0°), diagonal (30° and 60°), and lateral (90°) directions. Kinematic marker trajectories and ground reaction forces were collected using a 10 camera Vicon system and an AMTI force plate. Repeated measures ANOVA (2 × 4, limb × direction) was used to analyse. The finding showed that, at peak vertical GRF, a significant interaction of limb dominance and direction effects was found in the hip flexion angle and lower extremity joint kinetics (p < .05). NLs and DLs exhibited significantly different strategies while landing in various directions. Significantly higher increase of ankle dorsiflexion angle was observed in lateral direction compared to other directions for both DLs and NLs (p < .05). Increasingly using ankle dorsiflexion was observed from the forward to the lateral direction for both DLs and NLs. However, NLs and DLs preferentially used different strategies of joint moment organization to respond to similar VGRFs in various directions. The response pattern of DLs might not be effective and may expose DLs to a higher injury risk, especially with regard to landing with awkward posture compared with NLs.
NASA Astrophysics Data System (ADS)
Yadav, Manoj; Velampati, Ravi Shankar R.; Mandal, D.; Sharma, Rohit
2018-03-01
Colloidal synthesis and size control of nickel (Ni) nanocrystals (NCs) below 10 nm are reported using a microwave synthesis method. The synthesised colloidal NCs have been characterized using x-ray diffraction, transmission electron microscopy (TEM) and dynamic light scattering (DLS). XRD analysis highlights the face centred cubic crystal structure of synthesised NCs. The size of NCs observed using TEM and DLS have a distribution between 2.6 nm and 10 nm. Furthermore, atomic force microscopy analysis of spin-coated NCs over a silicon dioxide surface has been carried out to identify an optimum spin condition that can be used for the fabrication of a metal oxide semiconductor (MOS) non-volatile memory (NVM) capacitor. Subsequently, the fabrication of a MOS NVM capacitor is reported to demonstrate the potential application of colloidal synthesized Ni NCs in NVM devices. We also report the capacitance-voltage (C-V) and capacitance-time (C-t) response of the fabricated MOS NVM capacitor. The C-V and C-t characteristics depict a large flat band voltage shift (V FB) and high retention time, respectively, which indicate that colloidal Ni NCs are excellent candidates for applications in next-generation NVM devices.
Pohlemann, Tim; Gueorguiev, Boyko; Agarwal, Yash; Wahl, Dieter; Sprecher, Christoph; Schwieger, Karsten; Lenz, Mark
2015-04-01
The novel dynamic locking screw (DLS) was developed to improve bone healing with locked-plate osteosynthesis by equalising construct stiffness at both cortices. Due to a theoretical damping effect, this modulated stiffness could be beneficial for fracture fixation in osteoporotic bone. Therefore, the mechanical behaviour of the DLS at the screw-bone interface was investigated in an artificial osteoporotic bone model and compared with conventional locking screws (LHS). Osteoporotic surrogate bones were plated with either a DLS or a LHS construct consisting of two screws and cyclically axially loaded (8,500 cycles, amplitude 420 N, increase 2 mN/cycle). Construct stiffness, relative movement, axial screw migration, proximal (P) and distal (D) screw pullout force and loosening at the bone interface were determined and statistically evaluated. DLS constructs exhibited a higher screw pullout force of P 85 N [standard deviation (SD) 21] and D 93 N (SD 12) compared with LHS (P 62 N, SD 28, p = 0.1; D 57 N, SD 25, p < 0.01) and a significantly lower axial migration over cycles compared with LHS (p = 0.01). DLS constructs showed significantly lower axial construct stiffness (403 N/mm, SD 21, p < 0.01) and a significantly higher relative movement (1.1 mm, SD 0.05, p < 0.01) compared with LHS (529 N/mm, SD 27; 0.8 mm, SD 0.04). Based on the model data, the DLS principle might also improve in vivo plate fixation in osteoporotic bone, providing enhanced residual holding strength and reducing screw cutout. The influence of pin-sleeve abutment still needs to be investigated.
Growth and adhesion properties of monosodium urate monohydrate (MSU) crystals
NASA Astrophysics Data System (ADS)
Perrin, Clare M.
The presence of monosodium urate monohydrate (MSU) crystals in the synovial fluid has long been associated with the joint disease gout. To elucidate the molecular level growth mechanism and adhesive properties of MSU crystals, atomic force microscopy (AFM), scanning electron microscopy, and dynamic light scattering (DLS) techniques were employed in the characterization of the (010) and (1-10) faces of MSU, as well as physiologically relevant solutions supersaturated with urate. Topographical AFM imaging of both MSU (010) and (1-10) revealed the presence of crystalline layers of urate arranged into v-shaped features of varying height. Growth rates were measured for both monolayers (elementary steps) and multiple layers (macrosteps) on both crystal faces under a wide range of urate supersaturation in physiologically relevant solutions. Step velocities for monolayers and multiple layers displayed a second order polynomial dependence on urate supersaturation on MSU (010) and (1-10), with step velocities on (1-10) generally half of those measured on MSU (010) in corresponding growth conditions. Perpendicular step velocities on MSU (010) were obtained and also showed a second order polynomial dependence of step velocity with respect to urate supersaturation, which implies a 2D-island nucleation growth mechanism for MSU (010). Extensive topographical imaging of MSU (010) showed island adsorption from urate growth solutions under all urate solution concentrations investigated, lending further support for the determined growth mechanism. Island sizes derived from DLS experiments on growth solutions were in agreement with those measured on MSU (010) topographical images. Chemical force microscopy (CFM) was utilized to characterize the adhesive properties of MSU (010) and (1-10). AFM probes functionalized with amino acid derivatives and bio-macromolecules found in the synovial fluid were brought into contact with both crystal faces and adhesion forces were tabulated into histograms for comparison. AFM probes functionalized with -COO-, -CH3, and -OH functionalities displayed similar adhesion force with both crystal surfaces of MSU, while adhesion force on (1-10) was three times greater than (010) for -NH2+ probes. For AFM probes functionalized with bovine serum albumin, adhesion force was three times greater on MSU (1-10) than (010), most likely due to the more ionic nature of (1-10).
Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J
2015-01-01
Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.
Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents
NASA Astrophysics Data System (ADS)
Jeong, Sang Young; Kim, Hyo Jeong; Kwak, Byung-Kook; Lee, Ha-Young; Seong, Hasoo; Shin, Byung Cheol; Yuk, Soon Hong; Hwang, Sung-Joo; Cho, Sun Hang
2010-12-01
Biocompatible poly-[ N-(2-hydroxyethyl)- d, l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd.
Large Area Few Layers Hexagonal Boron Nitride Prepared by Quadrupole Field Aided Exfoliation.
Hanlun, Lu; Rong, Min Zhi; Zhang, Ming Qiu
2018-01-16
A quadrupole electric field mediated exfoliation method is proposed to convert micron sized hexagonal boron nitride (hBN) powders into few layers hexagonal boron nitride nano-sheets (h-BNNS). Under the optimum conditions (400 Hz, 40 V, 32μg/mL, sodium deoxycholate, TAE medium), the hBN powders (thickness > 200 nm, horizontal scale ~ 10 μm) are successfully exfoliated into 0.5-4 nm (1-10 layers) thick h-BNNS with the same horizontal scale. Dynamic laser scattering (DLS) and atomic force microscope (AFM) statistics show that the yield is 47.6 % (for the portion with the thickness of 0.5-6 nm), and all of the vertical sizes are reduced to smaller than 18 nm (45 layers). © 2018 IOP Publishing Ltd.
Campus, P; Colelli, V; Orsini, C; Sarra, D; Cabib, S
2015-02-01
The forced swimming test (FST) remains one of the most used tools for screening antidepressants in rodent models. Nonetheless, the nature of immobility, its main behavioral measure, is still a matter of debate. The present study took advantage of our recent finding that mice of the inbred DBA/2J strain require a functioning left dorsolateral striatum (DLS) to consolidate long-term memory of FST to test whether immobility is the outcome of stress-related learning. Infusion of the GABA-A agonist muscimol in the left DLS immediately after a single experience of FST prevented and infusion in the left or the right amygdala impaired recall of the acquired levels of immobility in a probe test performed 24h later. Post-training left DLS infusion of muscimol, at a dose capable of preventing retention of FST-induced immobility, did not influence 24h retention of inhibitory avoidance training or of the escape response acquired in a water T-maze. However, this same treatment prevented 24h retention of the extinction training of the consolidated escape response. These results indicate that a left DLS-centered memory system selectively mediates memory consolidation of FST and of escape extinction and support the hypothesis that immobility is the result of extinction-like inhibitory learning involving all available escape responses due to the inescapable/unavoidable nature of FST experience. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Wei; Zheng, Ying; Orsini, Lorenzo; Morelli, Andrea; Galli, Giancarlo; Chiellini, Emo; Carpenter, Everett E.; Wynne, Kenneth J.
2010-01-01
A copolyacrylate with semifluorinated and polydimethylsiloxane side chains (D5-3) was used as a surface modifier for a condensation cured PDMS coating. The decyl fluorous group is represented by “D”; “5” is a 5 kDa silicone, and “3” the mole ratio of fluorous to silicone side chain. Wetting behavior was assessed by dynamic contact angle (DCA) analysis using isopropanol, which differentiates silicone and fluorous wetting behavior. Interestingly, a maximum in surface oleophobicity was found at low D5-3 concentration (0.4 wt%). Higher concentrations result in decreased oleophobicity reflected in decreased contact angles. To understand this unexpected observation, dynamic light scattering (DLS) studies were initiated on a model system consisting of hydroxyl-terminated PDMS (18 kDa) containing varying amounts of D5-3. DLS revealed D5-3 aggregation as a function of temperature and concentration. A model is proposed by which D5-3 surface concentration is depleted via phase separation favoring D5-3 aggregation at concentrations >0.4 wt%, that is, the CMC. This model suggests increasing aggregate / micelle concentrations at increased D5-3 concentration. Bulk morphologies studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) support this model by showing increased aggregate concentrations with increased D5-3 >0.4 wt%. PMID:20000339
Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents
2010-01-01
Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd. PMID:21170410
NASA Astrophysics Data System (ADS)
Travelet, Christophe; Stemmelen, Mylène; Lapinte, Vincent; Dubreuil, Frédéric; Robin, Jean-Jacques; Borsali, Redouane
2013-06-01
The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters ( D h) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C19 to 19.2 nm for C57). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the D h-values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445-1458, 2013)].
Thin film of polyelectrolyte complex nanoparticles for protein sensing
NASA Astrophysics Data System (ADS)
Talukdar, Hrishikesh; Kundu, Sarathi
2018-04-01
Polyelectrolyte complex nanoparticles (PEC NPs) are prepared using two polyelectrolytes poly(Na-4-styrene sulphonate) (PSS) and poly(diallyldimethylammoniumchloride) (PDADMAC) at a molar mixing ratio of n-/n+ ≈ 0.67 by consecutive centrifugation. PEC NPs formation is investigated through dynamic light scattering (DLS) and atomic force microscopy (AFM). Optical behaviors of PEC NPs in thin film confirmation are studied using UV-Vis and photoluminescence spectroscopy. Although absorption peaks of PSS occurs at the same position before and after the formation of PEC NPs but emission peaks are found at ≈ 278 and 305 nm whereas for pure PSS emission peaks exist at ≈ 295 and 365 nm. Hence, thin film of PEC NPs can be applied as very sensitive material for protein sensing since absorption of protein is occurred at ≈ 278 nm. Protein sensing behavior of such PEC NPs thin film is studied using photoluminescence spectroscopy.
NASA Astrophysics Data System (ADS)
Al-Shabib, Nasser Abdulatif; Khan, Javed Masood; Alsenaidy, Mohammad A.; Alsenaidy, Abdulrahman M.; Khan, Mohd Shahnawaz; Husain, Fohad Mabood; Khan, Mohammad Rashid; Naseem, Mohammad; Sen, Priyankar; Alam, Parvez; Khan, Rizwan Hasan
2018-02-01
Amyloid fibrils are playing key role in the pathogenesis of various neurodegenerative diseases. Generally anionic molecules are known to induce amyloid fibril in several proteins. In this work, we have studied the effect of anionic food additive dye i.e., tartrazine (TZ) on the amyloid fibril formation of human serum albumins (HSA) and bovine serum albumin (BSA) at pHs 7.4 and 3.5. We have employed various biophysical methods like, turbidity measurements, Rayleigh Light Scattering (RLS), Dynamic Light Scattering (DLS), intrinsic fluorescence, Congo red assay, far-UV CD, transmission electron microscopy (TEM) and atomic force microscopy (AFM) to decipher the mechanism of TZ-induce amyloid fibril formation in both the serum albumins at pHs 7.4 and 3.5. The obtained results suggest that both the albumins forms amyloid-like aggregates in the presence of 1.0 to 15.0 mM of TZ at pH 3.5, but no amyloid fibril were seen at pH 7.4. The possible cause of TZ-induced amyloid fibril formation is electrostatic and hydrophobic interaction because sulfate group of TZ may have interacted electrostatically with positively charged amino acids of the albumins at pH 3.5 and increased protein-protein and protein-TZ interactions leading to amyloid fibril formation. The TEM, RLS and DLS results are suggesting that BSA forms bigger size amyloids compared to HSA, may be due to high surface hydrophobicity of BSA.
Synthesis and Characterization of Functionalized Eight-Membered Cyclic Silicates
2009-03-24
arum and thrcc organlc groups are In thc hI class Srllco~) atoms bonded to four onvgen atoms ar t in [he Q class Suhstituted Q, compounds contain...rollowed b:i thc corresponhng dls~loxane in the presence o i Amberlyst 15 ion-exchane;. resini. 1,1.2.2-rctrahydrodccyl)dlmehyIchlorosilan (Gelest...The resulttng solid was dissolved 111 hexnnc and ~ w o water cxriaclionp. were pcrfomrd to rcrnobc rcsidual acld. The compound (1 06 g. 5 1% y~ cbd
NASA Astrophysics Data System (ADS)
Chaudhuri, Sadhan Kumar; Malodia, Lalit
2017-11-01
Green synthesis of zinc oxide nanoparticles was carried out using Calotropis leaf extract with zinc acetate salt in the presence of 2 M NaOH. The combination of 200 mM zinc acetate salt and 15 ml of leaf extract was ideal for the synthesis of less than 20 nm size of highly monodisperse crystalline nanoparticles. Synthesized nanoparticles were characterized through UV-Vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), EDX (energy dispersive X-ray), and AFM (atomic force microscopy). Effects of biogenic zinc oxide (ZnO) nanoparticles on growth and development of tree seedlings in nursery stage were studied in open-air trenches. The UV-Vis absorption maxima showed peak near 350 nm, which is characteristic of ZnO nanoparticles. DLS data showed that single peak is at 11 nm (100%) and Polydispersity Index is 0.245. XRD analysis showed that these are highly crystalline ZnO nanoparticles having an average size of 10 nm. FTIR spectra were recorded to identify the biomolecules involved in the synthesis process, which showed absorption bands at 4307, 3390, 2825, 871, 439, and 420 cm-1. SEM images showed that the particles were spherical in nature. The presence of zinc and oxygen was confirmed by EDX and the atomic % of zinc and oxygen were 33.31 and 68.69, respectively. 2D and 3D images of ZnO nanoparticles were obtained by AFM studies, which indicated that these are monodisperse having size ranges between 1.5 and 8.5 nm. Significant enhancement of growth was observed in Neem ( Azadirachta indica), Karanj ( Pongamia pinnata), and Milkwood-pine ( Alstonia scholaris) seedlings in foliar spraying ZnO nanoparticles to nursery stage of tree seedlings. Out of the three treated saplings, Alstonia scholaris showed maximum height development.
Fast optimization of binary clusters using a novel dynamic lattice searching method.
Wu, Xia; Cheng, Wen
2014-09-28
Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.
NASA Astrophysics Data System (ADS)
Kokila, T.; Ramesh, P. S.; Geetha, D.
2015-12-01
Biosynthesis of metallic silver nanoparticles has now become an alternative to physical and chemical approaches. In the present study, silver nanoparticles (AgNPs) were synthesized from Cavendish banana peel extract (CBPE) and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Atomic force microscopy (AFM), Field emission scanning electronic microscope (FESEM), Dynamic light scattering (DLS) and zeta potential (ZP). The AgNPs formation was confirmed by UV-visible spectroscopy through color conversion due to surface plasma resonance band at 430 nm. The effect of pH on nanoparticle synthesis was determined by adjusting the various pH of the reaction mixtures. The crystalline nature of nanoparticles was confirmed from the XRD pattern, and the grain size was found to be around 34 nm. To identify the compounds responsible for the bioreduction of Ag+ ion and the stabilization of AgNPs produced, the functional group present in Cavendish banana peel extract was investigated using FTIR. AFM has proved to be very helpful in determining morphological features and the diameter of AgNPs in the range of 23-30 nm was confirmed by FESEM. DLS studies revealed that the average size of AgNPs was found to be around 297 nm. Zeta potential value for AgNPs obtained was -11 mV indicating the moderate stability of synthesized nanoparticles. The antibacterial activity of the nanoparticles was studied against Gram-positive and Gram-negative bacteria. Biosynthesized AgNPs showed a strong DPPH radical and ABTS scavengers compared to the aqueous peel extract of Cavendish banana.
NASA Astrophysics Data System (ADS)
Adavallan, K.; Krishnakumar, N.
2014-06-01
Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15-53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition.
Hassan, Natalia; Maldonado-Valderrama, Julia; Gunning, A Patrick; Morris, V J; Ruso, Juan M
2011-10-15
Propanolol is a betablocker drug used in the treatment of arterial hypertension related diseases. In order to achieve an optimal performance of this drug it is important to consider the possible interactions of propanolol with plasma proteins. In this work, we have used several experimental techniques to characterise the effect of addition of the betablocker propanolol on the properties of bovine plasma fibrinogen (FB). Differential scanning calorimeter (DSC), circular dichroism (CD), dynamic light scattering (DLS), surface tension techniques and atomic force microscopy (AFM) measurements have been combined to carry out a detailed physicochemical and surface characterization of the mixed system. As a result, DSC measurements show that propranolol can play two opposite roles, either acting as a structure stabilizer at low molar concentrations or as a structure destabilizer at higher concentrations, in different domains of fibrinogen. CD measurements have revealed that the effect of propanolol on the secondary structure of fibrinogen depends on the temperature and the drug concentration and the DLS analysis showed evidence for protein aggregation. Interestingly, surface tension measurements provided further evidence of the conformational change induced by propanolol on the secondary structure of FB by importantly increasing the surface tension of the system. Finally, AFM imaging of the fibrinogen system provided direct visualization of the protein structure in the presence of propanolol. Combination of these techniques has produced complementary information on the behavior of the mixed system, providing new insights into the structural properties of proteins with potential medical interest. Copyright © 2011 Elsevier B.V. All rights reserved.
A biocompatible synthesis of gold nanoparticles by Tris(hydroxymethyl)aminomethane
NASA Astrophysics Data System (ADS)
Chen, Feng; Wang, Yanwei; Ma, Jun; Yang, Guangcan
2014-05-01
Gold nanoparticles' novel properties are widely realized in catalysis, plasmonics, electronics, and biomedical applications. For biomedical application, one challenge is to find a non-toxic chemical and/or physical method of functionalizing gold nanoparticles with biomolecular compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term effects on human health and reproduction. In the present study, we describe a new method by using Tris(hydroxymethyl)aminomethane (Tris), a widely used buffer solvent of nucleic acid and proteins, as the reducing agent for synthesizing gold nanoparticles by one step. It is found that Tris carries out the reduction reactions in relatively mild conditions for biomacromolecules. Particularly, it can be used to modify the DNA during the process of preparation of gold nanoparticles. The morphology and size distribution of gold nanoparticles are consistent and were confirmed by many different approaches including dynamic light scattering (DLS), UV-visible (UV-vis) spectrophotometry, atomic force microscopy (AFM), and transmission electron microscopy (TEM).
Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Takahashi, Reinaldo N; Bertoglio, Leandro J; Cunha, Rodrigo A; Prediger, Rui D
2016-08-01
The dorsolateral striatum (DLS) processes motor and non-motor functions and undergoes extensive dopaminergic degeneration in Parkinson's disease (PD). The nigrostriatal dopaminergic degeneration also affects other brain areas including the pre-frontal cortex (PFC), which has been associated with the appearance of anhedonia and depression at pre-motor phases of PD. Using behavioral, neurochemical, and electrophysiological approaches, we investigated the temporal dissociation between the role of the DLS and PFC in the appearance of anhedonia and defense behaviors relevant to depression in rats submitted to bilateral DLS lesions with 6-hydroxydopamine (6-OHDA; 10 μg/hemisphere). 6-OHDA induced partial dopaminergic nigrostriatal damage with no gross motor impairments. Anhedonic-like behaviors were observed in the splash and sucrose consumption tests only 7 days after 6-OHDA lesion. By contrast, defense behaviors relevant to depression evaluated in the forced swimming test and social withdrawal only emerged 21 days after 6-OHDA lesion when anhedonia was no longer present. These temporally dissociated behavioral alterations were coupled to temporal- and structure-dependent alterations in dopaminergic markers such as dopamine D1 and D2 receptors and dopamine transporter, leading to altered dopamine sensitivity in DLS and PFC circuits, evaluated electrophysiologically. These results provide the first demonstration of a dissociated involvement of the DLS and PFC in anhedonic-like and defense behaviors relevant to depression in 6-OHDA-lesioned rats, which was linked with temporal fluctuations in dopaminergic receptor density, leading to altered dopaminergic system sensitivity in these two brain structures. This sheds new light to the duality between depressive and anhedonic symptoms in PD.
NASA Astrophysics Data System (ADS)
Saha, Dipika; Negi, Devendra P. S.
2018-01-01
The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20 × 105 M- 1. Infrared spectroscopic measurements indicated the participation of the sbnd NH2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules.
Hou, Lei; Wu, Peiyi
2016-06-21
Turbidity, DLS and FTIR measurements in combination with the perturbation correlation moving window (PCMW) technique and 2D correlation spectroscopy (2Dcos) analysis have been utilized to investigate the LCST-type transition of a oligo ethylene glycol acrylate-based copolymer (POEGA) in aqueous solutions in this work. As demonstrated in turbidity and DLS curves, the macroscopic phase separation was sharp and slightly concentration dependent. Moreover, individual chemical groups along polymer chains also display abrupt changes in temperature-variable IR spectra. However, according to conventional IR analysis, the C-H groups present obvious dehydration, whereas C[double bond, length as m-dash]O and C-O-C groups exhibit anomalous "forced hydration" during the steep phase transition. From these analyses together with the PCMW and 2Dcos results, it has been confirmed that the hydrophobic interaction among polymer chains drove the chain collapse and dominated the phase transition. In addition, the unexpected enhanced hydration behavior of C[double bond, length as m-dash]O and C-O-C groups was induced by forced hydrogen bonding between polar groups along polymer chains and entrapped water molecules in the aggregates, which originated from the special chemical structure of POEGA.
Yang, Wei; Chen, Quanyu; Xia, Renpei; Zhang, Yujun; Shuai, Ling; Lai, Jiejuan; You, Xiaolin; Jiang, Yan; Bie, Ping; Zhang, Leida; Zhang, Hongyu; Bai, Lianhua
2018-05-28
Naïve decellularized liver scaffold (nDLS)-based tissue engineering has been impaired by the lack of a suitable extracellular matrix (ECM) to provide "active micro-environmental" support. The present study aimed to examine whether a novel, regenerative DLS (rDLS) with an active ECM improves primary hepatocyte survival and prevents thrombosis. rDLS was obtained from a 30-55% partial hepatectomy that was maintained in vivo for 3-5 days and then perfused with detergent in vitro. Compared to nDLS generated from normal livers, rDLS possesses bioactive molecules due to the regenerative period in vivo. Primary mouse hepatocyte survival was evaluated by staining for Ki-67 and Trypan blue exclusion. Thrombosis was assessed by immunohistochemistry and ex vivo diluted whole-blood perfusion. Hemocompatibility was determined by near-infrared laser-Doppler flowmetry and heterotopic transplantation. After recellularization, rDLS contained more Ki-67-positive primary hepatocytes than nDLS. rDLS had a higher oxygen saturation and blood flow velocity and a lower expression of integrin αIIb and α4 than nDLS. Tumor necrosis factor-α, hepatocyte growth factor, interleukin-10, interleukin-6 and interleukin-1β were highly expressed throughout the rDLS, whereas expression of collagen-I, collagen-IV and thrombopoietin were lower in rDLS than in nDLS. Improved blood vessel patency was observed in rDLS both in vitro and in vivo. The results in mice were confirmed in large animals (pigs). rDLS is an effective DLS with an "active microenvironment" that supports primary hepatocyte survival and promotes blood vessel patency. This is the first study to demonstrate a rDLS with a blood microvessel network that promotes hepatocyte survival and resists thrombosis. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kestens, Vikram; Roebben, Gert; Herrmann, Jan; Jämting, Åsa; Coleman, Victoria; Minelli, Caterina; Clifford, Charles; De Temmerman, Pieter-Jan; Mast, Jan; Junjie, Liu; Babick, Frank; Cölfen, Helmut; Emons, Hendrik
2016-06-01
A new certified reference material for quality control of nanoparticle size analysis methods has been developed and produced by the Institute for Reference Materials and Measurements of the European Commission's Joint Research Centre. The material, ERM-FD102, consists of an aqueous suspension of a mixture of silica nanoparticle populations of distinct particle size and origin. The characterisation relied on an interlaboratory comparison study in which 30 laboratories of demonstrated competence participated with a variety of techniques for particle size analysis. After scrutinising the received datasets, certified and indicative values for different method-defined equivalent diameters that are specific for dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS), scanning and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM), particle tracking analysis (PTA) and asymmetrical-flow field-flow fractionation (AF4) were assigned. The value assignment was a particular challenge because metrological concepts were not always interpreted uniformly across all participating laboratories. This paper presents the main elements and results of the ERM-FD102 characterisation study and discusses in particular the key issues of measurand definition and the estimation of measurement uncertainty.
Altered self-assembly and apatite binding of amelogenin induced by N-terminal proline mutation
Zhu, Li; Uskoković, Vuk; Le, Thuan; DenBesten, Pamela; Huang, Yulei; Habelitz, Stefan; Li, Wu
2012-01-01
Objective A single Pro-70 to Thr (p.P70T) mutation of amelogenin is known to result in hypomineralized amelogenesis imperfecta (AI). This study aims to test the hypothesis that the given mutation affects the self-assembly of amelogenin molecules and impairs their ability to conduct the growth of apatite crystals. Design Recombinant human full-length wild-type (rh174) and p.P70T mutated amelogenins were analyzed using dynamic light scattering (DLS), protein quantification assay and atomic force microscopy (AFM) before and after the binding of amelogenins to hydroxyapatite crystals. The crystal growth modulated by both amelogenins in a dynamic titration system was observed using AFM. Results As compared to rh174 amelogenin, p.P70T mutant displayed significantly increased sizes of the assemblies, higher binding affinity to apatite, and decreased crystal height. Conclusions Pro-70 plays an important structural role in the biologically relevant amelogenin self-assembly. The disturbed regularity of amelogenin nanospheres by this single mutation resulted in an increased binding to apatite and inhibited crystal growth. PMID:21081224
Stimac, Adela; Segota, Suzana; Dutour Sikirić, Maja; Ribić, Rosana; Frkanec, Leo; Svetličić, Vesna; Tomić, Srđanka; Vranešić, Branka; Frkanec, Ruža
2012-09-01
The aim of the present study was to encapsulate mannosylated 1-aminoadamantane and mannosylated adamantyltripeptides, namely [(2R)-N-(adamant-1-yl)-3-(α,β-d-mannopyranosyloxy)-2-methylpropanamide and (2R)-N-[3-(α-d-mannopyranosyloxy)-2-methylpropanoyl]-d,l-(adamant-2-yl)glycyl-l-alanyl-d-isoglutamine] in liposomes. The characterization of liposomes, size and surface morphology was performed using dynamic light scattering (DLS) and atomic force microscopy (AFM). The results have revealed that the encapsulation of examined compounds changes the size and surface of liposomes. After the concanavalin A (ConA) was added to the liposome preparation, increase in liposome size and their aggregation has been observed. The enlargement of liposomes was ascribed to the specific binding of the ConA to the mannose present on the surface of the prepared liposomes. Thus, it has been shown that the adamantyl moiety from mannosylated 1-aminoadamantane and mannosylated adamantyltripeptides can be used as an anchor in the lipid bilayer for carbohydrate moiety exposed on the liposome surface. Copyright © 2012 Elsevier B.V. All rights reserved.
Saha, Dipika; Negi, Devendra P S
2018-01-15
The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20×10 5 M -1 . Infrared spectroscopic measurements indicated the participation of the NH 2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Dozie-Nwachukwu, S O; Obayemi, J D; Danyuo, Y; Anuku, N; Odusanya, O S; Malatesta, K; Soboyejo, W O
2017-08-17
This paper explores the adhesion of biosynthesized gold nanoparticles (AuNPs) and gold (Au) nanoparticle/prodigiosin (PG) drug nanoparticles to breast cancer cells (MDA-MB-231 cells). The AuNPs were synthesized in a record time (less than 30 s) from Nauclea latifolia leaf extracts, while the PG was produced via bacterial synthesis with Serratia marcescens sp. The size distributions and shapes of the resulting AuNPs were characterized using transmission electron microscopy (TEM), while the resulting hydrodynamic diameters and polydispersity indices were studied using dynamic light scattering (DLS). Atomic Force Microscopy (AFM) was used to study the adhesion between the synthesized gold nanoparticles (AuNPs)/LHRH-conjugated AuNPs and triple negative breast cancer cells (MDA-MB-231 cells), as well as the adhesion between LHRH-conjugated AuNP/PG drug and MDA-MB-231 breast cancer cells. The adhesion forces between LHRH-conjugated AuNPs and breast cancer cells are shown to be five times greater than those between AuNPs and normal breast cells. The increase in adhesion is shown to be due to the over-expression of LHRH receptors on the surfaces of MDA-MB-231 breast cancer cells, which was revealed by confocal immuno-fluorescence microscopy. The implications of the results are then discussed for the selective and specific targeting and treatment of triple negative breast cancer.
Variability of single-leg versus double-leg stance radiographs in the varus knee.
Chen, Andrew; Rich, Valerie; Bain, Elizabeth; Sterett, William I
2009-07-01
We evaluated measured radiographic parameter variability between single-leg stance (SLS) and double-leg stance (DLS) radiographs in patients with varus knee malalignment, indicated for high tibial osteotomy. Fifty-three consecutive knees (mean, 49 years; range, 18-79 years) were evaluated for varus thrust. SLS and DLS radiographs were obtained. A single blinded observer measured mechanical axis angles and weight-bearing line (WBL) deviation using a goniometer. Mechanical axis angles averaged 9.1 degrees (DLS) and 11.3 degrees (SLS). SLS radiographs averaged 9% greater WBL medialization than did DLS. Medial opening averaged 16.4 mm (DLS) and 18.8 mm (SLS). DLS and SLS radiographs showed no significant differences in patients without varus thrust. Patients with varus thrust demonstrated differences in mechanical axis angles (DLS, 9.4 degrees; SLS, 12.2 degrees), WBL deviation (12.1% less), medialization (DLS), and medial opening necessary for correction (DLS, 16.6 mm; SLS, 20.3 mm). In varus thrust, SLS radiographs more closely replicate dynamic knee malalignment, possibly providing more accurate measurements of angular deformity.
Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants.
Wang, Lijuan; Tabor, Rico; Eastoe, Julian; Li, Xuefeng; Heenan, Richard K; Dong, Jinfeng
2009-11-14
A simple, low-energy two-step dilution process has been applied with binary mixtures of ionic-nonionic surfactants to prepare nanoemulsions. The systems consist of water/DDAB-C(12)E(5)/decane. Nanoemulsions were obtained by dilution of concentrates located in bicontinuous microemulsion or lamellar liquid crystal phase regions. The nanoemulsions generated were investigated both by contrast-variation small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The SANS profiles show that C(12)E(5) nanodroplets suffer essentially no structural change on incorporation of the cationic DDAB surfactant, except for increased electrostatic repulsive interactions. Interestingly, SANS indicated that the preferred droplet sizes were hardly affected by the surfactant mixture composition (up to a DDAB molar ratio (m(DDAB)/(m(DDAB) + m(C(12)E(5))) of 0.40) and droplet volume fraction, phi, between 0.006 and 0.120. No notable changes in the structure or radius of nanoemulsion droplets were observed by SANS over the test period of 1 d, although the droplet number intensity decreased significantly in systems stabilized by C(12)E(5) only. However, the DLS sizing shows a marked increase with time, with higher droplet volume fractions giving rise to the largest changes. The discrepancy between apparent nanoemulsion droplet size determined by DLS and SANS data can be attributed to long-range droplet interactions occurring outside of the SANS sensitivity range. The combined SANS and DLS results suggest flocculation is the main mechanism of instability for these nanoemulsions. The flocculation rate is shown to be significantly retarded by addition of the charged DDAB, which may be due to enhanced electrostatic repulsive forces between droplets, leading to improved stability of the nanoemulsions.
Balhara, Vinod; Deshmukh, Sasmit S.; Kálmán, László; Kornblatt, Jack A.
2014-01-01
The enolase from Streptococcus pyogenes (Str enolase F137L/E363G) is a homo-octamer shaped like a donut. Plasminogen (Pgn) is a monomeric protein composed of seven discrete separated domains organized into a lock washer. The enolase is known to bind Pgn. In past work we searched for conditions in which the two proteins would bind to one another. The two native proteins in solution would not bind under any of the tried conditions. We found that if the structures were perturbed binding would occur. We stated that only the non-native Str enolase or Pgn would interact such that we could detect binding. We report here the results of a series of dual polarization interferometry (DPI) experiments coupled with atomic force microscopy (AFM), isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and fluorescence. We show that the critical condition for forming stable complexes of the two native proteins involves Str enolase binding to a surface. Surfaces that attract Str enolase are a sufficient condition for binding Pgn. Under certain conditions, Pgn adsorbed to a surface will bind Str enolase. PMID:24520380
Edgington, Robert; Spillane, Katelyn M.; Papageorgiou, George; ...
2018-01-15
Here, nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functionalmore » silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.« less
Effect of Micro- and Nanomagnetite on Printing Toner Properties
Ataeefard, Maryam; Ghasemi, Ebrahim; Ebadi, Mona
2014-01-01
Toner is a main component of electrophotographic printing and copying processes. One of the most important ingredients of toner is magnetite (Fe3O4) which provides the tribocharging property for toner particles. In this study, nano- and microparticles of Fe3O4 were synthesized using the coprecipitation method and different amounts of lauric acid as a surfactant. The synthesized nano and micro Fe3O4 was then used as the charge control agent to produce toner by emulsion aggregation. The Fe3O4 and toner were characterized by X-ray powder diffraction (XRD), atomic gradient force magnetometry (AGFM), dynamic laser scattering (DLS), particle size analysis, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The results show that the optimum amount of surfactant not only reduced particle size but also reduced the magnetite properties of Fe3O4. It was found that the magnetite behavior of the toner is not similar to the Fe3O4 used to produce it. Although small-sized Fe3O4 created toner with a smaller size, toners made with micro Fe3O4 showed better magnetite properties than toner made with nano Fe3O4. PMID:24574911
Edgington, Robert; Spillane, Katelyn M; Papageorgiou, George; Wray, William; Ishiwata, Hitoshi; Labarca, Mariana; Leal-Ortiz, Sergio; Reid, Gordon; Webb, Martin; Foord, John; Melosh, Nicholas; Schaefer, Andreas T
2018-01-15
Nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functional silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgington, Robert; Spillane, Katelyn M.; Papageorgiou, George
Here, nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functionalmore » silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.« less
SadguruPrasad, Lakshminarayana Turuvekere; Madhusudhan, Basavaraj; Kodihalli B, Prakash; Ghosh, Prahlad Chandra
2017-02-01
Poly-methyl methacrylate (PMMA) polymer with remarkable properties and merits are being preferred in various biomedical applications due to its biocompatibility, non-toxicity and cost effectiveness. In this investigation, oxytetracycline-loaded PMMA nanoparticles were prepared using nano-precipitation method for the treatment of anaplasmosis. The prepared nanoparticles were characterised using dynamic light scattering (DLS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The mean average diameter of the nanoparticles ranged between 190-240 nm and zeta potential was found to be -19 mV. The drug loading capacity and entrapment efficiency of nanoparticles was found varied between 33.7-62.2% and 40.5-60.0%. The in vitro drug release profile exhibited a biphasic phenomenon indicating controlled drug release. The uptake of coumarin-6(C-6)-loaded PMMA nanoparticles in Plasmodium falciparum ( Pf 3D7) culture model was studied. The preferential uptake of C-6-loaded nanoparticles by the Plasmodium infected erythrocytes in comparison with the uninfected erythrocytes was observed under fluorescence microscopy. These findings suggest that oxytetracycline-loaded PMMA nanoparticles were found to be an effective oral delivery vehicle and an alternative pharmaceutical formulation in anaplasmosis treatment, too.
Jagusiak, Anna; Piekarska, Barbara; Pańczyk, Tomasz; Jemioła-Rzemińska, Małgorzata; Bielańska, Elżbieta; Stopa, Barbara; Zemanek, Grzegorz; Rybarska, Janina; Roterman, Irena; Konieczny, Leszek
2017-01-01
A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT-CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system - containing SWNTs covered with CR - offers a wide range of biomedical applications.
Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.
Angelopoulou, A; Voulgari, E; Diamanti, E K; Gournis, D; Avgoustakis, K
2015-06-01
To investigate the application of water-dispersible poly(lactide)-poly(ethylene glycol) (PLA-PEG) copolymers for the stabilization of graphene oxide (GO) aqueous dispersions and the feasibility of using the PLA-PEG stabilized GO as a delivery system for the potent anticancer agent paclitaxel. A modified Staudenmaier method was applied to synthesize graphene oxide (GO). Diblock PLA-PEG copolymers were synthesized by ring-opening polymerization of dl-lactide in the presence of monomethoxy-poly(ethylene glycol) (mPEG). Probe sonication in the presence of PLA-PEG copolymers was applied in order to reduce the hydrodynamic diameter of GO to the nano-size range according to dynamic light scattering (DLS) and obtain nano-graphene oxide (NGO) composites with PLA-PEG. The composites were characterized by atomic force microscopy (AFM), thermogravimetric analysis (TGA), and DLS. The colloidal stability of the composites was evaluated by recording the size of the composite particles with time and the resistance of composites to aggregation induced by increasing concentrations of NaCl. The composites were loaded with paclitaxel and the in vitro release profile was determined. The cytotoxicity of composites against A549 human lung cancer cells in culture was evaluated by flow cytometry. The uptake of FITC-labeled NGO/PLA-PEG by A549 cells was also estimated with flow cytometry and visualized with fluorescence microscopy. The average hydrodynamic diameter of NGO/PLA-PEG according to DLS ranged between 455 and 534 nm, depending on the molecular weight and proportion of PLA-PEG in the composites. NGO/PLA-PEG exhibited high colloidal stability on storage and in the presence of high concentrations of NaCl (far exceeding physiological concentrations). Paclitaxel was effectively loaded in the composites and released by a highly sustained fashion. Drug release could be regulated by the molecular weight of the PLA-PEG copolymer and its proportion in the composite. The paclitaxel-loaded composites exhibited cytotoxicity against A549 cancer cells which increased with incubation time, in conjunction with the increasing with time uptake of composites by the cancer cells. Graphene oxide aqueous dispersions were effectively stabilized by water-dispersible, biocompatible and biodegradable PLA-PEG copolymers. The graphene oxide/PLA-PEG composites exhibited satisfactory paclitaxel loading capacity and sustained in vitro drug release. The paclitaxel-loaded composites could enter the A549 cancer cells and exert cytotoxicity. The results justify further investigation of the suitability of PLA-PEG stabilized graphene oxide for the controlled delivery of paclitaxel. Copyright © 2015 Elsevier B.V. All rights reserved.
Sagittal plane analysis of the spine and pelvis in degenerative lumbar scoliosis.
Han, Fei; Weishi, Li; Zhuoran, Sun; Qingwei, Ma; Zhongqiang, Chen
2017-01-01
Previous studies have reported the normative values of pelvic sagittal parameters, but no study has analyzed the sagittal spino-pelvic alignment in degenerative lumbar scoliosis (DLS) and its role in the pathogenesis. Retrospective analysis was applied to 104 patients with DLS, together with 100 cases of asymptomatic young adults as a control group and another control group consisting of 145 cases with cervical spondylosis. The coronal and sagittal parameters were measured on the anteroposterior and lateral radiograph of the whole spine in the DLS group as well as in the two control groups. Statistical analysis showed that the DLS group had a higher pelvic incidence (PI) value (50.5° ± 10.2°), than the normal control group (with PI 47.2° ± 8.8°) and the cervical spondylosis group (46.9° ± 9.1°). In DLS group, there were 38 cases (36.5%) complicated with degenerative lumbar spondylolisthesis, who had higher PI values than patients without it. Besides, the lumbar lordosis (LL) and sacral slope (SS) of DLS group were lower; the scoliosis Cobb's angle was correlated with pelvic tilt (PT); thoracic kyphosis was correlated with LL, SS, and PT; and LL was correlated with other sagittal parameters. Patients with DLS may have a higher PI, which may impact the pathogenesis of DLS. A high PI value is probably associated with the high prevalence of degenerative lumbar spondylolisthesis among DLS patients. In DLS patients, the lumbar spine maintains the ability of regulating the sagittal balance, and the regulation depends more on thoracic curve.
Mowery, Todd M.; Harrold, Jon B.
2011-01-01
The dorsolateral striatum (DLS) receives extensive projections from primary somatosensory cortex (SI), but very few studies have used somesthetic stimulation to characterize the sensory coding properties of DLS neurons. In this study, we used computer-controlled whisker deflections to characterize the extracellular responses of DLS neurons in rats lightly anesthetized with isoflurane. When multiple whiskers were synchronously deflected by rapid back-and-forth movements, whisker-sensitive neurons in the DLS responded to both directions of movement. The latency and magnitude of these neuronal responses displayed very little variation with changes in the rate (2, 5, or 8 Hz) of whisker stimulation. Simultaneous recordings in SI barrel cortex and the DLS revealed important distinctions in the neuronal responses of these serially connected brain regions. In contrast to DLS neurons, SI neurons were activated by the initial deflection of the whiskers but did not respond when the whiskers moved back to their original position. As the rate of whisker stimulation increased, SI responsiveness declined, and the latencies of the responses increased. In fact, when whiskers were deflected at 5 or 8 Hz, many neurons in the DLS responded before the SI neurons. These results and earlier anatomic findings suggest that a component of the sensory-induced response in the DLS is mediated by inputs from the thalamus. Furthermore, the lack of sensory adaptation in the DLS may represent a critical part of the neural mechanism by which the DLS encodes stimulus-response associations that trigger motor habits and other stimulus-evoked behaviors that are not contingent on rewarded outcomes. PMID:21389309
Mowery, Todd M; Harrold, Jon B; Alloway, Kevin D
2011-05-01
The dorsolateral striatum (DLS) receives extensive projections from primary somatosensory cortex (SI), but very few studies have used somesthetic stimulation to characterize the sensory coding properties of DLS neurons. In this study, we used computer-controlled whisker deflections to characterize the extracellular responses of DLS neurons in rats lightly anesthetized with isoflurane. When multiple whiskers were synchronously deflected by rapid back-and-forth movements, whisker-sensitive neurons in the DLS responded to both directions of movement. The latency and magnitude of these neuronal responses displayed very little variation with changes in the rate (2, 5, or 8 Hz) of whisker stimulation. Simultaneous recordings in SI barrel cortex and the DLS revealed important distinctions in the neuronal responses of these serially connected brain regions. In contrast to DLS neurons, SI neurons were activated by the initial deflection of the whiskers but did not respond when the whiskers moved back to their original position. As the rate of whisker stimulation increased, SI responsiveness declined, and the latencies of the responses increased. In fact, when whiskers were deflected at 5 or 8 Hz, many neurons in the DLS responded before the SI neurons. These results and earlier anatomic findings suggest that a component of the sensory-induced response in the DLS is mediated by inputs from the thalamus. Furthermore, the lack of sensory adaptation in the DLS may represent a critical part of the neural mechanism by which the DLS encodes stimulus-response associations that trigger motor habits and other stimulus-evoked behaviors that are not contingent on rewarded outcomes.
Dorsolateral Striatum Engagement Interferes with Early Discrimination Learning.
Bergstrom, Hadley C; Lipkin, Anna M; Lieberman, Abby G; Pinard, Courtney R; Gunduz-Cinar, Ozge; Brockway, Emma T; Taylor, William W; Nonaka, Mio; Bukalo, Olena; Wills, Tiffany A; Rubio, F Javier; Li, Xuan; Pickens, Charles L; Winder, Danny G; Holmes, Andrew
2018-05-22
In current models, learning the relationship between environmental stimuli and the outcomes of actions involves both stimulus-driven and goal-directed systems, mediated in part by the DLS and DMS, respectively. However, though these models emphasize the importance of the DLS in governing actions after extensive experience has accumulated, there is growing evidence of DLS engagement from the onset of training. Here, we used in vivo photosilencing to reveal that DLS recruitment interferes with early touchscreen discrimination learning. We also show that the direct output pathway of the DLS is preferentially recruited and causally involved in early learning and find that silencing the normal contribution of the DLS produces plasticity-related alterations in a PL-DMS circuit. These data provide further evidence suggesting that the DLS is recruited in the construction of stimulus-elicited actions that ultimately automate behavior and liberate cognitive resources for other demands, but with a cost to performance at the outset of learning. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Silica nanoparticles carrying boron-containing polymer brushes
NASA Astrophysics Data System (ADS)
Brozek, Eric M.; Mollard, Alexis H.; Zharov, Ilya
2014-05-01
A new class of surface-modified silica nanoparticles has been developed for potential applications in boron neutron capture therapy. Sub-50 nm silica particles were synthesized using a modified Stöber method and used in surface-initiated atom transfer radical polymerization of two biocompatible polymers, poly(2-(hydroxyethyl)methacrylate) and poly(2-(methacryloyloxy)ethyl succinate). The carboxylic acid and hydroxyl functionalities of the polymeric side chains were functionalized with carboranyl clusters in high yields. The resulting particles were characterized using DLS, TEM, solution 1H NMR, solid state 11B NMR and thermogravimetric analysis. The particles contain between 13 and 18 % of boron atoms by weight, which would provide a high amount of 10B nuclides for BNCT, while the polymer chains are suitable for further modification with cell targeting ligands.
Dynamic light scattering in ophthalmology: results of in vitro and in vivo experiments.
Fankhauser, Franz
2006-01-01
To calibrate new dynamic light scattering (DLS) devices in defined solutions and post mortem porcine and human eyes. To examine all segments of the eye and to become familiar with the usage of the technique in living subjects. METHODS, DESIGN: Three new DLS devices for the usage in patients were developed. Mono-disperse solutions, poly-disperse solutions, gels, post mortem porcine and human eyes as well as healthy volunteers were studied. The detected signals were inverted into autocorrelation functions. We constructed three DLS devices appropriate for in vitro as well as in vivo examinations. In mono disperse solution precise disintegration rates could be calculated. In poly-disperse solutions, in gel and in the vitreous the results did not correlate with movements of individual particles but we could calculate characteristics of the complete scattering system. In vivo measurements demonstrated that DLS can be used in all human eye segments. DLS is a unique technique. With DLS the molecular composition of eye segments can be studied in living subjects. This can be used to understand the molecular basis of severe eye diseases. The presented data demonstrate that DLS delivers reproducible data from all eye segments. It is possible to study the molecular structures of eye segments in living subjects. The developed devices were proved successfully in vitro as well as in vivo. Limitations are the low specificity of DLS and its sensitivity to background noise. Now clinical studies are necessary to demonstrate potential diagnostic benefits of DLS in specific eye diseases.
Díaz, Estrella; Vargas, Juan Pedro; Quintero, Esperanza; Gonzalo de la Casa, Luis; O'Donnell, Patricio; Lopez, Juan Carlos
2014-05-01
The dorsal striatum has been ascribed to different behavioral roles. While the lateral area (dls) is implicated in habitual actions, its medial part (dms) is linked to goal expectancy. According to this model, dls function includes representation of stimulus-response associations, but not of goals. Dls function has been typically analyzed with regard to movement, and there is no data indicating whether this region could processes specific stimulus-outcome associations. To test this possibility, we analyzed the effects of dls and dms inactivation on the retrieval phase, and dms lesion on the acquisition phase of a latent inhibition procedure using two conditions, long and short presentations of the future conditioned stimulus. Contrary to current theories of basal ganglia function, we report evidence in favor of the dls involvement in cognitive processes of learning and retrieval. Moreover, we provide data about the sequential relationship between dms and dls, in which the dms could be involved, but it would not be critical, in new learning and the dls could be subsequently involved in consolidating cognitive routines. Copyright © 2014 Elsevier Inc. All rights reserved.
3-Dimensional Colloidal Crystals From Hollow Spheres
NASA Astrophysics Data System (ADS)
Zhang, Jian; Work, William J.; Sanyal, Subrata; Lin, Keng-Hui; Yodh, A. G.
2000-03-01
We have succeeded in synthesizing submicron-sized, hollow PMMA spheres and self-assembling them into colloidal crystalline structures using the depletion force. The resulting structures can be used as templates to make high refractive-index contrast, porous, inorganic structures without the need to use calcination or chemical-etching. With the method of emulsion polymerization, we managed to coat a thin PMMA shell around a swellable P(MMA/MAA/EGDMA) core. After neutralization and heating above the glass transition temperature of PMMA, we obtained water-swollen hydrogel particles encapsulated in PMMA shells. These composite particles become hollow spheres after drying. We characterized the particles with both transmission electron microscopy (TEM) and dynamic light scattering (DLS). The TEM results confirmed that each sphere has a hollow core. The DLS results showed that our hollow spheres are submicron-sized, with a swelling ratio of at least 25%, and with a polydispersity less than 5%. We anticipate using this method in the near-future to encapsulate ferrofluid emulsion droplets and liquid crystal droplets.
Preliminary Design and Implementation of a Method for Validating Evolving ADA Compilers.
1983-03-01
Goodenough, John B. "The Ada Compiler Validation Capability," Computer. 14 (6): 57-64 (June 1981). 7. Pressman, Roger S. Software Engineering : A Practi...COMPILERS THESIS Presented to the faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment...support and encouragement they have given me. ii Contents Page 1. INTRODUCTION 1 1.1 Background -- DoDls Software Problem 1 1.1.1 The proliferation of
Green chemistry approach for the synthesis of biocompatible graphene
Gurunathan, Sangiliyandi; Han, Jae Woong; Kim, Jin-Hoi
2013-01-01
Background Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms isolated from its three-dimensional parent material, graphite. One of the most common methods for preparation of graphene is chemical exfoliation of graphite using powerful oxidizing agents. Generally, graphene is synthesized through deoxygenation of graphene oxide (GO) by using hydrazine, which is one of the most widespread and strongest reducing agents. Due to the high toxicity of hydrazine, it is not a promising reducing agent in large-scale production of graphene; therefore, this study focused on a green or sustainable synthesis of graphene and the biocompatibility of graphene in primary mouse embryonic fibroblast cells (PMEFs). Methods Here, we demonstrated a simple, rapid, and green chemistry approach for the synthesis of reduced GO (rGO) from GO using triethylamine (TEA) as a reducing agent and stabilizing agent. The obtained TEA reduced GO (TEA-rGO) was characterized by ultraviolet (UV)–visible absorption spectroscopy, X-ray diffraction (XRD), particle size dynamic light scattering (DLS), scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). Results The transition of graphene oxide to graphene was confirmed by UV–visible spectroscopy. XRD and SEM were used to investigate the crystallinity of graphene and the surface morphologies of prepared graphene respectively. The formation of defects further supports the functionalization of graphene as indicated in the Raman spectrum of TEA-rGO. Surface morphology and the thickness of the GO and TEA-rGO were analyzed using AFM. The presented results suggest that TEA-rGO shows significantly more biocompatibility with PMEFs cells than GO. Conclusion This is the first report about using TEA as a reducing as well as a stabilizing agent for the preparation of biocompatible graphene. The proposed safe and green method offers substitute routes for large-scale production of graphene for several biomedical applications. PMID:23940417
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna
Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Sphericalmore » shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.« less
Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly
Cho, Nam-Joon; Hwang, Lisa Y.; Solandt, Johan J.R.; Frank, Curtis W.
2013-01-01
Lipid vesicles are an important class of biomaterials that have a wide range of applications, including drug delivery, cosmetic formulations and model membrane platforms on solid supports. Depending on the application, properties of a vesicle population such as size distribution, charge and permeability need to be optimized. Preparation methods such as mechanical extrusion and sonication play a key role in controlling these properties, and yet the effects of vesicle preparation method on vesicular properties and integrity (e.g., shape, size, distribution and tension) remain incompletely understood. In this study, we prepared vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid by either extrusion or sonication, and investigated the effects on vesicle size distribution over time as well as the concomitant effects on the self-assembly of solid-supported planar lipid bilayers. Dynamic light scattering (DLS), quartz crystal microbalance with dissipation (QCM-D) monitoring, fluorescence recovery after photobleaching (FRAP) and atomic force microscopy (AFM) experiments were performed to characterize vesicles in solution as well as their interactions with silicon oxide substrates. Collectively, the data support that sonicated vesicles offer more robust control over the self-assembly of homogenous planar lipid bilayers, whereas extruded vesicles are vulnerable to aging and must be used soon after preparation. PMID:28811437
Danafar, H; Rostamizadeh, K; Davaran, S; Hamidi, M
2017-12-01
A conjugate of the antihypertensive drug, lisinopril, with triblock poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) copolymer was synthesized by the reaction of PLA-PEG-PLA copolymer with lisinopril in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. The conjugated copolymer was characterized in vitro by hydrogen nuclear magnetic resonance (HNMR), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) techniques. Then, the lisinopril conjugated PLA-PEG-PLA were self-assembled into micelles in aqueous solution. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM). The results revealed that the micelles formed by the lisinopril-conjugated PLA-PEG-PLA have spherical structure with the average size of 162 nm. The release behavior of conjugated copolymer, micelles and micelles physically loaded by lisinopril were compared in different media. In vitro release study showed that in contrast to physically loaded micelles, the release rate of micelles consisted of the conjugated copolymer was dependent on pH of media where it was higher at lower pH compared to the neutral medium. Another feature of the conjugated micelles was their more sustained release profile compared to the lisinopril-conjugated copolymer and physically loaded micelles.
Kian, Lau Kia; Jawaid, Mohammad; Ariffin, Hidayah; Karim, Zoheb
2018-07-15
Roselle fiber is a renewable and sustainable agricultural waste enriched with cellulose polysaccharides. The isolation of Nanocrystalline cellulose (NCC) from roselle-derived microcrystalline cellulose (MCC) is an alternative approach to recover the agricultural roselle plant residue. In the present study, acid hydrolysis with different reaction time was carried out to degrade the roselle-derived MCC to form NCC. The characterizations of isolated NCC were conducted through Fourier Transform Infrared Ray (FTIR), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). As evaluated from the performed morphological investigations, the needle-like shape NCC nanostructures were observed under TEM and AFM microscopy studies, while irregular rod-like shape of NCC was observed under FESEM analysis. With 60min hydrolysis time, XRD analysis demonstrated the highest NCC crystallinity degree with 79.5%. In thermal analysis by TGA and DSC, the shorter hydrolysis time tended to produce NCC with higher thermal stability. Thus, the isolated NCC from roselle-derived MCC has high potential to be used in application of pharmaceutical and biomedical fields for nanocomposite fabrication. Copyright © 2018 Elsevier B.V. All rights reserved.
Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.
2008-01-01
Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with <≈100 nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802
Changes in the quaternary structure of amelogenin when adsorbed onto surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasevich, Barbara J.; Lea, Alan S.; Bernt, William
The amelogenin protein is involved in the formation of highly controlled and anisotropic hydroxyapatite crystals in tooth enamel. Amelogenin is unique in that it self assembles to form supramolecular quaternary structures called “nanospheres,” spherical aggregates of amelogenin monomers typically 20-60 nm in diameter. Although nanospheres have been observed in solution, the quaternary structure of amelogenin adsorbed onto surfaces is not well known. A better understanding of the surface structure is of great importance, however, because the function of amelogenin depends on it. We report studies of the adsorption of amelogenin onto self-assembled monolayers (SAMs) containing COOH and CH3 end groupmore » functionality as well as single crystal fluoroapatite (FAP), a biologically relevant surface. The supramolecular structures of the protein in solution as determined by dynamic light scattering (DLS) were compared with the supramolecular structures of the protein physisorbed onto surfaces as studied by atomic force microscopy (AFM). We found that although our solutions contained only nanospheres of narrow size distribution, smaller structures such as monomers and dimers were observed onto both hydrophilic and hydrophobic surfaces. This suggests that amelogenin can adsorb onto surfaces as small structures that peel away or “shed” from the nanospheres that are present in solution.« less
A reusable multipurpose magnetic nanobiocatalyst for industrial applications.
Perwez, Mohammad; Ahmad, Razi; Sardar, Meryam
2017-10-01
A multipurpose magnetic nanobiocatalyst is developed by conjugating Pectinex 3XL (a commercial enzyme containing pectinase, xylanase and cellulase activities) on 3-aminopropyl triethoxysilane activated magnetic nanoparticles. The nanobiocatalyst retained 87% of pectinase, 69% of xylanase and 58% of cellulase activity after conjugation on modified nanoparticles as compared to their soluble counterparts. Thermal stability data at 70°C showed increase in enzyme stability after conjugation to nanoparticles and the kinetic parameters (K m and V max ) remain unaltered after immobilization. The immobilized enzyme system can be successfully used upto 5th cycle after that slight decrease in enzyme activities was observed. The nanobiocatalyst retained high pectinase activities in organic solvents and chemical reagents as compared to free enzymes. DLS data shows that the nanoparticles size increases from 63nm to 86nm after immobilization. Atomic Force Microscopy data confirms the deposition of enzymes on the nanoparticles. The nanobiocatalyst was used for the clarification of pine apple and orange juice and was also used for the production of bioethanol. Hydrolysis of pretreated wheat straw produced 1.39g/l and 1.59g/l after treatment with free Pectinex 3xL and nanobiocatalyst respectively. The concentration of bioethanol also increases by 1.4 fold as compared to the free enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.
Atomic Forces for Geometry-Dependent Point Multipole and Gaussian Multipole Models
Elking, Dennis M.; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G.
2010-01-01
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise due to 1) the transfer of torque between neighboring atoms, and 2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In the current study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives ∂Dlm′m/∂Ω. The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen bonded dimers are used to test the inter-molecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential (ESP). The electrostatic energies and forces are compared to their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, while geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. PMID:20839297
Zheng, Tianyu; Bott, Steven; Huo, Qun
2016-08-24
Gold nanoparticles (AuNPs) have found broad applications in chemical and biological sensing, catalysis, biomolecular imaging, in vitro diagnostics, cancer therapy, and many other areas. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement and analysis. Due to its relatively low cost and ease of operation in comparison to other more sophisticated techniques, DLS is the primary choice of instrumentation for analyzing the size and size distribution of nanoparticle suspensions. However, many DLS users are unfamiliar with the principles behind the DLS measurement and are unware of some of the intrinsic limitations as well as the unique capabilities of this technique. The lack of sufficient understanding of DLS often leads to inappropriate experimental design and misinterpretation of the data. In this study, we performed DLS analyses on a series of citrate-stabilized AuNPs with diameters ranging from 10 to 100 nm. Our study shows that the measured hydrodynamic diameters of the AuNPs can vary significantly with concentration and incident laser power. The scattered light intensity of the AuNPs has a nearly sixth order power law increase with diameter, and the enormous scattered light intensity of AuNPs with diameters around or exceeding 80 nm causes a substantial multiple scattering effect in conventional DLS instruments. The effect leads to significant errors in the reported average hydrodynamic diameter of the AuNPs when the measurements are analyzed in the conventional way, without accounting for the multiple scattering. We present here some useful methods to obtain the accurate hydrodynamic size of the AuNPs using DLS. We also demonstrate and explain an extremely powerful aspect of DLS-its exceptional sensitivity in detecting gold nanoparticle aggregate formation, and the use of this unique capability for chemical and biological sensing applications.
ERIC Educational Resources Information Center
Spencer, Jamala
2017-01-01
The question of which strategies for teaching daily living skills (DLS) are most effective for students with autism spectrum disorder (ASD) requires increased attention. Special education elementary teachers may not have the instructional strategies necessary to teach DLS to students with ASD. DLS instruction for students with ASD is important…
Chien, Hui-Lien; Lu, Tung-Wu; Liu, Ming-Wei
2014-04-01
High-heeled shoes are associated with instability and falling, leading to injuries such as fracture and ankle sprain. This study investigated the effects of habitual wearing of high-heeled shoes on the body's center of mass (COM) motion relative to the center of pressure (COP) during gait. Fifteen female experienced wearers and 15 matched controls walked with high-heeled shoes (7.3cm) while kinematic and ground reaction force data were measured and used to calculate temporal-distance parameters, joint moments, COM-COP inclination angles (IA) and the rate of IA changes (RCIA). Compared with inexperienced wearers, experienced subjects showed significantly reduced frontal IA with increased ankle pronator moments during single-limb support (p<0.05). During double-limb support (DLS), they showed significantly increased magnitudes of the frontal RCIA at toe-off and contralateral heel-strike, and reduced DLS time (p<0.05) but unaltered mean RCIA over DLS. In the sagittal plane experienced wearers showed significantly increased mean RCIA (p<0.05) and significant differences in the RCIA at toe-off and contralateral heel-strike (p<0.05). Significantly increased hip flexor moments and knee extensor moments at toe-off (p<0.05) were needed for forward motion of the trailing limb. The current results identified the change in the balance control in females after long-term use of high-heeled shoes, providing a basis for future design of strategies to minimize the risk of falling during high-heeled gait. Copyright © 2014 Elsevier B.V. All rights reserved.
Goodman, Jarid; Ressler, Reed L; Packard, Mark G
2017-06-03
The present experiments investigated the involvement of N-methyl-d-aspartate (NMDA) receptors of the dorsolateral striatum (DLS) in consolidation of extinction in a habit memory task. Adult male Long-Evans rats were initially trained in a food-reinforced response learning version of a plus-maze task and were subsequently given extinction training in which the food was removed from the maze. In experiment 1, immediately after the first day of extinction training, rats received bilateral intra-DLS injections of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5; 2µg/side) or physiological saline. In experiment 2, immediately following the first day of extinction training, animals were given intra-DLS injections of NMDA receptor partial agonist d-cycloserine (DCS; 10 or 20µg/side) or saline. In both experiments, the number of perseverative trials (a trial in which a rat made the same previously reinforced body-turn response) and latency to reach the previously correct food well were used as measures of extinction behavior. Results indicated that post-training intra-DLS injections of AP5 impaired extinction. In contrast, post-training intra-DLS infusions of DCS (20µg) enhanced extinction. Intra-DLS administration of AP5 or DCS given two hours after extinction training did not influence extinction of response learning, indicating that immediate post-training administration of AP5 and DCS specifically influenced consolidation of the extinction memory. The present results indicate a critical role for DLS NMDA receptors in modulating extinction of habit memory and may be relevant to developing therapeutic approaches to combat the maladaptive habits observed in human psychopathologies in which DLS-dependent memory has been implicated (e.g. drug addiction and relapse and obsessive compulsive disorder). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo
2015-07-08
We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.
On the generation of double layers from ion- and electron-acoustic instabilities
Fu, Xiangrong; Cowee, Misa M.; Gary, Stephen Peter; ...
2016-03-17
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric fields traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs – electron acoustic DLs – generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e.more » the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. We find that linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric fields that propagate at the electron thermal speed, suggesting another potential explanation for the observations.« less
Contributions of dorsal striatal subregions to spatial alternation behavior.
Moussa, Roula; Poucet, Bruno; Amalric, Marianne; Sargolini, Francesca
2011-07-01
Considerable evidence has shown a clear dissociation between the dorsomedial (DMS) and the dorsolateral (DLS) striatum in instrumental conditioning. In particular, DMS activity is necessary to form action-outcome associations, whereas the DLS is required for developing habitual behavior. However, few studies have investigated whether a similar dissociation exists in more complex goal-directed learning processes. The present study examined the role of the two structures in such complex learning by analyzing the effects of excitotoxic DMS and DLS lesions during the acquisition and extinction of spatial alternation behavior, in a continuous alternation T-maze task. We demonstrate that DMS and DLS lesions have opposite effects, the former impairing and the latter improving animal performance during learning and extinction. DMS lesions may impair the acquisition of spatial alternation behavior by disrupting the signal necessary to link a goal with a specific spatial sequence. In contrast, DLS lesions may accelerate goal-driven strategies by minimizing the influence of external stimuli on the response, thus increasing the impact of action-reward contingencies. Taken together, these results suggest that DMS- and DLS-mediated learning strategies develop in parallel and compete for the control of the behavioral response early in learning.
Li, Yi; Wu, Qiong; Wang, Yujia; Li, Li; Chen, Fei; Shi, Yujun; Bao, Ji; Bu, Hong
2017-01-01
An individualized, tissue-engineered liver suitable for transplanting into a patient with liver disease would be of great benefit to the patient and the healthcare system. The tissue-engineered liver would possess the functions of the original healthy organ. Two fields of study, (i) using decellularized tissue as cell scaffolding, and (ii) stem cell differentiation into functional cells, are coming together to make this concept feasible. The decellularized liver scaffolds (DLS) can interact with cells to promote cell differentiation and signal transduction and three-dimensional (3D) stem cell aggregations can maintain the phenotypes and improve functions of stem cells after differentiation by undergoing cell-cell contact. Although the effects of DLS and stem cell aggregation culture have been intensively studied, few observations about the interaction between the two have been achieved. We established a method that combines the use of decellularized liver scaffolds and aggregation culture of MSCs (3D-DLS) and explored the effects of the two on hepatic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in bioengineered hepatic tissue. A higher percentage of albumin-producing cells, higher levels of liver-specific transcripts, higher urea cycle-related transcripts, and lower levels of stem cell-specific transcripts were observed in the 3D-DLS group when compared to that of hUC-MSCs in monolayer culture (2D), aggregation culture (3D), monolayer on DLS culture (2D-DLS). The gene arrays also indicated that 3D-DLS induced the differentiation from the hUC-MSC phenotype to the PHH phenotype. Liver-specific proteins albumin, CK-18, and glycogen storage were highly positive in the 3D-DLS group. Albumin secretion and ammonia conversion to urea were more effective with a higher cell survival rate in the 3D-DLS group for 14 days. This DLS and aggregation combination culture system provides a novel method to improve hepatic differentiation, maintain phenotype of hepatocyte-like cells and sustain survival for 14 days in vitro. This is a promising strategy to use to construct bioengineered hepatic tissue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
McKibben, Suzanne J.
This study assessed the ongoing development of digital libraries (DLs) on the World Wide Web. DLs of art and literature were surveyed for selected works from the early Italian Renaissance in order to gain insight into the current trends prevalent throughout the larger population of DLs. The following artists and authors were selected for study:…
NASA Astrophysics Data System (ADS)
Dubin, Stephen; Ansari, Rafat R.; Tulp, Orien; Steinberg, Sheldon; Koch, Seth; DellaVecchia, Michael A.; Cozmi, Mihaela; Victor, Mary
1999-06-01
The absence of verbal feedback, available from most human patients, is a major limitation in veterinary diagnosis in general and in the evaluation of ophthalmic lens opacity in particular. A novel compact dynamic light scattering (DLS) instrument, developed at NASA, offers significant mitigation to this limitation. It not only yields objective repeatable non-invasive estimation of lens opacity but also provides insight into the nature of chemical and physical alternations in the lens and other eye structures. For example, DLS measurements of the cataractous lens may be interpreted in terms of alpha crystalline protein size. In contrast to most conventional methods, the examination results are numerical and readily accommodate statistical analysis. We present results of DLS measurements in laboratory rabbits with naphthalene induced cataracts, rodents with genetically conditioned hypertension and/or diabetes mellitus; as well as applications of the DLS method in clinical veterinary patients. Use of DLS in examination of phacoemulsification fluid, urine and other biological materials, and potential applications in ocular toxically will also be discussed.
NASA Astrophysics Data System (ADS)
Zhang, Jiangshan; Yang, Shufeng; Li, Jingshe; Tang, Haiyan; Jiang, Zhengyi
2018-01-01
The effect of a dissipative ladle shroud (DLS) on mixing in tundish was investigated, compared with that of a conventional ladle shroud (CLS) using mathematical and physical modelling. The tracer profiles of mathematical results, achieved using large eddy simulation, were validated by physical observations employing high-speed cinephotography. The design of a DLS dramatically changed the flow patterns and contributed the intermixing of fluid elements inside the ladle shroud. The vortex flow encouraged the turbulent mixing and was verified by tracking of physical tracer dispersion inside the DLS. Residence Time Distribution (RTD) curves were obtained in two different sized tundishes to examine the mixing behaviours. The findings indicated that the DLS benefited the tundish mixing in terms of increasing active volume. The effect seemed to be more remarkable in the smaller tundish. The DLS gave rise to a more plug-like flow pattern inside the tundish, showing potential to shorten the transition length during grade change.
Acoustic evaluation of pirfenidone on patients with combined pulmonary fibrosis emphysema syndrome.
Charleston-Villalobos, Sonia; Castaneda-Villa, Norma; Gonzalez-Camarena, Ramon; Mejia-Avila, M; Mateos-Toledo, H; Aljama-Corrales, Tomas
2016-08-01
The combined pulmonary fibrosis emphysema syndrome (CPFES) overall has a poor prognosis with a 5-year survival of 35-80%. Consequently, to evaluate possible positive effects on patients of novel agents as pirfenidone is relevant. However, the efficacy of pirfenidone in CPFES patients is still not well-known. In this study we propose an alternative to evaluate the effects of pirfenidone treatment on CPFES patients via acoustic information. Quantitative analysis of discontinuous adventitious lung sounds (DLS), known as crackles, has been promising to detect and characterize diverse pulmonary pathologies. The present study combines independent components (ICs) analysis of LS and the automated selection of ICs associated with DLS. ICs's features as fractal dimension, entropy and sparsity produce several clusters by kmeans. Those clusters containing ICs of DLS are exclusively considered to finally estimate the number of DLS per ICs by a time-variant AR modeling. For the evaluation of the effects of pirfenidone, the 2D DLS-ICs spatial distribution in conjunction with the estimated number of DLS events are shown. The methodology is applied to two real cases of CPFES with 6 and 12 months of treatment. The acoustical evaluation indicates that pirfenidone treatment may not be satisfactory for CPFES patients but further evaluation has to be performed.
Skelin, Ivan; Hakstol, Rhys; VanOyen, Jenn; Mudiayi, Dominic; Molina, Leonardo A; Holec, Victoria; Hong, Nancy S; Euston, David R; McDonald, Robert J; Gruber, Aaron J
2014-05-01
We used focal brain lesions in rats to examine how dorsomedial (DMS) and dorsolateral (DLS) regions of the striatum differently contribute to response adaptation driven by the delivery or omission of rewards. Rats performed a binary choice task under two modes: one in which responses were rewarded on half of the trials regardless of choice; and another 'competitive' one in which only unpredictable choices were rewarded. In both modes, control animals were more likely to use a predictable lose-switch strategy than animals with lesions of either DMS or DLS. Animals with lesions of DMS presumably relied more on DLS for behavioural control, and generated repetitive responses in the first mode. These animals then shifted to a random response strategy in the competitive mode, thereby performing better than controls or animals with DLS lesions. Analysis using computational models of reinforcement learning indicated that animals with striatal lesions, particularly of the DLS, had blunted reward sensitivity and less stochasticity in the choice mechanism. These results provide further evidence that the rodent DLS is involved in rapid response adaptation that is more sophisticated than that embodied by the classic notion of habit formation driven by gradual stimulus-response learning. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter.
Ghosh, Saikat; Mashayekhi, Hamid; Pan, Bo; Bhowmik, Prasanta; Xing, Baoshan
2008-11-04
The colloidal behavior of aluminum oxide nanoparticles (NPs) was investigated as a function of pH and in the presence of two structurally different humic acids (HAs), Aldrich HA (AHA) and the seventh HA fraction extracted from Amherst peat soil (HA7). Dynamic light scattering (DLS) and atomic force microscopy (AFM) were employed to determine the colloidal behavior of the NPs. Influence of pH and HAs on the surface charges of the NPs was determined. zeta-Potential data clearly showed that the surface charge of the NPs decreased with increasing pH and reached the point of zero charge (ZPC) at pH 7.9. Surface charge of the NPs also decreased with the addition of HAs. The NPs tend to aggregate as the pH of the suspension approaches ZPC, where van der Waals attraction forces dominate over electrostatic repulsion. However, the NP colloidal suspension was stable in the pHs far from ZPC. Colloidal stability was strongly enhanced in the presence of HAs at the pH of ZPC or above it, but in acidic conditions NPs showed strong aggregation in the presence of HAs. AFM imaging revealed the presence of long-chain fractions in HA7, which entangled with the NPs to form large aggregates. The association of HA with the NP surface can be assumed to follow a two-step process, possibly the polar fractions of the HA7 sorbed on the NP surface followed by entanglement with the long-chain fractions. Thus, our study demonstrated that the hydrophobic nature of the HA molecules strongly influenced the aggregation of colloidal NPs, possibly through their conformational behavior in a particular solution condition. Therefore, various organic matter samples will result in different colloidal behavior of NPs, subsequently their environmental fate and transport.
Becker, Anton S; Mueller, Michael; Stoffel, Elina; Marcon, Magda; Ghafoor, Soleen; Boss, Andreas
2018-02-01
To train a generic deep learning software (DLS) to classify breast cancer on ultrasound images and to compare its performance to human readers with variable breast imaging experience. In this retrospective study, all breast ultrasound examinations from January 1, 2014 to December 31, 2014 at our institution were reviewed. Patients with post-surgical scars, initially indeterminate, or malignant lesions with histological diagnoses or 2-year follow-up were included. The DLS was trained with 70% of the images, and the remaining 30% were used to validate the performance. Three readers with variable expertise also evaluated the validation set (radiologist, resident, medical student). Diagnostic accuracy was assessed with a receiver operating characteristic analysis. 82 patients with malignant and 550 with benign lesions were included. Time needed for training was 7 min (DLS). Evaluation time for the test data set were 3.7 s (DLS) and 28, 22 and 25 min for human readers (decreasing experience). Receiver operating characteristic analysis revealed non-significant differences (p-values 0.45-0.47) in the area under the curve of 0.84 (DLS), 0.88 (experienced and intermediate readers) and 0.79 (inexperienced reader). DLS may aid diagnosing cancer on breast ultrasound images with an accuracy comparable to radiologists, and learns better and faster than a human reader with no prior experience. Further clinical trials with dedicated algorithms are warranted. Advances in knowledge: DLS can be trained classify cancer on breast ultrasound images high accuracy even with comparably few training cases. The fast evaluation speed makes real-time image analysis feasible.
DiFeliceantonio, Alexandra G.; Berridge, Kent C.
2016-01-01
Pavlovian cues for rewards can become attractive incentives: approached and ‘wanted’ as the rewards themselves. The motivational attractiveness of a previously learned cue is not fixed, but can be dynamically amplified during re-encounter by simultaneous activation of brain limbic circuitry. Here we report that opioid or dopamine microinjections in the dorsolateral quadrant of the neostriatum (DLS) of rats selectively amplify attraction toward a previously learned Pavlovian cue in an individualized fashion, at the expense of a competing cue. In an autoshaping (sign-tracking vs goal-tracking) paradigm, microinjection of the mu opioid receptor agonist (DAMGO) or dopamine indirect agonist (amphetamine) in DLS of sign-tracker individuals selectively enhanced their sign-tracking attraction toward the reward-predictive lever cue. By contrast, DAMGO or amphetamine in DLS of goal-trackers selectively enhanced prepotent attraction toward the reward-proximal cue of sucrose dish. Amphetamine also enhanced goal-tracking in some sign-tracker individuals (if they ever defected to the dish even once). That DLS enhancement of cue attraction was due to stronger motivation, not stronger habits was suggested by: 1) sign-trackers flexibly followed their cue to a new location when the lever was suddenly moved after DLS DAMGO microinjection, and 2) DAMGO in DLS also made sign-trackers work harder on a new instrumental nose-poke response required to earn presentations of their Pavlovian lever cue (instrumental conditioned reinforcement). Altogether, our results suggest that DLS circuitry can enhance the incentive salience of a Pavlovian reward cue, selectively making that cue a stronger motivational magnet. PMID:26924040
The dorsolateral striatum selectively mediates extinction of habit memory.
Goodman, Jarid; Ressler, Reed L; Packard, Mark G
2016-12-01
Previous research has indicated a role for the dorsolateral striatum (DLS) in acquisition and retrieval of habit memory. However, the neurobiological mechanisms guiding extinction of habit memory have not been extensively investigated. The present study examined whether the dorsolateral striatum (DLS) is involved in extinction of habit memory in a food-rewarded response learning version of the plus-maze in adult male Long-Evans rats (experiment 1). In addition, to determine whether the role of this brain region in extinction is selective to habit memory, we also examined whether the DLS is required for extinction of hippocampus-dependent spatial memory in a place learning version of the plus-maze (experiment 2). Following acquisition in either task, rats received two days of extinction training, in which the food reward was removed from the maze. The number of perseverative trials (a trial in which the rat made the same previously reinforced body-turn) and latency to reach the previously correct food well were used as measures of extinction. Animals were given immediate post-training intra-DLS administration of the sodium channel blocker bupivacaine or vehicle to determine the effect of DLS inactivation on consolidation of extinction memory in each task. In the response learning task, post-training DLS inactivation impaired consolidation of extinction memory. Injections of bupivacaine delayed 2 h post-training did not affect extinction, indicating a time-dependent effect of neural inactivation on consolidation of extinction memory in this task. In contrast, post-training DLS inactivation did not impair, but instead slightly enhanced, extinction memory in the place learning task. The present findings indicate a critical role for the DLS in extinction of habit memory in the response learning task, and may be relevant to understanding the neural mechanisms through which maladaptive habits in human psychopathologies (e.g. drug addiction) may be suppressed. Copyright © 2016 Elsevier Inc. All rights reserved.
Parida, Pradipta Kumar; Kalaiarasi, Raja; Gopalakrishnan, Surianarayana
2016-06-01
To assess and compare the efficacy of diode laser stapedotomy (DLS) and conventional manual stapedotomy (CMS) in the treatment of otosclerosis. Randomized clinical trial. Tertiary health center. We randomly assigned 60 patients with otosclerosis planned for primary stapedotomy to receive either DLS or CMS. Primary outcome measure was hearing gain measured by pure-tone audiometry (PTA) performed preoperatively and postoperatively. Hearing gain was compared within and between the groups. Secondary outcome measures were the incidence of intraoperative (bleeding and fractured footplate) and postoperative (vomiting, vertigo, sensorineural hearing loss, tinnitus, facial nerve paralysis, and hospital stay) morbidities. Sixty primary stapedotomies (30 in the CMS group and 30 in the DLS group) done for 60 patients (male, n = 42; female, n = 18) were included in the analysis. Preoperative mean air-bone (AB) gap in the DLS and CMS groups was 38.51 ± 8.643 dB and 36.42 ± 8.678 dB, respectively. Mean AB gap at 6 month was 10.86 ± 5.383 dB and 11.05 ± 5.236 dB in the CMS and DLS groups, respectively. Air conduction was improved by 24.98 ± 5.348 dB in the DLS group and 24.08 ± 5.911 dB in the CMS group at 6 months. No statistically significant differences were found in hearing gain between the 2 groups at 6 months (P > .05). A decreased rate and severity of intraoperative bleeding, postoperative vertigo, and vomiting were observed with the diode laser (0%, 6.6%, and 10%) compared with the conventional technique (16.7%, 16.7%, and 16.7%), but these differences were not statistically significant (P > .05). Hearing outcomes and complications of DLS were similar to CMS. These study findings confirm the efficacy of the diode laser in stapedotomy, but DLS offers no advantages over CMS for otosclerosis surgery. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants
Ewen, James P.; Gattinoni, Chiara; Thakkar, Foram M.; Morgan, Neal; Spikes, Hugh A.; Dini, Daniele
2016-01-01
For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed. PMID:28773773
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants.
Ewen, James P; Gattinoni, Chiara; Thakkar, Foram M; Morgan, Neal; Spikes, Hugh A; Dini, Daniele
2016-08-02
For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n -hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n -hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n -hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed.
Ting, Daniel Shu Wei; Cheung, Carol Yim-Lui; Lim, Gilbert; Tan, Gavin Siew Wei; Quang, Nguyen D; Gan, Alfred; Hamzah, Haslina; Garcia-Franco, Renata; San Yeo, Ian Yew; Lee, Shu Yen; Wong, Edmund Yick Mun; Sabanayagam, Charumathi; Baskaran, Mani; Ibrahim, Farah; Tan, Ngiap Chuan; Finkelstein, Eric A; Lamoureux, Ecosse L; Wong, Ian Y; Bressler, Neil M; Sivaprasad, Sobha; Varma, Rohit; Jonas, Jost B; He, Ming Guang; Cheng, Ching-Yu; Cheung, Gemmy Chui Ming; Aung, Tin; Hsu, Wynne; Lee, Mong Li; Wong, Tien Yin
2017-12-12
A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases. To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes. Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes. Use of a deep learning system. Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard. In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images). In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes.
Ting, Daniel Shu Wei; Cheung, Carol Yim-Lui; Lim, Gilbert; Tan, Gavin Siew Wei; Quang, Nguyen D.; Gan, Alfred; Hamzah, Haslina; Garcia-Franco, Renata; San Yeo, Ian Yew; Lee, Shu Yen; Wong, Edmund Yick Mun; Sabanayagam, Charumathi; Baskaran, Mani; Ibrahim, Farah; Tan, Ngiap Chuan; Finkelstein, Eric A.; Lamoureux, Ecosse L.; Wong, Ian Y.; Bressler, Neil M.; Sivaprasad, Sobha; Varma, Rohit; Jonas, Jost B.; He, Ming Guang; Cheng, Ching-Yu; Cheung, Gemmy Chui Ming; Aung, Tin; Hsu, Wynne; Lee, Mong Li
2017-01-01
Importance A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases. Objective To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes. Design, Setting, and Participants Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes. Exposures Use of a deep learning system. Main Outcomes and Measures Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard. Results In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images). Conclusions and Relevance In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes. PMID:29234807
Cockrell, Allison L; Fitzgerald, Lisa A; Cusick, Kathleen D; Barlow, Daniel E; Tsoi, Stanislav D; Soto, Carissa M; Baldwin, Jeffrey W; Dale, Jason R; Morris, Robert E; Little, Brenda J; Biffinger, Justin C
2015-09-01
A thermophile, Thermus scotoductus SA-01, was cultured within a constant-temperature (65°C) microwave (MW) digester to determine if MW-specific effects influenced the growth and physiology of the organism. As a control, T. scotoductus cells were also cultured using convection heating at the same temperature as the MW studies. Cell growth was analyzed by optical density (OD) measurements, and cell morphologies were characterized using electron microscopy imaging (scanning electron microscopy [SEM] and transmission electron microscopy [TEM]), dynamic light scattering (DLS), and atomic force microscopy (AFM). Biophysical properties (i.e., turgor pressure) were also calculated with AFM, and biochemical compositions (i.e., proteins, nucleic acids, fatty acids) were analyzed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the fatty acid methyl esters extracted from cell membranes. Here we report successful cultivation of a thermophile with only dielectric heating. Under the MW conditions for growth, cell walls remained intact and there were no indications of membrane damage or cell leakage. Results from these studies also demonstrated that T. scotoductus cells grown with MW heating exhibited accelerated growth rates in addition to altered cell morphologies and biochemical compositions compared with oven-grown cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications.
Mattinen, Maija-Liisa; Valle-Delgado, Juan José; Leskinen, Timo; Anttila, Tuomas; Riviere, Guillaume; Sipponen, Mika; Paananen, Arja; Lintinen, Kalle; Kostiainen, Mauri; Österberg, Monika
2018-04-01
Cross-linked and decolorized lignin nanoparticles (LNPs) were prepared enzymatically and chemically from softwood Kraft lignin. Colloidal lignin particles (CLPs, ca. 200 nm) in a non-malodorous aqueous dispersion could be dried and redispersed in tetrahydrofuran (THF) or in water retaining their stability i.e. spherical shape and size. Two fungal laccases, Trametes hirsuta (ThL) and Melanocarpus albomyces (MaL) were used in the cross-linking reactions. Reactivity of ThL and MaL on Lignoboost™ lignin and LNPs was confirmed by high performance size exclusion chromatography (HPSEC) and oxygen consumption measurements with simultaneous detection of red-brown color due to the formation of quinones. Zeta potential measurements verified oxidation of LNPs via formation of surface-oriented carboxylic acid groups. Dynamic light scattering (DLS) revealed minor changes in the particle size distributions of LNPs after laccase catalyzed radicalization, indicating preferably covalent intraparticular cross-linking over polymerization. Changes in the surface morphology of laccase treated LNPs were imaged by atomic force (AFM) and transmission emission (TEM) microscopy. Furthermore, decolorization of LNPs without degradation was obtained using ultrasonication with H 2 O 2 in alkaline reaction conditions. The research results have high impact for the utilization of Kraft lignin as nanosized colloidal particles in advanced bionanomaterial applications in medicine, foods and cosmetics including different sectors from chemical industry. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Subatomic Features on the Silicon (111)-(7x7) Surface Observed by Atomic Force Microscopy.
Giessibl; Hembacher; Bielefeldt; Mannhart
2000-07-21
The atomic force microscope images surfaces by sensing the forces between a sharp tip and a sample. If the tip-sample interaction is dominated by short-range forces due to the formation of covalent bonds, the image of an individual atom should reflect the angular symmetry of the interaction. Here, we report on a distinct substructure in the images of individual adatoms on silicon (111)-(7x7), two crescents with a spherical envelope. The crescents are interpreted as images of two atomic orbitals of the front atom of the tip. Key for the observation of these subatomic features is a force-detection scheme with superior noise performance and enhanced sensitivity to short-range forces.
DiFeliceantonio, Alexandra G; Berridge, Kent C
2016-05-01
Pavlovian cues for rewards can become attractive incentives: approached and 'wanted' as the rewards themselves. The motivational attractiveness of a previously learned cue is not fixed, but can be dynamically amplified during re-encounter by simultaneous activation of brain limbic circuitry. Here it was reported that opioid or dopamine microinjections in the dorsolateral quadrant of the neostriatum (DLS) of rats selectively amplify attraction toward a previously learned Pavlovian cue in an individualized fashion, at the expense of a competing cue. In an autoshaping (sign-tracking vs. goal-tracking) paradigm, microinjection of the mu opioid receptor agonist (DAMGO) or dopamine indirect agonist (amphetamine) in the DLS of sign-tracker individuals selectively enhanced their sign-tracking attraction toward the reward-predictive lever cue. By contrast, DAMGO or amphetamine in the DLS of goal-trackers selectively enhanced prepotent attraction toward the reward-proximal cue of sucrose dish. Amphetamine also enhanced goal-tracking in some sign-tracker individuals (if they ever defected to the dish even once). That DLS enhancement of cue attraction was due to stronger motivation, not stronger habits, was suggested by: (i) sign-trackers flexibly followed their cue to a new location when the lever was suddenly moved after DLS DAMGO microinjection; and (ii) DAMGO in the DLS also made sign-trackers work harder on a new instrumental nose-poke response required to earn presentations of their Pavlovian lever cue (instrumental conditioned reinforcement). Altogether, the current results suggest that DLS circuitry can enhance the incentive salience of a Pavlovian reward cue, selectively making that cue a stronger motivational magnet. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Gerschutz, Maria J; Haynes, Michael L; Nixon, Derek; Colvin, James M
2012-01-01
A prosthesis encounters loading through forces and torques exerted by the person with amputation. International Organization for Standardization (ISO) standard 10328 was designed to test most lower-limb prosthetic components. However, this standard does not include prosthetic sockets. We measured static failure loads of prosthetic sockets using a modified ISO 10328 and then compared them with the criteria set by this standard for other components. Check socket (CS) strengths were influenced by thickness, material choice, and fabrication method. Copolymer socket (CP) strengths depended on thickness and fabrication methods. A majority of the CSs and all of the CPs failed to pass the ISO 10328 ductile loading criterion. In contrast, the strengths of definitive laminated sockets (DLs) were influenced more by construction material and technique. A majority of the DLs failed to pass the ISO 10328 brittle loading criterion. Analyzing prosthetic sockets from a variety of facilities demonstrated that socket performance varies considerably between and within facilities. The results from this article provide a foundation for understanding the quality of prosthetic sockets, some insight into possible routes for improving the current care delivered to patients, and a comparative basis for future technology.
Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.
Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph
2015-09-01
The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Instrumentation on Multi-Scaled Scattering of Bio-Macromolecular Solutions
Chu, Benjamin; Fang, Dufei; Mao, Yimin
2015-01-01
The design, construction and initial tests on a combined laser light scattering and synchrotron X-ray scattering instrument can cover studies of length scales from atomic sizes in Angstroms to microns and dynamics from microseconds to seconds are presented. In addition to static light scattering (SLS), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD), the light scattering instrument is being developed to carry out studies in mildly turbid solutions, in the presence of multiple scattering. Three-dimensional photon cross correlation function (3D-PCCF) measurements have been introduced to couple with synchrotron X-ray scattering to study the structure, size and dynamics of macromolecules in solution. PMID:25946340
Tibial nerve somatosensory evoked potentials in dogs with degenerative lumbosacral stenosis.
Meij, Björn P; Suwankong, Niyada; van den Brom, Walter E; Venker-van Haagen, Anjop J; Hazewinkel, Herman A W
2006-02-01
To determine somatosensory evoked potentials (SEPs) in dogs with degenerative lumbosacral stenosis (DLS) and in healthy dogs. Clinical and experimental study. Dogs with DLS (n = 21) and 11 clinically normal dogs, age, and weight matched. Under anesthesia, the tibial nerve was stimulated at the caudolateral aspect of the stifle, and lumbar SEP (LSEP) were recorded percutaneously from S1 to T13 at each interspinous space. Cortical SEP (CSEP) were recorded from the scalp. LSEP were identified as the N1-P1 (latency 3-6 ms) and N2-P2 (latency 7-13 ms) wave complexes in the recordings of dogs with DLS and control dogs. Latency of N1-P1 increased and that of N2-P2 decreased as the active recording electrode was moved cranially from S1 to T13. Compared with controls, latencies were significantly delayed in DLS dogs: .8 ms for N1-P1 and 1.7 ms for the N2-P2 complex. CSEP were not different between groups. Surface needle recording of tibial nerve SEP can be used to monitor somatosensory nerve function of pelvic limbs in dogs. In dogs with DLS, the latency of LSEP, but not of CSEP, is prolonged compared with normal dogs. In dogs with lumbosacral pain from DLS, the cauda equina compression is sufficient to affect LSEP at the lumbar level.
Xiang, Yang; Lu, Kewei; James, Stephen L.; Borlawsky, Tara B.; Huang, Kun; Payne, Philip R.O.
2011-01-01
The Unified Medical Language System (UMLS) is the largest thesaurus in the biomedical informatics domain. Previous works have shown that knowledge constructs comprised of transitively-associated UMLS concepts are effective for discovering potentially novel biomedical hypotheses. However, the extremely large size of the UMLS becomes a major challenge for these applications. To address this problem, we designed a k-neighborhood Decentralization Labeling Scheme (kDLS) for the UMLS, and the corresponding method to effectively evaluate the kDLS indexing results. kDLS provides a comprehensive solution for indexing the UMLS for very efficient large scale knowledge discovery. We demonstrated that it is highly effective to use kDLS paths to prioritize disease-gene relations across the whole genome, with extremely high fold-enrichment values. To our knowledge, this is the first indexing scheme capable of supporting efficient large scale knowledge discovery on the UMLS as a whole. Our expectation is that kDLS will become a vital engine for retrieving information and generating hypotheses from the UMLS for future medical informatics applications. PMID:22154838
New noninvasive index for evaluation of the vascular age of healthy and sick people
NASA Astrophysics Data System (ADS)
Fine, Ilya; Kuznik, Boris I.; Kaminsky, Alexander V.; Shenkman, Louis; Kustovsjya, Evgeniya M.; Maximova, Olga G.
2012-08-01
We conducted a study on 861 healthy and sick subjects and demonstrated that some calculated parameters based on measurement of the dynamic light scattering (DLS) signal from the finger correlate highly with chronological age ranging from 1.5 to 85 years old. Measurements of DLS signals were obtained during both occlusion and nonocclusion of blood flow in the finger. For the nonocclusion case we found that the low-frequency component of the DLS signal significantly correlates with the biological age while the high-frequency component of the DLS signal resembles the arterial pulse-wave and does correlate with age. However, the most prominent correlation between the DLS characteristics and age was noted with the stasis stage measurements. We propose that the observed age-related phenomena are caused by alterations in local blood viscosity and interactions of the endothelial cells with erythrocytes. Further, a new noninvasive index based on the age-related optical characteristics was introduced. This noninvasive index may be used as a research and diagnostic tool to examine the endothelial and thrombolytic properties of the vascular system.
New noninvasive index for evaluation of the vascular age of healthy and sick people.
Fine, Ilya; Kuznik, Boris I; Kaminsky, Alexander V; Shenkman, Louis; Kustovsjya, Evgeniya M; Elena, Evgeniya M; Maximova, Olga G
2012-08-01
We conducted a study on 861 healthy and sick subjects and demonstrated that some calculated parameters based on measurement of the dynamic light scattering (DLS) signal from the finger correlate highly with chronological age ranging from 1.5 to 85 years old. Measurements of DLS signals were obtained during both occlusion and nonocclusion of blood flow in the finger. For the nonocclusion case we found that the low-frequency component of the DLS signal significantly correlates with the biological age while the high-frequency component of the DLS signal resembles the arterial pulse-wave and does correlate with age. However, the most prominent correlation between the DLS characteristics and age was noted with the stasis stage measurements. We propose that the observed age-related phenomena are caused by alterations in local blood viscosity and interactions of the endothelial cells with erythrocytes. Further, a new noninvasive index based on the age-related optical characteristics was introduced. This noninvasive index may be used as a research and diagnostic tool to examine the endothelial and thrombolytic properties of the vascular system.
Xiang, Yang; Lu, Kewei; James, Stephen L; Borlawsky, Tara B; Huang, Kun; Payne, Philip R O
2012-04-01
The Unified Medical Language System (UMLS) is the largest thesaurus in the biomedical informatics domain. Previous works have shown that knowledge constructs comprised of transitively-associated UMLS concepts are effective for discovering potentially novel biomedical hypotheses. However, the extremely large size of the UMLS becomes a major challenge for these applications. To address this problem, we designed a k-neighborhood Decentralization Labeling Scheme (kDLS) for the UMLS, and the corresponding method to effectively evaluate the kDLS indexing results. kDLS provides a comprehensive solution for indexing the UMLS for very efficient large scale knowledge discovery. We demonstrated that it is highly effective to use kDLS paths to prioritize disease-gene relations across the whole genome, with extremely high fold-enrichment values. To our knowledge, this is the first indexing scheme capable of supporting efficient large scale knowledge discovery on the UMLS as a whole. Our expectation is that kDLS will become a vital engine for retrieving information and generating hypotheses from the UMLS for future medical informatics applications. Copyright © 2011 Elsevier Inc. All rights reserved.
Yagi, Mitsuru; Hosogane, Naobumi; Watanabe, Kota; Asazuma, Takashi; Matsumoto, Morio
2016-04-01
Various factors are reported to affect the spinal alignment in degenerative lumbar scoliosis (DLS). Although trunk muscles also appear to affect spinal alignment, the role of the trunk muscles is not yet clear. The aim was to elucidate the role of the multifidus (MF) and psoas (PS) in maintaining global spinal alignment in patients with DLS. This was a multicenter retrospective matched cohort study. Surgically treated 60 paired DLS and lumbar spinal stenosis (LSS) female (120 patients), matched for age and body mass index (BMI; DLS age 68.0±6.8 vs. LSS 67.1±8.9 years; BMI 21.6±3.3 vs. 23.2±3.8 kg/m(2)), were included and were followed for at least 2 years. Spinal alignment, muscle area, and volume were measured from radiographs, magnetic resonance images (MRIs), and whole-body dual-energy X-ray absorptiometry (DXA) scans. Muscle strength was measured by grip power and peak expiratory flow (PEF). As a surrogate of muscle area, we obtained the cross-sectional area (CSA) at the L5-S level from preoperative MRIs. The MF and PS CSAs were significantly smaller in the DLS group than in the LSS group (MF 477.7±192.5 vs. 779.8±248.6 mm(2), p<.01; PS 692.3±201.2 vs. 943.4±272.4 mm(2), p=.002), whereas percentage of difference between the right and left sides was significantly larger in the DLS group (MF 18.4±30.6 vs. 2.4±3.3%, p<.01; PS 14.4±15.8 vs. 2.1±2.2%, p<.01). In the extremities, there were no significant differences in the left- or right-side lean composition and grip strength or PEF tests between the groups. Correlation coefficient tests showed moderate correlations between the MF average CSA (avCSA) and global spinal alignment and spinopelvic alignment (pelvic incidence-lumbar lordosis; R=-0.37, -0.38) in the DLS group. The MF avCSA was correlated with the postoperative progression of kyphosis at the unfused thoracic vertebrae in the DLS group (R=0.34). The CSAs of the MF and PS were significantly smaller in the DLS group. Whole-body DXA showed no significant difference in the lean composition between the groups. There were significant correlations in the DLS patients between the MF CSA and sagittal spinal alignment. These findings suggest the causal relationship between muscles and global spine alignment. Copyright © 2016 Elsevier Inc. All rights reserved.
Thermal Casimir-Polder forces on a V-type three-level atom
NASA Astrophysics Data System (ADS)
Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping
2017-09-01
We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.
Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing
Vanommeslaeghe, K.; MacKerell, A. D.
2012-01-01
Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF’s complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/. PMID:23146088
Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.
Vanommeslaeghe, K; MacKerell, A D
2012-12-21
Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .
New water soluble heterometallic complex showing unpredicted coordination modes of EDTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudsainiyan, R.K., E-mail: mudsainiyanrk@gmail.com; Jassal, A.K.; Chawla, S.K., E-mail: sukhvinder.k.chawla@gmail.com
2015-10-15
A mesoporous 3D polymeric complex (I) having formula ([Zr(IV)O-μ{sup 3}-(EDTA)Fe(III)OH]·H{sub 2}O){sub n} has been crystallized and characterized by various techniques. Single-crystal X-ray diffraction analysis revealed that complex (I) crystallized in chiral monoclinic space group Cc (space group no. 9) with unexpected coordination modes of EDTA and mixture of two transition metal ions. In this complex, the coordination number of Zr(IV) ion is seven where four carboxylate oxygen atoms, two nitrogen atoms, one oxide atom are coordinating with Zr(IV). Fe(III) is four coordinated and its coordination environment is composed of three different carboxylic oxygen atoms from three different EDTA and onemore » oxygen atom of –OH group. The structure consists of 4-c and 16-c (2-nodal) net with new topology and point symbol for net is (3{sup 36}·4{sup 54}·5{sup 30})·(3{sup 6}). TGA study and XRPD pattern showed that the coordination polymer is quite stable even after losing water molecule and –OH ion. Quenching behavior in fluorescence of ligand is observed by complexation with transition metal ions is due to n–π⁎ transition. The SEM micrograph shows the morphology of complex (I) exhibits spherical shape with size ranging from 50 to 280 nm. The minimum N{sub 2} (S{sub BET}=8.7693 m{sup 2}/g) and a maximum amount of H{sub 2} (high surface area=1044.86 m{sup 2}/g (STP)) could be adsorbed at 77 K. From DLS study, zeta potential is calculated i.e. −7.94 shows the negative charges on the surface of complex. Hirshfeld surface analysis and fingerprint plots revealed influence of weak or non bonding interactions in crystal packing of complex. - Graphical abstract: The complex (I) crystallized with unexpected coordination modes of EDTA having 4-c, 16-c net with new topology and point symbol is (3{sup 36}·4{sup 54}·5{sup 30})·(3{sup 6}). TGA study and XRPD pattern proved its stability with high preference of H{sub 2} uptake by complex. - Highlights: • 3D complex having unexpected coordination modes of EDTA with Zr(IV) and Fe(III). • The structure consists of 4-c and 16-c (2-nodal) net with new topology. • Reasonable S{sub BET} (8.7693 m{sup 2}/g) but high H{sub 2} uptake (1044.86 m{sup 2}/g) due to limited pore size. • Quenching behavior due to n–π⁎ transition by complexation with transition metal ions. • From DLS study, zeta potential value is −7.94.« less
Spontaneous lateral atomic recoil force close to a photonic topological material
NASA Astrophysics Data System (ADS)
Hassani Gangaraj, S. Ali; Hanson, George W.; Antezza, Mauro; Silveirinha, Mário G.
2018-05-01
We investigate the quantum recoil force acting on an excited atom close to the surface of a nonreciprocal photonic topological insulator (PTI). The main atomic emission channel is the unidirectional surface plasmon propagating at the PTI-vacuum interface, and we show that it enables a spontaneous lateral recoil force that scales at short distances as 1 /d4 , where d is the atom-PTI separation. Remarkably, the sign of the recoil force is polarization and orientation independent, and it occurs in a translation-invariant homogeneous system in thermal equilibrium. Surprisingly, the recoil force persists for very small values of the gyration pseudovector, which, for a biased plasma, corresponds to very low cyclotron frequencies. The ultrastrong recoil force is rooted in the quasihyperbolic dispersion of the surface plasmons. We consider both an initially excited atom and a continuous pump scenario, the latter giving rise to a steady lateral force whose direction can be changed at will by simply varying the orientation of the biasing magnetic field. Our predictions may be tested in experiments with cold Rydberg atoms and superconducting qubits.
NASA Astrophysics Data System (ADS)
Sader, John E.; Uchihashi, Takayuki; Higgins, Michael J.; Farrell, Alan; Nakayama, Yoshikazu; Jarvis, Suzanne P.
2005-03-01
Use of the atomic force microscope (AFM) in quantitative force measurements inherently requires a theoretical framework enabling conversion of the observed deflection properties of the cantilever to an interaction force. In this paper, the theoretical foundations of using frequency modulation atomic force microscopy (FM-AFM) in quantitative force measurements are examined and rigorously elucidated, with consideration being given to both 'conservative' and 'dissipative' interactions. This includes a detailed discussion of the underlying assumptions involved in such quantitative force measurements, the presentation of globally valid explicit formulae for evaluation of so-called 'conservative' and 'dissipative' forces, discussion of the origin of these forces, and analysis of the applicability of FM-AFM to quantitative force measurements in liquid.
AtomicJ: An open source software for analysis of force curves
NASA Astrophysics Data System (ADS)
Hermanowicz, Paweł; Sarna, Michał; Burda, Kvetoslava; Gabryś, Halina
2014-06-01
We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.
Integration of Multiple Data Sources to Simulate the Dynamics of Land Systems
Deng, Xiangzheng; Su, Hongbo; Zhan, Jinyan
2008-01-01
In this paper we present and develop a new model, which we have called Dynamics of Land Systems (DLS). The DLS model is capable of integrating multiple data sources to simulate the dynamics of a land system. Three main modules are incorporated in DLS: a spatial regression module, to explore the relationship between land uses and influencing factors, a scenario analysis module of the land uses of a region during the simulation period and a spatial disaggregation module, to allocate land use changes from a regional level to disaggregated grid cells. A case study on Taips County in North China is incorporated in this paper to test the functionality of DLS. The simulation results under the baseline, economic priority and environmental scenarios help to understand the land system dynamics and project near future land-use trajectories of a region, in order to focus management decisions on land uses and land use planning. PMID:27879726
Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.
Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M
2016-09-21
We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.
Multiloop atom interferometer measurements of chameleon dark energy in microgravity
NASA Astrophysics Data System (ADS)
Chiow, Sheng-wey; Yu, Nan
2018-02-01
Chameleon field is one of the promising candidates of dark energy scalar fields. As in all viable candidate field theories, a screening mechanism is implemented to be consistent with all existing tests of general relativity. The screening effect in the chameleon theory manifests its influence limited only to the thin outer layer of a bulk object, thus producing extra forces orders of magnitude weaker than that of the gravitational force of the bulk. For pointlike particles such as atoms, the depth of screening is larger than the size of the particle, such that the screening mechanism is ineffective and the chameleon force is fully expressed on the atomic test particles. Extra force measurements using atom interferometry are thus much more sensitive than bulk mass based measurements, and indeed have placed the most stringent constraints on the parameters characterizing chameleon field. In this paper, we present a conceptual measurement approach for chameleon force detection using atom interferometry in microgravity, in which multiloop atom interferometers exploit specially designed periodic modulation of chameleon fields. We show that major systematics of the dark energy force measurements, i.e., effects of gravitational forces and their gradients, can be suppressed below all hypothetical chameleon signals in the parameter space of interest.
Nonmonotonic velocity dependence of atomic friction.
Reimann, Peter; Evstigneev, Mykhaylo
2004-12-03
We propose a theoretical model for friction force microscopy experiments with special emphasis on the realistic description of dissipation and inertia effects. Its main prediction is a nonmonotonic dependence of the friction force upon the sliding velocity of the atomic force microscope tip relative to an atomically flat surface. The region around the force maximum can be approximately described by a universal scaling law and should be observable under experimentally realistic conditions.
de Souza Abreu, Nathalia; de Castro Villas Boas, Bia; Netto, José Murilo Bastos; Figueiredo, André Avarese
2017-11-01
To compare the results of the dynamic lumbopelvic stabilization (DLS) exercises with exercises for the pelvic floor muscles (PFM) in women with stress urinary incontinence. Randomized controlled clinical trial comparing 17 women submitted to the DLS with 16 women submitted to the exercises for the PFM. The evaluated outcomes were incontinence severity, quality of life (QoL), and impression of improvement in three moments. Significance was set at 5%. For socio-demographic and clinical variables, only climacteric was more prevalent in the DLS group (82% vs. 44%, P = 0.02). Soon after the intervention, there was no difference between the groups in relation to the outcomes evaluated. In the evaluation after 90 days, the DLS group presented better values for the severity of the losses (4.1 ± 2.6 vs. 5.7 ± 2.4, P = 0.006, d = 0.64), daytime frequency (4.6 ± 0.4 vs. 6.2 ± 0.6, P < 0.001, d = 2.67), and nighttime frequency (0.4 ± 0.3 vs. 1.4 ± 0.5, P < 0.001, d = 2.50), QoL and impression of improvement (P < 0.001). After treatment, the DLS plus PFM exercise patients had results similar to those performing PFM exercises alone. However, the DLS plus PFM exercises were superior in the outcomes of incontinence severity, QoL, and impression of improvement in the post-90-day evaluation, showing longer lasting effect. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.
2001-01-01
The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.
Kupferschmidt, David A; Lovinger, David M
2015-01-01
Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABAB and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 to assess presynaptic Ca2+ in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca2+ and striatal field potential recordings, we report that relative to P/Q-type Ca2+ channels, N-type channels preferentially contributed to evoked presynaptic Ca2+ influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABAB or mGlu2/3 receptors inhibited both evoked presynaptic Ca2+ transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca2+ channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires. Key points Plastic changes at cortical inputs to the dorsolateral striatum (DLS) underlie skill learning and habit formation, so characterizing the mechanisms by which these inputs are regulated is important for understanding the neural basis of action control. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 and brain slice photometry to assess evoked presynaptic Ca2+ transients in cortical inputs to the DLS and study their regulation by GABAB and mGlu2/3 receptors. GABAB and mGlu2/3 receptor activation caused clear reductions in electrical stimulus-evoked presynaptic Ca2+ transients in corticostriatal inputs to the DLS. Functional P/Q-type voltage-gated Ca2+ channels were required for the normal inhibitory action of corticostriatal mGlu2/3 receptors. We provide direct evidence of presynaptic Ca2+ inhibition by G protein-coupled receptors at corticostriatal projections. PMID:25781000
NASA Astrophysics Data System (ADS)
Schlupf, Chandler; Niederriter, Robert; Bohr, Eliot; Khamis, Sami; Park, Youna; Szwed, Erik; Hamilton, Paul
2017-04-01
Atom interferometry has been used in many precision measurements such as Newton's gravitational constant, the fine structure constant, and tests of the equivalence principle. We will perform atom interferometry in an optical lattice to measure the force felt by an atom due to a test mass in search of new forces suggested by dark matter and dark energy theories. We will be developing a new apparatus using laser-cooled ytterbium to continuously measure this force by observing their Bloch oscillations. Interfering atoms in an optical lattice allows continuous measurements in a small volume over a long period of time, enabling our device to be sensitive to time-varying forces while minimizing vibrational noise. We present the details of this experiment and the progress on it thus far.
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
NASA Astrophysics Data System (ADS)
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
NASA Astrophysics Data System (ADS)
Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.
2015-05-01
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.
Surface Biology of DNA by Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Hansma, Helen G.
2001-10-01
The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.
Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains.
Sabater, Carlos; Untiedt, Carlos; van Ruitenbeek, Jan M
2015-01-01
This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a 'Berry force'. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.
Phase modulation atomic force microscope with true atomic resolution
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Kilpatrick, Jason I.; Jarvis, Suzanne P.
2006-12-01
We have developed a dynamic force microscope (DFM) working in a novel operation mode which is referred to as phase modulation atomic force microscopy (PM-AFM). PM-AFM utilizes a fixed-frequency excitation signal to drive a cantilever, which ensures stable imaging even with occasional tip crash and adhesion to the surface. The tip-sample interaction force is detected as a change of the phase difference between the cantilever deflection and excitation signals and hence the time response is not influenced by the Q factor of the cantilever. These features make PM-AFM more suitable for high-speed imaging than existing DFM techniques such as amplitude modulation and frequency modulation atomic force microscopies. Here we present the basic principle of PM-AFM and the theoretical limit of its performance. The design of the developed PM-AFM is described and its theoretically limited noise performance is demonstrated. Finally, we demonstrate the true atomic resolution imaging capability of the developed PM-AFM by imaging atomic-scale features of mica in water.
Usui, Kenji; Yokota, Shin-Ichiro; Ozaki, Makoto; Sakashita, Shungo; Imai, Takahito; Tomizaki, Kin-Ya
2018-01-01
A core sequence (the 9 C-terminal residues) of calcification-associated peptide (CAP- 1) isolated from the exoskeleton of the red swamp crayfish was previously shown to control calcium carbonate precipitation with chitin. In addition, a modified core sequence in which the phosphorylated serine at the N terminus is replaced with serine exhibits was also previously shown to alter precipitation characteristics with chitin. We focused on calcium carbonate precipitation and attempted to elucidate aspects of the mechanism underlying mineralization. We attempted to evaluate in detail the effects of modifying the N-terminus in the core sequence on calcium carbonate mineralization without chitin. The peptide modifications included phosphorylation, dephosphorylation, and a free or acetylated Nterminus. The peptides were synthesized manually on Wang resin using the DIPCI-DMAP method for the first residue, and Fmoc solid phase peptide synthesis with HBTU-HOBt for the subsequent residues. Prior to calcium carbonate precipitation, calcium carbonate was suspended in MilliQ water. Carbon dioxide gas was bubbled into the stirred suspension, then the remaining solid CaCO3 was removed by filtration. The concentration of calcium ions in the solution was determined by standard titration with ethylenediaminetetraacetate. Calcium carbonate precipitation was conducted in a micro tube for 3 h at 37°C. We used the micro-scale techniques AFM (atomic force microscopy) and TEM (transmission electron microscopy), and the macro-scale techniques chelate titration, HPLC, gel filtration, CD (circular dichroism) and DLS (dynamic light scattering). We determined the morphologies of the calcium carbonate deposits using AFM and TEM. The pS peptide provided the best control of the shape and size of the calcium carbonate round particles. The acetylated peptides (Ac-S and Ac-pS) provided bigger particles with various shapes. S peptide provided a mixture of bigger particles and amorphous particles. We verified these findings using DLS. All the peptide samples produced nanostructures of the expected size in agreement with the AFM and TEM results. We estimated the abilities of these peptides to precipitate calcium carbonate by determining the residual calcium hydrogen carbonate concentration by standard titration with ethylenediaminetetraacetate after calcium carbonate precipitation. The Ac-pS peptide showed the lowest residual calcium hydrogen carbonate concentration whereas the S peptide showed the highest, suggesting that the precipitating activities of these peptides towards calcium carbonate correlated with peptide net charge. Then the gel filtration results showed a large oligomer peak and a small oligomer/monomer peak for all peptide samples in agreement with the AFM, TEM and DLS results. CD measurements showed that all the peptides formed random-coil-like structures. Thus, we used both macro- and micro-observation techniques such as chelate titration, DLS, AFM and TEM to show that the calcium carbonate precipitating activities of four derivatives of the core sequence of CAP-1 may correlate with the peptide net charge. These peptides mainly act as a catalyst rather than as a binder or component of the calcium carbonate deposits (as a template). On the other hand, the morphologies of the calcium carbonate deposits appeared to be dependent on the ability of the peptide to assemble and act as a template. Consequently, elucidating the relationship between peptide sequence and the ability of the peptide to assemble would be indispensable for controlling precipitate morphologies in the near future. This knowledge would provide important clues for elucidating the relationship between peptide sequence and mineralization ability, including deposit morphology and precipitating activity, for use in nanobiochemistry and materials chemistry research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Spectroscopic study of binding of chlorogenic acid with the surface of ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae
2017-09-01
Understanding the interaction properties of biological materials with ZnO NPs is fundamental interest in the field of biotechnological applications as well as in the formation of optoelectronic devices. In this research, the binding of ZnO NPs and chlorogenic acid (CGA) were investigated using fluorescence quenching, UV-Vis absorption spectroscopy, Fourier transform infrared (FTIR), Raman spectroscopy, scanning electron microscopy (TEM), and dynamic light scattering (DLS) techniques. The study results indicated the fluorescence quenching between ZnO NPs and CGA rationalized in terms of static quenching mechanism or the formation of nonfluorescent CGA-ZnO. From fluorescence quenching spectral analysis the binding constant ( K a ), number of binding sites ( n), and thermodynamic properties, were determined. The quenching constants ( K sv) and binding constant ( K a ), decrease with increasing the temperature and their binding sites n are 2. The thermodynamic parameters determined using Van't Hoff equation indicated binding occurs spontaneously involving the hydrogen bond and van der Walls forces played the major role in the reaction of ZnO NPs with CGA. The Raman, SEM, DLS, and Zeta potential measurements were also indicated the differences in the structure, morphology and sizes of CGA, ZnO NPs, and their corresponding CGA-ZnO due to adsorption of CGA on the surface of ZnO NPs
Vargas, Susana; Millán-Chiu, Blanca E; Arvizu-Medrano, Sofía M; Loske, Achim M; Rodríguez, Rogelio
2017-06-01
A comparison between plate counting (PC) and dynamic light scattering (DLS) is reported. PC is the standard technique to determine bacterial population as a function of time; however, this method has drawbacks, such as the cumbersome preparation and handling of samples, as well as the long time required to obtain results. Alternative methods based on optical density are faster, but do not distinguish viable from non-viable cells. These inconveniences are overcome by using DLS. Two different bacteria strains were considered: Escherichia coli and Staphylococcus aureus. DLS was performed at two different illuminating conditions: continuous and intermittent. By the increment of particle size as a function of time, it was possible to observe cell division and the formation of aggregates containing very few bacteria. The scattered intensity profiles showed the lag phase and the transition to the exponential phase of growth, providing a quantity proportional to viable bacteria concentration. The results revealed a clear and linear correlation in both lag and exponential phase, between the Log 10 (colony-forming units/mL) from PC and the Log 10 of the scattered intensity I s from DLS. These correlations provide a good support to use DLS as an alternative technique to determine bacterial population. Copyright © 2017 Elsevier B.V. All rights reserved.
Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways
Alloway, Kevin D.; Smith, Jared B.; Mowery, Todd M.; Watson, Glenn D. R.
2017-01-01
The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS) region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS) region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R) associations, neurons in DLS receive massive inputs from sensorimotor cortex and are responsive to both active and passive sensory stimulation. While several studies have established that corticostriatal inputs contribute to the stimulus-induced responses observed in the DLS, there is growing awareness that the thalamus has a significant role in conveying sensory-related information to DLS and other parts of the striatum. The thalamostriatal projections to DLS originate mainly from the caudal intralaminar region, which contains the parafascicular (Pf) nucleus, and from higher-order thalamic nuclei such as the medial part of the posterior (POm) nucleus. Based on recent findings, we hypothesize that the thalamostriatal projections from these two regions exert opposing influences on the expression of behavioral habits. This article reviews the subcortical circuits that regulate the transmission of sensory information through these thalamostriatal projection systems, and describes the evidence that indicates these circuits could be manipulated to ameliorate the symptoms of Parkinson’s disease (PD) and related neurological disorders. PMID:28790899
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
Neuman, Keir C.; Nagy, Attila
2012-01-01
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917
Engelhardt, Konrad H; Pinnapireddy, Shashank Reddy; Baghdan, Elias; Jedelská, Jarmila; Bakowsky, Udo
2017-01-01
Lipid vectors are commonly used to facilitate the transfer of nucleic acids into mammalian cells. In this study, two fractions of tetraether lipids from the archaea Sulfolobus acidocaldarius were extracted and purified using different methods. The purified lipid fractions polar lipid fraction E (PLFE) and hydrolysed glycerol-dialkyl-nonitol tetraether (hGDNT) differ in their structures, charge, size, and miscibility from conventional lipids. Liposomes were prepared by mixing tetraether lipids with cholesterol (CH) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) resulting in stable vectors for gene delivery. Lipoplexes were prepared by complexation of liposomes with a luciferase expressing plasmid (pCMV-luc) at certain nitrogen-to-phosphorus (N/P) ratios and optimised for the transient transfection of ovarian adenocarcinoma cells (SK-OV-3). Complexation efficacy was investigated by gel-red fluorescence assay. Biophysical properties, like size, surface charge, and morphology, were investigated by differential light scattering (DLS), atomic force microscopy (AFM), and scanning electron microscopy (Cryo-SEM), respectively, revealing structural differences between liposomes and lipoplexes. A range of stable transfecting agents containing tetraether lipids were obtained by incorporating 5 mol% of tetraether lipids. Lipoplexes showed a decrease in free gel-red with increasing N/P ratios indicating efficient incorporation of plasmid DNA (pDNA) and remarkable stability. Transfection experiments of the lipoplexes revealed successful and superior transfection of SK-OV-3 cell line compared to the commercially available DOTAP and branched polyethyleneimine (25 kDa bPEI).
Pinnapireddy, Shashank Reddy; Baghdan, Elias; Jedelská, Jarmila
2017-01-01
Lipid vectors are commonly used to facilitate the transfer of nucleic acids into mammalian cells. In this study, two fractions of tetraether lipids from the archaea Sulfolobus acidocaldarius were extracted and purified using different methods. The purified lipid fractions polar lipid fraction E (PLFE) and hydrolysed glycerol-dialkyl-nonitol tetraether (hGDNT) differ in their structures, charge, size, and miscibility from conventional lipids. Liposomes were prepared by mixing tetraether lipids with cholesterol (CH) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) resulting in stable vectors for gene delivery. Lipoplexes were prepared by complexation of liposomes with a luciferase expressing plasmid (pCMV-luc) at certain nitrogen-to-phosphorus (N/P) ratios and optimised for the transient transfection of ovarian adenocarcinoma cells (SK-OV-3). Complexation efficacy was investigated by gel-red fluorescence assay. Biophysical properties, like size, surface charge, and morphology, were investigated by differential light scattering (DLS), atomic force microscopy (AFM), and scanning electron microscopy (Cryo-SEM), respectively, revealing structural differences between liposomes and lipoplexes. A range of stable transfecting agents containing tetraether lipids were obtained by incorporating 5 mol% of tetraether lipids. Lipoplexes showed a decrease in free gel-red with increasing N/P ratios indicating efficient incorporation of plasmid DNA (pDNA) and remarkable stability. Transfection experiments of the lipoplexes revealed successful and superior transfection of SK-OV-3 cell line compared to the commercially available DOTAP and branched polyethyleneimine (25 kDa bPEI). PMID:28239294
A multifunctional magneto-fluorescent nanocomposite for visual recognition of targeted cancer cells
NASA Astrophysics Data System (ADS)
Acharya, Amitabha; Rawat, Kiran; Bhat, Kaisar Ahmad; Patial, Vikram; Padwad, Yogendra S.
2015-11-01
A multifunctional hybrid nanocomposite material of iron oxide nanoparticles and CdS quantum dots was synthesized by a direct amide coupling reaction. The prepared nanoparticles were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential studies. The TEM studies suggested that the sizes of the particles were in the range of 13.5 ± 1 nm. The energy dispersive x-ray (EDX) analysis confirmed the presence of Fe, Cd and S in the nanocomposites. To check the utility of this nanocomposite as a molecular imaging probe, these nanoparticles were further conjugated with folic acid. The folic acid conjugated nanocomposites were treated with rat glioma cells (C6, folic acid receptor over-expressing cell lines), human lung adenocarcinoma epithelial cells (A549, folic acid receptor negative cell lines) and normal mouse splenocytes for cell uptake and cytotoxicity studies. The nanoparticle internalization to C6 cells was confirmed by green fluorescence emission from these cells. Prussian blue staining studies suggested the intracellular presence of iron oxide. Further it was found that folic acid conjugated nanocomposites were significantly toxic to C6 cells only after 48 h but not to A549 cells or splenocytes. These studies indicated that the prepared nanocomposites have the potential to be used as delivery agent for magnetic and fluorescent materials towards folic acid receptor over-expressing cells and thus can find their application in the field of in vitro imaging diagnosis.
Microbial mediated preparation, characterization and optimization of gold nanoparticles
Barabadi, Hamed; Honary, Soheila; Ebrahimi, Pouneh; Mohammadi, Milad Ali; Alizadeh, Ahad; Naghibi, Farzaneh
2014-01-01
The need for eco-friendly and cost effective methods for nanoparticles synthesis is developing interest in biological approaches which are free from the use of toxic chemicals as byproducts. This study aimed to biosynthesize and optimize the size of gold nanoparticles which produced by biotechnological method using Penicillium crustosum isolated from soil. Initially, Penicillium crustosum was grown in fluid czapek dox broth on shaker at 28 °C and 200 rpm for ten days and then the supernatant was separated from the mycelia to convert AuCl4 solution into gold nanoparticles. The synthesized nanoparticles in the optimum conditions were formed with fairly well-defined dimensions and good monodispersity. The characterizations were done by using different methods (UV-Visible Spectroscopy, Fluorescence, FT-IR, AFM (Atomic Force Microscopy) and DLS (Dynamic Light Scattering). The bioconversion was optimized by Box-Behnken experimental design. The results show that the effective factors in this process were concentration of AuCl4, pH of medium and temperature of shaker incubator. The R2 value was calculated to be 0.9999 indicating the accuracy and ability of the polynomial model. It can be concluded that the use of multivariate analysis facilitated to find out the optimum conditions for the biosynthesis of gold nanoparticles induced by Penicillium crustosum in a time and cost effective process. The current approach suggested that rapid synthesis of gold nanoparticles would be suitable for developing a biological process for mass scale production of formulations. PMID:25763059
Microbial mediated preparation, characterization and optimization of gold nanoparticles.
Barabadi, Hamed; Honary, Soheila; Ebrahimi, Pouneh; Mohammadi, Milad Ali; Alizadeh, Ahad; Naghibi, Farzaneh
2014-01-01
The need for eco-friendly and cost effective methods for nanoparticles synthesis is developing interest in biological approaches which are free from the use of toxic chemicals as byproducts. This study aimed to biosynthesize and optimize the size of gold nanoparticles which produced by biotechnological method using Penicillium crustosum isolated from soil. Initially, Penicillium crustosum was grown in fluid czapek dox broth on shaker at 28 °C and 200 rpm for ten days and then the supernatant was separated from the mycelia to convert AuCl₄ solution into gold nanoparticles. The synthesized nanoparticles in the optimum conditions were formed with fairly well-defined dimensions and good monodispersity. The characterizations were done by using different methods (UV-Visible Spectroscopy, Fluorescence, FT-IR, AFM (Atomic Force Microscopy) and DLS (Dynamic Light Scattering). The bioconversion was optimized by Box-Behnken experimental design. The results show that the effective factors in this process were concentration of AuCl₄, pH of medium and temperature of shaker incubator. The R(2) value was calculated to be 0.9999 indicating the accuracy and ability of the polynomial model. It can be concluded that the use of multivariate analysis facilitated to find out the optimum conditions for the biosynthesis of gold nanoparticles induced by Penicillium crustosum in a time and cost effective process. The current approach suggested that rapid synthesis of gold nanoparticles would be suitable for developing a biological process for mass scale production of formulations.
Johnson, Monique E; Montoro Bustos, Antonio R; Winchester, Michael R
2016-11-01
Single particle inductively coupled plasma mass spectrometry (spICP-MS) is shown to be a practical technique to study the efficacy of rate-zonal sucrose density gradient centrifugation (SDGC) separations of mixtures of gold nanoparticles (AuNPs) in liquid suspension. spICP-MS enabled measurements of AuNP size distributions and particle number concentrations along the gradient, allowing unambiguous evaluations of the effectiveness of the separation. Importantly, these studies were conducted using AuNP concentrations that are directly relevant to environmental studies (sub ng mL -1 ). At such low concentrations, other techniques [e.g., dynamic light scattering (DLS), transmission and scanning electron microscopies (TEM and SEM), UV-vis spectroscopy, atomic force microscopy (AFM)] do not have adequate sensitivity, highlighting the inherent value of spICP-MS for this and similar applications. In terms of the SDGC separations, a mixture containing three populations of AuNPs, having mean diameters of 30, 80, and 150 nm, was fully separated, while separations of two other mixtures (30, 60, 100 nm; and 20, 50, 100 nm) were less successful. Finally, it is shown that the separation capacity of SDGC can be overwhelmed when particle number concentrations are excessive, an especially relevant finding in view of common methodologies taken in nanotechnology research. Graphical Abstract Characterization of the separation of a gold nanoparticle mixture by sucrose density gradient centrifugation by conventional and single particle ICP-MS analysis.
Pietralik, Zuzanna; Kumita, Janet R; Dobson, Christopher M; Kozak, Maciej
2015-07-01
Very important to gene therapy is the delivery system of the nucleic acids (called a vector), which will enhance the efficiency of the transport of new DNA into cells whilst protecting against damage. A promising alternative to the currently used viral vectors are the systems based on amphiphilic compounds - lipoplexes. Among them, gemini surfactants, which consist of two hydrophobic chains and two cationic heads connected by a linker - spacer group, appear to be promising candidates. The subject of this study involves two gemini surfactants, alkoxy derivatives of bis-imidazolium quaternary salts, differing in the length of their spacer groups and how they interact with two types of salmon sperm DNA (low and high molecular weight (MW)) or plasmid DNA (pDNA). The mixtures of gemini surfactants with nucleic acids of differing p/n ratios (positive-to-negative charge ratio) were characterised by small angle X-ray scattering (SAXS) of synchrotron radiation, dynamic light scattering (DLS), circular dichroism (CD) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and gel electrophoresis techniques. This analysis allows for the selection of the most suitable and promising candidates for non-viral vectors in gene therapy, determination of the conditions needed to form stable complexes, identification of conformational changes in the DNA molecules upon interactions with gemini surfactants and in some cases, determination of the structures formed in these lipoplexes. Copyright © 2015 Elsevier B.V. All rights reserved.
Optimization of classical nonpolarizable force fields for OH(-) and H3O(+).
Bonthuis, Douwe Jan; Mamatkulov, Shavkat I; Netz, Roland R
2016-03-14
We optimize force fields for H3O(+) and OH(-) that reproduce the experimental solvation free energies and the activities of H3O(+) Cl(-) and Na(+) OH(-) solutions up to concentrations of 1.5 mol/l. The force fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the optimized H3O(+) force field is 0.8 ± 0.1|e|--significantly higher than the value typically used for nonpolarizable water models and H3O(+) force fields. In contrast, the optimal partial charge on the hydrogen atom of OH(-) turns out to be zero. Standard combination rules can be used for H3O(+) Cl(-) solutions, while for Na(+) OH(-) solutions, we need to significantly increase the effective anion-cation Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results show that it is possible to generate thermodynamically consistent force fields without using atomic polarizability.
40 CFR 63.8540 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2010 CFR
2010-07-01
... retrofitting with a dry lime injection fabric filter (DIFF), dry lime scrubber/fabric filter (DLS/FF), or wet... fired product to meet the relevant standards by retrofitting with a DIFF, DLS/FF, or WS. (g) An affected...
Lim, Kee Siang; Mimura, Kosaku; Kua, Ley-Fang; Shiraishi, Kensuke; Kono, Koji
2018-04-20
Esophageal squamous cell carcinoma (ESCC) is an aggressive upper gastrointestinal cancer and effective treatments are limited. Previous studies reported that natural killer (NK) cells expanded by coculturing with K562-mb15-41BBL feeder cells, a genetically modified K562 leukemia cell line that expresses membrane-bound interleukin (IL)-15 and 41BBL ligand, were highly proliferative and highly cytotoxic. Here, we investigated the potential of expanded NK cells for ESCC treatment. We analyzed both genetic and surface expression levels of NKG2D ligands (NKG2DLs) in ESCC using publicly available microarray data sets and ESCC cell lines. The cytotoxicity of resting and of IL-2-activated NK cells against ESCC cell lines was compared with that of expanded NK cells. We then also investigated the effect of epithelial mesenchymal transition (EMT) inducers, GSK3β inhibitor and epidermal growth factor, on NKG2DLs expressions. As a result, MICA and MICB were significantly overexpressed in ESCC compared with adjacent normal tissues and surface NKG2DLs were expressed in ESCC cell lines. Expanded NK cells were much potent than IL-2-activated and resting NK cells against ESCC cell lines. Blocking of NKG2D with anti-NKG2D monoclonal antibody dampened expanded NK cell cytotoxicity, suggesting that the NKG2DLs-NKG2D interaction is crucial for NK cells to eliminate ESCC cells. EMT inducers concurrently induced EMT and NKG2DLs expression in ESCC cell lines rendering transitioned cells more sensitive to expanded NK cells. In conclusion, expanded NK cells were highly cytotoxic against NKG2DLs-expressing ESCC cells, particularly the EMT phenotype. These results provide a strong rationale for clinical use of these NK cells in ESCC patients.
Hierarchical atom type definitions and extensible all-atom force fields.
Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai
2016-03-15
The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy
NASA Astrophysics Data System (ADS)
Naitoh, Yoshitaka; Turanský, Robert; Brndiar, Ján; Li, Yan Jun; Štich, Ivan; Sugawara, Yasuhiro
2017-07-01
Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions, probing nanostructures via atomic or molecular manipulation, and provide insights into the behaviour of nano-machines on substrates.
Van der Waals interactions and the limits of isolated atom models at interfaces
Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst
2016-01-01
Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar–Xe, Kr–Xe and Xe–Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal–organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162
Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy
ERIC Educational Resources Information Center
Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.
2015-01-01
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…
2015-03-25
lime glass, the polyhedron -center atoms are all silicon and each silicon atom is surrounded by four oxygen atoms (while each oxygen atom is connected...of metallic force-field functions (in the pure metallic environment) within the force-field function database used in the present work. Consequently
Pathway-Specific Striatal Substrates for Habitual Behavior.
O'Hare, Justin K; Ade, Kristen K; Sukharnikova, Tatyana; Van Hooser, Stephen D; Palmeri, Mark L; Yin, Henry H; Calakos, Nicole
2016-02-03
The dorsolateral striatum (DLS) is implicated in habit formation. However, the DLS circuit mechanisms underlying habit remain unclear. A key role for DLS is to transform sensorimotor cortical input into firing of output neurons that project to the mutually antagonistic direct and indirect basal ganglia pathways. Here we examine whether habit alters this input-output function. By imaging cortically evoked firing in large populations of pathway-defined striatal projection neurons (SPNs), we identify features that strongly correlate with habitual behavior on a subject-by-subject basis. Habitual behavior correlated with strengthened DLS output to both pathways as well as a tendency for action-promoting direct pathway SPNs to fire before indirect pathway SPNs. In contrast, habit suppression correlated solely with a weakened direct pathway output. Surprisingly, all effects were broadly distributed in space. Together, these findings indicate that the striatum imposes broad, pathway-specific modulations of incoming activity to render learned motor behaviors habitual. Copyright © 2016 Elsevier Inc. All rights reserved.
A Survey of Complex Object Technologies for Digital Libraries
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Argue, Brad; Efron, Miles; Denn, Sheila; Pattuelli, Maria Cristina
2001-01-01
Many early web-based digital libraries (DLs) had implicit assumptions reflected in their architecture that the unit of focus in the DL (frequently "reports" or "e-prints") would only be manifested in a single, or at most a few, common file formats such as PDF or PostScript. DLs have now matured to the point where their contents are commonly no longer simple files. Complex objects in DLs have emerged from in response to various requirements, including: simple aggregation of formats and supporting files, bundling additional information to aid digital preservation, creating opaque digital objects for e-commerce applications, and the incorporation of dynamic services with the traditional data files. We examine a representative (but not necessarily exhaustive) number of current and recent historical web-based complex object technologies and projects that are applicable to DLs: Aurora, Buckets, ComMentor, Cryptolopes, Digibox, Document Management Alliance, FEDORA, Kahn-Wilensky Framework Digital Objects, Metadata Encoding & Transmission Standard, Multivalent Documents, Open eBooks, VERS Encapsulated Objects, and the Warwick Framework.
Daubs, Michael D; Brara, Harsimran S; Raaen, Laura B; Chen, Peggy Guey-Chi; Anderson, Ashaunta T; Asch, Steven M; Nuckols, Teryl K
2018-05-01
Degenerative lumbar scoliosis (DLS) is often associated with sagittal imbalance, which may affect patients' health outcomes before and after surgery. The appropriateness of surgery and preferred operative approaches has not been examined in detail for patients with DLS and sagittal imbalance. The goals of this article were to describe what is currently known about the relationship between sagittal imbalance and health outcomes among patients with DLS and to determine how indications for surgery in patients with DLS differ when sagittal imbalance is present. This study included a literature review and an expert panel using the RAND/University of California at Los Angeles (UCLA) Appropriateness Method. To develop appropriate use criteria for DLS, researchers at the RAND Corporation recently employed the RAND/UCLA Appropriateness Method, which involves a systematic review of the literature and multidisciplinary expert panel process. Experts reviewed a synopsis of published literature and rated the appropriateness of five common operative approaches for 260 different clinical scenarios. In the present work, we updated the literature review and compared panelists' ratings in scenarios where imbalance was present versus absent. This work was funded by the Collaborative Spine Research Foundation, a group of surgical specialty societies and device manufacturers. On the basis of 13 eligible studies that examined sagittal imbalance and outcomes in patients with DLS, imbalance was associated with worse functional status in the absence of surgery and worse symptoms and complications postoperatively. Panelists' ratings demonstrated a consistent pattern across the diverse clinical scenarios. In general, when imbalance was present, surgery was more likely to be appropriate or necessary, including in some situations where surgery would otherwise be inappropriate. For patients with moderate to severe symptoms and imbalance, a deformity correction procedure was usually appropriate and frequently necessary, except in some patients with severe risk factors for complications. Conversely, procedures that did not correct imbalance, when present, were usually inappropriate. Clinical experts agreed that sagittal imbalance is a major factor affecting both when surgery is appropriate and which type of procedure is preferred among patients with DLS. Copyright © 2018 Elsevier Inc. All rights reserved.
Quantitative force measurements in liquid using frequency modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Uchihashi, Takayuki; Higgins, Michael J.; Yasuda, Satoshi; Jarvis, Suzanne P.; Akita, Seiji; Nakayama, Yoshikazu; Sader, John E.
2004-10-01
The measurement of short-range forces with the atomic force microscope (AFM) typically requires implementation of dynamic techniques to maintain sensitivity and stability. While frequency modulation atomic force microscopy (FM-AFM) is used widely for high-resolution imaging and quantitative force measurements in vacuum, quantitative force measurements using FM-AFM in liquids have proven elusive. Here we demonstrate that the formalism derived for operation in vacuum can also be used in liquids, provided certain modifications are implemented. To facilitate comparison with previous measurements taken using surface forces apparatus, we choose a model system (octamethylcyclotetrasiloxane) that is known to exhibit short-ranged structural ordering when confined between two surfaces. Force measurements obtained are found to be in excellent agreement with previously reported results. This study therefore establishes FM-AFM as a powerful tool for the quantitative measurement of forces in liquid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nouioui, Imen; Göker, Markus; Carro, Lorena
Nakamurella lactea DLS-10 T , isolated from rock in Korea, is one of the four type strains of the genus Nakamurella. In this study, we describe the high quality draft genome of N. lactea DLS-10 T and its annotation. A summary of phenotypic data collected from previously published studies was also included. The genome of strain DLS-10 T presents a size of 5.82 Mpb, 5100 protein coding genes, and a C + G content of 68.9%. Based on the genome analysis, emended description of N. lactea in terms of G + C content was also proposed.
Nouioui, Imen; Göker, Markus; Carro, Lorena; ...
2017-01-06
Nakamurella lactea DLS-10 T , isolated from rock in Korea, is one of the four type strains of the genus Nakamurella. In this study, we describe the high quality draft genome of N. lactea DLS-10 T and its annotation. A summary of phenotypic data collected from previously published studies was also included. The genome of strain DLS-10 T presents a size of 5.82 Mpb, 5100 protein coding genes, and a C + G content of 68.9%. Based on the genome analysis, emended description of N. lactea in terms of G + C content was also proposed.
Direct Writing of Graphene-based Nanoelectronics via Atomic Force Microscopy
2012-05-07
To) 07-05-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Direct Writing of Graphene -based Nanoelectronics via Atomic Force Microscopy 5b. GRANT...ABSTRACT This project employs direct writing with an atomic force microscope (AFM) to fabricate simple graphene -based electronic components like resistors...and transistors at nanometer-length scales. The goal is to explore their electrical properties for graphene -based electronics. Conducting
Single Body Parts are Processed by Individual Neurons in the Mouse Dorsolateral Striatum
Coffey, Kevin R.; Nader, Miles; West, Mark O.
2016-01-01
Interest in the dorsolateral striatum (DLS) has generated numerous scientific studies of its neuropathologies, as well as its roles in normal sensorimotor integration and learning. Studies are informed by knowledge of DLS functional organization, the guiding principle being its somatotopic afferent projections from primary somatosensory (S1) and motor (M1) cortices. The potential to connect behaviorally relevant function to detailed structure is elevated by mouse models, which have access to extensive genetic neuroscience tool kits. Remaining to be demonstrated, however, is whether the correspondence between S1/M1 corticostriatal terminal distributions and the physiological properties of DLS neurons demonstrated in rats and non-human primates exists in mice. Given that the terminal distribution of S1/M1 projections to the DLS in mice is similar to that in rats, we studied whether firing rates (FRs) of DLS neurons in awake, behaving mice are related to activity of individual body parts. MSNs exhibited robust, selective increases in FR during movement or somatosensory stimulation of single body parts. Properties of MSNs, including baseline FRs, locations, responsiveness to stimulation, and proportions of responsive neurons were similar to properties observed in rats. Future studies can be informed by the present demonstration that the mouse lateral striatum functions as a somatic sensorimotor sector of the striatum and appears to be a homolog of the primate putamen, as demonstrated in rats (Carelli and West, 1991). PMID:26827625
Alin, Jonas; Rubino, Maria; Auras, Rafael
2015-06-01
Ultraviolet-visible (UV-Vis) spectroscopy methodology was developed and utilized for the in situ nanoscale measurement of the size of mineral clay agglomerates in various liquid suspensions. The clays studied were organomodified and unmodified montmorillonite clays (I.44p, Cloisite 93a, and PGN). The methodology was compared and validated against dynamic light scattering (DLS) analysis. The method was able to measure clay agglomerates in solvents in situations where DLS analysis was unsuccessful due to the shapes, polydispersity, and high aspect ratios of the clay particles and the complexity of the aggregates, or dispersion medium. The measured clay agglomerates in suspension were found to be in the nanometer range in the more compatible solvents, and their sizes correlated with the Hansen solubility parameter space distance between the clay modifiers and the solvents. Mass detection limits for size determination were in the range from 1 to 9 mg/L. The methodology thus provides simple, rapid, and inexpensive characterization of clays or particles in the nano- or microsize range in low concentrations in various liquid media, including complex mixtures or highly viscous fluids that are difficult to analyze with DLS. In addition, by combining UV-VIS spectroscopy with DLS it was possible to discern flocculation behavior in liquids, which otherwise could result in false size measurements by DLS alone.
Radical Chemistry and Charge Manipulation with an Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Gross, Leo
The fuctionalization of tips by atomic manipulation dramatically increased the resolution of atomic force microscopy (AFM). The combination of high-resolution AFM with atomic manipulation now offers the unprecedented possibility to custom-design individual molecules by making and breaking bonds with the tip of the microscope and directly characterizing the products on the atomic scale. We recently applied this technique to generate and study reaction intermediates and to investigate chemical reactions trigged by atomic manipulation. We formed diradicals by dissociating halogen atoms and then reversibly triggered ring-opening and -closing reactions via atomic manipulation, allowing us to switch and control the molecule's reactivity, magnetic and optical properties. Additional information about charge states and charge distributions can be obtained by Kelvin probe force spectroscopy. On multilayer insulating films we investigated single-electron attachment, detachment and transfer between individual molecules. EU ERC AMSEL (682144), EU project PAMS (610446).
MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields
Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.
2011-01-01
We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689
Quantum Chemical Topology: Knowledgeable atoms in peptides
NASA Astrophysics Data System (ADS)
Popelier, Paul L. A.
2012-06-01
The need to improve atomistic biomolecular force fields remains acute. Fortunately, the abundance of contemporary computing power enables an overhaul of the architecture of current force fields, which typically base their electrostatics on fixed atomic partial charges. We discuss the principles behind the electrostatics of a more realistic force field under construction, called QCTFF. At the heart of QCTFF lies the so-called topological atom, which is a malleable box, whose shape and electrostatics changes in response to a changing environment. This response is captured by a machine learning method called Kriging. Kriging directly predicts each multipole moment of a given atom (i.e. the output) from the coordinates of the nuclei surrounding this atom (i.e. the input). This procedure yields accurate interatomic electrostatic energies, which form the basis for future-proof progress in force field design.
Atomic force microscopy as a tool for the investigation of living cells.
Morkvėnaitė-Vilkončienė, Inga; Ramanavičienė, Almira; Ramanavičius, Arūnas
2013-01-01
Atomic force microscopy is a valuable and useful tool for the imaging and investigation of living cells in their natural environment at high resolution. Procedures applied to living cell preparation before measurements should be adapted individually for different kinds of cells and for the desired measurement technique. Different ways of cell immobilization, such as chemical fixation on the surface, entrapment in the pores of a membrane, or growing them directly on glass cover slips or on plastic substrates, result in the distortion or appearance of artifacts in atomic force microscopy images. Cell fixation allows the multiple use of samples and storage for a prolonged period; it also increases the resolution of imaging. Different atomic force microscopy modes are used for the imaging and analysis of living cells. The contact mode is the best for cell imaging because of high resolution, but it is usually based on the following: (i) image formation at low interaction force, (ii) low scanning speed, and (iii) usage of "soft," low resolution cantilevers. The tapping mode allows a cell to behave like a very solid material, and destructive shear forces are minimized, but imaging in liquid is difficult. The force spectroscopy mode is used for measuring the mechanical properties of cells; however, obtained results strongly depend on the cell fixation method. In this paper, the application of 3 atomic force microscopy modes including (i) contact, (ii) tapping, and (iii) force spectroscopy for the investigation of cells is described. The possibilities of cell preparation for the measurements, imaging, and determination of mechanical properties of cells are provided. The applicability of atomic force microscopy to diagnostics and other biomedical purposes is discussed.
Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter
2018-06-01
There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.
Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2004-07-01
It is widely recognized that small amplitude frequency modulation atomic force microscopy probes the derivative of the interaction force between tip and sample. For large amplitudes, however, such a physical connection is currently lacking, although it has been observed that the frequency shift presents a quantity intermediate to the interaction force and energy for certain force laws. Here we prove that these observations are a universal property of large amplitude frequency modulation atomic force microscopy, by establishing that the frequency shift is proportional to the half-fractional integral of the force, regardless of the force law. This finding indicates that frequency modulation atomic force microscopy can be interpreted as a fractional differential operator, where the order of the derivative/integral is dictated by the oscillation amplitude. We also establish that the measured frequency shift varies systematically from a probe of the force gradient for small oscillation amplitudes, through to the measurement of a quantity intermediate to the force and energy (the half-fractional integral of the force) for large oscillation amplitudes. This has significant implications to measurement sensitivity, since integrating the force will smooth its behavior, while differentiating it will enhance variations. This highlights the importance in choice of oscillation amplitude when wishing to optimize the sensitivity of force spectroscopy measurements to short-range interactions and consequently imaging with the highest possible resolution.
Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains
Sabater, Carlos; Untiedt, Carlos
2015-01-01
Summary This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose. PMID:26734525
Polarizable atomic multipole-based force field for DOPC and POPE membrane lipids
NASA Astrophysics Data System (ADS)
Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Min, Hanyi; Li, Guohui
2018-04-01
A polarizable atomic multipole-based force field for the membrane bilayer models 1,2-dioleoyl-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) has been developed. The force field adopts the same framework as the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) model, in which the charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments. Many-body polarization including the inter- and intra-molecular polarization is modelled in a consistent manner with distributed atomic polarizabilities. The van der Waals parameters were first transferred from existing AMOEBA parameters for small organic molecules and then optimised by fitting to ab initio intermolecular interaction energies between models and a water molecule. Molecular dynamics simulations of the two aqueous DOPC and POPE membrane bilayer systems, consisting of 72 model molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, etc. were consistent with experimental values.
Friction and Wear on the Atomic Scale
NASA Astrophysics Data System (ADS)
Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst
Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.
Effect of degassing on the aggregation of carbon nanotubes dispersed in water
NASA Astrophysics Data System (ADS)
Chen, C.-J.; Huang, J.-R.; Hwang, I.-S.; Choi, H. J.; Lai, P.-Y.; Chan, C. K.
2017-10-01
Dynamic light scattering (DLS) along with centrifugation and shaking tests reveal that dissolved gases can significantly affect the aggregation behavior of carbon nanotubes (CNTs) dispersed in water. The CNTs in non-degassed samples form loose, stable networks having the DLS result reminiscent of semidilute polymer solutions, whereas the CNTs in degassed samples aggregate to form Brownian colloids that sediment quickly. Interestingly, the CNTs dispersed in acetone, with or without degassing, also behave like semidilute polymers in DLS experiments. We propose a surface nanobubble-assisted mechanism to explain the observed aggregation behaviors. Our work signifies that dissolved gases may play an important role in determining hydrophobicity and biomolecular functions in aqueous environments.
Characterization of magnetic nanoparticle by dynamic light scattering
2013-01-01
Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS. PMID:24011350
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; ...
2018-02-01
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less
Solitary waves and double layers in a dusty electronegative plasma.
Mamun, A A; Shukla, P K; Eliasson, B
2009-10-01
A dusty electronegative plasma containing Boltzmann electrons, Boltzmann negative ions, cold mobile positive ions, and negatively charged stationary dust has been considered. The basic features of arbitrary amplitude solitary waves (SWs) and double layers (DLs), which have been found to exist in such a dusty electronegative plasma, have been investigated by the pseudopotential method. The small amplitude limit has also been considered in order to study the small amplitude SWs and DLs analytically. It has been shown that under certain conditions, DLs do not exist, which is in good agreement with the experimental observations of Ghim and Hershkowitz [Y. Ghim (Kim) and N. Hershkowitz, Appl. Phys. Lett. 94, 151503 (2009)].
MEAM interatomic force calculation subroutine for LAMMPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stukowski, A.
2010-10-25
Interatomic force and energy calculation subroutine tobe used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluates the total energy and atomic forces (energy gradient) according to cubic spine-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM).
Isolating and moving single atoms using silicon nanocrystals
Carroll, Malcolm S.
2010-09-07
A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solares, Santiago D.
The final project report covering the period 7/1/14-6/30/17 provides an overview of the technical accomplishments in the areas of (i) fundamental viscoelasticity, (ii) multifrequency atomic force microscopy, and (iii) characterization of energy-relevant materials with atomic force microscopy. A list of publications supported by the project is also provided.
Microwave ac Zeeman force for ultracold atoms
NASA Astrophysics Data System (ADS)
Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.
2018-04-01
We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.
ERIC Educational Resources Information Center
Eddy, Meghan C.; Stansfield, Katherine J.; Green, John T.
2014-01-01
We have previously demonstrated that voluntary exercise facilitates discrimination learning in a modified T-maze. There is evidence implicating the dorsolateral striatum (DLS) as the substrate for this task. The present experiments examined whether changes in DLS dopamine receptors might underlie the exercise-associated facilitation. Infusing a…
MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.
1981-01-01
The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.
The Department of Legal Services ("DLS") is a dependency of the Secretariat for Legal Affairs of the OAS General Secretariat. www.oas.org/en/sla DLS provides legal advice on: interpretation of Secretariat for Legal Affairs Inter-American Commission on Human Rights Inter-American Court of Human Rights
Protein Analysis by Dynamic Light Scattering: Methods and Techniques for Students
ERIC Educational Resources Information Center
Lorber, Bernard; Fischer, Frederic; Bailly, Marc; Roy, Herve; Kern, Daniel
2012-01-01
Dynamic light scattering (DLS) analyses are routinely used in biology laboratories to detect aggregates in macromolecular solutions, to determine the size of proteins, nucleic acids, and complexes or to monitor the binding of ligands. This article is written for graduate and undergraduate students with access to DLS and for faculty members who…
Analyzing Digital Library Initiatives: 5S Theory Perspective
ERIC Educational Resources Information Center
Isah, Abdulmumin; Mutshewa, Athulang; Serema, Batlang; Kenosi, Lekoko
2015-01-01
This article traces the historical development of Digital Libraries (DLs), examines some DL initiatives in developed and developing countries and uses 5S Theory as a lens for analyzing the focused DLs. The analysis shows that present-day systems, in both developed and developing nations, are essentially content and user centric, with low level…
On the generation of double layers from ion- and electron-acoustic instabilities
NASA Astrophysics Data System (ADS)
Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan
2016-03-01
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
Zhang, Gaigong; Lin, Lin; Hu, Wei; ...
2017-01-27
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin; Hu, Wei
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
NASA Astrophysics Data System (ADS)
Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.
2017-04-01
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messina, Riccardo; Vasile, Ruggero; Passante, Roberto
2010-12-15
We study the time evolution of the Casimir-Polder force acting on a neutral atom in front of a perfectly conducting plate, when the system starts its unitary evolution from a partially dressed state. We solve the Heisenberg equations for both atomic and field quantum operators, exploiting a series expansion with respect to the electric charge and an iterative technique. After discussing the behavior of the time-dependent force on an initially partially dressed atom, we analyze a possible experimental scheme to prepare the partially dressed state and the observability of this new dynamical effect.
Motion of Cesium Atoms in the One-Dimensional Magneto-Optical Trap
NASA Technical Reports Server (NTRS)
Li, Yimin; Chen, Xuzong; Wang, Qingji; Wang, Yiqiu
1996-01-01
The force to which Cs atoms are subjected in the one-dimensional magneto-optical trap (lD-MOT) is calculated, and properties of this force are discussed. Several methods to increase the number of Cs atoms in the lD-MOT are presented on the basis of the analysis of the capture and escape of Cs atoms in the ID-MOT.
A universal strategy for the creation of machine learning-based atomistic force fields
NASA Astrophysics Data System (ADS)
Huan, Tran Doan; Batra, Rohit; Chapman, James; Krishnan, Sridevi; Chen, Lihua; Ramprasad, Rampi
2017-09-01
Emerging machine learning (ML)-based approaches provide powerful and novel tools to study a variety of physical and chemical problems. In this contribution, we outline a universal strategy to create ML-based atomistic force fields, which can be used to perform high-fidelity molecular dynamics simulations. This scheme involves (1) preparing a big reference dataset of atomic environments and forces with sufficiently low noise, e.g., using density functional theory or higher-level methods, (2) utilizing a generalizable class of structural fingerprints for representing atomic environments, (3) optimally selecting diverse and non-redundant training datasets from the reference data, and (4) proposing various learning approaches to predict atomic forces directly (and rapidly) from atomic configurations. From the atomistic forces, accurate potential energies can then be obtained by appropriate integration along a reaction coordinate or along a molecular dynamics trajectory. Based on this strategy, we have created model ML force fields for six elemental bulk solids, including Al, Cu, Ti, W, Si, and C, and show that all of them can reach chemical accuracy. The proposed procedure is general and universal, in that it can potentially be used to generate ML force fields for any material using the same unified workflow with little human intervention. Moreover, the force fields can be systematically improved by adding new training data progressively to represent atomic environments not encountered previously.
Single body parts are processed by individual neurons in the mouse dorsolateral striatum.
Coffey, Kevin R; Nader, Miles; West, Mark O
2016-04-01
Interest in the dorsolateral striatum (DLS) has generated numerous scientific studies of its neuropathologies, as well as its roles in normal sensorimotor integration and learning. Studies are informed by knowledge of DLS functional organization, the guiding principle being its somatotopic afferent projections from primary somatosensory (S1) and motor (M1) cortices. The potential to connect behaviorally relevant function to detailed structure is elevated by mouse models, which have access to extensive genetic neuroscience tool kits. Remaining to be demonstrated, however, is whether the correspondence between S1/M1 corticostriatal terminal distributions and the physiological properties of DLS neurons demonstrated in rats and non-human primates exists in mice. Given that the terminal distribution of S1/M1 projections to the DLS in mice is similar to that in rats, we studied whether firing rates (FRs) of DLS neurons in awake, behaving mice are related to activity of individual body parts. MSNs exhibited robust, selective increases in FR during movement or somatosensory stimulation of single body parts. Properties of MSNs, including baseline FRs, locations, responsiveness to stimulation, and proportions of responsive neurons were similar to properties observed in rats. Future studies can be informed by the present demonstration that the mouse lateral striatum functions as a somatic sensorimotor sector of the striatum and appears to be a homolog of the primate putamen, as demonstrated in rats (Carelli and West, 1991). Copyright © 2016 Elsevier B.V. All rights reserved.
The Chemical Structure and Acid Deterioration of Paper.
ERIC Educational Resources Information Center
Hollinger, William K., Jr.
1984-01-01
Describes the chemical structure of paper, including subatomic particles, atoms and molecules, and the forces that bond atoms into molecules, molecules into chains, chains into sheets, and sheets into layers. Acid is defined, and the deleterious role of acid in breaking the forces that bond atoms into molecules is detailed. (EJS)
NASA Astrophysics Data System (ADS)
Takeuchi, Osamu; Miyakoshi, Takaaki; Taninaka, Atsushi; Tanaka, Katsunori; Cho, Daichi; Fujita, Machiko; Yasuda, Satoshi; Jarvis, Suzanne P.; Shigekawa, Hidemi
2006-10-01
The accuracy of dynamic-force spectroscopy (DFS), a promising technique of analyzing the energy landscape of noncovalent molecular bonds, was reconsidered in order to justify the use of an atomic-force microscopy (AFM) cantilever as a DFS force probe. The advantages and disadvantages caused, for example, by the force-probe hardness were clarified, revealing the pivotal role of the molecular linkage between the force probe and the molecular bonds. It was shown that the feedback control of the loading rate of tensile force enables us a precise DFS measurement using an AFM cantilever as the force probe.
Seragioli, Rafael; Simao, Marcelo Novelino; Simao, Gustavo Novelino; Herrero, Carlos Fernando P S; Nogueira-Barbosa, Marcello H
2018-03-01
Denticulate ligaments (DLs) are pial extensions on each side of the spinal cord, comprising about 20 to 21 pairs of fibrous structures connecting the dura mater to the spinal cord. These ligaments are significant anatomical landmarks in the surgical approach to intradural structures. To our knowledge, there is no previous study on the detection of DLs using MRI. After IRB approval, we retrospectively evaluated 116 consecutive MRI scans of the cervical spine, using the volumetric sequence 3D COSMIC, 65 and 51 studies with 1.5T and 3.0T respectively. We did not include trauma and tumor cases. Two independent radiologists assessed the detection of cervical spine DLs independently and blinded for each cervical vertebral level. We compared the frequency of detection of these ligaments in 1.5 Tesla and 3.0 Tesla MRI using Fisher exact test considering P<0.05 as significant. We evaluated interobserver agreement with Kappa coefficient. We observed high detection frequency of the cervical spine DLs using both 1.5T (70 to 91%) and 3.0T (68 to 98%). We found no statistically significant difference in the detection frequency of ligaments between the 1.5T and 3.0T MRI in all vertebral levels. Using 3.0T, radiologists identified ligaments better in higher vertebral levels than for lower cervical levels (P=0.0003). Interobserver agreement on the identification of DL was poor both for 1.5T (k=0.3744; CI 95% 0.28-0.46) and 3.0T (k=0.3044; CI 95% 0.18-0.42) MRI. Radiologists identified most of the cervical DLs using volumetric MRI acquisition. Our results suggest 1.5T and 3.0T MRI performed similarly in the detection of DLs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Gorler, Oguzhan; Hubbezoglu, Ihsan; Ulgey, Melih; Zan, Recai; Guner, Kubra
2018-04-01
The aim of this study was to examine the shear bond strength (SBS) of ceromer and nanohybrid composite to direct laser sintered (DLS) Cr-Co and Ni-Cr-based metal infrastructures treated with erbium-doped yttrium aluminum garnet (Er:YAG), neodymium-doped yttrium aluminum garnet (Nd:YAG), and potassium titanyl phosphate (KTP) laser modalities in in vitro settings. Experimental specimens had four sets (n = 32) including two DLS infrastructures with ceromer and nanohybrid composite superstructures and two Ni-Cr-based infrastructures with ceromer and nanohybrid composite superstructures. Of each infrastructure set, the specimens randomized into four treatment modalities (n = 8): no treatment (controls) and Er:YAG, Nd:YAG, and KTP lasers. The infrastructures were prepared in the final dimensions of 7 × 3 mm. Ceromer and nanohybrid composite was applied to the infrastructures after their surface treatments according to randomization. The SBS of specimens was measured to test the efficacy of surface treatments. Representative scanning electron microscopy (SEM) images after laser treatments were obtained. Overall, in current experimental settings, Nd:YAG, KTP, and Er:YAG lasers, in order of efficacy, are effective to improve the bonding of ceromer and nanohybrid composite to the DLS and Ni-Cr-based infrastructures (p < 0.05). Nd:YAG laser is more effective in the DLS/ceromer infrastructures (p < 0.05). KTP laser, as second more effective preparation, is more effective in the DLS/ceromer infrastructures (p < 0.05). SEM findings presented moderate accordance with these findings. The results of this study supported the bonding of ceromer and nanohybrid composite superstructures to the DLS and Ni-Cr-based infrastructures suggesting that laser modalities, in order of success, Nd:YAG, KTP, and Er:YAG, are effective to increase bonding of these structures.
Endogenous GLP-1 in lateral septum contributes to stress-induced hypophagia.
Terrill, Sarah J; Maske, Calyn B; Williams, Diana L
2018-03-03
Glucagon-like peptide 1 (GLP-1) neurons of the caudal brainstem project to many brain areas, including the lateral septum (LS), which has a known role in stress responses. Previously, we showed that endogenous GLP-1 in the LS plays a physiologic role in the control of feeding under non-stressed conditions, however, central GLP-1 is also involved in behavioral and endocrine responses to stress. Here, we asked whether LS GLP-1 receptors (GLP-1R) contribute to stress-induced hypophagia. Male rats were implanted with bilateral cannulas targeting the dorsal subregion of the LS (dLS). In a within-subjects design, shortly before the onset of the dark phase, rats received dLS injections of saline or the GLP-1R antagonist Exendin (9-39) (Ex9) prior to 30 min restraint stress. Food intake was measured continuously for the next 20 h. The stress-induced hypophagia observed within the first 30 min of dark was not influenced by Ex9 pretreatment, but Ex9 tended to blunt the effect of stress as early as 1 and 2 h into the dark phase. By 4-6 h, there were significant stress X drug interactions, and Ex9 pretreatment blocked the stress-induced suppression of feeding. These effects were mediated entirely through changes in average meal size; stress suppressed meal size while dLS Ex9 attenuated this effect. Using a similar design, we examined the role of dLS GLP-1R in the neuroendocrine response to acute restraint stress. As expected, stress potently increased serum corticosterone, but blockade of dLS GLP-1Rs did not affect this response. Together, these data show that endogenous GLP-1 action in the dLS plays a role in some but not all of the physiologic responses to acute stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure.
Šantić, N; Dubček, T; Aumiler, D; Buljan, H; Ban, T
2015-09-02
Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.
Note: Effect of the parasitic forced vibration in an atom gravimeter
NASA Astrophysics Data System (ADS)
Chen, Le-Le; Luo, Qin; Zhang, Heng; Duan, Xiao-Chun; Zhou, Min-Kang; Hu, Zhong-Kun
2018-06-01
The vibration isolator usually plays an important role in atom interferometry gravimeters to improve their sensitivity. We show that the parasitic forced vibration of the Raman mirror, which is induced by external forces acting on the vibration isolator, can cause a bias in atom gravimeters. The mechanism of how this effect induces an additional phase shift in our interferometer is analyzed. Moreover, modulation experiments are performed to measure the dominant part of this effect, which is caused by the magnetic force between the passive vibration isolator and the coil of the magneto-optic trap. In our current apparatus, this forced vibration contributes a systematic error of -2.3(2) × 10-7 m/s2 when the vibration isolator works in the passive isolation mode. Even suppressed with an active vibration isolator, this effect can still contribute -6(1) × 10-8 m/s2; thus, it should be carefully considered in precision atom gravimeters.
NASA Technical Reports Server (NTRS)
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
Controlling Casimir force via coherent driving field
NASA Astrophysics Data System (ADS)
Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid
2016-04-01
A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.
New water soluble heterometallic complex showing unpredicted coordination modes of EDTA
NASA Astrophysics Data System (ADS)
Mudsainiyan, R. K.; Jassal, A. K.; Chawla, S. K.
2015-10-01
A mesoporous 3D polymeric complex (I) having formula {[Zr(IV)O-μ3-(EDTA)Fe(III)OH]·H2O}n has been crystallized and characterized by various techniques. Single-crystal X-ray diffraction analysis revealed that complex (I) crystallized in chiral monoclinic space group Cc (space group no. 9) with unexpected coordination modes of EDTA and mixture of two transition metal ions. In this complex, the coordination number of Zr(IV) ion is seven where four carboxylate oxygen atoms, two nitrogen atoms, one oxide atom are coordinating with Zr(IV). Fe(III) is four coordinated and its coordination environment is composed of three different carboxylic oxygen atoms from three different EDTA and one oxygen atom of -OH group. The structure consists of 4-c and 16-c (2-nodal) net with new topology and point symbol for net is (336·454·530)·(36). TGA study and XRPD pattern showed that the coordination polymer is quite stable even after losing water molecule and -OH ion. Quenching behavior in fluorescence of ligand is observed by complexation with transition metal ions is due to n-π* transition. The SEM micrograph shows the morphology of complex (I) exhibits spherical shape with size ranging from 50 to 280 nm. The minimum N2 (SBET=8.7693 m2/g) and a maximum amount of H2 (high surface area=1044.86 m2/g (STP)) could be adsorbed at 77 K. From DLS study, zeta potential is calculated i.e. -7.94 shows the negative charges on the surface of complex. Hirshfeld surface analysis and fingerprint plots revealed influence of weak or non bonding interactions in crystal packing of complex.
Predictors and Course of Daily Living Skills Development in Toddlers with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Green, Shulamite A.; Carter, Alice S.
2014-01-01
Self-sufficiency is central to child and family well-being. This report focuses on predictors of adaptive daily living skills (DLS) development in young children with ASD and whether DLS gains predict decreases in parenting stress. Participants were 162 toddlers with ASD and their parents, assessed at 3 annual timepoints. Hierarchical Linear…
Kato, Haruhisa; Nakamura, Ayako; Takahashi, Kayori; Kinugasa, Shinichi
2012-01-01
Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex) by dynamic light scattering (DLS) was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF) using multi-angle light scattering (MALS) with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS. PMID:28348293
The Analog Atomic Force Microscope: Measuring, Modeling, and Graphing for Middle School
ERIC Educational Resources Information Center
Goss, Valerie; Brandt, Sharon; Lieberman, Marya
2013-01-01
using an analog atomic force microscope (A-AFM) made from a cardboard box and mailing tubes. Varying numbers of ping pong balls inside the tubes mimic atoms on a surface. Students use a dowel to make macroscale measurements similar to those of a nanoscale AFM tip as it…
Sweetman, Adam; Stannard, Andrew
2014-01-01
In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired 'short-range' force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip-sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the 'on-minus-off' method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.
Ullah, Shafi; Shah, Muhammad Raza; Shoaib, Mohammad; Imran, Muhammad; Elhissi, Abdelbary M A; Ahmad, Farid; Ali, Imdad; Shah, Syed Wadood Ali
2016-11-01
Nonionic surfactant vesicles have gained increasing scientific attention for hydrophobic drugs delivery due to their biocompatibility, stability and low cost. The aim of the present study was to synthesize and evaluate a novel creatinine-based nonionic surfactant in terms of its ability to generate biocompatible niosomal system for the delivery of Clarithromycin. The surfactant was synthesized by reacting creatinine with lauroyl chloride followed by characterization using 1 HNMR and MS. The drug-loaded niosomal vesicles of the surfactant were characterized for drug encapsulation efficiency (EE) using LC-MS, vesicle size using dynamic light scattering (DLS) and vesicle shape using atomic force microscopy (AFM). The surfactant was also investigated for blood hemolysis, in vitro cytotoxicity against different cell lines and in vivo acute toxicity in mice. Furthermore, the in vivo bioavailability of Clarithromycin encapsulated in the novel niosomal formulation was investigated using rabbits and quantified through validated LC-MS/MS method. Findings showed that vesicles were able to entrap up to 67.82 ± 1.27% of the drug, and were rounded in shape with a size around 202.73 ± 5.30 nm and low polydispersity. The surfactant caused negligible blood hemolysis, very low cytotoxicity and was found to be safe up to 2500 mg/kg body weight using mice. The niosomal formulation showed twofold enhanced oral bioavailability of Clarithromycin as compared to commercial formulations of the drug. The study has shown that the creatinine-based niosomes developed in our laboratory were biocompatible, safe and increased the oral bioavailability of the model hydrophobic Clarithromycin using experimental animals.
SN-38 loaded polymeric micelles to enhance cancer therapy
NASA Astrophysics Data System (ADS)
Gu, Quanrong; Xing, James Z.; Huang, Min; He, Chuan; Chen, Jie
2012-05-01
7-Ethyl-10-hydroxycamptothecin (SN-38) loaded poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (Pluronic F-108) and poly(ethylene glycol)-block-poly(ɛ-caprolactone) (PEG-b-PCL) nanoparticles were successfully prepared by a modified film hydration method and characterized by scanning electric microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). Satisfactory drug loading of 20.73 ± 0.66% and a high encapsulation efficiency of 83.83 ± 1.32% were achieved. The SN-38 nanoparticles (SN-38 NPs) can completely disperse into a phosphate buffered saline (PBS) medium to produce a clear aqueous suspension that remains stable for up to three days. Total drug releases were 67.91% and 91.09% after 24 h in a PBS or fetal bovine serum (FBS) medium. Half maximal inhibitory concentration (IC50) tests of SN-38 and SN-38 NPs on A549 lung cells produced results of 200.0 ± 14.9 ng ml-1 and 80.0 ± 4.6 ng ml-1, respectively. Similarly, IC50 tests of SN-38 and SN-38 NPs on MCF-7 breast cells yielded results of 16.0 ± 0.7 ng ml-1 and 8.0 ± 0.5 ng ml-1, respectively. These in vitro IC50 studies show significant (p < 0.01) enhancement of the SN-38 NP drug efficiency in killing cancer cells in comparison to the free drug SN-38 control. All the materials used for this nanoformulation are approved by the US FDA, with the virtue of extremely low toxicity to normal cells.
Shankara Narayanan, Jeyaraman; Bhuvana, Mohanlal; Dharuman, Venkataraman
2014-08-15
Cationic N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium propane (DOTAP) liposome is spherically sandwiched in gold nanoparticle (abbreviated as sDOTAP-AuNP) onto a gold electrode surface. The sDOTAP-AuNP is applied for electrochemical label free DNA sensing and Escherichia coli cell transfection for the first time. Complementary target (named as hybridized), non-complementary target (un-hybridized) and single base mismatch target (named as SMM) hybridized surfaces are discriminated sensitively and selectively in presence of [Fe(CN)6](3-/4-). Double strand specific intercalator methylene blue in combination with [Fe(CN)6](3-) is used to enhance target detection limit down to femtomolar concentration. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV) techniques are used for characterizing DNA sensing. High Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) techniques are used to confirm the spherical nature of the sDOTAP-AuNP-DNA composite in solution and on the solid surface. DNA on the sDOTAP-ssDNA is transferred by potential stripping method (+0.2V (Ag/AgCl)) into buffer solution containing E. coli cells. The transfection is confirmed by the contrast images for the transfected and non-transfected cell from Confocal Laser Scanning Microscopy (CLSM). The results demonstrate effectiveness of the electrochemical DNA transfection method developed and could be applied for other cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Adsorption of Amelogenin onto Self-Assembled and Fluoroapatite Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasevich, Barbara J.; Lea, Alan S.; Bernt, William
Abstract. The interactions of proteins at surfaces are of great importance to biomineralizaton processes and to the development and function of biomaterials. Amelogenin is a unique biomineralization protein because it self-assembles to form supramolecular structures called “nanospheres,” spherical aggregates of monomers that are 20-60 nm in diameter. Although the nanosphere quaternary structure has been observed in solution, the quaternary structure of amelogenin adsorbed onto surfaces is also of great interest because the surface structure is critical to its function. We report studies of the adsorption of the amelogenin onto self-assembled monolayers (SAMs) with COOH and CH3 end group functionality andmore » single crystal fluoroapatite (FAP). Dynamic light scattering (DLS) experiments showed that the solutions contained nanospheres and aggregates of nanospheres. Protein adsorption onto the various substrates was evidenced by null ellipsometry, x-ray photoelectron spectroscopy (XPS), and external reflectance Fourier transform infrared spectroscopy (ERFTIR). Although only nanospheres were observed in solution, ellipsometry and atomic force microscopy (AFM) indicated that the protein adsorbates were much smaller structures than the original nanospheres, from monomers to small oligomers in size. Monomer adsorption was promoted onto the CH3 surfaces and small oligomer adsorption was promoted onto the COOH and FAP substrates. In some cases, remnants of the original nanospheres adsorbed as multilayers on top of the underlying subnanosphere layers. This work suggests that amelogenin can adsorb by the “shedding” or disassembling of substructures from the nanospheres onto substrates and indicates that amelogenin may have a range of possible quaternary structures depending on whether it is in solution or interacting with surfaces.« less
General practitioner understanding of abbreviations used in hospital discharge letters.
Chemali, Mark; Hibbert, Emily J; Sheen, Adrian
2015-08-03
To determine the incidence of abbreviation use in electronic hospital discharge letters (eDLs) and general practitioner understanding of abbreviations used in eDLsDesign, setting and participants: Retrospective audit of abbreviation use in 200 sequential eDLs was conducted at Nepean Hospital, Sydney, a tertiary referral centre, from 18 December to 31 December 2012. The 15 most commonly used abbreviations and five clinically important abbreviations were identified from the audit. A survey questionnaire using these abbreviations in context was then mailed to 240 GPs in the area covered by the Nepean Blue Mountains Local Health District to determine their understanding of these abbreviations. Number of abbreviations and frequency of their use in eDLs, and GPs' understanding of abbreviations used in the survey. 321 abbreviations were identified in the eDL audit; 48.6% were used only once. Fifty five per cent of GPs (132) responded to the survey. No individual abbreviation was correctly interpreted by all GPs. Six abbreviations were misinterpreted by more than a quarter of GPs. These were SNT (soft non-tender), TTE (transthoracic echocardiogram), EST (exercise stress test), NKDA (no known drug allergies), CTPA (computed tomography pulmonary angiogram), ORIF (open reduction and internal fixation). These abbreviations were interpreted incorrectly by 47.0% (62), 33.3% (44), 33.3% (44) 32.6% (43), 31.1% (41) and 28.0% (37) of GPs, respectively. Abbreviations used in hospital eDLs are not well understood by the GPs who receive them. This has potential to adversely affect patient care in the transition from hospital to community care.
NASA Astrophysics Data System (ADS)
Messner, Richard A.; Hludik, Frank; Crowley, Todd A.; Vidacic, Dragan; Stetson, Barrett; Nadel, Lawrence D.; Nichols, Linda J.; Harris, Carol
2004-08-01
This paper describes the results of a collaborative effort between the University of New Hampshire (UNH) and the Mitretek Systems (MTS) Center for Criminal Justice Technology (CCJT). Mitretek conducted an investigation into the impact of anticipated biometrically encoded driver licenses (DLs) on law enforcement. As part of this activity, Mitretek teamed with UNH to leverage the results of UNH's Project54 and develop a pilot Driver License Interoperability Test Bed to explore both implementation and operational aspects associated with reading and authenticating biometrically encoded DLs in law enforcement scenarios. The test bed enables the exploration of new methods, techniques (both hardware and software), and standards in a structured fashion. Spearheaded by the American Association of Motor Vehicle Administrators (AAMVA) and the International Committee for Information Technology Standards Technical Group M1 (INCITS-M1) initiatives, standards involving both DLs and biometrics, respectively, are evolving at a rapid pace. In order to ensure that the proposed standards will provide for interstate interoperability and proper functionality for the law enforcement community, it is critical to investigate the implementation and deployment issues surrounding biometrically encoded DLs. The test bed described in this paper addresses this and will provide valuable feedback to the standards organizations, the states, and law enforcement officials with respect to implementation and functional issues that are exposed through exploration of actual test systems. The knowledge gained was incorporated into a report prepared by MTS to describe the anticipated impact of biometrically encoded DLs on law enforcement practice.
Characterization of Akiyama probe applied to dual-probes atomic force microscope
NASA Astrophysics Data System (ADS)
Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong
2016-10-01
The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.
Resonant difference-frequency atomic force ultrasonic microscope
NASA Technical Reports Server (NTRS)
Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)
2010-01-01
A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.
Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.
Blue emitting undecaplatinum clusters
NASA Astrophysics Data System (ADS)
Chakraborty, Indranath; Bhuin, Radha Gobinda; Bhat, Shridevi; Pradeep, T.
2014-07-01
A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents.A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents. Electronic supplementary information (ESI) available: Details of experimental procedures, instrumentation, chromatogram of the crude cluster; SEM/EDAX, DLS, PXRD, TEM, FT-IR, and XPS of the isolated Pt11 cluster; UV/Vis, MALDI MS and SEM/EDAX of isolated 2 and 3; and 195Pt NMR of the K2PtCl6 standard. See DOI: 10.1039/c4nr02778g
On-line pre-reduction of Se(VI) by thiourea for selenium speciation by hydride generation
NASA Astrophysics Data System (ADS)
Qiu, Jianhua; Wang, Qiuquan; Ma, Yuning; Yang, Limin; Huang, Benli
2006-07-01
In this study, thiourea (TU) was novelly developed as a reduction reagent for on-line pre-reduction of selenium(VI) before conventional hydride generation (HG) by KBH 4/NaOH-HCl. After TU on-line pre-reduction, the HG efficiency of Se(VI) has been greatly improved and because even higher than that of the same amount of Se(IV) obtained in the conventional HG system. The possible pre-reduction mechanism is discussed. The detection limit (DL) of selenate reaches 10 pg mL - 1 when using on-line TU pre-reduction followed by HG atomic fluorescence detection. When TU pre-reduction followed by HG is used as an interface between ion-pair high performance liquid chromatography and atomic fluorescence spectrometry, selenocystine, selenomethionine, selenite and selenate can be measured simultaneously and quantitatively. The DLs of these are 0.06, 0.08, 0.05 and 0.04 ng mL - 1 , respectively, and the relative standard deviations of 9 duplicate runs for all the 4 species are less than 5%. Furthermore, it was successfully applied to Se speciation analysis of cultured garlic samples, and validated by determination of total selenium and selenium species in certified reference material NIST 1946.
Sensori-Motor and Daily Living Skills of Preschool Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Jasmin, Emmanuelle; Couture, Melanie; McKinley, Patricia; Reid, Greg; Fombonne, Eric; Gisel, Erika
2009-01-01
Sensori-motor development and performance of daily living skills (DLS) remain little explored in children with autism spectrum disorders (ASD). The objective of this study was to determine the impact of sensori-motor skills on the performance of DLS in preschool children with ASD. Thirty-five children, 3-4 years of age, were recruited and assessed…
371. A.J.M. and D.L.S., Delineators April 1934. STATE OF CALIFORNIA; ...
371. A.J.M. and D.L.S., Delineators April 1934. STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; SUPERSTRUCTURE - WEST BAY CROSSING; PIER NO. 4; VERTICAL SECTIONS; CONTRACT NO. 2; SUP. DRAWING NO. 17A - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA
On the generation of double layers from ion- and electron-acoustic instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Xiangrong, E-mail: xrfu@lanl.gov; Cowee, Misa M.; Winske, Dan
2016-03-15
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electronmore » acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.« less
Ma, Pei Lian; Buschmann, Michael D; Winnik, Françoise M
2010-03-08
The composition of samples obtained upon complexation of DNA with chitosan was analyzed by asymmetrical flow field flow fractionation (AF4) with online UV-visible, multiangle light scattering (MALS), and dynamic light scattering (DLS) detectors. A chitosan labeled with rhodamine B to facilitate UV-vis detection of the polycation was complexed with DNA under conditions commonly used for transfection (chitosan glucosamine to DNA phosphate molar ratio of 5). AF4 analysis revealed that 73% of the chitosan-rhodamine remained free in the dispersion and that the DNA/chitosan complexes had a broad size distribution ranging from 20 to 160 nm in hydrodynamic radius. The accuracy of the data was assessed by comparison with data from batch-mode DLS and scanning electron microscopy. The AF4 combined with DLS allowed the characterization of small particles that were not detected by conventional batch-mode DLS. The AF4 analysis will prove to be an important tool in the field of gene therapy because it readily provides, in a single measurement, three important physicochemical parameters of the complexes: the amount of unbound polycation, the hydrodynamic size of the complexes, and their size distribution.
Van der Waals forces in pNRQED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shtabovenko, Vladyslav
2016-01-22
We report on the calculation of electromagnetic van der Waals forces [1] between two hydrogen atoms using non-relativistic effective field theories (EFTs) of QED for large and small momentum transfers with respect to the intrinsic energy scale of the hydrogen atom. Our results reproduce the well known London and Casimir-Polder forces.
2015-01-01
Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide–water and peptide–membrane interactions allow prediction of free energy minima at the bilayer–water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are −2.51, −4.28, and −5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are −0.83, −3.33, and −3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations. PMID:25290376
Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep
2014-10-16
Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations.
The Indeterminate Case of Classical Static Friction When Coupled with Tension
NASA Astrophysics Data System (ADS)
Hahn, Kenneth D.; Russell, Jacob M.
2018-02-01
It has been noted that the static friction force poses challenges for students and, at times, even their instructors. Unlike the gravitational force, which has a precise and unambiguous magnitude (FG = mg), the magnitude and direction of the static friction force depend on other forces at play. Friction can be understood rather well in terms of complicated atomic-scale interactions between surfaces. Ringlein and Robbins survey aspects of the atomic origins of friction, and Folkerts explores factors that affect the value of static friction. However, what students typically encounter in an introductory course ignores the atomic origins of friction (beyond perhaps a brief overview of the atomic model). The rules of dry friction (i.e., non-lubricated surfaces in contact) taught in introductory physics were originally published in 1699 by Guillaume Amontons. Amontons's first law states that the force of friction is directly proportional to the applied load, i.e., f = μFN, where FN is the normal force and μ is the coefficient of friction. His second law states that the force of friction is independent of the macroscopic area of contact. These laws were verified by Coulomb in 1781.
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy.
Stadnik, Yevgeny V
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1/r^{5} potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy
NASA Astrophysics Data System (ADS)
Stadnik, Yevgeny V.
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1 /r5 potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s -wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
Yu, Zhou; Reid, Jennifer C; Yang, Yan-Ping
2013-12-01
Protein aggregation is a common challenge in the manufacturing of biological products. It is possible to minimize the extent of aggregation through timely measurement and in-depth characterization of aggregation. In this study, we demonstrated the use of dynamic light scattering (DLS) to monitor inclusion body (IB) solubilization, protein refolding, and aggregation near the production line of a recombinant protein-based vaccine candidate. Our results were in good agreement with those measured by size-exclusion chromatography. DLS was also used to characterize the mechanism of aggregation. As DLS is a quick, nonperturbing technology, it can potentially be used as an at-line process analytical technology to ensure complete IB solubilization and aggregate-free refolding. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonthuis, Douwe Jan, E-mail: douwe.bonthuis@physics.ox.ac.uk; Mamatkulov, Shavkat I.; Netz, Roland R.
We optimize force fields for H{sub 3}O{sup +} and OH{sup −} that reproduce the experimental solvation free energies and the activities of H{sub 3}O{sup +} Cl{sup −} and Na{sup +} OH{sup −} solutions up to concentrations of 1.5 mol/l. The force fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the optimized H{sub 3}O{sup +} force field is 0.8 ± 0.1|e|—significantly higher than the value typically used for nonpolarizable water models and H{sub 3}O{sup +} force fields. In contrast,more » the optimal partial charge on the hydrogen atom of OH{sup −} turns out to be zero. Standard combination rules can be used for H{sub 3}O{sup +} Cl{sup −} solutions, while for Na{sup +} OH{sup −} solutions, we need to significantly increase the effective anion-cation Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results show that it is possible to generate thermodynamically consistent force fields without using atomic polarizability.« less
NASA Astrophysics Data System (ADS)
Sweetman, A.; Jarvis, S.; Danza, R.; Bamidele, J.; Kantorovich, L.; Moriarty, P.
2011-08-01
We use small-amplitude qPlus frequency modulated atomic force microscopy (FM-AFM), at 5 K, to investigate the atomic-scale mechanical stability of the Si(100) surface. By operating at zero applied bias the effect of tunneling electrons is eliminated, demonstrating that surface manipulation can be performed by solely mechanical means. Striking differences in surface response are observed between different regions of the surface, most likely due to variations in strain associated with the presence of surface defects. We investigate the variation in local energy surface by ab initio simulation, and comment on the dynamics observed during force spectroscopy.
Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems
NASA Astrophysics Data System (ADS)
Higgins, Michael J.; Riener, Christian K.; Uchihashi, Takayuki; Sader, John E.; McKendry, Rachel; Jarvis, Suzanne P.
2005-03-01
Frequency modulation atomic force microscopy (FM-AFM) has been modified to operate in a liquid environment within an atomic force microscope specifically designed for investigating biological samples. We demonstrate the applicability of FM-AFM to biological samples using the spectroscopy mode to measure the unbinding forces of a single receptor-ligand (biotin-avidin) interaction. We show that quantitative adhesion force measurements can only be obtained provided certain modifications are made to the existing theory, which is used to convert the detected frequency shifts to an interaction force. Quantitative force measurements revealed that the unbinding forces for the biotin-avidin interaction were greater than those reported in previous studies. This finding was due to the use of high average tip velocities, which were calculated to be two orders of magnitude greater than those typically used in unbinding receptor-ligand experiments. This study therefore highlights the potential use of FM-AFM to study a range of biological systems, including living cells and/or single biomolecule interactions.
High-resolution imaging of silicene on an Ag(111) surface by atomic force microscopy
NASA Astrophysics Data System (ADS)
Onoda, Jo; Yabuoshi, Keisuke; Miyazaki, Hiroki; Sugimoto, Yoshiaki
2017-12-01
Silicene, a two-dimensional (2D) honeycomb arrangement of Si atoms, is expected to have better electronic properties than graphene and has been mostly synthesized on Ag surfaces. Although scanning tunneling microscopy (STM) has been used for visualizing its atomic structure in real space, the interpretation of STM contrast is not straightforward and only the topmost Si atoms were observed on the (4 ×4 ) silicene/Ag(111) surface. Here, we demonstrate that high-resolution atomic force microscopy (AFM) can resolve all constituent Si atoms in the buckled honeycomb arrangement of the (4 ×4 ) silicene. Site-specific force spectroscopy attributes the origin of the high-resolution AFM images to chemical bonds between the AFM probe apex and the individual Si atoms on the (4 ×4 ) silicene. A detailed analysis of the geometric parameters suggests that the pulling up of lower-buckled Si atoms by the AFM tip could be a key for high-resolution AFM, implying a weakening of the Si-Ag interactions at the interface. We expect that high-resolution AFM will also unveil atomic structures of edges and defects of silicene, or other emerging 2D materials.
Interplay between Mechanics, Electronics, and Energetics in Atomic-Scale Junctions
NASA Astrophysics Data System (ADS)
Aradhya, Sriharsha V.
The physical properties of materials at the nanoscale are controlled to a large extent by their interfaces. While much knowledge has been acquired about the properties of material in the bulk, there are many new and interesting phenomena at the interfaces that remain to be better understood. This is especially true at the scale of their constituent building blocks - atoms and molecules. Studying materials at this intricate level is a necessity at this point in time because electronic devices are rapidly approaching the limits of what was once thought possible, both in terms of their miniaturization as well as our ability to design their behavior. In this thesis I present our explorations of the interplay between mechanical properties, electronic transport and binding energetics of single atomic contacts and single-molecule junctions. Experimentally, we use a customized conducting atomic force microscope (AFM) that simultaneously measures the current and force across atomic-scale junctions. We use this instrument to study single atomic contacts of gold and silver and single-molecule junctions formed in the gap between two gold metallic point contacts, with molecules with a variety of backbones and chemical linker groups. Combined with density functional theory based simulations and analytical modeling, these experiments provide insight into the correlations between mechanics and electronic structure at the atomic level. In carrying out these experimental studies, we repeatedly form and pull apart nanoscale junctions between a metallized AFM cantilever tip and a metal-coated substrate. The force and conductance of the contact are simultaneously measured as each junction evolves through a series of atomic-scale rearrangements and bond rupture events, frequently resulting in single atomic contacts before rupturing completely. The AFM is particularly optimized to achieve high force resolution with stiff probes that are necessary to create and measure forces across atomic-size junctions that are otherwise difficult to fabricate using conventional lithographic techniques. In addition to the instrumentation, we have developed new algorithmic routines to perform statistical analyses of force data, with varying degrees of reliance on the conductance signatures. The key results presented in this thesis include our measurements with gold metallic contacts, through which we are able to rigorously characterize the stiffness and maximum forces sustained by gold single atomic contacts and many different gold-molecule-gold single-molecule junctions. In our experiments with silver metallic contacts we use statistical correlations in conductance to distinguish between pristine and oxygen-contaminated silver single atomic contacts. This allows us to separately obtain mechanical information for each of these structural motifs. The independently measured force data also provides new insights about atomic-scale junctions that are not possible to obtain through conductance measurements alone. Using a systematically designed set of molecules, we are able to demonstrate that quantum interference is not quenched in single-molecule junctions even at room temperature and ambient conditions. We have also been successful in conducting one of the first quantitative measurements of van der Waals forces at the metal-molecule interface at the single-molecule level. Finally, towards the end of this thesis, we present a general analytical framework to quantitatively reconstruct the binding energy curves of atomic-scale junctions directly from experiments, thereby unifying all of our mechanical measurements. I conclude with a summary of the work presented in this thesis, and an outlook for potential future studies that could be guided by this work.
Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.
Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel
2009-06-22
Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.
Buslaev, Pavel; Gordeliy, Valentin; Grudinin, Sergei; Gushchin, Ivan
2016-03-08
Molecular dynamics simulations of lipid bilayers are ubiquitous nowadays. Usually, either global properties of the bilayer or some particular characteristics of each lipid molecule are evaluated in such simulations, but the structural properties of the molecules as a whole are rarely studied. Here, we show how a comprehensive quantitative description of conformational space and dynamics of a single lipid molecule can be achieved via the principal component analysis (PCA). We illustrate the approach by analyzing and comparing simulations of DOPC bilayers obtained using eight different force fields: all-atom generalized AMBER, CHARMM27, CHARMM36, Lipid14, and Slipids and united-atom Berger, GROMOS43A1-S3, and GROMOS54A7. Similarly to proteins, most of the structural variance of a lipid molecule can be described by only a few principal components. These major components are similar in different simulations, although there are notable distinctions between the older and newer force fields and between the all-atom and united-atom force fields. The DOPC molecules in the simulations generally equilibrate on the time scales of tens to hundreds of nanoseconds. The equilibration is the slowest in the GAFF simulation and the fastest in the Slipids simulation. Somewhat unexpectedly, the equilibration in the united-atom force fields is generally slower than in the all-atom force fields. Overall, there is a clear separation between the more variable previous generation force fields and significantly more similar new generation force fields (CHARMM36, Lipid14, Slipids). We expect that the presented approaches will be useful for quantitative analysis of conformations and dynamics of individual lipid molecules in other simulations of lipid bilayers.
Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.
2012-01-01
The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925
Rogers, T Ryan; Wang, Feng
2017-10-28
An atomic version of the Millikan oil drop experiment is performed computationally. It is shown that for planar molecules, the atomic version of the Millikan experiment can be used to define an atomic partial charge that is free from charge flow contributions. We refer to this charge as the Millikan-Thomson (MT) charge. Since the MT charge is directly proportional to the atomic forces under a uniform electric field, it is the most relevant charge for force field developments. The MT charge shows good stability with respect to different choices of the basis set. In addition, the MT charge can be easily calculated even at post-Hartree-Fock levels of theory. With the MT charge, it is shown that for a planar water dimer, the charge transfer from the proton acceptor to the proton donor is about -0.052 e. While both planar hydrated cations and anions show signs of charge transfer, anions show a much more significant charge transfer to the hydration water than the corresponding cations. It might be important to explicitly model the ion charge transfer to water in a force field at least for the anions.
NASA Astrophysics Data System (ADS)
Zhou, Wenting; Yu, Hongwei
2014-09-01
We study the energy shift and the Casimir-Polder force of an atom out of thermal equilibrium near the surface of a dielectric substrate. We first generalize, adopting the local source hypothesis, the formalism proposed by Dalibard, Dupont-Roc, and Cohen-Tannoudji [J. Phys. (Paris) 43, 1617 (1982), 10.1051/jphys:0198200430110161700; J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], which separates the contributions of thermal fluctuations and radiation reaction to the energy shift and allows a distinct treatment of atoms in the ground and excited states, to the case out of thermal equilibrium, and then we use the generalized formalism to calculate the energy shift and the Casimir-Polder force of an isotropically polarizable neutral atom. We identify the effects of the thermal fluctuations that originate from the substrate and the environment and discuss in detail how the Casimir-Polder force out of thermal equilibrium behaves in three different distance regions in both the low-temperature limit and the high-temperature limit for both the ground-state and excited-state atoms, with special attention devoted to the distinctive features as opposed to thermal equilibrium. In particular, we recover the distinctive behavior of the atom-wall force out of thermal equilibrium at large distances in the low-temperature limit recently found in a different theoretical framework, and furthermore we give a concrete region where this behavior holds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Arne; Dierks, Karsten; XtalConcepts, Marlowring 19, 22525 Hamburg
Application of in situ dynamic light scattering to solutions of protein–detergent complexes permits characterization of these complexes in samples as small as 2 µl in volume. Detergents are widely used for the isolation and solubilization of membrane proteins to support crystallization and structure determination. Detergents are amphiphilic molecules that form micelles once the characteristic critical micelle concentration (CMC) is achieved and can solubilize membrane proteins by the formation of micelles around them. The results are presented of a study of micelle formation observed by in situ dynamic light-scattering (DLS) analyses performed on selected detergent solutions using a newly designed advancedmore » hardware device. DLS was initially applied in situ to detergent samples with a total volume of approximately 2 µl. When measured with DLS, pure detergents show a monodisperse radial distribution in water at concentrations exceeding the CMC. A series of all-transn-alkyl-β-d-maltopyranosides, from n-hexyl to n-tetradecyl, were used in the investigations. The results obtained verify that the application of DLS in situ is capable of distinguishing differences in the hydrodynamic radii of micelles formed by detergents differing in length by only a single CH{sub 2} group in their aliphatic tails. Subsequently, DLS was applied to investigate the distribution of hydrodynamic radii of membrane proteins and selected water-insoluble proteins in presence of detergent micelles. The results confirm that stable protein–detergent complexes were prepared for (i) bacteriorhodopsin and (ii) FetA in complex with a ligand as examples of transmembrane proteins. A fusion of maltose-binding protein and the Duck hepatitis B virus X protein was added to this investigation as an example of a non-membrane-associated protein with low water solubility. The increased solubility of this protein in the presence of detergent could be monitored, as well as the progress of proteolytic cleavage to separate the fusion partners. This study demonstrates the potential of in situ DLS to optimize solutions of protein–detergent complexes for crystallization applications.« less
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy
NASA Astrophysics Data System (ADS)
Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André
2017-05-01
We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.
A review of demodulation techniques for amplitude-modulation atomic force microscopy
Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J
2017-01-01
In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode. PMID:28900596
The deflection of carbon composite carbon nanotube / graphene using molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Kolesnikova, A. S.; Kirillova, I. V.; Kossovich, L. U.
2018-02-01
For the first time, the dependence of the bending force on the transverse displacement of atoms in the center of the composite material consisting of graphene and parallel oriented zigzag nanotubes was studied. Mathematical modeling of the action of the needle of the atomic force microscope was carried out using the single-layer armchair carbon nanotube. Armchair nanotubes are convenient for using them as a needle of an atomic force microscope, because their edges are not sharpened (unlike zigzag tubes). Consequently, armchair nanotubes will cause minimal damage upon contact with the investigation object. The geometric parameters of the composite was revealed under the action of the bending force of 6μN.
2013-07-11
in Fig. 3) is simulated. Each atom interacts with its neighboring atoms through a potential energy surface (PES), such as the simple Lennard - Jones ... Lennard -‐ Jones (LJ) potential energy surface (PES) dictating atomic interaction forces. The main point of this section is to...the potential energy surface (PES) that governs individual atomic interaction forces. In contrast to existing rotational energy models, we found
Toggling Bistable Atoms via Mechanical Switching of Bond Angle
NASA Astrophysics Data System (ADS)
Sweetman, Adam; Jarvis, Sam; Danza, Rosanna; Bamidele, Joseph; Gangopadhyay, Subhashis; Shaw, Gordon A.; Kantorovich, Lev; Moriarty, Philip
2011-04-01
We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom—an important consideration for future atomic scale fabrication strategies.
Will a Decaying Atom Feel a Friction Force?
Sonnleitner, Matthias; Trautmann, Nils; Barnett, Stephen M
2017-02-03
We show how a simple calculation leads to the surprising result that an excited two-level atom moving through a vacuum sees a tiny friction force of first order in v/c. At first sight this seems to be in obvious contradiction to other calculations showing that the interaction with the vacuum does not change the velocity of an atom. It is even more surprising that this change in the atom's momentum turns out to be a necessary result of energy and momentum conservation in special relativity.
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Jensenius, Henriette; Dienwiebel, Martin; Nakayama, Yoshikazu; Tokumoto, Hiroshi; Jarvis, Suzanne P.; Oosterkamp, Tjerk H.
2002-03-01
A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane on a graphite surface were detected both in the frequency shift and dissipation. Due to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region.
Electronegativity determination of individual surface atoms by atomic force microscopy.
Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki
2017-04-26
Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale.
Electronegativity determination of individual surface atoms by atomic force microscopy
Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki
2017-01-01
Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale. PMID:28443645
Zhang, Suoxin; Qian, Jianqiang; Li, Yingzi; Zhang, Yingxu; Wang, Zhenyu
2018-06-04
Atomic force microscope (AFM) is an idealized tool to measure the physical and chemical properties of the sample surfaces by reconstructing the force curve, which is of great significance to materials science, biology, and medicine science. Frequency modulation atomic force microscope (FM-AFM) collects the frequency shift as feedback thus having high force sensitivity and it accomplishes a true noncontact mode, which means great potential in biological sample detection field. However, it is a challenge to establish the relationship between the cantilever properties observed in practice and the tip-sample interaction theoretically. Moreover, there is no existing method to reconstruct the force curve in FM-AFM combining the higher harmonics and the higher flexural modes. This paper proposes a novel method that a full force curve can be reconstructed by any order higher harmonics of the first two flexural modes under any vibration amplitude in FM-AFM. Moreover, in the small amplitude regime, short range forces are reconstructed more accurately by higher harmonics analysis compared with fundamental harmonics using the Sader-Jarvis formula.
Jee, M. James; Tyson, J. Anthony; Hilbert, Stefan; ...
2016-06-15
Here, we present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitudemore » $${r}_{\\mathrm{lim}}\\sim 27$$ ($$5\\sigma $$), is designed as a precursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing $$\\gt 10$$ deg2 cosmic shear surveys. Combining the DLS tomography with the 9 yr results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives $${{\\rm{\\Omega }}}_{m}={0.293}_{-0.014}^{+0.012}$$, $${\\sigma }_{8}={0.833}_{-0.018}^{+0.011}$$, $${H}_{0}={68.6}_{-1.2}^{+1.4}\\;{\\text{km s}}^{-1}\\;{{\\rm{Mpc}}}^{-1}$$, and $${{\\rm{\\Omega }}}_{b}=0.0475\\pm 0.0012$$ for ΛCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for ΛCDM, we obtain the curvature constraint $${{\\rm{\\Omega }}}_{k}=-{0.010}_{-0.015}^{+0.013}$$ from the DLS+WMAP9 combination, which, however, is not well constrained when WMAP9 is used alone. The dark energy equation-of-state parameter w is tightly constrained when baryonic acoustic oscillation (BAO) data are added, yielding $$w=-{1.02}_{-0.09}^{+0.10}$$ with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to $$w=-1.03\\pm 0.03$$. Our joint constraints are fully consistent with the final Planck results and also with the predictions of a ΛCDM universe.« less
Bhupathiraju, Shilpa N; Lichtenstein, Alice H; Dawson-Hughes, Bess; Tucker, Katherine L
2011-03-01
In 2006, the AHA released diet and lifestyle recommendations (AHA-DLR) for cardiovascular disease (CVD) risk reduction. The effect of adherence to these recommendations on CVD risk is unknown. Our objective was to develop a unique diet and lifestyle score based on the AHA-DLR and to evaluate this score in relation to available CVD risk factors. In a cross-sectional study of Puerto Rican adults aged 45-75 y living in the greater Boston area, information was available for the following variables: diet (semiquantitative FFQ), blood pressure, waist circumference (WC), 10-y risk of coronary heart disease (CHD) (Framingham risk score), and fasting plasma lipids, serum glucose, insulin, and C-reactive protein (CRP) concentrations. We developed a diet and lifestyle score (AHA-DLS) based on the AHA-DLR. The AHA-DLS had both internal consistency and content validity. It was associated with plasma HDL cholesterol (P = 0.001), serum insulin (P = 0.0003), and CRP concentrations (P = 0.02), WC (P < 0.0001), and 10-y risk of CHD score (P = 0.01 in women). The AHA-DLS was inversely associated with serum glucose among those with a BMI < 25 (P = 0.01). Women and men in the highest quartile of the AHA-DLS had lower serum insulin (P-trend = 0.0003) and CRP concentrations (P-trend = 0.002), WC (P-trend = 0.0003), and higher HDL cholesterol (P-trend = 0.008). The AHA-DLS is a useful tool to measure adherence to the AHA-DLR and may be used to examine associations between diet and lifestyle behaviors and CVD risk.
Bhupathiraju, Shilpa N.; Lichtenstein, Alice H.; Dawson-Hughes, Bess; Tucker, Katherine L.
2011-01-01
In 2006, the AHA released diet and lifestyle recommendations (AHA-DLR) for cardiovascular disease (CVD) risk reduction. The effect of adherence to these recommendations on CVD risk is unknown. Our objective was to develop a unique diet and lifestyle score based on the AHA-DLR and to evaluate this score in relation to available CVD risk factors. In a cross-sectional study of Puerto Rican adults aged 45–75 y living in the greater Boston area, information was available for the following variables: diet (semiquantitative FFQ), blood pressure, waist circumference (WC), 10-y risk of coronary heart disease (CHD) (Framingham risk score), and fasting plasma lipids, serum glucose, insulin, and C-reactive protein (CRP) concentrations. We developed a diet and lifestyle score (AHA-DLS) based on the AHA-DLR. The AHA-DLS had both internal consistency and content validity. It was associated with plasma HDL cholesterol (P = 0.001), serum insulin (P = 0.0003), and CRP concentrations (P = 0.02), WC (P < 0.0001), and 10-y risk of CHD score (P = 0.01 in women). The AHA-DLS was inversely associated with serum glucose among those with a BMI < 25 (P = 0.01). Women and men in the highest quartile of the AHA-DLS had lower serum insulin (P-trend = 0.0003) and CRP concentrations (P-trend = 0.002), WC (P-trend = 0.0003), and higher HDL cholesterol (P-trend = 0.008). The AHA-DLS is a useful tool to measure adherence to the AHA-DLR and may be used to examine associations between diet and lifestyle behaviors and CVD risk. PMID:21270369
NASA Astrophysics Data System (ADS)
Wallage, A. L.; Gaughan, J. B.; Lisle, A. T.; Beard, L.; Collins, C. W.; Johnston, S. D.
2017-07-01
Synchronous and continuous measurement of body (BT) and scrotal temperature (ST) without adverse welfare or behavioural interference is essential for understanding thermoregulation of the bull testis. This study compared three technologies for their efficacy for long-term measurement of the relationship between BT and ST by means of (1) temperature sensitive radio transmitters (RT), (2) data loggers (DL) and (3) infrared imaging (IRI). After an initial pilot study on two bulls to establish a surgical protocol, RTs and DLs were implanted into the flank and mid-scrotum of six Wagyu bulls for between 29 and 49 days. RT frequencies were scanned every 15 min, whilst DLs logged every 30 min. Infrared imaging of the body (flank) and scrotum of each bull was recorded hourly for one 24-h period and compared to RT and DL data. After a series of subsequent heat stress studies, bulls were castrated and testicular tissue samples processed for evidence of histopathology. Radio transmitters were less reliable than DLs; RTs lost >11 % of data, whilst 11 of the 12 DLs had 0 % data loss. IRI was only interpretable in 35.8 % of images recorded. Pearson correlations between DL and RT were strong for both BT ( r > 0.94, P < 0.001) and ST ( r > 0.80, P < 0.001). Surgery produced temporary minor inflammation and scrotal hematoma in two animals post-surgery. Whilst scar tissue was observed at all surgical sutured sites when bulls were castrated, there was no evidence of testicular adhesion and normal active spermatogenesis was observed in six of the eight implanted testicles. There was no significant correlation of IRI with either DL or RT. We conclude that DLs provided to be a reliable continuous source of data for synchronous measurement of BT and ST.
NASA Technical Reports Server (NTRS)
Werner, Christopher R.; Mulugeta, Lealem; Myers, J. G.; Pennline, J. A.
2015-01-01
NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone in the absence of mechanical loading. The model was recently updated to include skeletal loading from exercise and free living activities to maintain healthy bone using a new daily load stimulus (DLS). This new formula was developed based on an extensive review of existing DLS formulas, as discussed in the abstract by Pennline et al. The DLS formula incorporated into the bone remodeling model utilizes strains and stress calculated from finite element model (FEM) of the bone region of interest. The proximal femur was selected for the initial application of the DLS formula, with a specific focus on the femoral neck. METHODS: The FEM was generated from CAD geometry of a femur using de-identified CT data. The femur was meshed using linear tetrahedral elements Figure (1) with higher mesh densities in the femoral neck region, which is the primary region of interest for the initial application of the DLS formula in concert with the DAP bone remodeling model. Nodal loads were applied to the femoral head and the greater trochanter and the base of the femur was held fixed. An L2 norm study was conducted to reduce the length of the femoral shaft without significantly impacting the stresses in the femoral neck. The material properties of the FEM of the proximal femur were separated between cortical and trabecular regions to work with the bone remodeling model. Determining the elements with cortical material properties in the FEM was based off of publicly available CT hip scans [4] that were segmented, cleaned, and overlaid onto the FEM.
Veeneman, Maartje M J; Broekhoven, Mark H; Damsteegt, Ruth; Vanderschuren, Louk J M J
2012-01-01
Dopaminergic neurotransmission in the dorsal and ventral striatum is thought to be involved in distinct aspects of cocaine addiction. Ventral striatal dopamine mediates the acute reinforcing properties of cocaine, whereas dopamine in the dorsolateral striatum (DLS) is thought to become involved in later stages of the addiction process to mediate well-established cue-controlled drug seeking. However, it is unclear whether the DLS also has a role in the reinforcing properties of cocaine itself. Therefore, we systematically investigated the involvement of dopamine in dorsal and ventral striatal regions in cocaine self-administration, using various schedules of reinforcement in animals with limited drug taking experience. Intra-DLS infusion of the dopamine receptor antagonist α-flupenthixol did not affect the acquisition of cocaine self-administration, increased cocaine self-administration under a fixed ratio-1 (FR-1) schedule of reinforcement, caused a rightward and downward shift of the dose–response curve of cocaine under an FR-1 schedule of reinforcement and decreased responding for cocaine under a progressive ratio (PR) schedule of reinforcement. Infusion of α-flupenthixol into the ventral nucleus accumbens (NAcc) shell inhibited the acquisition of cocaine self-administration, reduced responding for the drug under FR-1 and PR schedules of reinforcement, and caused a downward shift of the dose–response curve of cocaine self-administration under an FR-1 schedule of reinforcement. These data show that dopamine in both the DLS and NAcc shell is involved in cocaine reinforcement. We suggest that the DLS and the NAcc shell mediate somewhat distinct facets of the reinforcing properties of cocaine, related to its rewarding and motivational aspects, respectively. PMID:21918505
Atomic scale study of nanocontacts
NASA Astrophysics Data System (ADS)
Buldum, A.; Ciraci, S.; Batra, Inder P.; Fong, C. Y.
1998-03-01
Nanocontact and subsequent pulling off a sharp Ni(111) tip on a Cu(110) surface are investigated by using molecular dynamics method with embedded atom model. As the contact is formed, the sharp tip experiences multiple jump to contact in the attractive force range. The contact interface develops discontinuously mainly due to disorder-order transformations which lead to disappearance of a layer and hence abrupt changes in the normal force variation. Atom exchange occurs in the repulsive range. The connective neck is reduced also discontinuously by pulling off the tip. The novel atomic structure of the neck under the tensile force is analyzed. We also presented a comperative study for the contact by a Si(111) tip on Si(111)-(2x1) surface.
Dynamics-Enabled Nanoelectromechanical Systems (NEMS) Oscillators
2014-06-01
it becomes strongly nonlinear, and thus constitutes an archetypal candidate for nonlinear engineering • its fundamental resonant frequency...width of spectral peaks of atomic force microscopy (AFM) resonators as they are brought close to a surface. 39 Approved for public release...alternating current AD Allan Deviation AFM atomic force microscopy AFRL Air Force Research Laboratory AlN aluminum nitride APN Anomalous Phase
Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.
Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T
2015-03-13
Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena.
Single ricin detection by atomic force microscopy chemomechanical mapping
NASA Astrophysics Data System (ADS)
Chen, Guojun; Zhou, Jianfeng; Park, Bosoon; Xu, Bingqian
2009-07-01
The authors report on a study of detecting ricin molecules immobilized on chemically modified Au (111) surface by chemomechanically mapping the molecular interactions with a chemically modified atomic force microscopy (AFM) tip. AFM images resolved the different fold-up conformations of single ricin molecule as well as their intramolecule structure of A- and B-chains. AFM force spectroscopy study of the interaction indicates that the unbinding force has a linear relation with the logarithmic force loading rate, which agrees well with calculations using one-barrier bond dissociation model.
Goodman, Jarid; Gabriele, Amanda; Packard, Mark G
2017-04-01
The present study examined the role of the dorsolateral striatum (DLS) in extinction behavior. Male Long-Evans rats were initially trained on the straight alley maze, in which they were reinforced to traverse a straight runway and retrieve food reward at the opposite end of the maze. After initial acquisition, animals were given extinction training using 1 of 2 distinct protocols: response extinction or latent extinction. For response extinction, the animal was released from the same starting position and had the opportunity to perform the originally reinforced approach response to the goal end of the maze, which no longer contained food. For latent extinction, the animal was confined to the original goal location without food, allowing the animal to form a new cognitive expectation (i.e., that the goal location is no longer reinforced). Immediately before response or latent extinction training, animals received bilateral intra-DLS administration of the sodium channel blocker bupivacaine or control injections of physiological saline. Results indicated that neural inactivation of the DLS with bupivacaine impaired response extinction, but did not influence latent extinction. The dissociation observed indicates that the DLS selectively mediates extinction mechanisms involving suppression of the original response, as opposed to cognitive mechanisms involving a change in expectation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Analysis of hepatitis C virus RNA dimerization and core-RNA interactions.
Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc
2006-01-01
The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3'-untranslated region (3'-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623-2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3'-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus.
Concurrent silent strokes impair motor function by limiting behavioral compensation.
Faraji, Jamshid; Kurio, Kristyn; Metz, Gerlinde A
2012-08-01
Silent strokes occur more frequently than classic strokes; however, symptoms may go unreported in spite of lasting tissue damage. A silent stroke may indicate elevated susceptibility to recurrent stroke, which may eventually result in apparent and lasting impairments. Here we investigated if multiple silent strokes to the motor system challenge the compensatory capacity of the brain to cumulatively result in permanent functional deficits. Adult male rats with focal ischemia received single focal ischemic mini-lesions in the sensorimotor cortex (SMC) or the dorsolateral striatum (DLS), or multiple lesions affecting both SMC and DLS. The time course and outcome of motor compensation and recovery were determined by quantitative and qualitative assessment of skilled reaching and skilled walking. Rats with SMC or DLS lesion alone did not show behavioral deficits in either task. However, the combination of focal ischemic lesions in SMC and DLS perturbed skilled reaching accuracy and disrupted forelimb placement in the ladder rung walking task. These observations suggest that multiple focal infarcts, each resembling a silent stroke, gradually compromise the plastic capacity of the motor system to cause permanent motor deficits. Moreover, these findings support the notion that cortical and subcortical motor systems cooperate when adopting beneficial compensatory movement strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
Vibrational properties of TaW alloy using modified embedded atom method potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chand, Manesh, E-mail: maneshchand@gmail.com; Uniyal, Shweta; Joshi, Subodh
2016-05-06
Force-constants up to second neighbours of pure transition metal Ta and TaW alloy are determined using the modified embedded atom method (MEAM) potential. The obtained force-constants are used to calculate the phonon dispersion of pure Ta and TaW alloy. As a further application of MEAM potential, the force-constants are used to calculate the local vibrational density of states and mean square thermal displacements of pure Ta and W impurity atoms with Green’s function method. The calculated results are found to be in agreement with the experimental measurements.
NASA Astrophysics Data System (ADS)
Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal
2011-07-01
Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.
Effects of coating spherical iron oxide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milosevic, Irena; Motte, Laurence; Aoun, Bachir
2017-01-01
We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide onmore » the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazu and Dr. Federica Migliardo.« less
Jarvis, Sam; Danza, Rosanna; Moriarty, Philip
2012-01-01
Summary Background: Noncontact atomic force microscopy (NC-AFM) now regularly produces atomic-resolution images on a wide range of surfaces, and has demonstrated the capability for atomic manipulation solely using chemical forces. Nonetheless, the role of the tip apex in both imaging and manipulation remains poorly understood and is an active area of research both experimentally and theoretically. Recent work employing specially functionalised tips has provided additional impetus to elucidating the role of the tip apex in the observed contrast. Results: We present an analysis of the influence of the tip apex during imaging of the Si(100) substrate in ultra-high vacuum (UHV) at 5 K using a qPlus sensor for noncontact atomic force microscopy (NC-AFM). Data demonstrating stable imaging with a range of tip apexes, each with a characteristic imaging signature, have been acquired. By imaging at close to zero applied bias we eliminate the influence of tunnel current on the force between tip and surface, and also the tunnel-current-induced excitation of silicon dimers, which is a key issue in scanning probe studies of Si(100). Conclusion: A wide range of novel imaging mechanisms are demonstrated on the Si(100) surface, which can only be explained by variations in the precise structural configuration at the apex of the tip. Such images provide a valuable resource for theoreticians working on the development of realistic tip structures for NC-AFM simulations. Force spectroscopy measurements show that the tip termination critically affects both the short-range force and dissipated energy. PMID:22428093
Optical Interferometric Micrometrology
NASA Technical Reports Server (NTRS)
Abel, Phillip B.; Lauer, James R.
1989-01-01
Resolutions in angstrom and subangstrom range sought for atomic-scale surface probes. Experimental optical micrometrological system built to demonstrate calibration of piezoelectric transducer to displacement sensitivity of few angstroms. Objective to develop relatively simple system producing and measuring translation, across surface of specimen, of stylus in atomic-force or scanning tunneling microscope. Laser interferometer used to calibrate piezoelectric transducer used in atomic-force microscope. Electronic portion of calibration system made of commercially available components.
Low toxic maghemite nanoparticles for theranostic applications.
Kuchma, Elena A; Zolotukhin, Peter V; Belanova, Anna A; Soldatov, Mikhail A; Lastovina, Tatiana A; Kubrin, Stanislav P; Nikolsky, Anatoliy V; Mirmikova, Lidia I; Soldatov, Alexander V
2017-01-01
Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine. Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing). TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD waŝ16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe 2 O 3 ) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe 2 O 3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus. Quasispherical Fe 3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy.
Low toxic maghemite nanoparticles for theranostic applications
Zolotukhin, Peter V; Belanova, Anna A; Soldatov, Mikhail A; Lastovina, Tatiana A; Kubrin, Stanislav P; Nikolsky, Anatoliy V; Mirmikova, Lidia I
2017-01-01
Background Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine. Methods Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing). Results TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD waŝ16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe2O3) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe2O3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus. Conclusion Quasispherical Fe3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy. PMID:28919740
Effect of dispersion forces on squeezing with Rydberg atoms
NASA Technical Reports Server (NTRS)
Ng, S. K.; Muhamad, M. R.; Wahiddin, M. R. B.
1994-01-01
We report exact results concerning the effect of dipole-dipole interaction (dispersion forces) on dynamic and steady-state characteristics of squeezing in the emitted fluorescent field from two identical coherently driven two-level atoms. The atomic system is subjected to three different damping baths in particular the normal vacuum, a broad band thermal field and a broad band squeezed vacuum. The atomic model is the Dicke model, hence possible experiments are most likely to agree with theory when performed on systems of Rydberg atoms making microwave transitions. The presence of dipole-dipole interaction can enhance squeezing for realizable values of the various parameters involved.
Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.
Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S
2001-01-01
The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature. Copyright © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
Li, Ying; Lu, Liyuan; Li, Juan
2016-09-01
Hereditary spherocytosis is an inherited red blood cell membrane disorder resulting from mutations of genes encoding erythrocyte membrane and cytoskeletal proteins. Few equipments can observe the structural characteristics of hereditary spherocytosis directly expect for atomic force microscopy In our study, we proved atomic force microscopy is a powerful and sensitive instrument to describe the characteristics of hereditary spherocytosis. Erythrocytes from hereditary spherocytosis patients were small spheroidal, lacking a well-organized lattice on the cell membrane, with smaller cell surface particles and had reduced valley to peak distance and average cell membrane roughness vs. those from healthy individuals. These observations indicated defects in the certain cell membrane structural proteins such as α- and β-spectrin, ankyrin, etc. Until now, splenectomy is still the most effective treatment for symptoms relief for hereditary spherocytosis. In this study, we further solved the mysteries of membrane nanostructure changes of erythrocytes before and after splenectomy in hereditary spherocytosis by atomic force microscopy. After splenectomy, the cells were larger, but still spheroidal-shaped. The membrane ultrastructure was disorganized and characterized by a reduced surface particle size and lower than normal Ra values. These observations indicated that although splenectomy can effectively relieve the symptoms of hereditary spherocytosis, it has little effect on correction of cytoskeletal membrane defects of hereditary spherocytosis. We concluded that atomic force microscopy is a powerful tool to investigate the pathophysiological mechanisms of hereditary spherocytosis and to monitor treatment efficacy in clinical practices. To the best of our knowledge, this is the first report to study hereditary spherocytosis with atomic force microscopy and offers important mechanistic insight into the underlying role of splenectomy.
2016-01-01
We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642
An incentive-based distributed mechanism for scheduling divisible loads in tree networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, T. E.; Grosu, D.
The underlying assumption of Divisible Load Scheduling (DLS) theory is that the pro-cessors composing the network are obedient, i.e., they do not “cheat” the scheduling algorithm. This assumption is unrealistic if the processors are owned by autonomous, self-interested organizations that have no a priori motivation for cooperation and they will manipulate the algorithm if it is beneficial to do so. In this paper, we address this issue by designing a distributed mechanism for scheduling divisible loads in tree net-works, called DLS-T, which provides incentives to processors for reporting their true processing capacity and executing their assigned load at full processingmore » capacity. We prove that the DLS-T mechanism computes the optimal allocation in an ex post Nash equilibrium. Finally, we simulate and study the mechanism under various network structures and processor parameters.« less
OAI and NASA's Scientific and Technical Information
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Rocker, JoAnne; Harrison, Terry L.
2002-01-01
The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) is an evolving protocol and philosophy regarding interoperability for digital libraries (DLs). Previously, "distributed searching" models were popular for DL interoperability. However, experience has shown distributed searching systems across large numbers of DLs to be difficult to maintain in an Internet environment. The OAI-PMH is a move away from distributed searching, focusing on the arguably simpler model of "metadata harvesting". We detail NASA s involvement in defining and testing the OAI-PMH and experience to date with adapting existing NASA distributed searching DLs (such as the NASA Technical Report Server) to use the OAI-PMH and metadata harvesting. We discuss some of the entirely new DL projects that the OAI-PMH has made possible, such as the Technical Report Interchange project. We explain the strategic importance of the OAI-PMH to the mission of NASA s Scientific and Technical Information Program.
NASA Astrophysics Data System (ADS)
Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.
2018-02-01
Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.
Duodenal and jejunal Dieulafoy’s lesions: optimal management
Yılmaz, Tonguç Utku; Kozan, Ramazan
2017-01-01
Dieulafoy’s lesions (DLs) are rare and cause gastrointestinal bleeding resulting from erosion of dilated submucosal vessels. The most common location for DL is the stomach, followed by duodenum. There is little information about duodenal and jejunal DLs. Challenges for diagnosis and treatment of Dieulafoy’s lesions include the rare nature of the disease, asymptomatic patients, bleeding symptoms often requiring rapid diagnosis and treatment in symptomatic patients, variability in the diagnosis and treatment methods resulting from different lesion locations, and the risk of re-bleeding. For these reasons, there is no universal consensus about the diagnosis and treatment approach. There are few published case reports and case series recently published. Most duodenal DLs are not evaluated seperately in the studies, which makes it difficult to determine the optimal model. In this study, we summarize the general aspects and recent approaches used to treat duodenal DL. PMID:29158686
Evolution of optical force on two-level atom by ultrashort time-domain dark hollow Gaussian pulse
NASA Astrophysics Data System (ADS)
Cao, Xiaochao; Wang, Zhaoying; Lin, Qiang
2017-09-01
Based on the analytical expression of the ultrashort time-domain dark hollow Gaussian (TDHG) pulse, the optical force on two-level atoms induced by a TDHG pulse is calculated in this paper. The phenomena of focusing or defocusing of the light force is numerical analyzed for different detuning, various duration time, and different order of the ultrashort pulse. The transverse optical force can change from a focusing force to a defocusing force depending on the spatial-temporal coupling effect as the TDHG pulses propagating in free space. Our results also show that the initial phase of the TDHG pulse can significantly changes the envelope of the optical force.
Torun, H; Finkler, O; Degertekin, F L
2009-07-01
The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.
The use of atomic force microscopy to evaluate warm mix asphalt.
DOT National Transportation Integrated Search
2013-01-01
The main objective of this study was to use the Atomic Force Microscopy (AFM) to examine the moisture susceptibility : and healing characteristics of Warm Mix Asphalt (WMA) and compare it with those of conventional Hot Mix Asphalt (HMA). To : this en...
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
2017-12-21
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
NASA Astrophysics Data System (ADS)
Murray, Eamonn; Fahy, Stephen
2014-03-01
Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c-axis is absorbed in bismuth, the distribution of excited electrons and holes breaks the three-fold rotational symmetry and leads to a net force on the atoms in the direction perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting transverse and longitudinal forces experienced by the atoms. Using the measured, temperature-dependent rate of decay of the transverse force[2], we predict the approximate amplitude of induced atomic motion in the Eg mode as a function of temperature and optical fluence. This work is supported by Science Foundation Ireland and a Marie Curie International Incoming Fellowship.
Universal aspects of brittle fracture, adhesion, and atomic force microscopy
NASA Technical Reports Server (NTRS)
Banerjea, Amitava; Ferrante, John; Smith, John R.
1989-01-01
This universal relation between binding energy and interatomic separation was originally discovered for adhesion at bimetallic interfaces involving the simple metals Al, Zn, Mg, and Na. It is shown here that the same universal relation extends to adhesion at transition-metal interfaces. Adhesive energies have been computed for the low-index interfaces of Al, Ni, Cu, Ag, Fe, and W, using the equivalent-crystal theory (ECT) and keeping the atoms in each semiinfinite slab fixed rigidly in their equilibrium positions. These adhesive energy curves can be scaled onto each other and onto the universal adhesion curve. The effect of tip shape on the adhesive forces in the atomic-force microscope (AFM) is studied by computing energies and forces using the ECT. While the details of the energy-distance and force-distance curves are sensitive to tip shape, all of these curves can be scaled onto the universal adhesion curve.
Sheikhi, Amir; Yang, Han; Alam, Md Nur; van de Ven, Theo G M
2016-07-20
Nanoparticles, as one of the key materials in nanotechnology and nanomedicine, have gained significant importance during the past decade. While metal-based nanoparticles are associated with synthetic and environmental hassles, cellulose introduces a green, sustainable alternative for nanoparticle synthesis. Here, we present the chemical synthesis and separation procedures to produce new classes of hairy nanoparticles (bearing both amorphous and crystalline regions) and biopolymers based on wood fibers. Through periodate oxidation of soft wood pulp, the glucose ring of cellulose is opened at the C2-C3 bond to form 2,3-dialdehyde groups. Further heating of the partially oxidized fibers (e.g., T = 80 °C) results in three products, namely fibrous oxidized cellulose, sterically stabilized nanocrystalline cellulose (SNCC), and dissolved dialdehyde modified cellulose (DAMC), which are well separated by intermittent centrifugation and co-solvent addition. The partially oxidized fibers (without heating) were used as a highly reactive intermediate to react with chlorite for converting almost all aldehyde to carboxyl groups. Co-solvent precipitation and centrifugation resulted in electrosterically stabilized nanocrystalline cellulose (ENCC) and dicarboxylated cellulose (DCC). The aldehyde content of SNCC and consequently surface charge of ENCC (carboxyl content) were precisely controlled by controlling the periodate oxidation reaction time, resulting in highly stable nanoparticles bearing more than 7 mmol functional groups per gram of nanoparticles (e.g., as compared to conventional NCC bearing < 1 mmol functional group/g). Atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) attested to the rod-like morphology. Conductometric titration, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), electrokinetic-sonic-amplitude (ESA) and acoustic attenuation spectroscopy shed light on the superior properties of these nanomaterials.
Hassani Najafabadi, Alireza; Abdouss, Majid; Faghihi, Shahab
2014-08-01
Current methods for preparation of PEGylated chitosan have limitations such as harsh de protecting step and several purification cycles. In the present study, a facile new method for conjugating methoxy polyethylene glycol (mPEG) to chitosan under mild condition is introduced to improve water solubility of chitosan and control the release of poor water soluble drugs. The method consists of chitosan modification by grafting the C6 position of chitosan to mPEG which is confirmed by Fourier transformed-infrared (FT-IR) and proton nuclear magnetic resonance ((1)HNMR) analyses. The amine groups at the C2 position of chitosan are protected using sodium dodecylsulfate (SDS) which is removed by dialyzing the precipitation against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and (1)HNMR. The synthesized polymer is then employed to prepare nanoparticles which are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and dynamic light scattering (DLS) for their size and morphology. The nanoparticles are used for encapsulation of ibuprofen followed by in vitro release investigation in gastrointestinal and simulated biological fluids. The chitosan nanoparticles are used as control. The PEGylated nanoparticles show a particle size of 80 nm with spherical morphology. The results clearly show that drug release from PEGylated chitosan nanoparticles is remarkably slower than chitosan. In addition, drug encapsulation and encapsulation efficiency in PEGylated nanoparticles are dependent on the amount of drug added to the formulation being significantly higher than chitosan nanoparticles. This study provides an efficient, novel, and facile method for preparing a nano carrier system for delivery of water insoluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Sugar-based novel niosomal nanocarrier system for enhanced oral bioavailability of levofloxacin.
Imran, Muhammad; Shah, Muhammad Raza; Ullah, Farhat; Ullah, Shafi; Elhissi, Abdelbary M A; Nawaz, Waqas; Ahmad, Farid; Sadiq, Abdul; Ali, Imdad
2016-11-01
Vesicular systems have attracted great attention in drug delivery because of their amphiphilicity, biodegradability, non-toxicity and potential for increasing drug bioavailability. A novel sugar-based double-tailed surfactant containing renewable block was synthesized for preparing niosomal vesicles that could be exploited for Levofloxacin encapsulation, aiming to increase its oral bioavailability. The surfactant was characterized by 1 H NMR, mass spectroscopy and Fourier transform infrared spectroscopy (FT-IR). Its biocompatibility was studied against cell cultures and human blood hemolysis. In vivo acute toxicity was evaluated in mice. The vesicle morphology, size, drug-excipients interaction and entrapment efficiency (EE) were examined using atomic force microscope (AFM), dynamic light scattering (DLS), FT-IR and HPLC. Oral bioavailability studies of Levofloxacin in surfactant-based niosomal formulation were carried out using rabbits and plasma samples were analyzed using HPLC. Vesicles were spherical in shape and the size was 190.31 ± 4.51 nm with a polydispersity index (PDI) of 0.29 ± 0.03. The drug EE in niosomes was 68.28 ± 3.45%. When applied on cell lines, high cell viability was observed even after prolonged exposure at high concentrations. It caused 5.77 ± 1.34% hemolysis at 1000 μg/mL and was found to be safe up to 2000 mg/kg. Elevated Levofloxacin plasma concentration was achieved when delivered with novel vesicles. The surfactant was demonstrated to be safe and effective as carrier of Levofloxacin. The study suggests that this sugar-based double-tailed nonionic surfactant could be promising nano-vesicular system for delivery and enhancing oral bioavailability of the hydrophobic Levofloxacin.
Danafar, Hossein; Rostamizadeh, Kobra; Davaran, Soodabeh; Hamidi, Mehrdad
2017-11-01
Co-delivery strategy has been proposed to minimize the amount of each drug and to achieve the synergistic effect for cancer therapies. A conjugate of the antitumor drug, doxorubicin, with diblock methoxy poly (ethylene glycol)-poly caprolactone (mPEG-PCL) copolymer was synthesized by the reaction of mPEG-PCL copolymer with doxorubicin in the presence of p-nitrophenylchloroformate. The conjugated copolymer was characterized in vitro by 1 H-NMR, FTIR, DSC and GPC techniques. Then, the doxorubicin conjugated mPEG-PCL(DOX-mPEG-PCL) was self-assembled into micelles in the presence of curcumin in aqueous solution. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM).The encapsulation efficiency of doxorubicin and curcumin were 82.31 ± 3.32 and 78.15 ± 3.14%, respectively. The results revealed that the micelles formed by the DOX-mPEG-PCL with and without curcumin have spherical structure with average size of 116 and 134 nm respectively. The release behavior of curcumin and doxorubicin loaded to micelles were investigated in a different media. The release rate of micelles consisted of the conjugated copolymer was pH dependent as it was higher at lower pH than in neutral condition. Another feature of the conjugated micelles was a sustained release profile. The cytotoxicity of micelles were evaluated by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, atetrazole) assay on lung cancer A549 cell lines. In vitro cytotoxicity assay showed that the mPEG-PCL copolymer did not affect the growth of A549 cells. The cytotoxic activity of the micelles against A549 cells was greater than free doxorubicin and free curcumin.
2009-01-01
Biocompatible oils are used in a variety of medical applications ranging from vaccine adjuvants to vehicles for oral drug delivery. To enable such nonpolar organic phases to serve as reservoirs for delivery of hydrophilic compounds, we explored the ability of block copolymer micelles in organic solvents to sequester proteins for sustained release across an oil−water interface. Self-assembly of the block copolymer, poly(ϵ-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP), was investigated in toluene and oleic acid, a biocompatible naturally occurring fatty acid. Micelle formation in toluene was characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) imaging of micelles cast onto silicon substrates. Cryogenic transmission electron microscopy confirmed a spherical morphology in oleic acid. Studies of homopolymer solubility implied that micelles in oleic acid consist of a P2VP corona and a PCL core, while P2VP formed the core of micelles assembled in toluene. The loading of two model proteins (ovalbumin (ova) and bovine serum albumin (BSA)) into micelles was demonstrated with loadings as high as 7.8% wt of protein per wt of P2VP in oleic acid. Characterization of block copolymer morphology in the two solvents after protein loading revealed spherical particles with similar size distributions to the as-assembled micelles. Release of ova from micelles in oleic acid was sustained for 12−30 h upon placing the oil phase in contact with an aqueous bath. Unique to the situation of micelle assembly in an oily phase, the data suggest protein is sequestered in the P2VP corona block of PCL-b-P2VP micelles in oleic acid. More conventionally, protein loading occurs in the P2VP core of micelles assembled in toluene. PMID:19235932
Sheng, Ruilong; Luo, Ting; Li, Hui; Sun, Jingjing; Wang, Zhao; Cao, Amin
2013-11-01
In this work, we have successfully prepared a series of new sterol-based cationic lipids (1-4) via an efficient 'Click' chemistry approach. The pDNA binding affinity of these lipids was examined by EB displacement and agarose-gel retardant assay. The average particle sizes and surface charges of the sterol-based cationic lipids/pDNA lipoplexes were analyzed by dynamic laser light scattering instrument (DLS), and the morphologies of the lipoplexes were observed by atomic force microscopy (AFM). The cytotoxicity of the lipids were examined by MTT and LDH assay, and the gene transfection efficiencies of these lipid carriers were investigated by luciferase gene transfection assay in various cell lines. In addition, the intracellular uptake and trafficking/localization behavior of the Cy3-DNA loaded lipoplexes were preliminarily studied by fluorescence microscopy. The results demonstrated that the pDNA loading capacity, lipoplex particle size, zeta potential and morphology of the sterol lipids/pDNA lipoplexes depended largely on the molecular structure factors including sterol-skeletons and headgroups. Furthermore, the sterol-based lipids showed quite different cytotoxicity and gene transfection efficacy in A549 and HeLa cells. Interestingly, it was found that the cholesterol-bearing lipids 1 and 2 showed 7-10(4) times higher transfection capability than their lithocholate-bearing counterparts 3 and 4 in A549 and HeLa cell lines, suggested that the gene transfection capacity strongly relied on the structure of sterol skeletons. Moreover, the study on the structure-activity relationships of these sterol-based cationic lipid gene carriers provided a possible approach for developing low cytotoxic and high efficient lipid gene carriers by selecting suitable sterol hydrophobes and cationic headgroups. Copyright © 2013 Elsevier Ltd. All rights reserved.
RNA-based micelles: A novel platform for paclitaxel loading and delivery.
Shu, Yi; Yin, Hongran; Rajabi, Mehdi; Li, Hui; Vieweger, Mario; Guo, Sijin; Shu, Dan; Guo, Peixuan
2018-04-28
RNA can serve as powerful building blocks for bottom-up fabrication of nanostructures for biotechnological and biomedical applications. In addition to current self-assembly strategies utilizing base pairing, motif piling and tertiary interactions, we reported for the first time the formation of RNA based micellar nanoconstruct with a cholesterol molecule conjugated onto one helical end of a branched pRNA three-way junction (3WJ) motif. The resulting amphiphilic RNA micelles consist of a hydrophilic RNA head and a covalently linked hydrophobic lipid tail that can spontaneously assemble in aqueous solution via hydrophobic interaction. Taking advantage of pRNA 3WJ branched structure, the assembled RNA micelles are capable of escorting multiple functional modules. As a proof of concept for delivery for therapeutics, Paclitaxel was loaded into the RNA micelles with significantly improved water solubility. The successful construction of the drug loaded RNA micelles was confirmed and characterized by agarose gel electrophoresis, atomic force microscopy (AFM), dynamic light scattering (DLS), and fluorescence Nile Red encapsulation assay. The estimate critical micelle formation concentration ranges from 39 nM to 78 nM. The Paclitaxel loaded RNA micelles can internalize into cancer cells and inhibit their proliferation. Further studies showed that the Paclitaxel loaded RNA micelles induced cancer cell apoptosis in a Caspase-3 dependent manner but RNA micelles alone exhibited low cytotoxicity. Finally, the Paclitaxel loaded RNA micelles targeted to tumor in vivo without accumulation in healthy tissues and organs. There is also no or very low induction of pro-inflammatory response. Therefore, multivalence, cancer cell permeability, combined with controllable assembly, low or non toxic nature, and tumor targeting are all promising features that make our pRNA micelles a suitable platform for potential drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.
Design and intestinal mucus penetration mechanism of core-shell nanocomplex.
Zhang, Xin; Cheng, Hongbo; Dong, Wei; Zhang, Meixia; Liu, Qiaoyu; Wang, Xiuhua; Guan, Jian; Wu, Haiyang; Mao, Shirui
2018-02-28
The objective of this study was to design intestinal mucus-penetrating core-shell nanocomplex by functionally mimicking the surface of virus, which can be used as the carrier for peroral delivery of macromolecules, and further understand the influence of nanocomplex surface properties on the mucosal permeation capacity. Taking insulin as a model drug, the core was formed by the self-assembly among positively charged chitosan, insulin and negatively charged sodium tripolyphosphate, different types of alginates were used as the shell forming material. The nanocomplex was characterized by dynamic light scattering (DLS), atomic force microscopy (AFM) and FTIR. Nanocomplex movement in mucus was recorded using multiple particle tracking (MPT) method. Permeation and uptake of different nanocomplex were studied in rat intestine. It was demonstrated that alginate coating layer was successfully formed on the core and the core-shell nanocomplex showed a good physical stability and improved enzymatic degradation protection. The mucus penetration and MPT study showed that the mucus penetration capacity of the nanocomplex was surface charge and coating polymer structure dependent, nanocomplex with negative alginate coating had 1.6-2.5 times higher mucus penetration ability than that of positively charged chitosan-insulin nanocomplex. Moreover, the mucus penetration ability of the core-shell nanocomplex was alginate structure dependent, whereas alginate with lower G content and lower molecular weight showed the best permeation enhancing ability. The improvement of intestine permeation and intestinal villi uptake of the core-shell nanocomplex were further confirmed in rat intestine and multiple uptake mechanisms were involved in the transport process. In conclusion, core-shell nanocomplex composed of oppositely charged materials could provide a strategy to overcome the mucus barrier and enhance the mucosal permeability. Copyright © 2018 Elsevier B.V. All rights reserved.
Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K
2013-03-15
Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs. Copyright © 2012 Elsevier B.V. All rights reserved.
Akiyama, Eri; Morimoto, Nobuyuki; Kujawa, Piotr; Ozawa, Yayoi; Winnik, Françoise M; Akiyoshi, Kazunari
2007-08-01
The assembly of cholesteryl derivatives of the highly branched polysaccharide mannan Mw = (5.2 x 104 g/mol) in dilute aqueous solution was investigated by 1H nuclear magnetic resonance (NMR) spectroscopy, size-exclusion chromatography coupled with multiangle laser scattering (SEC-MALLS), dynamic light scattering (DLS), atomic force microscopy (AFM), fluorescence quenching, and fluorescence depolarization measurements. In the dilute regime, cholesteryl-bearing mannans (CHM) containing approximately 1 cholesteryl group per 100 mannopyranose units formed nanogels with a hydrodynamic radius (RH) of approximately 20 nm containing approximately 8 macromolecules held together via hydrophobic nanodomains consisting of approximately 9 cholesteryl groups. Their density Phih ( approximately 0.02) was significantly lower than the density ( approximately 0.16) of nanogels formed by a cholesteryl derivative of the linear polysaccharide pullulan (CHP) of identical molar mass and level of cholesteryl substitution. In the semidilute regime, CHM nanogels formed a macrogel network for concentrations higher than 12.5% w/w, whereas CHP nanogels underwent macrogelation only above a threshold concentration of 8.0% w/w, as revealed by oscillatory and steady-shear viscosity measurements. The differences in the solution properties of CHM and CHP reflect differences in their assembly on the molecular level, in particular, the size and number of hydrophobic nanodomains and the hydration level. They are attributed to differences in the mobility of the cholesteryl groups which, itself, can be traced to the fact that in CHM the cholesteryl groups are predominantly linked to short oligomannopyranose branches, whereas in CHP they are linked to the polymer main chain. Our study provides a novel means to nanoengineer polysaccharide nanogels which may find unique biotechnological applications.
Universal aspects of adhesion and atomic force microscopy
NASA Technical Reports Server (NTRS)
Banerjea, Amitava; Smith, John R.; Ferrante, John
1990-01-01
Adhesive energies are computed for flat and atomically sharp tips as a function of the normal distance to the substrate. The dependence of binding energies on tip shape is investigated. The magnitudes of the binding energies for the atomic force microscope are found to depend sensitively on tip material, tip shape and the sample site being probed. The form of the energy-distance curve, however, is universal and independent of these variables, including tip shape.
Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes
NASA Astrophysics Data System (ADS)
Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.
2017-11-01
A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.
Beyer, Hannes; Wagner, Tino; Stemmer, Andreas
2016-01-01
Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.
Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.
1986-01-01
The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.
Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.
Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L
2008-10-01
In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.
VEDA: a web-based virtual environment for dynamic atomic force microscopy.
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy
NASA Astrophysics Data System (ADS)
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Söngen, Hagen, E-mail: soengen@uni-mainz.de; Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz; Nalbach, Martin
2016-06-15
We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated by visualizing themore » hydration structure above the calcite (10.4) surface in water.« less
NASA Astrophysics Data System (ADS)
Shi, Shuai; Guo, Dan; Luo, Jianbin
2017-10-01
Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.
Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.
Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C
2015-12-01
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. Copyright © 2015 The American Physiological Society.
Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frei M.; Hybertsen M.; Aradhya S.V.
We use a modified conducting atomic force microscope to simultaneously probe the conductance of a single-molecule junction and the force required to rupture the junction formed by alkanes terminated with four different chemical link groups which vary in binding strength and mechanism to the gold electrodes. Molecular junctions with amine, methylsulfide, and diphenylphosphine terminated molecules show clear conductance signatures and rupture at a force that is significantly smaller than the measured 1.4 nN force required to rupture the single-atomic gold contact. In contrast, measurements with a thiol terminated alkane which can bind covalently to the gold electrode show conductance andmore » force features unlike those of the other molecules studied. Specifically, the strong Au-S bond can cause structural rearrangements in the electrodes, which are accompanied by substantial conductance changes. Despite the strong Au-S bond and the evidence for disruption of the Au structure, the experiments show that on average these junctions also rupture at a smaller force than that measured for pristine single-atom gold contacts.« less
Corroding of copper piping used in household drinking water plumbing may potentially impacts consumer’s health and economics. Copper corrosion studies conducted on newly corroding material with atomic force microscopy (AFM) may be particularly useful in understanding the impact ...
Trapped atom number in millimeter-scale magneto-optical traps
NASA Astrophysics Data System (ADS)
Hoth, Gregory W.; Donley, Elizabeth A.; Kitching, John
2012-06-01
For compact cold-atom instruments, it is desirable to trap a large number of atoms in a small volume to maximize the signal-to-noise ratio. In MOTs with beam diameters of a centimeter or larger, the slowing force is roughly constant versus velocity and the trapped atom number scales as d^4. For millimeter-scale MOTs formed from pyramidal reflectors, a d^6 dependence has been observed [Pollack et al., Opt. Express 17, 14109 (2009)]. A d^6 scaling is expected for small MOTs, where the slowing force is proportional to the atom velocity. For a 1 mm diameter MOT, a d^6 scaling results in 10 atoms, and the difference between a d^4 and a d^6 dependence corresponds to a factor of 1000 in atom number and a factor of 30 in the signal-to-noise ratio. We have observed >10^4 atoms in 1 mm diameter MOTs, consistent with a d^4 dependence. We are currently performing measurements for sub-mm MOTs to determine where the d^4 to d^6 crossover occurs in our system. We are also exploring MOTs based on linear polarization, which can potentially produce stronger slowing forces due to stimulated emission [Emile et al., Europhys. Lett. 20, 687 (1992)]. It may be possible to trap more atoms in small volumes with this method, since high intensities can be easily achieved.
Direct quantitative measurement of the C═O⋅⋅⋅H–C bond by atomic force microscopy
Kawai, Shigeki; Nishiuchi, Tomohiko; Kodama, Takuya; Spijker, Peter; Pawlak, Rémy; Meier, Tobias; Tracey, John; Kubo, Takashi; Meyer, Ernst; Foster, Adam S.
2017-01-01
The hydrogen atom—the smallest and most abundant atom—is of utmost importance in physics and chemistry. Although many analysis methods have been applied to its study, direct observation of hydrogen atoms in a single molecule remains largely unexplored. We use atomic force microscopy (AFM) to resolve the outermost hydrogen atoms of propellane molecules via very weak C═O⋅⋅⋅H–C hydrogen bonding just before the onset of Pauli repulsion. The direct measurement of the interaction with a hydrogen atom paves the way for the identification of three-dimensional molecules such as DNAs and polymers, building the capabilities of AFM toward quantitative probing of local chemical reactivity. PMID:28508080
Atom-Pair Kinetics with Strong Electric-Dipole Interactions.
Thaicharoen, N; Gonçalves, L F; Raithel, G
2016-05-27
Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.
Stretching of short monatomic gold chains-some model calculations
NASA Astrophysics Data System (ADS)
Sumali, Priyanka, Verma, Veena; Dharamvir, Keya
2012-06-01
The Mechanical properties of zig-zag monatomic gold chains containing 5 and 7 atoms were studied using the Siesta Code (SC), which works within the framework of DFT formalism and Gupta Potential (GP), which is an effective atom-atom potential. The zig-zag chains were stretched by keeping the end atoms fixed while rest of the atoms were relaxed till minimum energy is obtained. Energy, Force and Young's Modulus found using GP and SC were plotted as functions of total length. It is found that the breaking force in case of GP is of order of 1.6nN while for SIESTA is of the order of 2.9nN for both the chains.
Imaging powders with the atomic force microscope: from biominerals to commercial materials.
Friedbacher, G; Hansma, P K; Ramli, E; Stucky, G D
1991-09-13
Atomically resolved images of pressed powder samples have been obtained with the atomic force microscope (AFM). The technique was successful in resolving the particle, domain, and atomic structure of pismo clam (Tivela stultorum) and sea urchin (Strongylocentrotus purpuratus) shells and of commercially available calcium carbonate (CaCO(3)) and strontium carbonate (SrCO(3)) powders. Grinding and subsequent pressing of the shells did not destroy the microstructure of these materials. The atomic-resolution imaging capabilities of AFM can be applied to polycrystalline samples by means of pressing powders with a grain size as small as 50 micrometers. These results illustrate that the AFM is a promising tool for material science and the study of biomineralization.
ERIC Educational Resources Information Center
Crosby, Patrick H.
2009-01-01
The purpose of this sequential mixed methods study was to determine if students with autism from 19-to-26 years of age who receive instruction in Daily Living Skills (DLS) class sustain, improve, or decline in their ability to generalize DLS at home and in the community. Research regarding how well students with autism from 19-to-26 years of age…
Analysis of hepatitis C virus RNA dimerization and core–RNA interactions
Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc
2006-01-01
The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus. PMID:16707664
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemchinsky, V.; Khrabry, A.
Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less
Nemchinsky, V.; Khrabry, A.
2018-02-01
Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less
Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter
2011-11-01
A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet
2017-01-01
We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.
Çelik, Ümit; Karcı, Özgür; Uysallı, Yiğit; Özer, H Özgür; Oral, Ahmet
2017-01-01
We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ∼500 μW, and ∼141.8 nm pp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.
Thermodynamic forces in coarse-grained simulations
NASA Astrophysics Data System (ADS)
Noid, William
Atomically detailed molecular dynamics simulations have profoundly advanced our understanding of the structure and interactions in soft condensed phases. Nevertheless, despite dramatic advances in the methodology and resources for simulating atomically detailed models, low-resolution coarse-grained (CG) models play a central and rapidly growing role in science. CG models not only empower researchers to investigate phenomena beyond the scope of atomically detailed simulations, but also to precisely tailor models for specific phenomena. However, in contrast to atomically detailed simulations, which evolve on a potential energy surface, CG simulations should evolve on a free energy surface. Therefore, the forces in CG models should reflect the thermodynamic information that has been eliminated from the CG configuration space. As a consequence of these thermodynamic forces, CG models often demonstrate limited transferability and, moreover, rarely provide an accurate description of both structural and thermodynamic properties. In this talk, I will present a framework that clarifies the origin and impact of these thermodynamic forces. Additionally, I will present computational methods for quantifying these forces and incorporating their effects into CG MD simulations. As time allows, I will demonstrate applications of this framework for liquids, polymers, and interfaces. We gratefully acknowledge the support of the National Science Foundation via CHE 1565631.
Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy
ERIC Educational Resources Information Center
Ito, Takashi
2008-01-01
This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…
Conductive Atomic Force Microscopy | Materials Science | NREL
electrical measurement techniques is the high spatial resolution. For example, C-AFM measurements on : High-resolution image of a sample semiconductor device; the image shows white puff-like clusters on a dark background and was obtained using atomic force microscopy. Bottom: High-resolution image of the
Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer
Fink, Samuel D [Aiken, SC; Fondeur, Fernando F [North Augusta, SC
2011-10-18
An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.
Uncertainty quantification in nanomechanical measurements using the atomic force microscope
Ryan Wagner; Robert Moon; Jon Pratt; Gordon Shaw; Arvind Raman
2011-01-01
Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale...
Iverson, Brian D; Blendell, John E; Garimella, Suresh V
2010-03-01
Thermal diffusion measurements on polymethylmethacrylate-coated Si substrates using heated atomic force microscopy tips were performed to determine the contact resistance between an organic thin film and Si. The measurement methodology presented demonstrates how the thermal contrast signal obtained during a force-displacement ramp is used to quantify the resistance to heat transfer through an internal interface. The results also delineate the interrogation thickness beyond which thermal diffusion in the organic thin film is not affected appreciably by the underlying substrate.
77 FR 42483 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-19
... creating artificial nanoscale structures on an atom-by- atom basis using nascent atom manipulation techniques. The instrument will be used to investigate the amount of force required to move one atom on a materials surface while simultaneously measuring local electronic structural changes during atom movement...
DelPhiForce web server: electrostatic forces and energy calculations and visualization.
Li, Lin; Jia, Zhe; Peng, Yunhui; Chakravorty, Arghya; Sun, Lexuan; Alexov, Emil
2017-11-15
Electrostatic force is an essential component of the total force acting between atoms and macromolecules. Therefore, accurate calculations of electrostatic forces are crucial for revealing the mechanisms of many biological processes. We developed a DelPhiForce web server to calculate and visualize the electrostatic forces at molecular level. DelPhiForce web server enables modeling of electrostatic forces on individual atoms, residues, domains and molecules, and generates an output that can be visualized by VMD software. Here we demonstrate the usage of the server for various biological problems including protein-cofactor, domain-domain, protein-protein, protein-DNA and protein-RNA interactions. The DelPhiForce web server is available at: http://compbio.clemson.edu/delphi-force. delphi@clemson.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Sherkunov, Yury
2018-03-01
We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.
Impact of asymmetrical flow field-flow fractionation on protein aggregates stability.
Bria, Carmen R M; Williams, S Kim Ratanathanawongs
2016-09-23
The impact of asymmetrical flow field-flow fractionation (AF4) on protein aggregate species is investigated with the aid of multiangle light scattering (MALS) and dynamic light scattering (DLS). The experimental parameters probed in this study include aggregate stability in different carrier liquids, shear stress (related to sample injection), sample concentration (during AF4 focusing), and sample dilution (during separation). Two anti-streptavidin (anti-SA) IgG1 samples composed of low and high molar mass (M) aggregates are subjected to different AF4 conditions. Aggregates suspended and separated in phosphate buffer are observed to dissociate almost entirely to monomer. However, aggregates in citric acid buffer are partially stable with dissociation to 25% and 5% monomer for the low and high M samples, respectively. These results demonstrate that different carrier liquids change the aggregate stability and low M aggregates can behave differently than their larger counterparts. Increasing the duration of the AF4 focusing step showed no significant changes in the percent monomer, percent aggregates, or the average Ms in either sample. Syringe-induced shear related to sample injection resulted in an increase in hydrodynamic diameter (dh) as measured by batch mode DLS. Finally, calculations showed that dilution during AF4 separation is significantly lower than in size exclusion chromatography with dilution occurring mainly at the AF4 channel outlet and not during the separation. This has important ramifications when analyzing aggregates that rapidly dissociate (<∼2s) upon dilution as the size calculated by AF4 theory may be more accurate than that measured by online DLS. Experimentally, the dhs determined by online DLS generally agreed with AF4 theory except for the more well retained larger aggregates for which DLS showed smaller sizes. These results highlight the importance of using AF4 retention theory to understand the impacts of dilution on analytes. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reichling, Michael
2004-02-01
Direct nanoscale and atomic resolution imaging is a key issue in nanoscience and nanotechnology. The invention of the dynamic force microscope in the early 1990s was an important step forward in this direction as this instrument provides a universal tool for measuring the topography and many other physical and chemical properties of surfaces at the nanoscale. Operation in the so-called non-contact mode now allows direct atomic resolution imaging of electrically insulating surfaces and nanostructures which has been an unsolved problem during the first decade of nanotechnology. Today, we face a most rapid development of the technique and an extension of its capabilities far beyond imaging; atomically resolved force spectroscopy provides information about local binding properties and researchers now develop sophisticated schemes of force controlled atomic manipulation with the tip of the force microscope. Progress in the field of non-contact force microscopy is discussed at the annually held NC-AFM conferences that are part of a series started in 1998 with a meeting in Osaka, Japan. The 6th International Conference on Non-contact Atomic Force Microscopy took place in Dingle, Ireland, from 31 August to 3 September 2003 and this special issue is a compilation of the original publications of work presented at this meeting. The papers published here well reflect recent achievements, current trends and some of the challenging new directions in non-contact force microscopy that have been discussed during the most stimulating conference days in Dingle. Fundamental aspects of forces and dissipation relevant in imaging and spectroscopy have been covered by experimental and theoretical contributions yielding a more detailed understanding of tip--surface interaction in force microscopy. Novel and improved imaging and spectroscopy techniques have been introduced that either improve the performance of force microscopy or pave the way towards new functionalities and applications. With regard to studies on the specific systems investigated, there was a strong emphasis on oxides and ionics, as well as on organic systems. Following previous pioneering work in uncovering the atomic structure of insulating oxides with force microscopy, it was shown in the meeting that this important class of materials is now accessible for a quantitative atomic scale surface characterization. Single organic molecules and ordered organic layers are building blocks for functional nanostructures currently developed in many laboratories for applications in molecular electronics and sensor technologies. The Dingle conference impressively demonstrated that dynamic force microscopy is ready for its application as an analytical tool for these promising future nanotechnologies. The meeting was a great success scientifically and participants enjoyed the beauty of the conference site. I would like to thank all members of the international steering committee, the programme committee and the co-chairs, J Pethica, A Shluger and G Thornton, for their efforts in preparing the meeting. The members of the local organising committee, J Ballentine-Armstrong, G Cross, S Dunne, S Jarvis and Ö Özer, kept the meeting running smoothly and created a very pleasant atmosphere. The generous financial support from Science Foundation Ireland (SFI), is greatly appreciated; SFI is dramatically raising the profile of Irish science. I would also like to express my sincere gratitude to N Couzin and the journal team from Institute of Physics Publishing for their editorial management and perfect co-operation in the preparation of this special issue.
Montes de Oca-Ávalos, J M; Candal, R J; Herrera, M L
2017-10-01
Nanoemulsions stabilized by sodium caseinate (NaCas) were prepared using a combination of a high-energy homogenization and evaporative ripening methods. The effects of protein concentration and sucrose addition on physical properties were analyzed by dynamic light scattering (DLS), Turbiscan analysis, confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). Droplets sizes were smaller (~100nm in diameter) than the ones obtained by other methods (200 to 2000nm in diameter). The stability behavior was also different. These emulsions were not destabilized by creaming. As droplets were so small, gravitational forces were negligible. On the contrary, when they showed destabilization the main mechanism was flocculation. Stability of nanoemulsions increased with increasing protein concentrations. Nanoemulsions with 3 or 4wt% NaCas were slightly turbid systems that remained stable for at least two months. According to SAXS and Turbiscan results, aggregates remained in the nano range showing small tendency to aggregation. In those systems, interactive forces were weak due to the small diameter of flocs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Atomic Force Microscopy of Biological Membranes
Frederix, Patrick L.T.M.; Bosshart, Patrick D.; Engel, Andreas
2009-01-01
Abstract Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes. PMID:19167286
Atomic force microscopy captures length phenotypes in single proteins
Carrion-Vazquez, Mariano; Marszalek, Piotr E.; Oberhauser, Andres F.; Fernandez, Julio M.
1999-01-01
We use single-protein atomic force microscopy techniques to detect length phenotypes in an Ig module. To gain amino acid resolution, we amplify the mechanical features of a single module by engineering polyproteins composed of up to 12 identical repeats. We show that on mechanical unfolding, mutant polyproteins containing five extra glycine residues added to the folded core of the module extend 20 Å per module farther than the wild-type polyproteins. By contrast, similar insertions near the N or C termini have no effect. Hence, our atomic force microscopy measurements readily discriminate the location of the insert and measure its size with a resolution similar to that of NMR and x-ray crystallography. PMID:10500169
Preparation and atomic force microscopy of CTAB stabilized polythiophene nanoparticles thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graak, Pinki; Devi, Ranjna; Kumar, Dinesh
2016-05-06
Polythiophene nanoparticles were synthesized by iron catalyzed oxidative polymerization method. Polythiophene formation was detected by UV-Visible spectroscopy with λmax 375nm. Thin films of CTAB stabilized polythiophene nanoparticles was deposited on n-type silicon wafer by spin coating technique at 3000rpm in three cycles. Thickness of the thin films was computed as 300-350nm by ellipsometry. Atomic force micrscopyrevealws the particle size of polymeric nanoparticles in the range of 30nm to 100nm. Roughness of thinfilm was also analyzed from the atomic force microscopy data by Picoimage software. The observed RMS value lies in the range of 6 nm to 12 nm.
Vesicles from pH-regulated reversible gemini amino-acid surfactants as nanocapsules for delivery.
Lv, Jing; Qiao, Weihong; Li, Zongshi
2016-10-01
Reversible transition from micelles to vesicles by regulating pH were realized by gemini amino-acid surfactants N,N'-dialkyl-N,N'-diacetate ethylenediamine. Measurement results of ζ-potential at different pH and DLS at varying solvents revealed that the protonation between H(+) and double NCH2COO(-) groups (generating NH(+)CH2COO(-)), expressed as pKa1 and pKa2, is the key driving force to control the aggregation behaviors of gemini surfactant molecule. Effect of pH on the bilayer structure was studied in detail by using steady-state fluorescence spectroscopy of hydrophobic pyrene and Coumarin 153 (C153) respectively and fluorescence resonance energy transfer (FRET) from C153 to Rhodamine 6G (R6G). Various pH-regulated and pH-reversible self-assemblies were obtained in one surfactant system. Vitamin D3 was encapsulated in vesicle bilayers to form nano-VD3-capsules as VD3 supplement agent for health care products. By using the electrostatic attraction between Ca(2+) and double -COO(-) groups, nano-VD3-capsules with Ca(2+) coated outermost layers were prepared as a formulation for VD3 and calcium co-supplement agent. DLS and TEM were performed to check stability and morphology of the nano-capsules. It is concluded that the pH-regulated gemini amino-acid surfactants can be used to construct colloidal systems for delivering hydrophobic drugs or nutritions without lipids at human physiological pH level. Copyright © 2016 Elsevier B.V. All rights reserved.
Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakuma, Takashi, E-mail: sakuma@mx.ibaraki.ac.jp; Makhsun,; Sakai, Ryutaro
2015-04-16
Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10 K and 295 K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295 K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.
Coercion from the Air: The United States Use of Airpower to Influence End of Conflict Negotiations
2017-05-25
shock of two atomic bombs drove the Japanese to surrender. In the months and days leading to the armistice in Korea, Far East Air Force (FEAF...mainland by the Twentieth Air Force and the shock of two atomic bombs drove the Japanese to surrender. In the months and days leading to the...increasing destruction brought upon the Japanese population and war-making capacity combined with the shock of two atomic bombs to drive the Japanese towards
USDA-ARS?s Scientific Manuscript database
Single molecular detection of pathogens and toxins of interest to food safety is within grasp using technology such as Atomic Force Microscopy. Using antibodies or specific aptamers connected to the AFM tip make it possible to detect a pathogen molecule on a surface. However, it also becomes necess...
Ryan Wagner; Robert J. Moon; Arvind Raman
2016-01-01
Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...
Coffee Cup Atomic Force Microscopy
ERIC Educational Resources Information Center
Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.
2010-01-01
In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…
Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; ...
2016-02-18
This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.
Emmrich, Matthias; Huber, Ferdinand; Pielmeier, Florian; Welker, Joachim; Hofmann, Thomas; Schneiderbauer, Maximilian; Meuer, Daniel; Polesya, Svitlana; Mankovsky, Sergiy; Ködderitzsch, Diemo; Ebert, Hubert; Giessibl, Franz J
2015-04-17
Clusters built from individual iron atoms adsorbed on surfaces (adatoms) were investigated by atomic force microscopy (AFM) with subatomic resolution. Single copper and iron adatoms appeared as toroidal structures and multiatom clusters as connected structures, showing each individual atom as a torus. For single adatoms, the toroidal shape of the AFM image depends on the bonding symmetry of the adatom to the underlying structure [twofold for copper on copper(110) and threefold for iron on copper(111)]. Density functional theory calculations support the experimental data. The findings correct our previous work, in which multiple minima in the AFM signal were interpreted as a reflection of the orientation of a single front atom, and suggest that dual and triple minima in the force signal are caused by dimer and trimer tips, respectively. Copyright © 2015, American Association for the Advancement of Science.
Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.
Saito, Minoru; Okazaki, Isao
2009-12-01
The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.
Nonperturbative theory of atom-surface interaction: corrections at short separations
NASA Astrophysics Data System (ADS)
Bordag, M.; Klimchitskaya, G. L.; Mostepanenko, V. M.
2018-02-01
The nonperturbative expressions for the free energy and force of interaction between a ground-state atom and a real-material surface at any temperature are presented. The transition to the Matsubara representation is performed, whereupon the comparison is made with the commonly used perturbative results based on the standard Lifshitz theory. It is shown that the Lifshitz formulas for the free energy and force of an atom-surface interaction follow from the nonperturbative ones in the lowest order of the small parameter. Numerical computations of the free energy and force for the atoms of He{\\hspace{0pt}}\\ast and Na interacting with a surface of an Au plate have been performed using the frequency-dependent dielectric permittivity of Au and highly accurate dynamic atomic polarizabilities in the framework of both the nonperturbative and perturbative theories. According to our results, the maximum deviations between the two theories are reached at the shortest atom-surface separations of about 1 nm. Simple analytic expressions for the atom-surface free energy are derived in the classical limit and for an ideal-metal plane. In the lowest order of the small parameter, they are found in agreement with the perturbative ones following from the standard Lifshitz theory. Possible applications of the obtained results in the theory of van der Waals adsorption are discussed.
Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M
2006-01-01
Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.
Harnessing the damping properties of materials for high-speed atomic force microscopy.
Adams, Jonathan D; Erickson, Blake W; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E
2016-02-01
The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.
Kim, Il Kwang; Lee, Soo Il
2016-05-01
The modal decomposition of tapping mode atomic force microscopy microcantilevers in liquid environments was studied experimentally. Microcantilevers with different lengths and stiffnesses and two sample surfaces with different elastic moduli were used in the experiment. The response modes of the microcantilevers were extracted as proper orthogonal modes through proper orthogonal decomposition. Smooth orthogonal decomposition was used to estimate the resonance frequency directly. The effects of the tapping setpoint and the elastic modulus of the sample under test were examined in terms of their multi-mode responses with proper orthogonal modes, proper orthogonal values, smooth orthogonal modes and smooth orthogonal values. Regardless of the stiffness of the microcantilever under test, the first mode was dominant in tapping mode atomic force microscopy under normal operating conditions. However, at lower tapping setpoints, the flexible microcantilever showed modal distortion and noise near the tip when tapping on a hard sample. The stiff microcantilever had a higher mode effect on a soft sample at lower tapping setpoints. Modal decomposition for tapping mode atomic force microscopy can thus be used to estimate the characteristics of samples in liquid environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Jesse, Stephen; Yu, Pu
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2003-01-01
An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.
Introduction of steered molecular dynamics into UNRES coarse-grained simulations package.
Sieradzan, Adam K; Jakubowski, Rafał
2017-03-30
In this article, an implementation of steered molecular dynamics (SMD) in coarse-grain UNited RESidue (UNRES) simulations package is presented. Two variants of SMD have been implemented: with a constant force and a constant velocity. The huge advantage of SMD implementation in the UNRES force field is that it allows to pull with the speed significantly lower than the accessible pulling speed in simulations with all-atom representation of a system, with respect to a reasonable computational time. Therefore, obtaining pulling speed closer to those which appear in the atomic force spectroscopy is possible. The newly implemented method has been tested for behavior in a microcanonical run to verify the influence of introduction of artificial constrains on keeping total energy of the system. Moreover, as time dependent artificial force was introduced, the thermostat behavior was tested. The new method was also tested via unfolding of the Fn3 domain of human contactin 1 protein and the I27 titin domain. Obtained results were compared with Gø-like force field, all-atom force field, and experimental results. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Balke, Nina; Jesse, Stephen; Yu, Pu; ...
2016-09-15
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Emergence of Huge Negative Spin-Transfer Torque in Atomically Thin Co layers
NASA Astrophysics Data System (ADS)
Je, Soong-Geun; Yoo, Sang-Cheol; Kim, Joo-Sung; Park, Yong-Keun; Park, Min-Ho; Moon, Joon; Min, Byoung-Chul; Choe, Sug-Bong
2017-04-01
Current-induced domain wall motion has drawn great attention in recent decades as the key operational principle of emerging magnetic memory devices. As the major driving force of the motion, the spin-orbit torque on chiral domain walls has been proposed and is currently extensively studied. However, we demonstrate here that there exists another driving force, which is larger than the spin-orbit torque in atomically thin Co films. Moreover, the direction of the present force is found to be the opposite of the prediction of the standard spin-transfer torque, resulting in the domain wall motion along the current direction. The symmetry of the force and its peculiar dependence on the domain wall structure suggest that the present force is, most likely, attributed to considerable enhancement of a negative nonadiabatic spin-transfer torque in ultranarrow domain walls. Careful measurements of the giant magnetoresistance manifest a negative spin polarization in the atomically thin Co films which might be responsible for the negative spin-transfer torque.
The Bichromatic Optical Force on the Atomic Life- time Scale
NASA Astrophysics Data System (ADS)
Corder, Christopher; Arnold, Brian; Metcalf, Harold
2013-05-01
Our experimental and theoretical studies of the bichromatic force (BF) have shown that its strength and velocity range are very much larger than those of the usual radiative force. Since the BF relies on stimulated effects, the role of spontaneous emission in laser cooling has come into question. We drive the 23 S -->33 P transition of He at λ = 389 nm with laser frequencies ωl =ωa +/- δ , where ωa is the atomic transition frequency and δ ~ 30 MHz. Thus the velocity range of the force is Δv ~ δ / 2 k = 6 m/s. Because of the large and nearly constant strength of the BF, F ~ ℏkδ / π , all atoms can reach the velocity limit in a time <= MΔv / F = π / 4ωr = 380 ns, where ωr is the atomic recoil frequency. In our experiment a beam of He atoms crosses perpendicular through the BF laser beams in 380 ns so the relatively long lifetime of the excited state (τ = 106 ns) allows one or at most two spontaneous emission events, despite Δv of many tens of recoils. We will present our initial measurements of the BF in this new domain. Supported by ONR and Dept. of Ed. GAANN.
Super-Maxwellian helium evaporation from pure and salty water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.
2016-01-28
Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the densitymore » profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.« less
Nonequilibrium forces between atoms and dielectrics mediated by a quantum field
NASA Astrophysics Data System (ADS)
Behunin, Ryan O.; Hu, Bei-Lok
2011-07-01
In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables—the medium, the quantum field, and the atom’s internal degrees of freedom, in that order—to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom’s internal degrees of freedom results in an equation of motion for the atom’s center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom’s motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.
NASA Astrophysics Data System (ADS)
Hosokawa, Yoichiroh
2011-12-01
We developed a local force measurement system of a femtosecond laser-induced impulsive force, which is due to shock and stress waves generated by focusing an intense femtosecond laser into water with a highly numerical aperture objective lens. In this system, the force localized in micron-sized region was detected by bending movement of a cantilever of atomic force microscope (AFM). Here we calculated the bending movement of the AFM cantilever when the femtosecond laser is focused in water at the vicinity of the cantilever and the impulsive force is loaded on the cantilever. From the result, a method to estimate the total of the impulsive force at the laser focal point was suggested and applied to estimate intercellular adhesion strength.
Examining the origins of the hydration force between lipid bilayers using all-atom simulations.
Gentilcore, Anastasia N; Michaud-Agrawal, Naveen; Crozier, Paul S; Stevens, Mark J; Woolf, Thomas B
2010-05-01
Using 237 all-atom double bilayer simulations, we examined the thermodynamic and structural changes that occur as a phosphatidylcholine lipid bilayer stack is dehydrated. The simulated system represents a micropatch of lipid multilayer systems that are studied experimentally using surface force apparatus, atomic force microscopy and osmotic pressure studies. In these experiments, the hydration level of the system is varied, changing the separation between the bilayers, in order to understand the forces that the bilayers feel as they are brought together. These studies have found a curious, strongly repulsive force when the bilayers are very close to each other, which has been termed the "hydration force," though the origins of this force are not clearly understood. We computationally reproduce this repulsive, relatively free energy change as bilayers come together and make qualitative conclusions as to the enthalpic and entropic origins of the free energy change. This analysis is supported by data showing structural changes in the waters, lipids and salts that have also been seen in experimental work. Increases in solvent ordering as the bilayers are dehydrated are found to be essential in causing the repulsion as the bilayers come together.
NASA Astrophysics Data System (ADS)
Yoon, Mijin; Jee, Myungkook James; Tyson, Tony
2018-01-01
The Deep Lens Survey (DLS), a precursor to the Large Synoptic Survey Telescope (LSST), is a 20 sq. deg survey carried out with NOAO’s Blanco and Mayall telescopes. The strength of the survey lies in its depth reaching down to ~27th mag in BVRz bands. This enables a broad redshift baseline study and allows us to investigate cosmological evolution of the large-scale structure. In this poster, we present the first cosmological analysis from the DLS using galaxy-shear correlations and galaxy clustering signals. Our DLS shear calibration accuracy has been validated through the most recent public weak-lensing data challenge. Photometric redshift systematic errors are tested by performing lens-source flip tests. Instead of real-space correlations, we reconstruct band-limited power spectra for cosmological parameter constraints. Our analysis puts a tight constraint on the matter density and the power spectrum normalization parameters. Our results are highly consistent with our previous cosmic shear analysis and also with the Planck CMB results.
NASA Astrophysics Data System (ADS)
Shukla, A.; Kiselev, M. A.; Hoell, A.; Neubert, R. H. H.
2004-08-01
Microemulsions (MEs) are of special interest because a variety of Reactants can be introduced into the nanometer-sized aqueous domains, leading to materials with controlled size and shape [1,2]. In the past few years, significant research has been conducted in the reverse ME-mediated synthesis of organic nanoparticles [3,4]. In this study, a w/o ME medium was employed for the synthesis of lidocaine by direct precipitation in w/o microemulsion systems: water/isopropylpalmitat/Tween80/Span80. The particle size as well as the location of nanoparticles in the ME droplet were characterized by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS). It is observed that lidocaine precipitated in the aqueous cores because of its insolubility in water. Hydrodynamic radius and gyration radius of microemulsion droplets were estimated as ~15 nm and ~4.50 nm from DLS and SANS respectively. Furthermore, different size parameters obtained by DLS and SANS experiments were compared
Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-02-01
X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables probing dynamics in a broad array of materials with XPCS, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fails. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. In this paper, we propose an alternative analysis scheme based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. Using XPCS data measured from colloidal gels, we demonstrate the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-01-01
X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables probing dynamics in a broad array of materials with XPCS, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fails. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. In this paper, we propose an alternative analysis scheme based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. Using XPCS data measured from colloidal gels, we demonstrate the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS. PMID:29875506
Gremel, Christina M.; Costa, Rui M.
2014-01-01
Shifting between goal-directed and habitual actions allows for efficient and flexible decision-making. Here we demonstrate a novel, within-subject instrumental lever-pressing paradigm where mice shift between goal-directed and habitual actions. We identify a role for orbitofrontal cortex (OFC) in actions following outcome-revaluation, and confirm that dorsal medial (DMS) and lateral striatum (DLS) mediate different action strategies. In-vivo simultaneous recordings of OFC, DMS, and DLS neuronal ensembles during shifting reveal that the same neurons display different activity depending on whether presses are goal-directed or habitual, with DMS and OFC becoming more—and DLS less-engaged during goal-directed actions. Importantly, the magnitude of neural activity changes in OFC following changes in outcome value positively correlates with the level of goal-directed behavior. Chemogenetic inhibition of OFC disruptsgoal-directed actions, while optogenetic activation of OFC specifically increases goal-directed pressing. They also reveal a role for OFC in action revaluation, which has implications for understanding compulsive behavior. PMID:23921250
NASA Astrophysics Data System (ADS)
Trirongjitmoah, Suchin; Iinaga, Kazuya; Sakurai, Toshihiro; Chiba, Hitoshi; Sriyudthsak, Mana; Shimizu, Koichi
2016-04-01
Quantification of small, dense low-density lipoprotein (sdLDL) cholesterol is clinically significant. We propose a practical technique to estimate the amount of sdLDL cholesterol using dynamic light scattering (DLS). An analytical solution in a closed form has newly been obtained to estimate the weight fraction of one species of scatterers in the DLS measurement of two species of scatterers. Using this solution, we can quantify the sdLDL cholesterol amount from the amounts of the low-density lipoprotein cholesterol and the high-density lipoprotein (HDL) cholesterol, which are commonly obtained through clinical tests. The accuracy of the proposed technique was confirmed experimentally using latex spheres with known size distributions. The applicability of the proposed technique was examined using samples of human blood serum. The possibility of estimating the sdLDL amount using the HDL data was demonstrated. These results suggest that the quantitative estimation of sdLDL amounts using DLS is feasible for point-of-care testing in clinical practice.
Multiphase Flow Modeling of Slag Entrainment During Ladle Change-Over Operation
NASA Astrophysics Data System (ADS)
Morales, Rodolfo D.; Garcia-Hernandez, Saul; Barreto, Jose de Jesus; Ceballos-Huerta, Ariana; Calderon-Ramos, Ismael; Gutierrez, Enif
2016-08-01
Steel transfer from the ladle to a single-strand tundish using a conventional ladle shroud (CLS), and a dissipative ladle shroud (DLS) is studied during the transient period of ladle change-over operation. Fluid velocities and fluid flow turbulence statistics during this unsteady operation were recorded by an ultrasound velocimetry probe in a 1/3 scale water-oil-air analog model (to emulate steel-slag-air system). Reynolds stress model and volume of fluid model allow the tracking of water-oil, water-air, and oil-air interfaces during this operation. Velocity measurements indicate a very high turbulence with the formation of a water-air bubbles-oil emulsion. Flow turbulence and the intensity of the emulsification decrease considerably due to an efficient dissipation of the turbulent kinetic energy employing the DLS instead of the CLS. The modeling results indicate that DLS is widely recommended to substitute flow control devices to improve the fluid dynamics of liquid steel during this transient operation.
Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.
Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M
2017-11-01
In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017 Elsevier B.V. All rights reserved.
Q-controlled amplitude modulation atomic force microscopy in liquids: An analysis
NASA Astrophysics Data System (ADS)
Hölscher, H.; Schwarz, U. D.
2006-08-01
An analysis of amplitude modulation atomic force microscopy in liquids is presented with respect to the application of the Q-Control technique. The equation of motion is solved by numerical and analytic methods with and without Q-Control in the presence of a simple model interaction force adequate for many liquid environments. In addition, the authors give an explicit analytical formula for the tip-sample indentation showing that higher Q factors reduce the tip-sample force. It is found that Q-Control suppresses unwanted deformations of the sample surface, leading to the enhanced image quality reported in several experimental studies.
Phantom force induced by tunneling current: a characterization on Si(111).
Weymouth, A J; Wutscher, T; Welker, J; Hofmann, T; Giessibl, F J
2011-06-03
Simultaneous measurements of tunneling current and atomic forces provide complementary atomic-scale data of the electronic and structural properties of surfaces and adsorbates. With these data, we characterize a strong impact of the tunneling current on the measured force on samples with limited conductivity. The effect is a lowering of the effective gap voltage through sample resistance which in turn lowers the electrostatic attraction, resulting in an apparently repulsive force. This effect is expected to occur on other low-conductance samples, such as adsorbed molecules, and to strongly affect Kelvin probe measurements when tunneling occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org
2015-10-15
Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films wasmore » done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.« less
Cui, Sheng-zhong; Wang, Shen-jun; Li, Jing; Xie, Gui-qin; Zhou, Rong; Chen, Ling; Yuan, Xiao-ru
2011-02-01
The dorsal striatum has been proposed to contribute to the formation of drug-seeking behaviors, leading to excessive and compulsive drug usage, such as addiction. The current study aimed to investigate the involvement of extracellular signal-regulated kinase (ERK) pathway in the modification of striatal synaptic plasticity. Ethanol was administered to rats in drinking water at concentration of 6% (v/v) for 30 days. Rats were sacrificed on day 10, 20, or 30 during ethanol intake or on withdrawal day 1, 3, or 7 following 30-d ethanol intake. The striata were removed either for electrophysiological recording or for protein immuno-blot analysis. Extracellular recording technique was used to record population spikes (PS) induced by high-frequency stimulation (HFS) in the dorsolateral striatum (DLS). Corticostriatal long-term depression (LTD) was determined to be dependent upon ERK signaling. Chronic ethanol intake (CEI) attenuated ERK phosphorylation and LTD induction, whereas withdrawal for one day (W1D) potentiated ERK phosphorylation and LTD induction. These results showed that the impact of chronic ethanol intake and withdrawal on corticostriatal synaptic plasticity was associated with ethanol's effect on ERK phosphorylation. In particular, pharmacological inhibition of ERK hyper-phosphorylation by U0126 prevented LTD induction in the DLS and attenuated ethanol withdrawal syndrome as well. In rat DLS, chronic ethanol intake and withdrawal altered LTD induction via ERK signaling pathway. Ethanol withdrawal syndrome is mediated, at least partly, by ERK hyper-phosphorylation in the DLS.
Hankin, Elyshia J; Jerram, Richard M; Walker, Alexander M; King, Michael D; Warman, Christopher G A
2012-07-01
To describe outcome after transarticular facet screw stabilization and dorsal laminectomy for treatment of dynamic degenerative lumbosacral stenosis (DLS) in 26 dogs. Retrospective case series. Dogs (n = 26) with dynamic DLS. Medical records (2004-2009) of dogs treated with transarticular facet screw stabilization and dorsal laminectomy were reviewed. Dogs (n = 26) were available for immediate postoperative follow-up, 21 dogs at 6 weeks, and 15 at greater than 6 months. Dogs were evaluated by radiographic assessment and owner questionnaire. Lumbosacral (LS) intervertebral disc (IVD) spaces were measured on pre and postoperative 6-week and 6-month radiographs. In 23 dogs, improvement in clinical signs occurred within 7 days of surgery. Overall postsurgical complication rate directly related to the surgical procedure was 15.4%. LS IVD space measurements taken immediately postoperatively, at 6 weeks, and ≥ 6 months were all significantly increased compared with preoperative measurements. All working dogs (4) returned to full work within 14 months. Most owners (85%) reported their dog was ambulating normally at 6 months with no perceptible lameness during normal activity. All owners perceived their dog's ability to walk, run, and jump after surgery to be improved. Transarticular facet screw stabilization and dorsal laminectomy maintains distraction of the LS IVD space for medium-to-large breed dogs with dynamic DLS with a high degree of owner satisfaction, and is comparable to other reported surgical techniques for DLS. © Copyright 2012 by The American College of Veterinary Surgeons.
Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum.
Zoicas, Iulia; Slattery, David A; Neumann, Inga D
2014-12-01
Central oxytocin (OXT) has anxiolytic and pro-social properties both in humans and rodents, and has been proposed as a therapeutic option for anxiety and social dysfunctions. Here, we utilized a mouse model of social fear conditioning (SFC) to study the effects of OXT on social fear, and to determine whether SFC causes alterations in central OXT receptor (OXTR) binding and local OXT release. Central infusion of OXT, but not arginine vasopressin, prior to social fear extinction training completely abolished social fear expression in an OXTR-mediated fashion without affecting general anxiety or locomotion. SFC caused increased OXTR binding in the dorso-lateral septum (DLS), central amygdala, dentate gyrus, and cornu ammunis 1, which normalized after social fear extinction, suggesting that these areas form part of a brain network involved in the development and neural support of social fear. Microdialysis revealed that the increase in OXT release observed in unconditioned mice within the DLS during social fear extinction training was attenuated in conditioned mice. Consequently, increasing the availability of local OXT by infusion of OXT into the DLS reversed social fear. Thus, alterations in the brain OXT system, including altered OXTR binding and OXT release within the DLS, play an important role in SFC and social fear extinction. Thus, we suggest that the OXT system is adversely affected in disorders associated with social fear, such as social anxiety disorder and reinstalling an appropriate balance of the OXT system may alleviate some of the symptoms.
High Atom Number in Microsized Atom Traps
2015-12-14
forces on the order of (hbar)(k) (Omega), where Omega is the laser Rabi frequency. We have observed behavior compatible with bichromatic slowing and... Rabi frequency. We have observed behavior compatible with bichromatic slowing and cooling of some atoms in atomic beam. Results were presented at the
2012-01-01
Implicit solvation is a mean force approach to model solvent forces acting on a solute molecule. It is frequently used in molecular simulations to reduce the computational cost of solvent treatment. In the first instance, the free energy of solvation and the associated solvent–solute forces can be approximated by a function of the solvent-accessible surface area (SASA) of the solute and differentiated by an atom–specific solvation parameter σiSASA. A procedure for the determination of values for the σiSASA parameters through matching of explicit and implicit solvation forces is proposed. Using the results of Molecular Dynamics simulations of 188 topologically diverse protein structures in water and in implicit solvent, values for the σiSASA parameters for atom types i of the standard amino acids in the GROMOS force field have been determined. A simplified representation based on groups of atom types σgSASA was obtained via partitioning of the atom–type σiSASA distributions by dynamic programming. Three groups of atom types with well separated parameter ranges were obtained, and their performance in implicit versus explicit simulations was assessed. The solvent forces are available at http://mathbio.nimr.mrc.ac.uk/wiki/Solvent_Forces. PMID:23180979
Applications of AFM for atomic manipulation and spectroscopy
NASA Astrophysics Data System (ADS)
Custance, Oscar
2009-03-01
Since the first demonstration of atom-by-atom assembly [1], atomic manipulation with scanning tunneling microscopy has yielded stunning realizations in nanoscience. A new exciting panorama has been recently opened with the possibility of manipulating atoms at surfaces using atomic force microscopy (AFM) [2-5]. In this talk, we will present two different approaches that enable patterning structures at semiconductor surfaces by manipulating individual atoms with AFM and at room temperature [2, 3]. We will discuss the physics behind each protocol through the analysis of the measured forces associated with these manipulations [3-5]. Another challenging issue in scanning probe microscopy is the ability to disclose the local chemical composition of a multi-element system at atomic level. Here, we will introduce a single-atom chemical identification method, which is based on detecting the forces between the outermost atom of the AFM tip and the atoms at a surface [6]. We demonstrate this identification procedure on a particularly challenging system, where any discrimination attempt based solely on topographic measurements would be impossible to achieve. [4pt] References: [0pt] [1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); [0pt] [2] Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance and S. Morita, Nature Materials 4, 156 (2005); [0pt] [3] Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Science 322, 413 (2008); [0pt] [4] Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez and O. Custance, Phys. Rev. Lett. 98, 106104 (2007); [0pt] [5] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl and A. J. Heinrich, Science 319, 1066 (2008); [0pt] [6] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Nature 446, 64 (2007)
NASA Astrophysics Data System (ADS)
Arai, Toyoko; Inamura, Ryo; Kura, Daiki; Tomitori, Masahiko
2018-03-01
The kinetic energy of the oscillating cantilever of noncontact atomic force microscopy (nc-AFM) at room temperature was considerably dissipated over regions between a Si adatom and its neighboring rest atom for Si(111 )-(7 ×7 ) in close proximity to a Si tip on the cantilever. However, nc-AFM topographic images showed no atomic features over those regions, which were the hollow sites of the (7 ×7 ). This energy dissipation likely originated from displacement of Si adatoms with respect to the tip over the hollow sites, leading to a lateral shift of the adatoms toward the rest atom. This interaction led to hysteresis over each cantilever oscillation cycle; when the tip was retracted, the Si adatom likely returned to its original position. To confirm the atomic processes involved in the force interactions through Si dangling bonds, the Si(111 )-(7 ×7 ) surface was partly terminated with atomic hydrogen (H) and examined by nc-AFM. When the Si adatoms and/or the rest atoms were terminated with H, the hollow sites were not bright (less dissipation) in images of the energy dissipation channels by nc-AFM. The hollow sites acted as metastable sites for Si adatoms in surface diffusion and atom manipulation; thus, the dissipation energy which is saturated on the tip likely corresponds to the difference in the potential energy between the hollow site and the Si adatom site. In this study, we demonstrated the ability of dissipation channels of nc-AFM to enable visualization of the dynamics of atoms and molecules on surfaces, which cannot be revealed by nc-AFM topographic images alone.
Quantum state atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passian, Ali; Siopsis, George
New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.
Quantum state atomic force microscopy
Passian, Ali; Siopsis, George
2017-04-10
New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.
2011-09-01
glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,
ERIC Educational Resources Information Center
Gokalp, Sumeyra; Horton, William; Jónsdóttir-Lewis, Elfa B.; Foster, Michelle; Török, Marianna
2018-01-01
To facilitate learning advanced instrumental techniques, essential tools for visualizing biomaterials, a simple and versatile laboratory exercise demonstrating the use of Atomic Force Microscopy (AFM) in biomedical applications was developed. In this experiment, the morphology of heat-denatured and amyloid-type aggregates formed from a low-cost…
USDA-ARS?s Scientific Manuscript database
The specific interactions between ricin and anti-ricin aptamer were measured with atomic force microscopy (AFM) and surface plasmon resonance (SPR) spectrometry and the results were compared. In AFM, a single-molecule experiment with ricin functionalized AFM tip was used for scanning the aptamer mol...
Method for Measuring Intramolecular Forces by Atomic Force Microscopy.
1999-01-27
Unfolding of Individual Thin Immunoglobulin Domains by AMF ," Science, 1997,276, pp 1109 15 -1112, incorporated herein by reference. The use of atomic...a DNA Mnlemli» 11 A 511 -bp PCR fragment was amplified from human genomic DNA using a 5’-biotinylated 12 "proximal" primer and 5’-amino-modified
A Computer-Controlled Classroom Model of an Atomic Force Microscope
ERIC Educational Resources Information Center
Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.
2015-01-01
The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale--reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use…
Atomic force microscopy of torus-bearing pit membranes
Roland R. Dute; Thomas Elder
2011-01-01
Atomic force microscopy was used to compare the structures of dried, torus-bearing pit membranes from four woody species, three angiosperms and one gymnosperm. Tori of Osmanthus armatus are bipartite consisting of a pustular zone overlying parallel sets of microfibrils that form a peripheral corona. Microfibrils of the corona form radial spokes as they traverse the...
Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopy
Rebecca Snell; Leslie H. Groom; Timothy G. Rials
2001-01-01
Loblolly pine, separated into mature and juvenile portions, was refined at various pressures (4, 8 and 12 bar). Fiber surfaces were investigated using a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). Refiner pressure had a significant effect on the fiber surefaces. SEM images showed an apparent increase in surface roughness with increased...
Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class
ERIC Educational Resources Information Center
Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju
2013-01-01
The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…
USDA-ARS?s Scientific Manuscript database
Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...
NASA Technical Reports Server (NTRS)
Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)
2008-01-01
A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.
A Fifth Force: Generalized through Superconductors
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
1999-01-01
The connection between the Biefield-Brown Effect, the recent repeat of the 1902 Trouton-Noble (TN) experiments, and the gravity shielding experiments was explored. This connection is visualized through high capacitive electron concentrations. From this connection, a theory is proposed that connects mass energy to gravity and a fifth force. The theory called the Gravi-Atomic Energy theory presents two new terms: Gravi-atomic energy and quantum vacuum pressure (QVP). Gravi-atomic energy is defined as the radiated mass energy, which acts on vacuum energy to create a QVP about a mass, resulting in gravity and the fifth force. The QVP emission from a superconductor was discussed followed by the description of a test for QVP from a superconductor using a Cavendish balance.
NASA Technical Reports Server (NTRS)
Rodgers, Stephen L.; Reisz, Al; Wyckoff, James (Technical Monitor)
2002-01-01
Galactic forces spiral across the cosmos fueled by nuclear fission and fusion and atoms in plasmatic states with throes of constraints of gravitational forces and magnetic fields, In their wanderings these galaxies spew light, radiation, atomic and subatomic particles throughout the universe. Throughout the ages of man visions of journeying through the stars have been wondered. If humans and human devices from Earth are to go beyond the Moon and journey into deep space, it must be accomplished with like forces of the cosmos such as electrical fields, magnetic fields, ions, electrons and energies generated from the manipulation of subatomic and atomic particles. Forms of electromagnetic waves such as light, radio waves and lasers must control deep space engines. We won't get far on our Earth accustomed hydrocarbon fuels.
Application of atomic force microscopy to the study of natural and model soil particles.
Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J
2008-09-01
The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with previous macroscopic determination of the proportions of organic material chemically extracted from bulk samples of the soils from which specimen particles were drawn. Interaction forces were measured between atomic force microscopy cantilever tips (Si(3)N(4)) and natural soil and model surfaces. Adhesion forces at humic acid free specimen surfaces (Av. 20.0 nN), which are primarily hydrophilic and whose interactions are subject to a significant contribution from the capillary forces, were found to be larger than those of specimen surfaces with adsorbed humic acid (Av. 6.5 nN). This suggests that adsorbed humic acid increased surface hydrophobicity. The magnitude and distribution of adhesion forces between atomic force microscopy tips and the natural particle surfaces was affected by both local surface roughness and the presence of adsorbed organic material. The present study has correlated nanoscale measurements with established macroscale methods of soil study. Thus, the research demonstrates that atomic force microscopy is an important addition to soil science that permits a multiscale analysis of the multifactorial phenomena of soil hydrophobicity and wetting.
Resolution-Adapted All-Atomic and Coarse-Grained Model for Biomolecular Simulations.
Shen, Lin; Hu, Hao
2014-06-10
We develop here an adaptive multiresolution method for the simulation of complex heterogeneous systems such as the protein molecules. The target molecular system is described with the atomistic structure while maintaining concurrently a mapping to the coarse-grained models. The theoretical model, or force field, used to describe the interactions between two sites is automatically adjusted in the simulation processes according to the interaction distance/strength. Therefore, all-atomic, coarse-grained, or mixed all-atomic and coarse-grained models would be used together to describe the interactions between a group of atoms and its surroundings. Because the choice of theory is made on the force field level while the sampling is always carried out in the atomic space, the new adaptive method preserves naturally the atomic structure and thermodynamic properties of the entire system throughout the simulation processes. The new method will be very useful in many biomolecular simulations where atomistic details are critically needed.
von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R
2016-07-01
The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp
We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained inmore » force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, R.D.; Russell, P.E.
The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.
The Ehrenfest force field: Topology and consequences for the definition of an atom in a molecule.
Martín Pendás, A; Hernández-Trujillo, J
2012-10-07
The Ehrenfest force is the force acting on the electrons in a molecule due to the presence of the other electrons and the nuclei. There is an associated force field in three-dimensional space that is obtained by the integration of the corresponding Hermitian quantum force operator over the spin coordinates of all of the electrons and the space coordinates of all of the electrons but one. This paper analyzes the topology induced by this vector field and its consequences for the definition of molecular structure and of an atom in a molecule. Its phase portrait reveals: that the nuclei are attractors of the Ehrenfest force, the existence of separatrices yielding a dense partitioning of three-dimensional space into disjoint regions, and field lines connecting the attractors through these separatrices. From the numerical point of view, when the Ehrenfest force field is obtained as minus the divergence of the kinetic stress tensor, the induced topology was found to be highly sensitive to choice of gaussian basis sets at long range. Even the use of large split valence and highly uncontracted basis sets can yield spurious critical points that may alter the number of attraction basins. Nevertheless, at short distances from the nuclei, in general, the partitioning of three-dimensional space with the Ehrenfest force field coincides with that induced by the gradient field of the electron density. However, exceptions are found in molecules where the electron density yields results in conflict with chemical intuition. In these cases, the molecular graphs of the Ehrenfest force field reveal the expected atomic connectivities. This discrepancy between the definition of an atom in a molecule between the two vector fields casts some doubts on the physical meaning of the integration of Ehrenfest forces over the basins of the electron density.
de la Torre, B; Ellner, M; Pou, P; Nicoara, N; Pérez, Rubén; Gómez-Rodríguez, J M
2016-06-17
We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale.
Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.
Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei
2013-11-13
Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.
Maali, Abdelhamid; Wang, Yuliang; Bhushan, Bharat
2009-10-20
In this study we present measurements of the hydrodynamic force exerted on a glass sphere glued to an atomic force microscopy (AFM) cantilever approaching a mica surface in water. A large sphere was used to reduce the impact of the cantilever beam on the measurement. An AFM cantilever with large stiffness was used to accurately determine the actual contact position between the sphere and the sample surface. The measured hydrodynamic force with different approach velocities is in good agreement with the Taylor force calculated in the lubrication theory with the no-slip boundary conditions, which verifies that there is no boundary slip on the glass and mica surfaces. Moreover, a detailed procedure of how to subtract the electrostatic double-layer force is presented.
Sato, Fumiya; Asakawa, Hitoshi; Fukuma, Takeshi; Terada, Sumio
2016-08-01
Neurofilaments are intermediate filament proteins specific for neurons and characterized by formation of biochemically stable, obligate heteropolymers in vivo While purified or reassembled neurofilaments have been subjected to morphological analyses by electron microscopy and atomic force microscopy, there has been a need for direct imaging of cytoplasmic genuine intermediate filaments with minimal risk of artefactualization. In this study, we applied the modified 'cells on glass sandwich' method to exteriorize intracellular neurofilaments, reducing the risk of causing artefacts through sample preparation. SW13vim(-) cells were double transduced with neurofilament medium polypeptide (NF-M) and alpha-internexin (α-inx). Cultured cells were covered with a cationized coverslip after prestabilization with tannic acid to form a sandwich and then split into two. After confirming that neurofilaments could be deposited on ventral plasma membranes exposed via unroofing, we performed atomic force microscopy imaging semi-in situ in aqueous solution. The observed thin filaments, considered to retain native structures of the neurofilaments, exhibited an approximate periodicity of 50-60 nm along their length. Their structural property appeared to reflect the morphology formed by their constituents, i.e. NF-M and α-inx. The success of semi-in situ atomic force microscopy of exposed bona fide assembled neurofilaments through separating the sandwich suggests that it can be an effective and alternative method for investigating cytoplasmic intermediate filaments under physiological conditions by atomic force microscopy. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Precisely detecting atomic position of atomic intensity images.
Wang, Zhijun; Guo, Yaolin; Tang, Sai; Li, Junjie; Wang, Jincheng; Zhou, Yaohe
2015-03-01
We proposed a quantitative method to detect atomic position in atomic intensity images from experiments such as high-resolution transmission electron microscopy, atomic force microscopy, and simulation such as phase field crystal modeling. The evaluation of detection accuracy proves the excellent performance of the method. This method provides a chance to precisely determine atomic interactions based on the detected atomic positions from the atomic intensity image, and hence to investigate the related physical, chemical and electrical properties. Copyright © 2014 Elsevier B.V. All rights reserved.
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2006-08-22
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
Sensing mode atomic force microscope
Hough, Paul V.; Wang, Chengpu
2004-11-16
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
Microcontroller-driven fluid-injection system for atomic force microscopy.
Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G
2010-01-01
We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.
A Cost-Effective Atomic Force Microscope for Undergraduate Control Laboratories
ERIC Educational Resources Information Center
Jones, C. N.; Goncalves, J.
2010-01-01
This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to…
SCALAR MULTI-PASS ATOMIC MAGNETOMETER
2017-08-01
primarily by atomic shot noise. Furthermore, the spectrum of quantum spin noise provides information on the time correlation between the spins and...the resulting light to be shot -noise-limited both with and without the polarizer in place. Newer Vixar VCSELs with internal gratings on output...described on inside pages STINFO COPY AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
Thermal nanostructure: An order parameter multiscale ensemble approach
NASA Astrophysics Data System (ADS)
Cheluvaraja, S.; Ortoleva, P.
2010-02-01
Deductive all-atom multiscale techniques imply that many nanosystems can be understood in terms of the slow dynamics of order parameters that coevolve with the quasiequilibrium probability density for rapidly fluctuating atomic configurations. The result of this multiscale analysis is a set of stochastic equations for the order parameters whose dynamics is driven by thermal-average forces. We present an efficient algorithm for sampling atomistic configurations in viruses and other supramillion atom nanosystems. This algorithm allows for sampling of a wide range of configurations without creating an excess of high-energy, improbable ones. It is implemented and used to calculate thermal-average forces. These forces are then used to search the free-energy landscape of a nanosystem for deep minima. The methodology is applied to thermal structures of Cowpea chlorotic mottle virus capsid. The method has wide applicability to other nanosystems whose properties are described by the CHARMM or other interatomic force field. Our implementation, denoted SIMNANOWORLD™, achieves calibration-free nanosystem modeling. Essential atomic-scale detail is preserved via a quasiequilibrium probability density while overall character is provided via predicted values of order parameters. Applications from virology to the computer-aided design of nanocapsules for delivery of therapeutic agents and of vaccines for nonenveloped viruses are envisioned.
Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes.
Anderson, Mark S; Gaimari, Stephen D
2003-06-01
The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.
Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes
NASA Technical Reports Server (NTRS)
Anderson, Mark S.; Gaimari, Stephen D.
2003-01-01
The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Dr Nirmesh; Liu, Dr C K; Hawkett, Dr B. S.
2014-01-01
The optical magnetic chaining technique (MCT) developed by Leal-Calderon, Bibette and co-workers in the 1990 s allows precise measurements of force profiles between droplets in monodisperse ferrofluid emulsions. However, the method lacks an in-situ determination of droplet size and therefore requires the combination of separately acquired measurements of droplet chain periodicity versus an applied magnetic field from optical Bragg scattering and droplet diameter inferred from dynamic light scattering (DLS) to recover surface force-distance profiles between the colloidal particles. Compound refractive lens (CRL) focussed small-angle scattering (SANS) MCT should result in more consistent measurements of droplet size (form factor measurements inmore » the absence of field) and droplet chaining period (from structure factor peaks when the magnetic field is applied); and, with access to shorter length scales, extend force measurements to closer approaches than possible by optical measurements. We report on CRL-SANS measurements of monodisperse ferrofluid emulsion droplets aligned in straight chains by an applied field perpendicular to the incident beam direction. Analysis of the scattering from the closely spaced droplets required algorithms that carefully treated resolution and its effect on mean scattering vector magnitudes in order to determine droplet size and chain periods to sufficient accuracy. At lower applied fields scattering patterns indicate structural correlations transverse to the magnetic field direction due to the formation of intermediate structures in early chain growth.« less
Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research.
Altman, Eric I; Baykara, Mehmet Z; Schwarz, Udo D
2015-09-15
Although atomic force microscopy (AFM) was rapidly adopted as a routine surface imaging apparatus after its introduction in 1986, it has not been widely used in catalysis research. The reason is that common AFM operating modes do not provide the atomic resolution required to follow catalytic processes; rather the more complex noncontact (NC) mode is needed. Thus, scanning tunneling microscopy has been the principal tool for atomic scale catalysis research. In this Account, recent developments in NC-AFM will be presented that offer significant advantages for gaining a complete atomic level view of catalysis. The main advantage of NC-AFM is that the image contrast is due to the very short-range chemical forces that are of interest in catalysis. This motivated our development of 3D-AFM, a method that yields quantitative atomic resolution images of the potential energy surfaces that govern how molecules approach, stick, diffuse, and rebound from surfaces. A variation of 3D-AFM allows the determination of forces required to push atoms and molecules on surfaces, from which diffusion barriers and variations in adsorption strength may be obtained. Pushing molecules towards each other provides access to intermolecular interaction between reaction partners. Following reaction, NC-AFM with CO-terminated tips yields textbook images of intramolecular structure that can be used to identify reaction intermediates and products. Because NC-AFM and STM contrast mechanisms are distinct, combining the two methods can produce unique insight. It is demonstrated for surface-oxidized Cu(100) that simultaneous 3D-AFM/STM yields resolution of both the Cu and O atoms. Moreover, atomic defects in the Cu sublattice lead to variations in the reactivity of the neighboring O atoms. It is shown that NC-AFM also allows a straightforward imaging of work function variations which has been used to identify defect charge states on catalytic surfaces and to map charge transfer within an individual molecule. These advances highlight the potential for NC-AFM-based methods to become the cornerstone upon which a quantitative atomic scale view of each step of a catalytic process may be gained. Realizing this potential will rely on two breakthroughs: (1) development of robust methods for tip functionalization and (2) simplification of NC-AFM instrumentation and control schemes. Quartz force sensors may offer paths forward in both cases. They allow any material with an atomic asperity to be used as a tip, opening the door to a wide range of surface functionalization chemistry. In addition, they do not suffer from the instabilities that motivated the initial adoption of complex control strategies that are still used today.
NASA Astrophysics Data System (ADS)
Waddell, J.; Ou, R.; Capozzi, C. J.; Gupta, S.; Parker, C. A.; Gerhardt, R. A.; Seal, K.; Kalinin, S. V.; Baddorf, A. P.
2009-12-01
Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.
NASA Astrophysics Data System (ADS)
Ditscherlein, L.; Peuker, U. A.
2017-04-01
For the application of colloidal probe atomic force microscopy at high temperatures (>500 K), stable colloidal probe cantilevers are essential. In this study, two new methods for gluing alumina particles onto temperature stable cantilevers are presented and compared with an existing method for borosilicate particles at elevated temperatures as well as with cp-cantilevers prepared with epoxy resin at room temperature. The durability of the fixing of the particle is quantified with a test method applying high shear forces. The force is calculated with a mechanical model considering both the bending as well as the torsion on the colloidal probe.
NASA Astrophysics Data System (ADS)
Farrell, Alan A.; Fukuma, Takeshi; Uchihashi, Takayuki; Kay, Euan R.; Bottari, Giovanni; Leigh, David A.; Yamada, Hirofumi; Jarvis, Suzanne P.
2005-09-01
We compare constant amplitude frequency modulation atomic force microscopy (FM-AFM) in ambient conditions to ultrahigh vacuum (UHV) experiments by analysis of thin films of rotaxane molecules. Working in ambient conditions is important for the development of real-world molecular devices. We show that the FM-AFM technique allows quantitative measurement of conservative and dissipative forces without instabilities caused by any native water layer. Molecular resolution is achieved despite the low Q-factor in the air. Furthermore, contrast in the energy dissipation is observed even at the molecular level. This should allow investigations into stimuli-induced sub-molecular motion of organic films.
Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements.
Wierez-Kien, M; Craciun, A D; Pinon, A V; Roux, S Le; Gallani, J L; Rastei, M V
2018-04-01
The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <10 3 nm 2 ) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.
Efficient molecular dynamics simulations with many-body potentials on graphics processing units
NASA Astrophysics Data System (ADS)
Fan, Zheyong; Chen, Wei; Vierimaa, Ville; Harju, Ari
2017-09-01
Graphics processing units have been extensively used to accelerate classical molecular dynamics simulations. However, there is much less progress on the acceleration of force evaluations for many-body potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body potentials, the force, virial stress, and heat current for a given atom are accumulated within different loops, which could result in write conflict between different threads in a CUDA kernel. In this work, we provide a new force evaluation algorithm, which is based on an explicit pairwise force expression for many-body potentials derived recently (Fan et al., 2015). In our algorithm, the force, virial stress, and heat current for a given atom can be accumulated within a single thread and is free of write conflicts. We discuss the formulations and algorithms and evaluate their performance. A new open-source code, GPUMD, is developed based on the proposed formulations. For the Tersoff many-body potential, the double precision performance of GPUMD using a Tesla K40 card is equivalent to that of the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) molecular dynamics code running with about 100 CPU cores (Intel Xeon CPU X5670 @ 2.93 GHz).
NASA Astrophysics Data System (ADS)
Moreno-Herrero, F.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.
2004-03-01
The capabilities of the atomic force microscope for imaging biomolecules under physiological conditions has been systematically investigated. Contact, dynamic, and jumping modes have been applied to four different biological systems: DNA, purple membrane, Alzheimer paired helical filaments, and the bacteriophage φ29. These samples have been selected to cover a wide variety of biological systems in terms of sizes and substrate contact area, which make them very appropriate for the type of comparative studies carried out in the present work. Although dynamic mode atomic force microscopy is clearly the best choice for imaging soft samples in air, in liquids there is not a leading technique. In liquids, the most appropriate imaging mode depends on the sample characteristics and preparation methods. Contact or dynamic modes are the best choices for imaging molecular assemblies arranged as crystals such as the purple membrane. In this case, the advantage of image acquisition speed predominates over the disadvantage of high lateral or normal force. For imaging individual macromolecules, which are weakly bonded to the substrate, lateral and normal forces are the relevant factors, and hence the jumping mode, an imaging mode which minimizes lateral and normal forces, is preferable to other imaging modes.
Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements
NASA Astrophysics Data System (ADS)
Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.
2018-04-01
The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <103 nm2) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus
2008-02-27
The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaroundmore » times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.« less
Pedraza-González, Laura Milena; Galindo, Johan Fabian; Gonzalez, Ronald; Reyes, Andrés
2016-10-09
The solvent effect on the nucleophile and leaving group atoms of the prototypical F - + CH 3 Cl → CH 3 F + Cl - backside bimolecular nucleophilic substitution reaction (S N 2) is analyzed employing the reaction force and the atomic contributions methods on the intrinsic reaction coordinate (IRC). Solvent effects were accounted for using the polarizable continuum solvent model. Calculations were performed employing eleven dielectric constants, ε, ranging from 1.0 to 78.5, to cover a wide spectrum of solvents. The reaction force data reveals that the solvent mainly influences the region of the IRC preceding the energy barrier, where the structural rearrangement to reach the transition state occurs. A detailed analysis of the atomic role in the reaction as a function of ε reveals that the nucleophile and the carbon atom are the ones that contribute the most to the energy barrier. In addition, we investigated the effect of the choice of nucleophile and leaving group on the ΔE 0 and ΔE ↕ of Y - + CH 3 X → YCH 3 + X - (X,Y= F, Cl, Br, I) in aqueous solution. Our analysis allowed us to find relationships between the atomic contributions to the activation energy and leaving group ability and nucleophilicity.
Nanosecond pulsed electric field induced changes in cell surface charge density.
Dutta, Diganta; Palmer, Xavier-Lewis; Asmar, Anthony; Stacey, Michael; Qian, Shizhi
2017-09-01
This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to the identification of unique mechanical responses. Compared to a single low field strength NsPEF (15kV/cm) application, exposure of Jurkat cells to a single high field strength NsPEF (60kV/cm) resulted in a further reduction in charge density and major morphological changes. The structural, physical, and chemical properties of biological cells immensely influence their electrostatic force; we were able to investigate this through the use of atomic force microscopy by measuring the surface forces between the AFM's tip and the Jurkat cells under different pulsing conditions as well as the interfacial forces in ionic concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... science. This instrument is specialized for creating artificial nanoscale structures on an atom-by-atom basis using nascent atom manipulation techniques. The instrument will be used to investigate the amount of force required to move one atom on a materials surface while simultaneously measuring local...
Liquid Spray Characterization in Flow Fields with Centripetal Acceleration
2014-03-27
25 2.4.1 Atomization of Liquid Jets ...volumetric heat release rates, easier light-up, wider burning range, and lower exhaust pollutant emissions [11]. 26 2.4.1 Atomization of Liquid Jets ...Atomization involves the interaction of consolidating and disruptive forces acting on a jet of liquid . The process of atomization can be further
NASA Astrophysics Data System (ADS)
Saez, David Adrian; Vöhringer-Martinez, Esteban
2015-10-01
S-Adenosylmethionine (AdoMet) is involved in many biological processes as cofactor in enzymes transferring its sulfonium methyl group to various substrates. Additionally, it is used as drug and nutritional supplement to reduce the pain in osteoarthritis and against depression. Due to the biological relevance of AdoMet it has been part of various computational simulation studies and will also be in the future. However, to our knowledge no rigorous force field parameter development for its simulation in biological systems has been reported. Here, we use electronic structure calculations combined with molecular dynamics simulations in explicit solvent to develop force field parameters compatible with the AMBER99 force field. Additionally, we propose new dynamic Hirshfeld-I atomic charges which are derived from the polarized electron density of AdoMet in aqueous solution to describe its electrostatic interactions in biological systems. The validation of the force field parameters and the atomic charges is performed against experimental interproton NOE distances of AdoMet in aqueous solution and crystal structures of AdoMet in the cavity of three representative proteins.
A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein.
Xu, Mingyuan; Zhu, Tong; Zhang, John Z H
2018-01-01
A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA) 9 -NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.
Quantum Degeneracy in Atomic Point Contacts Revealed by Chemical Force and Conductance
NASA Astrophysics Data System (ADS)
Sugimoto, Yoshiaki; Ondráček, Martin; Abe, Masayuki; Pou, Pablo; Morita, Seizo; Perez, Ruben; Flores, Fernando; Jelínek, Pavel
2013-09-01
Quantum degeneracy is an important concept in quantum mechanics with large implications to many processes in condensed matter. Here, we show the consequences of electron energy level degeneracy on the conductance and the chemical force between two bodies at the atomic scale. We propose a novel way in which a scanning probe microscope can detect the presence of degenerate states in atomic-sized contacts even at room temperature. The tunneling conductance G and chemical binding force F between two bodies both tend to decay exponentially with distance in a certain distance range, usually maintaining direct proportionality G∝F. However, we show that a square relation G∝F2 arises as a consequence of quantum degeneracy between the interacting frontier states of the scanning tip and a surface atom. We demonstrate this phenomenon on the Si(111)-(7×7) surface reconstruction where the Si adatom possesses a strongly localized dangling-bond state at the Fermi level.
Looking at cell mechanics with atomic force microscopy: experiment and theory.
Benitez, Rafael; Toca-Herrera, José L
2014-11-01
This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The review is written in a chronological way to offer an overview of phenomenological facts and quantitative results to the reader. The final section discusses in detail the advantages and disadvantages of the Hertz and JKR models. A new implementation of the JKR model derived by Dufresne is presented. © 2014 Wiley Periodicals, Inc.
Beliciu, C M; Moraru, C I
2009-05-01
The objectives of this study were to investigate the effect of the solvent on the accuracy of casein micelle particle size determination by dynamic light scattering (DLS) at different temperatures and to establish a clear protocol for these measurements. Dynamic light scattering analyses were performed at 6, 20, and 50 degrees C using a 90Plus Nanoparticle Size Analyzer (Brookhaven Instruments, Holtsville, NY). Raw and pasteurized skim milk were used as sources of casein micelles. Simulated milk ultrafiltrate, ultrafiltered water, and permeate obtained by ultrafiltration of skim milk using a 10-kDa cutoff membrane were used as solvents. The pH, ionic concentration, refractive index, and viscosity of all solvents were determined. The solvents were evaluated by DLS to ensure that they did not have a significant influence on the results of the particle size measurements. Experimental protocols were developed for accurate measurement of particle sizes in all solvents and experimental conditions. All measurements had good reproducibility, with coefficients of variation below 5%. Both the solvent and the temperature had a significant effect on the measured effective diameter of the casein micelles. When ultrafiltered permeate was used as a solvent, the particle size and polydispersity of casein micelles decreased as temperature increased. The effective diameter of casein micelles from raw skim milk diluted with ultrafiltered permeate was 176.4 +/- 5.3 nm at 6 degrees C, 177.4 +/- 1.9 nm at 20 degrees C, and 137.3 +/- 2.7 nm at 50 degrees C. This trend was justified by the increased strength of hydrophobic bonds with increasing temperature. Overall, the results of this study suggest that the most suitable solvent for the DLS analyses of casein micelles was casein-depleted ultrafiltered permeate. Dilution with water led to micelle dissociation, which significantly affected the DLS measurements, especially at 6 and 20 degrees C. Simulated milk ultrafiltrate seemed to give accurate results only at 20 degrees C. Results obtained in simulated milk ultrafiltrate at 6 degrees C could not be explained based on the known effects of temperature on the casein micelle, whereas at 50 degrees C, precipitation of amorphous calcium phosphate affected the DLS measurement.
Minamide, Akihito; Yoshida, Munehito; Iwahashi, Hiroki; Simpson, Andrew K; Yamada, Hiroshi; Hashizume, Hiroshi; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Tsutsui, Shunji; Kagotani, Ryohei; Sonekatsu, Mayumi; Sasaki, Takahide; Shinto, Kazunori; Deguchi, Tsuyoshi
2017-05-01
There is ongoing controversy regarding the most appropriate surgical treatment for lumbar spinal stenosis (LSS) with concurrent degenerative lumbar scoliosis (DLS): decompression alone, decompression with limited spinal fusion, or long spinal fusion for deformity correction. The coexistence of degenerative stenosis and deformity is a common scenario; Nonetheless, selecting the appropriate surgical intervention requires thorough understanding of the patients clinical symptomatology as well as radiographic parameters. Minimally invasive (MIS) decompression surgery was performed for LSS patients with DLS. The aims of this study were (1) to investigate the clinical outcomes of MIS decompression surgery in LSS patients with DLS, and (2) to identify the predictive factors for both radiographic and clinical outcomes after MIS surgery. 438 consecutive patients were enrolled in this study. Inclusion criteria was evidence of LSS and DLS with coronal curvature measuring greater than 10°. The Japanese Orthopaedic Association (JOA) score, JOA recovery rate, low back pain (LBP), and radiographic features were evaluated preoperatively and at over 2 years postoperatively. Of the 438 patients, 122 were included in final analysis, with a mean follow-up of 2.4 years. The JOA recovery rate was 47.6%. LBP was significantly improved at final follow-up. Cobb angle was maintained for 2 years postoperatively (p = 0.159). Clinical outcomes in foraminal stenosis patients were significantly related to sex, preoperative high Cobb angle and progression of scoliosis (p = 0.008). In the severe scoliosis patients, the JOA recovery was 44%, and was significantly depended on progression of scoliosis (Cobb angle: preoperation 29.6°, 2-years follow-up 36.9°) and mismatch between the pelvic incidence (PI) and the lumbar lordosis (LL) (preoperative PI-LL 35.5 ± 21.2°) (p = 0.028). This study investigated clinical outcomes of MIS decompression surgery in LSS patients with DLS. The predictive risk factors of clinical outcomes were severe scoliosis, foramina stenosis, progressive scoliosis and large mismatch of PI-LL. Copyright © 2016 The Japanese Orthopaedic Association. All rights reserved.
Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
NASA Astrophysics Data System (ADS)
Lee, Alex J.; Sakai, Yuki; Chelikowsky, James R.
2017-02-01
Atomic force microscopy (AFM) measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. We find that the inversion is tip height dependent and not observed when using less reactive CO-functionalized tips.
Íbias, J; Soria-Molinillo, E; Kastanauskaite, A; Orgaz, C; DeFelipe, J; Pellón, R; Miguéns, M
2015-08-06
Schedule-induced polydipsia (SIP) is an adjunctive behavior in which rats exhibit excessive drinking as a consequence of intermittent feeding, and it has been proposed as a candidate model to study the development of compulsive and repetitive behavior. Although several brain structures are involved in compulsive behavior, it has been suggested that alterations in fronto-striatal circuits may underlie compulsive spectrum disorders. In the present work, we examined whether SIP would induce modifications in dorsolateral striatum (DLS) and anterior prefrontal cortex (aPFC) neurons. Specifically, the effects of 20 sessions of SIP were determined in the dendrites of DLS medium spiny neurons and in the basal dendritic arbors of layer V pyramidal cells in the aPFC. The structure, size and branching complexity in aPFC neurons were also studied. Results showed that SIP resulted in an increase in dendritic spine density in DLS neurons. Moreover, dendritic spine density was highly correlated with the level of drinking in animals subjected to SIP. By contrast, we observed no differences either in dendritic spine density or in the morphological structure of the dendrites of the aPFC in SIP rats compared to their control counterparts. We hypothesize that SIP-induced structural plasticity in DLS neurons could be related to inflexible response in compulsive behavior. The findings of this study could provide new insights into the involvement of particular cell populations of the dorsolateral striatum and anterior prefrontal cortex regions in compulsive spectrum disorders. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits
Lingawi, Nura W.; Balleine, Bernard W.
2012-01-01
The role of the amygdala central nucleus (CeN) in habit learning was assessed in two experiments. First we examined the effects of bilateral lesions of the anterior CeN on an overtraining-induced lever press habit evaluated using an outcome devaluation protocol. Overtraining generated habitual performance and rendered sham lesioned rats insensitive to outcome devaluation, an effect that was also found in rats given control lesions of the posterior CeN. In contrast, rats with lesions of the anterior CeN did not show normal habit acquisition and their performance remained goal-directed and sensitive to outcome devaluation. Nevertheless, lesions of either the posterior or the anterior CeN abolished the general excitatory influence of a Pavlovian CS on instrumental performance. Next we assessed the functional interaction between the CeN and dorsolateral striatum (DLS), a region previously implicated in the acquisition of habits, using asymmetrical lesions to disconnect these structures. Rats were given a unilateral lesion of anterior CeN and a unilateral lesion of the DLS, made either ipsilateral (control) or contralateral (disconnection) to the CeN lesion, and given overtraining followed by outcome devaluation. Although the ipsilateral lesioned rats were insensitive to devaluation, the contralateral CeN-DLS lesion impaired habit acquisition rendering performance sensitive to the devaluation treatment. These results are the first to implicate the CeN and its connection with a circuit involving DLS in habit learning. They imply that, in instrumental conditioning, regions of amygdala parse the instrumental outcome into the reward and reinforcement signals mediating goal-directed and habitual actions, respectively. PMID:22262905
Dufrêne, Y F
2001-02-01
The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.
Wu, Jingheng; Shen, Lin; Yang, Weitao
2017-10-28
Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan
X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering-vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables XPCS to probe the dynamics in a broad array of materials, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fail. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. This paper proposes an alternative analysis schememore » based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. In conclusion, using XPCS data measured from colloidal gels, it is demonstrated that the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.« less
Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi
In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution bymore » analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.« less
PARTITIONING OF PERFLUOROOCTANOATE INTO PHOSPHATIDYLCHOLINE BILAYERS IS CHAIN LENGTH-INDEPENDENT
Xie, Wei; Bothun, Geoffrey D.; Lehmler, Hans-Joachim
2010-01-01
The chain length dependence of the interaction of PFOA, a persistent environmental contaminant, with dimyristoyl- (DMPC), dipalmitoyl- (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated using steady-state fluorescence anisotropy spectroscopy, differential scanning calorimetry (DSC) and dynamic light scattering (DLS). PFOA caused a linear depression of the main phase transition temperature Tm while increasing the width of the phase transition of all three phosphatidylcholines. Although PFOA’s effect on the on Tm and the transition width decreased in the order DMPC > DPPC > DSPC, its relative effect on the phase behavior was largely independent of the phosphatidylcholine. PFOA caused swelling of DMPC but not DPPC and DSPC liposomes at 37°C in the DLS experiments, which suggests that PFOA partitions more readily into bilayers in the fluid phase. These findings suggest that PFOA’s effect on the phase behavior of phosphatidylcholines depends on the cooperativity and state (i.e., gel versus liquid phase) of the membrane. DLS experiments are also consistent with partial liposome solubilization at PFOA/lipid molar ratios > 1, which suggests the formation of mixed PFOA-lipid micelles. PMID:20096277
A Smoluchowski model of crystallization dynamics of small colloidal clusters
NASA Astrophysics Data System (ADS)
Beltran-Villegas, Daniel J.; Sehgal, Ray M.; Maroudas, Dimitrios; Ford, David M.; Bevan, Michael A.
2011-10-01
We investigate the dynamics of colloidal crystallization in a 32-particle system at a fixed value of interparticle depletion attraction that produces coexisting fluid and solid phases. Free energy landscapes (FELs) and diffusivity landscapes (DLs) are obtained as coefficients of 1D Smoluchowski equations using as order parameters either the radius of gyration or the average crystallinity. FELs and DLs are estimated by fitting the Smoluchowski equations to Brownian dynamics (BD) simulations using either linear fits to locally initiated trajectories or global fits to unbiased trajectories using Bayesian inference. The resulting FELs are compared to Monte Carlo Umbrella Sampling results. The accuracy of the FELs and DLs for modeling colloidal crystallization dynamics is evaluated by comparing mean first-passage times from BD simulations with analytical predictions using the FEL and DL models. While the 1D models accurately capture dynamics near the free energy minimum fluid and crystal configurations, predictions near the transition region are not quantitatively accurate. A preliminary investigation of ensemble averaged 2D order parameter trajectories suggests that 2D models are required to capture crystallization dynamics in the transition region.
Microgravity Diode Laser Spectroscopy Measurements in a Reacting Vortex Ring
NASA Technical Reports Server (NTRS)
Chen, Shin-Juh; Dahm, Werner J. A.; Silver, Joel A.; Piltch, Nancy D.
2001-01-01
The technique of Diode Laser Spectroscopy (DLS) with wavelength modulation is utilized to measure the concentration of methane in reacting vortex rings under microgravity conditions. From the measured concentration of methane, other major species such as water, carbon dioxide, nitrogen, and oxygen can be easily computed under the assumption of equilibrium chemistry with the method of Interactive Temperature with Assumed Chemistry (ITAC). The conserved scalar approach in modelling the coupling between fluid dynamics and combustion is utilized to represent the unknown variables in terms of the mixture fraction and scalar dissipation rate in conjunction with ITAC. Post-processing of the DLS measurements and the method of ITAC used in computing the species concentration are discussed. From the flame luminosity results, the increase in ring circulation appears to increase the fuel consumption rate inside the reacting vortex ring and the flame height for cases with similar fuel volumes. Preliminary results and application of ITAC show some potential capabilities of ITAC in DLS. The measured concentration of methane, and computed concentrations of water and carbon dioxide agree well with available results from numerical simulations.
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; ...
2018-02-01
X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering-vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables XPCS to probe the dynamics in a broad array of materials, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fail. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. This paper proposes an alternative analysis schememore » based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. In conclusion, using XPCS data measured from colloidal gels, it is demonstrated that the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.« less
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Datiles, Manuel B., III; King, James F.
2000-01-01
A growing cataract can be detected at the molecular level using the technique of dynamic light scattering (DLS). However, the success of this method in clinical use depends upon the precise control of the scattering volume inside a patient's eye and especially during patient's repeat visits. This is important because the scattering volume (cross-over region between the scattered fight and incident light) inside the eye in a high-quality DLS set-up is very small (few microns in dimension). This precise control holds the key for success in the longitudinal studies of cataract and during anti-cataract drug screening. We have circumvented these problems by fabricating a new DLS fiber optic probe with a working distance of 40 mm and by mounting it inside a cone of a corneal analyzer. This analyzer is frequently used in mapping the corneal topography during PRK (photorefractive keratectomy) and LASIK (laser in situ keratomileusis) procedures in shaping of the cornea to correct myopia. This new instrument and some preliminary clinical tests on one of us (RRA) showing the data reproducibility are described.
NASA Astrophysics Data System (ADS)
Ansari, Rafat R.; Datiles, Manuel B., III; King, James F.
2000-06-01
A growing cataract can be detected at the molecular level using the technique of dynamic light scattering (DLS). However, the success of this method in clinical use depends upon the precise control of the scattering volume inside a patient's eye and especially during patient's repeat visits. This is important because the scattering volume (cross-over region between the scattered light and incident light) inside the eye in a high-quality DLS set-up is very small (few microns in dimension). This precise control holds the key for success in the longitudinal studies of cataract and during anti-cataract drug screening. We have circumvented these problems by fabricating a new DLS fiber optic probe with a working distance of 40 mm and by mounting it inside a cone of a corneal analyzer. This analyzer is frequently used in mapping the corneal topography during PRK (photorefractive keratectomy) and LASIK (laser in situ keratomileusis) procedures in shaping of the cornea to correct myopia. This new instrument and some preliminary clinical tests on one of us (RRA) showing the data reproducibility are described.
Priyadarshini, E; Pradhan, N; Panda, P K; Mishra, B K
2015-06-15
The ability of self-functionalized biogenic GNPs towards highly selective colorimetric detection of rare earth element cerium is being reported for the first time. GNPs underwent rapid aggregation on addition of cerium indicated by red shift of SPR peak followed by complete precipitation. Hereby, this concept of co-ordination of cerium ions onto the GNP surface has been utilized for detection of cerium. The remarkable capacity of GNPs to sensitively detect Ce without proves beneficial compared to previous reports of colorimetric sensing. MDL was 15 and 35 ppm by DLS and UV-vis spectroscopy respectively, suggesting DLS to be highly sensitive and a practical alternative in ultrasensitive detection studies. The sensing system showed a good linear fit favouring feasible detection of cerium in range of 2-50 ppm. Similar studies further showed the superior selectivity of biogenic GNPs compared to chemically synthesized counterparts. The sensing system favours on-site analysis as it overcomes need of complex instrumentation, lengthy protocols and surface modification of GNP. Copyright © 2015 Elsevier B.V. All rights reserved.
Dasary, Samuel S R; Senapati, Dulal; Singh, Anant Kumar; Anjaneyulu, Yerramilli; Yu, Hongtao; Ray, Paresh Chandra
2010-12-01
TNT is one of the most commonly used nitro aromatic explosives for landmines of military and terrorist activities. As a result, there is an urgent need for rapid and reliable methods for the detection of trace amount of TNT for screenings in airport, analysis of forensic samples, and environmental analysis. Driven by the need to detect trace amounts of TNT from environmental samples, this article demonstrates a label-free, highly selective, and ultrasensitive para-aminothiophenol (p-ATP) modified gold nanoparticle based dynamic light scattering (DLS) probe for TNT recognition in 100 pico molar (pM) level from ethanol:acetonitile mixture solution. Because of the formation of strong π-donor-acceptor interaction between TNT and p-ATP, para-aminothiophenol attached gold nanoparticles undergo aggregation in the presence of TNT, which changes the DLS intensity tremendously. A detailed mechanism for significant DLS intensity change has been discussed. Our experimental results show that TNT can be detected quickly and accurately without any dye tagging in 100 pM level with excellent discrimination against other nitro compounds.
Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yurie, E-mail: ok-yu@fuji.waseda.jp; Yanao, Tomohiro, E-mail: yanao@waseda.jp; Koon, Wang Sang, E-mail: koon@cds.caltech.edu
2015-04-07
This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internalmore » centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.« less
Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters
NASA Astrophysics Data System (ADS)
Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang
2015-04-01
This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.
First principles calculation of current-induced forces in atomic gold contacts
NASA Astrophysics Data System (ADS)
Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy; Mozos, Jose-Luis; Ordejon, Pablo
2002-03-01
We have recently developed an first principles method [1] for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested SIESTA program [2]. We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. In this talk we show results for the forces acting on the contact atoms due to the nonequilibrium situation in the electronic subsystem, i.e. in the presence of an electronic current. We concentrate on one atom wide gold contacts/wires connected to bulk gold electrodes. References [1] Our implementation is called TranSIESTA and is described in M. Brandbyge, J. Taylor, K. Stokbro, J-L. Mozos, and P. Ordejon, cond-mat/0110650 [2] D. Sanchez-Portal, P. Ordejon, E. Artacho and J. Soler, Int. J. Quantum Chem. 65, 453 (1997).
Chien, Hui-Lien; Lu, Tung-Wu; Liu, Ming-Wei
2013-07-01
High-heeled shoes are associated with instability and falling, leading to injuries such as fracture and ankle sprain. Knowledge of the motion of the body's center of mass (COM) with respect to the center of pressure (COP) during high-heeled gait may offer insights into the balance control strategies and provide a basis for approaches that minimize the risk of falling and associated adverse effects. The study aimed to investigate the influence of the base and height of the heels on the COM motion in terms of COM-COP inclination angles (IA) and the rate of change of IA (RCIA). Fifteen females who regularly wear high heels walked barefoot and with narrow-heeled shoes with three heel heights (3.9cm, 6.3cm and 7.3cm) while kinematic and ground reaction force data were measured and used to calculate the COM and COP, as well as the temporal-distance parameters. The reduced base of the heels was found to be the primary factor for the reduced normalized walking speed and the reduced frontal IA throughout the gait cycle. This was achieved mainly through the control of the RCIA during double-leg stance (DLS). The heel heights affected mainly the peak RCIA during DLS, which were not big enough to affect the IA. These results suggest young adults adopt a conservative strategy for balance control during narrow-heeled gait. The results will serve as baseline data for future evaluation of patients and/or older adults during narrow-heeled gait with the aim of reducing the risk of falling. Copyright © 2012 Elsevier B.V. All rights reserved.
Nano Goes to School: A Teaching Model of the Atomic Force Microscope
ERIC Educational Resources Information Center
Planinsic, Gorazd; Kovac, Janez
2008-01-01
The paper describes a teaching model of the atomic force microscope (AFM), which proved to be successful in the role of an introduction to nanoscience in high school. The model can demonstrate the two modes of operation of the AFM (contact mode and oscillating mode) as well as some basic principles that limit the resolution of the method. It can…
ERIC Educational Resources Information Center
Phuapaiboon, Unchada; Panijpan, Bhinyo; Osotchan, Tanakorn
2009-01-01
This study was conducted to examine the results of using a low-cost hands-on setup in combination with accompanying activities to promote understanding of the contact mode of atomic force microscopy (AFM). This contact mode setup enabled learners to study how AFM works by hand scanning using probing cantilevers with different characteristics on…
Cooperative scattering and radiation pressure force in dense atomic clouds
NASA Astrophysics Data System (ADS)
Bachelard, R.; Piovella, N.; Courteille, Ph. W.
2011-07-01
Atomic clouds prepared in “timed Dicke” states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.96.010501 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.
Quantitative measurement of solvation shells using frequency modulated atomic force microscopy
NASA Astrophysics Data System (ADS)
Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.
2005-03-01
The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.
Characterization of new drug delivery nanosystems using atomic force microscopy
NASA Astrophysics Data System (ADS)
Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.
2015-01-01
Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.
Wagoner, Jason A.; Baker, Nathan A.
2006-01-01
Continuum solvation models provide appealing alternatives to explicit solvent methods because of their ability to reproduce solvation effects while alleviating the need for expensive sampling. Our previous work has demonstrated that Poisson-Boltzmann methods are capable of faithfully reproducing polar explicit solvent forces for dilute protein systems; however, the popular solvent-accessible surface area model was shown to be incapable of accurately describing nonpolar solvation forces at atomic-length scales. Therefore, alternate continuum methods are needed to reproduce nonpolar interactions at the atomic scale. In the present work, we address this issue by supplementing the solvent-accessible surface area model with additional volume and dispersion integral terms suggested by scaled particle models and Weeks–Chandler–Andersen theory, respectively. This more complete nonpolar implicit solvent model shows very good agreement with explicit solvent results and suggests that, although often overlooked, the inclusion of appropriate dispersion and volume terms are essential for an accurate implicit solvent description of atomic-scale nonpolar forces. PMID:16709675
Radiation force on a single atom in a cavity
NASA Technical Reports Server (NTRS)
Kim, M. S.
1992-01-01
We consider the radiation pressure microscopically. Two perfectly conducting plates are parallelly placed in a vacuum. As the vacuum field hits the plates they get pressure from the vacuum. The excessive outside modes of the vacuum field push the plates together, which is known as the Casimer force. We investigate the quantization of the standing wave between the plates to study the interaction between this wave and the atoms on the plates or between the plates. We show that even the vacuum field pushes the atom to place it at nodes of the standing wave.
Atomic force microscope image contrast mechanisms on supported lipid bilayers.
Schneider, J; Dufrêne, Y F; Barger, W R; Lee, G U
2000-08-01
This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures onto a monolayer of DSPE show an abrupt breakthrough event at a repeatable, material-dependent force. The breakthrough force for DSPE and MGDG is sizable, whereas the breakthrough force for DOPE is too small to measure accurately. Contact-mode AFM images on 1:1 mixed monolayers of DSPE/DOPE and MGDG/DOPE have a high topographic contrast at loads between the breakthrough force of each phase, and a low topographic contrast at loads above the breakthrough force of both phases. Frictional contrast is inverted and magnified at loads above the breakthrough force of both phases. These results emphasize the important role that surface forces and mechanics can play in imaging multicomponent biomembranes with AFM.
Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina
2016-01-01
Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276
Ooe, Hiroaki; Fujii, Mikihiro; Tomitori, Masahiko; Arai, Toyoko
2016-02-01
High-Q factor retuned fork (RTF) force sensors made from quartz tuning forks, and the electric circuits for the sensors, were evaluated and optimized to improve the performance of non-contact atomic force microscopy (nc-AFM) performed under ultrahigh vacuum (UHV) conditions. To exploit the high Q factor of the RTF sensor, the oscillation of the RTF sensor was excited at its resonant frequency, using a stray capacitance compensation circuit to cancel the excitation signal leaked through the stray capacitor of the sensor. To improve the signal-to-noise (S/N) ratio in the detected signal, a small capacitor was inserted before the input of an operational (OP) amplifier placed in an UHV chamber, which reduced the output noise from the amplifier. A low-noise, wideband OP amplifier produced a superior S/N ratio, compared with a precision OP amplifier. The thermal vibrational density spectra of the RTF sensors were evaluated using the circuit. The RTF sensor with an effective spring constant value as low as 1000 N/m provided a lower minimum detection limit for force differentiation. A nc-AFM image of a Si(111)-7 × 7 surface was produced with atomic resolution using the RTF sensor in a constant frequency shift mode; tunneling current and energy dissipation images with atomic resolution were also simultaneously produced. The high-Q factor RTF sensor showed potential for the high sensitivity of energy dissipation as small as 1 meV/cycle and the high-resolution analysis of non-conservative force interactions.
Current-induced changes of migration energy barriers in graphene and carbon nanotubes
NASA Astrophysics Data System (ADS)
Obodo, J. T.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.
2016-05-01
An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR00534A
Native flexibility of structurally homologous proteins: insights from anisotropic network model.
Sarkar, Ranja
2017-01-01
Single-molecule microscopic experiments can measure the mechanical response of proteins to pulling forces applied externally along different directions (inducing different residue pairs in the proteins by uniaxial tension). This response to external forces away from equilibrium should in principle, correlate with the flexibility or stiffness of proteins in their folded states. Here, a simple topology-based atomistic anisotropic network model (ANM) is shown which captures the protein flexibility as a fundamental property that determines the collective dynamics and hence, the protein conformations in native state. An all-atom ANM is used to define two measures of protein flexibility in the native state. One measure quantifies overall stiffness of the protein and the other one quantifies protein stiffness along a particular direction which is effectively the mechanical resistance of the protein towards external pulling force exerted along that direction. These measures are sensitive to the protein sequence and yields reliable values through computations of normal modes of the protein. ANM at an atomistic level (heavy atoms) explains the experimental (atomic force microscopy) observations viz., different mechanical stability of structurally similar but sequentially distinct proteins which, otherwise were implied to possess similar mechanical properties from analytical/theoretical coarse-grained (backbone only) models. The results are exclusively demonstrated for human fibronectin (FN) protein domains. The topology of interatomic contacts in the folded states of proteins essentially determines the native flexibility. The mechanical differences of topologically similar proteins are captured from a high-resolution (atomic level) ANM at a low computational cost. The relative trend in flexibility of such proteins is reflected in their stability differences that they exhibit while unfolding in atomic force microscopic (AFM) experiments.
Self-bound droplets of a dilute magnetic quantum liquid
NASA Astrophysics Data System (ADS)
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
Self-bound droplets of a dilute magnetic quantum liquid.
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-10
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10 8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
A novel method of testing the shear strength of thick honeycomb composites
NASA Technical Reports Server (NTRS)
Hodge, A. J.; Nettles, A. T.
1991-01-01
Sandwich composites of aluminum and glass/phenolic honeycomb core were tested for shear strength before and after impact damage. The assessment of shear strength was performed in two ways; by four point bend testing of sandwich beams and by a novel double lap shear (DLS) test. This testing technique was developed so smaller specimens could be used, thus making the use of common lab scale fabrication and testing possible. The two techniques yielded similar data. The DLS test gave slightly lower shear strength values of the two methods but were closer to the supplier's values for shear strength.
Application of dynamic light scattering for studying the evolution of micro- and nano-droplets
NASA Astrophysics Data System (ADS)
Derkachov, G.; Jakubczyk, D.; Kolwas, K.; Shopa, Y.; Woźniak, M.; Wojciechowski, T.
2018-01-01
The dynamic light scattering (DLS) technique was used for studying the processes of aggregation of spherical SiO2 particles in various diethylene glycol (DEG) suspensions. The suspensions were studied in a cuvette, in a millimeter-sized droplet and in a micrometer-sized droplet. For the first time DLS signals for droplets of picolitre volume, levitated in an electrodynamic quadrupole trap, were obtained. It is shown that the correlation analysis of light scattered from a micro-droplet allows monitoring the changes of its internal structure, as well as its motions: trap-constricted Brownian motions and random rotations.
Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-01-01
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements. PMID:29875507
Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-02-01
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.
Detailed numerical simulations of laser cooling processes
NASA Technical Reports Server (NTRS)
Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.
2001-01-01
We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.
Stetsovych, Oleksandr; Todorović, Milica; Shimizu, Tomoko K.; Moreno, César; Ryan, James William; León, Carmen Pérez; Sagisaka, Keisuke; Palomares, Emilio; Matolín, Vladimír; Fujita, Daisuke; Perez, Ruben; Custance, Oscar
2015-01-01
Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials. PMID:26118408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allwörden, H. von; Ruschmeier, K.; Köhler, A.
The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped {sup 3}He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambersmore » are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).« less
Simple Model for the Benzene Hexafluorobenzene Interaction
Tillack, Andreas F.; Robinson, Bruce H.
2017-06-05
While the experimental intermolecular distance distribution functions of pure benzene and pure hexafluorobenzene are well described by transferable all-atom force fields, the interaction between the two molecules (in a 1:1 mixture) is not well simulated. We demonstrate that the parameters of the transferable force fields are adequate to describe the intermolecular distance distribution if the charges are replaced by a set of charges that are not located at the atoms. Here, the simplest model that well describes the experimental distance distribution, between benzene and hexafluorobenzene, is that of a single ellipsoid for each molecule, representing the van der Waals interactions,more » and a set of three point charges (on the axis perpendicular to the arene plane) which give the same quadrupole moment as do the all atom charges from the transferable force fields.« less
Understanding amyloid aggregation by statistical analysis of atomic force microscopy images
NASA Astrophysics Data System (ADS)
Adamcik, Jozef; Jung, Jin-Mi; Flakowski, Jérôme; de Los Rios, Paolo; Dietler, Giovanni; Mezzenga, Raffaele
2010-06-01
The aggregation of proteins is central to many aspects of daily life, including food processing, blood coagulation, eye cataract formation disease and prion-related neurodegenerative infections. However, the physical mechanisms responsible for amyloidosis-the irreversible fibril formation of various proteins that is linked to disorders such as Alzheimer's, Creutzfeldt-Jakob and Huntington's diseases-have not yet been fully elucidated. Here, we show that different stages of amyloid aggregation can be examined by performing a statistical polymer physics analysis of single-molecule atomic force microscopy images of heat-denatured β-lactoglobulin fibrils. The atomic force microscopy analysis, supported by theoretical arguments, reveals that the fibrils have a multistranded helical shape with twisted ribbon-like structures. Our results also indicate a possible general model for amyloid fibril assembly and illustrate the potential of this approach for investigating fibrillar systems.
Probing atomic-scale friction on reconstructed surfaces of single-crystal semiconductors
NASA Astrophysics Data System (ADS)
Goryl, M.; Budzioch, J.; Krok, F.; Wojtaszek, M.; Kolmer, M.; Walczak, L.; Konior, J.; Gnecco, E.; Szymonski, M.
2012-02-01
Friction force microscopy (FFM) investigations have been performed on reconstructed (001) surfaces of InSb and Ge in an ultrahigh vacuum. On the c(8×2) reconstruction of InSb(001) atomic resolution is achieved under superlubric conditions, and the features observed in the lateral force images are precisely reproduced by numerical simulations, taking into account possible decorations of the probing tip. On the simultaneously acquired (1×3) reconstruction a significant disorder of the surface atoms is observed. If the loading force increases, friction becomes much larger on this reconstruction compared to the c(8×2) one. In FFM images acquired on the Ge(001)(2×1) characteristic substructures are resolved within the unit cells. In such a case, a strong dependence of the friction pattern on the scan direction is observed.
Single molecule imaging of RNA polymerase II using atomic force microscopy
NASA Astrophysics Data System (ADS)
Rhodin, Thor; Fu, Jianhua; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzi; Ishikawa, Mitsuru
2003-03-01
An atomic force microscopy (AFM) study of the shape, orientation and surface topology of RNA polymerase II supported on silanized freshly cleaved mica was made. The overall aim is to define the molecular topology of RNA polymerase II in appropriate fluids to help clarify the relationship of conformational features to biofunctionality. A Nanoscope III atomic force microscope was used in the tapping mode with oxide-sharpened (8-10 nm) Si 3N 4 probes in aqueous zinc chloride buffer. The main structural features observed by AFM were compared to those derived from electron-density plots based on X-ray crystallographic studies. The conformational features included a bilobal silhouette with an inverted umbrella-shaped crater connected to a reaction site. These studies provide a starting point for constructing a 3D-AFM profiling analysis of proteins such as RNA polymerase complexes.
Free-energy landscape of the villin headpiece in an all-atom force field.
Herges, Thomas; Wenzel, Wolfgang
2005-04-01
We investigate the landscape of the internal free-energy of the 36 amino acid villin headpiece with a modified basin hopping method in the all-atom force field PFF01, which was previously used to predictively fold several helical proteins with atomic resolution. We identify near native conformations of the protein as the global optimum of the force field. More than half of the twenty best simulations started from random initial conditions converge to the folding funnel of the native conformation, but several competing low-energy metastable conformations were observed. From 76,000 independently generated conformations we derived a decoy tree which illustrates the topological structure of the entire low-energy part of the free-energy landscape and characterizes the ensemble of metastable conformations. These emerge as similar in secondary content, but differ in tertiary arrangement.
Simple Model for the Benzene Hexafluorobenzene Interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tillack, Andreas F.; Robinson, Bruce H.
While the experimental intermolecular distance distribution functions of pure benzene and pure hexafluorobenzene are well described by transferable all-atom force fields, the interaction between the two molecules (in a 1:1 mixture) is not well simulated. We demonstrate that the parameters of the transferable force fields are adequate to describe the intermolecular distance distribution if the charges are replaced by a set of charges that are not located at the atoms. Here, the simplest model that well describes the experimental distance distribution, between benzene and hexafluorobenzene, is that of a single ellipsoid for each molecule, representing the van der Waals interactions,more » and a set of three point charges (on the axis perpendicular to the arene plane) which give the same quadrupole moment as do the all atom charges from the transferable force fields.« less
Atomic Force Microscope (AFM) measurements and analysis on Sagem 05R0025 secondary substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, R; Baker, S L; Robinson, J C
2006-02-22
The summary of Atomic Force Microscope (AFM) on Sagem 05R0025 secondary substrate: (1) 2 x 2 {micro}m{sup 2} and 10 x 10 {micro}m{sup 2} AFM measurements and analysis on Sagem 05R0025 secondary substrate at LLNL indicate rather uniform and extremely isotropic finish across the surface, with high-spatial frequency roughness {sigma} in the range 5.1-5.5 {angstrom} rms; (2) the marked absence of pronounced long-range polishing marks in any direction, combined with increased roughness in the very high spatial frequencies, are consistent with ion-beam polishing treatment on the surface. These observations are consistent with all earlier mirrors they measured from the samemore » vendor; and (3) all data were obtained with a Digital Instruments Dimension 5000{trademark} atomic force microscope.« less
NASA Astrophysics Data System (ADS)
Dai, Houfu; Li, Shaobo; Chen, Genyu
2018-01-01
Molecular dynamics is employed to compare nanoscale traditional machining (TM) with laser-assisted machining (LAM). LAM is that the workpiece is locally heated by an intense laser beam prior to material removal. We have a comprehensive comparison between LAM and TM in terms of atomic trajectories, phase transformation, radial distribution function, chips, temperature distribution, number of atoms in different temperature, grinding temperature, grinding force, friction coefficient and atomic potential energy. It can be found that there is a decrease of atoms with five and six nearest neighbors, and LAM generates more chips than that in the TM. It indicates that LAM reduces the subsurface damage of workpiece, gets a better-qualified ground surface and improves the material removal rate. Moreover, laser energy makes the materials fully softened before being removed, the number of atoms with temperature above 500 K is increased, and the average temperature of workpiece higher and faster to reach the equilibrium in LAM. It means that LAM has an absolute advantage in machining materials and greatly reduces the material resistance. Not only the tangential force (Fx) and the normal force (Fy) but also friction coefficients become smaller as laser heating reduces the strength and hardness of the material in LAM. These results show that LAM is a promising technique since it can get a better-qualified workpiece surface with larger material removal rates, less grinding force and lower friction coefficient.
Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh
2013-05-08
We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles.
Spatiotemporally and Mechanically Controlled Triggering of Mast Cells using Atomic Force Microscopy
Hu, Kenneth K.; Bruce, Marc A.; Butte, Manish J.
2014-01-01
Mast cells are thought to be sensitive to mechanical forces, for example, coughing in asthma or pressure in “physical urticarias”. Conversion of mechanical forces to biochemical signals could potentially augment antigenic signaling. Studying the combined effects of mechanical and antigenic cues on mast cells and other hematopoietic cells has been elusive. Here, we present an approach using a modified atomic force microscope cantilever to deliver antigenic signals to mast cells while simultaneously applying mechanical forces. We developed a strategy to concurrently record degranulation events by fluorescence microscopy during antigenic triggering. Finally, we also measured the mechanical forces generated by mast cells while antigen receptors are ligated. We showed that mast cells respond to antigen delivered by the AFM cantilever with prompt degranulation and the generation of strong pushing and pulling forces. We did not discern any relationship between applied mechanical forces and the kinetics of degranulation. These experiments present a new method for dissecting the interactions of mechanical and biochemical cues in signaling responses of immune cells. PMID:24777418
Tu, Qing; Lange, Björn; Parlak, Zehra; Lopes, Joao Marcelo J; Blum, Volker; Zauscher, Stefan
2016-07-26
Interfaces and subsurface layers are critical for the performance of devices made of 2D materials and heterostructures. Facile, nondestructive, and quantitative ways to characterize the structure of atomically thin, layered materials are thus essential to ensure control of the resultant properties. Here, we show that contact-resonance atomic force microscopy-which is exquisitely sensitive to stiffness changes that arise from even a single atomic layer of a van der Waals-adhered material-is a powerful experimental tool to address this challenge. A combined density functional theory and continuum modeling approach is introduced that yields sub-surface-sensitive, nanomechanical fingerprints associated with specific, well-defined structure models of individual surface domains. Where such models are known, this information can be correlated with experimentally obtained contact-resonance frequency maps to reveal the (sub)surface structure of different domains on the sample.
Beyond mean-field effects in Bloch Oscillations of cold atoms in an optical cavity
NASA Astrophysics Data System (ADS)
Venkatesh Balasubramanian, Prasanna; O'Dell, Duncan
2012-06-01
In our earlier publication [1] we proposed using Bloch oscillations of cold atoms inside an Fabry-Perot resonator for sensitive measurements of force. The analysis in [1] was performed using a coherent mean-field description for the atoms and the light. In the current work we extend this description substantially by including the effects of fluctuations in both the atomic and light fields. This analysis is used to set realistic limits on the precision to which the force can be measured. We also make contact with the optomechanical description of the combined atom-cavity system which has proved so successful for describing recent pioneering experiments [2].[4pt] [1] B. Prasanna Venkatesh et al, Phys. Rev. A 80, 063834 (2009).[0pt] [2] S. Gupta et al, Phys. Rev. Lett. 99, 213601 (2007); F.Brennecke et al, Science 322, 235 (2008).
Investigating biomolecular recognition at the cell surface using atomic force microscopy.
Wang, Congzhou; Yadavalli, Vamsi K
2014-05-01
Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sah, Si Mohamed; Forchheimer, Daniel; Borgani, Riccardo; Haviland, David
2018-02-01
We present a polynomial force reconstruction of the tip-sample interaction force in Atomic Force Microscopy. The method uses analytical expressions for the slow-time amplitude and phase evolution, obtained from time-averaging over the rapidly oscillating part of the cantilever dynamics. The slow-time behavior can be easily obtained in either the numerical simulations or the experiment in which a high-Q resonator is perturbed by a weak nonlinearity and a periodic driving force. A direct fit of the theoretical expressions to the simulated and experimental data gives the best-fit parameters for the force model. The method combines and complements previous works (Platz et al., 2013; Forchheimer et al., 2012 [2]) and it allows for computationally more efficient parameter mapping with AFM. Results for the simulated asymmetric piecewise linear force and VdW-DMT force models are compared with the reconstructed polynomial force and show a good agreement. It is also shown that the analytical amplitude and phase modulation equations fit well with the experimental data.
Evaluation of atomic pressure in the multiple time-step integration algorithm.
Andoh, Yoshimichi; Yoshii, Noriyuki; Yamada, Atsushi; Okazaki, Susumu
2017-04-15
In molecular dynamics (MD) calculations, reduction in calculation time per MD loop is essential. A multiple time-step (MTS) integration algorithm, the RESPA (Tuckerman and Berne, J. Chem. Phys. 1992, 97, 1990-2001), enables reductions in calculation time by decreasing the frequency of time-consuming long-range interaction calculations. However, the RESPA MTS algorithm involves uncertainties in evaluating the atomic interaction-based pressure (i.e., atomic pressure) of systems with and without holonomic constraints. It is not clear which intermediate forces and constraint forces in the MTS integration procedure should be used to calculate the atomic pressure. In this article, we propose a series of equations to evaluate the atomic pressure in the RESPA MTS integration procedure on the basis of its equivalence to the Velocity-Verlet integration procedure with a single time step (STS). The equations guarantee time-reversibility even for the system with holonomic constrants. Furthermore, we generalize the equations to both (i) arbitrary number of inner time steps and (ii) arbitrary number of force components (RESPA levels). The atomic pressure calculated by our equations with the MTS integration shows excellent agreement with the reference value with the STS, whereas pressures calculated using the conventional ad hoc equations deviated from it. Our equations can be extended straightforwardly to the MTS integration algorithm for the isothermal NVT and isothermal-isobaric NPT ensembles. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.
A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.
Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei; ...
2017-05-11
As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.
Cheng Xing; Siqun Wang; George M. Pharr; Leslie H. Groom
2008-01-01
Refined wood fibers of a 54-year-old loblolly pine (Pinus taeda L.) mature wood were investigated by nanoindentation and atomic force microscopy (AFM). The effect of steam pressure, in the range of 2?18 bar, during thermomechanical refining was investigated and the nanomechanical properties and nano- or micro-level damages of the cell wall were...
NASA Astrophysics Data System (ADS)
Woellner, Cristiano F.; Freire, José A.; Guide, Michele; Nguyen, Thuc-Quyen
2011-08-01
We develop a simple continuum model for the current voltage characteristics of a material as measured by the conducting atomic force microscopy, including space charge effects. We address the effect of the point contact on the magnitude of the current and on the transition voltages between the different current regimes by comparing these with the corresponding expressions obtained with planar electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei
As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.
López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa
2015-01-01
Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770
Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; ...
2015-07-28
To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less
NASA Astrophysics Data System (ADS)
Lazzerini, Giovanni Mattia; Paternò, Giuseppe Maria; Tregnago, Giulia; Treat, Neil; Stingelin, Natalie; Yacoot, Andrew; Cacialli, Franco
2016-02-01
We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of "molecular terraces" whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazzerini, Giovanni Mattia; Yacoot, Andrew; Paternò, Giuseppe Maria
2016-02-01
We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surfacemore » topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-12
... of Atomic Safety and Licensing Board Pursuant to delegation by the Commission dated December 29, 1972... 2.104, 2.105, 2.300, 2.309, 2.313, 2.318, and 2.321, notice is hereby given that an Atomic Safety... Task Force Report. The contested proceedings in both cases had been terminated at the Atomic Safety and...
Kannan, Ashwin; Karumanchi, Subbalakshmi Latha; Krishna, Vinatha; Thiruvengadam, Kothai; Ramalingam, Subramaniam; Gautam, Pennathur
2014-01-01
Colonization of surfaces by bacterial cells results in the formation of biofilms. There is a need to study the factors that are important for formation of biofilms since biofilms have been implicated in the failure of semiconductor devices and implants. In the present study, the adhesion force of biofilms (formed by Pseudomonas aeruginosa) on porous silicon substrates of varying surface roughness was quantified using atomic force microscopy (AFM). The experiments were carried out to quantify the effect of surface roughness on the adhesion force of biofilm. The results show that the adhesion force increased from 1.5 ± 0.5 to 13.2 ± 0.9 nN with increase in the surface roughness of silicon substrate. The results suggest that the adhesion force of biofilm is affected by surface roughness of substrate. © 2014 Wiley Periodicals, Inc.
Surface modifications with Lissajous trajectories using atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei; Yao, Nan, E-mail: nyao@princeton.edu
2015-09-14
In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.
Synchronization of a self-sustained cold-atom oscillator
NASA Astrophysics Data System (ADS)
Heimonen, H.; Kwek, L. C.; Kaiser, R.; Labeyrie, G.
2018-04-01
Nonlinear oscillations and synchronization phenomena are ubiquitous in nature. We study the synchronization of self-oscillating magneto-optically trapped cold atoms to a weak external driving. The oscillations arise from a dynamical instability due the competition between the screened magneto-optical trapping force and the interatomic repulsion due to multiple scattering of light. A weak modulation of the trapping force allows the oscillations of the cloud to synchronize to the driving. The synchronization frequency range increases with the forcing amplitude. The corresponding Arnold tongue is experimentally measured and compared to theoretical predictions. Phase locking between the oscillator and drive is also observed.
Non-Markovianity in atom-surface dispersion forces
Intravaia, F.; Behunin, R. O.; Henkel, C.; ...
2016-10-18
Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.
Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.
Saurabh, Prasoon; Mukamel, Shaul
2014-04-28
Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).
[Atomic force microscopy: a tool to analyze the viral cycle].
Bernaud, Julien; Castelnovo, Martin; Muriaux, Delphine; Faivre-Moskalenko, Cendrine
2015-05-01
Each step of the HIV-1 life cycle frequently involves a change in the morphology and/or mechanical properties of the viral particle or core. The atomic force microscope (AFM) constitutes a powerful tool for characterizing these physical changes at the scale of a single virus. Indeed, AFM enables the visualization of viral capsids in a controlled physiological environment and to probe their mechanical properties by nano-indentation. Finally, AFM force spectroscopy allows to characterize the affinities between viral envelope proteins and cell receptors at the single molecule level. © 2015 médecine/sciences – Inserm.
Note: Spring constant calibration of nanosurface-engineered atomic force microscopy cantilevers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergincan, O., E-mail: orcunergincan@gmail.com; Palasantzas, G.; Kooi, B. J.
2014-02-15
The determination of the dynamic spring constant (k{sub d}) of atomic force microscopy cantilevers is of crucial importance for converting cantilever deflection to accurate force data. Indeed, the non-destructive, fast, and accurate measurement method of the cantilever dynamic spring constant by Sader et al. [Rev. Sci. Instrum. 83, 103705 (2012)] is confirmed here for plane geometry but surface modified cantilevers. It is found that the measured spring constants (k{sub eff}, the dynamic one k{sub d}), and the calculated (k{sub d,1}) are in good agreement within less than 10% error.
Tetramers of Two Heavy and Two Light Bosons
NASA Astrophysics Data System (ADS)
Naidon, Pascal
2018-07-01
This article considers the bound states of two heavy and two light bosons, when a short-range force attracts the bosons of different mass, and a short-range force repels the light bosons. The existence of such four-body bound states results from the competition between these two forces. For a given strength of the attraction, the critical strength of the repulsion necessary to unbind the four particles is calculated. This study is motivated by the experimental realisation of impurity atoms immersed in an atomic Bose-Einstein condensate, and aims at determining in which regime only one boson contributes to binding two impurities.
Non-Markovianity in atom-surface dispersion forces
NASA Astrophysics Data System (ADS)
Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.
2016-10-01
We discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. In particular, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. Our findings highlight the importance of non-Markovian effects in dispersion interactions.
Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.
2007-01-01
A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.
NASA Astrophysics Data System (ADS)
Tang, Sai; Wang, Jincheng; Li, Junjie; Wang, Zhijun; Guo, Yaolin; Guo, Can; Zhou, Yaohe
2017-06-01
Through phase-field-crystal (PFC) simulations, we investigated, on the atomic scale, the crucial role played by interface energy anisotropy and growth driving force during the morphological evolution of a dendrite tip at low growth driving force. In the layer-by-layer growth manner, the interface energy anisotropy drives the forefront of the dendrite tip to evolve to be highly similar to the corner of the corresponding equilibrium crystal from the aspects of atom configuration and morphology, and thus affects greatly the formation and growth of a steady-state dendrite tip. Meanwhile, the driving force substantially influences the part behind the forefront of the dendrite tip, rather than the forefront itself. However, as the driving force increases enough to change the layer-by-layer growth to the multilayer growth, the morphology of the dendrite tip's forefront is completely altered. Parabolic fitting of the dendrite tip reveals that an increase in the influence of interface energy anisotropy makes dendrite tips deviate increasingly from a parabolic shape. By quantifying the deviations under various interface energy anisotropies and growth driving forces, it is suggested that a perfect parabola is an asymptotic limit for the shape of the dendrite tips. Furthermore, the atomic scale description of the dendrite tip obtained in the PFC simulation is compatible with the mesoscopic results obtained in the phase-field simulation in terms of the dendrite tip's morphology and the stability criterion constant.
Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors
Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei
2013-01-01
Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. PMID:24232455
Impact of Short-Range Forces on Defect Production from High-Energy Collisions
Stoller, R. E.; Tamm, A.; Béland, L. K.; ...
2016-04-25
Primary radiation damage formation in solid materials typically involves collisions between atoms that have up to a few hundred keV of kinetic energy. The distance between two colliding atoms can approach 0.05 nm during these collisions. At such small atomic separations, force fields fitted to equilibrium properties tend to significantly underestimate the potential energy of the colliding dimer. To enable molecular dynamics simulations of high-energy collisions, it is common practice to use a screened Coulomb force field to describe the interactions and to smoothly join this to the equilibrium force field at a suitable interatomic spacing. But, there is nomore » accepted standard method for choosing the parameters used in the joining process, and our results prove that defect production is sensitive to how the force fields are linked. A new procedure is presented that involves the use of ab initio calculations to determine the magnitude and spatial dependence of the pair interactions at intermediate distances, along with systematic criteria for choosing the joining parameters. Results are presented for the case of nickel, which demonstrate the use and validity of the procedure.« less
NASA Technical Reports Server (NTRS)
Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.
1992-01-01
The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.
NASA Astrophysics Data System (ADS)
Bradac, Carlo; Prasanna Venkatesh, B.; Besga, Benjamin; Johnsson, Mattias; Brennen, Gavin; Molina-Terriza, Gabriel; Volz, Thomas; Juan, Mathieu L.
2017-08-01
Since the early work by Ashkin in 1970,1 optical trapping has become one of the most powerful tools for manipulating small particles, such as micron sized beads2 or single atoms.3 Interestingly, both an atom and a lump of dielectric material can be manipulated through the same mechanism: the interaction energy of a dipole and the electric field of the laser light. In the case of atom trapping, the dominant contribution typically comes from the allowed optical transition closest to the laser wavelength while it is given by the bulk polarisability for mesoscopic particles. This difference lead to two very different contexts of applications: one being the trapping of small objects mainly in biological settings,4 the other one being dipole traps for individual neutral atoms5 in the field of quantum optics. In this context, solid state artificial atoms present the interesting opportunity to combine these two aspects of optical manipulation. We are particularly interested in nanodiamonds as they constitute a bulk dielectric object by themselves, but also contain artificial atoms such as nitrogen-vacancy (NV) or silicon-vacancy (SiV) colour centers. With this system, both regimes of optical trapping can be observed at the same time even at room temperature. In this work, we demonstrate that the resonant force from the optical transition of NV centres at 637 nm can be measured in a nanodiamond trapped in water. This additional contribution to the total force is significant, reaching up to 10%. In addition, due to the very large density of NV centres in a sub-wavelength crystal, collective effects between centres have an important effect on the magnitude of the resonant force.6 The possibility to observe such cooperatively enhanced optical force at room temperature is also theoretically confirmed.7 This approach may enable the study of cooperativity in various nanoscale solid-state systems and the use of atomic physics techniques in the field of nano-manipulation and opto-mechanics.
Dynamic Light Scattering of Diabetic Vitreopathy
NASA Technical Reports Server (NTRS)
Sebag, J.; Ansari, Rafat R.; Dunker, Stephan; Suh, Kwang I.
1999-01-01
Diabetes induces pathology throughout the body via nonenzymatic glycation of proteins. Vitreous, which is replete with type 11 collagen, undergoes significant changes in diabetes. The resultant diabetic vitreopathy plays an important role in diabetic retinopathy. Detecting these molecular changes could provide insight into diabetic eye disease as well as molecular effects elsewhere in the body. Human eyes were obtained at autopsy and studied in the fresh, unfixed state. Sclera, choroid, and retina were dissected off the vitreous for dark-field slit microscopy and dynamic light scattering (DLS). For the former, the entire vitreous was exposed. For the latter, only a window at the equator was dissected in some specimens, and the anterior segment was removed leaving the posterior lens capsule intact in others. DLS was performed to determine particle sizes at multiple sites 0.5 mm apart, spanning the globe at the equator (window dissections) and along the antero-posterior axis. Dark-field slit microscopy in diabetic subjects detected findings typical of age-related vitreous degeneration, but at much younger ages than nondiabetic controls. Noninvasive DLS measurements found a greater heterogeneity and larger particle sizes in vitreous of subjects with diabetes as compared to age-matched controls. DLS can detect and quantify the early molecular effects that cause vitreous collagen fibrils to cross-link and aggregate. This could provide valuable insight into ocular and systemic effects of hyperglycemia, because the molecular changes in diabetic vitreopathy could serve as an index of such effects throughout the body. In addition to the diagnostic implications, this methodology could provide a rapid, reproducible way to monitor the response to therapy with novel agents intended to prevent the complications of diabetes on a molecular level.
Tzeng, Wen-Yu; Cherng, Chian-Fang G; Yu, Lung; Wang, Ching-Yi
2017-01-01
The presence of companions renders decreases in cocaine-stimulated dopamine release in the nucleus accumbens and cocaine-induced conditioned place preference (CPP) magnitude. Limbic systems are widely believed to underlie the modulation of accumbal dopamine release and cocaine conditioning. Thus, this study aimed to assess whether intact basolateral nucleus of amygdala (BLA), dorsal hippocampus (DH), and dorsolateral striatum (DLS) is required for the companions-exerted suppressive effect on the cocaine-induced CPP. Three cage mates, serving as companions, were arranged to house with the experimental mice in the cocaine conditioning compartment throughout the cocaine conditioning sessions. Approximately 1week before the conditioning procedure, intracranial ibotenic acid infusions were done in an attempt to cause excitotoxic lesions targeting bilateral BLA, DH and DLS. Albeit their BLA, DH, and DLS lesions, the lesioned mice exhibited comparable cocaine-induced CPP magnitudes compared to the intact and sham lesion controls. Bilateral BLA, but not DH or DLS, lesions abolished the companions-exerted suppressive effect on the cocaine-induced CPP. Intact mice receiving intra-BLA infusion of raclopride, a selective D2 antagonist, 30min prior to the cocaine conditioning did not exhibit the companions-exerted suppressive effect on the cocaine-induced CPP. Intra-BLA infusion of Sch23390, a selective D1 antagonist, did not affect the companions-exerted suppressive effect on the CPP. These results, taken together, prompt us to conclude that the intactness of BLA is required for the companions-exerted suppressive effect on the cocaine-induced CPP. Importantly, activation of D2 receptor in the BLA is required for such suppressive effect on the CPP. Copyright © 2016 Elsevier Inc. All rights reserved.
Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Ben, Juliana; Guaita, Gisele O; Pita, Inês R; Sequeira, Ana C; Pereira, Frederico C; Walz, Roger; Takahashi, Reinaldo N; Bertoglio, Leandro J; Da Cunha, Cláudio; Cunha, Rodrigo A; Prediger, Rui D
2016-03-15
Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity. Copyright © 2015 Elsevier B.V. All rights reserved.
Bieth, E; Gabus, C; Darlix, J L
1990-01-11
The genetic material of all retroviruses examined so far is an RNA dimer where two identical RNA subunits are joined at their 5' ends by a structure named dimer linkage structure (DLS). Since the precise location and structure of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analysed the dimerization process of Rous sarcoma virus (RSV) RNA. For this purpose we set up an in vitro model for RSV RNA dimerization. Using this model RSV RNA was shown to form dimeric molecules and this dimerization process was greatly activated by nucleocapsid protein (NCp12) of RSV. Furthermore, RSV RNA dimerization was performed in the presence of complementary 5'32P-DNA oligomers in order to probe the monomer and dimer forms of RSV RNA. Data indicated that the DLS of RSV RNA probably maps between positions 544-564 from the 5' end. In an attempt to define sequences needed for the dimerization of RSV RNA, deletion mutageneses were generated in the 5' 600 nt. The results showed that the dimer promoting sequences probably are located within positions 208-270 and 400-600 from the 5' end and hence possibly encompassing the cis-acting elements needed for the specific encapsidation of RSV genomic RNA. Also it is reported that synthesis of the polyprotein precursor Pr76gag is inhibited upon dimerization of RSV RNA. These results suggest that dimerization and encapsidation of genome length RSV RNA might be linked in the course of virion formation since they appear to be under the control of the same cis elements, E and DLS, and the trans-acting factor nucleocapsid protein NCp12.
Bieth, E; Gabus, C; Darlix, J L
1990-01-01
The genetic material of all retroviruses examined so far is an RNA dimer where two identical RNA subunits are joined at their 5' ends by a structure named dimer linkage structure (DLS). Since the precise location and structure of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analysed the dimerization process of Rous sarcoma virus (RSV) RNA. For this purpose we set up an in vitro model for RSV RNA dimerization. Using this model RSV RNA was shown to form dimeric molecules and this dimerization process was greatly activated by nucleocapsid protein (NCp12) of RSV. Furthermore, RSV RNA dimerization was performed in the presence of complementary 5'32P-DNA oligomers in order to probe the monomer and dimer forms of RSV RNA. Data indicated that the DLS of RSV RNA probably maps between positions 544-564 from the 5' end. In an attempt to define sequences needed for the dimerization of RSV RNA, deletion mutageneses were generated in the 5' 600 nt. The results showed that the dimer promoting sequences probably are located within positions 208-270 and 400-600 from the 5' end and hence possibly encompassing the cis-acting elements needed for the specific encapsidation of RSV genomic RNA. Also it is reported that synthesis of the polyprotein precursor Pr76gag is inhibited upon dimerization of RSV RNA. These results suggest that dimerization and encapsidation of genome length RSV RNA might be linked in the course of virion formation since they appear to be under the control of the same cis elements, E and DLS, and the trans-acting factor nucleocapsid protein NCp12. Images PMID:2155394
Till, Ugo; Gaucher, Mireille; Amouroux, Baptiste; Gineste, Stéphane; Lonetti, Barbara; Marty, Jean-Daniel; Mingotaud, Christophe; Bria, Carmen R M; Williams, S Kim Ratanathanawongs; Violleau, Frédéric; Mingotaud, Anne-Françoise
2017-01-20
Polymer self-assemblies joining oppositely charged chains, known as polyion complexes (PICs), have been formed using poly(ethyleneoxide - b - acrylic acid)/poly(l-lysine), poly(ethyleneoxide-b-acrylic acid)/dendrigraft poly(l-lysine) and poly[(3-acrylamidopropyl) trimethylammonium chloride - b - N - isopropyl acrylamide]/poly(acrylic acid). The self-assemblies have been first characterized in batch by Dynamic Light Scattering. In a second step, their analysis by Flow Field-Flow Fractionation techniques (FlFFF) was examined. They were shown to be very sensitive to shearing, especially during the focus step of the fractionation, and this led to an incompatibility with asymmetrical FlFFF. On the other hand, Frit Inlet FlFFF proved to be very efficient to observe them, either in its symmetrical (FI-FlFFF) or asymmetrical version (FI-AsFlFFF). Conditions of elution were found to optimize the sample recovery in pure water. Spherical self-assemblies were detected, with a size range between 70-400nm depending on the polymers. Compared to batch DLS, FI-AsFlFFF clearly showed the presence of several populations in some cases. The influence of salt on poly(ethyleneoxide-b-acrylic acid) (PEO-PAA) 6000-3000/dendrigraft poly(l-lysine) (DGL 3) was also assessed in parallel in batch DLS and FI-AsFlFFF. Batch DLS revealed a first process of swelling of the self-assembly for low concentrations up to 0.8M followed by the dissociation. FI-AsFlFFF furthermore indicated a possible ejection of DGL3 from the PIC assembly for concentrations as low as 0.2M, which could not be observed in batch DLS. Copyright © 2016 Elsevier B.V. All rights reserved.